Aople

PRESS

Newton Programmer’s Guide

For Newton 2.0

A

vy

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Harlow, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid SanJuan
Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in aretrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Appleretains all intellectua property
rights associated with the technology
described in this book. This book is
intended to assist application

devel opers to develop applications
only for licensed Newton platforms.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTak, Espy,
LaserWriter, the light bulb logo,
Macintosh, M essagePad, Newton,
Newton Connection Kit, and New York
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Apple Press, the Apple Press Signature,
eWorld, Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are trademarks
of Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
CompuServe is aregistered service
mark of CompuServe, Inc.
FrameMaker is aregistered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbatsis aregistered
trademark of International Typeface
Corporation.

Microsoft is aregistered trademark of
Microsoft Corporation. Windowsisa
trademark of Microsoft Corporation.
QuickView™ islicensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIESON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THISPRODUCT.

Even though Apple hasreviewed this
manual, APPLE MAKESNO
WARRANTY OR REPRESENTATION,
EITHER EXPRESSOR IMPLIED, WITH
RESPECT TO THISMANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. ASA
RESULT, THISMANUAL ISSOLD “AS
IS” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK ASTO
ITSQUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGESRESULTING FROM ANY
DEFECT OR INACCURACY INTHIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
INLIEU OFALL OTHERS, ORAL OR
WRITTEN, EXPRESSOR IMPLIED. No
Apple dealer, agent, or employeeis
authorized to make any modification,
extension, or addition to thiswarranty.

Some states do not allow the exclusion or
limitation of implied warrantiesor liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. Thiswarranty gives you
specific legal rights, and you may also have
other rightswhich vary from stateto state.

Preface

Table of Contents

Figures and Tables XXXl

About This Book iiii

Chapter 1

Who Should Read This Book xliii
Related Books xliii
Newton Programmer’s Reference CD-ROM
Sample Code xlv
Conventions Used in This Book xlv
Special Fonts xlv
Tap Versus Click xlvi
Frame Code xlvi
Developer Products and Support xlvii
Undocumented System Software Objects

Overview 1-1

xliv

Xlviii

Operating System 1-1
Memory 1-3
Packages 1-4

System Services 1-4
Object Storage System 1-5
View System 1-6
Text Input and Recognition 1-7
Stationery 1-8
Intelligent Assistant 1-8
Imaging and Printing 1-9
Sound 1-9
Book Reader 1-10
Find 1-10
Filing 1-11

Communications Services 1-11
NewtonScript Application Communications 1-13
Routing Through the In/Out Box 1-13
Endpoint Interface 1-14
Low-Level Communications 1-14
Transport Interface 1-14
Communication Tool Interface 1-15
Application Components 1-15
Using System Software 1-17
The NewtonScript Language 1-18
What's New in Newton 2.0 1-18
NewtApp 1-18
Stationery 1-19
Views 1-19
Protos 1-20
Data Storage 1-20
Text Input 1-20
Graphics and Drawing 1-21
System Services 1-21
Recognition 1-22
Sound 1-22
Built-in Applications 1-22
Routing and Transports 1-23
Endpoint Communication 1-23
Utilities 1-24
Books 1-24

Chapter 2 Getting Started 21

Choosing an Application Structure 2-1
Minimal Structure 2-1
NewtApp Framework 2-2
Digital Books 2-3
Other Kinds of Software 2-4
Package Loading, Activation, and Deactivation 2-4
Loading 2-5
Activation 2-5
Deactivation 2-6

Chapter 3

Effects of System Resets on Application Data

Flow of Control 2-8

Using Memory 2-8

Localization 2-9

Developer Signature Guidelines 2-9
Signature 2-9
How to Register 2-10
Application Name 2-10
Application Symbol 2-11
Package Name 2-11

Summary 2-12
View Classes and Protos 2-12
Functions 2-12

Views 31

2-7

About Views 31
Templates 32
Views 34
Coordinate System 3-6
Defining View Characteristics 3-8
Class 3-9
Behavior 39
Location, Size, and Alignment 3-10
Appearance 3-20
Opening and Closing Animation Effects
Other Characteristics 3-24
Inheritance Links 3-24
Application-Defined Methods 3-26
View Instantiation 3-26
Declaring aView 3-27
Creating aView 3-28
Closing aView 3-29
View Compatibility 3-30
New Drag and Drop AP 3-30
New Functions and Methods 3-30
New Messages 3-30
New Alignment Flags 331

3-23

Changes to Existing Functions and Methods 331
New Warning Messages 332
Obsolete Functions and M ethods 3-32
Using Views 3-32
Getting Referencesto Views 3-32
Displaying, Hiding, and Redrawing Views 3-33
Dynamically Adding Views 3-33
Showing a Hidden View 3-34
Adding to the stepChildren Array 3-34
Using the AddStepView Function 3-35
Using the BuildContext Function 3-36
Creating Templates 3-36
Making a Picker View 3-37
Changing the Values in viewFormat 3-37
Determining Which View Item |s Selected 3-37
Complex View Effects 3-38
Making Modal Views 3-38
Finding the Bounds of Views 3-39
Animating Views 3-40
Dragging aView 3-40
Dragging and Dropping with Views 3-40
Scrolling View Contents 341
Redirecting Scrolling Messages 342
Working With View Highlighting 3-42
Creating View Dependencies 3-43
View Synchronization 3-43
Laying Out Multiple Child Views 3-43
Optimizing View Performance 3-44
Using Drawing Functions 3-44
View Fill 3-44
Redrawing Views 344
Memory Usage 345
Scrolling 3-46
Summary of Views 3-47
Constants 3-47
Functions and Methods 3-51

Chapter 4 NewtApp Applications 41

About the NewtApp Framework 4-1
The NewtApp Protos 4-2
About newtApplication 4-4
About newtSoup 4-5
The Layout Protos 4-5
The Entry View Protos 4-8
About the Slot View Protos 4-9
Stationery 4-11
NewtApp Compatibility 4-11
Using NewtApp 4-12
Constructing a NewtApp Application 4-12
Using Application Globals 4-13
Using newtApplication 4-14
Using the Layout Protos 4-16
Using Entry Views 4-19
Using the Required NewtApp Install and Remove Scripts
Using Slot Views in Non-NewtApp Applications 4-22
Modifying the Base View 4-22
Using a False Entry View 4-23
Creating a Custom Labelled Input-Line Slot View 4-24
Summary of the NewtApp Framework 4-25
Required Code 4-25
Protos 4-25

Chapter 5 Stationery 51

4-21

About Stationery 51
The Stationery Buttons 5-2
Stationery Registration 5-4
Getting Information about Stationery 5-5
Compatibility Information 5-5
Using Stationery 5-5
Designing Stationery 5-5
Using FilINewEnNtry 5-6
Extending the Notes Application 57
Determining the SuperSymbol of the Host 5-7

Vii

Creating a DataDef 5-8
Defining DataDef Methods 5-9
Creating ViewDefs 5-11
Registering Stationery for an Auto Part 5-13
Using the MinimalBounds ViewDef Method 5-14
Stationery Summary 5-15
Data Structures 5-15
Protos 5-15
Functions 5-17

Chapter 6 Pickers, Pop-up Views, and Overviews 6-1

About Pickers and Pop-up Views 6-1
Pickers and Pop-up View Compatibility 6-2
New Pickers and Pop-up Views 6-2
Obsolete Function 6-4
Picker Categories 6-4
General-Purpose Pickers 6-4
Using protoGeneral Popup 6-7
Map Pickers 6-8
Text Pickers 6-10
Date, Time, and L ocation Pop-up Views 6-17
Number Pickers 6-21
Picture Picker 6-21
Overview Protos 6-22
Using protoOverview 6-24
Using protoL.istPicker 6-26
Using the Data Definitions Frame in aList Picker 6-29
Specifying Columns 6-29
Having a Single SelectioninaList Picker 6-30
Having Preselected Itemsin aList Picker 6-30
Validation and Editing in protoListPicker 6-31
Changing the Font of protoListPicker 6-33
Using protoSoupOverview 6-33
Determining Which protoSoupOverview Item Is Hit 6-33
Displaying the protoSoupOverview Vertical Divider 6-34
Roll Protos 6-35
View Classes 6-36

viii

Chapter 7

Specifying the List of Items for a Popup 6-37
Summary 6-41

General Picker Protos 6-41

Map Pickers 6-45

Text Picker Protos 6-46

Date, Time, and L ocation Pop-up Views 6-50

Number Pickers 6-53

Picture Picker 6-53

Overview Protos 6-54

Roll Protos 6-57

View Classes 6-58

Functions 6-59

Controls and Other Protos 7-1

Controls Compatibility 7-1
Scroller Protos 7-2
Implementing a Minimal Scroller 7-3
Automatic Arrow Feedback 7-3
Scrolling Examples 7-4
Scrolling Lines of Text 7-4
Scrolling in the Dates Application 7-5
Scrolling In a Graphics Application 7-5
Scroll Amounts 7-5
Advanced Usage 7-6
Button and Box Protos 7-6
Implementing a Simple Button 7-10
Selection Tab Protos 7-11
Gauge and Slider Protos 7-12
Implementing a Simple Slider 7-13
Time Protos 7-14
Implementing a Simple Time Setter 7-15
Special View Protos 7-16
View Appearance Protos 7-18
Status Bar Protos 7-19
Summary 7-20
Scroller Protos 7-20
Button and Box Protos 7-22

Selection Tab Protos 7-25
Gauges and Slider Protos 7-25
Time Protos 7-27

Special View Protos 7-28
View Appearance Protos 7-30
Status Bar Protos 7-31

Chapter 8 Text and Ink Input and Display s-1

About Text 81
About Text and Ink 81
Written Input Formats 8-2
Caret Insertion Writing Mode 8-3
Fonts for Text and Ink Display 8-3
About Text Views and Protos 8-3
About Keyboard Text Input 8-4
The Keyboard Registry 8-5
The Punctuation Pop-up Menu 8-5
Compatibility 8-6
Using Text 8-6
Using Views and Protos for Text Input and Display
Generd Input Views 8-6
Paragraph Views 8-10
Lightweight Paragraph Views 8-11
Using Input Line Protos 8-12
Displaying Text and Ink 8-14
Text and Ink in Views 8-14
Using Fonts for Text and Ink Display 8-17
Rich Strings 8-22
Text and Styles 8-25
Setting the Caret Insertion Point 8-26
Using Keyboards 8-26
Keyboard Views 8-26
Using Keyboard Protos 8-28
Defining Keysin aKeyboard View 8-30
Using the Keyboard Registry 8-36
Defining Tabbing Orders 8-36
The Caret Pop-up Menu 8-38

8-6

Handling Input Events 8-38
Testing for a Selection Hit 8-38
Summary of Text 8-39
Text Constants and Data Structures 8-39
Views 8-42
Protos 8-43
Text and Ink Display Functions and Methods 8-47
Keyboard Functions and Methods 8-49
Input Event Functions and Methods 8-50

Chapter 9 Recognition 91

About the Recognition System 9-1
Classifying Strokes 9-3
Gestures 9-4
Shapes 9-5
Text 9-6
Unrecognized Strokes 9-7
Enabling Recognizers 9-8
View Flags 9-9
Recognition Configuration Frames 9-9
View Flags vs. RecConfig Frames 9-10
Where to Go From Here 9-10
Recognition Failure 9-11
System Dictionaries 9-11
Correction and Learning 9-13
User Preferences for Recognition 9-14
Handwriting Recognition Preferences 9-15
RecToggle Views 9-18
Flag-Naming Conventions 9-19
Recognition Compatibility 9-20
Using the Recognition System 9-21
Types of Views 9-21
Configuring the Recognition System 9-22
Obtaining Optimum Recognition Performance 9-23
Accepting Pen Input 9-24
Taps and Overlapping Views 9-24
Recognizing Shapes 9-25

Xi

Recognizing Standard Gestures 9-25

Combining View Flags 9-26

Recognizing Text 9-27
Recognizing Punctuation 9-28
Suppressing Spaces Between Words 9-28
Forcing Capitalization 9-29
Justifying to Width of Parent View 9-29
Restricting Input to Single Lines or Single Words 9-29
Validating Clipboard and Keyboard Input 9-29

Using the vAnythingAllowed Mask 9-30

Summary 9-31
Constants 9-31
Data Structures 9-33

Chapter 10 Recognition: Advanced Topics 10-1

About Advanced Topics in Recognition 10-1
How the System Uses Recognition Settings 10-1
ProtoCharEdit Views 10-4
Ambiguous Characters in protoCharEdit Views 10-5
Deferred Recognition 10-5
User Interface to Deferred Recognition 10-5
Programmer’s Overview of Deferred Recognition 10-6
Compatibility Information 10-7
Using Advanced Topics in Recognition 10-7
Using recConfig Frames 10-8
Creating arecConfig Frame 10-9
Using RecConfig Frames to Enable Recognizers 10-10
Returning Text, Ink Text or Sketch Ink 10-10
Fine-Tuning Text Recognition 10-12
Manipulating Dictionaries 10-13
Single-Character Input Views 10-13
Creating Single-Letter Input Views 10-15
Changing Recognition Behavior Dynamically 10-17
Using protoRecToggle Views 10-19
Creating the recToggle View 10-19
Configuring Recognizers and Dictionaries for recToggle
Views 10-20
Creating the _recogSettings Slot 10-20

Xii

Providing the _recogPopup Slot 10-22
Accessing Correction Information 10-23
Using Custom Dictionaries 10-24
Creating a Custom Enumerated Dictionary 10-24
Creating the Blank Dictionary 10-25
Adding Words to RAM-Based Dictionaries 10-26
Removing Words From RAM-Based Dictionaries 10-27
Saving Dictionary Data to a Soup 10-27
Restoring Dictionary Data From a Soup 10-28
Using Your RAM-Based Custom Dictionary 10-28
Removing Your RAM-Based Custom Dictionary 10-30
Using System Dictionaries Individually 10-30
Working With the Review Dictionary 10-30
Retrieving the Review Dictionary 10-31
Displaying Review Dictionary Browsers 10-31
Adding Words to the User Dictionary 10-32
Removing Words From the User Dictionary 10-32
Adding Words to the Expand Dictionary 10-33
Removing Words From the Expand Dictionary 10-34
Retrieving Word Expansions 10-34
Retrieving the Auto-Add Dictionary 10-34
Disabling the Auto-Add Mechanism 10-35
Adding Words to the Auto-Add Dictionary 10-35
Removing Words From the Auto-Add Dictionary 10-36
Using protoCharEdit Views 10-36
Positioning protoCharEdit Views 10-36
Manipulating Text in protoCharEdit Views 10-37
Restricting Characters Returned by protoCharEdit Views 10-38
Customized Processing of Input Strokes 10-40
Customized Processing of Double Taps 10-41
Changing User Preferences for Recognition 10-41
Modifying or Replacing the Correction Picker 10-42
Using Stroke Bundles 10-42
Stroke Bundles Example 10-42
Summary of Advanced Topics in Recognition 10-44
Constants 10-44
Data Structures 10-45
Recognition System Prototypes 10-49
Additional Recognition Functions and Methods 10-54

Xiii

Chapter 11

Data Storage and Retrieval 111

Xiv

About Data Storage on Newton Devices 11-1

Introduction to Data Storage Objects 11-2
Where to Go From Here 11-6
Stores 11-6
Packages 11-7
Soups 11-7
Indexes 11-8
Saving User Preference Data in the System Soup
Queries 11-10
Querying for Indexed Values 11-10
Begin Keys and End Keys 11-12
Tag-based Queries 11-14
Customized Tests 11-14
Text Queries 11-15
Cursors 11-16
Entries 11-17
Alternatives to Soup-Based Storage 11-18
Dynamic Data 11-18
Static Data 11-19
Compatibility Information 11-20

Obsolete Store Functions and Methods 11-20

Soup Compatibility Information 11-20
Query Compatibility Information 11-23
Obsolete Entry Functions 11-24
Obsolete Data Backup and Restore Functions

Using Newton Data Storage Objects 11-25

Programmer’s Overview 11-25

Using Stores 11-28
Store Object Size Limits 11-29
Referencing Stores 11-29
Retrieving Packages From Stores 11-29
Testing Stores for Write-Protection 11-30
Getting or Setting the Default Store 11-30
Getting and Setting the Store Name 11-30

Accessing the Store Information Frame 11-31

Using Soups 11-31
Naming Soups 11-31
Registering and Unregistering Soup Definitions

11-10

11-24

11-32

Retrieving Existing Soups 11-33
Adding Entries to Soups 11-34
Adding an Index to an Existing Soup 11-35
Removing Soups 11-36
Using Built-in Soups 11-36
Making Changes to Other Applications’ Soups 11-37
Adding Tagsto an Existing Soup 11-37

Using Queries 11-37
Querying Multiple Soups 11-38
Querying on Single-Slot Indexes 11-38
Querying for Tags 11-41
Querying for Text 11-43
Internationalized Sorting Order for Text Queries 11-44
Queries on Descending Indexes 11-45
Querying on Multiple-Slot Indexes 11-47
Limitations of Index Keys 11-51

Using Cursors 11-53
Getting a Cursor 11-53
Testing Validity of the Cursor 11-53
Getting the Entry Currently Referenced by the Cursor 11-54
Moving the Cursor 11-54
Counting the Number of Entriesin Cursor Data 11-56
Getting the Current Entry’s Index Key 11-56
Copying Cursors 11-56

Using Entries 11-57
Saving Frames as Soup Entries 11-57
Removing Entries From Soups 11-58
Modifying Entries 11-59
Moving Entries 11-60
Copying Entries 11-60
Sharing Entry Data 11-61
Using the Entry Cache Efficiently 11-61

Using Soup Change Natification 11-63
Registering Your Application for Change Notification 11-63
Unregistering Your Application for Change Notification 11-65
Responding to Notifications 11-65
Sending Notifications 11-66

Summary of Data Storage 11-68
Data Structures 11-68
Data Storage Functions and Methods 11-71

XV

Special-Purpose Obijects for
Chapter 12 Data Storage and Retrieval 121

About Special-Purpose Storage Objects 12-1
Entry Aliases 12-1
Virtual Binary Objects 12-2
Parts 12-3
Store Parts 12-4
Mock Entries 12-4
Mock Stores, Mock Soups, and Mock Cursors 12-6
Using Special-Purpose Data Storage Objects 12-7
Using Entry Aliases 12-7
Using Virtua Binary Objects 12-8
Creating Virtual Binary Objects 12-8
Modifying VBO Data 12-10
VBOs and String Data 12-12
Using Store Parts 12-12
Creating a Store Part 12-13
Getting the Store Part 12-14
Accessing Datain Store Parts 12-14
Using Mock Entries 12-14
Implementing the EntryAccess Method 12-15
Creating a New Mock Entry 12-15
Testing the Validity of aMock Entry 12-16
Getting Mock Entry Data 12-16
Changing the Mock Entry’s Handler 12-16
Getting the Mock Entry’s Handler 12-16
Implementing Additional Handler Methods 12-16
Summary of Special-Purpose Data Storage Objects 12-17
Data Structures 12-17
Functions and Methods 12-17

Chapter 13 Drawing and Graphics 131

About Drawing 13-1
Shape-Based Graphics 13-2
Manipulating Shapes 13-7
The Style Frame 13-7

XVi

Drawing Compatibility 13-8
New Functions 13-8
New Style Attribute Slots 13-8
Changes to Bitmaps 13-8
Changes to the HitShape Method 13-8
Changesto View Classes 139
Using the Drawing Interface 13-9
How to Draw 139
Responding to the ViewDrawScript Message 139
Drawing Immediately 13-10
Using Nested Arrays of Shapes 13-10
The Transform Slot in Nested Shape Arrays 13-11
Default Transfer Mode 13-12
Transfer Modes at Print Time 13-12
Controlling Clipping 13-12
Transforming a Shape 13-13
Using Drawing View Classes and Protos 13-14
Displaying Graphics Shapes and Ink 13-14
Displaying Bitmaps, Pictures, and Graphics Shapes 13-15
Displaying Picturesin a clEditView 13-15
Displaying Scaled Images of Other Views 13-15
Trangdlating Data Shapes 13-16
Finding Points Within a Shape 13-16
Using Bitmaps 13-17
Making CopyBits Scale Its Output Bitmap 13-18
Storing Compressed Pictures and Bitmaps 13-18
Capturing a Portion of aView Into a Bitmap 13-18
Rotating or Flipping a Bitmap 13-19
Importing Macintosh PICT Resources 13-20
Drawing Non-Default Fonts 13-20
PICT Swapping During Run-Time Operations 13-21
Optimizing Drawing Performance 13-22
Summary of Drawing 13-23
Data Structure 13-23
View Classes 13-23
Protos 13-24
Functions and Methods 13-26

XVii

Chapter 14 Sound 141

About Newton Sound 14-1
Event-related Sounds 14-2
Soundsin ROM 14-2
Sounds for Predefined Events 14-2
Sound Data Structures 14-3
Compatibility 14-3
Using Sound 14-4
Creating and Using Custom Sound Frames 14-4
Creating Sound Frames Procedurally 14-5
Cloning Sound Frames 14-5
Playing Sound 14-5
Using a Sound Channel to Play Sound 14-5
Playing Sound Programmatically 14-6
Synchronous and A synchronous Sound 14-7
Advanced Sound Techniques 14-8
Pitch Shifting 14-9
Manipulating Sample Data 14-10
Summary of Sound 14-11
Data Structures 14-11
Protos 14-11
Functions and Methods 14-12
Sound Resources 14-12

Chapter 15 Filing 151

About Filing 15-1
Filing Compatibility Information 15-9

Using the Filing Service 15-10

Overview of Filing Support 15-10

Creating the Labels Slot 15-11
Creating the appName Slot 15-11
Creating the appAll Slot 15-12
Creating the appObjectFileThisIn Slot 15-12
Creating the appObjectFileThisOn Slot 15-12
Creating the appObjectUnfiled Slot 15-12
Specifying the Target 15-13

XViii

Creating the label sFilter slot 15-14
Creating the storesFilter slot 15-14
Adding the Filing Button 15-14
Adding the Folder Tab View 15-14
Customizing Folder Tab Views 15-15
Defining a TitleClickScript Method 15-15
Implementing the FileThis Method 15-15
Implementing the NewFilingFilter Method 15-16
Using the Folder Change Notification Service 15-18
Creating the doCardRouting slot 15-18
Using Local or Global Folders Only 15-19
Adding and Removing Filing Categories
Programmatically 15-19
Interface to User-Visible Folder Names 15-19
Summary 15-20
Data Structures for Filing 15-20
Application Base View Slots 15-20
Filing Protos 15-21
Filing Functions and Methods 15-22
Application-Defined Filing Functions and Methods 15-22

Chapter 16 Find 161

About the Find Service 16-1
Compatibility Information 16-6
Using the Find Service 16-6
Technica Overview 16-6
Global and Selected Finds 16-9
Checklist for Adding Find Support 16-10
Creating the title Slot 16-11
Creating the appName Slot 16-11
Using the Finder Protos 16-11
Implementing Search Methods 16-14
Using the StandardFind Method 16-15
Using Your Own Text-Searching Method 16-16
Finding Text With a ROM_CompatibleFinder 16-17
Implementing the DateFind Method 16-18
Adding Application Data Sets to Selected Finds 16-19
Returning Search Results 16-21

XiX

Implementing Find Overview Support 16-21
The FindSoupExcerpt Method 16-21
The ShowFoundltem Method 16-22
Replacing the Built-in Find Slip 16-24
Reporting Progress to the User 16-24
Registering for Finds 16-25
Summary 16-26
Finder Protos 16-26
Functions and Methods 16-28
Application-Defined Methods 16-28

Chapter 17 Additional System Services 171
About Additional System Services 17-1
Undo 17-1

Undo Compatibility 17-2
Idler Objects 17-2
Change Notifications 17-2
Online Help 17-3
Alertsand Alarms 17-3
User Alerts 17-3
User Alarms 17-3
Periodic Alarms 17-4
Alarms Compatibility 17-5
Progress Indicators 17-5
Automatic Busy Cursor 17-5
Notify Icon 17-5
Status Slips With Progress Indicators 17-6
Power Registry 17-7
Power Compatibility Information 17-7
Using Additional System Services 17-7
Using Undo Actions 17-8
The Various Undo Methods 17-8
Avoiding Undo-Related “Bad Package” Errors
Using Idler Objects 17-9
Using Change Notification 17-10
Using Online Help 17-10

XX

17-9

Using Alerts and Alarms 17-11
Using the Notify Method to Display User Alerts 17-11
Creating Alarms 17-11
Obtaining Information about Alarms 17-12
Retrieving Alarm Keys 17-12
Removing Installed Alarms 17-13
Common Problems With Alarms 17-13
Using the Periodic Alarm Editor 17-14
Using Progress Indicators 17-15
Using the Automatic Busy Cursor 17-15
Using the Notify Icon 17-15
Using the DoProgress Function 17-16
Using DoProgress or Creating Your Own
protoStatusTemplate 17-18
Using protoStatusTemplate Views 17-18
Using the Power Registry 17-24
Registering Power-On Functions 17-24
Registering Login Screen Functions 17-25
Registering Power-Off Functions 17-25
Using the Battery Information Functions 17-26
Summary of Additional System Services 17-27
Undo 17-27
Idlers 17-27
Notification and Alarms 17-27
Reporting Progress 17-28
Power Registry 17-29

Chapter 18 Intelligent Assistant 181

About the Assistant 18-1

Introduction 18-1
Input Strings 18-2
No Verb in Input String 18-2
Ambiguous or Missing Information 18-4
The Task Slip 18-4

Programmer’s Overview 18-5

Matching Words With Templates 18-8

The Signature and PreConditions Slots 18-10

XXi

The Task Frame 18-11
The Entries Slot 18-11
The Phrases Slot 18-11
The OrigPhrase Slot 18-12
The Value Slot 18-12
Resolving Template-Matching Conflicts 18-13
Compatibility Information 18-14
Using the Assistant 18-15
Making Behavior Available From the Assistant 18-15
Defining Action and Target Templates 18-15
Defining Your Own Frame Types to the Assistant 18-16
I mplementing the PostParse Method 18-17
Defining the Task Template 18-18
Registering and Unregistering the Task Template 18-19
Displaying Online Help From the Assistant 18-19
Routing Items From the Assistant 18-20
Summary 18-21
Data Structures 18-21
Templates 18-21
Developer-Supplied Task Template 18-22
Devel oper-Supplied Action Templates 18-25
Developer-Supplied Target Templates 18-27
Assistant Functions and Methods 18-27
Devel oper-Supplied Functions and Methods 18-28
Application BaseView Slots 18-28

Chapter 19 Built-in Applications and System Data 19-1

Names 19-2

About the Names Application 19-2
Names Compatibility 19-3

Using the Names Application 19-4
Adding aNew Type of Card 19-4
Adding aNew Data ltem 19-4
Adding aNew Card Layout Style 19-5
Adding New Layouts to the Names Application 19-6
Using the Names Methods and Functions 19-6
Using the Names Soup 19-7
Using the Names Protos 19-7

XXii

Dates 19-8
About the Dates Application 19-8
Dates Compatibility 19-9
Using the Dates Application 19-10
Adding Meetings or Events 19-11
Deleting Meetings and Events 19-12
Finding Meetings or Events 19-13
Moving Meetings and Events 19-14
Getting and Setting Information for Meetings or Events
Creating a New Meeting Type 19-17
Examples of Creating New Meeting Types 19-19
Miscellaneous Operations 19-20
Controlling the Dates Display 19-21
Using the Dates Soups 19-22
To Do List 19-22
About the To Do List Application 19-22
To Do List Compatibility 19-23
Using the To Do List Application 19-23
Creating and Removing Tasks 19-24
Accessing Tasks 19-24
Checking-Off a Task 19-25
Miscellaneous To Do List Methods 19-26
Using the To Do List Soup 19-26
Time Zones 19-27
About the Time Zones Application 19-27
Time Zone Compatibility 19-27
Using the Time Zone Application 19-28

Obtaining Information About a City or Country 19-28

Adding a City to a Newton Device 19-29
Using Longitude and L atitude Values 19-30
Setting the Home City 19-30
Notes 19-30

About the Notes Application 19-31
Notes Compatibility 19-31

Using the Notes Application 19-32
Creating New Notes 19-32
Adding Stationery to the Notes Application 19-33
Using the Notes Soup 19-33

19-15

XXiii

XXiV

Fax Soup Entries 19-34
About Fax Soup Entries 19-34
Using Fax Soup Entries 19-34
Prefs and Formulas Rolls 19-35
About the Prefs and Formulas Rolls 19-35
Prefs and Formulas Compatibility 19-36
Using the Prefs and Formulas Interfaces 19-36
Adding aPrefs Roll Item 19-36
Adding a Formulas Roll Item 19-36
Auxiliary Buttons 19-36
About Auxiliary Buttons 19-36
Auxiliary Buttons Compatibility 19-36
Using Auxiliary Buttons 19-37
Icons and the Extras Drawer 19-38
About Icons and the Extras Drawer 19-38
Extras Drawer Compatibility 19-39
Using the Extras Drawer’s Interface for |con Management
Using Extras Drawer Cursors 19-40
Changing Icon Information 19-40
Adding a Soup Icon 19-40
Removing a Soup Icon 19-41
Creating a Script Icon 19-42
Using the Soupervisor Mechanism 19-43
System Data 19-44
About System Data 19-44
Using System Data 19-44

Functions for Accessing User Configuration Data 19-45
19-45

Storing Application Preferences in the System Soup
Summary 19-46
Constants and Variables 19-46
User Configuration Variables 19-47
Protos 19-48
Soup Formats 19-49
Functions and Methods 19-53

19-39

Chapter 20 Localizing Newton Applications 20-1

About Localization 20-1
The Locale Panel and the International Frame 20-1
Locale and ROM Version 20-2
How Locale Affects Recognition 20-2
Using the Localization Features of the Newton 20-3
Defining Language at Compile Time 20-3
Defining a Localization Frame 20-4
Using LocObj to Reference Localized Objects 20-4
Use ParamStr Rather Than “&” and “&&” Concatenation
Measuring String Widths at Compile Time 20-6
Determining Language at Run Time 20-6
Examining the Active Locale Bundle 20-6
Changing Locale Settings 20-7
Creating a Custom Locale Bundle 20-7
Adding a New Bundle to the System 20-8
Removing aLocale Bundle 20-8
Changing the Active Locale 20-9
Using aLocalized Country Name 20-9
Summary: Customizing Locale 20-9
Localized Output 20-10
Date and Time Values 20-10
Currency Values 20-13
Summary of Localization Functions 20-14
Compile-Time Functions 20-14
Locale Functions 20-14
Date and Time Functions 20-14
Utility Functions 20-15

Chapter 21 Routing Interface 211

20-5

About Routing 21-1
The In/Out Box 21-1
The In Box 21-2
The Out Box 21-3
Action Picker 21-3

XXV

XXVi

Routing Formats 21-5
Current Format 21-8

Routing Compatibility 21-8
Print Formats 21-8

Using Routing 21-8

Providing Transport-Based Routing Actions 21-9
Getting and Verifying the Target Object 21-10
Getting and Setting the Current Format 21-11
Supplying the Target Object 21-12
Storing an Alias to the Target Object 21-13
Storing Multiple Items 21-14
Using the Built-in Overview Data Class 21-14
Displaying an Auxiliary View 21-15
Registering Routing Formats 21-16

Creating a Print Format 21-18
Page Layout 21-18
Printing and Faxing 21-19

Creating a Frame Format 21-21

Creating a New Type of Format 21-22

Providing Application-Specific Routing Actions 21-22
Performing the Routing Action 21-24
Handling Multiple Items 21-24
Handling No Target Item 21-25

Sending Items Programmatically 21-26
Creating a Name Reference 21-27
Specifying a Printer 21-28

Opening a Routing Slip Programmatically 21-29

Supporting the Intelligent Assistant 21-30

Receiving Data 21-31
Automatically Putting Away ltems 21-31
Manually Putting Away Items 21-33
Registering to Receive Foreign Data 21-34
Filing Items That Are Put Away 21-34

Viewing Itemsin the In/Out Box 21-34
View Definition Slots 21-35

Advanced Alias Handling 21-36

Summary of the Routing Interface 21-37
Constants 21-37
Data Structures 21-37

Protos 21-38
Functions and Methods 21-39
Application-Defined Methods 21-40

Chapter 22 Transport Interface 22-1

About Transports 22-1
Transport Parts 22-2
Item Frame 22-2
Using the Transport Interface 22-5
Providing a Transport Object 22-5
Installing the Transport 22-5
Setting the Address Class 22-6
Grouping Transports 22-7
Sending Data 22-8
Sending All Items 22-9
Converting an E-Mail Address to an Internet Address 22-9
Receiving Data 22-9
Handling Requests When the Transport IsActive 22-12
Canceling an Operation 22-13
Obtaining an Item Frame 22-13
Completion and Logging 22-16
Storing Transport Preferences and Configuration
Information 22-17
Extending the In/Out Box Interface 22-17
Application Messages 22-19
Error Handling 22-20
Power-Off Handling 22-20
Providing a Status Template 22-21
Controlling the Status View 22-23
Providing a Routing Information Template 22-25
Providing a Routing Slip Template 22-26
Using protoFullRouteSlip 22-27
Using protoAddressPicker 22-31
Providing a Preferences Template 22-33
Summary of the Transport Interface 22-36
Constants 22-36
Protos 22-36
Functions and Methods 22-39

XXVii

Chapter 23 Endpoint Interface 231

About the Endpoaint Interface 231
Asynchronous Operation 23-2
Synchronous Operation 23-3
Input 23-3
Data Forms 234
Template Data Form 235
Endpoint Options 23-7
Compatibility 23-7
Using the Endpoint Interface 23-8
Setting Endpoint Options 23-8
Initialization and Termination 23-10
Establishing a Connection 23-11
Sending Data 2311
Receiving Data Using Input Specs 23-12
Specifying the Data Form and Target 23-13
Specifying Data Termination Conditions 23-14
Specifying Flags for Receiving 23-15
Specifying an Input Time-Out 23-16
Specifying Data Filter Options 23-16
Specifying Receive Options 23-17
Handling Normal Termination of Input 23-17
Periodically Sampling Incoming Data 23-18
Handling Unexpected Completion 23-18
Special Considerations 23-18
Receiving Data Using Alternative Methods 23-19
Streaming Data In and Out 23-20
Working With Binary Data 23-20
Canceling Operations 23-21
Asynchronous Cancellation 23-21
Synchronous Cancellation 23-22
Other Operations 23-22
Error Handling 23-23
Power-Off Handling 23-23
Linking the Endpoint With an Application 23-24
Summary of the Endpoint Interface 23-25
Constants and Symbols 23-25
Data Structures 23-26
Protos 23-28
Functions and Methods 23-30

XXViii

Chapter 24 Built-in Communications Tools 24-1
Serial Tool 24-1
Standard Asynchronous Seria Tool 24-1
Seria Tool with MNP Compression 24-4
Framed Asynchronous Seria Tool 24-4
Modem Tool 24-6
Infrared Tool 24-8
AppleTak Tool 24-9
Resource Arbitration Options 24-10
AppleTalk Functions 24-12
The Net Chooser 24-13
Summary 24-16
Built-in Communications Tool Service Option Labels 24-16
Options 24-16
Constants 24-18
Functions and Methods 24-21
Chapter 25 Modem Setup Service 251

About the Modem Setup Service 25-1
The Modem Setup User Interface 25-2
The Modem Setup Process 25-3
Modem Communication Tool Requirements 25-4
Defining aModem Setup 25-5
Setting Up General Information 255
Setting the Modem Preferences Option 25-5
Setting the Modem Profile Option 25-6
Setting the Fax Profile Option 25-7
Summary of the Modem Setup Service 259
Constants 25-9

XXiX

Chapter 26

Utility Functions 261

XXX

Compatibility 26-2

New Functions 26-2
New Object System Functions 26-2
New String Functions 26-3
New Array Functions 26-3
New Sorted Array Functions 26-3
New Integer Math Functions 26-4
New Financial Functions 26-4
New Exception Handling Functions 26-4
New Message Sending Functions 26-4

New Deferred Message Sending Functions 26-4

New Data Stuffing Functions 26-5
New Functions to Get and Set Globals 26-5
New Debugging Functions 26-5
New Miscellaneous Functions 26-5
Enhanced Functions 26-6
Obsolete Functions 26-6

Summary of Functions and Methods 26-7

Object System Functions 26-7

String Functions 26-8

Bitwise Functions 26-9

Array Functions 26-9

Sorted Array Functions 26-9

Integer Math Functions 26-10

Floating Point Math Functions 26-10
Financia Functions 26-12

Exception Functions 26-12

Message Sending Functions 26-12

Deferred Message Sending Functions 26-12
Data Extraction Functions 26-13

Data Stuffing Functions 26-13

Getting and Setting Global Variables and Functions
Debugging Functions 26-13

Miscellaneous Functions 26-14

26-13

Appendix

The Inside Story on Declare

Compile-Time Results A-1
Run-Time Results A-2

Glossary GL1

Index IN-1

XXXi

Chapter 1

Chapter 3

Chapter 4

Figures and Tables

Overview

Figure 1-1 System software overview 1-2
Figure 1-2 Communications architecture 1-12
Figure 1-3 Using components 1-16

Views 3-1

Figure 3-1 Template hierarchy 3-3

Figure 3-2 View hierarchy 3-5

Figure 3-3 Screen representation of view hierarchy 3-6
Figure 3-4 View system coordinate plane 3-7
Figure 3-5 Points and pixels 3-7

Figure 3-6 Bounds parameters 3-11

Figure 3-7 View alignment effects 3-18
Figure 3-8 Transfer modes 3-22

Table 3-1 vi ewdust i fy constants 3-14

NewtApp Applications 4-1

Figure 4-1
Figure 4-2

Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

Figure 4-7

Figure 4-8
Figure 4-9

The main protos in a NewtApp-based application 4-3
A roll-based application (left) versus a card-based
application 4-6

Calls is an example of a page-based application 4-7
Multiple entries visible simultaneously 4-8

An Information slip 4-9

The smart name view and system-provided

people picker 4-11

The message resulting from a ni | value for
forceNewEntry 4-17

The overview slots 4-17

The information button and picker. 4-20

XXXiii

Chapter 5 Stationery 5-1

Figure 5-1 The IOU extension in the New picker 5-3

Figure 5-2 The IOU extension to the Notes application 5-3

Figure 5-3 The Show menu presents different views of

application data 5-4

Figure 5-4 The default viewDef view template 5-12
Chapter 6 Pickers, Pop-up Views, and Overviews 6-1

Figure 6-1 A pr ot oPopupBut t on example 6-5

Figure 6-2 A pr ot oPopl nPl ace example 6-5

Figure 6-3 A prot oLabel Pi cker example 6-5

Figure 6-4 A prot oPi cker example 6-6

Figure 6-5 A pr ot oGener al Popup example 6-6

Figure 6-6 A prot oText Li st example 6-7

Figure 6-7 A prot oTabl e example 6-7

Figure 6-8 A prot oCount ryPi cker example 6-9

Figure 6-9 A pr ot oProvi ncePi cker example 6-9

Figure 6-10 A prot oSt at ePi cker example 6-9

Figure 6-11 A pr ot oWor | dPi cker example 6-10

Figure 6-12 A pr ot oText Pi cker example 6-10

Figure 6-13 A pr ot oDat eText Pi cker example 6-11

Figure 6-14 A protoDat eDur ati onText Pi cker example 6-12

Figure 6-15 A pr ot oDat eNTi neText Pi cker example 6-13

Figure 6-16 A prot oTi mreText Pi cker example 6-13

Figure 6-17 A protoDurationText Pi cker example 6-14

Figure 6-18 A protoTi neDel t aText Pi cker example 6-14

Figure 6-19 A pr ot oMapText Pi cker example 6-15

Figure 6-20 A pr ot oUSst at esText Pi cker example 6-15

Figure 6-21 AprotoCitiesTextPi cker example 6-16

Figure 6-22 A prot oLongLat Text Pi cker example 6-16

Figure 6-23 A pr ot oDat ePopup example 6-17

Figure 6-24 A pr ot oDat ePi cker example 6-17

Figure 6-25 A pr ot oDat eNTi nePopup example 6-18

Figure 6-26 A pr ot oDat el nt er val Popup example 6-18

Figure 6-27 A prot oMl ti Dat ePopup example 6-19

Figure 6-28 A pr ot oYear Popup example 6-19

Figure 6-29 A prot oTi mePopup example 6-19

Figure 6-30 A pr ot oAnal ogTi nePopup example 6-20

Figure 6-31 A prot oTi meDel t aPopup example 6-20

Figure 6-32 A prot oTi nel nt er val Popup example 6-20

Figure 6-33 A pr ot oNurber Pi cker example 6-21

Figure 6-34 A prot oPi ct | ndexer example 6-21

XXXiV

Chapter 7

Figure 6-35

A prot oOver vi ewexample 6-22

Figure 6-36 A pr ot oSoupOver vi ewexample 6-23
Figure 6-37 A protoLi st Pi cker example 6-24

Figure 6-38 A Pr ot oLi st Pi cker example 6-26

Figure 6-39 Creating a new name entry 6-27

Figure 6-40 Highlighted row 6-27

Figure 6-41 Selected row 6-27

Figure 6-42 Pop-up view displayed over list 6-28

Figure 6-43 Slip displayed for gathering input 6-28
Figure 6-44 A prot oRol | example 6-35

Figure 6-45 A pr ot oRol | Browser example 6-36
Figure 6-46 Example of an expandable text outline 6-36
Figure 6-47 Example of a month view 6-37

Figure 6-48 Cell highlighting example for pr ot oPi cker 6-40
Table 6-1 Item frame for strings and bitmaps 6-38
Table 6-2 Item frame for string with icon 6-38

Table 6-3 Item frame for two-dimensional grid 6-39
Controls and Other Protos 7-1

Figure 7-1 A protoHori zont al 2DScrol | er view 7-2
Figure 7-2 AprotolLeftRi ghtScroll er view 7-2
Figure 7-3 A pr ot oUpDownScrol | er view 7-3

Figure 7-4 A prot oHori zont al UpDownScr ol | er view 7-3
Figure 7-5 A prot oText But t on view 7-6

Figure 7-6 A prot oPi ct ur eBut t on view 7-7

Figure 7-7 A prot ol nf oBut t on view 7-7

Figure 7-8 AprotoOrientation view 7-7

Figure 7-9 A cluster of pr ot oRadi oBut t ons 7-8
Figure 7-10 A cluster of pr ot oPi ct Radi oButt ons 7-8
Figure 7-11 A pr ot oC oseBox view 7-8

Figure 7-12 A prot oLar geCl oseBox view 7-9

Figure 7-13 A pr ot oCheckBox view 7-9

Figure 7-14 A pr ot oRCheckBox view 7-9

Figure 7-15 A pr ot 0AZTabs view 7-11

Figure 7-16 A pr ot oAZVer t Tabs view 7-11

Figure 7-17 A protoSlider view 7-12

Figure 7-18 A pr ot oGauge view 7-12

Figure 7-19 A prot oLabel edBat t er yGauge view 7-12
Figure 7-20 A cl GaugeVi ewview 7-13

Figure 7-21 A protobDigital d ock view 7-14

Figure 7-22 A pr ot oNewSet O ock view 7-15

XXXV

Chapter 8

XXXVi

Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32

Table 7-1

A pr ot oAMPMCl ust er view 7-15
A pr ot oDr agger view 7-16

A pr ot oDr agNGo view 7-16

A pr ot od ance view 7-17
AprotoStaticText view 7-17
A pr ot oBor der view 7-18

A protoDi vi der view 7-18
AprotoTitle view 7-18

A prot oSt at us view 7-19

A prot oSt at usBar view 7-19

Scroller bounds frame slots 7-4

Text and Ink Input and Display 8-1

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 8-13
Figure 8-14
Figure 8-15

Table 8-1
Table 8-2

Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8

The Punctuation pop-up menu 8-5

An example of a pr ot oLabel | nput Li ne 8-13
The Recognition menu 8-15

Resized and recognized ink 8-16

A paragraph view containing an ink word
and text 8-25

The built-in alphanumeric keyboard 8-26

The built-in numeric keyboard 8-27

The built-in phone keyboard 8-27

The built-in time and date keyboard 8-27

An example of a pr ot oKeyboar d 8-29

The keyboard button 8-29

The small keyboard button 8-30

A generic keyboard view 8-31

Keyboard codes 8-34

Independent tabbing orders within a parent view 8-37

Views and protos for text input and display 8-4

Vi ewSt at i onery slot value for cl Edi t Vi ew
children 8-9

Font family symbols 8-18
Font style (face) values 8-18
Built-in font constants 8-19
Font packing constants 8-21
Rich string functions 8-24
Key descriptor constants 8-34

Chapter 9 Recognition 9-1

Figure 9-1 Recognizers create units from input strokes 9-5
Figure 9-2 Recognition-related view flags 9-9

Figure 9-3 Text-corrector picker 9-14

Figure 9-4 Handwriting Recognition preferences 9-16
Figure 9-5 Text Editing Settings slip 9-17

Figure 9-6 Fine Tuning handwriting preferences slips 9-17
Figure 9-7 Handwriting Settings slip 9-18

Figure 9-8 Use of pr ot oRecToggl e view in the Notes

application 9-19

Chapter 10 Recognition: Advanced Topics 10-1

Figure 10-1 Example of pr ot oChar Edi t view 10-4

Figure 10-2 User interface to deferred recognition, with
inverted ink 10-6

Figure 10-3 Single-character editing box specified by r cBasel nf o
frame 10-13

Figure 10-4 Two-dimensional array of input boxes specified by
rcGidl nf o frame 10-14

Figure 10-5 One recToggl e controls all views 10-21

Figure 10-6 Each r ecToggl e view controls a single input
view 10-21

Figure 10-7 Example of a pr ot oChar Edi t view 10-36

Table 10-1 Recognition failure in paragraph or edit view controlled
by recToggl e 10-12

Table 10-2 Symbols appearing in the _r ecogPopup slot 10-22

Chapter 11 Data Storage and Retrieval 11-1

Figure 11-1 Stores, soups and union soups 11-4

Figure 11-2 An index provides random access and imposes
order 11-11

Figure 11-3 Using begi nKey and endKey values to specify an
index subrange 11-12

Figure 11-4 Using begi nExcl Key and endExcl Key values to
specify a subrange 11-13

Figure 11-5 Cursor presents discontiguous index key values
contiguously 11-16

Figure 11-6 Cursor operations on descending index 11-46

Figure 11-7 Specifying ends of a descending index 11-47

Table 11-1 Effect of functions and methods on entry cache 11-63

XXXVii

Chapter 12

Chapter 13

Chapter 15

Chapter 16

XXXVili

Special-Purpose Objects for Data Storage and Retrieval 12-1

Table 12-1

Parts and type identifiers 12-4

Drawing and Graphics 13-1

Figure 13-1 A line drawn with different bit patterns and
pen sizes 13-3

Figure 13-2 A rectangle 13-3

Figure 13-3 An oval 13-4

Figure 13-4 An arc and a wedge 13-4

Figure 13-5 A rounded rectangle 13-5

Figure 13-6 A polygon 13-6

Figure 13-7 A region 13-6

Figure 13-8 A simple picture 13-7

Figure 13-9 Example of nested shape arrays 13-11

Figure 13-10 Example of Vi ewl nt oBi t map method 13-19

Figure 13-11 Example of MungeBi t map method 13-19

Table 13-1 Summary of drawing results 13-11

Filing 151

Figure 15-1 Two examples of filing button views 15-2

Figure 15-2 Filing slip 15-3

Figure 15-3 Creating a local folder 15-4

Figure 15-4 Filing slip without external store 15-5

Figure 15-5 Filing slip for ' onl yCar dRout i ng 15-5

Figure 15-6 A pr ot oNewol der Tab view 15-6

Figure 15-7 A prot oCl ockFol der Tab view 15-7

Figure 15-8 Choosing a filing filter 15-8

Find 16-1

Figure 16-1 The system-supplied Find slip 16-2

Figure 16-2 Specifying text or date searches in the Find slip 16-2

Figure 16-3 A local Find operation 16-3

Figure 16-4 Searching selected applications 16-3

Figure 16-5 Progress slip 16-4

Figure 16-6 The Find overview 16-5

Figure 16-7 Find status message 16-5

Figure 16-8 Strings used in a Find overview 16-8

Figure 16-9 The ShowFoundl t emmethod displays the view of an
overview item 16-9

Figure 16-10 Typical status message 16-24

Table 16-1 Overview of ROM_SoupFi nder methods 16-13
Chapter 17 Additional System Services ~ 17-1

Figure 17-1 User alert 17-3

Figure 17-2 Alarm slip with Snooze button 17-4

Figure 17-3 A view based on protoPeriodicAlarmEditor 17-4

Figure 17-4 Busy cursor 17-5

Figure 17-5 Notify icon 17-5

Figure 17-6 Progress slip with barber pole gauge 17-6

Figure 17-7 A user alert 17-11

Figure 17-8 Built-in status view configurations 17-20
Chapter 18 Intelligent Assistant 18-1

Figure 18-1 Assist slip 18-3

Figure 18-2 The Please picker 18-3

Figure 18-3 Calling task slip 18-4

Figure 18-4 Simplified overview of the Assistant’s matching

process 18-7

Chapter 19 Built-in Applications and System Data 19-1
Figure 19-1 Names application Card and All Info views 19-3
Figure 19-2 Dates application Day and Day’s Agenda views 19-9
Figure 19-3 The To Do List application 19-23
Figure 19-4 The Time Zones application 19-27
Figure 19-5 Time Zones application’s All Info view 19-28
Figure 19-6 Notes note and Checklist views 19-31
Figure 19-7 Note added using NewNot e method 19-33
Figure 19-8 Custom Prefs and Formulas Panels 19-35
Figure 19-9 The Notes application with and without an auxiliary

button 19-37

Figure 19-10 The information slips for an application’s soup that do

and do not support the soupervisor mechanism (note
extra filing button) 19-39

XXXiX

Chapter 20 Localizing Newton Applications 20-1

Figure 20-1 The Locale settings in Preferences 20-2
Table 20-1 Using the k1 ncl udeAl | El enent s constant 20-13
Chapter 21 Routing Interface 21-1
Figure 21-1 In Box and Out Box overviews 21-2
Figure 21-2 Action picker 21-3
Figure 21-3 Transport selection mechanism for action picker 21-6
Figure 21-4 Format picker in routing slip 21-7
Figure 21-5 Auxiliary view example 21-15
Table 21-1 Routing data types 21-7
Chapter 22 Transport Interface 22-1
Figure 22-1 Status view subtypes 22-22
Figure 22-2 Routing information view 22-26
Figure 22-3 pr ot oFul | Rout eSl i p view 22-27
Figure 22-4 Complete routing slip 22-29
Figure 22-5 pr ot oPeopl ePi cker view 22-31
Figure 22-6 Address picker with remembered names 22-32
Figure 22-7 Address picker set up by Intelligent Assistant 22-32
Figure 22-8 Information picker and preferences view 22-33
Figure 22-9 prot oTransport Pref s view 22-34
Figure 22-10 Print preferences 22-35
Table 22-1 Status view subtypes 22-21
Chapter 23 Endpoint Interface 23-1
Table 23-1 Data form applicability 23-5
Table 23-2 Input spec slot applicability 23-13

Xl

Chapter 24

Chapter 25

Chapter 26

Appendix

Built-in Communications Tools 24-1

Figure 24-1
Figure 24-2
Figure 24-3

Table 24-1
Table 24-2
Table 24-3
Table 24-4
Table 24-5
Table 24-6
Table 24-7
Table 24-8

Default serial framing 24-5
NetChooser view while searching 24-14
NetChooser view displaying printers 24-14

Summary of serial options 24-2

Summary of serial tool with MNP options 24-4
Summary of framed serial options 24-5
Summary of modem options 24-7

Summary of Infrared Options 24-8

Summary of AppleTalk options 24-10
Resource arbitration options 24-11

AppleTalk functions 24-13

Modem Setup Service 25-1

Figure 25-1

Table 25-1

Utility Functions

Modem preferences view 25-3

Summary of configuration string usage 25-7

26-1

Table 26-1

Summary of copying functions 26-2

The Inside Story on Declare A-1

Figure A-1

Declare example A-3

xli

PREFACE

About This Book

This book, Newton Programmer’s Guide, is the definitive guide to Newton
programming, providing conceptual information and instructions for using the
Newton application programming interfaces.

This book is a companion to Newton Programmer’s Reference, which provides
comprehensive reference documentation for the routines, system prototypes, data
structures, constants, and error codes defined by the Newton system. Newton
Programmer’s Reference is included on the CD-ROM that accompanies this book.

Who Should Read This Book

This guideis for anyone who wants to write NewtonScript programs for the
Newton family of products.

Before using this guide, you should read Newton Toolkit User’s Guide to learn how
toinstall and use Newton Toolkit, which is the development environment for
writing NewtonScript programs for Newton. You may aso want to read The
NewtonScript Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is used throughout
the Newton Programmer’s Guide.

To make best use of this guide, you should already have a good understanding of
object-oriented programming concepts and have had experience using a high-level
programming language such as C or Pascal. It is helpful, but not necessary, to have
some experience programming for a graphic user interface (like the Macintosh
desktop or Windows). At the very least, you should already have extensive
experience using one or more applications with a graphic user interface.

Related Books

This book isonein a set of books available for Newton programmers. You'll also
need to refer to these other booksin the set:

m Newton Toolkit User’s Guide. This book comes with the Newton Toolkit
development environment. It introduces the Newton devel opment environment
and shows how to develop applications using Newton Toolkit. You should read
this book first if you are a new Newton application devel oper.

xliii

REFACE

The NewtonScript Programming Language. This book comes with the Newton
Toolkit devel opment environment. It describes the NewtonScript programming
language.

Newton Book Maker User’s Guide. This book comes with the Newton Toolkit
development environment. It describes how to use Newton Book Maker and
Newton Toolkit to make Newton digital books and to add online help to Newton
applications.

Newton 2.0 User Interface Guidelines. This book contains guidelinesto help
you design Newton applications that optimize the interaction between people
and Newton devices.

Newton Programmer’s Reference CD-ROM

xliv

This book is accompanied by a CD-ROM disc that contains the complete text of
Newton Programmer’s Reference. Newton Programmer’s Reference is the
comprehensive reference to the Newton programming interface. It documents all
routines, prototypes, data structures, constants, and error codes defined by the
Newton system for use by NewtonScript devel opers.

The companion CD-ROM includes three electronic versions of Newton
Programmer’s Reference. The CD-ROM contains these items, among others:

The complete Newton Programmer’s Reference in QuickView format for the
Mac OS — the same format used by the Macintosh Programmer’s Toolbox
Assistant. In thisformat, you can use the extremely fast full-text searching
capabilities and ubiquitous hypertext jumps to find reference information quickly.

The complete Newton Programmer’s Reference in Windows Help format. This
format provides quick and convenient access to the reference information for
devel opers working on Windows platforms.

The complete Newton Programmer’s Reference in Adobe Acrobat format. This
format provides afully formatted book with page-numbered table of contents,
index, and cross-references. You can print al or portions of the book, and you can
also view it online. When viewing online, you can use the indexed search facilities
of Adobe Acrobat Reader 2.1 for fast lookup of any information in the book.

The companion CD-ROM also includes an Adobe Acrobat version of this book,
Newton Programmer’s Guide, and a demo version of the Newton Toolkit
development environment for the Mac OS.

PREFACE

Sample Code

The Newton Toolkit development environment, from Apple Computer, includes
many sample code projects. You can examine these samples, learn from them, and
experiment with them. These sample code projects illustrate most of the topics
covered in this book. They are an invaluable resource for understanding the topics
discussed in this book and for making your journey into the world of Newton
programming an easier one.

The Newton Developer Technical Support team continually revises the existing
samples and creates new sample code. The latest sample code isincluded each
guarter on the Newton Developer CD, which is distributed to all Newton Devel oper
Program members and to subscribers of the Newton monthly mailing. Sample
code is updated on the Newton Development side on the World Wide Web (ht t p: /
/ dev. i nf o. appl e. cont newt on) shortly after it is released on the Newton
Developer CD. For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer Products and Support,”
on page xlvii.

The code samplesin this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code samples have been
compiled and, in most cases, tested. However, Apple Computer does not intend that
you use these code samples in your application.

To make the code samplesin this book more readable, only limited error handling
is shown. You need to develop your own techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds of information.

Special Fonts

This book uses the following special fonts:

m Boldface. Key terms and concepts appear in boldface on first use. These terms
are also defined in the Glossary.

m Courier typeface. Codelistings, code snippets, and special identifiersin
the text such as predefined system frame names, slot names, function names,
method names, symbols, and constants are shown in the Courier typeface to
distinguish them from regular body text. If you are programming, items that
appear in Courier should be typed exactly as shown.

xlv

PREFACE

m Italic typeface. Italic typefaceis used in code to indicate replace-
ableitems, such as the names of function parameters, which you must replace
with your own names. The names of other books are aso shown in italic type,
and rarely, this style is used for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the word “click”
sometimes appears as part of the name of a method or variable, asin

Vi ewC i ckScript orButtonC ickScript.Thismay lead you to believe that
the text refers to mouse clicks. It does not. Wherever you see the word

“click” used thisway, it refers to atap of the pen on the Newton screen (whichis
somewhat similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environment in conjunction
with this book, you may notice that this book displays the code for aframe (such as
aview) differently than NTK does.

In NTK, you can see the code for only asingle frame slot at atime. In this book,
the code for aframeis presented all at once, so you can see al of the slotsin the
frame, like this:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFI ags,
vi ewFormat: vfFillWhite+vfFraneBl ack+vfPen(1),
vi ewdustify: vjCenterH,

Vi ewSet upDoneScri pt: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);
s

If while working in NTK, you want to create aframe that you see in the book,
follow these steps:

1. Onthe NTK template palette, find the view class or proto shown in the book.
Draw out aview using that template. If the frame shown in the book contains a
_pr ot o slot, use the corresponding proto from the NTK template palette. If the
frame shown in the book containsavi ewC ass slot instead of a_pr ot o slot,
use the corresponding view class from the NTK template palette.

xIvi

PREFACE

2. Edit thevi ewBounds dot to match the values shown in the book.

3. Add each of the other dlots you seelisted in the frame, setting their valuesto the
values shown in the book. Slots that have values are attribute slots, and those
that contain functions are method dots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in devel oping applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring al current
versions of Apple devel opment tools and the most popular third-party development
tools. ADC offers convenient payment and shipping options, including site
licensing.

To order products or to request a complimentary copy of the Apple Devel oper
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
PO. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511
AppleLink ORDER.ADC
Internet order.adc@applelink.apple.com
World Wide Web http://www.devcatal og.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For Newton-specific information, see the Newton devel oper World Wide Web page
at: http://dev.info.appl e.com newt on

xIvii

PREFACE

Undocumented System Software Objects

When browsing in the NTK Inspector window, you may see functions, methods,
and data objects that are not documented in this book. Undocumented functions,
methods, and data objects are not supported, nor are they guaranteed to work in
future Newton devices. Using them may produce undesirable effects on current
and future Newton devices.

xlviii

CHAPTER 1

Oveview

This chapter describes the general architecture of the Newton system software,
which is divided into three levels, as shown in Figure 1-1 (page 1-2).

The lowest level includes the operating system and the low-level communications
system. These parts of the system interact directly with the hardware and perform
basi c operations such as memory management, input and output, and task switching.
NewtonScript applications have no direct access to system services at this level.

The middle level consists of system services that NewtonScript applications can
directly access and interact with to accomplish tasks. The system provides
hundreds of routines that applications can use to take advantage of these services.

At the highest level are components that applications can use to construct their user
interfaces. These reusable components neatly package commonly needed user
interface objects such as buttons, lists, tables, input fields, and so on. These
components incorporate NewtonScript code that makes use of the system services
in the middle level, and that an application can override to customize an object.

Operating System

The Newton platform incorporates a sophisticated preemptive, multitasking
operating system. The operating system is a modular set of tasks performing
functions such as memory management, task management, scheduling, task to task
communications, input and output, power management, and other low-level
functions. The operating system manages and interacts directly with the hardware.

A significant part of the operating system is concerned with low-level communication
functions. The communication subsystem runs as a separate task. It manages the
hardware communication resources available in the system. These include serial,
fax modem, AppleTak networking, and infrared. The communication architecture
is extensible, and new communication protocols can be installed and removed at
run time, to support additional services and external devices that may be added.

Operating System 1-1

CHAPTER 1

Overview

Figure 1-1 System software overview

Application Components

NewtonScript Application Program

User Interface Components

I

AV

System Services
Find
Filing
Sound
Book Reader
Routing and Transport
Endpoint Communications
Imaging and Printing
Intelligent Assistant
Stationery
Text Input and Recognition
View System

Object Storage System
| |

AV

Operating System

) Low-level
Operating <:> Communications
System System

L I

Il I

Newton Hardware

Operating System

CHAPTER 1

Overview

Another operating system task of interest is the Inker. The Inker task is responsible
for gathering and displaying input from the electronic tablet overlaying the screen
when the user writes on the Newton. The Inker exists as a separate task so that the
Newton can gather input and display electronic ink at the same time as other
operations are occurring.

All Newton applications, including the recognition system, built-in applications,
and applications you develop, run in asingle operating system task, called the
Application task.

NewtonScript applications have no direct access to the operating system level of
software. Access to certain low-level resources, such as communications, is
provided by higher-level interfaces.

Memory

It is helpful to understand the use of random access memory (RAM) in the system,
since this resource is shared by the operating system and all applications. Newton
RAM isdivided into separate domains, or sections, that have controlled access.
Each domain hasits own heap and stack. It isimportant to know about three of
these domains:

m The operating system domain. This portion of memory is reserved for use by the
operating system. Only operating system tasks have access to this domain.

m The storage domain. This portion of memory is reserved for permanent,
protected storage of user data. All soups, which store the data, reside here, as
well as any packages that have been downloaded into the Newton. To protect the
datain the storage domain from inadvertent damage, it can only be accessed
through the object storage system interface, described in Chapter 11, “Data
Storage and Retrieval.” If the user adds a PCMCIA card containing RAM, Flash
RAM, or read-only memory (ROM) devices, the memory on the card is used to
extend the size of the storage domain.

The storage domain occupies specia persistent memory; that is, this memory is
maintained even during a system reset. This protects user data, system software
updates, and downloaded packages from being lost during system resets. The
used and free space in the storage domain is reported to the user in the Memory
Info dlip in the Extras Drawer.

m The application domain. This portion of memory is used for dynamic memory
allocation by the handwriting recognizers and all Newton applications. A fixed
part of thisdomain is alocated to the NewtonScript heap. The NewtonScript
heap isimportant because most objects allocated as a result of your NewtonScript
application code are allocated from the NewtonScript heap. These are the only
memory objects to which you have direct access. The NewtonScript heap is
shared by all applications.

Operating System 1-3

CHAPTER 1

Overview

The system performs automatic memory management of the NewtonScript heap.
You don’'t need to worry about memory allocation or disposal in an application.
The system automatically allocates memory when you create a new object in
NewtonScript. When references to an object no longer exist, it isfreed during the
next garbage collection cycle. The system performs garbage collection
automatically when it needs additional memory.

The Newton operating system optimizes use of memory by using compression.
Various parts of memory are compressed and decompressed dynamically and
transparently, as needed. This occurs at alow level, and applications don’t need to
be concerned with these operations.

Packages

A package is the unit in which softwareisinstalled on and removed from the
Newton. Packages can combine multiple pieces of software into asingle unit. The
operating system manages packages, which can be installed from PCMCIA cards,
from a serial connection to a desktop computer, a network connection, or via
modem. When a package comes into the Newton system, the system automatically
opensit and dispatches its parts to appropriate handlers in the system.

A package consists of a header, which contains the package name and other
information, and one or more parts, which contain the software. Parts can include
applications, communication drivers, fonts, and system updates (system software
code loaded into RAM that overrides or extends the built-in ROM code). A
package can also export objects for use by other packages in the system, and can
import (use) objects that are exported by other packages.

Packages are optionally stored compressed on the Newton. Compressed packages
occupy much less space (roughly half of their uncompressed size), but applications
in compressed packages may execute somewhat slower and use slightly more
battery power, because of the extrawork required to decompress them when they
are executed.

For more information about packages, refer to Chapter 11, “ Data Storage and
Retrieval

System Services

1-4

The Newton system software contains hundreds of routines organized into
functional groups of services. Your application can use these routines to accomplish
specific tasks such as opening and closing views, storing and retrieving data,
playing sounds, drawing shapes, and so on. This section includes brief descriptions
of the more important system services with which your application will need to
interact. Note that communications services are described in a separate section
following this one.

System Services

CHAPTER 1

Overview

Object Storage System

This system is key to the Newton information architecture. The object storage
system provides persistent storage for data.

Newton uses a unified data model. This meansthat all data stored by all applications
uses a common format. Data can easily be shared among different applications,
with no trandation necessary. This allows seamless integration of applications with
each other and with system services.

Datais stored using a database-like model. Objects are stored as frames, which are
like database records. A frame contains named slots, which hold individual pieces
of data, like database fields. For example, an address card in the Names application
is stored as a frame that contains a slot for each item on the card: name, address,
city, state, zip code, phone number, and so on.

Frames are flexible and can represent awide variety of structures. Slotsin asingle
frame can contain any kind of NewtonScript object, including other frames, and
dlots can be added or removed from frames dynamically. For a description of
NewtonScript objects, refer to The NewtonScript Programming Language.

Groups of related frames are stored in soups, which are like databases. For example,
all the address cards used by the Names application are stored in the Names soup,
and all the notes on the Notepad are stored in the Notes soup. All the frames stored
in a soup need not contain identical slots. For example, some frames representing
address cards may contain a phone number slot and others may not.

Soups are automatically indexed, and applications can create additional indexes on
slotsthat will be used as keys to find data items. You retrieve items from a soup by
performing a query on the soup. Queries can be based on an index value or can
search for a string, and can include additional constraints. A query resultsin a

cur sor—an object representing a position in the set of soup entries that satisfy the
guery. The cursor can be moved back and forth, and can return the current entry.

Soups are stored in physical repositories, called stores. Stores are akin to disk
volumes on personal computers. The Newton always has at |east one store—the
internal store. Additional stores reside on PCMCIA cards.

The object storage system interface seamlessly merges soups that have the same
name on internal and external storesin aunion soup. Thisisavirtual soup that
provides an interface similar to areal soup. For example, some of the address cards
on aNewton may be stored in the internal Names soup and some may be stored in
another Names soup on a PCMCIA card. When the card isinstalled, those names
in the card soup are automatically merged with the existing internal names so the
user, or an application, need not do any extrawork to access those additional
names. When the card is removed, the names simply disappear from the card file
union soup.

System Services 1-5

CHAPTER 1

Overview

The object storage system is optimized for small chunks of data and is designed to
operate in tight memory constraints. Soups are compressed, and retrieved entries
are not allocated on the NewtonScript heap until aslot in the entry is accessed.

You can find information about the object storage system interface in Chapter 11,
“Data Storage and Retrieval ”

View System

Views are the basic building blocks of most applications. A view issimply a
rectangular area mapped onto the screen. Nearly every individual visual item you
see on the screen is aview. Views display information to the user in the form of
text and graphics, and the user interacts with views by tapping them, writing in
them, dragging them, and so on. A view is defined by aframe that contains slots
specifying view attributes such as its bounds, fill color, alignment relative to other
views, and so on.

The view system is what you work with to manipulate views. There are routines to
open, close, animate, scroll, highlight, and lay out views, to name just afew
operations you can do. For basic information about views and descriptions of al

the routines you can use to interact with the view system, refer to Chapter 3, “Views.”

An application consists of a collection of views all working together. Each application
has an application base view from which all other views in the application
typically descend hierarchically. In turn, the base view of each application installed
in the Newton descends from the system root view. (Think of the hierarchy asa
tree structure turned upside down, with the root at the top.) Thus, each application
base view isachild of the root view. We call aview in which child views exist the
parent view of those child views. Note that occasionally, an application may aso
include views that don’'t descend from the base view but are themselves children of
the root view.

The system includes severd different primitive view classes from which all views
are ultimately constructed. Each of these view classes has inherently different
behavior and attributes. For example, there are view classes for views that contain
text, shapes, pictures, keyboards, analog gauges, and so on.

As an application executes, its view frames receive messages from the system and
exchange messages with each other. System messages provide an opportunity for a
view to respond appropriately to particular events that are occurring. For example,
the view system performs default initialization operations when aview is opened.
It also sends the view a Vi ewSet upFor mScr i pt message. If the view includes a
method to handle this message, it can perform its own initialization operationsin
that method. Handling system messages in your application is optional since the
system performs default behaviors for most events.

System Services

CHAPTER 1

Overview

Text Input and Recognition

The Newton recognition system uses a sophisticated multiple-recognizer
architecture. There are recognizers for text, shapes, and gestures, which can be
simultaneously active (this is application-dependent). An arbitrator examines the
results from simultaneously active recognizers and returns the recognition match
that has the highest confidence.

Recognition is modeless. That is, the user does not need to put the systemin a
special mode or use a special dialog box in order to write, but can write in any
input field at any time.

The text recognizers can handle printed, cursive, or mixed handwriting. They can
work together with built-in dictionaries to choose words that accurately match what
the user has written. The user can also add new words to a personal dictionary.

Depending on whether or not a text handwriting recognizer is enabled, users can
enter handwritten text that is recognized or not. Unrecognized text is known asink
text. Ink text can still be manipulated like recognized text—words can be inserted,
deleted, moved around, and reformatted—and ink words can be intermixed with
recognized words in asingle paragraph. Ink words can be recognized later using
the deferred recognition capability of the system.

The shape recognizer recognizes both simple and complex geometric objects,
cleaning up rough drawings into shapes with straight lines and smooth curves. The
shape recognizer also recognizes symmetry, using that property, if present, to help
it recognize and display objects.

For each view in an application, you can specify which recognizers are enabled and
how they are configured. For example, the text recognizer can be set to recognize
only names, or names and phone numbers, or only words in a custom dictionary
that you supply, among other choices.

Most recognition events are handled automatically by the system view classes, so
you don’'t need to do anything in your application to handle recognition events,
unless you want to do something special. For example, when a user writes aword
in atext view, that view automatically passes the strokes to the recognizer, accepts
the recognized word back, and displays the word. In addition, the view automatically
handles corrections for you. The user can double-tap aword to pop up alist of
other possible matches for it, or to use the keyboard to correct it.

For information on methods for accepting and working with text input, refer to
Chapter 8, “Text and Ink Input and Display.” For information on controlling
recognition in views and working with dictionaries, refer to Chapter 9, “Recognition.”

System Services 1-7

CHAPTER 1

Overview

Stationery

Stationery is a capability of the system that allows applications to be extended by
other developers. The word “ stationery” refersto the capability of having different
kinds of datawithin a single application (such as plain notes and outlinesin the
Notepad) and/or to the capability of having different ways of viewing the same data
(such asthe Card and All Info views in the Namesfile). An application that supports
stationery can be extended either by adding a new type of datato it (for example,
adding recipe cards to the Notepad), or by adding a new type of viewer for existing
data (anew way of viewing Names file entries or a new print format, for example).

To support stationery, an application must register with the system aframe, called a
data definition, that describes the data with which it works. The different data
definitions available to an application are listed on the pop-up menu attached to the
New button. In addition, an application must register one or more view definitions,
which describe how the dataisto be viewed or printed. View definitions can
include simple read-only views, editor-type views, or print formats. The different
view definitions available in an application (not including print formats) are listed
on the pop-up menu attached to the Show button.

Stationery iswell integrated into the NewtApp framework, so if you use that frame-
work for your application, using stationery is easy. The printing architecture also
uses stationery, so al application print formats are registered as akind of stationery.

For more information about using stationery, see Chapter 5, “ Stationery.”

Intelligent Assistant

A key part of the Newton information architecture is the Intelligent Assistant. The
Intelligent Assistant is a system service that attempts to complete actions for the
user according to deductions it makes about the task that the user is currently
performing. The Assistant is always instantly available to the user through the
Assist button, yet remains nonintrusive.

The Assistant knows how to complete several built-in tasks; they are Scheduling
(adding meetings), Finding, Reminding (adding To Do items), Mailing, Faxing,
Printing, Calling, and getting time information from the Time Zones map. Each of
these tasks has severa synonyms; for example, the user can write “call,” “phone,”
“ring,” or “dial” to make a phone call.

Applications can add new tasks so that the Assistant supports their special capabilities
and services. The Newton unified data model makes it possible for the Assistant to
access data stored by any application, thus alowing the Assistant to be well integrated
in the system.

For details on using the Intelligent Assistant and integrating support for it into your
application, see Chapter 18, “Intelligent Assistant.”

System Services

CHAPTER 1

Overview

Imaging and Printing

At the operating system level, the Newton imaging and printing software is based
on an object-oriented, device-independent imaging model. The imaging model is
monochrome since the current Newton screen is a black-and-white screen.

NewtonScript application programs don't call low-level imaging routines directly
to do drawing or image manipulation. In fact, most drawing is handled for
applications by the user interface components they incorporate, or when they call
other routines that display information. However, there is a versatile set of
high-level drawing routines that you can call directly to create and draw shapes,
pictures, bitmaps, and text. When drawing, you can vary the pen thickness, pen
pattern, fill pattern, and other attributes. For details on drawing, refer to Chapter 13,
“Drawing and Graphics.”

The Newton text imaging facility supports Unicode directly, so the system can be
easily localized to display languages using different script systems. The system is
extensible, so it's possible to add additional fonts, font engines, and printer drivers.

The high-level interface to printing on the Newton uses a model identical to that
used for views. Essentially, you design a special kind of view called a print format
to specify how printed information is to be laid out on the page. Print formats use a
unique view template that automatically adjusts its size to the page size of the
printer chosen by the user. When the user prints, the system handles all the details
of rendering the views on the printer according to the layout you specified.

The Newton offers the feature of deferred printing. The user can print even though
he or sheis not connected to a printer at the moment. An object describing the print
job is stored in the Newton Out Box application, and when a printer is connected
later, the user can then select that print job for printing. Again, thisfeature is
handled automatically by the system and requires no additional application
programming work.

For information on how to add printing capabilities to an application, refer to
Chapter 21, “Routing Interface.”

Sound

The Newton includes a monophonic speaker and can play sounds sampled at rates
up to 22 kHz. You can attach sounds to particular events associated with aview,
such as showing it, hiding it, and scrolling it. You can also use sound routines to
play sounds synchronously or asynchronously at any other time.

Newton can serve as a phone dialer by dialing phone numbers through the speaker.
The dialing tones are built into the system ROM, along with several other sounds
that can be used in applications.

System Services 1-9

1-10

CHAPTER 1

Overview

Besides the sounds that are built into the system ROM, you can import external
sound resources into an application through the Newton Toolkit devel opment
environment.

For information about using sound in an application, see Chapter 14, “ Sound.”

Book Reader

Book Reader is a system service that displays interactive digital books on the
Newton screen. Digital books can include multiple-font text, bitmap and vector
graphics, and on-screen controls for content navigation. Newton digital books
allow the user to scroll pages, mark pages with bookmarks, access data directly by
page number or subject, mark up pages using digital ink, and perform text searches.
Of course, the user can copy and paste text from digital books, as well as print text
and graphics from them.

Newton Press and Newton Book Maker are two different development tools that
you use to create digital books for the Newton. Nonprogrammers can easily create
books using Newton Press. Newton Book Maker is a more sophisticated tool that
uses a text-based command language allowing you to provide additional servicesto
the user or exercise greater control over page layout. Also, using Book Maker, you
can attach data, methods, and view templates to book content to provide customized
behavior or work with the Intelligent Assistant.

The Book Maker application can also be used to create on-line help for an
application. The installation of on-line help in an application package requires
some rudimentary NewtonScript programming ability; however, nonprogrammers
can create on-line help content, again using only aword processor and some basic
Book Maker commands.

Refer to the book Newton Book Maker User’s Guide for information on Book
Reader, the Book Maker command language, and the use of Newton Toolkit to
create digital book packages and on-line help. Refer to the Newton Press User’s
Guide for information on using Newton Press.

Find

Find is a system service that allows usersto search one or al applicationsin the
system for occurrences of a particular string. Alternatively, the user can search for
datatime-stamped before or after a specified date. When the search is completed,
the Find service displays an overview list of items found that match the search
criteria. The user can tap an item in the list and the system opens the corresponding
application and displays the data containing the selected string. Users access the
Find service by tapping the Find button.

System Services

CHAPTER 1

Overview

If you want to alow the user to search for data stored by your application, you
need to implement certain methods that respond to find messages sent by the
system. You'll need to supply one method that searches your application’s soup(s)
for data and returns the results in a particular format, and another method that
locates and displays the found data in your application if the user tapson it in the
find overview. The system software includes routines and templates that help you
support find in your application. For details on supporting the Find service, refer to
Chapter 16, “Find."

Filing

The Filing service allows users to tag soup-based data in your application with
labels used to store, retrieve, and display the data by category. The labels used to
tag entries are represented as folders in the user interface; however, no true
hierarchical filing exists—the tagged entries still reside in the soup. Users access
the filing service through a standard user interface element called the file folder
button, which looks like a small file folder.

When the user chooses a category for an item, the system notifies your application
that filing has changed. Your application must perform the appropriate application-
specific tasks and redraw the current view, providing to the user theillusion that the
item has been placed in afolder. When the user chooses to display datafrom a
category other than the currently displayed one, the system also notifies your
application, which must retrieve and display datain the selected category.

The system software includes templates that help your application implement the
filing button and the selector that allows the user to choose which category of data
to display. Your application must provide methods that respond to filing messages
sent by the system in response to user actions such asfiling an item, changing the
category of items to display, and changing the list of filing categories. For details
on supporting the Filing service, refer to Chapter 15, “Filing.”

Communications Services

This section provides an overview of the communications servicesin Newton
system software 2.0.

The Newton communications architecture is application-oriented, rather than
protocol-oriented. This means that you can focus your programming efforts on
what your application needs to do, rather than on communication protocol details.
A simple high-level NewtonScript interface encapsulates all protocol details, which
are handled in the same way regardless of which communication transport tool you
are using.

Communications Services 1-11

CHAPTER 1

Overview

The communication architecture is flexible, supporting complex communication
needs. The architecture is also extensible, allowing new communication transport
tools to be added dynamically and accessed through the same interface as existing
transports. In this way, new communication hardware devices can be supported.

The Newton communications architecture isillustrated in Figure 1-2.

Figure 1-2 Communications architecture

1-12

Application

NewtonScript

Routing interface

1
L

In/out box

1P
Transport interface
|

Z

Transport #:> Endpoint interface

z

Endpoint object

Low-level communications system ‘

Communication tools

Serial Modem MNP IR FAX ATalk

1t

Hardware devices
Modem Radio Keybd GSM CDPD

Figure 1-2 shows four unique communications interfaces available for you to use:
m routing interface
m endpoint interface

Communications Services

CHAPTER 1

Overview

m fransport interface
m communication tool interface

Thefirst two, routing and endpoint interfaces, are available for NewtonScript
applications to use directly.

The transport interface is a NewtonScript interface, but it isn't used directly by appli-
cations. A transport consists of aspecial kind of application of its own that isinstalled
on aNewton device and that provides new communication services to the system.

The communication tool interfaceis alow-level C++ interface.
These interfaces are described in more detail in the following sections.

NewtonScript Application Communications

There are two basic types of NewtonScript communications an application can do.
The most common type of communication that most applications do is routing
through the In/Out Box. As an dternative, applications can use the endpoint interface
to control endpoint objects.

Typically, an application uses only one of these types of communication, but
sometimes both are needed. These two types of communication are described in
the following sections.

Routing Through the In/Out Box

The routing interface is the highest-level NewtonScript communication interface.
The routing interface allows an application to communicate with the In/Out Box
and lets users send data and receive data from outside the system. In applications,
users access routing services through a standard user interface element called the
Action button, which looks like a small envelope. Users access the In/Out Box
application through icons in the Newton Extras Drawer. The InfOut Box provides a
common user interface for all incoming and outgoing data in the system.

Therouting interface is best suited for user-controlled messaging and transaction-
based communications. For example, the Newton built-in applications use this
interface for e-mail, beaming, printing, and faxing. Outgoing items can be stored in
the Out Box until a physical connection is available, when the user can choose to
transmit the items, or they can be sent immediately. Incoming items are received in
the In Box, where the user can get new mail and beamed items, for example.

For information on the routing interface, refer to Chapter 21, “Routing Interface.”

The In/Out Box makes use of the transport and endpoint interfaces internally to
perform its operations.

If you are writing an application that takes advantage of only the transports
currently installed in the Newton system, you need to use only the routing

Communications Services 1-13

1-14

CHAPTER 1

Overview

interface. You need to use the transport or endpoint interfaces only when writing
custom communication tools.

Endpoint Interface

The endpoint interface is a somewhat lower-level NewtonScript interface; it has no
visible representation to the Newton user. The endpoint interface is suited for
real-time communication needs such as database access and terminal emulation. It
uses an asynchronous, state-driven communications model.

The endpoint interface is based on a single proto—pr ot oBasi cEndpoi nt —that
provides a standard interface to all communication tools (serial, fax modem,
infrared, AppleTak, and so on). The endpoint object created from this proto
encapsulates and maintains the details of the specific connection. This proto
provides methods for

m interacting with the underlying communication tool

m setting communication tool options

m opening and closing connections

m sending and receiving data

The basic endpoint interface is described in Chapter 23, “Endpoint Interface.”

Low-Level Communications

There are two lower-level communication interfaces that are not used directly by
applications. The transport and communication tool interfaces are typically used
together (along with the endpoint interface) to provide a new communication
service to the system.

These two interfaces are described in the following sections.

Transport Interface

If you are providing a new communication service through the use of endpoints
and lower-level communication tools, you may need to use the transport interface.
The transport interface allows your communication service to talk to the In/Out
Box and to make itself available to users through the Action button (envel ope icon)
in most applications.

When the user taps the Action button in an application, the Action picker appears.
Built-in transports available on the Action picker include printing, faxing, and
beaming. Any new transports that you provide are added to this|ist.

For more information, refer to Chapter 22, “ Transport I nterface.”

Communications Services

CHAPTER 1

Overview

Communication Tool Interface

Underlying the NewtonScript interface is the low-level communications system.
This system consists of a communications manager module and several code
components known as communication tools. These communication tools interact
directly with the communication hardware devicesinstalled in the system. The
communication tools are written in C++ and are not directly accessible from
NewtonScript—they are accessed indirectly through an endpoint object.

The built-in communication tools include:
m Synchronous and asynchronous serial

m Fax/data modem (dataisV.34 with MNP/V.42 and fax is V.17 with Class 1, 2,
and 2.0 support)

m Point-to-point infrared—called beaming (Sharp 9600 and Apple | R-enhanced
protocols)

m AppleTak ADSP protocol

For information about configuring the built-in communication tools through the
endpoint interface, refer to Chapter 24, “ Built-in Communications Tools.”

Note that the communications manager module, and each of the individual
communication tools, runs as a separate operating system task. All NewtonScript
codeisin adifferent task, called the Application task.

The system is extensible—additional communication tools can be installed at run
time. Installed tools are made available to NewtonScript client applications through
the same endpoint interface as the built-in tools.

At some point, Apple Computer, Inc. may release the tools and interfaces that
allow C++ communication tool development.

Application Components

At the highest level of system software are dozens of components that applications
can use to construct their user interfaces and other nonvisible objects. These
reusable components neatly package commonly needed user interface objects such
as buttons, lists, tables, input fields, and so on. These components incorporate
NewtonScript code that makes use of other system services, and which an
application can override to customize an object.

These components are built into the Newton ROM. When you reference one of
these componentsin your application, the code isn’t copied into your application—
your application simply makes a reference to the component in the ROM. This
conserves memory at run time and still allows your application to easily override
any attributes of the built-in component. Because you can build much of your

Application Components 1-15

CHAPTER 1

Overview

application using these components, Newton applications tend to be much smaller
in size than similar applications on desktop computers.

A simple example of how you can construct much of an application using
componentsisillustrated in Figure 1-3. This simple application accepts names and
phone numbers and saves them into a soup. It was constructed in just a few minutes
using three different components.

The application base view isimplemented by a single component that includes the
title bar at the top, the status bar at the bottom, the clock and the close box, and the
outer frame of the application. The Name and Phone input lines are each created
from the same component that implements a simple text input line; the two buttons
are created from the same button component. The only code you must write to
make this application fully functional is to make the buttons perform their actions.
That is, make the Clear button clear the input lines and make the Save button get
the text from the input lines and save it to a soup.

Figure 1-3 Using components

1-16

My Application

Marmne:

Phone:

(o | [)
10, B3]

The components available for use by applications are shown on the layout pal ette

in Newton Toolkit. These components are known as protos, which is short for
“prototypes.” In addition to the built-in components, Newton Toolkit lets you create
your own reusable components, called user protos. The various built-in components
are documented throughout the book in the chapter containing information related
to each proto. For example, text input protos are described in Chapter 8, “ Text and
Ink Input and Display;” protos that implement pickers and lists are described in
Chapter 6, “Pickers, Pop-up Views, and Overviews;” and protos that implement
controls and other miscellaneous protos are described in Chapter 7, “Controls and
Other Protos.”

Application Components

CHAPTER 1

Overview
The NewtApp framework consists of a special collection of protos that are designed

to be used together in alayered hierarchy to build a complete application. For more
information about the NewtApp protos, refer to Chapter 4, “NewtApp Applications.”

Using System Software

Most of the routines and application components that comprise the Newton system
software residein ROM, provided in special chips contained in every Newton
device. When your application calls a system routine, the operating system executes
the appropriate code contained in ROM.

Thisis different from traditional programming environments where system
software routines are accessed by linking a subroutine library with the application
code. That approach results in much larger applications and makes it harder to
provide new features and fix bugs in the system software.

The ROM-based model used in the Newton provides a simple way for the
operating system to substitute the code that is executed in response to a particular
system software routine, or to substitute an application component. Instead of
executing the ROM-based code for some routine, the operating system might
choose to load some substitute code into RAM; when your application calls the
routine, the operating system intercepts the call and executes the RAM-based code.

RAM-based code that substitutes for ROM-based code is called a system update.
Newton system updates are stored in the storage memory domain, which is
persistent storage.

Besides application components, the Newton ROM contains many other objects
such as fonts, sounds, pictures, and strings that might be useful to applications.
Applications can access these objects by using special references called magic
pointers. Magic pointers provide a mechanism for code written in a devel opment
system separate from the Newton to reference objects in the Newton ROM or in
other packages. Magic pointer references are resolved at run time by the operating
system, which substitutes the actual address of the ROM or package object for the
magic pointer reference.

Magic pointers are constants defined in Newton Toolkit. For example, the names of
all the application components, or protos, are actually magic pointer constants. You
can find alist of all the ROM magic pointer constants in the Newton 2.0 Defsfile,
included with Newton Toolkit.

Using System Software 1-17

CHAPTER 1

Overview

The NewtonScript Language

You write Newton applications in NewtonScript, a dynamic object-oriented
language devel oped especially for the Newton platform, though the language is
highly portable. NewtonScript is designed to operate within tight memory
constraints, so iswell suited to small hand-held devices like Newton.

NewtonScript is used to define, access, and manipulate objects in the Newton
system. NewtonScript frame objects provide the basis for object-oriented features
such as inheritance and message sending.

Newton Toolkit normally compiles NewtonScript into byte codes. The Newton
system software contains a byte code interpreter that interprets the byte codes at
run time. This has two advantages. byte codes are much smaller than native code,
and Newton applications are easily portable to other processors, since the
interpreter is portable. Newton Toolkit can also compile NewtonScript into native
code. Native code occupies much more space than interpreted code, but in certain
circumstances it can execute much faster.

For a compl ete reference to NewtonScript, refer to The NewtonScript Programming
Language.

What's New in Newton 2.0

1-18

Version 2.0 of the Newton System Software brings many changesto al areas.
Some programming interfaces have been extended; others have been compl etely
replaced with new interfaces; and still other interfaces are brand new. For those
readers familiar with previous versions of system software, this section givesa
brief overview of what is new and what has changed in Newton 2.0, focusing on
those programming interfaces that you will be most interested in as a devel oper.

NewtApp

NewtApp is anew application framework designed to help you build a complete,
full-featured Newton application more quickly. The NewtApp framework consists
of acollection of protos that are designed to be used together in alayered hierarchy.
The NewtApp framework links together soup-based data with the display and
editing of that datain an application. For many types of applications, using the
NewtApp framework can significantly reduce devel opment time because the protos
automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The NewtonScript Language

CHAPTER 1

Overview

The NewtApp framework is not suited for all Newton applications. If your
application stores data as individual entriesin a soup, displays that data to the user
in views, and allows the user to edit some or al of the data, then it is a potential
candidate for using the NewtApp framework. NewtApp iswell suited to “classic”
form-based applications. Some of the built-in applications constructed using the
NewtApp framework include the Notepad and the Namesfile.

Stationery

Stationery is anew capability of Newton 2.0 that allows applications to be extended
by other developers. If your application supports stationery, then it can be extended by
others. Similarly, you can extend another devel oper’s application that supports
stationery. You should also note that the printing architecture now uses stationery,
so al application print formats are registered as akind of stationery.

Stationery is a powerful capability that makes applications much more extensible
than in the past. Stationery is also well integrated into the NewtApp framework, so
if you use that framework for your application, using stationery is easy. For more
information about stationery, see the section “ Stationery” (page 1-8).

Views

New features for the view system include a drag-and-drop interface that allows you
to provide users with a drag-and-drop capability between views. There are hooks to
provide for custom feedback to the user during the drag process and to handle
copying or moving the item.

The system now includes the capability for the user to view the display in portrait
or landscape orientation, so the screen orientation can be changed (rotated) at any
time. Applications can support this new capability by supporting the new

Reor i ent ToScr een message, which the system uses to alert all applicationsto
re-layout their views.

Several new view methods provide features such as bringing a view to the front or
sending it to the back, automatically sizing buttons, finding the view bounds
including the view frame, and displaying modal dialogs to the user.

Thereisanew message, Vi ewPost Qui t Scri pt , that is sent to aview (only on
request) when it is closing, after al of the view's child views have been destroyed.
This allows you to do additional clean-up, if necessary. And, you'll be pleased to
know that the order in which child views receive the Vi ewQui t Scri pt message
isnow well defined: it is top-down.

Additionally, there are some new vi ewJust i f y constants that allow you to
specify that aview is sized proportionally to its sibling or parent view, horizontally
and/or vertically.

What's New in Newton 2.0 1-19

1-20

CHAPTER 1

Overview

Protos

There are many new protos supplied in the new system ROM. There are new
pop-up button pickers, map-type pickers, and several new time, date, and duration
pickers. There are new protos that support the display of overviews and lists based
on soup entries. There are new protos that support the input of rich strings (strings
that contain either recognized characters or ink text). There are avariety of new
scroller protos. Thereis an integrated set of protos designed to make it easy for you
to display status messages to the user during lengthy or complex operations.

Generic list pickers, available in system 1.0, have been extended to support bitmap
items that can be hit-tested as two-dimensional grids. For example, a phone keypad
can beincluded asasingleitem in a picker. Additionally, list pickers can now
scroll if al the items can't fit on the screen.

Data Storage

There are many enhancements to the data storage system for system software 2.0.
General soup performance is significantly improved. A tagging mechanism for
soup entries makes changing folders much faster for the user. You can use the
tagging mechanism to greatly speed access to subsets of entriesin a soup. Queries
support more features, including the use of multiple slot indexes, and the query
interface is cleaner. Entry aliases make it easy to save unique references to soup
entries for fast access later without holding onto the actual entry.

A new construct, the virtual binary object, supports the creation and manipulation
of very large objects that could not be accommodated in the NewtonScript heap.
Thereis anew, improved soup change-notification mechanism that gives applications
more control over notification and how they respond to soup changes. More precise
information about exactly what changed is communicated to applications. Soup
data can now be built directly into packages in the form of a store part. Additionaly,
packages can contain protos and other objects that can be exported through magic
pointer references, and applications can import such objects from available packages.

Text Input

The main change to text input involves the use of ink text. The user can choose to
leave written text unrecognized and still manipulate the text by inserting, deleting,
reformatting, and moving the words around, just as with recognized text. Ink words
and recognized words can be intermixed within a single paragraph. A new string
format, called arich string, handles both ink and recognized text in the same string.

There are new protos, pr ot oRi chl nput Li ne and
pr ot oRi chLabel I nput Li ne, that you can use in your application to allow
users to enter ink text in fields. In addition, the view classescl Edi t Vi ewand

What's New in Newton 2.0

CHAPTER 1

Overview

cl Par agr aphVi ewnow support ink text. There are several new functions that
allow you to manipulate and convert between regular strings and rich strings. Other
functions provide access to ink and stroke data, allow conversion between strokes,
points, and ink, and allow certain kinds of ink and stroke manipulations.

There are several new functions that allow you to access and manipulate the
attributes of font specifications, making changing the font attributes of text much
easier. A new font called the handwriting font is built in. This font looks similar to
handwritten characters and is used throughout the system for all entered text. You
should useit for displaying all text the user enters.

The use of on-screen keyboards for text input is also improved. There are new
proto buttons that your application can use to give users access to the available
keyboards. It's easier to include custom keyboards for your application. Several
new methods allow you to track and manage the insertion caret, which the system
displays when a keyboard is open. Note also that area hardware keyboard is
available for the Newton system, and users may use it anywhere to enter text. The
system automatically supportsitsusein al text fields.

Graphics and Drawing

Style frames for drawing shapes can now include a custom clipping region other
than the whole destination view, and can specify a scaling or offset transformation
to apply to the shape being drawn.

Several new functions allow you to create, flip, rotate, and draw into bitmap
shapes. Also, you can capture al or part of aview into abitmap. There are new
protos that support the display, manipulation, and annotation of large bitmaps such
as received faxes. A new function, | nver t Rect , invertsarectanglein aview.

Views of the classcl Pi ct ur eVi ewcan now contain graphic shapesin addition to
bitmap or picture objects.

System Services

System-supplied Filing services have been extended; applications can now filter the
display of items according to the store on which they reside, route items directly to
a specified store from the filing dlip, and provide their own unique folders. In
addition, registration for notification of changes to folder names has been simplified.

Two new global functions can be used to register or unregister an application with
the Find service. In addition, Find now maintains its state between uses, performs
“date equal” finds, and returnsto the user more quickly.

Applications can now register callback functions to be executed when the Newton
powers on or off. Applications can register aview to be added to the user preferences
roll. Similarly, applications can register a view to be added to the formulasroll.

What's New in Newton 2.0 1-21

1-22

CHAPTER 1

Overview

The implementation of undo has changed to an undo/redo model instead of two
levels of undo, so applications must support this new model.

Recognition

Recognition enhancements include the addition of an alternate high-quality
recognizer for printed text and significant improvements in the cursive recognizer.
While this doesn't directly affect applications, it does significantly improve
recognition performance in the system, leading to a better user experience. Other
enhancements that make the recognition system much easier to use include a new
correction picker, a new punctuation picker, and the caret insertion writing mode
(new writing anywhere is inserted at the caret position).

Specific enhancements of interest to devel opers include the addition of a

r ecConf i g frame, which allows more flexible and precise control over
recognition in individual input views. A new proto, pr ot oChar Edi t , providesa
comb-style entry view in which you can precisely control recognition and restrict
entries to match a predefined character template.

Additionally, there are new functions that allow you to passink text, strokes, and
shapes to the recognizer to implement your own deferred recognition. Detailed
recognition corrector information (alternate words and scores) is now available
to applications.

Sound

Theinterface for playing sounds is enhanced in Newton 2.0. In addition to the
existing sound functions, there is a new function to play a sound at a particular
volume and thereis anew pr ot oSoundChannel object. The

pr ot oSoundChannel object encapsulates sounds and methods that operate on
them. Using a sound channel object, sound playback is much more flexible—the
interface supports starting, stopping, pausing, and playing sounds simultaneously
through multiple sound channels.

Built-in Applications

Unlikein previous versions, the built-in applications are all more extensiblein
version 2.0. The Notepad supports stationery, so you can easily extend it by adding
new “paper” types to the New pop-up menu. The Names file also supports stationery,
soit's easy to add new card types, new card layout styles, and new data items to
existing cards by registering new data definitions and view definitions for the
Names application. There's also a method that adds a new card to the Names soup.

What's New in Newton 2.0

CHAPTER 1

Overview

The Dates application includes a comprehensive interface that gives you the ability
to add, find, move, and del ete meetings and events. You can get and set various
kinds of information related to meetings, and you can create new meeting types for
the Dates application. You can programmeatically control what day is displayed as
thefirst day of the week, and you can control the display of aweek number in the
Calendar view.

The To Do List application aso includes a new interface that supports creating new
to do items, retrieving items for a particular date or range, removing old items, and
other operations.

Routing and Transports

The Routing interface is significantly changed in Newton 2.0. The system builds
the list of routing actions dynamically, when the user taps the Action button. This
allows all applications to take advantage of new transports that are added to the
system at any time. Many hooks are provided for your application to perform
custom operations at every point during the routing operation. You register routing
formats with the system as view definitions. A new function allows you to send
items programmatically.

Your application has much more flexibility with incoming items. You can choose to
automatically put away items and to receive foreign data (items from different
applications or from a non-Newton source).

The Transport interface is entirely new. Thisinterface provides several new protos
and functions that allow you to build a custom communication service and make it
available to all applications through the Action button and the In/Out Box. Features
include alogging capability, a system for displaying progress and status information
to the user, support for custom routing slips, and support for transport preferences.

Endpoint Communication

The Endpoint communication interface is new but very similar to the 1.0 interface.
Thereisanew proto, pr ot oBasi cEndpoi nt , that encapsul ates the connection
and provides methods to manage the connection and send and receive data.
Additionally, a derivative endpoint, pr ot oSt r eami ngEndpoi nt , providesthe
capability to send and receive very large frame objects.

Specific enhancements introduced by the new endpoint protos include the ability to
handle and identify many more types of data by tagging the data using data forms
specified in the f or mslot of an endpoint option. Most endpoint methods can now
be called asynchronously, and asynchronous operation is the recommended way to
do endpoint-based communication. Support is also included for time-outs and
multiple termination sequences. Error handling is improved.

What's New in Newton 2.0 1-23

1-24

CHAPTER 1

Overview

There have been significant changes in the handling of binary (raw) data. For input,
you can now target a direct data input object, resulting in significantly faster
performance. For output, you can specify offsets and lengths, allowing you to send
the data in chunks.

Additionally, there is now support for multiple simultaneous communication
sessions.

Utilities

Many new utility functions are available in Newton 2.0. There are several new
deferred, delayed, and conditional message-sending functions. New array functions
provide ways to insert elements, search for elements, and sort arrays. Additionally,
there’'s anew set of functions that operate on sorted arrays using binary search
algorithms. New and enhanced string functions support rich strings, perform
conditional substring substitution, tokenize strings, and perform case-sensitive
string compares. A new group of functions gets, sets, and checks for the existence
of global variables and functions.

Books

New Book Reader features include better browser behavior (configurable
auto-closing), expanded off-line bookkeeping abilities, persistent bookmarks, the
ability to remove bookmarks, and more efficient use of memory.

New interfaces provide additional ways to navigate in books, customize Find
behavior, customize bookmarks, and add help books. Book Reader also supports
interaction with new system messages related to scrolling, turning pages, installing
books, and removing books. Additional interfaces are provided for adding items to
the status bar and the Action menu.

What's New in Newton 2.0

CHAPTER 2

Getting Started

This chapter describes where to begin when you're thinking about developing a
Newton application. It describes the different kinds of software you can develop
and install on the Newton and the advantages and disadvantages of using different
application structures.

Additionally, this chapter describes how to create and register your devel oper
signature.

Before you read this chapter, you should be familiar with the information described
in Chapter 1, “Overview.”

Choosing an Application Structure

When you create an application program for the Newton platform, you can use one
of the following basic types of application structures:

m minimal predefined structure, by basing the application on a view class of
cl Vi ewor the pr ot 0App proto

m highly structured, by basing the application on the NewtApp framework of protos
m highly structured and specialized for text, by building adigital book

Alternatively, you might want to develop software that is not accessed through an
icon in the Extras Drawer. For example, you might want to install stationery, a
transport, or some other kind of specialized software that does something like
creating a soup and then removing itself.

These various approaches to software development are discussed in the following
sections.

Minimal Structure

The minimalist approach for designing a Newton application starts with an empty
or nearly empty container that provides little or no built-in functionality—thus the
“minimalist” name. This approach is best suited for specialized applications that

Choosing an Application Structure 2-1

CHAPTER 2

Getting Started

don't follow the “ classic” form-based model. For example, some types of
applications that might use this approach include games, utilities, calculators, and
graphics applications.

The advantage of using the minimalist approach isthat it's simple and small.
Usually you'd choose this approach because you don’t need or want alot of
built-in support from a comprehensive application framework, along with the extra
size and overhead that such support brings.

The disadvantage of the minimalist approach isthat it doesn’t provide any support
from built-in features, like the NewtApp framework does. You get just asimple
container in which to construct your application.

To construct an application using the minimalist approach, you can use the view
classcl Vi ewor the proto pr ot 0 App as your application base view. The view
classcl Vi ewisthe bare minimum you can start with. Thisis the most basic of the
primitive view classes. It provides nothing except an empty container. The

pr ot oApp provides alittle bit more, it includes a framed border, atitle at the top,
and a close box so the user can close it. For details on these objects, seecl Vi ew
(page 1-1) and pr ot 0App (page 1-2) in Newton Programmer’s Reference.

Neither of these basic containers provide much built-in functionality. You must add
functionality yourself by adding other application components to your application.
There are dozens of built-in protos that you can use, or you can create your own
protos using NTK. Most of the built-in protos are documented in these two chapters:
Chapter 6, “Pickers, Pop-up Views, and Overviews,”and Chapter 7, “Controls and
Other Protos.” Note also that certain protos in the NewtApp framework can be

used outside of a NewtApp application. For information on NewtApp protos, see
Chapter 4, “NewtApp Applications.”

NewtApp Framework

NewtApp is an application framework that iswell suited to “classic” form-based
applications. Such applications typically gather and store data in soups, display
individual soup entriesto usersin views, and allow the user to edit some or all of
the data. For example, some types of applications that might use NewtApp include
surveys and other data gathering applications, persona information managers, and
record-keeping applications. Some of the built-in applications constructed using
NewtApp include the Notepad, Namesfile, In/Out Box, Calls, and Time Zones.

The advantage of NewtApp isthat it provides aframework of protos designed to
help you build a complete, full-featured Newton application more quickly than if
you started from scratch. The NewtApp protos are designed to be used together in a
layered hierarchy that links together soup-based data with the display and editing
of that datain an application. For many types of applications, using the NewtApp
framework can significantly reduce development time because the protos

Choosing an Application Structure

CHAPTER 2

Getting Started

automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The disadvantage of NewtApp isthat it is structured to support a particular kind of
application—one that allows the creation, editing, and display of soup data. And
particularly, it supports applications structured so that there is one data element
(card, note, and so on) per soup entry. If your application doesn’t lend itself to that
structure or doesn’t need much of the support that NewtApp provides, then it
would be better to use a different approach to application design.

For details on using the NewtApp framework to construct an application, see
Chapter 4, “NewtApp Applications.”

Digital Books

If you want to devel op an application that displays alarge amount of text, handles
multiple pages, or needsto precisely layout text, you may want to consider making
adigital book instead of atraditional application. In fact, if you are dealing with a
really large amount of text, like more than afew dozen screens full, then you could
make your job much easier by using the digital book development tools.

Digita books are designed to display and manipulate large amounts of text and
graphics. Digital books can include all the functionality of an application—they
can include views, protos, and methods that are executed as aresult of user actions.
In fact, you can do almost everything in adigital book that you can do in amore
traditional application, except atraditional application doesn’'t include the text
layout abilities.

The advantage of using adigital book structure is that you gain the automatic text
layout and display abilities of Book Reader, the built-in digital book reading appli-
cation. Additionally, the book-making tools are easy to use and allow you to quickly
turn large amounts of text and graphics into Newton books with minimal effort.

The disadvantage of using adigital book isthat it is designed to support a
particular kind of application—one that is like a book. If your application doesn’t
lend itself to that structure or doesn’t need much of the text-handling support that
Book Reader provides, then it would be better to use a different approach to
application design.

For information on creating digital books using the Book Maker command
language and/or incorporating NewtonScript code and objects into digital books,
see Newton Book Maker User’s Guide. For information on creating simpler digital
books see Newton Press User’s Guide.

Choosing an Application Structure 2-3

CHAPTER 2

Getting Started

Other Kinds of Software

There are other kinds of software you can develop for the Newton platform that are
not accessed by the user through an icon in the Extras drawer. These might include
new types of stationery that extend existing applications, new panels for the
Preferences or Formulas applications, new routing or print formats, communication
transports, and other kinds of invisible applications. Such softwareisinstalledin a
kind of part called an auto part (because its part code is aut o).

You can aso install aspecial kind of auto part that is automatically removed after it
isinstalled. Thel nst al | Scri pt function in the auto part is executed, and then it
isremoved. (For more information about the | nst al | Scri pt function, see the
section “ Package L oading, Activation, and Deactivation” beginning on page 2-4.)
Thiskind of auto part is useful to execute some code on the Newton, for example,
to create a soup, and then to remove the code. This could be used to write an installer
application that installs just a portion of the data supplied with an application. For
example, you might have a game or some other application that uses various data
sets, and the installer could let the user choose which data setsto install (as soups)
to save storage space.

Any changes made by an automatically removed auto part are lost when the
Newton isreset, except for changes made to soups, which are persistent.

For additional information about creating auto parts and other kinds of parts such
asfont, dictionary, and store parts, refer to Newton Toolkit User’s Guide.

Package L oading, Activation, and Deactivation

2-4

When a package is first loaded onto the Newton store from some external source,
the system executesthe DoNot | nst al | Scri pt function in each frame part in
the package. This function gives the parts in the package a chance to prevent
installation of the package. If the package is not prevented from being installed,
next it is activated.

When a package containing an application or auto part is activated on the Newton,
the system executes a special function in those parts: thel nst al | Scri pt
function. A package is normally activated as aresult of installing it—by inserting a
storage card containing it, by moving it from one store to another, by downloading
it from a desktop computer, by downloading it via modem or some other communi-
cation device, or by soft resetting the Newton device. Packages can also exist in an
inactive state on a Newton store, and such a package can be activated by the user at
alater time.

When a package is deactivated, the system executes another special functionin
each of the application and auto parts in the package: the RenoveScr i pt
function. A package is normally deactivated when the card it resides on is removed,

Package Loading, Activation, and Deactivation

CHAPTER 2

Getting Started

when it is moved to another store (it is deactivated then reactivated), or when the
user deletes the application icon in the Extras Drawer. Packages can also be
deactivated without removing them from the store.

When a package is removed as aresult of the user deleting it from the Extras
Drawer, the system also executesthe Del et i onScri pt function in each of the
package frame parts. This occurs before the RenpveScri pt function is executed.

The following sections describe how to use these functions.

Loading

TheDoNot | nstal | Scri pt function in a package part is executed when a
package isfirst loaded onto a Newton store from some external source (this does
not include inserting a storage card containing the package or moving it between
stores). This function appliesto al types of frame parts (for example, not store parts).

This method gives the parts in the package a chance to prevent installation of the
entire package. If any of the package parts returnsanon-ni | value from this
function, the package is not installed and is discarded.

You should provide the user with some kind of feedback if package installation is
prevented, rather than silently failing. For example, to ensure that a packageis
installed only on the internal store you could writeaDoNot | nst al | Scri pt
function like the following:

func()
begi n
if GetStores()[0] <> GetVBOStore(ObjectPkgRef ('foo)) then
begi n
CGet Root (): Notify(kNotifyAl ert, kAppNane,
"Thi s package was not installed.
It can be installed only onto the internal store.");
true;
end;
end

Activation

Thel nstal | Scri pt function in a package part is executed when an application
or auto part is activated on the Newton or whenever the Newton is reset.

This function lets you perform any special installation operations that you need to
do, any initialization, and any registration for system services.

Package Loading, Activation, and Deactivation 2-5

CHAPTER 2
Getting Started

IMPORTANT
Any changes that you make to the system in the

I nstall Scri pt function must be reversed in the
RenpveScri pt function. For example, if you register your
application for certain system services or install print formats,
stationery, or other objects in the system, you must reverse
these changes and remove or unregister these objectsin the
RenpveScri pt function. If you fail to do this, such changes
cannot be removed by the user, and if your applicationison a
card, they won't be able to remove the card without getting a
warning message to put the card back. a

Only applications and auto partsusethe | nst al | Scri pt function. Note that the
I nstall Scri pt function takes one extra argument when used for an auto part.
Applications built using the NewtApp framework require special

I nstall Scri pt and RenoveScri pt functions. For details, see Chapter 4,
“NewtApp Applications.”

Deactivation

The RenmoveScri pt function in a package part is executed when an application or
auto part is deactivated.

This function lets you perform any special deinstallation operations that you need
to do, any clean-up, and any unregistration for system services that you registered
forinthel nstal | Scri pt function.

Note that automatically removed auto parts do not use the RenoveScr i pt
function since such auto parts are removed immediately after the
Instal |l Scri pt isexecuted—the RenbveScri pt isnot executed.

In addition to theRenoveScr i pt function, another function, Del et i onScri pt,
is executed when the user removes a package by deleting it from the Extras
Drawer. Thisfunction appliesto all types of frame parts, and is actually executed
before the RemoveScri pt function.

TheDel eti onScri pt functionisoptional. It lets you do different clean-up
based on the assumption that the user is permanently deleting a package, rather
than simply gjecting the card on which it happensto reside. For example, in the
Del eti onScri pt function, you might want to delete all the soups created by the
application—checking with the user, of course, before performing such an
irreversible operation.

Package Loading, Activation, and Deactivation

CHAPTER 2

Getting Started

Effects of System Resets on Application Data

Two kinds of reset operations—hard resets and soft resets—can occur on Newton
devices. All datain working RAM (the NewtonScript heap and the operating
system domain) is erased when a hard or soft reset occurs.

Unless a hard reset occurs, soups remain in RAM until they are removed explicitly,
even if the Newton device is powered down. Soups are not affected by soft resets,
asthey are stored in the protected storage domain. The remainder of this section
describes reset operations in more detail and suggests ways to ensure that your
application can deal with resets appropriately.

A hard reset occurs at least once in the life of any Newton device—whenit is
initially powered on. The hard reset returns al internal RAM to aknown state: all
soups are erased, al caches are purged, all application packages are erased from
the internal store, application RAM isreinitiaized, the NewtonScript heap is
reinitialized, and the operating system restartsitself. It's the end (or beginning) of
the world as your application knowsiit.

Note
Data on external storesis not affected by a hard reset. &

A hard reset isinitiated only in hardware by the user. Extreme precautions have
been taken to ensure that this action is deliberate. On the M essagePad, the user
must simultaneously manipulate the power and reset switches to initiate the
hardware reset. After thisis accomplished, the hardware reset displays two dialog
boxes warning the user that all datais about to be erased; the user must confirm
this action in both dialog boxes before the hard reset takes place.

It is extremely unlikely that misbehaving application software would cause a hard
reset. However, a state similar to hardware reset may be achieved if the battery that
backs up internal RAM is removed or fails completely.

It's advisable to test your application’s ability to install itself and run on a system
that has been initialized with a hard reset. The exact sequence of steps required to
hard reset a Newton device is documented in its user guide.

Newton devices may also perform a soft reset operation. A soft reset erases all data
stored by applications in the NewtonScript heap, for example all data stored in
dotsin views or other framesin memory. A soft reset also reinitiaizes the data
storage system frames cache, while leaving soup dataintact. Any framesin the
cache are lost, such as new or modified entries that have not been written back to
the soup. A soft reset can be initiated in software by the operating system or from
hardware by the user.

Effects of System Resets on Application Data 2-7

CHAPTER 2

Getting Started

When the operating system cannot obtain enough memory to compl ete a requested

operation, it may display adialog box advising the user to reset the Newton device.
The user can tap the Reset button displayed in the dialog box to reset the system, or
can tap the Cancel button and continue working.

The user may a'so initiate a soft reset by pressing a hardware button provided for
this purpose. This button is designed to prevent its accidental use. On the
MessagePad, for example, it is recessed inside the battery compartment and must
be pressed with the Newton pen or similarly-shaped instrument.

A soft reset may also be caused by misbehaving application software. One way to
minimize the occurrence of unexpected resetsis to utilize exception-handling code
where appropriate.

The only way applications can minimize the conseguences of a soft reset isto be
prepared for one to happen at any time. Applications need to store all permanent
datain a soup and write changed entries back to the soup as soon asisfeasible.

It's advisable to test your application’s ability to recover from a soft reset. The
exact sequence of steps required to soft-reset a particular Newton device is
documented in its user guide.

Flow of Control

The Newton system is an event-driven, object-oriented system. Code is executed in
response to messages sent to objects (for example, views). Messages are sent asa
result of user events, such as atap on the screen, or internal system events, such as
an idleloop triggering. The flow of control in atypical application begins when the
user taps on the application icon in the Extras Drawer. As aresult of this event, the
system performs several actions such as reading the values of certain slotsin your
application base view and sending a particular sequence of messagesto it.

For a detailed discussion of the flow of control and the order of execution when an
application “starts up,” see the section “View Instantiation” beginning on page 3-26.

Using Memory

The tightly-constrained Newton environment requires that applications avoid
wasting memory space on unused references. As soon as possible, applications
should set to ni | any object reference that is no longer needed, thereby allowing
the system to reclaim the memory used by that object. For example, when an
application closes, it needs to clean up after itself as much as possible, removing its
references to soups, entries, cursors, and any other objects. This means you should
set to ni | any application base view slots that refer to objectsin RAM.

Flow of Control

CHAPTER 2
Getting Started

IMPORTANT
If you don't remove references to unused soups, entries, cursors,
and other objects, the objects will not be garbage collected,
reducing the amount of RAM available to the system and

other applications. a

Locaization

If your application displays strings, and you want your application to run on
localized Newton products, you should consider localizing your application. This
involves trand ating strings to other languages and using other formats for dates,
times, and monetary values.

There are some features of NTK that make string localization simple, allowing you
to define the language at compile time to build versionsin different languages
without changing the source files. Refer to Newton Toolkit User’s Guide for more
information.

For details on localizing an application, see Chapter 20, “Localizing Newton
Applications”

Developer Signature Guidelines

To avoid name conflicts with other Newton application, you need to register a
single developer signature with Newton DTS. You can then use this signature as
the basis for creating unique application symbols, soup names and other global
symbols and strings according to the guidelines described in this section.

Signature

A signatureis an arbitrary sequence of approximately 4 to 10 characters. Any
characters except colons () and vertical bars(|) can be used in asignature. Case is
not significant.

Like a handwritten signature, the devel oper signature uniquely identifies a Newton
application developer. The most important characteristic of asignatureisthat it is
unique to a single devel oper, which iswhy Newton DTS maintains a registry of
developer signatures. Once you have registered a signature with Newton DTSt is
yours, and will not be assigned to any other devel oper.

Localization 2-9

2-10

CHAPTER 2

Getting Started

Examples of valid signatures include

NEWIONDTS

Joe’ s Cool Apps
INEWION2DTS

What the #$*? SW

How to Register

To register your signature, you need to provide the following information to the
Newton Development Information Group at Apple.

Conpany Nare:

Cont act Person:

Mai | i ng Address:

Phone:

Emai | Address:

Desired Signature 1st choice:
Desired Signature 2nd choi ce:

Send this information to the e-mail address

NEWTONDEV@ppl el i nk. appl e. com
or send it viaUS Mail to:

NewtonSysOp

c/o: Apple Computer, Inc.

1 Infinite Loop, M/S: 305-2A
Cupertino, CA 95014

USA

Application Name

The application name is the string displayed under your application'sicon in the
Extras drawer. Because it isa string, any characters are allowed.

This name does not need to be unique, because the system does not use it to
identify the application. For example, it is possible for there to be two applications
named Chess on the market. The application nameis used only to identify the
application to the user. If there were in fact two applications named Chess
installed on the same Newton device, hopefully the user could distinguish one from
the other by some other means, perhaps by the display of different iconsin the
Extras drawer.

Developer Signature Guidelines

CHAPTER 2

Getting Started

Examples of valid application namesinclude

Ll ama
Good Form
2 Fun 4 U
Chess

Note

It's recommended that you keep your application
names short so that they don’t crowd the names
of other applicationsin the Extras drawer. &

Application Symbol

The application symbol is created by concatenating the application name, a

colon (:), and your registered devel oper signature. This symbol is not normally
visible to the end user. It is used to uniquely identify an application in the system.
Because application symbols contain a colon (:), they must be enclosed by vertical
bars (]) where they appear explicitly in NewtonScript code.

Examples of valid application symbols include:

"| LI ana: NEWTONDTS|
"| 2 Fun 4 U Joe’s Cool Apps|

You specify the application symbol in the Output Settings dialog of NTK. At the
beginning of a project build, NTK 1.5 or newer defines a constant for your project
with the name k AppSynbol and setsit to the symbol you specify asthe
application symbol. Use of this constant throughout your code makes it easier to
maintain your code.

At the end of the project build, if you've not created a slot with the name
appSynbol inthe application base view of your project, NTK creates such aslot
and placesin it the application symbol. If the slot exists already, NTK doesn’t
overwriteit.

Package Name

The package nameis usually astring version of the application symbol. The
package name may be visible to the user if no application name is provided.
Package names are limited to 26 characters, so this places a practical limit on the
combined length of application names and signatures.

Developer Signature Guidelines 2-11

Summary

CHAPTER 2

Getting Started

2-12

View Classes and Protos

clView

aView : = {

viewC ass: clView, // base view class

vi ewBounds: boundsFrame, // | ocation and size
viewdustify: integer, // viewdustify flags

vi ewFl ags: integer, // viewrl ags fl ags

vi ewFor mat : integer, // viewFormat fl ags

protoApp

anApp : = {

_proto: protoApp, // proto application
title: string, // application nane

vi ewBounds: boundsFrame, // |ocation and size
viewdustify: integer, // viewdustify flags

vi ewFl ags: integer, // viewrl ags flags

vi ewFor mat : integer, // viewFormat flags

decl areSel f: 'base, // do not change

Functions

Application-Defined Functions

Install Script(partFrame) // for application parts

I nstal |l Scri pt (partFrame, removeFrame) // for auto parts
Del etionScript ()

DoNot I nstal | Scri pt ()

RenoveScri pt (frame)

Summary

CHAPTER 3

Views

This chapter provides the basic information you need to know about views and how
to use them in your application.

You should start with this chapter if you are creating an application for Newton
devices, as views are the basic building blocks for most applications. Before
reading this chapter, you should be familiar with the information in Newton Toolkit
User’s Guide and The NewtonScript Programming Language.

This chapter introduces you to views and related items, describing

m views, templates, the view coordinate system, and the instantiation process for
creating aview

m common tasks, such as creating atemplate, redrawing a view, creating special
view effects, and optimizing aview’s performance

m Vview constants, methods, and functions

About Views

Views are the basic building blocks of most applications. Nearly every individual
visua item you see on the screen—for example, aradio button, or a checkbox—is
aview, and there may even be views that are not visible. Views display information
to the user in the form of text and graphics, and the user interacts with views by
tapping them, writing in them, dragging them, and so on.

Different types of views have inherently different behavior, and you can include
your own methods in views to further enhance their behavior. The primitive view
classes provided in the Newton system are described in detail in Table 2-2 (page 2-4)
in the Newton Programmer’s Reference.

You create or lay out aview with the Newton Toolkit’s graphic editor. The Newton
Toolkit creates atemplate; that is, a data object that describes how the view will
look and act on the Newton. Views are then created from templates when the
application runs on the Newton.

About Views 31

CHAPTER 3

Views

This section provides detailed conceptual information on views and other items
related to views. Specifically, it covers the following:

m templates and views and how they relate to each other

m the coordinate system used in placing views

m components used to define views

m application-defined methods that the system sends to views
m the programmatic process used to create aview

m new functions, methods, and messages added for 2.0 as well as modifications to
existing view code

Templates

A templateis aframe containing a description of an object. (In this chapter the
objects referred to are views that can appear on the screen.) Templates contain data
descriptions of such items as fields for the user to write into, graphic objects,
buttons, and other interactive objects used to collect and display information.
Additionally, templates can include methods, which are functions that give the
view behavior.

Note

A template can also describe nongraphic objects like
communication objects. Such objects have no visual
representation and exist only aslogical objects.

An application exists as a collection of templates, not just a single template. There
isaparent template that defines the application window and its most basic
features. From this parent template springs a hierarchical collection of child
templates, each defining a small piece of the larger whole. Each graphic object,
button, text field, and so on is defined by a separate template. Each child template
exists within the context of its parent template and inherits characteristics from its
parent template, though it can override these inherited characteristics.

Within the Newton object system, atemplate for aview exists as a special kind of
frame; that is, aframe containing or inheriting a particular group of slots

(vi ewdl ass, vi ewBounds, vi ewFl ags, and some other optional slots) that
define the template’s class, dimensions, appearance, and other characteristics.
Templates are no different from any other frames, except that they contain or
inherit these particular slots (in addition to others). For more information about
frames, slots, and the NewtonScript language, see The NewtonScript Programming
Language.

About Views

CHAPTER 3

Views

Figure 3-1 shows a collection of template frames that might make up an application.

The frame at the top represents the highest-level parent template. Each template
that has children containsavi ewChi | dr en (or st epChi | dr en) slot whose

valueisan array of referencesto its child templates.

Figure 3-1 Template hierarchy

Parent Template

{Slot: data
Sl ot: data
vi ewChi | dr en:

[frameRef, frameRef}

Uy

Child Template

{Slot: data
Sl ot: data
vi ewChi | dren:

[frameRef, frameRef}

Y IV

Child Template

{Sl ot: data
Sl ot : data
}

Child Template Child Template
{Sl ot: data {Sl ot: data
Sl ot : data Sl ot : data

} }

Arrows indicate
{} a reference to objects

About Views

3-4

CHAPTER 3

Views

Views

A template is a data description of an object. A view isthe visual representation of
the object that is created when the template isinstantiated. The system reads the
stored description in the template and creates a view on the screen—for example, a
framed rectangle containing atitle.

Besides the graphic representation you see on the screen, aview consists of a
memory object (aframe) that contains areference to its template and also contains
transient data used to create the graphic object. Any changes to view data that occur
during run time are stored in the view, not in its template. Thisis an important point—
after an application has started up (that is, once the views are instantiated from their
templates), al changes to slots occur in the view; the template is never changed.

This distinction between templates and views with respect to changing slot values
occurs because of the NewtonScript inheritance mechanism. During run time,
templates, containing static data, are prototypes for views, which contain dynamic
data. To understand this concept, it isimperative that you have a thorough
understanding of the inheritance mechanism as described in The NewtonScript
Programming Language.

You can think of atemplate as a computer program stored on a disk. When the
program starts up, the disk copy (the template) serves as atemplate; it is copied
into dynamic memory, where it begins execution. Any changes to program
variables and data occur in the copy of the program in memory (the view), not in
the original disk version.

However, the Newton system diverges from this metaphor in that the view is not
actually a copy of the template. To save RAM use, the view contains only areference
to the template. Operations involving the reading of data are directed by reference
to the template if the datais not first found in the view. In operations in which data
iswritten or changed, the datais written into the view.

Because views are transient and data is disposed of when the view is closed, any
datawritten into aview that needs to be saved permanently must be saved el sewhere
before the view disappears.

A view islinked with itstemplate through a_pr ot o dot in the view. The value of
this dlot is areference to the template. Through this reference, the view can access
slotsin its template. Templates may themselves contain _pr ot o slotswhich
reference other templates, called protos, on which they are built.

Views are also linked to other views in a parent-child relationship. Each view
containsa_par ent slot whose value is areference to its parent view; that is, the
view that enclosesit. The top-level parent view of your application is called the

About Views

CHAPTER 3

Views

application base view. (Think of the view hierarchy as atree structure in which

the tree is turned upside down with its root at the top. The top-level parent view is

the root view.)

Figure 3-2 shows the set of views instantiated from the templates shown in
Figure 3-1. Note that this example is ssimplified in that it shows a separate template
for each view. In practice, multiple views often share a single template. Also, this

example doesn’t show templates that are built on other protos.

Figure 3-2 View hierarchy
Views Templates
(transient, writable) (permanent, read-only)
Parent View Parent Template
{_pr Ot O: ceeeeeoceeceennaeannacaccccccnnnnnanns » {
} vi ewchi | dren: []
}
Child View A Child View B Child Template A Child Template B
{_parent: { { {
_proto: PP lececccccccceacaed R .
. ~ _parent:
. = _pr ot o: IS P gecccsccscccccccsccsdbe > .
. . viewChi I dren:[] }
} } }
Child View C Child View D Child Template C Child Template D
{_parent: { { {
_pr oto: --ecifeccaaaleas ERERRRERTEETTTERTES EEERPTERTE >
. _ _parent:
. _pr (0] A Y »
. . } }
} }
Arrows indicate a

Arrows ind

reference to parent/child

icate a

reference to protos

About Views

3-5

CHAPTER 3

Views

Figure 3-3 shows an example of what this view hierarchy might represent on
the screen.

Parent
View

Child A

Figure 3-3 Screen representation of view hierarchy
Child B
Color
& Fed Child C
7% Blue Child D

The application base view of each application exists as a child of the system root
view. The root view is essentially the blank screen that exists before any other
views are drawn. It isthe ancestor of all other views that are instantiated.

Coordinate System

The view coordinate system is atwo-dimensional plane. The (0, 0) origin point of
the plane is assigned to the upper-left corner of the Newton screen, and coordinate
values increase to the right and (unlike a Cartesian plane) down. Any pixel on the
screen can be specified by avertical coordinate and a horizontal coordinate.
Figure 3-4 (page 3-7) illustrates the view system coordinate plane.

Views are defined by rectangular areas that are usually subsets of the screen. The
origin of aview is usualy its upper-left corner, though the origin can be changed.
The coordinates of aview arerelative to the origin of its parent view—they are not
screen coordinates.

It is helpful to conceptualize the coordinate plane as atwo-dimensional grid.
Theintersection of a horizontal and vertical grid line marks a point on the
coordinate plane.

Note the distinction between points on the coordinate grid and pixels, the dots
that make up avisible image on the screen. Figure 3-5 illustrates the relationship
between the two: the pixel is down and to the right of the point by which it

is addressed.

About Views

CHAPTER

Views

Figure 3-4

3

View system coordinate plane

—+ -6
4 -5
—+ -4
—4 -3
4 -2
6 -5-4-3—2-1 [t
———————————
11 23 4 5 6
oL
3
a-L
5
61 Vv

Figure 3-5

Points and pixels

Grid lines —

About Views

CHAPTER 3

Views

Asthe grid lines areinfinitely thin, so a point isinfinitely small. Pixels, by contrast,
lie between the lines of the coordinate grid, not at their intersections.

This relationship gives them a definite physical extent, so that they can be seen on
the screen.

Defining View Characteristics

A template that describes aview is stored as aframe that has sots for view
characteristics. Here is a NewtonScript example of atemplate that describes aview:

{viewd ass: cl View,

vi ewBounds: Rel Bounds(20, 50, 94, 142),

vi ewFl ags: vNoFI ags,

vi ewFor mat : vf Fi | | Wi t e+vf FranmeBl ack+vf Pen(1),
viewdustify: vjCenterH,

vi ewFont : si npl eFont 10,

decl areSel f: ' base,

debug: "dialer",

}
Briefly, the syntax for defining aframeis:

{ dotName: dotValue,
slotName: dotValue,

-1

where slotName is the name of adot, and sotValue is the value of a slot. For more
details on NewtonScript syntax, refer to The NewtonScript Programming Language.

Frames serving as view templates have dlots that define the following kinds of view
characteristics:

Class Thevi ewCl ass dot defines the class of graphic object from
which the view is constructed.
Behavior Thevi ewFl ags dot defines other primary view behaviors

and controls recognition behavior.

Location, size, and alignment
Thevi ewBounds and vi ewdust i fy dotsdefine the
location, size, and alignment of the view and its contents.

Appearance Thevi ewFor mat slot defines the frame and fill
characteristics. Thevi ewFi | | Patt er n and
vi ewFr anePat t er n slots control custom patterns.
Transfer modes used in drawing the view are controlled
by thevi ewTr ansf er Mode slot.

About Views

CHAPTER 3

Views

Opening and closing animation effects
Thevi ewkf f ect dot defines an animation to be performed
when the view is displayed or hidden.

Other attributes Some other dlots define view characteristics such as font,
copy protection, and so on.

Inheritance links The _proto, parent,vi ewChil dren, and
st epChi | dr en dots contain links to aview’'s template,
parent view, and child views.

These different categories of view characteristics are described in the following
sections.

Class

Thevi ewd ass dot defines the view class. Thisinformation is used by the

system when creating aview from its template. The view class describes the type

of graphic object to be used to display the data described in the template. The view
classes built into the system serve as the primitive building blocks from which al
visible objects are constructed. The view classes are listed and described in Table 2-2
(page 2-4) in the Newton Programmer’s Reference.

Behavior

Thevi ewFl ags dot defines behavioral attributes of aview other than those that
are derived from the view class. Each attribute is represented by a constant defined
as ahit flag. Multiple attributes are specified by adding them together, like this:

vVi si bl e+vFr amed

Note that in the NTK viewFlags editor, multiple attributes are specified simply by
checking the appropriate boxes.

Some of thevi ewFl ags constants are listed and described in Table 2-4 (page 2-11)
in the Newton Programmer’s Reference. There are also several additional constants
you can specify inthevi ewFl ags slot that control what kinds of pen input (taps,
strokes, words, letters, numbers, and so on) are recognized and handled by the view.
These other constants are described in “Recognition” (page 9-1).

View behavior is aso controlled through methods in the view that handle system
messages. As an application executes, its views receive messages from the system,
triggered by various events, usually the result of a user action. Views can handle
system messages by having methods that are named after the messages. You
control the behavior of views by providing such methods and including code that
operates on the receiving view or other views.

For a detailed description of the messages that views can receive, and information
on how to handle them, see “Application-Defined Methods’ (page 3-26).”

About Views 39

3-10

CHAPTER 3

Views

Handling Pen Input

The use of thevd i ckabl e vi ewfl ags constant to control peninput is
important to understand, so it is worth covering here, even though it isdiscussed in
more detail in “Recognition” (page 9-1). Thevd i ckabl e flag must be set for a
view to receiveinput. If thisflag is not set for aview, that view cannot accept any
pen input.

If you have aview whosevd i ckabl e flag is not set, pen events, such as atap,
will “fall through” that view and be registered in a background view that does
accept pen input. This can cause unexpected results if you are not careful. You

can prevent pen events from registering in the wrong view by setting the

vC i ckabl e flag for aview and providing aVi ewCl i ckScri pt method in the
view that returns non-ni | . This causes the view to capture all pen input within
itself, instead of letting it “fall through” to a different view. If you want to capture
pen eventsin aview but still prevent input (and electronic ink), do not specify any
other recognition flags besidesvd i ckabl e.

If you want strokes or gestures but want to prevent clicks from falling through up
the parent chain, return the symbol ' ski p. Thissymbol tellsthe view system not
to allow the stroke to be processed by the parent chain, but instead allows the
stroke to be processed by the view itself for recognition behavior.

Severa other vi ewFl ags constants are used to control and constrain the recognition
of text, the recognition of shapes, the use of dictionaries, and other input-related
features of views. For more information, refer to “Recognition” (page 9-1).

Location, Size, and Alignment

The location and size of aview are specified in thevi ewBounds slot of the view
template. Thevi ewdust i fy sot affects the location of aview relative to other
views. Thevi ewJust i f y slot also controls how text and pictures within the view
are aligned and limits how much text can appear in the view (one line, one word,
and so on).

Thevi ewOri gi nXandvi ewOri gi nY slots control the offset of child views
within aview.

View Bounds

Thevi ewBounds dot defines the size and location of the view on the screen. The
value of thevi ewBounds dot isaframethat contains four slots giving the view
coordinates (al distances arein pixels). For example:

{left: leftValue,

top: topValue,
right: rightValue,
bott om bottomValue

}

About Views

CHAPTER 3

Views

leftValue The distance from the left origin of the parent view to the left
edge of the view.

topValue The distance from the top origin of the parent view to the top
edge of the view.

rightvValue The distance from the | eft origin of the parent view to the
right edge of the view.

bottomValue The distance from the top origin of the parent view to the
bottom edge of the view.

Note

Thevaluesinthevi ewBounds frame are interpreted as
described here only if the view alignment is set to the default
values. Otherwise, the view alignment setting changes the way
vi ewBounds values are used. For more information, see “View
Alignment” (page 3-13). o

Asshown in Figure 3-6, all coordinates are relative to a view’s parent, they are not
actual screen coordinates.

Figure 3-6 Bounds parameters
Parent View T
Top
View

Bottom

— Left —»

- Right >

When you are using the Newton Toolkit (NTK) to lay out views for your applica
tion, thevi ewBounds slot is set automatically when you drag out aview in the
layout window. If you are writing code in which you need to specify avi ewBounds
slot, you can use one of the global functions such as Set Bounds or Rel Bounds,
which are described in “Finding the Bounds of Views’ (page 3-39).

About Views 3-11

3-12

CHAPTER 3

Views

View Size Relative to Parent Size

A view is normally entirely enclosed by its parent view. You shouldn’t create a
view whose bounds extend outside its parent’s bounds. If you do create such aview,
for example containing a picture that you want to show just part of, you need to set
thevd i ppi ng flaginthevi ewrl ags dot of the parent view.

If you do not set thevd i ppi ng flag for the parent view, the behavior is
unpredictable. The portions of the view outside the parent’s bounds may or may
not draw properly. All pen input is clipped to the parent’s bounds.

Note that the base views of al applications (all root view children, in fact) are
automatically clipped, whether or not thevC i ppi ng flag is set.

If your application base view is very small and you need to create alarger floating
child view, for example, adip, you should use the Bui | dCont ext function. This
function creates a special view that is a child of the root view. To open the view,
you send the Open messagetoit.

Using Screen-Relative Bounds

Newton isafamily of products with varying screen sizes. If you want your
application to be compatible with avariety of individual Newton products, you
should design your application so that it sizesitself dynamically (that is, at run
time), accounting for the size of the screen on which it is running, which could be
smaller or larger than the original Newton MessagePad screen.

You may want to dynamically size the base view of your application so that it
changes for different screen sizes, or you may want it to remain afixed size on all
platforms. In the latter case, you should still check the actual screen size at run
time to make sure there is enough room for your application.

You can use the global function Get AppPar ans to check the size of the screen at
run time. This function returns a frame containing the coordinates of the drawable
area of the screen, as well as other information (see “Utility Functions Reference”
(page 23-1) in the Newton Programmer’s Reference for a description). The frame
returned looks like this:

{appAreaLeft: O,
appAreaTop: O,
appAreaW dt h: 240,
appAr eaHei ght : 320,

-}

The following example shows how to use the Vi ewSet upFor n5cri pt method in
your application base view to make the application afixed size, but no larger than
the size of the screen:

About Views

CHAPTER 3

Views

vi ewSet upFor nScri pt: func()

begi n
| ocal b := Get AppParans();
sel f.vi ewbounds : = Rel Bounds(

b. appArealLeft,

b. appAr eaTop,

m n(200, b.appAreaW dth), /1 200 pixels w de max

m n(300, b.appAreaHeight)); // 300 pixels high max
end

Don't blindly size your application to the full extents of the screen. This might look
odd if your application runs on a system with a much larger screen.

Do include a border around your application base view. That way, if the application
runs on a screen that is larger than the size of your application, the user will be able
to clearly seeits boundaries.

The important point is to correctly size the application base view. Child views are
positioned relative to the application base view. If you have adynamically sizing
application base view, make sure that the child views also are sized dynamically, so
that they arelaid out correctly no matter how the dimensions of the base view
change. You can ensure correct layout by using parent-relative and sibling-relative
view alignment, as explained in the next section, “View Alignment.”

One additional consideration you should note is that on alarger screen, it may be
possible for the user to move applications around. You should not rely on the
top-left coordinate of your application base view being fixed. To prevent this from
happening check your application’s current location when you work with global
coordinates. To do this, send thed@ obal Box message to your application base view.

View Alighment

Thevi ewdust i fy dot isused to set the view alignment and is closely linked in
its usage and effects with the vi ewBounds dlot.

Thevi ewdust i f y dot specifies how text and graphics are aligned within the
view and how the bounds of the view are aligned relative to its parent or sibling
views. (Sibling views are child views that have a common parent view.)

Inthevi ewdust i fy slot, you can specify one or more alignment attributes,
which are represented by constants defined as bit flags. You can specify one
alignment attribute from each of the following groups:

m horizontal aignment of view contents (applies to views of class
cl Par agr aphVi ewand cl Pi ct ur eVi ewonly)

m vertical alignment of view contents (applies to views of class
cl Par agr aphVi ewand cl Pi ct ur eVi ewonly)

About Views 3-13

CHAPTER 3

Views

m horizontal alignment of the view relative to its parent or sibling view
m vertical alignment of the view relative to its parent or sibling view
m text limits

For example, you could specify these alignment attributes for a button view that has
its text centered within the view and is placed relative to its parent and sibling views:

vj Cent er H+vj Cent er V+vj Si bl i ngRi ght H+vj Par ent Bot t omV+oneLi neOnl y

If you don't specify an attribute from a group, the default attribute for that group
is used.

The view alignment attributes and the defaults are listed and described in Table 3-1.
The effects of these attributes are illustrated in Figure 3-7, following the table.

Sibling setting are not used if the view has not previous setting, instead the parent
settings are used.

Table 3-1 vi ewdust i fy constants

Constant

Value Description

Horizontal alignment of view contents

vj LeftH
vj CenterH
vj Ri ghtH
vj Ful | H

0 Left alignment (default).

2 Center alignment (default for cl Pi ct ur eVi ewonly).
1 Right alignment.

3 Stretches the view contents to fill the entire view width.

Vertical alignment of view contents®

vj TopV

vj CenterV
vj Bot t onVvV
vj Ful | V

0 Top alignment (default).

4 Center alignment (default for cl Pi ct ur eVi ewonly).
8 Bottom alignment.

12 For views of thecl Pi ct ur eVi ewclassonly;

stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view?
vj Parent Lef t H 0 The left and right view bounds are relative to the

3-14

parent’s |eft side (default).

continued

About Views

CHAPTER 3

Views

Table 3-1

vi ewJust i fy constants (continued)

Constant
vj Par ent Cent er H

vj Parent Ri ghtH

vj Parent Ful I H

vj Si bl i ngNoH
vj Si bl i ngLeftH

vj Si bl i ngCenterH

vj Si bl i ngRi ght H

vj Si blingFul I H

Value
16

32

48

2048

512

1024

1536

Description

The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in the parent view. If you
specify any other number for left, the view is offset
by that much from a centered position (for example,
specifying left = 10 and right = width+10 offsets the
view 10 pixels to the right from a centered position).

The left and right view bounds are relative to the
parent’s right side, and will usualy be negative.

The left bounds value is used as an offset from the left
edge of the parent and the right bounds value as an
offset from the right edge of the parent (for example,
specifying left = 10 and right = —10 leaves a 10-pixel
margin on each side).

(Default) Do not use sibling horizonta alignment.

The left and right view bounds are relative to the
sibling’s left side.

The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in relation to the sibling
view. If you specify any other number for left,

the view is offset by that much from a centered
position (for example, specifying left = 10 and

right = width+10 offsets the view 10 pixels to the
right from a centered position).

The left and right view bounds are relative to the
sibling’s right side.

The left bounds value is used as an offset from the left
edge of the sibling and the right bounds value as an
offset from the right edge of the sibling (for example,
specifying left = 10 and right = —10 indents the view
10 pixels on each side relative to its sibling).

Vertical alignment of the view relative to its parent or sibling view?

vj Par ent TopV

About Views

0

The top and bottom view bounds are relative to the
parent’s top side (default).

continued

3-15

CHAPTER 3

Views

Table 3-1

vi ewdust i fy constants (continued)

Constant
vj Par ent Cent er V

vj Par ent Bot t onV

vj Parent Ful | V

vj Si bl i ngNoV
vj Si bl i ngTopV

vj Si bl i ngCenterV

vj Si bl i ngBot t onVv

vj Si bli ngFul I V

3-16 About Views

Value
64

128

192

16384

4096

8192

12288

Description

The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the parent
view. If you specify any other number for top,

the view is offset by that much from a centered
position (for example, specifying top =-10 and
bottom = height—10 offsets the view 10 pixels above
a centered position).

The top and bottom view bounds are relative to the
parent’s bottom side.

The top bounds value is used as an offset from the top
edge of the parent and the bottom bounds value as an
offset from the bottom edge of the parent (for
example, specifying top = 10 and bottom = —10 leaves
a 10-pixel margin on both the top and the bottom).

(Default) Do not use sibling vertical alignment.

The top and bottom view bounds are relative to the
sibling'stop side.

The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation to
the sibling view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top =-10 and
bottom = height—10 offsets the view 10 pixels above a
centered position).

The top and bottom view bounds are relative to the
sibling’s bottom side.

The top bounds value is used as an offset from the top
edge of the sibling and the bottom bounds value as an
offset from the bottom edge of the sibling (for
example, specifying top = 10 and bottom = -10
indents the view 10 pixels on both the top and the
bottom sides relative to its sibling).

continued

CHAPTER 3

Views
Table 3-1 vi ewJust i fy constants (continued)
Constant Value Description
Text limits
noLi neLim ts 0 (Default) No limits, text wraps to next line.
onelLi neOnl y 8388608 Allows only asingle line of text, with no wrapping.
oneWr dOnl y 16777216 Allows only asingle word. (If the user writes another

Indicate that a bounds value is a ratio

vj NoRat i o 0

vj LeftRatio 67108864
vj RightRatio 134217728
vj TopRati o 268435456

vj BottonRati o —536870912

vj Par ent Anchor ed 256

word, it replaces thefirst.)

(Default) Do not use proportional aignment.

Thevalue of thedlot vi ewBounds. | ef t is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

Thevalue of the dot vi ewBounds. ri ght is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

The value of theslot vi ewBounds. t op is
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

The value of the slot vi ewBounds. bot t omis
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

The view isanchored at itslocation in its parent view,
even if the origin of the parent view is changed. Other
sibling views will be offset, but not child views with
thisflag set.

1 For views of thec! Par agr aphVi ewclass, the vertical alignment constants vj TopV, vj Cent er V, and
vj Bot t onV apply only to paragraphs that also havethe oneLi neOnl y vi ewdust i fy flag set.
If you are applying horizontal sibling-relative alignment and the view isthe first child, it is positioned according

to the horizontal parent-relative alignment setting.

If you are applying vertical sibling-relative alignment and the view isthe first child, it is positioned according to

the vertical parent-relative alignment setting.

About Views

3-17

CHAPTER 3

Views

Figure 3-7 View alignment effects

3-18

!.Justifu vijLeftH |

! Justify viCenterH I

! Justify viRiqhtH!

!..lustifl.l viFul]H!

19) 5

Horizontal alignment of view contents

About Views

Application

Justify vjTop¥

Justify vjCenterV

. Justify yjBottom¥. .|

Justify v jFullV

O &

Vertical alignment of view contents

CHAPTER 3

Views

Figure 3-7

Parent

vi ewBounds:
{left:0. Top: 25,
Ri ght: 175,
Bot t om 75}

L < o I

Justify vjParentLeftH

vi ewBounds:
{left:0. Top: 100,
Ri ght: 175,
Bot t om 150}

vi ewBounds:
{left:175.

Top: 175, Right:O0,
Bot t om 225}

vi ewBounds:
{left:0. Top: 250,
Ri ght: 0,

Bot t om 300}

Parent View

vj Par ent TopV-

Mustify vjParentCenterH

—Hustify viParentRightH

JJustify vjParentFullH

1€} 5]

Horizontal alignment of the view
relative to its parent view

I <o I

&

vi ewBounds:
{left:5. Top:0,
R ght : 45,
Bot t om 40}

vj Par ent Cent er V

vi ewBounds:
{left:0. Top: 100,
Ri ght: 175,
Bot t om 150}

vj Par ent Bot t onV
vi ewBounds:
{left:105.

Top: 40,

Ri ght: 145,
Bot t om 0}

&

19 5]

Vertical alignment of the view
relative to its parent view

About Views

View alignment effects (continued)

L === vion I
Sibling View []
Each of the Hustify viSiblingLeftH !

paragraph views
has the same

vi ewBounds: || |
{Left:O, !.Justifu vjSiblingCenterH !
Top: 23,
Ri ght : 185,
Bott om 43}]
ILJustifu vjSiblingRightH !
[]
Hustify vjSiblingFullH !
O &
Horizontal alignment of the view
relative to its sibling view
I . ication I
Sibling View 1 |Dustify visiblingTopy |
Each of the =

paragraph views
has the same
vi ewBounds:
{Left:31,

Top: O,

Ri ght: 215,

Bot t om 20}

vj Parent Ful | V
vi ewBounds:
{left:165.
Top: 40,

Ri ght : 205,

Bot t om 40}

|.Justifu ¥jSiblingCenteryY |

|.Justifu ¥vjSiblingBottomY)|

Mustify vjSiblingFully

O

Vertical alignment of the view
relative to its sibling view

)

3-19

3-20

CHAPTER 3

Views

viewOriginX and viewOriginY Slots

These dots can be read but not written or set. Instead, use Set or i gi n to set the
origin offset for aview. For more information, see “ Scrolling View Contents’
(page 3-41).

If you use these dlots to specify an offset, the point you specify becomes the new

origin. Child views are drawn offset by this amount. Thisis useful for displaying
different portions of aview whose content areais larger than its visible area.

Appearance

Thevi ewFor mat dlot defines view attributes such asitsfill pattern, frame pattern,
frame type, and so on. Custom fill and frame patterns are defined using the
vi ewFi | | Pattern andvi ewFr anePat t er n dots.

Thevi ewTr ansf er Mode dot controls the appearance of the view when it isdrawn
on the screen; that is, how the bits being drawn interact with bits on the screen.

View Format

Thevi ewFor mat slot defines visible attributes of aview such asitsfill pattern,
frame type, and so on. Inthevi ewFor mat dot, you can specify one or more
format attributes, which are represented by constants defined as bit flags. You can
specify one format attribute from each of the following groups:

m view fill pattern

m Vview frame pattern

m view frame thickness

m view frame roundness

view frame inset (thisis the white space between the view bounds and view frame)

m view shadow style

m view line style (these are solid or dotted lines drawn in the view to make it look
like lined paper)

Multiple attributes are specified by adding them together like this:

vfiFi | | Wi t e+vf FrameBl ack+vf Pen(2) +vf Li nesG ay

Note that the frame of aview is drawn just outside of the view bounding box, not
withinit.

Thefill for aview is drawn before the view contents and the frame is drawn after
the contents.

About Views

CHAPTER 3

Views

IMPORTANT
Many views need no fill pattern, so you may beinclined to set the
fill pattern to “none” when you create such aview. However, it's
best to fill the view with white, if the view may be explicitly
dirtied (in need of redrawing) and if you don’t need a transparent
view. Thisincreases the performance of your application because
when the system is redrawing the screen, it doesn’t have to update
views behind those filled with a solid color such as white.
However, don't fill all views with white, since there is some small
overhead associated with fills; only use this technique if the view
isonethat isusualy dirtied.

Also, note that the application base view always appears opaque,
asdo all child views of theroot view. That is, if nofill is set for
the application base view, it automatically appears to befilled
with white. a

The view format attributes are listed and described in Table 2-5 (page 2-13) in the
Newton Programmer’s Reference.

Custom Fill and Frame Patterns

Custom fill and custom view frame patterns are set for aview by using the
vf Cust omflag, as shown in Table 2-5 (page 2-13) in the Newton Programmer’s
Reference, and by using following two dots:

viewri || Pattern
Sets a custom fill pattern that is used to fill the view.

vi ewFr anePat t ern
Sets a custom pattern that is used to draw the frame lines
around the view, if the view has aframe.

You can use custom fill and frame patterns by setting the value of the

vi ewFi | | Patt er n and vi ewFr anePat t er n otsto abinary data structure
containing a custom pattern. A pattern is simply an eight-byte binary data structure
withtheclass' pattern.

You can use this NewtonScript trick to create binary pattern data structures “on
thefly”:

Def i ned obal Const ant (' myPat, Set Lengt h(Set Cl ass(C one
("\ UAAAAAAAAAAAAAAAA") | ' pattern), 8));

This code clones a string, which is already a binary object, and changesiits class to
' pat t er n. The string is specified with hexadecimal character codes whose binary
representation is used to create the pattern. Each two-digit hex code creates one
byte of the pattern.

About Views 3-21

CHAPTER 3

Views

Drawing Transfer Mode for Views

Thevi ewTr ansf er Mbde slot specifies the transfer mode to be used for
drawing in the view. The transfer mode controls how bits being drawn are placed
over existing bits on the screen. The constants that you can specify for the

vi ewTr ansf er Mode slot are listed and described in Table 2-6 (page 2-14) in
the Newton Programmer’s Reference.

The transfer mode is used to specify how bits are copied onto the screen when
something is drawn in aview. For each bit in the item to be drawn, the system finds
the existing bit on the screen, performs a Boolean operation on the pair of bits, and
displays the resulting bit.

Thefirst eight transfer modes are illustrated in Figure 3-8. The last transfer mode,
in addition to those shown, nodeMask, is a specia one, and its effects are
dependent on the particular picture being drawn and its mask.

Figure 3-8 Transfer modes

Destination (Screen)

. E E
u
u
u
u
I]
EEEEEN
modeCopy modeOr modeXor modeBic
modesNotCopy modesNotOr modesNotXor modesNotBic

In Figure 3-8, the Source item represents something being drawn on the screen.
The Destination item represents the existing bits on the screen. The eight patterns
below these two represent the results for each of the standard transfer modes.

3-22 About Views

CHAPTER 3

Views

Opening and Closing Animation Effects

Another attribute of aview that you can specify is an animation that occurs when
the view is opened or closed on the screen. If an effect is defined for aview, it occurs
whenever the view is sent an Open, C ose, Show, Hi de, or Toggl e message.

Usethevi ewEf f ect dot to give the view an opening or closing animation.
Alternately, you can perform one-time effects on aview by sending it one of these
view messages. Ef f ect, Sl i deEf f ect, Reveal Ef f ect, or Del et e. These
methods are described in “Animating Views™ (page 3-40).

Thevi ewkf f ect dlot specifies an animation that occurs when aview is shown or
hidden. If this slot is not present, the view will not animate at these times. There
are several predefined animation types. You can also create a custom effect using a
combination of vi ewEf f ect flags from Table 2-7 (page 2-86) in Newton
Programmer’s Reference. To use one of the predefined animation types, specify the
number of animation steps, the time per step, and the animation type, with the
following values:

f xSt eps(x) In x specify the number of steps you want, from 1 to 15.

f xSt epTi me(x) Inxspecify the number of ticks that you want each step to
take, from zero to 15 (there are 60 ticks per second).

Specify one of the following values to select the type of animation effect desired:

m fxChecker boar dEf f ect —reveals aview using a checkerboard effect, where
adjoining squares move in opposite (up and down) directions.

m f xBar nDoor OpenEf f ect —revealsaview from center towards left and right
edges, like abarn door opening where the view isthe inside of the barn.

m f xBar nDoor O oseEf f ect —revealsaview from left and right edges towards
the center, like a barn door closing where the view is painted on the doors.

m fxVeneti anBl i ndsEf f ect —revealsaview so that it appears behind
venetian blinds that open.

m fxlrisQpenEf f ect —changesthe size of an invisible “aperture” covering the
view, revealing an ever-increasing portion of the full-size view as the aperture
opens.

m fxlrisC oseEffect—likefxlri sOpenEffect, except that it decreases
the size of an invisible “aperture” covering the view, as the aperture closes.

m f xPopDownEf f ect —revealsaview asit slides down from its top boundary.
m f xDr awner Ef f ect —revealsaview asit dides up from its bottom boundary.

m f xZoonOpenEf f ect —expands the image of the view from a point in the
center until it fills the screen; that is, the entire view appears to grow from a
point in the center of the screen.

About Views 3-23

3-24

CHAPTER 3

Views

m fxZoonCl oseEf f ect —opposite of f xZoomOpenEf f ect . Thisvalue
shrinks the image of the view from a point in the center until it disappears or
closes on the screen.

m f xZoonVerti cal Ef f ect —the view expands out from a horizontal linein the
center of its bounds. The top half moves upward and lower half moves
downward.

A completevi ewEf f ect specification might look like this:

fxVeneti anBl i ndsEf f ect +f xSt eps(6) +f xSt epTi me(8)

You can omit thef xSt eps and f xSt epTi nme constants and appropriate defaults
will be used, depending on the type of the effect.

Table 2-7 (page 2-86) in Newton Programmer’s Reference lists the constants that
you can useinthevi ewef f ect slot to create custom animation effects. You
combine these constants in different ways to create different effects. For example,
the predefined animation type f xChecker boar dEf f ect isdefined as:

f xCol ums(8) +f xRows(8) +f xCol Al t Phase+f xRowAl t Phase+f x Down

It isdifficult to envision what the different effects will look like in combination, so it
is best to experiment with various combinations until you achieve the effect you want.

Other Characteristics

Other view characteristics are controlled by the following slots:

Vi ewFont Specifies the font used in the view. This slot applies only to
views that hold text, that is, views of the class
cl Par agr aphVi ew. For more information about how to
specify the font, see the section “Using Fonts for Text and
Ink Display” (page 8-17) in “Text and Ink Input and Display”

decl areSel f When the template is instantiated, a slot named with the
value of this ot is added to the view. Itsvalueis areference
toitself. For example, if you specifydecl areSel f: ' base,
aslot named base is added to the view and its value is set to
areference to itself. Note that this slot is not inherited by the
children of aview; it applies only to the view within which
it exists.

Inheritance Links

These dlots describe the template’s location in the inheritance chain, including
references to its proto, parent, and children. The following slots are not inherited
by children of the template.

_proto Contains areference to a proto template. Thisslot is created
when the view opens.

About Views

CHAPTER 3

Views

_parent Contains a reference to the parent template. Thisslot is
created when the view opens. Note that it’s best to use the
Par ent function to access the parent view at run time, rather
than directly referencing the _par ent dlot.

st epChi | dren Contains an array that holds references to each of the
template’s child templates. This slot is created and set
automatically when you graphically create child viewsin
NTK. Thisdot isfor children that you add to atemplate.

vi ewChi | dren Contains an array that holds references to each of a system
proto’s child templates. Because this dot is used by system
protos, you should never modify it or create a new one with
this name. If you do so, you may be inadvertently overriding
the children of a system proto. An exception to this rule
occurs for clEditView; you might want to edit the
viewChildren slot of aclEditView. See Table 2-1, “View
class constants,” (page 2-2) in Newton Programmer’s Guide
for details.

The reason for the dual child view slotsisthat thevi ewChi | dr en slot isused by
the system protos to store their child templates. If you create a view derived from
one of the system protos and change the vi ewChi | dr en dlot (for example, to add
your own child templates programmatically), you would actually be creating a new
vi ewChi | dr en dot that would override the one in the proto, and the child
templates of the proto would be ignored.

Thest epChi | dr en sot has been provided instead as a place for you to put your
child templates, if you need to do so from within a method. By adding your
templates to this dlot, the vi ewChi | dr en slot of the proto is not overridden. Both
groups of child views are created when the parent view is instantiated.

If you are only creating views graphically using the Newton Toolkit palette, you don't
need to worry about these internal details. The Newton Toolkit always uses the
st epChi | dr en dot for you.

You may see either vi ewChi | dr en, st epChi | dr en, or both slots when you
examine atemplate at run time in the Newton Toolkit I nspector window. Child
templates can belisted in either dlot, or both. When aview isinstantiated, all the
child views from both of these two slots are also created. Note that the templatesin
thevi ewChi | dr en dlot are instantiated first, followed by the templatesin the

st epChi | dr en dot.

If you are adding child views in amethod that will not be executed until run time,
you need to use the st epChi | dr en slot to do this. If thereisn’'t a
st epChi | dr en dot, create one and put your views there.

About Views 3-25

3-26

CHAPTER 3

Views

IMPORTANT
Remember that the vi ewChi | dr en and st epChi | dr en arrays
contain templates, not views. If you try to send a message like

Hi de to one of the objects listed in this array, the system will
probably throw an exception because it is not aview.

During run time, if you want to obtain references to the child
views of aparticular view, you must use theChi | dVi ewFr anes
method. This method returns views from both the

vi ewChi | dr en and st epChi | dr en dots. This method is
described in “ Getting Referencesto Views’ (page 3-32). A

Application-Defined Methods

As your application executes, it receives messages from the system that you can
choose to handle by providing methods that are named after the messages. These
messages give you a chance to perform your own processing as particular events
are occurring.

For example, with views, the system performs default initialization operations
when aview isinstantiated. It also sends aview a Vi ewSet upFor nScri pt
message. If you provide a method to handl e this message, you can perform your
own initialization operations in the method. However, handling system messagesin
your application isoptional.

The system usually performs its own actions to handle each event for which it
sends your view messages. Your system message-handling methods do not override
these system actions. You cannot change, delete, or substitute for the default system
event-handling actions. Your system message-handling methods augment the
system actions.

For example, when the view system receives a Show command for aview, it
displays the view. It also sends the view the Vi ewShowScr i pt message. If you
have provided a Vi ewShowScr i pt method, you can perform any specia
processing that you need to do when the view is displayed.

The system sends messages to your application at specific times during its handling
of an event. Some messages are sent before the system does anything to respond to
the event, and some are sent after the system has already performed its actions. The
timing is explained in each of the message descriptionsin “Application—Defined
Methods’ (page 2-65) in the Newton Programmer’s Reference.

View Instantiation

View instantiation refers to the act of creating aview from its template. The process
of view instantiation includes several stepsand it isimportant to understand when
and in what order the steps occur.

About Views

CHAPTER 3

Views

Declaring a View

Before diving into the discussion of view instantiation, it isimportant to understand
the term declaring. Declaring a view is something you do during the application
development process using the Newton Toolkit (NTK). Declaring aview allowsiit
to be accessed symbolically from another view.

In NTK, you declare aview using the Template Info command. (Although the
phrase “declaring aview” isbeing used here, at development time, you're realy
just dealing with the view template.) In the Template Info dialog, you declare a
view by checking the box entitled “ Declare To,” and then choosing another view in
which to declare the selected view. The name you give your view must be avalid
symbol, and not areserved word or the name of a system method.

You always declare aview in its parent or in some other view farther up the parent
chain. It's best, for efficiency and speed, to declare aview in the lowest level
possiblein the view hierarchy; that is, in its parent view or as closeto it as possible.
If you declare aview in aview other than the parent view, it may get the wrong
parent view. Because the view’s parent is wrong, its coordinates will be wrong as
well, so it will show up at the wrong position on screen.

Declaring aview simply puts the declared view in the named slot. See Appendix A,
“The Inside Story on Declare,” for a complete description. The slot nameisthe
name of the view you are declaring. The slot value, at run time, will hold a
reference to the declared view.

The base view of your application is always declared in the system root view. Note
that the application base view is declared in a dot named with its application symbol,
specified in the Application Symbol field of the Project Settings dipin NTK.

Why would you want to declare aview? When aview is declared in another view,

it can be accessed symbolically from that other view. The NewtonScript inheritance
rules already alow access from aview to its parent view, but there is no direct
access from a parent view to its child views, or between child views of acommon
parent. Declaring a view provides this access.

For example, if you have two child views of acommon parent, and they need to
send messages to each other, you need to declare each of them in the common
parent view. Or, if a parent view needs to send messages to one of its child views,
the child view must be declared in the parent view.

One key situation requiring a declared view iswhen you want to send the Qpen
message to show a nonvisible view. The Open message can only be sent to a
declared view.

Declaring aview has a small amount of system overhead associated with it. Thisis
why the system doesn’t just automatically declare every view you create. You
should only declare views that you need to access from other views.

About Views 3-27

3-28

CHAPTER 3

Views

For amore detailed technical description of the inner workings of declaring a view,
see Appendix A, “The Inside Story on Declare.”

Creating a View

A view is created in two stages. First, aview memory object (aframe) is created in
RAM. This view memory object contains a reference to its template, along with
other transient run-time information. In the following discussion, the phrase,
“creating the view” is used to describe just this part of the process. Second, the
graphic representation of the view is created and shown on the screen. In the
following discussion, the phrase, “ showing the view” is used to describe just this
part of the process.

A view is created and shown at different times, depending on whether or not itisa
declared view.

m If theview isdeclared in another open (shown) view, it is created when the view
inwhich it is declared is sent the Open message. For example, achild view
declared in the parent of its parent view is created when that “grandparent” view
is opened. Note, however, that the child view is not necessarily shown at the
sametimeit is created.

m If theview isnot declared in any view, it is created and also shown when its
immediate parent view is sent the Open message. (Note that if a nondeclared
view’'svVi si bl e flag isnot set, that view can never be created.)

Here isthe view creation sequence for atypical application installed in the Newton
Extras Drawer and declared in the system root view:

1. When your application isinstalled on the Newton device, its base view is
automatically created, but not shown.

2. When the user taps on the icon representing your application in the Extras
Drawer, the system sends the But t onToggl eScri pt message to the
application’s base view.

3. When the application is launched from the Extras Drawer, aview is created (but
not shown yet) for each template declared in the base view. Slots with the names
of these views are created in the base view. These slots contain references to
their corresponding views.

4. TheVi ewSet upFor nScri pt message is sent to the base view, vi ewFl ags,
vi ewFor mat , vi ewBounds, vi ewdust i fy, and decl ar eSel f dots, and so
on, are read from the view template. The global bounds of the view are adjusted
to reflect the effects of thevi ewdust i f yf | ags, but the vi ewBounds values
are not changed, and the Vi ewSet upChi | drenScri pt messageis sent to
the base view.

About Views

CHAPTER 3

Views

5. Thevi ewChi | dr en and st epChi | dr en dots are read and the child views
are instantiated using this same process. As part of the process, the following
messages are sent to each child view, in this order: Vi ewSet upFor nScri pt,
Vi ewSet upChi | drenScri pt, and Vi ewSet upDoneScri pt .

6. The Vi ewSet upDoneScri pt messageis sent to the view.
7. Theview isdisplayed if itsvVi si bl e vi ewFl ags bit is set.

8. The Vi ewShowScr i pt message is sent to the view and then the
Vi ewDr awScr i pt message is sent to the view. (Note that the
Vi ewShowScr i pt messageis hot sent to any child views, however.)

9. Each of the child viewsis drawn, in hierarchical order, and the
Vi ewDr awScr i pt message is sent to each of these views, immediately
after it isdrawn.

Asyou can see from step 5, when aview is opened, al child viewsin the hierarchy
under it are also shown (aslong as they are flagged as visible). A nonvisible child
view can be subsequently shown by sending it the Open message—aslong asit
has been declared.

Closing a View

When you send aview the O ose message, the graphic representation of the view
(and of al of its child views) is destroyed, but the view memory object is not
necessarily destroyed. There are two possibilities:

m If the view was declared, and the view in which it was declared is still open, the
frameis preserved. You can send the view another Qpen or Toggl e message to
reopen it at alater time.

A view memory object isfinally destroyed when the view in which it was
declared isclosed. That is, when aview is closed, all views declared in it are
made available for garbage collection.

m If the view being closed was not declared, both its graphic representation and its
view memory object are made available for garbage collection when it is closed.

When aview is closed, the following steps occur:

1. If theview is closing because it was directly sent the d ose or Toggl e
message, the system sends it the Vi ewHi deScri pt message. (If the view
isclosing because it isachild of aview being closed directly, the
Vi ewH deScri pt messageisnot sent toit.)

2. The graphic representation of the view is removed from the screen.
3. Theview issent the Vi ewQui t Scri pt message.

The view itself may or may not be marked for garbage collection, depending on
whether or not it was declared.

About Views 3-29

3-30

CHAPTER 3

Views

View Compatibility

The following new functionality has been added for the 2.0 release of Newton
System Software. See the Newton Programmer’s Reference for complete
descriptions on each new function and method.

New Drag and Drop API

A drag and drop API has been added. ThisAPI now lets users drag a view, or part
of aview, and drop it into another view. See “ Dragging and Dropping with Views’
(page 3-40) for details.

New Functions and Methods

The following functions and methods have been added.

AsyncConf i r mcreates and displays a dlip that the user must dismiss before
continuing.

But t onToggl eScri pt letsthe application perform special handling when its
icon istapped in the Extras Drawer.

Di r t yBox marks a portion of aview (or views) as needing redrawing.
Get Dr awBox returns the bounds of the area on the screen that needs redrawing.

d obal Cut er Box returnsthe rectangle, in global coordinates, of the specified
view, including any frame that is drawn around the view.

Modal Conf i r mcreates and displaysadlip.

MbveBehi nd moves aview behind another view, redrawing the screen as
appropriate.

St dBut t onW dt h returns the size that a button needs to be in order to fit some
specified text.

New Messages

The following messages have been added.

Reor i ent ToScr een is sent to each child of the root view when the screen
orientation is changed.

Vi ewPost Qui t Scri pt issent to aview following the Vi ewQui t Scri pt
message and after all of the view's child views have been destroyed.

About Views

CHAPTER 3

Views

New Alignment Flags

Thevi ewdust i fy dot contains new constants that allow you to specify that a
view is sized proportionally to its sibling or parent view, both horizontally and/or
verticaly.

A changeto the way existing vi ewdust i f y constants work is that when you are
using sibling-relative alignment, the first sibling uses the parent alignment settings
(sinceit has no sibling to which to justify itself).

Changes to Existing Functions and Methods

The following changes have been made to existing functions and methods for 2.0.

m RenpveSt epVi ew This function now removes the view template from the
st epChi | dr en array of the parent view. You do not need to remove the
template yourself.

m Set Val ue. You can now use this global function to change the recognition
behavior of aview at run time by setting new recognition flagsin the
vi ewFl ags dot. The new recognition behavior takes effect immediately
following the Set Val ue call.

m d obal Box. This method now works properly when called from the
Vi ewSet upFor nScri pt method of aview. If caled from the
Vi ewSet upFor n5cri pt method, d obal Box getsthevi ewBounds and
Vi ewdust i fy dotsfrom the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
frame in global coordinates.

m Local Box. This method now works properly when called from
the Vi ewSet upFor n5cri pt method of aview. If called from the
Vi ewSet upFor n5cr i pt method, Local Box getsthevi ewBounds and
Vi ewdust i fy dotsfrom the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
framein local coordinates.

m Vi ewQui t Scri pt . When thismessage is sent to aview, it propagates down to
child views of that view. In system software version 1.0, the order in which child
views received this message and were closed was undefined.

In system software version 2.0, the order in which this message is sent to
child viewsis top-down. Also, each view has the option of having

Vi ewPost Qui t Scri pt called in child-first order. The return value of
the Vi ewQui t Scri pt method determines whether or not the

Vi ewPost Qui t Scri pt messageis sent.

About Views 3-31

CHAPTER 3

Views

New Warning Messages

Warning messages are now printed to the inspector when a NewtonScript
application calls aview method in situations where the requested operation is
unwise, unnecessary, ambiguous, invalid, or just a bad idea.

Obsolete Functions and Methods

The following functions and methods are obsolete with version 2.0 of the Newton
System Software:

m Conf i r m which created and displayed an OK/Cancel dip. Use
AsyncConf i r minstead.

m Def erredConfirnmedCal | and Def er r edConfi r medSend have both been
replaced by AsyncConfirm

Using Views

3-32

This section describes how to use the view functions and methods to perform
specific tasks. See* Summary of Views’ (page 3-47) for descriptions of the
functions and methods discussed in this section.

Getting References to Views

Frequently, when performing view operations, you need access to the child or
parent views of aview, or to the root view in the system. You need to use the

Chi | dVi ewFr anmes and Par ent methods as well asthe Get Root and Get Vi ew
functions to return references to these “related” views.

To test whether an application is open or not, for example, you can use the
Get Root function and the application’s signature, together with the global
function kVi em sOpenFunc:

call kVi ew sOpenFunc with (GetRoot (). appsignature)

The Chi | dVi ewFr anes method is an important method you must use if you need
access to the child views of aview. It returns the views in the same order in which
they appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will appear later in the list. Views
with the vFl oat i ng flag (which always appear above nonfloating views) will be
at the end of the array.

Using Views

CHAPTER 3

Views

Displaying, Hiding, and Redrawing Views

To display aview (and its visible child views), send it one of the following
View messages:

Open—to open the view

Toggl e—to open or close the view

Show—to show the view if it had previously been opened, then hidden

To hide aview (and its child views), send it one of the following view messages:
Cl ose—to hide and possibly delete it from memory

Toggl e—to close or open the view

m Hi de—to hideit temporarily

You can cause aview (and its child views) to be redrawn by using one of the
following view messages or global functions:

m D rty—flagstheview as“dirty” so it isredrawn during the next system
idle loop

m RefreshVi ews—redraws al dirty viewsimmediately
m Set Val ue—setsthe value of aslot and possibly dirties the view
m SyncVi ew—redrawsthe view if its bounds have changed

Dynamically Adding Views

Creating aview dynamically (that is, at run time) is a complex issue that has
multiple solutions. Depending on what you really need to do, you can use one of
the following solutions:

m Don't create the view dynamically because it’'s easier to accomplish what you
want by creating an invisible view and opening it later.

m Create the view by adding anew template to its parent view's st epChi | dr en
array inthe Vi ewSet upChi | dr enScri pt method.

m Create the template and the view at run time by using the AddSt epVi ew
function.

m Create the template and the view at run time by using the Bui | dCont ext
function.

m |f you want a pop-up list view, called a picker, use the PopupMenu function to
create and manage the view.

These techniques are discussed in the following sections. The first four techniques
arelisted in order from easiest to most complex (and error prone). You should use
the easiest solution that accomplishes what you want. The last technique, for
creating a picker view, should be used if you want that kind of view.

Using Views 3-33

CHAPTER 3

Views

Showing a Hidden View

In many cases, you might think that you need to create a view dynamically. However,
if the template can be defined at compiletime, it's easier to do that and flag the
view as not visible. At the appropriate time, send it the Open message to show it.

The typical example of thisisadlip, which you can usualy define at compile time.
Using the Newton Toolkit (NTK), simply do not check thevVi si bl e flagin the
vi ewFl ags dlot of the view template. Thiswill keep the view hidden when the
application is opened.

Also, it isimportant to declare this view in your application base view. For
information on declaring a view, see the section “View Instantiation” (page 3-26).

When you need to display the view, send it the Open message using the name
under which you have declared it (for example, myVi ew. Open()).

This solution even works in cases where some template slots cannot be set until run
time. You can dynamically set slot values during view instantiation in any of the
following view methods:. Vi ewSet upFor nScri pt,

Vi ewSet upChi | drenScri pt, and Vi ewSet upDoneScr i pt . You can also set
valuesin adeclared view before sending it the OQpen message.

Adding to the stepChildren Array

If it is not possible to define the template for aview at compile time, the next best
solution is to create the template (either at compile time or run time) and add it to
the st epChi | dr en array of the parent view using the

Vi ewSet upChi | drenScri pt method. This way, the view system takes care of
creating the view at the appropriate time (when the child views are shown).

For example, if you want to dynamically create a child view, you first define the
view template as aframe. Then, in the Vi ewSet upChi | dr enScri pt method of
its parent view, you add this frame to the st epChi | dr en array of the parent view.
To ensure that the st epChi | dr en array isin RAM, use this code:

if not HasSlot(self, 'stepChildren) then
sel f.stepChildren := O one(self.stepChildren);
AddArraySl ot (sel f. stepChil dren, myDynamicTemplate) ;

Thei f statement checks whether the st epChi | dr en ot aready existsin the
current view (in RAM). If it does not, it is copied out of the template (in ROM)
into RAM. Then the new template is appended to the array.

All of thistakes placein the Vi ewSet upChi | dr enScr i pt method of the parent
view, which is before the st epChi | dr en array is read and the child views are
created.

Using Views

CHAPTER 3

Views

If at some point after the child views have been created you want to modify the
contents of the st epChi | dr en array and build new child views from it, you can
use the RedoChi | dr en view method. First, make any changes you desire to the
st epChi | dr en array, then send your view the RedoChi | dr en message. All of
the view’s current children will be closed and removed. A new set of child views
will then be recreated from the st epChi | dr en array.

Also, note that reordering the st epChi | dr en array and then calling
RedoChi | dr en or MoveBehi nd isthe way to reorder the child views of a
view dynamically.

For details on an easy way to create atemplate dynamically, see “ Creating
Templates’ (page 3-36).

Using the AddStepView Function

If you need to create atemplate and add aview yourself at run time, use the
function AddSt epVi ew This function takes two parameters: the parent view to
which you want to add a view, and the template for the view you want to create.
The function returns a reference to the view it creates. Be sure to save this return
value so you can access the view later.

The AddSt epVi ewfunction also adds the template to the parent’s

st epChi | dr en array. This meansthat the st epChi | dr en array needsto be
modifiable, or AddSt epVi ewwill fail. See the code in the previous section for an
example of how to ensure that the st epChi | dr en array is modifiable.

The AddSt epVi ewfunction doesn't force aredraw when the view is created, so
you must take one of the following actions yourself:

m Send the new view aDi rt y message.

m Send the new view’s parent view aDi r t y message. Thisisuseful if you're
using AddSt epVi ewto create severa views and you want to show them all at
the same time.

m If you created the view template with the vVi si bl e bit cleared, the new view
will remain hidden and you must send it the Show message to make it visible.
Thistechniqueis useful if you want the view to appear with an animation effect
(specified inthevi ewEf f ect dlot in the template).

Do not use the AddSt epVi ewfunctionin aVi ewSet upFor nScri pt method or
aVi ewSet upChi | drenScri pt method—it won't work because that’s too early
in the view creation process of the parent for child viewsto be created. If you are
tempted to do this, you should instead use the second method of dynamic view
creation, in which you add your template to the st epChi | dr en array and let the
view system create the view for you.

Using Views 3-35

3-36

CHAPTER 3

Views

To remove aview created by AddSt epVi ew, use the RenpoveSt epVi ewfunction.
This function takes two parameters:. the parent view from which you want to
remove the child view, and the view (not its template) that you want to remove.

For details on an easy way to create a template dynamically, see * Creating
Templates’ (page 3-36).

Using the BuildContext Function

Another function that is occasionally useful isBui | dCont ext . It takes one
parameter, atemplate. It makes aview from the template and returnsit. The view’s
parent is the root view. The template is not added to any vi ewChi | dr en or

st epChi | dr en array. Basically, you get afree-agent view.

Normally, you won't need to use Bui | dCont ext . It's useful when you need to
create aview from code that isn’t part of an application (that is, there's no base
view to use as a parent). For instance, if your I nstal | Scri pt or

RenpveScri pt needsto prompt the user with adlip, you use Bui | dCont ext to
create the dlip.

Bui | dCont ext isalso useful for creating aview, such asadlip, that islarger than
your application base view.

For details on an easy way to create atemplate dynamically, see the next section,
“Creating Templates’

Creating Templates

The three immediately preceding techniques require you to create templates. You
can do this using NewtonScript to define a frame, but then you have to remember
which dotsto include and what kinds of values they can have. It's easy to make
amistake.

A simple way of creating atemplate is to make a user proto in NTK and then use it
as atemplate. That allows you to take advantage of the dot editorsin NTK.

If there are slots whose values you can’'t compute ahead of time, it doesn’t matter.
L eave them out of the user proto, and then at run time, create a frame with those
slots set properly and include a_pr ot o slot pointing to the user proto. A typical
example might be needing to compute the bounds of aview at run time. If you
defined all the static slotsin auser proto in thefile called dynoTenpl at e, you
could create the template you need using code like this:

tenpl ate : = {viewBounds: Rel Bounds(x, y, w dth, height),
_proto: GetlLayout ("DynoTenpl ate"),

}

Thisreally shows off the advantage of a prototype-based object system. You create
asmall object “on the fly” and the system uses inheritance to get the rest of the

Using Views

CHAPTER 3

Views

needed values. Your template is only a two-slot object in RAM. The user proto
resides in the package with the rest of your application. The conventional, RAM-
wasting alternative would have been:

tenplate := O one(PT_dynoTenpl ate);
tenpl at e. vi ewBounds : = Rel Bounds(x, y, w dth, height);

Note that for creating views arranged in atable, thereisafunction called
Layout Tabl e that calculates al the bounds. It returns an array of templates.

Making a Picker View

To create atransient pop-up list view, or picker, you can use the function
PopupMenu. Thiskind of view pops up on the screen and is alist from which the
user can make a choice by tapping it. As soon as the user chooses an item, the
picker view is closed.

You can aso create a picker view by defining a template using the pr ot oPi cker
view proto. See “Pickers, Pop-up Views, and Overviews’ (page 6-1) for
information on pr ot oPi cker and PopupMenu.

Changing the Values in viewFormat

You can change the values in the vi ewFor mat slot of aview without closing and
reopening aview. Use the Set Val ue function to update the view with new
settings. For example:

Set Val ue(nyVi ew, ‘vi ewFornat, 337)
/1 337 = vfFillWiite + vfFraneBl ack+vfPen(1)

Set Val ue, among other things, callsDi rt y if necessary, so you don’'t need to
call it to do atask that the view system already knows about, such as changing
vi ewBounds or text sotsin aview.

Determining Which View Item Is Selected

To determine which view itemis selectedinaview call Get Hi | i t ef f set s.
You must call this function in combination withthe Hi | i t eOaner function.
Whenyoucal Get Hi | i t eCf f set s, it returns an array of arrays. Each itemin
the outer array represents selected subviews, asin the following example:

x:= gethiliteoffsets()
#440CA69 [[{#4414991}, O, 2],
[{#4417B01}, 0, 5],
[{

#4418029}, 1, 3]}

Using Views 3-37

3-38

CHAPTER 3

Views

Each of the three return val ues contains three elements:

m Element O: the subview that is highlighted. This subview is usually
acl Par agr aphVi ew, but you need to check to make sure. A
cl Pol ygonVi ewisnot returned hereevenif H | i t eOaner returnsa
cl Edi t Vi ewwhen acl Pol ygonVi ewchild is highlighted.

m Element 1: the start position of the text found in the text slot of a
cl Par agraphVi ew

m Element 2: the end position of the text found in the text slot of a
cl Par agr aphVi ew

To verify that your view isacl Par agr aphVi ew, check thevi ewd ass dot of
the view. The value returned (dynamically) sometimes has a high bit set so you
need to take it into consideration using amask constant, vcCl assMask:

t hevi ews. vi ewd ass=cl Par agr aphVi ew OR
theVi ew. vi ewCl ass - vcd assMask=cl Par agr aphVi ew
BAnd(t hVi ews. vi ewCl ass, BNot (vcC assMask)) =cl Par agr aphVi ew

If agraphicishighlighted and Hi | i t eOawner returnsacl Edi t Vi ew, check its
view children for non-ni | valuesof the'hi | i t es dlot (the'hi | i t es dlotisfor
usein any view but its contents are private).

Complex View Effects

If you have an application that uses Vi ewQui t Scri pt in numerous places, your
view may close immediately, but to the user the Newton may appear to be hung
during the long calculations. A way to avoid thisis to have the view appear open
until the close compl etes.

You can accomplish this effect in one of two ways. First, put your codein

Vi ewHi deScri pt instead of Vi ewCl oseScr i pt . Second, remove the view's
Vi ewkf f ect and manually force the effect at the end of Vi ewQui t Scri pt
using the Ef f ect method.

Making Modal Views

A modal view is one that primarily restricts the user to interacting with that view.
All taps outside the modal view are ignored while the modal view is open.

In the interest of good user interface design, you should avoid using modal views
unless they are absolutely necessary. However, there are occasions when you may
need one.

Using Views

CHAPTER 3

Views

Typically, modal views are used for dlips. For example, if the user was going to
delete some data in your application, you might want to display a slip asking them
to confirm or cancel the operation. The slip would prevent them from going to
another operation until they provide an answer.

Use AsyncConf i r mto create and display a dlip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to AsyncConfirm
returns immediately, alowing the currently executing NewtonScript code to finish.
You can also use Modal Conf i r mbut this method causes a separate OS task to be
created and doesn’t return until after the dlip is closed. It isless efficient and takes
more system overhead.

Once you've created amodal view, you can usetheFi | t er Di al og or

Modal Di al og toopenit. Using Fi | t er Di al og isthe preferred method as it
returns immediately. Aswith Modal Conf i r m Modal Di al og causes a separate
OS task to be created.

Finding the Bounds of Views

The following functions and view methods calculate and return avi ewBounds
frame.

Run-time functions:

m Rel Bounds— calculates the right and bottom values of aview and returns a
bounds frame.

m Set Bounds—returns a frame when the l€eft, top, right, and bottom coordinates
are given.

m d obal Box—returns the rectangle, in coordinates, of a specified view.

m d obal Qut er Box—returns the rectangle, in coordinates, of a specified view
including any frame that is drawn around a view.

m Local Box—returns aframe containing the view bounds relative to the view itself.
m MoveBehi nd— moves aview behind another view.

m Di rt yBox— marksa portion of aview as needing redrawing.

m Cet Dr awBox— returns the bounds of an area on the screen that needs redrawing.
Compile-time functions:

m But t onBounds—returns a frame when supplied with the width of a button to
be placed in the status bar.

m Pi ct Bounds— finds the width and height of a picture and returns the proper
bounds frame.

Using Views 3-39

3-40

CHAPTER 3

Views

Animating Views

There are four view methods that perform special animation effects on views. They
are summarized here:

m Ef f ect —performs any animation that can be specified in thevi ewkf f ect dot.
m SlideEf f ect —didesawhole view or its contents up or down.

m Reveal Ef f ect —dlides part of aview up or down.

m Del et e—crumplesaview and tossesit into atrash can.

Note that these animation methods only move bits around on the screen. They do
not change the actual bounds of a view, or do anything to a view that would change
its contents. When you use any of these methods, you are responsible for supplying
another method that actually changes the view bounds or contents. Your method is
called just before the animation occurs.

Dragging a View

Dragging a view means allowing the user to move the view by tapping on it,
holding the pen down, and dragging it to a new location on the screen. To drag a
view, send the view a Dr ag message.

Dragging and Dropping with Views

Dragging and dropping a view means allowing a user to drag an item and drop it
into another view.

To enable dragging and dropping capability, you must first create aframe that
contains dots that specify how the drop will behave. For example, you specify the
types of objectsthat can be dropped into aview, if any. Examplesinclude' t ext
or' pi ct ur e. Seethe draglnfo parameter to the Dr agAndDr op method

(page 2-46) in the Newton Programmer’s Reference for a complete description

of the dots.

You must set up code to handle a drag and drop in one of two ways. either add
code to create aframe and code to call Dr agAndDr op’s view method in each
source and destination view that accepts a drag and drop message, or you can
create aproto and use it as atemplate for each view.

Each view must aso have the following methods. The system calls these methods
in the order listed.

m Vi enGet Dr opTypesScri pt — issent to the destination view. It is called
repeatedly while the penis down. Vi ewGet Dr opTypesScri pt is passed the
current location as the dragged item is moved from its source location to its
destination location. An array of object typesis aso returned. In this method,
you must return an array of object types that can be accepted by that location.

Using Views

CHAPTER 3

Views

m Get DropDat aScri pt — is sent to the source view when the destination view
isfound.

m Vi ewDr opScri pt — is sent to the destination view. You must add the object to
the destination view.

m Vi ewDr opMoveScri pt — issent to the source view. It is used when dragging
an object within the same view. Vi ewDr opRenoveScri pt and
Vi ewDr opScri pt arenot called in this case.

m Vi ewDr opRenpveScri pt — issent to the source view. It is used when
dragging an object from one view to another. You must delete the original from
the source view when the drag compl etes.

Additional optional methods can aso be added. |f you do not include these, the
default behavior occurs.

m Vi ewDr awDr agDat aScri pt — is sent to the source view. It draws the image
that will be dragged. If you don’t specify an image, the areainside the rectangle
specified by the Dr agAndDr op bounds parameter is used.

m Vi ewDr awDr agBackgr oundScri pt — is sent to the source view. It draws
the image that will appear behind the dragged image.

m Vi ewFi ndTar get Scri pt — is sent to the destination view. It letsthe
destination view change the drop point to a different view.

m Vi ewDr agFeedbackScri pt — is sent to the destination view. It provides
visual feedback while items are dragged.

m Vi ewDr opDoneScri pt — is sent to the destination view to tell it that the
object has been dropped.

Scrolling View Contents

There are different methods of scrolling a view, supported by view methods you
call to do the work. Both methods described here operate on the child views of the
view to which you send a scroll message.

One method is used to scroll al the children of aview any incremental amount in
any direction, within the parent view. Use the Set Or i gi n method to perform this
kind of scrolling. This method changes the view origin by setting the values of the
viewOri gi nXandvi ewOr i gi nY dotsinthe view.

Another kind of scrolling is used for a situation in which there is a parent view
containing a number of child views positioned vertically, one below the other. The
SyncScr ol I method provides the ability to scroll the child views up or down the
height of one of the views. Thisisthe kind of scrolling you see on the built-in
Notepad application.

Using Views 341

3-42

CHAPTER 3

Views

In the latter kind of scrolling, the child views are moved within the parent view by
changing their view bounds. Newly visible views will be opened for the first time,
and views which have scrolled completely out-of-view will be closed. The
viewQOriginX and viewOriginY dots are not used.

For information about techniques you can use to optimize scrolling so that it
happens as fast as possible, see “ Scrolling” (page 3-46), and “ Optimizing View
Performance’ (page 3-44).

Redirecting Scrolling Messages

You can redirect scrolling messages from the base view to another view. Scrolling
and overview messages are sent to the frontmost view; thisisthe same view that is
returned if you call Get Vi ew(' vi ewFr ont Most) .

Thevi ewFr ont Mbst view isfound by looking recursively at views that have
both thevVi si bl e and vAppl i cati on bitsset in their vi ewFl ags. This
means that you can set the vAppl i cat i on bit in adescendant of your base view,
and aslong asvAppl i cati onissetinal of the viewsin the parent chain for that
view, the scrolling messages will go directly to that view. ThevAppl i cat i on hit
isnot just for base views, despite what the name might suggest.

If your situation is more complex, where the view that needs to be scrolled cannot
havevAppl i cat i on set or isnot a descendant of your base view, you can have the
base view’'s scrolling scripts call the appropriate scripts in the view you wish scrolled.

Working With View Highlighting

A highlighted view isidentified visually by being inverted. That is, black and white
arereversed.

To highlight or unhighlight aview, send the view the Hi | i t e message.

To highlight or unhighlight a single view from a group, send the view the
Hi |i t eUni que message. (The group is defined as all of the child views of one
parent view.)

To highlight a view when the current pen position is within it, send the view the
TrackHi | i t e message. The view is unhighlighted when the pen moves outside
the view bounds. If the view is abutton, you can send the view the Tr ackBut t on
message to accomplish the same task.

To get the view containing highlighted data, you can call the global function
Hi | i t eOaner ; to get the highlighted text use Get Hi | i t eCf f set s.

To highlight some or al of the text in a paragraph, you canusetheSet Hil i t e
method.

Using Views

CHAPTER 3

Views

To determineif agiven view is highlighted, check thevSel ect ed bit in the

vi ewFl ags. vSel ect ed should not be set by your application, but you can test it
to seeif aview iscurrently selected (that is, highlighted.) If

BAND(vi ewf | ags, vSel ect ed) <> 0isnon-ni |, theview is selected.

Creating View Dependencies

You can make one view dependent upon another by using the global function
Ti eVi ews. The dependent view is notified whenever the view it is dependent
on changes.

This dependency relationship is set up outside the normal inheritance hierarchy.
That is, the views don’t have to be related to each other in any particular way in the
hierarchy. The views must be able to access each other, and so need referencesto
each other. Declaring them to a common parent view is one way to accomplish this.

View Synchronization

View synchronization refers to the process of synchronizing the graphic representa-
tion of the view with itsinternal data description. You need to do this when you
add, delete, or modify the children of aview, in order to update the screen.

Typically you would add or remove elements from the st epChi | dr en array of a
parent view, and then call one of the view synchronization functions to cause the
child viewsto be redrawn, created, or closed, as appropriate. Remember that if you
need to modify the st epChi | dr en array of aview, the array must be copied into
RAM; you can't modify the array in the view template, since that is usually stored
in ROM or in a package. To ensure that the st epChi | dr en array isin RAM, use
this code:

if not HasSlot(self, 'stepChildren) then
self.stepChildren := O one(sel f.stepChildren);

To redraw all the child views of aview, you can send two different messagesto a
view: RedoChi | dr en or SyncChi | dr en. These work similarly, except that
RedoChi | dr en closes and reopens all child views, while SyncChi | dr en only
closes obsolete child views and opens new child views.

Laying Out Multiple Child Views

Two different methods are provided to help lay out aview that is atable or consists
of some other group of child views.

To lay out aview containing atable in which each cell isa child view, send the
view the message Layout Tabl e.

Using Views 3-43

3-44

CHAPTER 3

Views

To lay out aview containing avertical column of child views, send the view the
message Layout Col umm.

Optimizing View Performance

Drawing, updating, scrolling, and performing other view operations can account
for a significant amount of time used during the execution of your application.
Here are some techniques that can help speed up the view performance of your
application.

Using Drawing Functions

Use the drawing functions to draw lines, rectangles, polygons, and eventextin a
single view, rather than creating these objects as several separate specialized views.
This technigque increases drawing performance and reduces the system overhead
used for each view you create. The drawing functions are described in “ Drawing
and Graphics’ (page 13-1)

View Fill

Many views need no fill color, so you may beinclined to set thefill color to “none”
when you create such aview. However, it's best to fill the view with white, if it

may be individually dirtied and you don’'t need a transparent view. This increases
the performance of your application because when the system is redrawing the
screen, it doesn’'t have to update views behind those filled with a solid color such as
white. However, don't fill al views with white, since there is some small overhead
associated with fills; use this technique only if the view is one that is usually dirtied.

Redrawing Views

A view isflagged as dirty (needing redrawing) if you send it the Di r t y message,
or as aresult of some other operation, such as calling the Set Val ue function for a
view. All dirty views are redrawn the next time the system event |oop executes.
Often this redrawing speed is sufficient since the system event loop usually
executes several times a second (unless alengthy or slow method is executing).

However, sometimes you want to be able to redraw aview immediately. The fastest
way to update asingle view immediately isto send it the Di r t y message and then
call the global function Ref r eshVi ews. In most cases, only the view you dirtied
will be redrawn.

If you call Ref r eshVi ews and there are multiple dirty views, performance can be
significantly slower, depending on where the dirty views are on the screen and how
many other views are between them. In this case, what is redrawn is the rectangle
that isthe union of al the dirty views (which might include many other nondirty

Using Views

CHAPTER 3

Views

views). Also, if there are multiple dirty views that arein different view hierarchies,
their closest common ancestor view is redrawn, potentially causing many other
viewsto be redrawn needlessly.

If you want to dirty and redraw more than one view at atime, it may be faster to
send the Di r t y message to the first view, then call Ref r eshVi ews, send the

Di r t y message to the second view, then call Ref r eshVi ews, and so on, rather
than just calling Ref r eshVi ews once after all views are dirtied. The performance
is highly dependent on the number of views visible on the screen, the location of
the dirty views, and their positionsin the view hierarchy, so it’s best to experiment
to find the solution that gives you the best performance.

Memory Usage

Each view that you create has a certain amount of system overhead associated with
it. This overhead existsin the form of frame objects allocated in areserved area of
system memory called the NewtonScript heap. The amount of space that aframe
occupiesis entirely dependent on the complexity and content of the view to which
it corresponds. As more and more views are created, more of the NewtonScript
heap is used, and overall system performance may begin to suffer as aresult.

Thisisnot usually an issue with relatively simple applications. However, complex
applications that have dozens of views open simultaneously may cause the system
to slow down. If your application fits this description, try to combine and eliminate
views wherever possible. Try to design your application so that it has as few views
as possible open at once. This can increase system performance.

You should also be aware of some important information regarding hidden and
closed views and the use of memory. This information appliesto any view that is
hidden, it has been sent the Hi de message, or to any declared view that is closed
but where the view it is declared in is still open. In these cases, the view memory
object for the view still exists, even though the view is not visible on the screen. If
the hidden or closed view contains large data objects, these objects continue to
occupy space in the NewtonScript heap.

You can reduce memory usage in the NewtonScript heap by setting to ni | those
dlots that contain large objects and that you don’t need when the view is hidden or
closed. You can do thisinthe Vi ewHi deScri pt or Vi ewQui t Scri pt methods,
and then reload these slots with data when the view is shown or opened again,
using the Vi ewShowScr i pt or Vi ewSet upFor nmScri pt methods. Again, the
performance impact of these techniques is highly application-dependent and you
should experiment to see what works best.

Note that this information applies to the base view of your application, sinceitis
automatically declared in the system root view. Aslong asitisinstalled in the
Newton, slots that you set in the base view of your application will continue to
exist, even after the application is closed. If you store large data objectsin the base

Using Views 3-45

3-46

CHAPTER 3

Views

view of your application, you should set to ni | those slots that aren’t needed when
the application is closed, since they are wasting space in the NewtonScript heap. It
is especially important to set to ni | slots that reference soups and cursors, if they
are not needed, since they use relatively much space.

If your application is gathering data from the user that needs to be stored, store the
datain a soup, rather than in slots in one of the application views. Data stored in
soups is protected, while slots in views are transient and will be lost during a
system restart.

For information on declaring views, see “View Instantiation” (page 3-26). For
information on storing datain soups, see Chapter 11, “Data Storage and Retrieval "

Scrolling

Scrolling the contents of a view can sometimes seem slow. Here are some techniques
you can use to improve the speed:

m Scroll multiple lines at atime, rather than just asingle line at atime, when the
user taps a scroll arrow.

m In general, reduce the number of child views that need to be redrawn, if
possible. For example, make alist that isimplemented as several paragraphs
(separate views) into a single paragraph.

m Set theview fill to white. For more information, see “View Fill” (page 3-44).

Using Views

CHAPTER 3

Views

Summary of Views

Constants

Class Constants

Constant Value
cl Vi ew 74
cl Pi ctureVi ew 76
cl Edi t Vi ew 77
cl Keyboar dVi ew 79
cl Mont hVi ew 80
cl Par agr aphVi ew 8l
cl Pol ygonVi ew 82
cl Renot eVi ew 88
cl Pi ckVi ew 91
cl GaugeVi ew 92
clQutline 105

viewFlags Constants

Constant Value
vNoFI ags

vVi si bl e 1
vReadOnl y 2
VAppl i cation 4
vCal cul at eBounds 8
vd i ppi ng 32
vFl oati ng 64
vWiteProtected 128
vd i ckabl e 512
vNoScri pts 134217728

Summary of Views 3-47

3-48

CHAPTER 3

Views

viewFormat Constants

Constant Value
vf None 0
viFillWite 1
viFillLtG ay 2
viFi |l Gay 3
viFil | DkG ay 4
viFi || Bl ack 5
viFill Custom 14
vf FrameWi t e 16
vf FranmelLt G ay 32
vf FraneG ay 48
vf FrameDkG ay 64
vf Fr aneBl ack 80

vf Fr anmeDr agger 208
vf Fr ameCust om 224

vf FraneMatt e 240
vf Pen(pixels) pixels
256
vfLi nesWite 4096
vf Li nesLt Gray 8192
vf Li nesG ay 12288
vf Li nesDkG ay 16384
vf Li nesBl ack 20480
vf | nset (pixels) pixels
65536

vf Li nesCust om 57344

vf Shadow(pixels) pixels
262144

vf Round(pixels) pixels
16777216

Summary of Views

CHAPTER 3

Views

viewTransfer Mode Constants

Constant

nodeCopy

nodeOr
nodeXor

nodeBi ¢
nodeNot Copy

nodeNot

nodeNot Xor

O

nodeNot Bi ¢
nodeMask

Value

o N o o0 WN PP O

viewEffect Constants

Constant
f xCol umms(x)

f X Rows (X)

f xHSt ar t Phase
f xVSt art Phase
f xCol Al t HPhase
f xCol Al t VPhase
f XxRowAl t HPhase
f XRowAl t VPhase
f xMoveH

f XRi ght

fxLeft

fxUp

f x Down

f xMoveV

Bit Flag

((x-1) << fxColumsShift)
((x-1) << fxRowsShift)

(1
(1
(1
(1
(1
(1
(1

<<

<<

<<

<<

<<

<<

<<

f xHSt ar t PhaseShi ft)
f xVSt art PhaseShift)
f xCol Al t HPhaseShi ft)
f xCol Al t VPhaseShi ft)
f xRowAl t HPhaseShi ft)
f xRowAl t VPhaseShi ft)
f xMoveHShi ft)

f xMoveH

f xHSt ar t Phase+f xMoveH
f xVSt ar t Phase+f xMoveV
f xMoveV

(1 << fxMoveVshift)

f xVeneti anBl i ndsEf f ect
f xRows (8) +f xDown

f xUp

f xDr awer Ef f ect

Summary of Views

Integer Value

x-1
(x-1)*32
1024
2048
4096
8192
16384
32768
65536
65536
66560
133120
131072
131072

131296
133120

continued

3-49

CHAPTER 3

Views

Constant Bit Flag
f xChecker boar dEf f ect

f xCol unms(8) +f xRows(8) +f xCol Al t VPhase+
f xRowAl t HPhase+f xDown

f xZoonVerti cal Ef f ect

f xCol umms(1) +f xRows(2) +f xUp+
f xRowAl t VPhase

f xZoonCl oseEf f ect
f xCol umms(2) +f xRows(2) +f xUp+f xLef t

f xZoonmOpenEf f ect

f xCol umms(2) +f xRows(2) +f xUp+f xLef t +
f xCol Al t HPhase+f xRowAl t VPhase

f xReveal Li ne (1 << fxReveal Li neShift)

f xPopDownEf f ect
f xDown+f xReveal Li ne

f XW pe 1 << fXW peShift)

f xBar nDoor Cl oseEf f ect

f xCol ums(2) +f xCol Al t HPhase+
f xRowAl t VPhase+f xRi ght +f xXW pe

f xBar nDoor OpenEf f ect

f xCol umms(2) +f xCol Al t HPhase+
f XRowAl t VPhase+f xLef t +f XW pe

fxlrisC oseEffect

f xCol ums(2) +f xRows (2) +f xUp+f xLef t +
f xReveal Li ne+f xXW pe

fxlri sOpenEf f ect

f xCol umms(2) +f xRows(2) +f xUp+f xLef t +
f xCol Al t HPhase+f xRowAl t VPhase+
f xReveal Li ne+f xXW pe

f xFr onEdge (1 << fxFronkdgeShift)
f xSt eps(X) ((num1) << fxStepsShift)
f xSt epTi me(x) ((num << fxStepTimeShift)

3-50 Summary of Views

Integer Value

155879

165920

199713

236577

262144

393216
524288

626689

627713

986145

1023009

1048576

(-1)*
2097152

x* 33554432

CHAPTER 3

Views

Functions and Methods

Getting Referencesto Views
view: Chi | dVi ewFr anmes()
view: Par ent ()

CGet Root ()

Get Vi ew(symbol)

Displaying, Hiding, and Redrawing Views
view: Open()

view: Cl ose()

view: Toggl e()

view: Show()

view: Hi de()

view: Di rty()

Ref reshVi ews()

Set Val ue(view, dotSymbol, value)
view: SyncVi ew()

viewToMove: MoveBehi nd(view)

Dynamically Adding Views

AddSt epVi ew(parentView, childTemplate)
RenmoveSt epVi ew(parentView, childView)
AddVi ew(parentView, childTemplate)

Bui | dCont ext (template)

Making Modal Views

AsyncConf i r n{ confirmMessage, buttonList, fn)
Modal Conf i r n(confirmMessage, buttonList)
view:Modal Di al og()

view: Fi l terDi al og()

Setting the Bounds of Views

Rel Bounds(left, top, width, height)
Set Bounds(left, top, right, bottom)
view: G obal Box()

view.d obal Qut er Box()

view: Local Box()

viewToMove: MoveBehi nd(view)

view: Di rt yBox(boundsFrame)

view: Get Dr awBox ()

But t onBounds(width)

Pi ct Bounds(name, Ileft, top)

Animating Views
view: Ef f ect (effect, offScreen, sound, methodName, methodParameters)

view: S| i deEf f ect (contentOffset, viewOffset, sound, methodName,
methodParameters)

Summary of Views 3-51

CHAPTER 3

Views

view: Reveal Ef f ect (distance, bounds, sound, methodName,
methodParameter s)
view: Del et e(methodName, methodParameters)

Dragging aView
view: Dr ag(unit, dragBounds)

Dragging and Dropping an Item
view: Dr agAndDr op(unit, bounds, limitBounds, copy, draglnfo)

Scrolling View Contents
view: Set Ori gi n(originX, originY)
view: SyncScrol | (What, index, upDown)

Working With View Highlighting
view: Hi | i t e(on)

view: Hi | i t eUni que(on)

view: TrackHi | i t e(unit)

view: Tr ackBut t on(unit)
HiliteOaner ()

GetH liteO fsets()

view:Set Hi | i t e(start, end, unique)

Creating View Dependencies
Ti eVi ews(mainView, dependentView, methodName)

Synchronizing Views
view: RedoChi | dren()
view: SyncChi | dren()

Laying Out Multiple Child Views
view: Layout Tabl e(tableDefinition, columnSart, rowSart)
view: Layout Col umnm(childViews, index)

Miscellaneous View Oper ations

view: Set Popup()

Get Vi ewFl ags(template)

Vi si bl e(view)

Vi e sQpen(view) //platformfile function

Application-Defined M ethods
ewSet upFor nScri pt ()
ewSet upChi | drenScri pt ()
ewSet upDoneScri pt ()
ewQui t Scri pt ()
ewPost Qui t Scri pt ()
ewShowScri pt ()

ewHi deScri pt ()

ewDr awScri pt ()

ewHi | iteScript(on)
ewScr ol | DownScri pt ()

S<LKLKLLLLLL

3-52 Summary of Views

CHAPTER 3

Views

Vi ewScrol | UpScri pt ()

Vi ewOver vi ewScri pt ()

Vi ewAddChi | dScri pt (child)

Vi ewChangedScri pt (dlot, view)

Vi ewDr opChi | dScri pt (child)

Viewl dl eScri pt ()

sourceView: Vi ewDr awDr agDat aScr i pt (bounds)

sourceView: Vi ewDr awDr agBackgr oundScr i pt (bounds, copy)
destView: Vi ewGet Dr opTypesScri pt (currentPoint)

src: Vi ewGet DropDat aScri pt (dragType, dragRef)

destView: Vi ewDr agFeedbacksScri pt (draginfo, currentPoint, show)
sourceView:Vi ewDr opAppr oveScr i pt (destView)

sourceView: Vi ewGet Dr opDat aScri pt (dragType, dragRef)

destView: Vi ewDr opScri pt (dropType, dropData, dropPt)
sourceView: Vi ewDr opMoveScri pt (dragRef, offset, lastDragPt, copy)
destView: Vi ewFi ndTar get Scri pt (draginfo)

sourceView: Vi ewDr opRenpveScr i pt (dragRef)

destView:Vi ewDr opDoneScri pt ()

Summary of Views

3-53

CHAPTER 4

NewtApp Applications

NewtApp isacollection of prototypes that work together in an application frame-
work. Using these protos you can quickly construct a full-featured application that
includes functionality like finding and filing.

Whether or not you have written an application for the Newton platform before,
you should read this chapter. If you're new at writing Newton applications, you'll
find that using NewtApp is the best way to start programming for the Newton
platform. If you've created Newton applications before, the process of putting
together a NewtApp application will be familiar, though you'll find the time
required is significantly less.

Newton applications can be created with the NewtApp framework protos, which
are described in this chapter, or by constructing them from protos described in
amost every other chapter of this book. Chapter 2, “Getting Started,” givesyou an
overview of the process.

Before reading this chapter you should be familiar with the concepts of views,
templates, protos, soups, and stores. However, you don’t need to know the details
of the interfaces to these objects before proceeding with NewtApp. Simply read the
first part of the appropriate chaptersto get agood overview of the information. These
subjects are covered in Chapter 3, “Views,” Chapter 11, “ Data Storage and Retrieval)’
Chapter 16, “Find,” Chapter 15, “Filing,” and Chapter 21, “Routing Interface.”

To work with the examples in this chapter, you should also be familiar with
Newton Toolkit (NTK) which is described in the Newton Toolkit User’s Guide.

About the NewtApp Framework

You can construct an entire application by using the protosin the NewtApp frame-
work, without recreating alot of support code; that is, the code necessary for
providing date and text searching, filing, setting up and registering soups, flushing
entries, notifying the system of soup changes, formatting data for display, displaying
views, and handling write-protected cards. You set the values of a prescribed set of
slots, and the framework does the rest.

About the NewtApp Framework 4-1

4-2

CHAPTER 4

NewtApp Applications

You can create most kinds of applications with the NewtApp framework. If your
application is similar to a data browser or editor, or if it implements an automated
form, you can save yourself a significant amount of time by using the NewtApp
framework.

If you're creating a specialized application (for example, acalculator) or if you
need to display more than one soup at atime, you shouldn’t construct it with
NewtApp, but should use the protos described in other chapters of this book. These
chaptersinclude Chapter 3, “Views,” Chapter 6, “Pickers, Pop-up Views, and
Overviews,” Chapter 7, “ Controls and Other Protos,” Chapter 8, “ Text and Ink
Input and Display,” Chapter 13, “Drawing and Graphics,” Chapter 16, “Find,” and
Chapter 15, “Filing.”

Some NewtApp protos work in nonframework applications. For example, you may
want to update an existing application to take advantage of the functionality
provided by the NewtApp slot view protos. Updating requires a bit of retrofitting,
but it can be done. See “Using Slot Views in Non-NewtApp Applications’

(page 4-22) for an example.

When you use the NewtApp framework protos, your user interface is updated as
the protos change with new system software rel eases, thereby staying consistent
with the latest system changes. In addition, the built-in code that manages system
services for these protosis aso automatically updated and maintained as the
system software advances.

A NewtApp-based application can present many different views of your data. For
example, the Show button displays different views of information; the New button
creates new formats for data input.

NewtApp applications use a programming device known as stationery—a
collective term for data definitions (known as dataDefs) and view definitions
(known as viewDefs)—to enable this feature. You should use viewDefs to add
different views of your data and dataDefs to create different data formats. Stationery
is documented in Chapter 5; its use in a NewtApp application is demonstrated in
this chapter.

The NewtApp Protos

When you put the application protos together in a programming environment like
Newton Toolkit and set the values of dots, the framework takes care of the rest.
Your applications automatically take advantage of extensive system management
functionality with little additional work on your part. For example, to include your
application in system-wide date searches, just set aslot in the base view of your
application called dat eFi ndSl ot . (See “newtApplication” (page 3-8) in Newton
Programmer’s Reference.)

About the NewtApp Framework

CHAPTER 4

NewtApp Applications

The parts of the NewtApp framework are designed to fit together using the
two-part NewtonScript inheritance scheme. Generally speaking, the framework is
constructed so the user interface components of your application (such as views
and buttons) use proto inheritance to make methods and application-state variables,
which are provided by NewtApp (and transparent to you), available to your
application. Parent inheritance implements slots that keep track of system details.

Because the NewtApp framework structure is dependent on both the parent and
proto structure of your application, it requires applications to be constructed in a
fairly predictable way. Children of certain NewtApp framework protos are required
to be particular protos; for example, the application base view must be a

newt Appl i cati on proto.

A WARNING

When you override system service methods and functions be
careful to use the conditional message send operator (: ?) to avoid
inadvertently overriding built-in functionality; otherwise, your
code will break.

There may aso be alternate ways to construct a NewtApp
application, other than those recommended in this chapter and in
Chapter 5, “ Stationery.” Be forewarned that applications using
alternate construction methods are not guaranteed to work in
thefuture. a

Figure 4-1 shows the four conceptual layers of NewtApp protos that you use to
construct an application: the application base view, the layout view, the entry view,
and the slot views.

Figure 4-1 The main protos in a NewtApp-based application

_proto: newtClockShowBar

_proto: newtApplication
title: "MyApp",

_proto: newtLayout }7 Layout View

Base View

_proto: newtEntryView Entry View

_proto: newtLabellnputLine
path: 'name first,
label: "First",

[Slot View

_proto: newtLabellnputLine
path: 'name.last,
label: "Last",

‘ _proto: newtStatusBar ‘

About the NewtApp Framework 4-3

4-4

CHAPTER 4
NewtApp Applications

Note
This drawing does not depict the protos as they would appear in a
Newton Toolkit layout window.

The basic NewtApp protos are defined here in very general terms. Note that unlike
Figure 4-1, thislist includes the proto for storing data, which does not have a visua
representation in alayout file.

m Thenewt Appl i cati on protoisthe application’s base view. Asin
nonframework applications, the base view proto either contains or has
references to all the other application parts.

m Thenewt Soup proto is used to create and manage the data storage soup for
your application; it is not displayed.

m Thenewt Layout protos govern the overall look of your data.

m Thenewt Ent r yVi ew protosis the view associated with current soup entry and
is contained in the default layout view. A newt Ent r yVi ew proto does not
display on the screen, but instead manages operations on a soup.

m Thesdlot views are a category of protos used to edit and/or display datafrom the
dlotsin your application’s soup entry frames.

About newtApplication

Thenewt Appl i cat i on proto serves as the base view for your application; it
contains all other application protos. Theal | Soups dot of this proto is where you
set up the application soup (based on the newt Soup proto).

The functionality defined in this proto layer manages application-wide functions,
events, and globals. For example, the functionality for opening and registering
soups, dispatching events, and maintaining state information and application
globalsisimplemented in this proto layer.

Also managed by this proto layer are the application-wide user interface elements.

Application-wide Controls

Several control protos affect the entire application. Because of this, the protos are
generally placed inthe newt Appl i cat i on base view layer. The buttons include
the standard Information and Action buttons, as well as the New and Show
stationery buttons. Stationery buttons, which you can use to tie viewDefs and
dataDefs into your application, are defined in Chapter 5, “ Stationery.” The
NewtApp controls that should be in the newt Appl i cat i on base view include the
standard status bar, the folder tab, and the A-Z a phabet tabs.

About the NewtApp Framework

CHAPTER 4

NewtApp Applications

About newtSoup

Application datais stored in persistent structures known as soups in any Newton
application. In a NewtApp application, soup definitions, written in the
newt Appl i cati on. al | Soups dot, must be based on the newt Soup proto.

Within a soup, datais stored in frames known as entries. In turn, entries contain the
individual slotsin which you store your application’s data. The datain these slotsis
accessed by using a programming construct known as a cursor.

The newt Soup proto definesits own version of a set of the data storage objects
and methods. If you are not aready familiar with these concepts and objects, you
should read the introductory parts of Chapter 11, “ Data Storage and Retrieval,”
before trying to use the newt Soup proto.

The Layout Protos

Each NewtApp application must have two basic views of the application data,
known as layouts, which are:

m an overview—seen when the Overview button is tapped

m adefault view—seen when the application isfirst opened

Three kinds of layouts correspond to three basic application styles:
m thecard (seenewt Layout)

m the continuous roll (see newt Rol | Layout)

m the page (see newt PagelLayout)

Card-based and roll-based applications differ in the number of entries each may
have visible at one time. The built-in Names application is a card-based application.
For this type of application, only one entry is displayed at atime. In contrast, the
built-in Notes application, which is aroll-based application, can have multiple
entries visible at once. They must be separated by a header, that incorporates Action
and Filing buttons to make it obvious to which entry a button action should apply.
Examples of card-based and aroll-based applications are shown in Figure 4-2.

About the NewtApp Framework 4-5

CHAPTER 4

NewtApp Applications

Figure 4-2 A roll-based application (left) versus a card-based application

4-6

11:46 Wed 10725 & Unfiled Notes
Tue 1043 =B

O Finished reviewing Newtonscript
.......... chamerz
O Sent out review copies of
""""" NewtApp and Stationery chapters”

E]Frit1ose B8

"1 0 Date with my hushani

DO P 3 LY
w

Undo Find Assist

The page-based application is a hybrid of the card-based and roll-based applications.
Like the card-based application, the page-based application shows only one entry

Unfiled Notes
EThu11s2 EE

Y + rifilcd Names W
D) cd]efiah]ii Tl fonjop] ar] stjuvivsy2
Alice's Restaurant

100 Maity 5t.
Newton, M 02165

2617 555-2020
a617555-1212F

DO D3I OY

Mames Dates Ewtras ' Unda Find Assist

at atime. However, unlike the card-based application but like the roll-based
application, an entry may be longer than a screen’s length. The built-in Calls
application, shown in Figure 4-3, is an example of a page-based application.

About the NewtApp Framework

CHAPTER 4
NewtApp Applications

Figure 4-3 Calls is an example of a page-based application

12:20 Wed 10525 # Unfiled Calls
Call placed EE

Phone | 511“' }555'2020

#wWhen Wed, 0et 25 11:59 am

6729795 9:53 am called 510 791 5683

Call Cancelled {Duration 0:25)

10/25/95 12:02 pm called 408 746-_

Left Meszage (Duration 0:35)

10725795 12:04 pm called 510 226 _

T.eft Meszace (Duratinn N-11)

(1 JLA J i New [{Place Can) X
DODe3 Y

Names Dates Eetras ' Unda Find Assist

The overview protos are also layouts; they include the newt Over Layout and
newt Rol | Over Layout protos.

The NewtApp framework code that governs soups, scrolling, and all the standard
view functionality, isimplemented in the layout protos. A main (default) view
layout and an overview layout must be declared intheal | Layout s slot of the
newt Appl i cat i on base view. See“newtApplication” (page 3-8) in Newton
Programmer’s Reference for details.

Your layout can aso control which buttons show on the status bar; you can set the
nmenulLef t But t ons and menuRi ght But t ons dlots of the layout proto, along
withthe st at usBar Sl ot of the base view (newt Appl i cat i on proto). This
control becomes important when more than one entry is shown on the screen, asin
aroll-style application. For example, when multiple entries are showing on one
screen, the Action and Filing buttons would not be on the status bar. Instead, they
would be on the header of each entry, so the entry on which to perform an actionis
unambiguous.

About the NewtApp Framework 4-7

CHAPTER 4

NewtApp Applications

The Entry View Protos

The entry view isthe focal point for operations that happen on one soup entry
frame at atime. These include functions such as displaying and updating data
stored in the entry’s sots.

The NewtApp framework has three entry view protos. newt Ent r yVi ew,

newt Rol | Ent r yVi ew and newt Fal seEnt r yVi ew Thenewt Ent r yVi ew
and newt Rol | Ent r yVi ewprotos are used within a NewtApp application, while
the newt Fal seEnt r yVi ewand newt Rol | Ent r yVi ew protos allows you to use
the framework’s ot views in an application that is not based on the NewtApp
framework.

The entry view also contains the user interface components that perform operations
on one entry at atime. These components include the header bars, which are used
as divider barsto separate multiple entries displayed simultaneously. This behavior
happensin the Notes application. An example of the Notes application with multiple
entries and header bars is shown in Figure 4-4.

Figure 4-4 Multiple entries visible simultaneously

4-8

Unfiled Notes
[Elsun 9217 B8

DO DY 3 LY

Mames Dates Ewtras ,* Undo Find Assist

About the NewtApp Framework

CHAPTER 4

NewtApp Applications

Note that the header bar contains the Action and Filing buttons on itsright side.
These buttons appear on the header bar to prevent any ambiguity regarding the
entry to be acted upon by those buttons.

In addition, the header bar contains a Title and icon on the left. When theicon is
tapped, the Information slip appears, as shown in Figure 4-5. Thisdlip is created
from anewt | nf oBox proto and displays an informational string, which it obtains
fromthedescri pti on slot of the dataDef. See Chapter 5, “ Stationery,” for more
information about dataDefs.

Figure 4-5 An Information slip
S06Fil10713 & All ltems

Tivle Fri 10513

[An 10U Entry

Date: 12:14 pm Fri 10/13/95
5ize: 81 bytes

Where: Card

Itisat the entry view level of your application that the specific slots for accessing
and displaying data in your application soup are set up. The target entry, which is
the entry to be acted on, is set in the entry view. The target view is then created by
the entry view; the view in which the datain that entry appears. Finaly, the data
cursor is created by the entry view and is used to access the entries.

The entry view protos also contain important methods that act on individual
entries. These methods include functionality for managing and changing existing
datain the soup, such as the FI ushDat a method.

About the Slot View Protos

The dot view protos retrieve, display, edit, and save changes to any type of data
stored in the slots of your application soup’s entry frame.

Unlessthey are contained by either anewt Ent r yVi ewor a

newt Fal seEnt r yVi ew, the dot views do not work. Thisis because the
entry views are responsible for setting references to a specific entry. These
references are used by the slot view to display data.

Slot views exist in two varieties: smple slot views and labelled input-line slot
views. Both kinds of slot views are tailored to display and edit a particular kind of

About the NewtApp Framework 4-9

4-10

CHAPTER 4

NewtApp Applications

datawhich they format appropriately. For example, the number views
(newt Nunber Vi ewand newt RONunber Vi ew) format number data (according to
the value of af or nat dot you set).

The labelled input-line slot view protos provide you with alabel, which you may
specify, for the input line. Additionally, the label may include a picker (pop-up menu).

These views also format a particular kind of data. To do this they use a specia
NewtApp object known as afilter to specify avaluefor thef | avor dot of the
labelled input-line slot views.

Thefilter object essentially acts as atrandator between the target data frame (or
more typically, aslot in that frame) and the text field visible to the user. For
example, in the newt Dat el nput Li ne proto, afilter translates the time from a
time-in-minutes value to a string, which is displayed. The filter then translates the
string back to a time-in-minutes value, which is saved in the soup.

You can create custom filters by basing them on the proto newt Fi | t er or on the
other filters documented in Table 3-1 (page 3-60) in the Newton Programmer’s
Reference. You can a so create custom labelled input-line slot views. See the example
in “Creating a Custom Labelled Input-Line Slot View,” beginning on page 4-24.

You can have your label input-line protos remember alist of recent items. To do so,
all you need dois assign asymbol to the' menor y sot of your template. This
symbol must incorporate your developer signature. The system automatically
maintains the list of recent items for your input line. To use the list, you need to
use the same symbol with the AddMenor yl t em AddMenor yl t emni que,

Get Menoryl t ens, and Get Menor y S| ot functions, which are described in
Chapter 26, “ Utility Functions.”

In addition, one specia slot view, called the newt Smar t NaneVi ew proto, allows
the user to choose a name from the soup belonging to the built-in Names application.
It adds the pop-up menu item, Other, to the picker; when the user chooses Other
from the newt Srar t NaneVi ew proto, it displays the names in the Names
application soup in a system-provided people picker.

After you choose a hame and close the view displaying the Names soup, that
name is displayed on the input line. The name is aso put into the Picker menu.
A newt Smrar t NaneVi ew proto is shown in Figure 4-6.

About the NewtApp Framework

CHAPTER 4

NewtApp Applications

Figure 4-6
1:08 Wed 10725 & All Items
[JFri 10713 m— P e sonal
[Who: | Gregory Christie |
Bob Anderson
Other
(4 J{New J{+show]) ()] (=)]E3
Marnes [. Q ‘@ P.g
ates Extras - Unds Find ASEISt

Stationery

The smart name view and system-provided people picker

1:16 Wed 10525 # All Items

Fri10/13 Personal

-,

All Names

; Alice's Restaurant
Anderson, Bob

Apple Child Care Center

ey, Christopher

unny Kuts

urward-Hoy, Anhe & Trevor
hambers, Cheryl

hambers, Keith and Wanda
hristie, Gregory

ohCern

onglomerated Credit

®
GO Pe 3 LY

Nares Dates Ewtras - Unda Find Assist

g
el | H

i1 Selected Only

Stationery, an extension you can add to any NewtApp application, istightly

integrated with the NewtA pp framework.

Stationery consists of two components that work together: a data definition (dataDef)
and aview definition (viewDef). The dataDef provides a definition of the datato be
used in the stationery. It is registered in conjunction with its display component,
which is aviewDef.

These extensions are available to the user through the New and Show stationery
buttons in the NewtA pp application. The names of the viewDefs are displayed in
the Show menu. The New button is used either to propagate the new entry defined
in the dataDef or to display the names of the dataDefs. For more detailed
information, see Chapter 5, “ Stationery.”

NewtApp Compatibility

The NewtApp framework did not exist prior to version 2.0 of Newton system
software. Applications created with NewtApp protos will not run on previous
versions of the Newton system.

About the NewtApp Framework 4-11

CHAPTER 4

NewtApp Applications

Some NewtApp protos are usable in your non-NewtApp applications. For example,
thereisanewt St at usBar NoCl ose proto, see page 3-29 in the Newton
Programmer’s Reference, that is unique to NewtApp, which may be used, without
specia provision, in anon-NewtApp application.

Other NewtApp protos—specifically the slot views—can function only within a
simulated NewtA pp environment. The mechanism for creating this setup is the
newt Fal seEnt r yVi ew proto, described on page 3-44 in the Newton
Programmer’ s Reference.

The dlot views, documented in “ Slot View Protos’ (page 3-49) in Newton
Programmer’s Reference, provide convenient display and data manipulation
functionality that you can use to your advantage in an existing application.

Using NewtApp

4-12

The protos in the NewtApp application framework can be used to

m create an application that has one data soup and can be built as a data viewer
or editor

m add functionality to non-NewtApp applications
m create and incorporate stationery extensions

When you use the set of protos that make up the NewtApp application framework,
you can quickly create an application that takes full advantage of the Newton
system services.

In addition, many of the protos may be used in applications built without the
framework. In particular, the slot views, used to display data, have built-in
functionality you may wish to use.

The framework works best when used with stationery to present different views of
and formats for the application’s data. The sample application, described in the
following sections uses a single piece of stationery, which consists of a dataDef
with two viewDefs. Stationery is documented fully in Chapter 5, “ Stationery.”

The sample application is built using the Newton Toolkit (NTK) development envi-
ronment. See Newton Toolkit User’s Guide for more information about using NTK.

Constructing a NewtApp Application

The sample “starter” application presented here shows how to get a NewtApp
application underway quickly. You may incorporate this sample code into your
applications without restriction. Although every reasonable effort has been made to
make sure the application is operable, the code is provided “asis” The

Using NewtApp

CHAPTER 4

NewtApp Applications

responsibility for its operation is 100% yours. If you are going to redistribute it,
you must make it clear in your source files that the code descended from
Apple-provided sample code and you have made changes.

The sampleisan application for gathering data that supports the system services
routing, filing, and finding. It presents two views of the data to be collected: a
required default view; “IOU Info” (and an alternate “IOU Notes’ view); and a
required overview. |OU Info and IOU Notes are stationery and appear asitemsin
the Show button’s picker. In addition, it shows how to implement the application in
the three styles of NewtApp applications. card, page, and roll. Seethe DTS sample
code for details.

The application starts with three basic NTK layout files:
m The application base view—anewt Appl i cat i on proto.
m A default layout—one of the layout protos.

m Anoverview layout—either the newt Over Layout or
newt Rol | Over Layout proto.

The application also containsthe NTK layout files for the stationery, a dataDef,
and its two corresponding viewDefs:

m i ouDat aDef

m i ouDef aul t Vi ewDef

m i ouNot esVi ewDef

The creation of these filesis shown in Chapter 5, “ Stationery.”

A NewtApp application must include standard | nst al | Scri pt and
RenpveScri pt functions. Any icons must be included with aresourcefile; the
exampleuses Car dSt art er . r sr c. In the example, thereis also atext file,
Defini ti ons. f,inwhich application globals are defined. Neither the resource
file nor the text file is required.

The basic view dots, vi ewBounds, vi ewFl ags, andvi ewdusti fy,
are discussed in Chapter 3, “Views,” and are called out in the samples only
when there is something unusual about them.

Using Application Globals

These samples use several application globals. When you use NTK as your
development system, they are defined in a definitions file, which we named
Definitions.f.

The values of the constants k Super Synbol and kDat aSynbol are set to the
application symbol. They are used to set slots that must have unique identifying
symbols. You are not required to use the application symbol for this purpose, but it
isagood idea, because the application symbol is known to be unique.

Using NewtApp 4-13

4-14

CHAPTER 4

NewtApp Applications

One other global, unique to this application, is set. It isthe constant k AppTi t | e,
settothestring" Card Starter".

Using newtApplication

This proto serves as the template for the application base view. This section shows
you how to useit to set up the

m application base view
m application soup

m status bar; for layout-level control of the appearance and disappearance of
its buttons.

m layout slots
m stationery slots

Setting Up the Application Base View

The application base view template, newt Appl i cat i on, should contain the basic
application element protos. When you use NTK to create the layout for the

newt Appl i cati on proto, you add to it anewt St at usBar proto (the status bar
at the bottom of the application) and anewt C ockShowBar (the folder tab across
the top of the application).

Follow these steps to create the application base view:

. Create anew layout and draw anewt Appl i cati on protoinit.
. Placeanewt St at usBar across the bottom of the layout.

. Namethenewt St at usBar proto st at us.

. Placeanewt Cl ockShowBar proto across the top of the layout.
. Savethelayout fileasbaseVi ew. t .

o O~ WODN P

. Name the layout frame baseVi ew

There are more than a dozen slots that need to be setinanewt Appl i cati on
proto. Several of the newt Appl i cat i on slots can be set quickly. Set these slots
asfollows:

m Setthetitl e dottokAppTitl e. Notethat you must define this constant.

m SettheappSynbol dottokAppSynbol . Thisconstant is automatically
defined by NTK.

m SettheappObj ect dotto["Iten, "Itens"].

m SettheappAl | dotto"All 1tens". Notethat you'll seethisdisplayed ona
folder tab.

Using NewtApp

CHAPTER 4

NewtApp Applications

m Optional. Set the st at usBar Sl ot to contain the declared name of the status
bar so layouts can useit to control the buttons displayed on it. Use the symbol
'statustosetit.

If you wish to override a system message like Vi ewSet upFor nScri pt , whichis
called before aview is displayed on the screen, make sure to cal the inherited
method at the end of your own Vi ewSet upFor nScr i pt method. Also, you may
wishto add aReOri ent ToScr een method to the newt Appl i cat i on base
view so your application can rotate to alandscape display. This message is sent to
each child of the root view when the screen orientation is changed. See

ReOri ent ToScr een (page 2-73) in Newton Programmer’s Reference for details.

Finally, be sure to add the layout file baseVi ew. t to your project and mark it as
the application base view.

Tying Layouts Into the Main Application

Theal | Layout s slot inthenewt Appl i cat i on protoisaframe that contains
symbols for the application’s layout files. It must contain two s ots, named

def aul t andover vi ew, that refer to the two layout files used for those
respective views.

The section “Using the Layout Protos,” beginning on page 4-16, shows how to use
the NewtApp layout protos to construct these files. Assume they are named Default
Layout and Overview Layout for the purpose of setting the references to themin
theal | Layout s slot. The following code segment setstheal | Layout s slot

appropriately:
al | Layouts: = {

default: GetLayout("Default Layout"),
overvi ew. GetLayout ("Overvi ew Layout"),

}

Setting Up the Application Soup

Thenewt Appl i cati on proto usesthevauesinitsal | Soups dot to set up and
register your soup with the system.

The framework also looksintheal | Soups dot to get the appropriate

soup information for each layout. It does this by matching the value of

the layout’smast er SoupSl ot to the name of aframe contained in the

newt Appl i cati on. al | Soups dot. Seethe section “Using the Layout Protos,”
following this one.

This application contains only one soup, though a NewtA pp application can
contain more than one. Each soup defined for a NewtApp application must be
based on the newt Soup proto. The slots soupNan®e, soupl ndi ces, and
soupQuer y must be defined within theal | Soups soup definition frame.

Using NewtApp 4-15

4-16

CHAPTER 4

NewtApp Applications

Use code similar to the following example to set the al | Soups dlot:

al | Soups: =
{ I QUsoup: {_proto: new Soup,
soupNane: "1 QU Pl EDTS",
soupl ndi ces: |
{structure: 'slot,
path: '"title,
type: 'string},

{structure: 'slot,
pat h: 'tinmeStanp,
type: 'int},

{ structure: 'slot,
pat h: 'l abel s,
type: 'tags }

]1

soupQuery: {type: 'index, indexPath:
"tinmeStanp},
soupDescr: "The | QU soup. ",
def aul t Dat aType: '|BasicCard:sig|,}
}

Using the Layout Protos

Each NewtApp Application requires exactly two layouts: a default layout,
displayed when the application is opened, and an overview layout, displayed when
the Overview button is tapped.

The NewtApp framework layout proto you choose for your default view, sets up
your application as either a card-, roll-, or page-style application.

Unique slots in the layout protos include:
m nast er SoupSl ot
m forceNewentry

Themast er SoupSl ot isthe most important. It contains a reference to the
application soup inthe newt Appl i cati on. al | Soups dot, from which the
layout gets its data.

m Thef or ceNewEnt ry slot allows your application to deal gracefully with
the situation created when someone opens a folder that is empty. If the
forceNewEntry dotissettot r ue inthat situation, an entry is automatically
created. Otherwise, an alert slip announces that there are no itemsin thislist,

Using NewtApp

CHAPTER 4

NewtApp Applications
whereitemsis replaced by the value of the appObj ect dot setinthe

newt Appl i cat i on base view. An example of this message from the Names
application is shown in Figure 4-7.

Figure 4-7 The message resulting from ani | value for f or ceNewEnt ry

O
abjcd]efjoh] ij ki jnnjop] ar] stjuvivxjy2)

There are no MNames in this folder.

Using newtOverLayout

The dots you must set for an overview are shown in the Overview Layout browser
in Figure 4-8.

Figure 4-8 The overview slots

Overview Layout browser =——=|
EULM < = | leenter Target 4
forceMewEntry

rnazter SoupSlot
rnenuleftButtons

menuRiihtButtons

wigwBounds
wiewFormat
wiewr Justify
_prato

& =

[Specific = J[Methods =][attributes =]
[overviewlLayout_name P
"Ouerwisn” A never used, but required. —
k8
o 5] [&

Follow these steps to create the required overview layout:
1. Open anew layout window and drag out anewt Over Layout proto.
2. Nameit Overvi ew Layout .

Using NewtApp 4-17

4-18

CHAPTER 4

NewtApp Applications

3. Setthemast er SoupSl ot to the symbol ' | OUSoup. This correlates to the
name of the soup asitisset up inthenewt Appl i cati on. al | Soups dot.
See “ Setting Up the Application Soup,” beginning on page 4-15.

4. Addthef or ceNewEnt ry dlot. Leave it with the default valuet r ue.

This causes anew entry to be created if a user triesto open an empty folder.

5. Add avi ewFor mat dotand settheFi | | valueto Whi t e. This makes the data
it displays look better and keeps anything from inadvertently showing through.
In addition, the white fill improves the speed of the display and enhances view
performance.

6. Set the name dot to astring like“ Over vi ew’ .
7. Addacent er Tar get slot and setittot r ue. Thisassuresthat the entries are
centered for display in the Overview.

Controlling Menu Buttons From Layouts

Once the name of the status bar is declared to the application base view (in the
newt Appl i cati on. st at usBar Sl ot), you may control the appearance and
disappearance of buttons on the status bar, from the layout view, as needed.

To do this, you must specify which buttons should appear on the status bar by
using the slotsmenulLef t But t ons and mrenuRi ght But t ons. Each of theseis
an array that must contain the name of the button proto(s) that you wish to appear
on the menu bar’s left and right sides. When you use these arrays, the button protos
listed in them are automatically placed correctly on the status bar, according to the
current human interface guidelines.

To appropriately set up the appearance of the status bar for display in the Overview,
first add the optional dotsmenuLef t But t ons and menuRi ght But t ons. The
buttons you name in these g ots replace the menu bar buttons from the main layout,
sincethe st at usBar Sl ot isset there.

Set the menuLef t But t ons dot to an array that includes the protos for the
Information and New buttons. These buttons are automatically laid out on the
status bar, going from left to right.

menulLef t Butt ons: =[
new | nf oBut t on,
newt NewSt at i oner yBut t on,

]

Set the menuRi ght But t ons ot to an array that includes the protos for the
Action and Filing buttons. These buttons are automatically laid out on the status
bar from right to left.

Using NewtApp

CHAPTER 4

NewtApp Applications

nmenuRi ght Butt ons: =[
newt Acti onButt on,
newt Fi | i ngBut t on,

]

Be sure to add the Overview Layout template file to your NTK Project window.

Creating the Default Layout

Thisisthe view you see upon opening the application. Since it will eventually
contain views that display the data, it needs to know about the application soup.

Thenast er SoupSl ot identifies the application soup to the layout proto. The
symbol in this slot must match the name of a soup declared intheal | Soups slot
of thenewt Appl i cat i on base view, which was| OUSoup. Inthelayout itis
used as asymbol to set the value of the mast er SoupSl ot .

Follow these steps to create the required default layout:
1. Open anew layout window in NTK and drag out anewt Layout proto.
2. Nameitdef aul t .

3. Setthemast er SoupSl ot to the symbol ' | QUSoup. This correlates to the
name of the soup asit isset up inthenewt Appl i cati on. al | Soups slot.
See “ Setting Up the Application Soup,” beginning on page 4-15.

4. Add af or ceNewEnt ry slot. Leave the default valuet r ue. This causes a new
entry to be created when a user tries to open an empty folder.

5. Setthevi ewFor mat dot’s Fill value to White. This makes the data it displays
look better and keeps anything from inadvertently showing through. In addition,
the white fill improves the speed of the display and enhances view performance.

Be sure to add the default template file to your NTK Project window.

Using Entry Views

Entry views are used as containers for the slot views that display data from the
dotsin the target entry of the application soup. They are also the containers for the
different header bars. Note that entry views are not necessary in the overview
layout, since the overview layout displays items as shapes.

The entry view sets values needed to locate the data to be displayed in the slot
viewsit will contain. These values include references to the data cursor (the

dat aCur sor dlot), the soup entry that contains the stored data (thet ar get slot),
and the view to display data (thet ar get Vi ewslot).

Using NewtApp 4-19

CHAPTER 4

NewtApp Applications

Follow these steps to ready your application for the slot views:
1. Drag out anewt Ent r yVi ew proto on top of the newt Layout proto.
2. Optional. Nameitt heEntry.

There are no unusual slotsto set in an entry view. Therefore, you are ready to add
the header and slot view protos.

3. Drag out anewt Ent r yPageHeader acrossthetop of the newt Ent r yVi ew.

4. Under the header, drag out anewt St at i oner yVi ew proto that covers the rest
of the entry view. This specia view is not be visible; its function isto provide a
bounding box for the viewDef that will eventually be displayed.

The layout should ook like the screen shot shown in Figure 4-9.

Figure 4-9 The information button and picker.

4-20

About
Help
Prefs

Registering DataDefs and ViewDefs

Several dotsinthenewt Appl i cat i on base view enable you to identify the
stationery in your application. These dotsincludetheal | Vi ewDef s,
al | Dat aDef s, and super Synbol dots.

Note

To see how to create the stationery used as part of this application,
consult Chapter 5, “Stationery.” Theal | Dat aDef s and

al | Vi ewDef s dots, which are discussed here, contain
references to those dataDefs and viewDefs. ¢

Theal | Dat aDef s and al | Vi ewDef s dots are assigned references to the NTK
layout files containing your dataDefs and viewDefs. Once thisis done, the
NewtApp framework automatically registers your stationery with the Newton
system registry when your application isinstalled on a Newton device.

Each al | Dat aDef s and al | Vi ewDef s slot contains frames that are required to
contain slots with identical names, to indicate the dataDefs and viewDefs that work
together. (A dataDef must be registered with its set of viewDefs because dataDefs
use viewDefs to display their data.)

Intheal | Dat aDef s dot isaframe containing areference to the NTK layout
template for asingle dataDef. In the frame within the al | Vi ewDef s dlot isthe

Using NewtApp

CHAPTER 4

NewtApp Applications

frame containing slots with referencesto al the viewDef layout templates that
work with that dataDef.

The recommended way to name the corresponding al | Dat aDef s and
al | Vi ewDef s dotsisto set the slot names to the data symbol constant,
as shown in the following code examples.

Set theal | Dat aDef s dlot to return aframe with references to all the application’s
dataDefs, as follows:

result := {};

result. (kDataSynbol) := GetLayout ("I OUDat aDef");
/1 result.(kData2Synbol) := ... to add a 2nd Dat aDef
result;

Settheal | Vi ewDef s dot to return aframe with references to al the application’s
viewDefs, in aparallel manner, as shown in the following code:

result := {};

result. (kDataSynbol) :={
defaul t: GetLayout ("I OUDef aul t Vi ewDef "),
not es: Cet Layout ("1 OUNot esVi ewDef ") ,
i ouPrint Format: GetLayout ("1 OUPrintFormat"),
/1l Use for routing (beanmi ng, nailing, transports):
frameFormat: {_proto: protoFranmeFornat},
1
/1 Use to add a 2nd Dat aDef:
/1l result.(kData2Synbol) :={...}

result;

A NewtApp application only accepts stationery when a dataDef has a
super Synbol with avalue matching the value of the newt Appl i cati on
base view’s super Synbol dlot. For this reason you want the value of the
super Synbol dot to be aunique symbol. This sample application uses
the constant k Super Synbol , which is set to the application symbol

"| 1 QU:. PI EDTS]| , to set the super Synbol dlot.

Using the Required NewtApp Install and Remove Scripts

Anlnstall Scri pt functionand RenoveScri pt function are required to
register your NewtApp application with the system for the various system services.
These scripts are boilerplate functions you should copy unaltered.

Using NewtApp 4-21

4-22

CHAPTER 4

NewtApp Applications

You should create atext file, which you save as| nst al | &Renpve. f, into which
to copy the functions:

Install Script := func(partFrane)
begin
part Frame. r enoveFrane : =
(part Frame. theForm : Newt | nstal | Scri pt (part Frane. t heForn;

end;

RenoveScript : = func(partFrane)
begin

(part Frame. renoveFr ane) : Newt RenoveScri pt (renoveFr ane) ;
end;

Thisfile should be the last one processed when your application is built. (In NTK
this means that it should appear at the bottom of the Project file list.)

If you have included the stationery files built in Chapter 5, “ Stationery,” you may
now build, download, and run your NewtApp application.

Using Slot Views in Non-NewtApp Applications

The NewtApp dot view protos have alot of functionality built into them which you
may want to use in a non-NewtA pp application. You can do this by keeping your
existing application base view, removing the existing entry view layer and its
contents, replacing it with anewt Fal seEnt r yVi ew proto, and placing the slot
viewsinthenew Fal seEnt r yVi ew

The following requirements must be satisfied for slot views to work outside a
NewtApp application:

m The parent of the newt Fal seEnt r yVi ewmust have the following dlots:
O target
O targetView

m Thedot views must be contained in anewt Fal seEnt r yVi ew proto.

m Thenewt Fal seEnt r yVi ewmust receive aRet ar get message whenever
entries are changed.

Modifying the Base View

This discussion assumes that you already have a base view set up as part of your
NTK project and that anewt Fal seEnt r yVi ewwill be added to it later. If that is
the case, you aready have slots set with specifications for a soup name, soup
indices, a soup query, and a soup cursor (among numerous others.)

Using NewtApp

CHAPTER 4

NewtApp Applications

Certain slots must be added to these base view slots for your application to be able
to utilize the false entry view and the slot views. First, you must be sure to add a
target dotandt ar get Vi ewslot, so that the false entry view can set them when
an entry is changed. Second, you should include a method that sends the

Ret ar get message to the false entry view when an entry is changed. As an
example, you may wish to implement the following method, or one like it:

baseVi ew. DoReTargeting : = func()
t heFal seEntryVi ew. Ret ar get ()

There are several placesin your code where this message could be sent. For
instance, if your application scrolls through entries, you should send the
DoReTar get i ng message, defined above, to Vi ewScr ol | UpScr i pt
and Vi ewScr ol | DownScr i pt . Following is an example of a

Vi ewScrol | UpScri pt method that scrolls through soup entries:

func()
begi n
Ent ryChange(target);
car dSoupCur sor: Prev();
: Reset Target () ;
: DoRet argeting();
end

Other places where you may want to send the Ret ar get message include a
delete action method, aVi ewSet upDoneScri pt method (which executes
immediately before aview is displayed or redisplayed), or even the

Butt onCl i ckScri pt method of a button that generates new entries and
thus changes the soup and its display.

Using a False Entry View

The example used here, in which thenewt Fal seEnt r yVi ewisimplemented, is
anon-NewtApp application that supports the use of dot views. If you want to adopt
slot views into an existing application, you must use newt Fal seEnt r yVi ew.

Once you have an application base view set up, you may add the following slotsto
your newt Fal seEnt ryVi ew.

m Addadat aCur sor Sl ot and set it to the symbol ' car dSoupCur sor. This
symbol should match a slot defined in your application base view. The slot may
be omitted if your base application view’s cursor slot is set to the default name
dat aCur sor.

m Addadat aSoupSl ot and set it to the symbol ' car dSoup. This symbol
should match adlot defined in your application base view. The slot may be

Using NewtApp 4-23

4-24

CHAPTER 4

NewtApp Applications

omitted if your base application view’s soup slot is set to the default name
dat aSoup.

m AddasoupQuerySl ot and set it tothe symbol ' car dSoupQuer ySpec.
This symbol should match a slot defined in your application base view. The slot
may be omitted if your base application view’s soup query slot is set to the
default name soupQuery.

Finally, you should make sure to declare the newt Fal seEnt r yVi ewto the
application base view so the base view can send Ret ar get messagesto the false
entry view when data is changed.

For more information about the newt Fal seEnt r yVi ew see the Newton
Programmer’ s Reference.

Creating a Custom Labelled Input-Line Slot View

You may find situations in which you need to create a custom slot view to get one
that does exactly what your application requires. For example, the NewtApp
framework does not yet contain aslot view that can display apicture. Thisis
possible after you know more about how the slot views work.

In general, adlot view performs the following functions:
m Target data; that is, updates a soup entry from its contents and vice versa.
m Format data by using afilter.

m Allow you to place (“jam”) the data from another soup entry in this ot view. Of
the built-in dlot views, the newt Smar t Nane proto does this.

All slot views assume a soup entry has been set by the parent view as the value of
thet ar get dot. Thet ar get slot contains areference to the soup entry. The soup
entry contains the slot with the data to be displayed in a given slot view and stores
the new data.

Slot views also require apat h slot which refers to the specific slot within the
t ar get entry. The path expression must lead to adlot that holds the correct
kind of datafor agiven slot view. For instance, the pat h dot of a

newt ROText Dat eVi ew proto must refer to aslot in an entry that contain a
integer date.

In the label input-line slot view protos, formatting is accomplished by selecting the
correct NewtApp datafilter asthe value of the slot view’sf | avor dot. Note that
some of the NewtApp data filters also specify a particular system picker which will
be available when you use the popup option for your slot view. Seethe DTS
sample code to see how to create a new newt proto.

Using NewtApp

CHAPTER 4

NewtApp Applications

Summary of the NewtApp Framework

Required Code

Required InstallScript

Install Script := func(partFrame)
begi n
part Frane. renoveFrane : = (partFrane.theForm:

Newt I nstal | Scri pt (part Frane. t heFornmn;
end;

Required RemoveScript

RemoveScri pt : = func(part Frane)
begi n
(part Frame. renoveFr ane) : Newt RemoveScri pt (r emmoveFr ane) ;
end;
Protos
newtSoup

myNewt Soup : = {
_proto: newt Soup, // NewtApp soup proto
soupNane: "MyApp:SIG", // a string unique to your app

soupl ndi ces: | /lsoup particulars, may vary
{structure: 'dot, //describing a slot
pat h: 'title, // naned “title” which
type: 'string}, //contains a string
.1, // nore descriptions nmay follow

soupQuery: { /1l a soup query
type: 'index,
i ndexPat h: ' timeSamp}, // slot to use as index

soupDescr: " The Widget soup."//string describing the soup
def aul t Dat aType: ' soupType, //type for your soup entry

Summary of the NewtApp Framework 4-25

CHAPTER 4

NewtApp Applications

AddEntry: //Adds the entry to the specified store
f unc(entry, store)

AdoptEntry: // Adds entry to the application soup while
func(entry,type)... // preserving dataDef entry slots

CreateBl ankEntry: // Returns a blank entry
func()

Del eteEntry: // Renobves an entry fromits soup
func(entry)

DuplicateEntry: // Clones and returns entry
f unc(entry)

DoneWt hSoup: // Unregisters soup changes and soup
f unc(appSymbol)

Fi | | NewSoup: /1 Called by MakeSoup to add soup

func() ...1/ values to a new soup
MakeSoup: /1 Used by the newt Application proto
func(appSymbol)... // to return and regi ster a new soup
GetCursor: // Returns the cursor
func()
Set upCur sor: /'l Sets the cursor to an entry in the
func(querySpec) ... // master soup

Query: // Performs a query on a new Soup
f unc(querySpec)

GetAlias: // Returns an entry alias.
func(entry)...

Get CursorPosition: // Returns an entry alias.
func()

GoToAlias: // Returns entry referenced by the alias.
func(alias). ..

4-26 Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

newtApplication

myNewt AppBaseVi ew : = {

_proto: newtapplication, // Application base view proto
appSynbol : ' | 10OU: DTY // Uni que application synbol
title: "Roll Starter™ // A string nam ng the app
appObject: ["Ox","Oxen"]// Array with singular and

/1 plural strings describing application s data
appAll: "All Notes' // Displayed in folder tab picker

al | Soups: { //Frane defining all known soups for app
mySoup: {
_proto: new Soup,
C }
}

al | Layouts: {
/1l Frame with references to |ayout files;
/1 both default and overview required.
def aul t: Get Layout (" DefaultLayoutFile") ,
overvi ew. Get Layout (" OverviewLayoutFile") ,

}

scrol Ii ngEndBehavi or:' beepAndWap // How scrolling is
/1 handl ed at end of view, can also be 'wap,'stop,or
/1 ' beepAndSt op.

scrol li ngUpBehavi or: 'bottom//Either 'top or 'bottom

statusBar Sl ot: ' mySatusBar // Decl are nane to base so
//layouts may send nessages

al | Dat aDef s: {' | appName: SGJ : Get Layout (" yourDataDef") }
// Franme with dataDef synbols as slot nanes. Slot
/1 values are references to dataDef |ayout files.

al | Vi ewDef s:
{' | appName: SIG| : {defaul t: Get Layout (" yourViewDef") } }
/1 Frane with dataDef synbols as slot nanes. Slot
/'l values are references to franmes of vi ewDef
/1 layout files.

super Synbol : ' | appName: SG| // Uni que synbol identifying
/I super Set of application’s soups

doCardRouti ng:true or 'onlyCardRouting //Enables
/1 filing and routing

Summary of the NewtApp Framework 4-27

4-28

CHAPTER 4

NewtApp Applications

dat eFi ndSl ot : pathExpression// Enabl es dateFi nd for your
/1 app. Path nust lead to a slot containing a date.
routeScripts: //Contains default Del ete and Duplicate

//route scripts.
| abel sFilter: //Set dynanmicallyfor filingsettings
| ayout : /1 Set to the current |ayout
newt AppBase: //Set dynamically to identify, for

/linstance, view to be closed when close box tapped

retargetChain: // Dynamically set array of views

/] to update.
targetView // Dynanmically set to the view where

/1 target soup entry is displayed

target: // Set to the soup entry to be displayed

AddEntryFronttati onery: //Returns blank entry with cl ass
f unc(stationerySymbol)// sl ot set to stationerySymbol

Adopt EntryFrontstati onery: // Returns entry with all slots
f unc(adoptee, stationerySymbol, store) . . . // from adopted frane
/land class slot set to stationerySymbol

Adopt SoupEnt ryFronfst ati onery: //Same as above plus
f unc(adoptee, stationerySymbol, store, soup) . .. // you specify
/lsoup & store

Fol der Changed: // Changes fol der tab to new val ue
f unc(soupName, oldFolder, newFolder)

FilterChanged: //Updates folder |abels for each soup

func() Ilin the all Soups frane.
Chainln: //Adds views needing to be notified for
func(chainSymbol) //retargeting to chainSymbol array.
Chai nQut : /| Removes views from
func(chainSymbol) //chainSymbol array.
CGet Target : /!l Returns current soup entry.
func()
Get Tar get Vi ew. /I Returns view in which the
func() Il target entry is displayed.

DateFind: // Default DateFind nethod defined in franework.
/'l Set dateFindSlot in base viewto enable it.
f unc(date, findType, results, scope, findContext)

Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

Fi nd: // Default Find nmethod as defined in franmework.
f unc(text, results, scope, findContext) . . .

ShowLayout:// Switches display to specified | ayout.
func(layout). . .

Newt Del et eScript:// Deletes entry.
func(entry,view)... // Referenced in routeScripts array

Newt Dupl i cateScript:// Duplicates entry.
func(entry,view)... // Referenced in routeScripts array

Cet AppState:// Gets app preferences, sets app, & returns
func()... // prefs. Override to add own app prefs.

CetDefaultState:// Sets default app preferences.
func()... // CQOverride to add own app prefs.

SaveAppState:// Sets default app preferences.
func()... // Override to add own app prefs.

newtlinfoButton

infoButton : = { /1 The standard “i” info button

_proto: newtInfoButton,// Place proto in menuLeftButtons

Dol nf oHel p: /1 Opens online hel p book
func()...,

Dol nf oAbout : /1 Ei ther opens or closes an
func()..., /1 About view

Dol nf oPr ef s: /1 Either opens or closes a
func()...,} /'l Preferences view

newtActionButton

actionButton : = { /1 the standard action button

_proto: newt ActionButton } // place in nenuRi ghtButtons

newtFilingButton

filingButton : = { /1 the standard filing button
_proto: newtFilingButton } // place in nenuRi ghtButtons

Summary of the NewtApp Framework 4-29

CHAPTER 4

NewtApp Applications

newtAZTabs

myAZTab: = { /1 the standard A-Z tabs

_proto: newt AZTabs,

Pi ckActi onScri pt: [/ Default definition keys to
func(letter) ...} /1 'indexPat h of all Soups soup query

newtFolderTab

myFolderTab: = { /1 the plain folder tab
_proto: new Fol der Tab }

newtClockFolderTab

myClockFolderTab: = { /1 digital clock and fol der tabs
_proto: newt C ockFol der Tab }

newtStatusBarNoClose

aSatusBarNoClose: = { /1 status bar with no cl ose box
_proto: newt St at usBar Nod ose,
menuLeftButtons: [], //array of button protos
/1 laid out left to right
menuRi ght Buttons: [], // array of button protos laid out
/1 right to left

newtStatusBar

aSatusBar: = { /] status bar with cl ose box
_proto: new St at usBar
menuLeftButtons: [], //array of button protos
/1 laid out left to right
menuRi ght Buttons: [], // array of button protos laid out
/1 right to left }

newtFloatingBar

aFloatingBar: = { /] status bar with cl ose box
_proto: newtFl oati ngBar,
menuButtons: [], // array of button protos }

newtAboutView

anAboutView: = { // The about view
_proto: newt About Vi ew }

4-30 Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

newtPrefsView

aPrefsView: = { /1 The preferences view
_proto: newtPrefsView }

newtLayout
aBasicLayout: = { /1 The basic |ayout view
_proto: new Layout,

nane: "" /1 Optional.

mast er SoupSl ot : ' mainSoup, // Required.

/1 Synbol referring to soup from all Soups sl ot
forceNewkntry: true, //Forces new entry when enpty

/1 fol der opened.

menuRi ght Buttons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dat aSoup: ' soupSymbol, // Set to soup for this |ayout
dataCursor: ,// Set to top visible entry; main cursor

Fl ushDat a: /1 Flushes all children's entries
func(),

NewTar get : /1Utility resets origin and
func(), /1 resets screen

ReTar get : /] Sets the dataCursor slot and resets

func(setViews),// screen if setViews is true

Scroll Cursor: //Moves cursor delta entries and resets it.

func(deta),

Set UpCur sor: /1 Sets cursor and returns entry.
func(),
Scrol ler: /1 Moves numAndDirection entries. Scrolls

f unc(numAndDirection) . . ., //up i f numAndDirection <O.
Vi ewScrol | DownScript: // Calls scroller with the

func()..., /lval ue of 1.
ViewScrol | UpScript: // Calls scroller with the
func()..., /lval ue of -1.
DoRet arget () : /1l Calls the “right” retarget
func()...,
}

Summary of the NewtApp Framework

4-31

CHAPTER 4

NewtApp Applications

newtRollLayout

myRollLayout: = { // Dynamically lays out child views
_proto: newtRoll Layout, // using protoChild as default
prot oChil d: Get Layout (" DefaultEntryView"), // Default view
nane: "", /1 Optional.
mast er SoupSl ot: ' mainSoup, // Required.
/1 Symbol referring to soup from all Soups sl ot
forceNewkntry: true, //Forces new entry when enpty
/] fol der opened.
menuRi ght Buttons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dat aSoup: ' soupSymbol, // Set to soup for this |ayout
dataCursor: ,// Set to top visible entry; main cursor

/1 Al newtLayout methods are inherited.

}

newtPagelLayout

myPagelLayout: = { // Dynamically lays out child views
_proto: newtPagelLayout, // using protoChild as default
prot oChil d: Get Layout (" DefaultEntryView"), // Default view
nane: "", /1 Optional.
mast er SoupSl ot: ' mainSoup, // Required.
/1 Symbol referring to soup from all Soups sl ot
forceNewkntry: true, //Forces new entry when enpty
/1 fol der opened.
menuRi ght Buttons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dat aSoup: ' soupSymbol, // Set to soup for this |ayout
dataCursor: ,// Set to top visible entry; main cursor

/1 Al newtLayout methods are inherited.

}

newtOverLayout

myOverLayout: = { // Overview for page and card type | ayout
_proto: newt Over Layout
centerTarget: nil, // True centers entry in overview
mast er SoupSl ot: ' mainSoup, // Required.
/1 Symbol referring to soup from all Soups sl ot
nane: "", /1 Required but not used.

4-32 Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

forceNewkntry: true, //Creates blank entry for |ayout
menuRi ght Buttons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar

not hi ngCheckabl e: nil, //True suppresses checkboxes
Abstract: //Returns shapes for itens in overviews
func(targetEntry, bbox) ..., //Override to extract text

GetTargetInfo: //Returns frame with target information
func(targetType) . . .,

Hitltem //Called when overviewitemis tapped.
func(index, x,y). ..,

/1 Al newtlLayout nethods are inherited.
}

newtRollOverLayout

myOverLayout: = { // Overview for roll-type application

_proto: newt Rol | Over Layout //Sane as newt Over Layout
centerTarget: nil, // True centers entry in overview
mast er SoupSl ot: ' mainSoup, // Required.

/1 Synbol referring to soup from all Soups sl ot
nane: "", /1 Required but not used.
menuRi ght Buttons:[], //Replaces slot in status bar
nmenuLeftButtons:[], //Replaces slot in status bar
forceNewkEntry: true, //Creates blank entry for |ayout

not hi ngCheckabl e: nil, //True suppresses checkboxes
Abstract: //Returns shapes for items in overviews
func(targetEntry, bbox) ..., //Override to extract text

GetTargetInfo: //Returns frame with target information
func(targetType) . . .,

Hitltem //Called when overviewitemis tapped.
func(index, x,y) . ..,

/1 Al newtlLayout nethods are inherited.
}

newtEntryView

anEntryView: = { // Invisible container for slot views
_proto: newt EntryVi ew
entryChanged: //Set to true for flushing
entryDirtied: //Set to true if flush occurred
target: //Set to entry for display
currentDataDef: //Set to current databDef

Summary of the NewtApp Framework 4-33

4-34

CHAPTER 4

NewtApp Applications

currentViewDef: //Set to current viewDef
currentStatView. //Set to current context of viewDef
StartFlush: // Starts timer that flushes entry

func()...,
EndFl ush: // Called when flush timer fires
func()...,

EntryCool: // |Is target read-only? True report
func(report)..., //displays wite-protected nessage
JanfFronEntry: // Finds children’s janFronEntry and sends

func(otherEntry). .., // message if found, then retargets
Retarget: // Changes stationery’'s display then sends
func()...,// message on to child views
DoRetarget: // Calls the “right” retarget
func()...,//

}

newtFalseEntryView

aFalseEntryView: = {// Use as container for slot views in
_proto: new Fal seEntryView, // non-Newt App applicati ons.
targetSlot: 'target, //Parent needs to have slots
dat aCursor Sl ot: 'dataCursor, //w th nanes
targetSlot: 'dataSoup, //that match each of
dat aSoup: 'soupQuery // these synbols.
/1 newt Fal seEntryView inherits all newtEntryVi ew net hods.

}

newtRollEntryView

aRollEntryView: = {// Entry view for paper roll-style apps
_proto: newmtRoll EntryView, //stationery required.

bott o essHei ght: kEntryVi ewHei ght, //Opti onal
/1 Inherits slots and nmethods from newt EntryVi ew.

}

newtEntryPageHeader

aPageHeader: = { // Header bar for card or page-style apps
_proto: newt EntryPageHeader,
/1 contains no additional slots or nethods

}

Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

newtEntryRollHeader

aRollHeader: = { // Header/divider bar for page or
/1 roll-style apps
_proto: newt EntryRol | Header,
hasFiling: true // NI is no filing or action buttons
i SResi zable: true // NI is no drag resizing

}

newtEntryViewActionButton

anEntryActionButton: = {// Action button to use on headers
/1l and within entry views
_proto: newt EntryVi ewActi onButton

}

newtEntryViewFilingButton

anEntryFilingButton: = {// Filing button to use on headers
/1l and within entry views
_proto: newtEntryVi ewri | i ngButton

}

newtlnfoBox

aninfoBox: = { /1 Floating view displayed when header
_proto: newtlnfoBox, //icon tapped

icon: ,// Optional, default provided.

description: "",// Displayed in view next to icon.

}

newtROTextView

readOnlyTextView: = {// Al sinple slot views based on this
_proto: newt ROText Vi ew,

pat h: ' pat hExpr,// Text stored and retrieved from here

styles: nil,// Plain text.

tabs: nil,// Tabs not enabl ed.

jantl ot: 'janmPat hExpr,// New path for JanfFronEntry.
TextScript: // Returns a text representation of data

func()..., 1/
JanFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}

Summary of the NewtApp Framework 4-35

CHAPTER 4

NewtApp Applications

newtTextView

editableTextView: = {// This is the editable text view
_proto: newt Text Vi ew,

pat h: ' pathExpr,// Text stored/retrieved from here

styles: nil,// Plain text.

tabs: nil,// Tabs not enabl ed.

jantl ot: 'jamPat hExpr,// New path for JanFronEntry.
TextScript: // Returns a text representation of data

func()..., I/
JanfFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}
newtRONumView

readOnlyNumberView: = {// Read-only nunber view

_proto: newt RONunvVvi ew,
pat h: ' pat hExpr,// Nunmbers stored/retrieved from here
format: % 10g,// For 10-pl ace decinmal; you may change
integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data

func()..., /!
JanFronEntry: // Retargets to jamPathExpr if not nil
func(jamPathExpr) ..., //
}
newtNumView

editableNumberView: = {// Edit abl e nunber view

_proto: newt NunVi ew,
pat h: ' pat hExpr,// Numbers stored/retrieved from here
format: % 10g,// For 10-pl ace deci mal; you may change
integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data

func()..., I/
JanfFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}
newtROTextDateView

readOnlyTextDateView: = {// Read-only text and date view. One
_proto: newt ROTextDateView, //format slot nust be non-nil
pat h: 'pathExpr,// Data stored/retrieved from here

4-36 Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

| ongFormat: year Mont hDayStr Spec,// for LongDateStr

short Format: nil, /1 for ShortDateStr function
TextScript: // Returns a text representation of data
func()..., [/

JanfFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}

newtTextDateView

editableTextDateView: = {// Editable text and date view One
_proto: newt Text DateView, //format slot rmust be non-nil
path: 'pathExpr,// Data stored/retrieved fromhere
| ongFor mat: year Mont hDaySt r Spec, // for LongDateStr
shortFormat: nil, /1 for ShortDateStr function
TextScript: // Returns a text representation of data
func()..., [/
JanFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //

}

newtROTextTimeView

readOnlyTextTimeView: = {// Di splays and formats time text
_proto: newt ROText Ti neVi ew,
path: 'pathExpr,// Data stored/retrieved fromhere
format: ShortTi meStrSpec,// for TimeStr function
TextScript: // Returns a text representation of data

func()..., [/
JanFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}

newtTextTimeView

editableTextTimeView: = {// Editable time text
_proto: newt Text Ti meVi ew,
path: 'pathExpr,// Data stored/retrieved fromhere
format: ShortTi meStrSpec,// for TimeStr function
TextScript: // Returns a text representation of data

func()..., [/
JanFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}

Summary of the NewtApp Framework

4-37

CHAPTER 4

NewtApp Applications

newtROTextPhoneView

readOnlyTextPhoneView: = {// Di spl ays phone nunbers
_proto: newt ROText PhoneVi ew,

pat h: 'pathExpr,// Data stored/retrieved from here
TextScript: // Returns a text representation of data

func()..., I/
JanfFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}
newtTextPhoneView

EditableTextPhoneView: = {// Di spl ays editabl e phone nunbers
_proto: newt Text PhoneVi ew,
pat h: 'pathExpr,// Data stored/retrieved from here
TextScript: // Returns a text representation of data

func()..., I/
JanfFronEntry: // Retargets to jamPathExpr i f not nil
func(jamPathExpr) ..., //
}

newtAreaCodelLine

pr ot onewt Ar eaCodelLi ne : = {
_proto: protonewt AreaCodeli ne,

flavor: newt PhoneFilter
access: 'query

| abel: string //text to display in the highlight w ndow
pat h: 'pathExpr,// Data stored/retrieved from here

}

newtAreaCodePhoneLine

pr ot onewt Ar eaCodelLi ne : = {
_proto: protonewt AreaCodeli ne,

flavor: newt PhoneFilter
access: 'query

| abel: string //text to display in the highlight w ndow
pat h: 'pathExpr,// Data stored/retrieved from here

}

4-38 Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

newtROEditView

readOnlyEditView: = { // A text display view, which
/1l may have scrollers
_proto: newt ROEdi t Vi ew,
optionFl ags: kNoOpti ons, /1 disables scroller
/1 kHasScrol | ersOpti on enabl es scroller
doCaret: true, //caret is autoset
vi ewLi neSpaci ng: 28,
pat h: ' pathExpr,// Data stored/retrieved fromhere
Scrol ltowsrd: // Finds words, scrolls to it, and high-
func(words, hilite) ..., // lights it (if hiliteis true)
}

newteditView

editView: = { /1 A text edit view which
/1l may have scrollers
_proto: newt EditView,
optionFl ags: kNoOpti ons, /1 disables scroller
/1 kHasScrol | ersOpti on enabl es scroller
doCaret: true, //caret is autoset
vi ewLi neSpaci ng: 28,
pat h: ' pathExpr,// Data stored/retrieved fromhere
Scrol ltowsrd: // Finds words, scrolls to it, and high-

func(words, hilite) ..., // lights it (if hiliteis true)
}
newtCheckBox
checkBoxView: = { /1 A checkbox

_proto: newt CheckBox
assert: true,// Data stored/retrieved fromhere
negate: nil,// Data stored/retrieved from here
pat h: ' pathExpr,// Data stored/retrieved fromhere

Vi ewSet upForm // |s target.(path)= assert?
func()..., 1/

Val ueChanged: // Changes target.(path) value to its
func()..., // opposite either true or false

}

Summary of the NewtApp Framework

4-39

4-40

CHAPTER 4

NewtApp Applications

newtStationeryView

stationeryView: = { /1 Used as boundi ng box and cont ai ner
Il view for viewDef
_proto: newt StationeryVi ew

}

newtEntryLockedlcon

entryLockedlcon:={ //Shows lock if slot is on |ocked nedia
_proto: newtEntrylLockedl con

icon: nil,// Can also be: |ockedlcon
Retarget : // displays either |ock or unlocked icon

func()...,
Setlcon: // Changes target.(path) value to its
func()..., // opposite either true or false

}

newtProtoLine

basiclnputLine: = { /1 Base for input line protos
_proto: newt Protoline,

| abel : "",// Text for input |ine |abel

| abel Conmands: ["", "",],// Picker options

cur Label Command: 1,// Integer for current command

usePopup: true,// Wen true with | abel Commands array
/'l picker is enabled

pat h: 'pathExpr,// Data stored/retrieved from here

access: 'readWite,// Could be 'readOnly or 'pickOnly

flavor: newtFilter,// Don't change

menory: nil, /1 nost recent picker choices
ChangePopup: // change picker itens before they display
func(itemyentry) ..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabellnputLine

alabellnputLine: = { /1 Labelled input line for text
_proto: newt Label | nput Li ne,
| abel : "",// Text for input line |abel

| abel Conmands: ["", .1.,// Picker options
cur Label Command: integer,// Integer for current conmand

Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

usePopup: true,// Wen true with | abel Cormands array
/1 picker is enabled
access: 'readWite,// Could be 'readOnly or 'pickOnly
flavor: new TextFilter,//
nmenory: nil, /1 nost recent picker choices
path: 'pathExpr,// Data stored/retrieved fromhere
ChangePopup: // change picker itens before they display

func(itementry)..., //
Updat eText: // Used with Undo to update text to new text

func(newText)..., //

}

newtROLabellnputLine
alLabellnputLine: = { /1 Labelled display line for text
_proto: newt ROLabel I nput Li ne,

label: "",// Text for input Iine |abel

flavor: newt TextFilter,//
menory: nil, /1 nost recent picker choices

path: 'pathExpr,// Data stored/retrieved fromhere
ChangePopup: // change picker itens before they display

func(itementry)..., //
Updat eText: // Used with Undo to update text to new text
func(newText)..., //
}

newtLabelNumInputLine

al.abelNumberInputLine: = { /1 Label | ed nunber input |ine
_proto: newt Label Num nput Li ne,
label: "",// Text for input Iine |abel
| abel Commands: ["", "",],// Picker options
cur Label Conmand: integer,// Integer for current conmmand
usePopup: true,// Wien true with | abel Cormands array
/1 picker is enabled
access: 'readWite,// Could be 'readOnly or 'pickOnly
flavor: newt NunberFilter,//
menory: nil, /1 nost recent picker choices
path: 'pathExpr,// Data stored/retrieved fromhere
ChangePopup: // change picker itens before they display

func(itementry)..., //
Updat eText: // Used with Undo to update text to new text
func(newText)..., //
}

Summary of the NewtApp Framework 4-41

4-42

CHAPTER 4

NewtApp Applications

newtROLabelNuminputLine

aDisplayLabelNumberinputLine: = {// Label |l ed nunber display |ine
_proto: newt ROLabel Nunml nput Li ne,

| abel : "",// Text for input line |abel

flavor: newtNumberFilter,//

pat h: 'pathExpr,// Data stored/retrieved from here
UpdateText: // Used with Undo to update text to new text

func(newText)..., //

}

newtLabelDatelnputLine

editableLabelNumberinputLine: = {// Labell ed date input |ine
_proto: newt Label Dat el nput Li ne,

| abel : "",// Text for input |ine |abel

| abel Commands: ["", "",],// Picker options

cur Label Conmand: integer,// |Integer for current conmand
menory: nil, /1 nost recent picker choices

usePopup: true,// Wen true with | abel Coomands array
/1 picker is enabled
access: 'readWite,// Could be 'readOnly or 'pickOnly
flavor: newtDateFilter,//
pat h: 'pathExpr,// Data stored/retrieved from here
ChangePopup: // change picker itens before they display

func(itementry)..., //
UpdateText: // Used with Undo to update text to new text
func(newText)..., //
}
newtROLabelDatelnputLine
displayLabelDatelLine: = { /1 Labell ed nunber display Iine
_proto: newt ROLabel Dat el nput Li ne,
| abel : "",// Text for input line |abel

flavor: newtDateFilter,// Don’t change

pat h: 'pathExpr,// Data stored/retrieved from here
UpdateText: // Used with Undo to update text to new text

func(newText)..., //

}

newtLabelSimpleDatelnputLine

editableLabelSmpleDateline = {// Label | ed date display |ine
/] accepts dates like 9/15 or 9/15/95

Summary of the NewtApp Framework

CHAPTER 4

NewtApp Applications

_proto: new Label Si npl eDat el nput Li ne,
label: "",// Text for input Iine |abel
access: 'readWite,// Could be 'readOnly or 'pickOnly
flavor: newt SinpleDateFilter,//
path: 'pathExpr,// Data stored/retrieved fromhere
Updat eText: // Used with Undo to update text to new text
func(newText)..., //

}
newtNRLabelDatelnputLine

pickerLabelDatelnputLine: = { // I nput through DatePopup picker
_proto: newt NRLabel Dat el nput Li ne,

| abel : "",// Text for input |ine |abel

access: 'pickOnly,// Could be 'readOnly

flavor: newtDateFilter,//

pat h: 'pathExpr,// Data stored/retrieved fromhere
UpdateText: // Used with Undo to update text to new text

func(newText)..., //
}
newtROLabelTimelnputLine
displayLabel TimeLine: = { /1 Labelled tinme display |line
_proto: newt ROLabel Ti mel nput Li ne,
| abel : "",// Text for input |ine |abel

flavor: nemt TineFilter,// Don’t change
path: 'pathExpr,// Data stored/retrieved fromhere

}

newtLabelTimelnputLine

aLabel TimelnputLine: = { /1 Labelled time input line
_proto: newt Label Ti nel nput Li ne,

| abel : "",// Text for input |ine |abel

| abel Commands: ["", "",],// Picker options

cur Label Command: integer,// Integer for current conmrmand
usePopup: true,// Wen true with | abel Coomands array
/1 picker is enabled

access: 'readWite,// Could be 'readOnly or 'pickOnly

flavor: newmt TineFilter,// Don’t change

menory: nil, /1 nost recent picker choices

pat h: 'pathExpr,// Data stored/retrieved fromhere
ChangePopup: // change picker itens before they display

func(itementry)..., //

Summary of the NewtApp Framework 4-43

4-44

CHAPTER 4

NewtApp Applications

UpdateText: // Used with Undo to update text to new text
func(newText)..., //
}

newtNRLabelTimelnputLine

pickerLabel TimelnputLine: = { // Input through Ti nePopup picker
_proto: newt NRLabel Ti nel nput Li ne,

| abel : "",// Text for input line |abel

access: 'pickOnly,// Could be 'readOnly

flavor: newt TinmeFilter,// Don’t change

path: 'pathExpr,// Data stored/retrieved fromhere
UpdateText: // Used with Undo to update text to new text

func(newText) ..., //
}
newtLabelPhonelnputLine
alabelPhonelnputLine: = { /1 Labell ed phone input |ine
_proto: newt Label Phonel nput Li ne,
label: "",// Text for input |ine |abel

usePopup: true,// Wen true with | abel Commands array
/1 picker is enabled
access: 'readWite,// Could be 'readOnly or 'pickOnly
flavor: newt PhoneFilter,// Don't change
menmory: nil, /1 nmost recent picker choices
path: 'pathExpr,// Data stored/retrieved fromhere
ChangePopup: // change picker itens before they display

func(itementry)..., //
UpdateText: // Used with Undo to update text to new text
func(newText)..., //
}
newtSmartNameView
smartNameLine: = { /'l protoPeopl ePi cker | nput
_proto: newt Smart NameView, // from Names soup
| abel : "",// Text for input line |abel

access: 'readWite,// Could be 'readOnly or 'pickOnly

flavor: newt Smart NaneFilter,// Don’t change

path: 'pathExpr,// Data stored/retrieved fromhere
UpdateText: // Used with Undo to update text to new text

func(newText) . . .,

}

Summary of the NewtApp Framework

CHAPTER 5

Stationery

Stationery, which consists of new data formats and different views of your data,
may be built into an application or added as an extension. Once incorporated, these
data formats and views are available through the pickers (pop-up menus) of the
New and Show buttons.

Stationery works best when incorporated into a NewtApp application. It is part of the
NewtApp framework and is tightly integrated into its structures. If you are building
applications using the NewtApp framework, you'll probably want to read this chapter.

Before you begin you should aready be familiar with the concepts documented in
Chapter 4, “NewtApp Applications,” as well as the concepts of views and templates,
soups and stores, and system services like finding, filing, and routing. These subjects
are covered in Chapter 3, “Views,” Chapter 11, “Data Storage and Retrieval,”
Chapter 16, “Find,” Chapter 15, “Filing,” and Chapter 21, “Routing Interface.”

The examplesin this chapter use the Newton Toolkit (NTK) development
environment. Therefore, you should also be familiar with NTK before you try the
examples. Consult Newton Toolkit User’s Guide for information about NTK.

This chapter describes:

m how to create stationery and tie it into an application
m how to create, register, and install an extension

m the stationery protos, methods, and global functions

About Stationery

Stationery application extensions provide different ways of structuring data and
various ways to view that data. To add stationery to your application, you must
create adata definition, also called a dataDef, and an adjunct view definition, also
called aviewDef. Both of the stationery components are created as view templates,
though only the viewDef displays asaview at run time. Stationery always consists
of at least one dataDef which has one or more viewDefs associated with it.

About Stationery 51

CHAPTER 5

Stationery

A dataDef isbased on thenewt St at i onery proto and is used to create
alternative data structures. The dataDef contains slots that define, describe, and
identify its data structures. It also contains a slot, called super Synbol , that
identifies the application into which its data entries are to be subsumed. It also
contains anane slot where the string that names the dataDef is placed. Thisisthe
name that appears in the New picker. Note that each of the items shown in the New
menu of the Notes application in Figure 5-1 is a dataDef name.

The viewDef is based on any general view proto, depending upon the
characteristics you wish to impart, but must have a specified set of slots added to it.
(For more information about the slots required in viewDefs and dataDefs, see the
“Stationery Reference” chapter in Newton Programmer’s Reference.) The viewDef
isthe view template you design as the input and display device for your data. It is
the component of stationery that imparts the “look and feel” for that part of the
application. Each dataDef must have at least one viewDef defined to display it,
though it can have several.

You may include or add stationery to any NewtApp application or any application
that already uses stationery. The stationery components you create appear as items
in the pickers (pop-up menus) of the New and Show buttons.

The Stationery Buttons

The stationery buttons are necessary to integrate stationery definitions with
an application. They must be in the application which isto display your
stationery components. They are defined as part of the NewtApp framework
and work only when included in a NewtApp application. (You can use the
newt St at i oner yPopupBut t on proto to create your own non-
NewtApp buttons.)

The New button offers new data formats generated from dataDefs. For example,
the New button in the built-in Calls application creates one new data entry form by
default; if it contained more dataDefs there would be a New picker available. The
New button of the built-in Notes application offers a picker whose choices create a
new Note, Checklist, or Outline format for entering notes. The example used in this
chapter extends the built-in Notes application by adding the dataDef item IOU to
the New menu, as shown in Figure 5-1.

About Stationery

CHAPTER 5

Stationery

Figure 5-1 The 10U extension in the New picker

E Mote

Checklist

] wou
Outline

When you choose |0U from the New picker, an |OU entry is displayed, as shown
in Figure 5-2.

Figure 5-2 The IOU extension to the Notes application
]5at 10428 EE

#whe: Gregory Chrigtie

Howr fluch:

#Date Due:

#Due Time:
[HLA JlE={eNew
Name:s Dates Eetras . Uﬁ Find Assist

w

The Show button offers different views for the display of application data. These
are generated by the viewDefs defined for an application. For example, the choices
in the Show button of the built-in Names application include a Card and All Info
view of the data. These views appear as shown in Figure 5-3.

About Stationery 5-3

CHAPTER 5
Stationery

Figure 5-3 The Show menu presents different views of application data

54

Y+ U filed Names %
D) cdjefian) ik nnjop) arj stjuvivxva) Mon 10/30 @=

Alice's Restaurant

- 100 Main St. .
Newton, MA 02 165

- 617 555-2020

= B617555-1212F %

- Birthday: 12-25-04 L) cdleffon] ik nnjop] ar) st juvirx]y=
BARIYersary: o- 13 93 Alice's Restaurant

Family: Joe, [immy, Janis

= Card Style: 100 Main St.

Newton, Ma 02165

/017 555-2020
&el17555-1212F

Card ¥ Card
New {rAdd v Al Info FAHX} new {+Add Al info (X}

Stationery Registration

Your stationery, which may be built as part of an application or outside of an
application (asan NTK auto part), must be registered with the system when an
application isinstalled and unregistered when an application is uninstalled.
DataDef and viewDef registry functions coordinate those stationery parts by
registering the viewDef with its dataDef symbol, as well asits view template. The
dataDef registry function adds its view templates to the system registry.

When it is part of a NewtApp application, stationery registration is done
automatically—after you set dots with the necessary symbols. If you create your
stationery outside of a NewtApp application, you must register (and unregister)
your stationery manually by using the global functions provided for that

purpose (RegDat aDef , UnRegDat aDef , Regi st er Vi ewDef , and

UnRegi st er Vi ewDef) inthel nstal | Scri pt and RenmoveScri pt functions
in your application part.

Once stationery is registered, applications can make use of those dataDefs whose
super Synbol slot matches the application’s super Synbol dot.

About Stationery

CHAPTER 5

Stationery

Getting Information about Stationery

By using the appropriate global function, you can get information about al the
dataDefs and viewDefs that have been registered and thus are part of the system
registry. These functionsinclude Get Def s, Get Dat aDef s, Get AppDat aDef s,
Get Vi ewDef s, and so on. For details on these functions, see Newton
Programmer’s Reference.

You can a'so obtain application-specific stationery information. This enables
applications that are registered for stationery to be extended by other developers.

Compatibility Information

The stationery feature and programming interface is new in Newton OS version
2.0. It is not supported on earlier system versions.

Using Stationery

Stationery allows you to:

m Create discrete data definitions and view definitions.
m Extend your own and other applications.

m Create print formats.

Designing Stationery

Whether you use stationery in an application or an auto part, it isimportant to keep
the data and view definitions as discrete as possible. Encapsulating them, by
keeping all references confined to the code in the data or view definition, will make
them maximally reusable.

You should keep in mind that these extensions may be used in any number of
future programming situations that you cannot foresee. If your stationery was
created for an application (which you may have written at the same time), resist
any and al urges to make references to structures contained in that application,
thereby “hard-wiring” it to depend on that application. In addition, you should
provide public interfaces to any values you want to share outside the dataDef.

If your stationery is designed for a NewtApp, the stationery soup entries, which are
defined in the dataDef component of stationery, are adopted into the soup of a
NewtApp application (viathe Adopt Ent r y method) so that your stationery’s sots
are added to those already defined in the main application. This allows the
stationery and the host application to have discrete soup structures. See the
description of Adopt Ent ry (page 3-5) in Newton Programmer’s Reference.

Using Stationery 55

CHAPTER 5

Stationery

The dataDef component of your stationery should useaFi | | NewEnt ry method
to define its own discrete soup entry structure. Note that it is your responsihility to
set acl ass dot within each entry. The value of thecl ass slot must match the
dataDef symbol and is used by the system when routing the entry (viafaxing,
mailing, beaming, printing, and so on). An example of how to use Fi | | NewEnt ry
follows.

Using FillNewEntry

You usetheFi | | NewEnt r y method in your dataDef to create an entry structure
that istailored to your data. This approach is recommended when your stationery is
implemented as part of a NewtApp application.

TheFi | | NewEnt r y method works in conjunction with the NewtApp
framework’snewt Soup. Cr eat eBl ankEnt ry method. TheFi | | NewEnt ry
method takes a new entry, asreturned by the Cr eat eBl ankEnt r y method, asa
parameter. Thisis done with aCr eat eBl ankEnt r y implementation put in the
newt Appl i cati on. al | Soups dot of your NewtApp application, as shown in
the following example:

CreateBl ankEntry: func()
begin
| ocal newkntry :

Clone({class:nil,
Vi ewSt ati onery: nil,
title: nil,
timeStanp: nil,
hei ght: 176});
newentry.title := ShortDate(tinme());
newentry.tinmeStanmp := time();
newentry,
end,

This new entry contains an entry template. In the following code example, that
new entry is passed as a parameter to the Fi | | NewEnt r y method, which is
implemented in the stationery’s dataDef. Fi | | NewEnt r y adds a slot named
kDat aSynbol , which contains an entry template for the stationery’s data
definition. It then adds acl ass dot to the new entry, which is set to the same
constant (kDat aSynbol). A vi ewSt at i onery dlot isthen added and set to the
same constant (only needed for vestigial compatibility with the Notes application).
Finally, it adds avalue to the dueDat e slot of the kDat aSynbol entry.

Fill Newentry: func(newEntry)
begi n
newent ry. (kDat aSynbol) : =
C one({who: "A Nane",
howMuch: 42,
duebDate: nil});

Using Stationery

CHAPTER 5

Stationery

newentry. cl ass : = kDat aSynbol ;
newEntry. vi ewSt ati onery : = kDat aSynbol ;
newknt ry. (kDat aSynbol). dueDat e: =ti me();
newentry;

end;

Extending the Notes Application

You may extend an existing application, such as the built-in Notes application, by
adding your own stationery. Thisis done by building and downloading an NTK
auto part that defines your stationery extensions.

The sample project used to illustrate many of the following sections consists of
these files, in the processing order shown:

m ExtendNotes.rsrc

m ExtendNotes Definitions.f

m i ouDat aDef

m i ouDef aul t Vi ewDef

m i ouPri nt For mat

m ExtendNotes Install & Renove.f

Of these, thei ouDat aDef , i ouDef aul t Vi ewDef , and Ext endNot es
Install & Renove. f filesareused inthe examplesin this chapter. The
resource file (Ext endNot es. r sr ¢) contains the icon that is displayed next to the
dataDef namein the New menu (as shown in Figure 5-1). The definitionsfile

(Ext endNot es Defi ni ti ons. f) isthefilein which the constants, some of
which are used in examples, are defined. Finaly, thei ouPr i nt For mat file
defines a print format for the stationery.

Determining the SuperSymbol of the Host

Using stationery requires the presence of a matching super Synbol dot in both
the host application and the dataDef component of your stationery. The valuein the
super Synbol dotisusedtolink adataDef to an application.

If you do not know the value of the super Synbol dlot for an application that is
installed on your Newton device, you may use the global function Get Def s to see
all the dataDef s that are registered by the system.

Using Stationery 5-7

CHAPTER 5

Stationery

A call to the global function Get Def s inthe NTK Inspector window returns a
series of frames describing dataDefs that have been registered with the system. An
excerpt of the output from a call made in the Inspector window follows.

Get Def s(* dat aDef, ni |, nil)

#44150A9 [{_proto: {@51},
synbol : paperroll,
nanme: "Note",
super Synbol : not es,
description: "Note",
icon: {@17},
version: 1,
net adata: N L,
MakeNewEnt ry: <function, 0 arg(s) #46938D>,
StringExtract: <function, 2 arg(s) #4693AD>,
textScript: <function, 2 arg(s) #4693CD>},
{_proto: {@b1},
symbol : cal | | og,
nanme: "Calls",
super Synbol : cal | app,
description: "Phone Message",
icon: {@18},
version: 1,
net adata: N L,
taskSli p: | PhoneHone: Newt on|
MakeNewEnt ry: <function, 0 arg(s) #47F9A9>,
StringExtract: <function, 2 arg(s) #47F969>,
textScript: <function, 2 arg(s) #47F989>},

-]

Get Def s and other stationery functions are documented in Newton Programmer’s
Reference.

Creating a DataDef

You create adataDef by basingit onanewt St at i onery proto. INnNTK it is
created as a layout file, even though it is never displayed. The following steps lead
you through the creation of the dataDef that is used to extend the built-in Notes
application.

Note again that the data definition is adopted into an application’s soup only when
the application and dataDef have matching valuesin their super Synbol dots.
For instance, when you are building a dataDef as an extension to the Notes
application, aswe are in this example, your dataDef must have' not es asthe
value of itssuper Synbol dot.

Using Stationery

CHAPTER 5

Stationery

The following example uses the constant k Super Synbol asthe value of the
super Synbol dot. It isdefined asfollowsin the Ext end Not es
Definition.f file

const ant kSuper Synbol := 'notes;// Note's Super Synbol

Once you have created an NTK layout, named the templatei ouDat aDef , and
saved the file under the namei ouDat aDef , you may set the slots of the
i ouDat aDef asfollows:

m Setnane to" | QU'. Thisshows up in the New button’s picker.

m Set super Synbol tothe constant kSuper Synbol . This stationery can
only be used by an application that has a matching value in the
newt Appl i cati on baseview'ssuper Synbol dot.

m Setdescriptionto"An | QU entry". Thisstring showsupinthe
information box that appears when the user taps the icon on the left side of
the header, as shown in Figure 4-5 (page 4-9).

m Setsynbol tokDat aSynbol .

m Setversiontol. Thisisan arbitrary stationery version number set at your
discretion.

m Removethevi ewBounds dot; it's not needed since this object is not a view.

There are anumber of methods defined within the newt St at i oner y proto that
you should override for your data type.

Defining DataDef Methods

The three methods MakeNewEnt ry, St ri ngExt r act , and Text Scri pt are
illustrated in this section. You use the method MakeNewEnt r y to define the soup
entries for your dataDef; the method St ri ngEXxt r act isrequired by NewtApp
overview scriptsto return text for display in the overview; and Text Scri pt is
called by the routing interface to return atext description of your data.

The MakeNewEnt r y method returns a compl ete entry frame which will be added
to some (possibly unknown) application soup. You should use MakeNewEnt ry,
instead of the Fi | | NewEnt r y method (which worksin conjunction with the
NewtApp framework’snewt Soup. Cr eat eBl ankEnt r y), when your stationery
is being defined as an auto part.

The example of MakeNewENt r y used here defines the constant
kEnt r yTenpl at e asaframein which to define al the generic parts of the entry.

All the specific parts of the data definition are kept in a nested frame that has the
name of the data class symbol, kDat aSynbol . By keeping the specific definitions
of your data grouped in a single nested frame and accessible by the class of the
data, you are assuring that your code will be reusable in other applications.

Using Stationery 59

CHAPTER 5

Stationery

/1 Generic entry definition:
Def Const (' kEntryTenpl ate, {
cl ass: kbDat aSynbol ,
vi ewSt ati onery: kDataSynbol,// vestigial; for Notes
/] conpatibility
title: nil,
timeStanp: nil,
hei ght: 176, /1l For page and paper roll-type apps
/1 this should be the sane as hei ght
/1 slot in databDef and vi ewbDef Hei ght
/1 slot in viewbef (if present)

1)

/1 This facilitates witing viewDefs that can be reused
kEntryTenpl at e. (kDat aSynbol) : = {

who: nil,
howvuch: 0,
dueDate: nil,

b

MakeNewentry: func()
begi n

| ocal theNewkntry := Deepd one(kEntryTenpl ate);
theNewkntry.title := ShortDate(tine());
theNewkntry.tinmeStanp := tine();

t heNewknt ry. (kDat aSynbol). dueDate := tine();

t heNewknt ry;

end;

The St ri ngExt r act method is called when an overview is generated and is
expected to return a one or two-line description of the data. Here is an example of a
St ringExtract implementation:

StringExtract: func(item nunli nes)
begin
if nunLines = 1 then
return itemtitle
el se
return itemtitle&& tem (kDat aSynbol). who;
end;

The Text Scri pt method is called by the routing interface to get atext version of
an entire entry. It differsfrom St r i ngExt r act inthat it returns the text of the
item, rather than a description.

5-10 Using Stationery

CHAPTER 5

Stationery

Here is an example:

Text Script: func(itemtarget)

begi n
itemtext := "10OAN" & target.(kDataSynbol).who
&& "owes me" &&
Nurmber Str (t ar get . (kDat aSynbol). howMuch) ;
itemtext;
end;

Creating ViewDefs

ViewDefs may be based on any of the generic view protos. You could use, for
instance, acl Vi ew, which has very little functionality. Or, if you wanted a picture
to display behind your data, you could base your viewDef onacl Pi ct ur eVi ew

Routing and printing formats are also implemented as viewDefs. You can learn
more about using special protosto create routing and printing formats in Chapter 21,
“Routing Interface.”

Note that these are just afew examples of views you may use as abase view in
your viewDef. Your viewDef will function as expected, so long as the required slots
are set and the resulting view template is registered, either intheal | vi ewDef s
slot of thenewt Appl i cat i on baseview or through thel nst al | Scri pt
function of an auto part.

You may create the viewDef for the auto part that extends the Notes application by
using acl Vi ewasthe base view. Create an NTK view template, named

i ouDef aul t Vi ewDef , inwhich acl Vi ewfillsthe entire drawing area. Then
save the view template file (using the Save As menu item) as

i ouDef aul t Vi ewDef .

You can now set the slots as follows:

m Setthenane dotto"1 QU | nf 0". This string appears in the Show button, if
thereisone.

m Setthesynbol slotto' def aul t. At least one of the viewDefs associated with
adataDef must have' def aul t asthe value of itssynbol dot.

m Setthet ype dotto’ vi ewer. The three system-defined types for viewDefs are
"editor,' viewer,and' rout eFor mat . You may define others as you wish.

m Setthevi ewDef Hei ght glot to 176 (of the four slot views that will be added
to this viewDef, each is 34 pixels high plus an 8-pixel separation between them
and an 8-pixel border at the bottom).

m Setthevi ewBounds dotto 0, 0, 0, O.

m Setthevi ewdusti fy dot to horizontal parent full relative and vertical parent
full relative.

Using Stationery 511

CHAPTER 5

Stationery

Add the protos that will display the data and labels to the working application. The
protos used here include:

m newt Smart NanmeVi ew

m newt Label Num nput Li ne
m newt Label Dat el nput Li ne
m new Label Ti mel nput Li ne

You can read more about these protos in Chapter 4, “NewtApp Applications.” They
should be aligned as shown in Figure 5-4.

Figure 5-4 The default viewDef view template
default
”f"f”?’?’f'“’?“f“‘.m‘.“f"‘.*"f:::::::::::::::t
n%m?f?ébﬁeﬂi«%n%f@fﬁt#é?5555555555555[
3&?&#@4@@2&5EEEEEEEEEEEEE[
v

Set the slots of the newt Snmar t NaneVi ew as follows:
m Setthel abel dotto" Wio".

m Setthepat h dotto[pat hExpr: kDat aSynbol, 'who]. The path slot
must evaluate to aslot in your data entry frame that contains a name (or a place
to store one).

m SettheusePopup dlottot r ue.

512 Using Stationery

CHAPTER 5

Stationery

Set the slots of the newt Label Num nput Li ne asfollows:
m Setthel abel dotto"How Much".

m Setthepat h dlotto[pat hExpr: kDat aSynbol, ' howMich] . Thispat h
slot must evaluate to a slot in your data entry frame that contains a number (or a
place to store one).

Add anew Label Dat el nput Li ne at thetop of thedef aul t template so that it
isaligned as shown. Then set the dots as follows:

m Setthel abel dotto" Dat e Due".

m Setthepat h dotto[pat hExpr: kDat aSynbol, ' dueDate].Thispath
slot must evaluate to aslot in your data entry frame that contains a date (or a
place to store one).

Add anewt Label Ti el nput Li ne at thetop of thedef aul t template so that it
isaligned as shown. Then set the dots as follows:

m Setthel abel dotto" Due Ti ne".

m Setthepat h dlotto[pat hExpr: kDat aSynbol, ' dueDate]. Thispath
must evaluate to a slot in your data entry frame that contains atime (or aplace
to store one).

Registering Stationery for an Auto Part

When your stationery isimplemented in an auto part, you are responsible for
registering and removing it. The following code samplesshow | nst al | Scri pt
and RenoveScr i pt functions that use the appropriate global functions to register
and unregister the viewDef and dataDef files in your auto part asit isinstalled and
removed, respectively. Note that the print format file is also registered as a viewDef
with the system.

Install Script: func(partFrane, renoveFrane)

begi n
RegDat aDef (kDat aSynbol , Get Layout ("i ouDat aDef"));
Regi st er Vi ewDef (Get Layout ("i ouDef aul t Vi ewDef "),

kDat aSynbol) ;
Regi st er Vi ewDef (Get Layout ("i ouPri nt Format "),

kDat aSynbol) ;
end;

RemoveScri pt: func(renoveFrane)
begi n
UnRegi st er Vi ewDef (' defaul t, kDat aSynbol) ;
UnRegi st er Vi ewDef (' i ouPri nt Format, kDat aSynbol);
UnRegDat aDef (kDat aSynbol) ;
end;

Using Stationery 5-13

5-14

CHAPTER 5

Stationery

Using the MinimalBounds ViewDef Method

The M ni mal Bounds method must be used in aviewDef when the size of the
entry is dynamic, asit isin a paper-roll-style or page-style application. It's not
necessary for a card-style application, which has a fixed height; in that case you
should set a static height for your viewDef in thevi ewDef Hei ght dlot.

The M ni mal Bounds method is used to compute the minimal size for the
enclosing bounding box for the viewDef at run time. The following isan
example of aM ni nal Bounds implementation where the viewDef contains
anewt Edi t Vi ewwhose pat h slot isset to

[pat hExpr: kDat aSynbol , ' not es] :

M ni mal Bounds: func(entry)
begin
local result := {left: 0, top: 0, right: O,
bottom vi ewDef Hei ght};

/1 For an editView, make the bounds big enough to
/1 contain all the child views.
if entry. (kDataSynbol).notes then
foreach itemin entry. (kDataSynbol). notes do
result := UnionRect(result, item viewBounds);
result;
end,

Using Stationery

CHAPTER 5

Stationery

Stationery Summary

Data Structures

ViewDef Frame

nyVi ewbDef : = {

_proto: anyGenericView,

type: 'editor, // could also be 'viewer or a customtype
synbol : "default, // required; identifies the view

name: string, // required; nanme of viewDef

version: integer, // required; should match dat aDef

vi ewDef Hei ght : integer,// required, except in card-style

M ni mal Bounds: /1l returns the mniml enclosing
func(entry)..., // bounding box for data

Set upFor m /1 called by ViewSetupForntcript;
f unc(entry, entryView) . . ., // use to nassage data

}

Protos

newtStationery

nmyDat aDef := { // use to build a dat aDef

_proto: new Stationery,

description: string, , Il describes dataDef entries

hei ght: integer, // required, except in card-style; should
/1 match vi ewDef Hei ght

icon: resource, // optional; used in header & New nenu

nane: string, // required; appears in New button picker

synbol : kAppSynbol, // required uni que synbol

super Synbol : aSynbol, // identifies “owning” application

version: integer, // required; should match viewbDef’s version

Fill NewEntry: /1 returns a nodified entry
func(newEntry) . . .,

MakeNewEnt ry: /1 used if FillNewEntry does not exist
func()...,

StringExtract: /1 creates string description
func(entry, nLines). . .,

Text Scri pt: /1l extracts data as text for routing

func(fidds, target). . .,
}

Stationery Summary 5-15

5-16

CHAPTER 5

Stationery

newtStationeryPopupButton

aStat Popup := { // used to construct New and Show buttons
_proto: newt StationeryPopupButton,
form symbol, /1 'viewDef or 'databDef
synmbols: nil, // gathers all or specify:[uniqueSym, ..]
text: string, /1 text displayed in picker
types: [typeSym,..],// type slots of viewDefs
sorter: '|str<|,// sorted al phabetically by Sort function
shortCircuit: Boolean, // controls picker behavior
Stat Script: /1 called when picker item chosen

func(stationeryltem). .., // define actions in this method

Set UpStat Array:// override to intercept picker itenms to
func()..., // be displayed

}

newtNewStationeryButton

aNewButton := { // the New button collects databDefs
_proto: newt NewSt ati oneryButton,
sorter: '|str<|,// sorted al phabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
Stat Scri pt: /1 called when picker item chosen
func(stationeryltem). .., // define actions in this method
Set UpStat Array:// override to intercept picker itens to
func()..., // be displayed

}

newtShowsStationeryButton

aShowButton := { // the Show button collects viewDefs
_proto: newt ShowSt ati oneryButt on,
types: [typeSym,..],// can specify type slots of viewDefs
sorter: '|str<|,// sorted al phabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
Stat Scri pt: /1 called when picker item chosen
func(stationeryltem). .., // define actions in this method
Set UpStat Array:// override to intercept picker itenms to
func()..., // be displayed

}

Stationery Summary

CHAPTER 5

Stationery

newtRollIShowStationeryButton

aRol | ShowButton := { // the Show button in paper roll apps
_proto: newt Rol | ShowSt ati oneryButt on,
types: [typeSym,..],// can specify type slots of viewDefs
sorter: '|str<|,// sorted al phabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
Stat Scri pt: /1 called when picker item chosen
func(stationeryltem). .., // define actions in this method
Set UpStat Array:// override to intercept picker items to
func()..., [/ be displayed

}

newtRollIShowStationeryButton

anEnt ryShowButton := { // Show button in paperroll apps
_proto: newt EntryShowSt ati oneryButt on,
types: [typeSym,..],// can specify type slots of viewDefs

sorter: '|str<|,// sorted al phabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
Stat Scri pt: /1 called when picker item chosen
func(stationeryltem). .., // define actions in this method
Set UpStat Array:// override to change entry di spl ayed
func()..., // can display different view for each
}
Functions

RegDat aDef (dataDefSym, newDefTemplate) // regi ster dat aDef
UnRegDat aDef (dataDefSym) // unregi ster dat aDef
Regi st er Vi ewDef (viewDef, dataDefSym) / / regi ster vi ewDef
UnRegi st er Vi ewDef (viewDefSym, dataDefSym) / / unr egi st er vi ewDef
CGet Def s(form, symbols, types) // returns view or data defs array
Cet Dat aDef s(dataDefSym) // returns dat aDef
Get AppDat aDef s(superSymbol) // returns an app’s dataDefs
Get Ent r yDat aDef (soupEntry) // returns the entry’s dataDef
Get Ent r yDat aVi ew(soupEntry, viewDefSym) // returns the entry’s
/1 vi ewDef
Get Vi ewDef s (dataDefSym) // returns viewDefs registered
/1 with the dataDef
CGet Dat aVi ew (dataDefSym, viewDefSym) // returns a specific
/1 viewDef of the databDef

Stationery Summary 5-17

CHAPTER 6

Pickers, Pop-up Views, and
Oveviews

This chapter describes how to use pickers and pop-up views to present information
and choices to the user. You should read this chapter if you are

m creating your own pickers and pop-up views
m taking advantage of built-in picker and pop-up protos
m presenting outlines and overviews of data

Before reading this chapter, you should be familiar with the information in
Chapter 3, “Views.”

This chapter contains:

m an overview of pickersand pop-up views

m descriptions of the pickers and pop-up views used to perform specific tasks
m asummary of picker and pop-up view reference information

About Pickers and Pop-up Views

A picker or pop-up view isaview that pops up and presents alist of items from
which the user can make selections. The view pops up in response to a user action
such as a pen tap.

The distinction between a picker and a pop-up view is not important and has not
been maintained in naming the protos, so the terms are used somewhat
interchangeably. In the discussion that follows, picker is used for both terms.

The simplest picker protos handle the triggering and closing of the picker; for these
protos, all you need to do is provide the itemsin the list. When the user taps a
button, alabel, or ahot spot in a picture, the picker view opens automatically.
When the user makes a selection, the view closes automatically and sends a
message with the index of the chosen item. If the user taps outside the picker, the
view closes, with no selection having been made.

About Pickers and Pop-up Views 6-1

CHAPTER 6

Pickers, Pop-up Views, and Overviews

M ore sophisticated picker protos allow multiple selections and use a close box to
dispatch the view.

With some picker protos, you must determine when and how the picker is displayed.
You open a picker view by sending the Open message to the view, or by caling the
PopupMenu function.

Your picker views can display
simple text
bitmaps

separator lines

|

]

m iconswith strings

|

m two-dimensional grids

The most sophisticated picker protos et you access built-in system soups as well as
your own soups. Much of the behavior of these protosis provided by data
definitions that iterate through soup entries, display alist, allow the user to see and

modify the data, and add new entries to the soup.

Pickers and Pop-up View Compatibility

The 2.0 release of Newton system software contains a number of new picker protos
and areplacement for the DoPopup global function.

New Pickers and Pop-up Views

Two new picker protos, pr ot oPopupBut t on and pr ot oPopl nPl ace, define
text buttons that display pickers.

A new set of map pickers allows you to display various maps from which a user
can select alocation and receive information about it. The map pickersinclude
the following:

m prot oCountryPi cker
m prot oProvi ncePi cker
m protoStatePi cker

m protoWrl dPi cker

A set of new text pickers lets you display pop-up views that show text that the
user can change by tapping the string and entering a new string. The

pr ot oDat eText Pi cker, for example, lets the user change a date. The text-
picker protos include the following:

m protoText Pi cker
m prot oDat eText Pi cker

About Pickers and Pop-up Views

CHAPTER 6

Pickers, Pop-up Views, and Overviews

pr ot oDat eDur ati onText Pi cker

pr ot oRepeat Dat eDur at i onText Pi cker
pr ot oDat eNTi meText Pi cker

prot oTi neText Pi cker

pr ot oDur ati onText Pi cker

prot oTi neDel t aTi mePi cker

pr ot oMapText Pi cker

pr ot oCount r yText Pi cker

pr ot oUSst at esText Pi cker

prot oCi ti esText Pi cker

pr ot oLongLat Text Pi cker

New date, time, and location pop-up views let the user specify new informationin
agraphical view—changing the date on a calendar, for example. These protos
include the following:

pr ot oDat ePopup

pr ot oDat ePi cker

pr ot oDat eNTi mePopup

pr ot oDat el nt er val Popup
pr ot oMul t i Dat ePopup

pr ot oYear Popup

pr ot oTi nePopup

pr ot oAnal ogTi mePopup

prot oTi neDel t aPopup
m protoTi nel nt erval Popup

A new number picker displays pickers from which a user can select a number. The
new number picker is

m pr ot oNunber Pi cker

A set of new overview protos allows you to create overviews of data; some of the
protos are designed to display datafrom the Names soup. The data picker protos
include the following:

prot oOvervi ew

m prot oSoupOvervi ew
m protolistPicker

m prot oPeopl ePi cker

About Pickers and Pop-up Views 6-3

CHAPTER 6

Pickers, Pop-up Views, and Overviews
m pr ot oPeopl ePopup
The following two protos are data types that support the pr ot oLi st Pi cker:

m pr ot oNaneRef Dat aDef
m prot oPeopl eDat aDef

Obsolete Function

The DoPopup global function used in system software version 1.x is obsolete; it is
supported in version 2.0, but support is not guaranteed in future releases. Use the
new PopupMenu function instead.

Picker Categories

The remainder of this chapter divides the pickersinto a number of categories. The
protos within each category operate in arelated manner. General -purpose protos
are used to create simple, general-purpose pickers and pop-up views. The remaining
protosin the list are triggered by specific user actions or by events that you define:

m genera-purpose pickers

m map pickers

m text pickers

m date, time, and location pickers

m number pickers

m picture picker

m overview protos

m roll protos

Thereis also a section discussing the view classes used with pickers.

Genera-Purpose Pickers

You use the protos described in this section to create simple, general-purpose
pickers and pop-up views. Some of the following protos are triggered by specific
user actions, while others are triggered by events that you define:

m Thepr ot oPopupBut t on picker isatext button that displays a picker when
tapped. The button is highlighted while the picker is open. For information
about the dlots and methods for this picker, see “protoPopupButton” (page 5-4)
in Newton Programmer’'s Reference. Figure 6-1 shows an example of a
pr ot oPopupBut t on.

General-Purpose Pickers

CHAPTER 6
Pickers, Pop-up Views, and Overviews

Figure 6-1 A pr ot oPopupBut t on example

* Popup Button

+ Popup Button

Button After button is tapped, it is highlighted

and picker is shown to the right of it.

The pr ot oPopl nPI ace picker isatext button that displays a picker when
tapped. When the user chooses an item from the picker, the text of the chosen
item appears in the button. For information about the slots and methods for this
picker, see “protoPoplnPlace” (page 5-6) in Newton Programmer’s Reference.
Figure 6-2 shows an example of apr ot oPopl nPl ace.

Figure 6-2 A pr ot oPopl nPl ace example
R BTSN First [tem
Second Item
Third ltem [Thirditem]
Button After button is tapped, After item is chosen from

picker is shown on top of it. picker, it is shown in button

The pr ot oLabel Pi cker isalabel that displays a picker when tapped. The
currently selected item in the list is displayed next to the label. For information
about the slots and methods for this picker, see “protoL abel Picker” (page 5-8) in
Newton Programmer’s Reference. Figure 6-3 shows an example of a

pr ot oLabel Pi cker.

Figure 6-3 A prot oLabel Pi cker example

Current choice ——————

#Folder or file: [Serendipity

Folder or file:

[Serendipity

Menu of choices —— | 3O Surreptitious

shown next to
label (optionally
includes icon, if
used in picker list)

pops up

@ Subterranean

@ Sunny
@ Surly

m Theprot oPi cker isapicker that displays anything from asimple text list to a
two-dimensional grid containing shapes and text. For information about the slots
and methods for this picker, see “protoPicker” (page 5-13) in Newton

General-Purpose Pickers 6-5

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Programmer’s Reference. Figure 6-4 shows the types of objects you can display
inapr ot oPi cker.

Figure 6-4 A pr ot oPi cker example

Simple string —— ohe

two
Thin
separator line three

A

Two- ——— , :"' "
dimensional grid - }
Thick
separator line & four

tf five —— Icon with string
Bitmap —

m Thepr ot oGener al Popup isapop-up view that has a close box. The view
cancelsif the user taps outside it. This can use this proto to construct more
complex pickers. It isused, for example, as the basis for the duration
pickers. For information about the slots and methods for this proto, see
“protoGenera Popup” (page 5-19) in Newton Programmer’s Reference.
Figure 6-5 shows an example of apr ot oGener al Popup.

Figure 6-5 A pr ot oGener al Popup example

z
© {ap inFide
i« here in
Op All Night
:
Generit PUNCh mEJ:
....................................
Qrangeaid
Thirst-B-Gone
Or. Bjorne
Orink Up protoGeneralPopup view
6-6 General-Purpose Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Theprot oText Li st pickerisascrollablelist of items. The user can scroll the
list by dragging or scrolling with the optional scroll arrows and can choose one
or more itemsin the list by tapping them. The scrollable list can include shapes
or text. For information about the slots and methods for this picker, see
“protoTextList” (page 5-20) in Newton Programmer’s Reference. Figure 6-6
shows an example of apr ot oText Li st .

Figure 6-6 A protoText Li st example

Calendar
Calendat Motes
Lrirector

MNarnes

m Theprot oTabl e picker isasimple one-column table of text. The user can tap
any item in the list to select it. For information about the slots and methods for
this picker, see “protoTable” (page 5-24) in Newton Programmer’s Reference.
Figure 6-7 shows an example of apr ot oTabl eLi st picker.

Figure 6-7 A pr ot oTabl e example

fon
bar
baz
qu

You define the format of the table using apr ot oTabl eDef object; see
“protoTableDef” (page 5-27) in Newton Programmer’s Reference for
information. You define the format of each row using apr ot oTabl eEntry
object; see “protoTableEntry” (page 5-29) in Newton Programmer’s Reference
for information.

Using protoGeneralPopup

As with most protos, you create apr ot oGener al Popup object by using the
NTK palette to draw onein your layout. After creating the object, you should
removethecont ext andcancel | ed dots. Thevi ewBounds should be (0,
0, width, height) forthebox. The Newmethod tries to set the bounds
correctly, based on the recommended bounds passed to the call.

General-Purpose Pickers 6-7

CHAPTER 6

Pickers, Pop-up Views, and Overviews

The prot oGener al Popup sendsapi ckCancel | edScri pt tothe

cal | backCont ext specified in the New method. However, it does not send a

pi ckActionScri pt back; instead, it sendsan Af fi r mat i ve message to itself.
You supply the method and decide what call to make to the context and what
information to send back.

To put other objectsin the pr ot oGener al Popup, just drag them out in NTK. For
example, if you want a checkbox in your pop-up view, drag out a

pr ot oCheckbox. You can put anything in the pop-up view, including your

own protos.

Since you have to assemble the information to send on an affirmative, you will
likely end up declaring your content to the general pop-up.

Theonly dotsyou really needto set are Af f i r mat i ve and vi ewBounds.
Af fi rmati ve isafunction. Here's an example:

func()
begin
/1 Notify the context that the user has accepted the
/1 changes nade in the popup
if context then
cont ext: ?pi ckActi onScri pt (changeDat a)
end

Map Pickers

You can use the pickers described in this section to display maps and allow the user
to select countries, U.S. states, Canadian provinces, and cities. The Newton system
software provides the following map picker protos:

m Thepr ot oCount ryPi cker displaysamap of the world. When the user taps a
country, the Pi ckWor | d message is sent to your view. For information about
the slots and methods for this picker, see “protoCountryPicker” (page 5-30) in
Newton Programmer’s Reference. Figure 6-8 shows an example of a
pr ot oCount ryPi cker.

Map Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-8 A pr ot oCount r yPi cker example

m Theprot oProvi ncePi cker displaysamap of North America. When
the user taps a province, the Pi ckWor | d message is sent to your view.
For information about the slots and methods for this picker, see
“protoProvincePicker” (page 5-31) in Newton Programmer’s Reference.
Figure 6-9 shows an example of apr ot oPr ovi ncePi cker.

Figure 6-9 A prot oProvi ncePi cker example

m Theprot oSt at ePi cker displaysamap of North America. When the user
taps a state, the Pi ckWor | d message is sent to your view. For information
about the dots and methods for this picker, see “ protoStatePicker” (page 5-32)
in Newton Programmer’s Reference. Figure 6-10 shows an example of a
pr ot oSt at ePi cker.

Figure 6-10 A prot oSt at ePi cker example

m Thepr ot oWor | dPi cker displaysamap of the world. When the user taps a
continent, the Pi ckWor | d messageis sent to your view. For information about

Map Pickers 6-9

CHAPTER 6

Pickers, Pop-up Views, and Overviews
the dlots and methods for this picker, see “protoWorldPicker” (page 5-34) in

Newton Programmer’s Reference. Figure 6-11 shows an example of a
pr ot oWor | dPi cker.

Figure 6-11 A prot oWr | dPi cker example

Text Pickers

Text picker protos allow the user to specify various kinds of information by
picking text representations. Each of these protos displays alabel picker with
astring that shows the currently selected data value. For example,

pr ot oDur at i onText Pi cker, which lets the user set a duration, might have a
label of “When” followed by aduration in the form “8:26 A.M. —10:36 P.M.”

When the user taps a text picker, the picker displays a pop-up view in which the
user can enter new information. The Newton system software provides the
following text picker protos:

m Theprot oText Pi cker isalabel picker with atext representation of an entry.
When the user taps the picker, a customized picker is displayed. For information
about the slots and methods for this picker, see “protoTextPicker” (page 5-35) in
Newton Programmer’s Reference. Figure 6-12 shows an example of a
pr ot oText Pi cker.

Figure 6-12 A prot oText Pi cker example

6-10

easier

Text Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Thepr ot oDat eText Pi cker isalabel picker with atext representation of a
date. When the user taps the picker, apr ot oDat ePopup is displayed, which
allows the user to specify a different date. For information about the slots and
methods for this picker, see “protoDateTextPicker” (page 5-37) in Newton
Programmer’s Reference. Figure 6-13 shows an example of a
pr ot oDat eText Pi cker.

Figure 6-13 A pr ot oDat eText Pi cker example

@ e septermber 1995 »
s m t w t f s

12
34567809
101112121415 16
17 181020 21 22 23
4 26 27 28 20 30

199i5

&

m Theprot oDat eDur ati onText Pi cker isalabel picker with atext
representation of arange of dates. When the user taps the picker, a
pr ot oDat el nt er val Popup isdisplayed, which allows the user to
specify adifferent range. For information about the slots and methods for
this picker, see protoDateDurationTextPicker” (page 5-40) in Newton
Programmer’s Reference. Figure 6-14 shows an example of a
pr ot oDat eDur at i onText Pi cker.

Text Pickers 6-11

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-14 A prot oDat eDur at i onText Pi cker example

6-12

5tart date
@ January 1904 e

5 1111 t w t
span: 1/1/04 - ongoing [¢ span: I

5top date
4 January 1904

5 m t w t

2ngoing

Before tap Atfter tap

m Thepr ot oRepeat Dat eDur at i onText Pi cker isalabel picker
with atext representation of arange of dates. When the user taps the
picker, apr ot oDat el nt er val Popup isdisplayed, which allows the
user to specify a different range. This proto differs from the
pr ot oDat eDur at i onText Pi cker inthat the
pr ot oRepeat Dat eDur at i onDat ePi cker presents choicesthat are
appropriate for ther epeat Type dot, and the duration displayed when the user
taps aduration or stop date is given in units of ther epeat Type. Otherwise, it
looks like the protoDateDurationTextPicker and popup shown in Appendix
Figure 6-14. For information about the slots and methods for this picker,

see ' protoRepeatDateDurationTextPicker” (page 5-43) in Newton Programmer’s
Reference.

m Thepr ot oDat eNTi meText Pi cker isalabel picker with atext
representation of a date and time. When the user taps the picker, a
pr ot oDat eNTi mePopup isdisplayed, which allows the user to specify a
different date and time. For information about the slots and methods for this
picker, see “protoDateNTimeTextPicker” (page 5-46) in Newton Programmer’s
Reference. Figure 6-15 shows an example of a
pr ot oDat eNTi neText Pi cker.

Text Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-15 A pr ot oDat eNTi neText Pi cker example

Before tap Label 921795 2:15 pm

m# Septarmber 1995

s m t w t f =

12
2456 7 80
101112 12 14 15 16
17 1819 20 21 22 23
24 25 26 [28 29 30

&)

After tap

m Theprot oTi meText Pi cker isalabel picker with atext representation of a
time. When the user taps the picker, apr ot oTi mePopup isdisplayed, which
allows the user to specify a different time. For information about the slots and
methods for this picker, see“A pr ot oTi meText Pi cker example’

(page 6-13) in Newton Programmer’s Reference. Figure 6-16 shows an example
of aprot oTi meText Pi cker.

Figure 6-16 A prot oTi neText Pi cker example

Before tap *Time 1:40 pm

m _____ 1 gﬁgl

m Theprot oDurati onText Pi cker isalabel picker with atext representation
of atime range. When the user taps the picker, apr ot oTi nel nt er val Popup
is displayed, which allows the user to specify a different time range. For
information about the slots and methods for this picker, see
“protoDurationTextPicker” (page 5-51) in Newton Programmer’s Reference.
Figure 6-17 shows an example of apr ot oDur at i onText Pi cker.

After tap

Text Pickers 6-13

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-17 A protoDurationText Pi cker example

Before tap Hour Span: S:42 pm = 6:42 pm

Hourspan: R

5top time

#* 1 hour @]

After tap

m TheprotoTi neDel t aText Pi cker isalabel picker with atext
representation of atime delta. When the user taps the picker, a
pr ot oTi meDel t aPopup isdisplayed, which allows the user to specify a
different time delta. For information about the slots and methods for this picker,
see “protoTimeDeltaTextPicker” (page 5-53) in Newton Programmer’s
Reference. Figure 6-18 shows an example of a
prot oTi neDel t aText Pi cker.

Figure 6-18 A prot oTi neDel t aText Pi cker example

#Time 1:40 pm

oy [7470 @I

m Theprot oMapText Pi cker isalabel picker with atext representation of a
country. When the user taps the picker, a popup displays that allows the user to
select a new country from an a phabetical list. For information about the slots
and methods for this picker, see “ protoMapTextPicker” (page 5-54) in Newton
Programmer’s Reference. Figure 6-19 shows an example of a
pr ot oMapText Pi cker.

Before tap

After tap

6-14 Text Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-19 A pr ot oMapText Pi cker example

Before tap country: Afghanistan

- Afghanist
After tap (e A fahanistan

1 def
Algeria E‘
Angola ——
Argentina ikl |
Armenia fpnnol
Austrglla pqr
Austria [ctu]
Azerbaijan —
Bahamas kel
Bahrain Yz

L]

Barbados ﬁ

ge:a!'us o
elgium

Belize @

m Theprot oCount r yText Pi cker isthe same aspr ot oMapText Pi cker.

m Theprot oUSst at esText Pi cker isalabel picker with atext representa-
tion of aU.S. state. When the user taps the picker, a popup displays that alows
the user to select a new state from an aphabetical list. For information about the
slots and methods for this picker, see “ protoUSstatesTextPicker” (page 5-56) in
Newton Programmer’s Reference. Figure 6-20 shows an example of a
pr ot oUSst at esText Pi cker.

Figure 6-20 A pr ot oUSst at esText Pi cker example

Before tap + State: Arizona

ater tap——— (CRTETTTR Alabama =
Alaska def
Arizona -
Arkansas f"h'
California id
Colorado fno
Connecticut par
Delaware o
Florida
|Georgia_|doil
Haw aii yz
Idaho)
Illinois
Indiana b
lowa
Kansas @

Text Pickers 6-15

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m TheprotoCi tiesText Pi cker isalabel picker with atext representation of
acity. When the user taps the picker, a popup displays that allows the user to
select anew city from an alphabetical list. For information about the slots and
methods for this picker, see “protoCitiesTextPicker” (page 5-58) in Newton
Programmer’s Reference. Figure 6-21 shows an example of a
protoCiti esText Pi cker.

Figure 6-21 AprotoCitiesText Pi cker example

Before tap City: Albany
After tap Giry: — IENTUTSRN - |
Albany NY def |
Albuquerque NM | ghi
Altoona PA [k |
Amarillo TX et
Anchorage AK fano|
Area51 NV par |
Arlington VA stu
Athens GA —
Atlanta GA R
Austin TX L= |
Bakersfield CA "
Baltimore MD
Beaumont TX L]
Bethesda MD @
m Theprot oLonglLat Text Pi cker isalabel picker with atext representation
of longitude and latitude values. When the user taps the picker, a
| onglLat Pi cker isdisplayed, which allows the user to select new longitude
and latitude values. For information about the slots and methods for this picker,
see “protoLongL atTextPicker” (page 5-61) in Newton Programmer’s Reference.
Figure 6-22 shows an example of apr ot oLongLat Text Pi cker.
Figure 6-22 A prot oLongLat Text Pi cker example
Before tap *+VWhere T8 49N 118 40E
After tap

78149 N
11840 El,

6-16 Text Pickers

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Date, Time, and L ocation Pop-up Views

You can use the protos described in this section to present pop-up views to the user
for setting or choosing specific types of values. The Newton System Software
provides the following pop-up protos for date, time, and location values:

m Thepr ot oDat ePopup allows the user to choose a single date. For information
about the slots and methods for this proto, see “ protoDatePopup” (page 5-63) in
Newton Programmer’s Reference. Figure 6-23 shows an example of a
pr ot oDat ePopup.

Figure 6-23 A pr ot oDat ePopup example

« June 1993 »
s mt wt f s

12z 3@:5
6 7 8 910111z
1314151617 1819
Z021222324 2526
Z7 282930

19193 _

m Thepr ot oDat ePi cker alowsthe user to choose a single date when the date
islikely to be relatively close to the current date. Changing the year is not easily
done with this proto. For information about the slots and methods for this proto,
see “protoDatePicker” (page 5-64) in Newton Programmer’s Reference.

Figure 6-24 shows an example of apr ot oDat ePi cker.

Figure 6-24 A pr ot oDat ePi cker example

4 lanuary 1906 W

5 m t w t f =

1B 3 4 5 6
708 010111213
14 15 16 17 18 19 20
21 22 23 24 75 26 27
28 29 30 31

Date, Time, and Location Pop-up Views 6-17

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Thepr ot oDat eNTi mePopup alows the user to choose a single date and time.
For information about the slots and methods for this proto, see
“protoDateNTimePopup” (page 5-67) in Newton Programmer’s Reference.
Figure 6-25 shows an example of apr ot oDat eNTi mePopup.

Figure 6-25 A pr ot oDat eNTi nePopup example

L June 1933 »
s m t w t f s

1 2 3] 5
6 7 8 9101112
1214151617 18 19
Z0 21 22 23 24 25 Z6
27 28 20 30

10:335

m Thepr ot oDat el nt er val Popup allowsthe user to choose an interval of
dates by specifying the start and stop dates. For information about the slots and
methods for this proto, see “ protoDatel nterval Popup” (page 5-69) in Newton
Programmer’s Reference. Figure 6-26 shows an example of a
pr ot oDat el nt er val Popup.

Figure 6-26 A pr ot oDat el nt er val Popup example

6-18

Start date
L] June 1993 »
s m t w t f s

1 2 3] S
6 7 8 9101112
13141516 17 18 19
2021 22 23 24 25 26
27 28 29 30

5top date
« Jure 1993 »
5 m t w t f s

1z 3 48
6 7 8 9101112
13141516 17 18 19
20 21 22 23 24 25 26
27 28 29 30

* 2 days

[£3)

Date, Time, and Location Pop-up Views

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Theprot oMl ti Dat ePopup alowsthe user to specify arange of dates. For
information about the sots and methods for this proto, see * protoM ultiDatePopup”
(page 5-72) in Newton Programmer’s Reference Figure 6-27 shows an example
of apr ot oMul ti Dat ePopup.

Figure 6-27 A prot oMl ti Dat ePopup example

- June 1993 »
s m t w t f 5

1 2 3 45
& 7 2 910 11 g
12141531617 1819
2021 222324 25 26
27 28 29 30

m Thepr ot oYear Popup alowsthe user to choose a year. For information about
the slots and methods for this proto, see “ protoYearPopup” (page 5-73) in
Newton Programmer’s Reference. Figure 6-28 shows an example of a
pr ot oYear Popup.

Figure 6-28 A pr ot oYear Popup example

191212/

m Theprot oTi nePopup alowsthe user to choose atime with adigital clock.
For information about the slots and methods for this proto, see
“protoTimePopup” (page 5-74) in Newton Programmer’s Reference.

Figure 6-29 shows an example of apr ot oTi nePopup.

Figure 6-29 A prot oTi mePopup example

10:118/5x

Date, Time, and Location Pop-up Views 6-19

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Thepr ot oAnal ogTi mePopup alows the user to choose atime with an
analog clock. For information about the slots and methods for this proto, see
“protoAnalogTimePopup” (page 5-76) in Newton Programmer’s Reference.
Figure 6-30 shows an example of apr ot oAnal ogTi mePopup.

Figure 6-30 A pr ot oAnal ogTi mePopup example

i am 4k pm EI

m Theprot oTi neDel t aPopup alows the user to choose atime period (a delta).
For information about the slots and methods for this proto, see
“protoTimeDeltaPopup” (page 5-78) in Newton Programmer’s Reference.
Figure 6-31 shows an example of apr ot oTi meDel t aPopup.

Figure 6-31 A prot oTi meDel t aPopup example

+/0[9):/0/0/)

m Theprot oTi nel nt er val Popup alowsthe user to choose atime interval by
specifying the start and stop times. For information about the slots and methods
for this proto, see “protoTimel nterval Popup” (page 5-79) in Newton
Programmer’s Reference. Figure 6-32 shows an example of a
pr ot oTi nel nt er val Popup.

Figure 6-32 A prot oTi el nt er val Popup example

6-20

Start time
NN
L2 Juh Y ILY)

Stop time

1470

1 hour

1 rminute EJ

Date, Time, and Location Pop-up Views

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Number Pickers

This section describes the protos available to allow usersto pick numbers. The
Newton system software provides the following protos for picking numbers:

m Theprot oNunber Pi cker displays apicker from which the user can select a
number. For information about the slots and methods for this picker, see
“protoNumberPicker” (page 5-81) in Newton Programmer’s Reference.

Figure 6-33 shows an example of apr ot oNunber Pi cker.

Figure 6-33 A pr ot oNunber Pi cker example

158104

Picture Picker

This section describes the proto you can use to create a picture as a picker.

m Theprot oPi ct | ndexer picker displays ahorizontal array of pictures, from
which the user can choose. For information about the slots and methods for this
picker, see “protoPictindexer” (page 5-82) in Newton Programmer’s Reference.
Figure 6-34 shows an example of apr ot oPi ct | ndexer.

Figure 6-34 A prot oPi ct] ndexer example

Circle

|:| DA }prot oPi ct | ndexer view

Number Pickers 6-21

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Overview Protos

You can use the protos described in this section to create overviews of data. An over-
view allows the user to see all of datain a soup or an array scrolling list. The user
can select individual items and open them to see the detail. Overview protos include:

m Theprot oOver vi ew provides aframework for displaying an overview of the
datain your application. Each overview item occupies one line, and the user can
scroll thelist and pick individual or multiple items. “Using protoOverview”
(page 6-24) has information on using this proto. For further information about
the slots and methods of pr ot oOver vi ew, see “protoOverview” (page 5-85) in
Newton Programmer’s Reference. Figure 6-35 shows an example of a
pr ot oOver vi ew

Figure 6-35 A prot oOver vi ewexample

6-22

2:19 Tue 878 # Unfiled Notes

the rain in Spain
Sun 346 1147 am

Map 2 Gerry's house... -sketch-
Tue 848 1:52 pm

] bread...Cheese...tomatos...0ranges
Tue 2/2 1:523 pm

Christine's 5ecret
Tue 8/8 1:54 pm

-EMmpty-
Tue 88 1:55 pm

m Thepr ot oSoupOver vi ew provides aframework for displaying an overview
of soup entriesin your application. For information about the slots and methods
for this proto, see “protoSoupOverview” (page 5-90) in Newton Programmer’s
Reference. Figure 6-36 shows an example of apr ot oSoupQver vi ew.

Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-36 A pr ot oSoupOver vi ewexample

Overview
—

! heart, helped

! rules, voice

! keeping, death

! joined, spend

! yolume, steps

! wisit corp.

! either corp.

! system corp.

! together corp.

! adding corp.

! young Group
imilar Group

! getting Group

! wrote Group
! cities, ideas

m TheprotoLi st Pi cker providesascrollablelist of items. Items can be from a
soup, an array, or both. The user can select any number of itemsin the list. For
information about the slots and methods for this proto, see “protoListPicker”
(page 5-93) in Newton Programmer’s Reference. “Using protoL.istPicker”

(page 6-26) has a more extensive example and discusses how to use this proto.
Figure 6-37 shows an example of apr ot oLi st Pi cker.

Overview Protos 6-23

CHAPTER 6
Pickers, Pop-up Views, and Overviews

Figure 6-37 A protolLi st Pi cker example

[Names —_groryyrees |
(el DY ol s Tl

(I Untitled Owner
(I Answer, Until

! Behind, Natural
Dropped, Range

Going, Order
i1 Ideas, Night
! Important, However
(! Instance, Least 7
i1 Killed, Quality |
i1 last, this b

Least, Every
Music, Class
Peace, Women
i1 Picker 2, From
(..} Picker 3, Test
! Program, Paper
! Smaller, Reason
(! Times, Killed

i1 Selected Cnly E]

m Thepr ot oPeopl ePi cker displaysalist of names and associated information
from the Names application. For information about the slots and methods for
this proto, see “protoPeoplePicker” (page 5-110) in Newton Programmer’s
Reference.

m Thepr ot oPeopl ePopup issimilar to the pr ot oPeopl ePi cker, except that
pr ot oPeopl ePopup displays the picker in a pop-up view. For information
about the slots and methods for this proto, see “ protoPeoplePopup” (page 5-111)
in Newton Programmer’s Reference.

Using protoOverview

The prot oOvervi ewwas set up primarily to be the basis
for pr ot 0SoupOver vi ew. Because of that, you need to do some extra
work to use just the pr ot oOver vi ew.

You need to define Abstract , Hit 1 tem | sSel ect ed, Sel ect |t em and
vi ewSet upChi | drenScri pt methodsin your pr ot oOver vi ew. See
“protoOverview” (page 5-85) in Newton Programmer’s Reference for details.

6-24 Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

You also need to define the following slot in your pr ot oOver vi ew:
cursor This should be a cursor-like object.

You use the object stored in this slot to encapsulate your data. The cursor-like
object must support the methods Ent r y, Next , Move, and Cl one. An exampleis
given below.

In addition, you must provide a mechanism to find an actual dataitem given an
index of adisplayed item. In general, you need some sort of saved index that
corresponds to thefirst displayed item. See the example codein “Hitltem”

(page 5-88) in Newton Programmer’s Reference for an example of how thisis used.

You aso should provide a mechanism to track the currently highlighted item,
which is distinct from a selected item.

Since your datais probably in an array, you can use a“cursor” object like this:

{ itens: nil,
i ndex: O,

Entry: func()
begi n
if index < Length(itens) then
i tenms[index];
end,

Next: func()
if index < Length(itens)-1 then
begi n
i ndex := index + 1;
i tens[index];
end,

Move: func(delta)

begi n
i ndex := M n(Max(index + delta, 0),
kNumi t ens- 1)
i tems[index];
end,

C one: func()
Cl one(sel f)}

The methods that you need to have in the cursor-like object are:
m Ent ry, which returns the item pointed to by the “cursor.”

m Next , which movesthe “cursor” to the next item and returns that item or, if
thereisno nextitem, ni | .

Overview Protos 6-25

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Mbove, which movesthe “cursor” agiven number of entries and returns that
entry or, if thereisno item in that place, ni | .

m O one, which returns a copy of the “cursor” that is modifiable independent of
the origina “cursor.”

Using protoListPicker

Thepr ot oLi st Pi cker proto—documented in Newton Programmer’s Reference
(page 5-93)—provides a number of controls for finding specific entries, including
folder tabs, alphabet tabs (azTabs), and scrolling arrows; any of these controls can
be suppressed.

Likepr ot oOver vi ew, this proto manages an array of selected items. Any soup
that can be queried by a cursor can be displayed, or elements from an array can
be displayed.

Figure 6-38 shows a full-featured example of pr ot oLi st Pi cker that displaysa
two-column list. Thefirst column is used to select or deselect members, and the
second column provides additional information that can be edited in place.

Figure 6-38 A ProtolistPi cker example

6-26

Widgets # All Widgets

EPYcdlerjon] i Jid jnnjopjarjstjuvivy

¥ ABC Plastics
Abrasives
Aluminum, nails
Aluminum, sheet
Anchors, masonary
Angles, measuring
Annode rods
Asphalt tile
Attic, fans
Attic, insulation
Awnings

+50.00
+2.00
+0.05

+ 100.00
+0.50
+10.0

+ 15.0
+2.00

+ 300.00
+25.00
+ 150.00

The checkbox at the bottom-left of the slip is used to either show every eligible
item or to trim all unselected elements from the list. The New button at the bottom
allows the immediate creation of another entry to be displayed. See Figure 6-39.

Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-39 Creating a new name entry

New Widget

When the pen comes down in any column, the row/column cell inverts as shown in
Figure 6-40.

Figure 6-40 Highlighted row

+ All Widgets

Bcdjerjon] ij ki unjop]arjstjuviex]

W ABC Plastics +50.00

"1 Aluminnm cheat

When the penisreleased, if it iswithin thefirst column, the item is either checked
to show that it is selected or unchecked to show that it is not. See Figure 6-41.

Figure 6-41 Selected row

Linfiled Notes

+ All Widgets

Jcdjefjon] if [k nnjop]ar]stuve]
ABC Plastics 4 50.00
Abrasives +2.00
Aluminum, nails $0.05

L) PR R & 4NN DN

b

When the pen tap is rel eased within the second column, what happens next
depends on the underlying data. If there are many options aready available, a

Overview Protos 6-27

CHAPTER 6

Pickers, Pop-up Views, and Overviews

pop-up view is displayed to alow the user to select any option or enter a new one.
See Figure 6-42.

Figure 6-42 Pop-up view displayed over list

4+ Unfiled Notes

All Widgets

jedjeloh] i Jid Jujoplar]stjuvies]

#50.00
[2.00
[0.05

If the user selects “Add new price” (or if there were one or no options already
available to them), the user can enter anew price as shown in Figure 6-43.

Figure 6-43 Slip displayed for gathering input

6-28

New Widget

Price: 4950
A

+iq ¥
Fapsals|d[fla[n]j[k[1[:['[]
[shif[tIz_Ix c[v][b]n]m],].]#]shift]
option e
x

The proto is driven by aframe contained in the pi cker Def dlot. This picker
definition frame may or may not come from the data definition registry. The
functionality it provides, however, is similar to that of any data definition: it offers
all the hooks the proto needs to interpret and display the data without the proto
itself knowing what the datais.

The chosen items are collected into an array, as described in “Name References”
(page 5-1) in Newton Programmer’s Reference, which can be stored separately
from the original entries. Each selection is represented in the array by aname
reference that contains all information needed to display or operate on the entries.
The name reference is stored as part of the selection, along with an entry alias that
refersto the original entry, if thereisan original entry. (See“Entry Aliases’
beginning on page 12-1 for basic information on these objects.)

Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

The picker definition (described in the next section) is a data definition frame that
is provides the routines to create a name reference from an entry, an entry alias,
another name reference, a straight frame, or just to create a canonical empty name
reference (if no datais provided). It also retrieves the data from a name reference.
Finally, it provides some information about the name reference to support actions
like tapping and highlighting.

You a'so need to define the soup to query. Both this and the query specification can
be defined either in the data definition or in the list picker.

Using the Data Definitions Frame in a List Picker

Thepi cker Def dot of thelist picker holds a data definition frame that determines
the overall behavior of the list picker. This frame should be based on

pr ot oNaneRef Dat aDef or pr ot oPeopl eDat aDef , or at should least support
the required dlots.

Hereis an example:

pi ckerDef:= {

_proto: pr ot oNaneRef Dat aDef
nane: "W dget s",

cl ass: " | nameRef . wi dget |,

ent ryType: "wi dget,
soupToQuery: "W dget s",

guer ySpec: {i ndexPat h: ' nane},
col ums: kCol umms,

s
Specifying Columns

Thecol ums dlot hold an array that determines how the columnsin the list picker
are displayed. Here's an example of column specification array:

colums: = [{
fieldPath:' name,// path for field to display in colum
optional:true,// not required -- unnamed w dget

tapWdth: 155},// width for checkbox & nane conbi ned

fieldPath: "' price,// path for field to display
in colum
optional:nil,// price is required

tapWdth:0}];// width -- to right end of view

Overview Protos 6-29

6-30

CHAPTER 6

Pickers, Pop-up Views, and Overviews

See “Column Specifications’ (page 5-3) in Newton Programmer’'s Reference for
details of the dots.

Having a Single Selection in a List Picker

The key to getting single selection is that single selection is part of the picker
definition and not an option of pr ot oLi st Pi cker. That means the particular
class of nameRef you use must include single selection. In general, this requires
creating your own subclass of the particular name reference class.

The basic solution is to create a data definition that is a subclass of the particular
classyour pr ot oLi st Pi cker variant will view. That data definition will include
thesi ngl eSel ect dot. Asan example, suppose you want to use a

pr ot oPeopl ePopup that just picks individual people. You could use the
following code to bring up apr ot oPeopl ePopup that allows selecting only one
individual at atime:

/1 register the nodified data definition
RegDat aDef (' | naner ef . peopl e.single:SIG,

{_proto: GetDataDefs('|naneRef.people|), singleSelect:
true});

/1 then pop the thing
pr ot oPeopl ePopup: New(' | naneref. people.single:SIF,[],self,]
1);

/] sonetine |ater
UnRegDat aDef (' | namer ef . peopl e. single: SI§);

For other types of pr ot oLi st Pi cker s and classes, create the appropriate
subclass. For example, atransport that uses pr ot oAddr essPi cker for email
messages might create asubclass of ' | naneRef . enmi | | and put that subclass
symbol in the class slot of the pr ot oAddr essPi cker.

Since many applications are likely to do this, you may cut down on code in your
instal | Script andrenpveScri pt by registering your dat aDef only for the
duration of the picker. That would mean registering the class just before you pop
the picker and unregistering after the picker has closed. You can use the

pi ckActi onScri pt and pi ckCancel edScri pt methods to be notified when
to unregister the dat aDef .

Having Preselected Items in a List Picker

If you want to have items that areinitially selected in alist picker, use the

vi ewSet upDoneScri pt to set up the selected array, rather than setting up
the selected array in your vi ewSet upFor nScri pt or

vi ewSet upChi | drenScri pt, then send the Updat e message to

pr ot oLi st Pi cker totell it to update the display.

Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Validation and Editing in protoListPicker

The built-in validation mechanism is not designed to deal with nested soup
information. In general, you gain more flexibility by not using a

val i dati onFrane inyour pi cker Def , even if you have no nested entries.
Instead, you can provide your own validation mechanism and editors:

m defineaVal i dat e method in your picker definition
m define an QpenEdi t or method in your picker definition
m draw alayout for each editor you require

Hereis how your Val i dat e method should work. The following example
assumes that picker Def.ValidateName and picker Def.ValidatePager have
been implemented:

pi cker Def. Val i date : = func(nameRef, pathArray)
begi n

/1 keep track of any paths that fail

| ocal failedPaths := [];

for each index, path in pathArray do

begi n
if path = 'name then
begi n

/1 check if name validation fails
i f NOT :ValidateNane(naneRef) then
/] if so, add it to array of failures
AddArraySl ot (fail edPat hs, path);
end;
el se begin
i f NOT :ValidatePager (nanmeRef) then
AddArraySl ot (fail edPat hs, path);
end;
end;
/1 return failed paths or enpty array
fai | edPat hs;
end;

Here is how your OpenEdi t or method should work:

pi cker Def . OpenEditor : = func(taplnfo, context, why)
begi n
|l ocal valid = :Validate(taplnfo.naneRef,
t apl nfo. edi t Pat hs) ;
if (Length(valid) > 0) then
/1l if not valid, open the editor

Overview Protos

6-31

CHAPTER 6

Pickers, Pop-up Views, and Overviews

/1 NOTE: returns the edit slip that is opened
Get Layout ("editor.t"): new t apl nf o. nameRef,
tapl nfo. edi t Pat hs, why, self, 'EditDone, context);
el se
begin
/1 the itemis valid, so just toggle the selection
cont ext : Tapped(' t oggl e);
nil; /1 Return <nil >.
end; ..
end;

The example above assumes that the base view of the layout edi t or . t hasaNew
method that opens the editor and returns the associated view.

The editor can be designed to fit your data. However, we suggest that you use a

pr ot oFl oat NGo that is attached to the root view using Bui | dCont ext . You are
also likely to need a callback to the pi ckder Def so it can appropriately update
the edited or new item. Finally, your editor needs to update your data soup using an
Xmi t soup method so that the list picker updates.

Inthe OpenEdi t or example above, the last three arguments are used by the editor
to send a callback to the pi cker Def fromthevi ewQui t Scri pt. The design of
the callback function is up to you. Here is an example:

pi cker Def . Edi t Done : = func(nameRef, context)

begin
| ocal valid = :Validate(taplnfo.nameRef, taplnfo.editPaths) ;
if (Length(valid) > 0) then
begin

/1 Sonmething failed. Try and revert back to original
i f NOT : ValidatePager (naneRef) AND
sel f. (' [pathExpr: savedPagerVal ue, naneRef]) = naneRef then
naneRef . pager := savedPager Val ue. pager;

cont ext: Tapped(nil);// Renove the checknark
end;
el se

/1 The naneRef is valid, so select it.

cont ext: Tapped(' sel ect);

!/l Clear the saved val ue for next tine.

savedPager Val ue : = nil;
end;

6-32 Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Changing the Font of protoListPicker

The mechanism described here will probably change in the future. Eventually you
may be ableto set avi ewFont glot inthelist picker itself, just as you can set

vi ewLi neSpaci ng now. In the meantime, you need a piece of workaround code.
You must set thevi ewFont of thelist picker and also include this workaround
code.

Givethelist picker the following vi ewSet upDoneScri pt :
func()
begi n
if listBase then
Set Val ue(l i st Base, 'viewFont, viewrFont) ;

i nherited: ?vi ewSet upDoneScri pt () ;
end;

Thissetsthevi ewFont of thel i st base view to the view font of thelist picker.
You cannot rely onthel i st base view aways being there (hence the test).

Using protoSoupOverview

For the most part, you use this proto like pr ot oOver vi ew, except that it is set up
to use a soup cursor, and, so, is easier to use. See “Using protoOverview” (page 6-24)
for information.

Determining Which protoSoupOverview Item Is Hit

Thereisamethod of pr ot o0SoupOver vi ewcaledHi t | t emthat iscaled
whenever an item is tapped. The method is defined by the overview and you should
call the inherited method. Also notethat Hi t | t emgets called regardless of where
in the line atap occurs. If the tap occurs in the checkbox (that is, if x islessthan
sel ect | ndent), you should do nothing other than calling the inherited functions,
because the inherited function will handle the tap, otherwise you should do
something appropriate.

The method is passed the index of the item that is hit. Theindex is relative to the
item displayed at the top of the displayed list. Thisitem is aways the current entry
of the cursor used by pr ot 0SoupOver vi ew, so you can find the actual soup entry
by cloning the cursor and moving it.

func(item ndex, x, y)

begi n
/1 MJST call the inherited nethod for bookkeepi ng
inherited:H tlten(iten ndex, x, y);

Overview Protos 6-33

CHAPTER 6

Pickers, Pop-up Views, and Overviews

if x > selectlndent then
begin
/1 get a tenporary cursor based on the cursor used
/1 by soup overview
| ocal tCursor := cursor:done();

/! nmove it to the selected item
t Cursor: Move(item ndex) ;

/1l move the application’s detail cursor to the
/1l selected entry
myBaseApp. detai | Cursor: Goto(tCursor: Entry());

/1 usually you will close the overview and switch to
/1 sonme other view
sel f: d ose();
end;
/1 otherwi se, just |et them check/uncheck
/1 which is the default behavior
end

Displaying the protoSoupOverview Vertical Divider

The mechanism for bringing up the vertical divider line was not correctly
implemented in pr ot 0SoupOver vi ew You can draw onein as follows:

/1 set up a cached shape for efficiency
mySoupOver vi ew. cachedLine : = nil;

mySoupOver vi ew. vi ewSet upDoneScri pt : = func()
begin
i nherited: ?vi ewSet upDoneScri pt () ;

| ocal bounds := :Local Box();
cachedLi ne : = MakeRect (sel ectlndent - 2, 0,
sel ectIndent - 1, bounds. bottom;
end;

mySoupOver vi ew. vi ewDr awScri pt : = func()
begin

/1 MJST call inherited script

i nherited: ?vi ewDrawScri pt () ;

: DrawShape(cachedLi ne,
{penPattern: vfNone, fillPattern: vfGay});
end;

Overview Protos

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Roll Protos

You can use the protos described in this section to present roll viewsin your
applications. A roll view is one that contains several discrete subviews that are
arranged vertically. Theroll can be viewed in overview mode, in which each
subview is represented by a one-line description. Any or al of the subviews can be
expanded to full size. The individual subviews are contained in objects based on
protoRol I Item

The Newton system software provides the following roll protos:

m Theprot oRol | providesaroll-like view that includes a series of individual
items. The user can see the items either as a collapsed list of one-line overviews
or asfull-size views. When the user taps an overview line, al the full-size views
are displayed, with the tapped view shown at the top of the roll. For information
about the dlots and methods for this proto, see“ protoRoll” (page 5-112) in
Newton Programmer’s Reference. Figure 6-44 shows an example of a
pr ot oRol I .

Figure 6-44 A prot oRol | example

=+ Overview of item 1
= Overview of item 2
= Overview of item 3
=+ Overview of item 4
= Overview of item 5

m Theprot oRol | Browser issimilar to pr ot oRol | , except that
pr ot oRol | Browser creates a self-contained application based on the
pr ot 0App, described in “protoApp” (page 1-2) in Newton Programmer’s
Reference. See " protoRollBrowser” (page 5-116) in Newton Programmer’s
Reference for information about the slots and methods for this proto.
Figure 6-45 shows an example of apr ot oRol | Br owser :

Roll Protos 6-35

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Figure 6-45 A pr ot oRol | Browser example

Collapsed View Expanded View
+ Metric Conversion ~Mletric Conversion

s Currency Exchange

#* Loan Payment
« NetPresent Value |] inchesscentirmeters ...

& Capital Asset Pricing Model feet/meters

gallons/liters

rrilesskilormeters

.................... poundsskilograrms

Fahrenheit/Celsius

~Currency Exchange

Currency 1

Exchange Rate

Currency 2

~Loan Payment

Murmber of Years

Interest Rate
|

View Classes

There are two view classes that you use for pickers:

m Thecl Qutli ne view class displays an expandable text outline. Figure 6-46
shows an example.

Figure 6-46 Example of an expandable text outline

My First Heading
First level 2 head
Another level 2 head
Wioww—a third lewveal!
Second main heading
Third main heading

6-36 View Classes

CHAPTER 6

Pickers, Pop-up Views, and Overviews

m Thecl Mont hVi ewview class displays a monthly calendar. Figure 6-47 shows
an example.

Figure 6-47 Example of a month view

—

F:%5

SMOT oW
z2 4

1

e
Selectedday — <« 7 = 0
1214 151617

o
1

5

112

1213

Current day ———=20-21-22 23 24 25 26
272829303

Specifying the List of Itemsfor a Popup

You specify theitem list for pr ot oPi cker, pr ot oText Li st ,

pr ot oPopUpBut t on, pr opt oPopupl nPl ace, and PopUpMenu in
an array. In the simplest case, thisis an array of strings, but it can contain
different kinds of items:

simple string A string. You can control the pickability of atext item or add
amark to the display by specifying the text in aframe, as
described in Table 6-1 (page 6-38).

bitmap A bitmap frame or a NewtonScript frame, as returned from
the Get Pi ct AsBi t s compile-time function. You can
control the pickability of the item or add a mark to the
display by placing the bitmap in aframe, as described in
Table 6-1 (page 6-38).

icon with string A frame that specifies both a string and an icon, as described
in Table 6-2 (page 6-38).
Separator line An instruction to display aline that runs the width of the

picker. To display a dashed gray line, specify the symbol
' pi ckSepar at or. For asolid black line, specify the
symbol ' pi ckSol i dSepar at or.
two-dimensional grid
A frame describing the grid item, as described in Table 6-3
(page 6-39).
If al theitemsin the picker list cannot fit into the view, the user can scroll the list
to see more items.

Table 6-1 describes the frame used to specify simple string and bitmap itemsin the
picker list.

Specifying the List of Items for a Popup 6-37

6-38

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Table 6-1 Item frame for strings and bitmaps

Slot name Description

item Theitem string or bitmap reference.

pi ckabl e A flag that determines whether the item is pickable.

Specify non-ni | if you want the item to be pickable, or

ni | if you don’'t want the item pickable. Not-pickable
items appear in the list but are not highlighted and can’t be
selected.

mar k A character displayed next to an item when it's chosen.
Specify adollar sign followed by the character you want to
useto mark thisitemif it is chosen. For example,

$\ uFCOB

specifies the check mark symbol. (You can use the constant
kCheckMar kChar to specify the check mark character.)

fi xedHei ght When you give a bitmap, you can give this slot for the first
item in order to force al itemsto be the same size. If you
use bitmapsin alist that can become large enough to
scroll, you should specify thef i xedHei ght dot for
every item. You can also use dot thisfor any item to
specify aheight different from other items.

Table 6-2 describes the frame used to specify a string with anicon in the picker list.

Table 6-2 Item frame for string with icon

Slot name Description

item Theitem string.

i con A bitmap frame, as returned from the compile-time function

Get Pi ct AsBi t s. The bitmap is displayed to the left of the
text, and the text is drawn flush against it, unless the
i ndent slot is specified.

continued

Specifying the List of Items for a Popup

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Table 6-2 Item frame for string with icon (continued)
Slot name Description
i ndent An integer that defines atext indent to use for thisitem and

subsequent icon/string items. This integer specifies the
number of pixelsto indent the text from the left side of the
picker view. You can use it to line up a number of text items
that may have icons of varying width. Specify —1 to cancel
the indent effect for the current and subsequent text items.
Theicon is aways centered within the indent width.

fi xedHei ght You can give this slot for thefirst item in order to force all
itemsto be the same size. If you useiconsin alist that can
become large enough to scroll, you should specify the
fi xedHei ght dot for every item. You can aso use this
slot for any item to specify a height different from other
items. (When you use PopupMenu, you must specify a
fi xedHei ght dot for the first item, because PopupMenu
ignores the height of the icon.)

Table 6-3 describes the frame required to specify atwo-dimensional grid itemin
the picker list.

Table 6-3 Item frame for two-dimensional grid
Slot Name Description
bits A binary object representing the bitmap of the grid item. A

bitmap is returned in the bi t s slot in the frame returned by
the compile-time function Get Pi ct AsBi t s.

The bitmap is a complete picture of the grid item, including
the lines between cells and the border around the outside of the
cells. There must be no extra white space outside the border.
Each cell must be the same size and must be symmetrical.

bounds The bitmap bounds frame, from the bounds dot in the frame
returned by Get Pi ct AsBi t s.

wi dt h The number of columnsin the grid (must be non-zero).

hei ght The number of rowsin the grid (must be non-zero).

continued

Specifying the List of Items for a Popup 6-39

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Table 6-3 Item frame for two-dimensional grid (continued)

Slot Name Description

cel | Frame Optional. The width of the separator line between cells, used
for highlighting purposes. If you don’t specify this dot, the
defaultis 1 pixel.

out er Fr ame Optional. The width of the border line around the cells, used

for highlighting purposes. If you don’t specify this dlot, the
default is 2 pixels.

mask Optional. A binary object representing the bits for a bitmap
mask. This mask is used to restrict highlighting, or for special
hit-testing. The mask must be exactly the same size asthe
bitmap. Cellsin the grid are highlighted only if the position
tapped is “black” in the mask.

Note
Picker items can include 1.x bitmaps but not 2.0 shapes. ¢

When acell is highlighted in atwo-dimensional picker item, only the part of the
cell inside the cell frame linesisinverted. You can vary the highlighting effect by
changing the values of the cel | Fr ane and out er Fr ane slots, which control
how much unhighlighted space to leave for the cell frame lines. An example of how
these values affect cell highlighting is shown in Figure 6-48.

Figure 6-48 Cell highlighting example for pr ot oPi cker

1]

!!

HAN

Delete Delete Delete

Insert Insert Insert

cel | Frame=1 cel | Frame=3 cel | Franme=0
out er Frame=2 out er Frame=3 out er Frame=0

6-40 Specifying the List of Items for a Popup

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

The following sections summarize the reference information in this chapter.

General Picker Protos

protoPopupButton

aPr ot oPopupButton : = {

_proto: pr ot oPopupBut t on,

vi ewFl ags: flags,

vi ewBounds: boundsFrame,

vi ewdustify: justificationFlags,

text: string, /'l text inside button
popup: array, /] itens in |ist

ButtonC i ckScri pt: function, /1l called on button tap
Pi ckActionScri pt: function, /1l returns item sel ected

Pi ckCancel | edScri pt: function, /1l user cancelled

protoPoplinPlace

aPr ot oPopl nPl ace : = {

_proto: pr ot oPopl nPl ace,

vi ewBounds: boundsFrame,

vi ewFl ags: constant,

vi ewdustify: justificationFlags,

text: string, /'l text inside button
popup: array, /1l itens in |ist

Pi ckActionScri pt: function, /1l returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled

protoLabelPicker

aPr ot oLabel Pi cker := {

_proto: pr ot oLabel Pi cker,
vi ewBounds: boundsFrame,

Vi ewfont : fontSpec,

Summary 6-41

CHAPTER 6

Pickers, Pop-up Views, and Overviews

i conSet up: icon frame,

| abel Conmands: array, [l itenms in list

i conBounds: boundsFrame, // bounds of |argest icon

i conl ndent: integer, /1 indent of text fromicon
checkCurrentltem Boolean, // true to check selected item
i ndent: integer, /1 indent of picker from |l abel
text | ndent : integer, /1 indent of text

Label Acti onScri pt : function, /'l returns selected item

Text Set up: function, /1 gets initial item

Text Changed: function, /1 called upon item val ue change
Updat eText : function, /1 call to change selected item
Pi cker Set up: function, /1 called when user taps | abel
Popi t : function, /1 call to progranmmatically

/1 pop up picker

}

protoPicker

aPr ot oPi cker :={

_proto: pr ot oPi cker,

bounds: boundsFrame,

Vi ewBounds: boundsFrame, // i gnored

vi ewFl ags: constant,

Vi ewFor nat : formatFlags,

vi ewdustify: justificationFlags,

Vi ewFont : fontSpec,

Vi ewkf f ect : effectFlag,

pi ckl t ens: array, [/ itenms in |ist

pi ckText |t enHei ght : integer, // hei ght reserved for itens

pi ckLef t Mar gi n: integer, // margin fromleft of view

pi ckRi ght Margi n: integer, // margin fromright of view

pi ckTopMar gi n: integer, // margin above each itemin
1 list

pi ckAut oCl ose: Boolean, // true to close list after pick

pi ckl t ensMar kabl e: Boolean, // true to reserve space for
11 check mark before item

pi ckMar kW dt h: integer, // space to reserve for nmarks
cal | backCont ext: view, /1 view with pick scripts

Pi ckActionScri pt: function, // returns selected item

Pi ckCancel | edScri pt : function, /1 user cancelled

Set | t emvar k: function, // sets char for check marks
Get | t emvar k: function, // gets char for check marks
}

6-42 Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoGeneralPopup

aPr ot oGener al Popup : = {

_proto: pr ot oGener al Popup,

vi ewBounds: boundsFrame,

vi ewFl ags: constant,

cancel | ed: Boolean, // true if user cancelled
/1 pop-up view

cont ext : view, /1 vieww th pick scripts

New: /1 open pop-up View

Affirmative: function, /] user taps pop-up View

Pi ckCancel | edScri pt : function, /1 called in pop-up view

/1 cancelled

}

protoTextList

aProtoTextList := {

_proto: pr ot oText Li st

vi ewBounds: boundsFrame,

Vi ewFont : fontSpec,

vi ewFor mat : formatFlags,

vi ewLi nes: integer, /1 nunber of lines to show

sel ection: integer, /1 index of selected item

sel ectedl tens: arrary, /] items in list

listltens: array, /1 strings or shapes in |ist

I i neHei ght : array, /1 height of lines in |ist

i sShapeli st: Boolean, // true if picts instead of text

useMul ti pl eSel ecti ons:

Boolean, // true for nultiple select
useScrol ler: Boolean, // true to include scrollers
scrol | Anount s: array, /1 units to scroll
DoScrol | Scri pt: function, /1 scrolls list by offset
Vi ewSet upFor nScri pt : function, /1 set up list
ButtonC i ckScri pt: function, /1 returns selected item
}
protoTable
aProtoTable : = {

_proto: protoTabl e,
vi ewBounds: boundsFrame,

Summary

6-43

6-44

CHAPTER 6

Pickers, Pop-up Views, and Overviews

vi ewFor mat : formatFI
def : frame,
scrol | Amount : integer,
current Sel ecti on: string,
sel ectedCel | s: array,
decl areSel f: symbol,

Vi ewSet upFor n5cri pt: function,

ags,
/1 protoTabl eDef table
/[l definition frane
/'l nunber of rows to scrol
/1l text of selected item
/'l selected cell indexes
/] 'tabbase; do not change
/1 set up table

Sel ect Thi sCel | : function, /1 called when cell is

sel ect ed

}

protoTableDef

aProt oTabl eDef : = {

_proto: protoTabl eDef,

t abAcr oss: integer, /1l number of colums - nust be 1

t abDown: integer, /1l number of rows in table

t abW dt hs: integer, /1 width of table

t abHei ght : integer, /1 height of rows

t abPr ot os: frame, /1 references to row tenpl ates

t abVval ues: integer/array, // value/array of values for
Il rows

tabVal ueSl ot: symboal, /] slot to store tabValues in

t abUni queSel ect i on: Boolean,

/1 true for single selection

i ndent X: integer, /1 do not change: used internally
TabSet Up: function, /1 called before each row set up
}

protoTableEntry

aProtoTabl eEntry : = {

_proto: pr ot oTabl eEntry,

vi ewCl ass: clTextView,

Vi ewFl ags: flags,

vi ewdusti fy: justificationFlags,

vi ewTr ansf er Mode: modeOr,

text: string, /1 text inside table

Vi ewd i ckScript: function, /] sets current selection

ViewH [iteScript: function,

}

Summary

/1 highlights selection

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Map Pickers
protoCountryPicker

aPr ot oCount ryPi cker := {
_proto: pr ot oCount r yPi cker,

vi ewBounds: boundsFrame,

aut oCl ose: Boolean, // true to close picker on selection
listLimt: integer, // maximumitens |isted

Pi ckWorl d: function, /1 called when selection is made

}

protoProvincePicker

aPr ot oProvi ncePi cker := {
_proto: pr ot oPr ovi ncePi cker,

vi ewFl ags: constant,

aut oCl ose: Boolean, // true to close picker on selection
listLimt: integer, /1 maximumitens |isted

Pi ckWorl d: function, /1 called when selection is nade

}

protoStatePicker

aProt oSt at ePi cker : = {
_proto: pr ot oSt at ePi cker,

vi ewFl ags: constant,

aut oCl ose: Boolean, // true to close picker on selection
Pi ckWorl d: function, /1 called when selection is made
[istLimt: integer, /1 maximumitemnms |isted

}
protoWorldPicker

aPr ot oWor | dPi cker : = {

_proto: pr ot oWor | dPi cker,

vi ewBounds: boundsFrame,

aut oCl ose: Boolean, // true to close picker on selection
listLimt: integer, /[l maximumitens |isted

Pi ckWorl d: function, // called when selection is made

}
Summary 6-45

6-46

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Text Picker Protos

protoTextPicker

aProt oText Pi cker := {

_proto: pr ot oText Pi cker,

| abel : string, /1 picker |abel

i ndent: integer, /1 indent

| abel Font: fontSpec, // font for | abel

entryFont: fontSpec, // font for picker line

Popi t: function, /1 user tapped picker

Pi ckActionScri pt: function, /'l returns selected item

Pi ckCancel | edScri pt: function, /'l user cancelled picker

Text Set up: function, /] returns text string

}

protoDateTextPicker

aPr ot oDat eText Pi cker := {

_proto: pr ot oDat eText Pi cker,

| abel : string, /'l picker |abel

dat e: integer, /1 initial and currently
/'l selected date

| ongFor mat : symbol, /1 format to display date

short For mat : symbol, /1 format to display date

Pi ckActionScri pt: function, /'l returns selected item

Pi ckCancel | edScri pt : function, /'l user cancelled picker

}

protoDateDurationTextPicker

aPr ot oDat eDur at i onText Pi cker := {

_proto: pr ot oDat eDur at i onText Pi cker,

| abel : string, /1 picker |abel

| abel Font: fontSpec, // display font

entryFont: fontSpec, // picked entry font

start Ti me: integer, /1 initial start date

st opTi ne: integer, // initial end date

| ongFor mat : symbol, /1 format to display date

short For mat : symbol, /1 format to display date

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Pi ckActionScri pt: function, // returns selected item
Pi ckCancel | edScri pt: function, // user cancel |l ed picker

}

protoRepeatDateDurationTextPicker

aPr ot oRepeat Dat eDur ati onText Pi cker : = {

_proto: pr ot oRepeat Dat eDur at i onText Pi cker,
| abel : string, /1 picker |abel

startTi me: integer, /1 initial start date

st opTi ne: integer, /1 initial end date

| ongFor mat : symbol, /1 format to display date
short For mat : symbol, /1 format to display date
repeat Type: constant, // how often neeting neets
nt gl nf o: constant, // repeating neetings

Pi ckActionScri pt: function, // returns selected item
Pi ckCancel | edScri pt: function, // user cancel | ed pi cker

}

protoDateNTimeTextPicker

aPr ot oDat eNTi meText Pi cker : = {

_proto: pr ot oDat eNTi neText Pi cker,

| abel : string, /1 picker |abel

dat e: integer, /1 initial date/tine
format: symbol, /1l format to display tine
| ongFor mat : symbol, /1 format to display date
short For mat : symbol, /1 format to display date
i ncrenent: integer /1 amount to change tinme
Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

protoTimeTextPicker

aPr ot oTi meText Pi cker : = {

_proto: pr ot oTi neText Pi cker,

| abel : string, /1 picker |abel

| abel Font : fontSpec, // | abel display font
ent ryFont : fontSpec, // picked entry font

i ndent : integer, /1 amount to indent text

Summary 6-47

CHAPTER 6

Pickers, Pop-up Views, and Overviews

time: integer, /] initial start tine
format: symbol, /1 format to display tinme
i ncremnent: integer, /1 increnment to change

/1 time for taps
Pi ckActionScri pt: function, /'l returns selected item

Pi ckCancel | edScri pt: function, /'l user cancelled picker

protoDurationTextPicker

aPr ot oDur ati onText Pi cker := {
_proto: pr ot oDur at i onText Pi cker,
| abel : string, /1 picker |abel
start Ti me: integer, /[l initial start tine
st opTi ne: integer, /] initial end tine
format: symbol, /1 format to display tinme
i ncremnent: integer, /1 increnment to change
/1 time for taps
Pi ckActionScri pt: function, /'l returns selected item

Pi ckCancel | edScri pt: function, /'l user cancelled picker

protoTimeDeltaTextPicker

aProt oTi neDel t aText Pi cker := {

_proto: prot oTi neDel t aText Pi cker,

| abel : string, /'l picker |abel

time: integer, /] initial tine

| abel Font : fontSpec, // | abel display font

entryFont: fontSpec, // picked entry font

i ndent: integer, [/ amount to indent text

i ncrement: integer, /1 increnment to change
/1 time for taps

m nVal ue: integer, /1 mninmmdelta val ue

Pi ckActionScri pt: function, /'l returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

6-48 Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoMapTextPicker

aPr ot oMapText Pi cker : = {

_proto: pr ot oMapText Pi cker,

| abel : string, /1 picker |abel

| abel Font : fontSpec, // | abel display font

ent ryFont : fontSpec, // picked entry font

i ndent: integer, /1 armount to indent text
par ans: frame,

Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

protoCountryTextPicker

aPr ot oCount ryText Pi cker := {

_proto: pr ot oCount r yText Pi cker,

| abel : string, /1 picker |abel

| abel Font : fontSpec, // | abel display font

ent ryFont : fontSpec, // picked entry font

i ndent : integer, /1 armount to indent text
par ans: frame,

Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

protoUSstatesTextPicker

aPr ot oUSst at esText Pi cker : = {

_proto: pr ot oUSst at esText Pi cker,

| abel : string, /1 picker |abel

| abel Font : fontSpec, // | abel display font

ent ryFont : fontSpec, // picked entry font

i ndent: integer, /1 armount to indent text
par ans: frame,

Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

Summary

6-49

6-50

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoCitiesTextPicker

aProt oG ti esText Pi cker := {

_proto: prot oCi ti esText Pi cker,

| abel : string, /1 picker |abel

| abel Font: fontSpec, // | abel display font
entryFont: fontSpec, // picked entry font

i ndent : integer, /1 amount to indent text
par ans: frame,

Pi ckActi onScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancell ed picker

protoLongLatTextPicker

aPr ot oLonglLat Text Pi cker := {

_proto: pr ot oLonglLat Text Pi cker,

| abel : string, /'l picker |abel

| atitude: integer, /] initial latitude

| ongi t ude: integer, /1 initial |ongitude

| abel Font: fontSpec, // | abel display font
entryFont: fontSpec, // picked entry font

i ndent : integer, /] amount to indent text
Pi ckActi onScri pt: function, /] returns selected item
Pi ckCancel | edScri pt: function, /1 user cancell ed picker
wor | dd ock: boolean /1 do not change

}

Date, Time, and Location Pop-up Views

protoDatePopup

aPr ot oDat ePopup : = {

_proto: pr ot oDat ePopup,

New: function, /] creates pop-up View
Pi ckActi onScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancell ed picker

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoDatePicker

aPr ot oDat ePi cker := {

_proto: pr ot oDat ePi cker,

sel ect edDat es: array, /1 selected date

Dat eChanged: function, /1 called when date is sel ected
Ref r esh: function, /1 update view with new dates

}

protoDateNTimePopup

pr ot oDat eNTi nePopup : = {

_proto: pr ot oDat eNTi nePopup,

New: function, /1 creates pop-up view
NewTi ne: function, /1 called when tinme changes
Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

protoDatelntervalPopup

pr ot oDat el nt er val Popup : = {

_proto: pr ot oDat el nt er val Popup,

New: function, /1 creates pop-up view
NewTi ne: function, /1 called when tinme changes
Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

}

protoMultiDatePopup

protoMul ti Dat ePopup : = {

_proto: pr ot oMul t i Dat ePopup,

New: function, /1 creates pop-up view
Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1 user cancelled picker

Summary 6-51

6-52

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoYearPopup

pr ot oYear Popup : = {

_proto: pr ot oYear Popup,
New: function, 11
NewYear : function, 11
DoneYear : function, 11

Pi ckCancel | edScri pt: function, /1

creates pop-up Vview
cal l ed when year changes
call ed on cl ose box tap
user cancell ed picker

}

protoTimePopup

prot oTi nePopup : = {

_proto: pr ot oTi nePopup,

New: function, /] creates pop-up View
NewTi ne: function, /1 called when time changes
Pi ckActi onScri pt: function, /] returns selected item
Pi ckCancel | edScri pt: function, [l user cancell ed picker
}

protoAnalogTimePopup

pr ot oAnal ogTi mePopup : = {

_proto: pr ot oAnal ogTi mePopup,

New: function, /] creates pop-up View

NewTi me: function, /1

call ed when tine changes

Pi ckActi onScri pt: function, /] returns selected item
Pi ckCancel | edScri pt: function, /1 user cancell ed picker
}

protoTimeDeltaPopup

prot oTi neDel t aPopup : = {

_proto: pr ot oTi neDel t aPopup,

New: function, /] creates pop-up View

Pi ckActi onScri pt: function, /1
Pi ckCancel | edScri pt: function, /1

Summary

returns selected item
user cancell ed picker

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoTimelntervalPopup

prot oTi nel nt er val Popup : = {

_proto: pr ot oTi nel nt er val Popup,

New. function, /1 creates pop-up view
Pi ckActionScri pt: function, /1 returns selected item

Pi ckCancel | edScri pt: function, /1l user cancelled picker

Number Pickers

protoNumberPicker

aPr ot oNunber Pi cker := {

_proto: pr ot oNunber Pi cker,

m nVal ue: integer, /1 mnimmvalue in |ist
maxVal ue: integer, /1 maxi mum value in |ist

val ue: integer, /1 currently selected val ue

showLeadi ngZeros: Boolean, // true to show | eadi ng zeros
prepareForCick: function, /1 called after click is

/'l processed
d i ckDone: function, /1 called after click is

/'l processed

Picture Picker

protoPictindexer

aPr ot oPi ct I ndexer := {
_proto: pr ot oPi ct | ndexer,
vi ewBounds : boundsFrame,
vi ewdustify: justificationFlags,
vi ewFor mat formatFlags,
i con: bitmap, /1 bitmap with objects
/1 arranged vertically
i conBBox: boundsFrame, // bitmap bounds within view
num ndi ces: integer, /1 # of objects in bitmap
cur | ndex: integer, /1 index of current item

I ndexd i ckScri pt: function, /1 user taps bitmap

}
Summary 6-53

CHAPTER 6

Pickers, Pop-up Views, and Overviews

Overview Protos

protoOverview

aProt oOverview : = {

_proto: pr ot oOver vi ew,

vi ewBounds : boundsFrame,

vi ewFl ags : constant,

vi ewFont : fontSpec,

| i neHei ght: integer, /1 height of itens in pixels

sel ect I ndent: integer, /'l specifies left margin
not hi ngCheckabl e: Boolean, // true for no checkboxes
Sel ectltem function, /1l to record selected itens
Set upAbst ract s: function, /] set up entry
Abstract: function, /1 return shape given entry
Htltem function, /1 called when itemis tapped
| sSel ect ed: function /! Return true if the itemis
/'l selected
cursor: cursor, /1l cursor for the itens
ChecksSt at e: function, /1l determines if selectable
Scrol l er: function, /1 inplement scrolling here
Sel ectltem function, /1l records selected itens
vi ewSet upChi | drenScri pt:
function, /1 Calls SetupAbstracts
}
protoSoupOverview
aPr ot oSoupQOvervi ew : = {
_proto: pr ot oSoupOver vi ew,
aut oDesel ect : Boolean, /1 whet her to desel ect when
/1 the pen | eaves an item
cursor: cursor, /1 cursor for the entries
Scrol |l er: function, /1 inplement scrolling here
Sel ectltem function, /1 records selected itens
Abstract: function, /1 return shape given entry
| sSel ect ed: function, /1l returns true if selected
For EachSel ect ed: function, /1 called for each sel ected
/[l item

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

/1 Set to 'pickBase

hei ght of items in pixels

defines |ist behavior
references to selected itemns
uni on soup to query

query to use

nodi fied as user selects

and desel ects item

single selection if non-ni

protoListPicker

aPr ot oLi st Pi cker := {

_proto: pr ot oLi st Pi cker

decl areSel f : symbol,

def aul t Justification : constant,

vi ewFl ags : constant,

vi ewBounds : boundsFrame

I i neHei ght : integer, /1

listFormat: formatFlags,

pi cker Def: frame, /1

sel ect ed: array, /1

soupToQuery: string, /1

guer ySpec: frame, /1

sel ect ed: array, /1
/1

singl eSel ect: Boolean, [/

suppr essNew: Boolean, //

suppressScrol | er s: Boolean,

suppr essAZTabs:

Boolean,

suppr essFol der Tabs: Boolean,
suppr essSel Onl yCheckbox: Boolean, // suppress if non-ni

suppr essC oseBox:
suppressCount er :
revi ewSel ections:
readOnl y:

dont Pur ge:
soupChangeSynbol :
SoupEnt er s:
SouplLeaves:

Set NowShowi ng:
AddFakel t em

Cet Sel ect ed:

Summary

Boolean,
Boolean,
Boolean,
Boolean,

Boolean,

symbol,

function,
function,
function,
function,

function,

suppress New button if non-ni

I
I
I
11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

suppress scroller if
non-ni |

suppress tabs if non-ni

suppress i f non-ni

suppress i f non-ni

suppress i f non-ni

Selected Only if non-ni

items are read-only if
non-ni |

keep unselected refs if
non-ni |

for RegSoupChange mnet hod

syncs up changed soup

syncs up changed soup

set Selected Only

add itemto array; update
screen

returns clone of selected
array

6-55

6-56

CHAPTER 6

Pickers, Pop-up Views, and Overviews

protoNameRefDataDef

aPr ot oNaneRef Dat aDef : = {

_proto: pr ot oNaneRef Dat aDef

namne: string, /1 name to identify picker in
/1 top left corner

cl ass: symbol, /1 specify class for new nane
/'l references

entryType: symbol, /1 class for new soup entries

col ums: array, /1 columm specifications

singl eSel ect: Boolean, /1 single selection if non-nil

soupToQuery: string, /1 union soup to query

quer ySpec: frame, /'l query to use

val i dat i onFr ane: frame, /'l checks validity of entry

MakeCanoni cal NameRef : function, // nmke bl ank name ref

MakeNaneRef : function, /1
CGet: function, /1

make nane reference
returns data from specified

/1 object
Get Pri mar yVal ue: function, // retrieves data from object
Htltem function, /1 called when itemtapped
MakePopup: function, /1 called before maki ng pop-up
[l view
Tapped: function, /1 called when tap has been
/1 handl ed
New: function, /1 called when tap on New button
Def aul t OpenEdi t or: function, // open an edit view
OpenEdi tor: function, /1 open an customedit view
NewEnt ry: function, /] returns a new soup entry
Modi f yEntry: function, /1 returns a nodified soup entry
Val i dat e: function, /1 validates paths
}
protoPeopleDataDef
aPr ot oPeopl eDat aDef : = {
_proto: pr ot oPeopl eDat aDef,
entryType: symbol, /1 class for new soup entries
soupToQuery: string, /1 union soup to query
pri maryPat h: symbol, /1 the primary path col um
pri maryPat hMapper : frame, /1 maps entry class to data
Equi val ent : function, /] conpares two name refs

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews
Val i dat e: function, //

I
Modi f yEntryPat h: function, //
Get Rout i ngl nf o: function, //
Get | t enRout i ngFr ane: function, //
GetRoutingTitle: function, //
Pr epar eFor Rout i ng: function, //

protoPeoplePicker

returns array of invalid
refs

entry nodification of Names

retrieves routing info

converts routing info

Creates target string

strips extra info

aPr ot oPeopl ePi cker : = {
_proto:

pr ot oPeopl ePi cker,

cl ass: symbol, /1 type of data to display
sel ect ed: array, /1l references to selected itens
}
protoPeoplePopup
aPr ot oPeopl ePi cker := {
_proto: pr ot oPeopl ePi cker,
cl ass: symbol, /1 type of data to display
sel ect ed: array, /1l references to selected itens
cont ext : symbol, /1 view with PickActionScript
/1 met hod
options: array, /1 options for protoListPicker

Pi ckActionScri pt: function,

/1 called when pop-up is closed

}

Roll Protos

protoRoll

aProtoRol | := {

_proto: protoRol I,

vi ewFl ags: constant,

vi ewBounds: boundsFrame,

itens: array, /1 tenplates for roll itens

Summary

6-57

6-58

CHAPTER 6

Pickers, Pop-up Views, and Overviews

al | Col | apsed: Boolean, // roll collapsed if non-nil

i ndex: integer, /1 index of itemto start
/] display at

decl areSel f: symbol, /1 '"roll —do not change

}

protoRollBrowser

aPr ot oRol | Browser := {
_proto: pr ot oRol | Browser,
vi ewBounds: boundsFrame,
vi ewJusti fy: justificationFlags,
vi ewfor mat : formatFlags,
title: string, /1 text for title at top of roll
rollltens: array, /] tenplates for roll itens
rol | Col | apsed: Boolean, // roll collapsed if non-nil
rol I I ndex: integer, /1 index of itemto start
/] display at
decl areSel f: symbol, /1 'base —do not change
}
protoRollltem
aProtoRol I Item: = {
_proto: protoRol I ltem
vi ewBounds: boundsFrame,
vi ewJusti fy: justificationFlags,
Vi ewfor mat : formatFlags,
overvi ew. string, /1 text for one-line overview
hei ght : integer, /1 height of the viewin pixels
stepChil dren: Boolean, /1 child views for this roll item
}
View Classes
clOutlineView
myQutline:= {...
vi ewCl ass: cl Qutline,
vi ewBounds: boundsFrame,

Summary

CHAPTER 6

Pickers, Pop-up Views, and Overviews

br owsers: array, /] frame with array of outline
/[l itemns

vi ewFont : fontSpec,

vi ewFl ags : constant,

Vi ewFor mat : formatFlags,

cl i ckSound: frame, /1 sound franme for taps

QutlinedickScript:function, //called when user taps item

clMonthView

theMonth = {...
vi ewcl ass: cl Mont hVi ew,

vi ewBounds: boundsFrame,
vi ewf | ags: constant,
| abel Font : fontSpec,
dat eFont : fontSpec,

sel ect edDat es: array,
vi ewSet upFor nScri pt : function,

Functions

PopupMenu(list, options)
| sNaneRef (item)

Al i asFr onbj (item)
Ent r yFr onthj (item)

Obj Ent ryd ass(item)

Summary 6-59

CHAPTER 7

Controls and Other Protos

Controls are software objects that provide various user interface capabilities,
including scrolling, selection buttons, and dliders. You use the controls and other
protos described in this chapter to add these features to your NewtonScript
applications.

This chapter gives a general description of the controls and related protos provided
in Newton System Software. For a detailed description of these protos, including
the slots that you use to set to implement each, see Controls Reference’

(page 6-1) in Newton Programmer’s Reference.

This chapter provides information about the following controls and protos:
m horizontal and vertical scrollers

m boxes and buttons

alphabetical selection tabs

gauges and dliders

time-setting displays
specia views

view appearance enhancements
status bars

Controls Compatibility

The 2.0 release of Newton System Software includes a number of new protos,
including:

m four new scroller protos: pr ot oHor i zont al 2DScr ol | er,
protoLeft Ri ght Scrol |l er, prot oUpDownScr ol | er, and
pr ot oHor i zont al UpDownScr ol | er

m two new buttons: pr ot ol nf oBut t on and prot oOri ent ati on
m two selection tab protos: pr ot 0AZTabs and pr ot 0AZVer t Tabs

7-1

CHAPTER 7

Controls and Other Protos

m four new date and time protos: pr ot oDi gi t al O ock, pr ot 0Set d ock,
pr ot oNewSet T ock, and pr ot oAMPMO ust er

m two special view protos: pr ot oDr agger and pr ot oDr agNGo

Scroller Protos

Scrollers allow the user to move vertically or horizontally through a display that is
bigger than the view. The Newton System Software provides a number of scrollers
to allow usersto scroll their views.

All scroller protos are implemented in the same way; that is, they use the same
methods and slots. These scrollers are not linked or related to the scroll arrows on
the built-in button bar. For individual descriptions of the scroller protos, see
“Scroller Protos’ (page 7-2) in Newton Programmer’s Reference. This section
describes how to implement scrollersin your applications.

The scroller protos do not perform the actual scrolling of datain aview; they
simply display and maintain the arrows as the user taps them. To scroll datain a
view, you can use the following protosin your applications:

m Theprot oHori zont al 2DScr ol | er iscentered at the bottom of aview and
provides both horizontal and vertical scroll arrows. For more information about
the slots and methods for this scroller, see * protoHorizontal 2D Scrol ler”

(page 6-2) in Newton Programmer’s Reference. Figure 7-1 shows an example
of apr ot oHori zont al 2DScr ol | er view.

Figure 7-1 A protoHori zont al 2DScr ol | er view

=TT

m TheprotoLeftRi ght Scrol | er iscentered at the bottom of aview and
provides horizontal scroll arrows. For more information about the slots and
methods for this scroller, see “ protoL eftRightScroller” (page 6-5) in Newton
Programmer’s Reference. Figure 7-2 shows an example of a
prot oLeft Ri ght Scrol | er view.

Figure 7-2 AprotolLeftRi ght Scrol | er view

Scroller Protos

CHAPTER 7

Controls and Other Protos

m Theprot oUpDownScr ol | er iscentered on the right side of aview and
provides vertical scroll arrows. For more information about the slots and
methods for this scroller, see * protoUpDownScroller” (page 6-5) in Newton
Programmer’s Reference. Figure 7-3 shows an example of a
prot oHori zont al 2DScr ol | er view.

Figure 7-3 A pr ot oUpDownScr ol | er view

I

L/
'

m Theprot oHori zont al UpDownScr ol | er iscentered at the bottom of a
view and provides vertical scroll arrows. For more information about the slots
and methods for this scroller, see “protoHorizontalUpDownScroller” (page 6-6)
in Newton Programmer’s Reference. Figure 7-4 shows an example of a
pr ot oHori zont al UpDownScr ol | er view.

Figure 7-4 A pr ot oHori zont al UpDownScr ol | er view

vl

Implementing a Minimal Scroller

To implement aminimal scroller, al that you have to defineisa

Vi ewScrol | 2DScri pt method in your scroller template. This method is

called whenever the user taps one of the scroll arrows in the scroller view. Your

Vi ewScrol | 2DScr i pt method must perform the actual scrolling of the contents
of some other view, which you usually do by calling the Set Or i gi n method.

For more information on the Vi ewScr ol | 2DScr i pt method, see
“ViewScroll2DScript” (page 6-3) in Newton Programmer’s Reference. For
more information on the Set Or i gi n method, see “ SetOrigin” (page 2-48) in
Newton Programmer’s Reference.

Automatic Arrow Feedback

All of the scroller protos can provide visual feedback to the user indicating that
thereis more information to see. This feedback is handled automatically for your if
you provide three additional slotsin your scroller template: scr ol | Rect ,

Scroller Protos 7-3

7-4

CHAPTER 7

Controls and Other Protos

vi ewRect , and dat aRect . Each of these dotsis a bounds frame with the
following form:

{left: O, top: O, right: 10, bottom 10}

You usually create these bounds frame slots with the utility function Set Bounds,
which is described in “ SetBounds® (page 2-34) in Newton Programmer’s Reference.

When you use these dlots, the scroller protos highlight the scrolling arrows
automatically to indicate to the user that more data can be viewed by tapping on the
highlighted arrows.

Each of the bounds frame slots serves a specific purpose in the scroller, as shown in
Table 7-1. The next section provides several examples of setting the values of these
slots for different scrolling effects.

Table 7-1 Scroller bounds frame slots

Slot name Description
scrol | Rect Specifies the scrollable area, which isthe total areathat the
user can see, or scroll over, with the scroller.

vi ewRect Specifies the part of the scrollable area that the user can
see at any onetime. Thisisusualy smaller than the area
specified by scrol | Rect .

dat aRect Specifies the portion of thescr ol | Rect that contains
data. In simple cases, thisisthesameasscrol | Rect .

Scrolling Examples

This section presents several simple examples of setting the bounds frame dotsin
your scroller to alow scralling.

Scrolling Lines of Text

To scroll lines of text, you set the values of the three scroller bounds frames as
required for your application. For example, if you have 20 text itemsin avertica
list and you want to show 6 of theitems at atime, you need to set the ot values
asfollows:

scrol | Rect: SetBounds(0, 0, 0, 20) // 20 possible lines
Vi ewRect : Set Bounds(0, 0, 0, 6) // show 6 at a tine
dat aRect : Set Bounds(0, 0, 0, 20)

Scroller Protos

CHAPTER 7

Controls and Other Protos

Scrolling in the Dates Application

Scrolling in the Dates application allows the user to see the 24 hoursin aday, 7
hours at atime. When there is only interesting data in a certain range of the day,
the application setsthe dat aRect for that time frame. Thistellsthe scroller to
blacken a scroll arrow when the data time frame is not displayed in thevi ewRect ,
providing additional visual feedback to the user.

scrol | Rect: SetBounds(0, 0, 0, 24) [// 24 hours per day
vi ewRect : Set Bounds(0, 0, 0, 7) [// show 7 at a tine
dat aRect : Set Bounds(0, 0, 0, 10) // neeting from 9-10

Scrolling In a Graphics Application

A final example shows scrolling in a graphics application. This example shows a
total scrollable area of 200 pixels by 200 pixels, of which a 50 pixel by 50 pixel
areais shown at any onetime. In this example, an object of interest (data) is
located at (100,100).

/1l total area is 200 by 200
scrol | Rect: SetBounds(O, 0, 200, 200)

/1 show a 50 by 50 area at a tine
Vi ewRect : Set Bounds(O, 0, 50, 50)

/1l there's sonething at |ocation (100, 100)
dat aRect : Set Bounds(100, 100, 110, 110)

Scroll Amounts

Whenever the Vi ewScr ol | 2DScr i pt method is called, the scroller proto
increments thevi ewRect by 1. For example, in the Dates application example,
each time the user taps an arrow, the vi ewRect ismoved up or down by 1 hour.

In the graphics application example, each time the user taps an arrow, thevi ewRect
ismoved up or down by 1 pixel. Since scrolling by 1 pixel at atimeistoo slow,
you need to be able to adjust the scrolling amount for certain applications. To do
so, you change the value of the scr ol | Amount s dot, whichis an array of three
values. The default value of thisdlot is:

[1, 1, 1]

Thefirst valueinthescr ol | Anbunt s array specifies the amount to scroll for a
single tap. The second value specifies the amount to scroll when the user holds
down on the arrow (accelerated scrolling), and the third val ue specifies the amount
to scroll for a double tap. For atypical graphics application, you can use values like
the following:

[10, 50, 50]

Scroller Protos 7-5

CHAPTER 7

Controls and Other Protos

Keep in mind that if you set scr ol | Anpunt s to values other than the defaullt,
your method must check the value passed to it and scroll that amount.

Note

In general, you should discourage double-tapping, since
inadvertently tapping twice can cause a double-tap action
to occur. &

Advanced Usage

If you want more control over the arrow feedback, don’'t usethescr ol | Rect ,
vi ewRect , or dat aRect dlotsat al; instead, use the Set Ar r owand Get Ar r ow
methods.

For more information about the Set Ar r ow method, see “ SetArrow” (page 6-4) in
Newton Programmer’s Reference; for more on the Get Ar r ow method, see
“GetArrow” (page 6-4) in Newton Programmer’s Reference.

Button and Box Protos

You use the protos described in this section to display text and picture buttons,
checkboxes, and radio buttons. The Newton System Software provides a variety of
button and box types for use in your applications.

Each of these protos uses specific methods to control its behavior. For many of the
protos, the Newton System Software callsthe But t onCl i ckScri pt when the
button is tapped. You can define or redefine this method to generate the actions that
you want associated with the button.

The Newton System Software calls certain methods for each of the protos described
here. For information about which methods you need to define for each proto, see
“Button and Box Protos’ (page 6-6) in Newton Programmer’s Reference.

For information about sizing and placement recommendations for your button and
box protos, see Newton 2.0 User Interface Guidelines.

The following are the button and box protos that you can use in your applications:

m Thepr ot oText But t on creates arounded text button with text centered
vertically and horizontally inside it. For more information about the slots and
methods for this button, see “protoTextButton” (page 6-7) inNewton Programmer’s
Reference. Figure 7-5 shows an example of apr ot oText But t on view.

Figure 7-5 A prot oText But t on view

Button and Box Protos

CHAPTER 7

Controls and Other Protos

m Theprot oPi ct ur eBut t on creates a picture that is a button. For more
information about the slots and methods for this button, see “ protoPictureButton”
(page 6-9) in Newton Programmer’'s Reference. Figure 7-6 shows an example of
apr ot oPi ct ur eBut t on view.

Figure 7-6 A pr ot oPi ct ur eBut t on view

Picture Buttons

@I'I:l]l]amSun (] =

m Thepr ot ol nf oBut t on includes an information button in a view. When the
user taps this button, a picker containing information items appears. The picker
includes the About, Help, and Prefsitems. For more information about the slots
and methods for this button, see “ protolnfoButton” (page 6-10) in Newton
Programmer’s Reference. Figure 7-7 shows an example of a
prot ol nf oBut t on view.

Figure 7-7 A pr ot ol nf oBut t on view
About
Help

@ Prefs

Information Picker displayed when

Button button is tapped

m TheprotoOri entati on isatext button that changes the screen orientation so
that data on the screen can be displayed facing different directions. This protois
available only on Newton platforms that support changing the screen
orientation. For more information about the slots and methods for this button,
see “protoOrientation” (page 6-13) in Newton Programmer’s Reference.

Figure 7-8 shows an example of a protoOrientation view.

Figure 7-8 AprotoOrientation view

m Theprot oRadi o ust er groupsaseriesof radio buttonsinto acluster in
which only one can be “on” at atime. For more information about the slots and
methods for this proto, see “protoRadioCluster” (page 6-14) in Newton
Programmer’s Reference. This proto has no visual representation.

Button and Box Protos 7-7

CHAPTER 7

Controls and Other Protos

m Thepr ot oRadi oBut t on creates aradio button child view of aradio button
cluster (based on pr ot oRadi 0od ust er). Each radio button isasmall oval
bitmap that is labeled with text. For more information about the slots and
methods for this button, see “protoPictRadioButton” (page 6-18) in Newton
Programmer’s Reference. Figure 7-9 shows an example of several radio buttons
in acluster.

Figure 7-9 A cluster of pr ot oRadi oBut t ons

fr9pt

:10pt
12pt
i idpt

m Theprot oPi ct Radi oBut t on creates achild view of aradio button cluster
(based on pr ot oRadi oCl ust er). For more information about the slots
and methods for this button, see “ protoPictureButton” (page 6-9) in Newton
Programmer’s Reference. Figure 7-10 shows a cluster of
pr ot oPi ct Radi oBut t ons.

Figure 7-10 A cluster of pr ot oPi ct Radi oBut t ons

H
a
O
C

m Thepr ot 0o oseBox alowsthe user to close the view. For more information
about the slots and methods for this box, see “ protoCloseBox” (page 6-20) in
Newton Programmer’s Reference. Figure 7-11 shows an example of a
pr ot oCl oseBox view.

Figure 7-11 A pr ot oCl oseBox view

3]

Button and Box Protos

CHAPTER 7

Controls and Other Protos

m Theprot oLar geCl oseBox creates a picture button with an “X” icon that is
used to close the view. For more information about the slots and methods for
this box, see “ protoLargeCloseBox” (page 6-22) in Newton Programmer’s
Reference. Figure 7-12 shows an example of apr ot oLar geC oseBox view.

Figure 7-12 A prot oLar geCl oseBox view

° ;

Large Close Box

Note

See Newton 2.0 User Interface Guidelines for information about
when to use pr ot 0Cl oseBox and when to use

prot oLar geCl oseBox.

m Thepr ot oCheckBox creates alabeled checkbox with the label text to the right
of the box. When the user taps the checkbox, a checkmark is drawn in it. For
more information about the slots and methods for this box, see
“protoCheckbox” (page 6-24) in Newton Programmer’s Reference. Figure 7-13
shows an example of apr ot oCheckBox view.

Figure 7-13 A pr ot oCheckBox view

A Use System Yolume

m Thepr ot oRCheckBox creates alabeled checkbox with the text to the left of
the checkbox. When the user taps the checkbox, a checkmark isdrawn init. For
more information about the slots and methods for this box, see “ protoRCheckbox”
(page 6-26) in Newton Programmer’s Reference Figure 7-14 shows an example
of apr ot oRCheckBox view.

Figure 7-14 A pr ot oRCheckBox view

Require dial tone

Button and Box Protos 7-9

CHAPTER 7

Controls and Other Protos

Implementing a Simple Button

To provide a simple button in your application, pick a button proto to use, set the
appropriate slotsin the button object, and (in most cases) define one or more
scripts for the button.

Thefollowing is an example of atemplate that includes pr ot oText But t on:

aButton := {...

_proto: protoTextButton,

vi ewFont: ROM f ont Syst eml2Bol d,
text: "My Button",

Buttond ickScript: func()
Print("ouch!");

/1 a handy way to fit a button around a string
Vi ewSet upFor mScri pt: func()
vi ewbounds : = Rel Bounds(10, 60,
StdButtonW dt h(sel f.text), 13);

-}

The above example creates the following button on the Newton screen:

When the user taps this button in the Inspector, “ouch” is printed to the Inspector.

You implement a picture button with a similar template, as shown in the
following example:

pictButton := {...

_proto: protoPictureButton,

i con: namesBit map,

vi ewBounds: SetBounds(2, 8, 34, 40),

Buttond ickScript: func()
cardfil e: Toggl e()

-}

For more information on implementing specific button and box protos, see “Button
and Box Protos’ (page 7-6) in Newton Programmer’s Reference.

7-10 Button and Box Protos

CHAPTER 7

Controls and Other Protos

Sdection Tab Protos

You can use the protos described in this section to display al phabetic selection tabs
on the screen. There are two tab protos that you can use:

m Thepr ot 0AZTabs displays aphabetical tabs arranged horizontally in a view.
For more information about the slots and methods for this proto, see
“protoAZTabs’ (page 6-28) in Newton Programmer’s Reference. Figure 7-15
shows an example of apr ot 0AZTabs view.

Figure 7-15 A pr ot 0AZTabs view

[abjcdjefjon] i Tk orjop] arj stjuviexly2)

m Theprot 0AZVert Tabs displays aphabetical tabs arranged vertically in a
view. For more information about the slots and methods for this proto, see
“protoAZVertTabs’ (page 6-29) in Newton Programmer’s Reference.

Figure 7-16 shows an example of apr ot 0AZVer t Tabs view.

Figure 7-16 A pr ot oAZVer t Tabs view

abc
def
qhi
jkl
nno

pqr
stu

%

When the user taps in either of the tab protos, the proto calls the

Pi ckLet t er Scri pt method, passing in the letter that was tapped. The tabs
protos and the Pi ckLet t er Scri pt method are described in “ Selection Tab
Protos’ (page 6-28) in Newton Programmer’s Reference.

Selection Tab Protos 7-11

CHAPTER 7

Controls and Other Protos

Gauge and Slider Protos

You can use the gauge and slider protos described in this section to display gauges.
Each dlider presents a gauge view that indicates the current progressin relation to
the entire operation. There are three protos and one view class available for
defining dliders:

m TheprotoSlider creates a user-settable gauge view, which looks like an
analog bar gauge with a draggable diamond-shaped knob. For more information
about the slots and methods for this proto, see “ protoSlider” (page 6-33) in
Newton Programmer’s Reference. Figure 7-17 shows an example of a
prot oSl i der view.

Figure 7-17 A protoSlider view

[e ETHRTEE

-7
Large Close Box

m Thepr ot oGauge creates aread-only gauge view. For more information about
the slots and methods for this proto, see “ protoGauge” (page 6-35) in Newton
Programmer’s Reference. Figure 7-18 shows an example of apr ot oGauge
view.

Figure 7-18 A pr ot oGauge view

m Theprot oLabel edBat t er yGauge creates aread-only gauge view that
periodically samples the system battery and graphically shows the amount of
power left. For more information about the slots and methods for this proto, see
“protoL abeledBatteryGauge” (page 6-37) in Newton Programmer’s Reference.
Figure 7-19 shows an example of apr ot oLabel edBat t er yGauge view.

Figure 7-19 A prot oLabel edBat t er yGauge view

Battery gauge —— I ;i Battery charging —— _ ~="the="""
Battary _harging

7-12 Gauge and Slider Protos

CHAPTER 7

Controls and Other Protos

m Thecl GaugeVi ewclassis used to display objects that look like analog bar
gauges. Although the cl GaugeVi ew classis available, you should use the
pr ot oGauge to display bar gauges. purpose asisthe pr ot oGauge proto. For
more information about the slots and methods for the pr ot oGauge proto, see
“protoGauge” (page 6-35) in Newton Programmer’s Reference.

Figure 7-20 A cl GaugeVi ewview

Implementing a Simple Slider

Thecl GaugeVi ewclass and the slider protos all have several dotsto define the
appearance and range of the dider:

m Thevi ewBounds dot specifies the size and location of the slider.
m Thevi ewal ue dot specifies the current value of the dider.

m Theni nVal ue dot specifies the minimum value of the slider, with a default
value of 0.

m ThenaxVal ue dot specifies the maximum value of the dlider, with a default
value of 100.

You can specify theinitial value of adlider inthevi ewval ue dot. However, you
often need to look up theinitial value; when thisisthe case, set the initial value of
the dlider in the ViewSetupFormScript method.

To implement a dlider, define your template with the proto that you want to use,
specify the appearance and range slots, and (optionally) assign an initial valuein
the Vi ewSet upFor nScr i pt method of the proto. For some protos, you need to
define additional methods that respond to the user modifying the dlider.

The following example is atemplate that uses pr ot 0S| i der to allow adjustment
of the current system volume:

SoundSetter := {...

_proto: protoSlider,

vi ewBounds: Rel Bounds(12, -21, 65, 9),
vi ewdustify: vj ParentBottonV,

maxVal ue: 4,

Vi ewSet upFor nScri pt: func()
sel f.viewval ue : = Get User Confi g(' soundVol ure) ;

Gauge and Slider Protos 7-13

CHAPTER 7

Controls and Other Protos

ChangedSl i der: func()
begin
Set Vol une(vi ewval ue) ;

: SysBeep() ;
end,

-}

The example above initializes the dider gauge to indicate the current system
volume, which it retrieves from the user configuration that is maintained by the
Newton System Software. The range of allowable volume valuesis from 0

(the default for m nVal ue) to 4.

Whenever the user moves the dlider and lifts the pen, thevi ewval ue dlot is
updated and the ChangedSl i der method is called. In the example, the
ChangedsSl i der method resets the system volume to the new value chosen by
the user and sounds a beep to provide the user with audible feedback.

For more information on the pr ot oSl i der and the ChangedSl i der method,
see “protoSlider” (page 6-33) in Newton Programmer’s Reference.

Time Protos

You can use the time protos to allow the user to set time and date values. There are
four time protos:

m TheprotoDi gital C ock time proto displays adigital clock with which the
user can set atime value. For more information about the slots and methods for
this proto, see “protoDigitalClock” (page 6-38) in Newton Programmer’s
Reference. Figure 7-21 shows an example of apr ot oDi gi t al C ock view.

Figure 7-21 A protobDigital d ock view

-5 1:2/ 1K

m Thepr ot oNewSet Cl ock time proto displays an analog clock with which the
user can set atime value. For more information about the slots and methods for
this proto, see “protoNewSetClock” (page 6-40) in Newton Programmer’s
Reference. Figure 7-22 shows an example of apr ot oNewSet Cl ock view.

7-14 Time Protos

CHAPTER 7

Controls and Other Protos

Figure 7-22 A pr ot oNewSet Cl ock view

m Theprot 0Set C ock time proto aso displays an analog clock with which the
user can set atime value. Although this proto is still available for use, it has
been updated to the pr ot oNewSet O ock, which you should use instead.

m Thepr ot oAMPMCl ust er time proto displays A.M. and P.M. radio buttonsin a
pr ot oNewSet O ock view. For more information about the slots and methods
for this proto, see “protoAMPM Cluster” (page 6-44) in Newton Programmer’s
Reference. Figure 7-23 shows an example of apr ot oAMPMCl ust er view.

Figure 7-23 A pr ot oAMPMCl ust er view

i am W pm

Implementing a Simple Time Setter

To implement atime setter, define your template with the proto that you want

to use, specify theinitial time value to show in the clock, and define the

Ti meChanged method. You might also need to define additional slots or messages,
as described in “ Time Protos’ (page 6-38) in Newton Programmer’s Reference.

The following example is atemplate that uses pr ot oDi gi t al Cl ock to allow the
user to specify atime:

clock := {...
_proto: protoDigital d ock,
time: O,

Ti meChanged: func()
begi n
/! add your code to respond to time change
print(tinme);
end,

Time Protos 7-15

CHAPTER 7

Controls and Other Protos

[l initialize with current tine
Vi ewSet upFor nScri pt: func()
begin
time 1= time();
end,

-1

Specia View Protos

You can use the protos described in this section to provide special-purpose viewsin
your applications. There are seven special view protos:

m Thepr ot oDr agger createsaview that can be dragged around the screen with
the pen. For more information about the slots and methods for this proto, see
“protoDragger” (page 6-45) in Newton Programmer’s Reference. Figure 7-22
shows an example of apr ot oDr agger view.

Figure 7-24 A pr ot oDr agger view

m Thepr ot oDr agNGo creates a view that can be dragged around the screen with
the pen. Thisisidentical to pr ot oDr agger , except that pr ot oDr agNGo
includes a close box in the lower-right corner of the view. For more information
about the dlots and methods for this proto, see “ protoDragNGo” (page 6-47) in
Newton Programmer’s Reference. Figure 7-25 shows an example of a
pr ot oDr agNGo view.

Figure 7-25 A pr ot oDr agNCo view

7-16 Special View Protos

c

HAPTER 7

Controls and Other Protos

The pr ot oDr awer creates aview that looks and acts like the base view of the
Extras Drawer. For more information about the slots and methods for this proto,
see “protoDrawer” (page 6-49) in Newton Programmer’s Reference.

The pr ot oFl oat er creates adraggable view that is horizontally centered
within its parent view and floats above all other nonfloating sibling views within
an application. For more information about the slots and methods for this proto,
see “protoFloater” (page 6-49) in Newton Programmer’s Reference.

The pr ot oFl oat NGo creates adraggable view that is horizontally centered
within its parent view and floats above al other nonfloating sibling views

within an application. Thisisidentical to pr ot oFl oat er, except that

pr ot oFl oat NGo includes a close box in the lower-right corner of the view. For
more information about the slots and methods for this proto, see
“protoFloatNGo” (page 6-51) in Newton Programmer’s Reference.

Thepr ot 0@ ance creates atext view that automatically closes itself after
displaying for a brief period. For more information about the slots and methods
for this proto, see “protoGlance” (page 6-52) in Newton Programmer’s
Reference. Figure 7-26 shows an example of apr ot od ance view.

Figure 7-26 A pr ot od ance view

|8s1/92 11:00 am 46 bytes]|

Theprot oSt at i cText createsaone-line paragraph view that is read-only
and left-justified. For more information about the slots and methods for this, see
“protoStaticText” (page 6-54) in Newton Programmer’s Reference. Figure 7-22
shows an example of apr ot oSt at i cText view.

Figure 7-27 AprotoStaticText view

Static text

:— File this notein...

& Mone {Unfiled)
iF Business

i Important
Miscelaneous
iF Personal

(Ee) ()

Special View Protos 7-17

CHAPTER 7

Controls and Other Protos

View Appearance Protos

You can use the protos described in this section to add to the appearance of your
views in certain ways. There are three view appearance protos:

m Thepr ot oBor der isaview filled with black. You can use this proto as a
border, aline, or a black rectangle. For more information about the slots and
methods for this proto, see “ protoBorder” (page 6-56) in Newton Programmer’s
Reference. Figure 7-28 shows an example of apr ot oBor der view.

Figure 7-28 A pr ot oBor der view

m Theprot oDi vi der createsadivider bar that extends the whole width of
its parent view. This proto a so includes atext label. For more information
about the dlots and methods for this proto, see “ protoDivider” (page 6-56) in
Newton Programmer’s Reference. Figure 7-29 shows an example of a
pr ot oDi vi der view.

Figure 7-29 A protoDi vi der view

w— Your Title Here

m TheprotoTi tl e creates atitle centered above a heavy black line at the top of
aview. You can optionally include an icon that appearsto the left of the title
text. For more information about the slots and methods for this proto, see
“protoTitle” (page 6-58) in Newton Programmer’s Reference. Figure 7-30
shows an example of apr ot oTi t | e view.

Figure 7-30 AprotoTitleview

7-18

Icon I[£ My Application 4% Title

View Appearance Protos

CHAPTER 7

Controls and Other Protos

Status Bar Protos

You can use the protos described in this section to display a status bar at the bottom
of aview. There are two status bar protos:

m Thepr ot oSt at us creates a status bar, which includes a close button and an
analog clock, at the bottom of aview. For more information about the slots and
methods for this proto, see “ protoStatus’ (page 6-59) in Newton Programmer’s
Reference. Figure 7-31 shows an example of apr ot oSt at us view.

Figure 7-31 A prot oSt at us view

19 &

m Theprot oSt at usBar creates a status bar, which includes an analog clock,
at the bottom of aview. Thisisidentical to pr ot oSt at us, except that
pr ot oSt at usBar does not include a close button. For more information about
the slots and methods for this proto, see “ protoStatusBar” (page 6-60) in Newton
Programmer’s Reference. Figure 7-32 shows an example of a
pr ot oSt at usBar view.

Figure 7-32 A pr ot oSt at usBar view

19,

Note

The new status bar protos newt St at usBar Nod ose and

newt St at usBar, are the preferred way to add a status bar to
your applications. These protos, which are described in
“NewtApp Applications’” (page 4-1), simplify adding buttons and
automate hiding the close box when your application is moved
into the background. e

Status Bar Protos 7-19

Summary

CHAPTER 7

Controls and Other Protos

7-20

Scroller Protos

protoLeftRightScroller

aProtolLeft Ri ghtScroller :=
_proto: protolLeftRi ghtScrol

scrol | Vi ew viewTemplate,
scrol | Rect: boundsFrame,
dat aRect : boundsFrame,
Vi ewRect : boundsFrame,
xPos: integer, /1
yPos: integer, /1
scrol | Amount s: array, /1

pageThr eshhol d: integer, /1
Vi ewScrol | 2DScri pt: function,
Vi ewScr ol | DoneScri pt : function,

Set Ar r ow: function,
Cet Arr ow: function,
}

protoUpDownScroller

{

ler,

/1l extent of scrollable area
/1l extent of data in the view
/1l extent of visible area
initial x-coord in scroll Rect
initial y-coord in scrollRect
line, page, dbl-click values
| ines before page scrolling
/1 called when arrows tapped
/! called when scroll done
/] set scroll direction
/] returns scroll direction

aPr ot oUpDownScrol ler :={
_proto: protoUpDownScroll er
scrol | Vi ew viewTemplate,

scrol | Rect: boundsFrame, // extent of scrollable area
dat aRect : boundsFrame, // extent of data in the view
Vi ewRect : boundsFrame, // extent of visible area

xPos: integer, /1 initial x-coord in scroll Rect
yPos: integer, /1 initial y-coord in scroll Rect
scrol | Amount s: array, /1 line, page, dbl-click val ues
pageThr eshhol d: integer, /1 lines before page scrolling

Vi ewScrol | 2DScr i pt:
Vi ewScr ol | DoneScri pt : function,

Set Arr ow.
Get Arrow.

Summary

function, // called when arrows tapped
/1 called when scroll done

function, // set scroll direction
function, // returns scroll direction

CHAPTER 7

Controls and Other Protos

protoHorizontal2DScroller

aProt oHori zont al 2DScrol l er := {

_proto: protoHorizontal 2DScrol | er,

scrol | Vi ew viewTemplate,

scrol | Rect: boundsFrame, // extent of scrollable area
dat aRect : boundsFrame, // extent of data in the view
Vi ewRect : boundsFrame, // extent of visible area

xPos: integer, /1 initial x-coord in scroll Rect
yPos: integer, /1 initial y-coord in scroll Rect
scrol | Anount s: array, /1 line, page, dbl-click val ues
pageThr eshhol d: integer, /1 lines before page scrolling

Vi ewScrol | 2DScri pt: function, // called when arrows tapped
Vi ewScr ol | DoneScri pt : function, // call ed when scroll done

Set Arr ow. function, // set scroll direction
Get Arrow. function, // returns scroll direction
}

protoHorizontalUpDownScroller

aPr ot oHor i zont al UpDownScrol l er := {

_proto: protoHorizontal UpDownScrol | er,

scrol | Vi ew viewTemplate,

scrol | Rect: boundsFrame, // extent of scrollable area
dat aRect : boundsFrame, // extent of data in the view
Vi ewRect : boundsFrame, // extent of visible area

xPos: integer, /1 initial x-coord in scroll Rect

i
yPos: integer, /1 initial y-coord in scroll Rect
scrol | Anount s: array, /1 line, page, dbl-click val ues
pageThr eshhol d: integer, /1 lines before page scrolling
Vi ewScrol | 2DScri pt: function, // called when arrows tapped
Vi ewScr ol | DoneScri pt : function, // call ed when scroll done

Set Arr ow. function, // set scroll direction
Get Arrow. function, // returns scroll direction
}

Summary 7-21

CHAPTER 7

Controls and Other Protos

Button and Box Protos

protoTextButton

aProt oTextButton : = {

_proto: protoTextButton,

vi ewBounds: boundsFrame,

vi ewFl ags: integer, /'l viewrl ags constants
text: string, /] text inside the button
vi ewFont : fontFlags,

vi ewfor mat : formatFlags,

vi ewJusti fy: justificationFlags,

vi ewTr ansf er Mode: integer, /'l view transfer constants
Buttond i ckScri pt: function, /1 when button is tapped
But t onPressedScri pt: function, /1 while button is pressed
}

protoPictureButton

aProt oTextButton := {

_proto: protoPictureButton,

vi ewBounds: boundsFrame,

vi ewFl ags: integer, /'l viewFl ags constants

i con: bitmap, /1 bitmap to use for button
Vi ewfor mat : formatFlags,

vi ewJusti fy: justificationFlags,

Buttond i ckScri pt: function, /1 when button is tapped
But t onPressedScri pt: function, /1 while button is pressed
}

protolnfoButton

aProtol nfoButton : = {

_proto: protolnfoButton,

vi ewFl ags: integer, /'l viewFl ags constants

vi ewBounds: boundsFrame,

vi ewJusti fy: justificationFlags,

}

7-22 Summary

CHAPTER 7

Controls and Other Protos

protoOrientation

aProtoOrientation : = {

_proto: protoOrientation,

vi ewFl ags: integer, /1 viewrl ags constants
vi ewBounds: boundsFrame,

vi ewdustify: justificationFlags,

}

protoRadioCluster

aPr ot oRadi oCl uster := {

_proto: protoRadi oCl uster,

vi ewBounds: boundsFrame,

cl ust er Val ue: integer, /1 value of selected button
I nitC usterVal ue: function, /1 initialize cluster

Vi ewSet upFor nScri pt : function, /1 set initial button

C ust er Changed: function, /1 called upon val ue change
Set Cl ust er Val ue: function, /1 change sel ected button

}

protoRadioButton

aPr ot oRadi oButton : = {
_proto: protoRadi oButton,

vi ewBounds: boundsFrame,

Vi ewFor mat : formatFlags,

text: string, /1 radio button text | abel

but t onVal ue: integer, /1 identifies button

vi ewval ue: integer, /1 current value of radio button
}

protoPictRadioButton

aPr ot oPi ct Radi oButton : = {
_proto: protoPictRadi oButton,

vi ewBounds: boundsFrame,

Vi ewFor mat : formatFlags,

vi ewdustify: justificationFlags,

i con: bitmap, /1 bitmap for picture button
but t onVal ue: integer, /1 identifies button

Summary 7-23

7-24

CHAPTER 7

Controls and Other Protos

vi ewval ue: integer,
Vi ewDr awScr i pt : function,

protoCloseBox

/'l current value of radio button
/1 to highlight button

aProt oC oseBox : = {

_proto: protod oseBox,

vi ewFl ags: integer, /'l viewrl ags constants
vi ewBounds: boundsFrame,

vi ewdusti fy: justificationFlags,

Vi ewFor mat : formatFlags,

Butt ond i ckScri pt : function,

protoLargeCloseBox

/1 called before closing

aPr ot oLar geCl oseBox : = {

_proto: protolLarged oseBox,

vi ewFl ags: integer, /'l viewFl ags constants
vi ewBounds: boundsFrame,

vi ewdusti fy: justificationFlags,

Vi ewFor mat : formatFlags,

Butt onC i ckScri pt : function,

protoCheckbox

/1 called before closing

aPr ot oCheckbox : = {
_proto: protoCheckbox,

vi ewBounds: boundsFrame,

Vi ewfor mat : formatFlags,

vi ewFont : fontFlags, // font for text |abel

text: string, /'l the checkbox | abel

but t onVal ue: value, /1 val ue when box is checked

Vi ewval ue: value, /1 current val ue (nil=unchecked)
Val ueChanged: function, /'l checkbox val ue changed

Toggl eCheck: function, /'l toggl es checkbox state

}

Summary

CHAPTER 7

Controls and Other Protos

protoRCheckbox

aPr ot oRCheckbox : = {

_proto: protoRCheckbox,

vi ewBounds: boundsFrame,
Vi ewFor mat : formatFlags,
Vi ewFont : fontFlags, // font for
text: string, /1
i ndent: integer, /1
but t onVal ue: value, /1
Vi ewval ue: value, /1
Val ueChanged: function, /1
Toggl eCheck: function, /1
}

Selection Tab Protos

pi xel s to indent
val ue when box is checked
current value (nil=unchecked)
checkbox val ue changed

t oggl es checkbox state

t ext | abel

t he checkbox | abel

box

protoAZTabs

aPr ot oAZTabs : = {

_proto: protoAZTabs,

Pi ckLetter Script: function, /1 tab is tapped
Set Letter: function, /] sets tab letter
}

protoAZVertTabs

aPr ot oAZVert Tabs : = {

_proto: protoAZVert Tabs,

Pi ckLetter Script: function, /1 tab is tapped
Set Letter: function, /] sets tab letter
}

Gauges and Slider Protos

protoSlider

aProtoSlider :={

_proto: protoSlider,

vi ewBounds: boundsFrame,

Summary

7-25

CHAPTER 7

Controls and Other Protos

vi ewval ue: integer, /'l gauge val ue

m nVal ue: integer, /1 m ni mum gauge val ue
maxVal ue: integer, /1 maxi mum gauge val ue

Vi ewSet upFor n5cri pt: function, /1 set initial gauge val ue
ChangedSl i der: function, /1 slider moved

TrackSli der: function, /1 viewval ue changed

}

protoGauge

aProt oGauge : = {
_proto: protoGauge,

vi ewBounds: boundsFrame,

vi ewval ue: integer, /'l gauge val ue

m nVal ue: integer, /1 m ni rum gauge val ue
maxVal ue: integer, /1 maxi num gauge val ue
gaugeDrawLi m ts: Boolean, /1 non-nil for gray bg

Vi ewSet upFor nScri pt: function, /1 set initial gauge val ue

protoLabeledBatteryGauge

aPr ot oLabel edBatt er yGauge: = {
_proto: protolLabel edBatteryGauge,
vi ewBounds: boundsFrame,

clGaugeView

ad GaugeVi ew. = {

vi ewBounds: boundsFrame,

vi ewd ass: cl GaugeVi ew,

vi ewval ue: integer, /1 val ue of gauge

Vi ewFl ags: integer, /1 viewrl ags constants
Vi ewFor nat : formatFlags,

m nVal ue: integer, /1 mn value of gauge
maxVal ue: integer, /1 max val ue of gauge
gaugeDrawLi m ts: Boolean, /1 non-nil for gray bg
Vi ewChangedScri pt : function, /1 gauge dragged

Vi ewFi nal ChangeScri pt: function, /1 gauge changed

7-26 Summary

CHAPTER 7

Controls and Other Protos

Time Protos

protoDigitalClock

aProtoDigital dock := {

vi ewFl ags constants

m nutes to change on tap

initial or current tine
non-nil to wap around day
boundari es

non-nil if O means m dni ght

t onor r ow
updat e cl ock
call ed when tine is changed

_proto: protobDigital C ock,
vi ewFl ags: integer, /1
vi ewBounds: boundsFrame,
vi ewJusti fy: justificationFlags,
i ncrenent: integer, /1
tinme: integer, /1
W appi ng: Boolean, //
/1
m dnite: Boolean, //
/1
Ref resh: function, /1
Ti meChanged: function, //
}
protoSetClock

aProtoSet d ock : = {

_proto: protoSetd ock,

vi ewBounds: boundsFrame,
vi ewFl ags: integer, /1
Vi ewFor mat : formatFlags,
hours: integer, /1
m nut es: integer, /1
Ti meChanged: function, //
}

protoNewSetClock

vi ewFl ags constants

val ue set by hour hand
val ue set by m nute hand
call ed when tine is changed

aPr ot oNewSet Cl ock : = {

// initial or current tine

_proto: protoNewSet d ock,

vi ewBounds: boundsFrame,

vi ewJusti fy: justificationFlags,
tinme: integer,

annot at i ons: array,

supr essAnnot at i ons: Boolean,
exact Hour : Boolean,

Summary

/1 four strings to annotate
/1 the clock face
// if slot exists,
/1 adjust hour

suppr ess
mar ker s

7-27

7-28

CHAPTER 7

Controls and Other Protos

Ref r esh: function, /1 update clock

Ti meChanged: function, /1 called when tine is changed
}

protoAMPMCluster

aPr ot oAMPMCl uster : = {
_proto: prot oAMPMI ust er,

Vi ewBounds: boundsFrame,

vi ewdusti fy: justificationFlags,

time: integer, /1 specify tinme--required
}

Special View Protos

protoDragger

aPr ot oDr agger := {
_proto: protoDragger,

vi ewBounds : boundsFrame,

vi ewFl ags: integer, /'l viewFl ags constants

Vi ewFor mat : formatFlags,

noScrol | : string, /1 msg to display if no scrolling
noOver vi ew. string, /1 msg to display if no overview
}

protoDragNGo

aProt oDragNGo : = {
_proto: protoDragNCo,

vi ewBounds: boundsFrame,

vi ewFl ags: integer, /'l viewFl ags constants

vi ewJusti fy: justificationFlags,

Vi ewFor mat : formatFlags,

noScrol I : string, /1 msg to display if no scrolling
noOver vi ew. string, /1 nmsg to display if no overview
}

Summary

CHAPTER 7

Controls and Other Protos

protoDrawer

aProt oDrawer := {

_proto: protoDrawer,

vi ewFl ags: integer, /1 viewrl ags constants

vi ewBounds: boundsFrame,

vi ewFor mat : formatFlags,

vi ewkf f ect: effectFlags,

showSound: soundFrame, // sound when drawer opens
hi deSound: soundFrame, // sound when drawer cl oses

protoFloater

aProtoFl oater := {

_proto: protoFloater,

vi ewBounds: boundsFrame,

vi ewFl ags: integer, /1 viewrl ags constants
vi ewdust i fy: justificationFlags,

vi ewFor mat : formatFlags,

vi ewkf f ect: effectFlags,

noScrol | : string, /1 msg to display if no scrolling
noOver vi ew. string, /1 meg to display if no overview
}

protoFloatNGo

aPr ot oFl oat NGo : = {
_proto: protoFl oat NCGo,

vi ewFl ags: integer, /1 viewrl ags constants

vi ewBounds: boundsFrame,

vi ewdustify: justificationFlags,

Vi ewFor mat : formatFlags,

vi ewkEf f ect : effectFlags,

noScrol | : string, /1 msg to display if no scrolling
noOver vi ew. string, /1 meg to display if no overview
}

Summary 7-29

7-30

CHAPTER 7

Controls and Other Protos

protoGlance

aProt od ance : = {

_proto: protod ance,

vi ewBounds: boundsFrame,

vi ewdusti fy: justificationFlags,

Vi ewFor mat : formatFlags,

Vi ewFont : fontFlags, // font for text

Vi ewEf f ect : effectFlags,

vi ewl dl eFrequency: integer, /] time view to remain open
text: string, /] text to appear in view
}

protoStaticText

aProtoStaticText: = {
_proto: protoStaticText,

vi ewBounds: boundsFrame,

Vi ewFl ags: integer, /1 viewFl ags constants

text: string, /1 text to display

Vi ewFont : fontFlags,

vi ewdusti fy: justificationFlags,

Vi ewFor mat : formatFlags,

vi ewTr ansf er Mode: integer, /'l view transfer constants

t abs: array, // up to eight tab-stop positions
styl es: array, // font information

}

View Appearance Protos

protoBorder

aPr ot oBorder :={

_proto: protoBorder,

vi ewBounds: boundsFrame,

Vi ewFl ags: integer, /1 viewFl ags constants
Vi ewFor mat : formatFlags,

}

Summary

CHAPTER 7

Controls and Other Protos

protoDivider

aPr ot oDi vi der: = {
_proto: protoDivider,

vi ewBounds: boundsFrame,

vi ewFl ags: integer, /1 viewrl ags constants
Vi ewFont : fontFlags, // font for text

vi ewdustify: justificationFlags,

Vi ewFor mat : formatFlags,

title: string, /1 text on divider bar
titl eHei ght: integer, /1 height of divider

}

protoTitle

aProtoTitle := {
_proto: protoTitle,

vi ewdustify: justificationFlags,

Vi ewFor mat : formatFlags,

Vi ewFont : fontFlags,

title: string, /1 text of title
titlelcon: bitMapFrame,

titl eHei ght: integer, /1 height of title

vi ewTr ansf er Mode: integer, /1 view transfer constants
}

Status Bar Protos

protoStatus

aProtoStatus : = {
_proto: protoStatus,

protoStatusBar

aProtoStatusBar := {
_proto: protoStatusBar,

Summary 7-31

CHAPTETR 8

Text and Ink Input and Display

This chapter describes how the Newton system handles text and presents interfaces
you can use to work with text in NewtonScript applications.

The material covers the following components of Newton text handling:
m handwritten text input

m keyboard text input

m viewsfor text display

m fontsfor text display

Thefirst section of this chapter, “About Text,” describes the basic terms and
concepts needed to understand text processing on the Newton.

The second section, “Using Text,” describes how to use the various input and
display components to handle text in your applications.

For comprehensive reference information about the text-related constants, data
structures, views, methods, and functions, see * Text and Ink Input and Display
Reference” (page 7-1) in Newton Programmer’s Reference.

About Text

This section describes the basic concepts, terms, and processes you need to
understand to work with text in your applications.

About Text and Ink

The Newton allows you to process two forms of text input: ink text and
recognized text. This section describes both forms of text input.

About Text 8-1

CHAPTER 8

Text and Ink Input and Display

When the user writes aline of text on the Newton screen, the Newton system
software performs a series of operations, as follows:

m Theraw datafor the input is captured as ink, which is a'so known as sketch ink
or raw ink.

m Raw ink is stored as a sequence of strokes or stroke data.

m |If theview in which the ink was drawn is configured forink text, the recognition
system groups the stroke data into a series of ink wor ds, based on the timing
and spacing of the user’s handwriting. A user can insert, delete, and move ink
words in the same way as recognized text. Ink words can be scaled to various
sizes for display and printing. They can also be recognized at alater time, by a
process known as deferred recognition.

m If theview in which the ink was drawn supports or is configured for text
recognition, the ink words are processed by the recognition system into
recognized text and displayed in atypeface.

The data describing the handwriting strokes of the ink word are stored as compressed
datain abinary object. This stroke data can be accessed programmatically, using
the stroke bundle methods described in “ Recognition” (page 9-1) in Newton
Programmer’s Guide.

The recognition system and deferred recognition are described in “Recognition”
(page 9-1).

Note
To provide maximum user flexibility for your applications, you
are encouraged to allow ink text in al of your input views. e

Written Input Formats

Ink words can be intermixed with recognized text. This data, normally represented
asrich strings, can be used anywhere that you might expect a standard string.
Each ink word is encoded as asingle character in arich string, as described in
“Rich Strings’ (page 8-22).

You should use the rich string for mat to store data in a soup, because of its
compact representation. You can safely use rich strings with all functions, including
the string functions, which are documented in “ Utility Functions’ (page 26-1).
Another dataformat, described in “ Text and Styles’ (page 8-25), pairs text strings
with style data for viewing in text views.

About Text

CHAPTER 8

Text and Ink Input and Display

Caret Insertion Writing Mode

Caret insertion writing mode is atext input mode that the user can enable or
disable. When caret insertion mode is disabled, handwritten text isinserted into the
view at the location where it is written. When caret insertion writing mode is
enabled, handwritten text isinserted at the location indicated by the insertion caret,
regardless of where on the screen it is drawn. Caret insertion writing mode is used
automatically for keyboard text entry.

To enable or disable caret insertion writing mode, the user selects or deselects the
“Insert new words at caret” option from the Text Editing Settings slip. You can
display this slip by tapping the Options button in the Recognition Preferences slip.

Applications do not normally need to be aware of whether caret insertion writing
mode is enabled or disabled. The one exception to thisis at application startup
time, when you might want to set theinitial location of the insertion point. Thisis
described in “ Setting the Caret Insertion Point” (page 8-26).

There are afew caret insertion writing mode routines you can use to implement
your own version of thismode. They are described in “ Caret Insertion Writing
Mode Functions and Methods” (page 7-47) in Newton Programmer’s Reference.

Fonts for Text and Ink Display

The Newton system software allows you to specify the font characteristics for
displaying text and ink in a paragraph view on the screen. The font information is
stored in afont specification structure known as afont spec. The font specification
for built-in ROM fonts can also be represented in aframe as a packed integer. Both
of these representations are described in “ Using Fonts for Text and Ink Display”

(page 8-17).
The system provides a number of functions you can use to access and modify font
attributes. These are described in “ Text and Styles’ (page 8-25).

About Text Views and Protos

There are anumber of views and protos to use for displaying text and for receiving
text input. For basic information about views, see “Views’ (page 3-1).

About Text 8-3

CHAPTER 8

Text and Ink Input and Display

The views and protos that you use for text are listed in Table 8-1.

Table 8-1 Views and protos for text input and display

View or Proto
edit view

paragraph views

lightweight
paragraph views

input line protos

Description

Usethecl Edi t Vi ewclassfor basic text input and display.
Objects of this class can display and/or accept text and
graphic data. The cl Edi t Vi ewautomatically creates child
cl Par agr aphVi ewviewsfor text input and display and
cl Pol ygonVi ewviewsfor graphic input and display. You
canasoincludecl Pi ct ur eVi ewviewsin your

cl Edi t Vi ews.

For more information about this class, see “ General Input
Views’ (page 8-6).

Usethecl Par agr aphVi ewclassto display text or to accept
text input.

For more information about this class, see “ Paragraph Views”
(page 8-10).

If your paragraph view template meets certain criteria, the
Newton system automatically creates a lightweight paragraph
view for you. Lightweight paragraph views are read-only

and use only one font, although they can contain ink. These
views require significantly less memory than do standard
paragraph views.

For more information about lightweight paragraph views, see
“Lightweight Paragraph Views’ (page 8-11).

You can use one of the input line protos to allow the user to
enter asingle line of text, as described in “Using Input Line
Protos’ (page 8-12).

About Keyboard Text Input

Your application can provide keyboards and keypads for user text input by creating
an object from one of the keyboard view classes or protos:

m Thecl Keyboar dVi ew class provides a keyboard-like array of buttons that the
user can tap with the pen to perform an action. This classis described in
“Keyboard Views’ (page 8-26).

About Text

CHAPTER 8

Text and Ink Input and Display

m Use one of the keyboard protos to create keyboard views in your applications.
These protos include the pr ot oKeyboar d, which creates a keyboard view that
floats above all other views. The keyboard protos are also described in
“Keyboard Views.”

The Keyboard Registry

You need to register any custom keyboards or keypads that you create with the
Newton system’s keyboard registry. Caret insertion writing mode is used whenever
the user enters text from akeyboard or keypad. When aregistered keyboard or keypad
is opened, the system knows to display the insertion caret at the proper location.

The Newton system also allows you to customize the behavior of the insertion
caret and key presses by calling your application-defined methods whenever an
action occursin aregistered keyboard or keypad.

For more information about the keyboard registry, see “Using the Keyboard
Registry” (page 8-36).

The Punctuation Pop-up Menu

The user can tap the insertion caret to display a Punctuation pop-up menu. This
menu, shown in Figure 8-1, provides an easy way to add punctuation when writing
with the stylus.

Figure 8-1 The Punctuation pop-up menu

Wy e g

5

Choosing any item on the Punctuation pop-up menu inserts the appropriate
character into the text, at the insertion caret. The bent arrow, at the top left, isa
carriage return, and the blank box at the bottom indicates a space.

You can override this menu with your own caret pop-up menu, as described in
“The Caret Pop-up Menu” (page 8-38).

About Text 8-5

CHAPTER 8

Text and Ink Input and Display

Compatibility

One of the significant advances in software functionality in the Newton 2.0 system
is the capacity to processink in most views, which includes deferred recognition
and the ability to mix text and ink together in rich string. This expands the behavior
provided by Newton 1.x machines, which generally process written input
immediately for recognition and display the resulting word in atypeface.

These additional capabilities made it necessary to extend the Recognition menu.
The Newton 2.0 Recognition menu adds more input options and replaces the
toggling Recognizer buttons of the Newton 1.x status bar.

The Newton 2.0 system also behaves dlightly differently when merging text into
paragraph views. When caret insertion writing mode is disabled, paragraphs no
longer automatically insert carriage returns or tabs. Thisis true regardless of
whether the user is entering text or ink words.

With Newton System 2.0, you can include images in your edit views. Edit views
(clEditView) can now contain picture views (cl Pi ct ur eVi ew) as child views

Any ink written on a 1.x machine can be dragged into a Newton System 2.0
paragraph and automatically converted into an ink word.

Notes, text, or ink moved from a Newton 1.x to a Newton with the 2.0 system
works correctly without any intervention. However, the reverse is not true: you
cannot insert aacard with 2.0 or later datainto a 1.x machine.

The expando protos have become obsolete. These are pr ot oExpandoShel |,

pr ot oDat eExpando, pr ot oPhoneExpando, and pr ot oText Expando.
These protos are still supported for 1.x application compatibility, but should not be
used in new applications.

Using Text

This section describes how to use various features of text input and display on the
Newton and provides examples of some of these features.

Using Views and Protos for Text Input and Display

This section describes the different views and protos to use in your applications for
text input and display.

General Input Views

Thecl Edi t Vi ewview classis used for aview that can display and/or accept text
and graphic data. Views of the cl Edi t Vi ew class contain no data directly;

8-6 Using Text

CHAPTER 8

Text and Ink Input and Display

instead, they have child views that contain the individual data items. Text items
are contained in child views of the classcl Par agr aphVi ewand graphics are
contained in child views of the classcl Pol ygonVi ew.

A view of thecl Edi t Vi ewclassincludes the following features:

m Automatic creation of cl Par agr aphVi ewor cl Pol ygonVi ewchildren as
the user writes or drawsin the view. These child views hold the data the user writes.

m Support for inclusion of cl Pi ct ur eVi ewviews, which are used for images.

m Text and shape recognition, selection, and gestures such as scrubbing, copying
to clipboard, pasting from clipboard, duplicating, and others, as controlled by
the setting of thevi ewl ags slot. Theinitial recognition is handled by the
cl Edi t Vi ew A child cl Par agr aphVi ewor cl Pol ygonVi ewis created
and that child view handles subsequent editing of the data.

m Drag and drop handling. A child view can be dragged (moved or copied) out of
thecl Edi t Vi ewand dropped into another cl Edi t Vi ew, whaose child it then
becomes. Other views can be configured to handle data dragged from a
cl Edi t Vi ew, asdescribed in “Views’ (page 3-1).

m Clipboard support. A cl Par agr aphVi ewor cl Pol ygonVi ewchild view can
be dragged (moved or copied) to the clipboard, from which it can be pasted into
another cl Edi t Vi ewor cl Vi ew, whose child it becomes.

m Automatic resizing of cl Par agr aphVi ew child views to accommodate added
input. Thisfeature is controlled by thevCal cul at eBounds flag in the
vi ewFl ags dot of those child views.

m Automatic addition of new words to existing paragraphs when caret insertion
writing mode is disabled.

Views of the classcl Edi t Vi eware intended for user input of text, shape, image,
and ink data. Consequently, views of this class expect that any child views have
been defined and created at run time, not predefined by templates created in NTK.

If you need to include predefined child viewsinacl Edi t Vi ew, usethe

Vi ewSet upChi | drenScri pt method of thecl Edi t Vi ewto define the child
views and set up the st epChi | dr en array. You might need to do this, for
example, if you store the data for child viewsin a soup, and you need to retrieve
the data and rebuild the child views at run time. For more information, see
“Including Editable Child Viewsin an Input View” (page 8-9).

The default font for acl Par agr aphVi ew created by acl Edi t Vi ewisthe font
selected by the user on the Styles palette in the system.

The default pen width for acl Pol ygonVi ew created by acl Edi t Vi ewisthe
width set by the user on the Styles palette.

Thedotsof cl Edi t Vi eware described in “General Input View (clEditView)”
(page 7-12) in Newton Programmer’s Reference.

Using Text 8-7

CHAPTER 8

Text and Ink Input and Display

Here is an example of atemplate defining aview of the cl Edi t Vi ewclass:

editor := {...
vi ewd ass: cl Edit Vi ew,
vi ewBounds: {left:0, top:0, right:200, bottom 200},
vi ewFl ags: vVi si bl e+vAnyt hi ngAl | owed,
vi ewFormat : vfFill Wite+vf FraneBl ack+vf Pen(1) +
vf Li nesLt G ay,
vi ewLi neSpaci ng: 20,
/1 methods and other viewspecific slots
vi ewSet upFornscript: func()...

-}

System Messages in Automatically Created Views

When a child view is automatically created by acl Edi t Vi ew, thevNoScri pt s
flagissetinthevi ewFl ags dot of the child view. This flag prevents system
messages from being sent to a view.

This behavior is normally desirable for automatically created views, because they
have no system message-handling methods and the system saves time by not
sending the messages to them.

If you want to use one of these viewsin amanner that requiresit to receive system
messages, you need to remove the vNoScr i pt s flag fromthevi ewFl ags dot of
the view.

Creating the Lined Paper Effect in a Text View

A view of thecl Edi t Vi ewclass can appear smply as a blank areain which the
user writes information. However, this type of view usually contains a series of
horizontal dotted lines, like lined writing paper. The lines indicate to the user that
the view accepts input. To create the lined paper effect, you must set the following
slots appropriately:
vi ewFor mat Must include one of the vf Li nes.. flags. This activates the
line display.
vi ewLi neSpaci ng
Sets the spacing between the lines, in pixels.
vi ewLi nePattern
Optional. Sets a custom pattern that is used to draw the lines
intheview. Inthevi ewFor mat slot editor in NTK, you
must also set the Lines item to Custom to signal that
you are using a custom pattern. (This sets the
vf Cust omx<vf Li nesShi ft flaginthevi ewFor mat
dot.)

Patterns are binary data structures, which are described in the
next section.

Using Text

CHAPTER 8

Text and Ink Input and Display

Defining a Line Pattern

You can define a custom line pattern for drawing the horizontal linesin a paragraph
view. A line pattern is an eight-byte binary data structure with the class' pat t er n.

To create a binary pattern data structure on the fly, use the following

NewtonScript trick:

myPattern : = Setd ass(C one("\ UAAAAAAAAAAAAAAAA") |
"pattern);

This code clones a string, which is already a binary object, and changesiits class to
' pat t er n. The string is specified with hex character codes whose binary represen-
tation creates the pattern. Each two-digit hex code creates one byte of the pattern.

Including Editable Child Views in an Input View
For achild view of aclEditView to be editable, you need to follow certain rules:

m The child view must residein thevi ewChi | dr en slot of thecl Edi t Vi ew
You cannot store a child view’stemplatein the st epChi | dr en dot, asNTK
normally does.

m Thechild view must contain avi ewSt at i oner y slot with an appropriate
value, depending on the view class and data type. The acceptable values are
shown in Table 8-2:

Table 8-2 vi ewSt at i onery slot value for cl Edi t Vi ew children
Value of
View class View data type Vi ewSt at i onery slot
cl Par agraphVi ew text ''para
cl Pol ygonVi ew recognized ' poly
graphics
cl Pol ygonVi ew ink "ink
cl PictureView bitmap or ' pi ct

picture object

m Add the child view templatesto the vi ewChi | dr en array of the edit view and
open the view or send it the RedoChi | dr en message. Alternatively, you can
add the child view with the AddVi ew method and then send the Di r t y message
to the edit view.

Using Text 8-9

8-10

CHAPTER 8
Text and Ink Input and Display

IMPORTANT
You store view templates (not view objects) in the
vi ewChi | dr en array of an edit view. A

Paragraph Views

Thecl Par agr aphVi ew class displays text or accepts text input. It includes the
following features:

m Text recognition
m Text correction

m Text editing, including scrubbing, selection, copying to the clipboard, pasting
from the clipboard, and other gestures, including duplicating, as controlled by
the setting of thevi ewFl ags slot.

m Automatic word-wrapping.
m Support for the caret gesture, which adds a space or splits aword.

m Clipping of text that won't fit in the view. (An éllipsisis shown to indicate text
beyond what is visible.)

m Useof ink and different text fonts (styles) within the same paragraph.
m Tab-stop alignment of text.

m Automatic resizing to accommodate added text (when thisview isenclosed in a
cl Edi t Vi ew). Thisfeatureis controlled by thevCal cul at eBounds flagin
thevi ewFl ags dot.

m Automatic addition of new words written near the view when thisview is
enclosed inacl Edi t Vi ewand caret insertion writing mode is disabled.

Thedotsof cl Par agr aphVi ew are described in “ Paragraph View
(clParagraphView)” (page 7-15) in Newton Programmer’s Reference.

Note that you don't need to create paragraph views yourself if you are accepting
user input insideacl Edi t Vi ew Just provideacl Edi t Vi ewand when the user
writesin it, the view automatically creates paragraph views to hold text.

The following is an example of atemplate defining aview of the
cl Par agr aphVi ewclass:

dateSanple := {...
vi ewCl ass: cl ParagraphVi ew,
vi ewBounds: {left:50, top:50, right:200, bottom 70},
vi ewFl ags: vVi si bl etvReadOnl y,
viewrFormat: viFill Wite,
vi ewJustify: oneLi neOnly,
text: "January 24, 1994",

Using Text

CHAPTER 8

Text and Ink Input and Display

// 8 chars of one font, 3 chars of another, 5 chars
/[of anot her
styles: [8, 18434, 3, 12290, 5, 1060865],

-}

Paragraph views are normally lined to convey to the user that the view accepts text
input. To add the lined paper effect to paragraph views, see “ Creating the Lined
Paper Effect in aText View” (page 8-8).

Lightweight Paragraph Views

When you create atemplate using the cl Par agr aphVi ew class, and that
template isinstantiated into aview at run time, the system may create a specialized
kind of paragraph view object, called alightweight paragraph view. Lightweight
paragraph views have the advantage of requiring much less memory than do
standard paragraph views.

The system automatically creates alightweight paragraph view instead of a
standard paragraph view if your template meets the following conditions:

m Theview must be read-only, which meansthat itsvi ewl ags slot contains the
vReadOnl y flag.

m Theview must not include any tabs, which means that the template does not
contain thet abs dlot.

m Theview must not include multiple font styles, which means that the template
does not contain the st yl es dlot; however, the view can contain arich string in
itst ext dot. For information about rich strings, see “Rich Strings’ (page 8-22).

m Thevi ewFl ags dot of the view must not contain the following flags:
vCGest ur esAl | owed, vCal cul at eBounds.

Note
Lightweight paragraph views can containink. e

Most paragraph views look the same after they are instantiated; that is, thereis
not normally away to tell whether a particular paragraph view is a standard or a
lightweight view. However, ink displayed in alightweight paragraph view is
displayed in afixed font size.

Note

When laying out text in alightweight paragraph view, the
viewLineSpacing valueisignored. Thisis not generally a
problem, since the line spacing dotted lines are normally used to
indicate that the text can be edited, and text in alightweight
paragraph cannot be edited. &

Using Text 8-11

8-12

CHAPTER 8

Text and Ink Input and Display

Once alightweight paragraph view has been instantiated, you cannot dynamically
change the view flags to make it an editable view, or add multistyled text by
providing ast yl es dot, since this type of view object doesn’t support these
features. If you need this functionality for an existing lightweight paragraph view,
you'll have to copy the text out of it into an editable paragraph view.

Using Input Line Protos

Input line protos provide the user with single lines in which to enter data. There are
four input line protos available:

m protol nput Li ne isaone-lineinput field that defines a simple paragraph
view in which the text input is left-justified.

m prot oRi chl nput Li ne isthetext and ink equivalent of pr ot ol nput Li ne.

m protolabel | nput Li ne isaone-lineinput field that includes atext label and
can optionally include a pop-up menu known as a picker.

m prot oRi chLabel | nput Li ne isthe text and ink equivalent of
pr ot oLabel | nput Li ne.

protolnputLine

This proto defines a view that accepts any kind of text input and is left-justified.
Below is an example of awhat apr ot ol nput Li ne lookslike on the
Newton screen:

Thepr ot ol nput Li ne isbased on aview of thecl Par agr aphVi ewclass. It
has no child views.

Thefollowing is an example of atemplate using pr ot ol nput Li ne:

myl nput = {...
_proto: protolnputlLine,
vi ewdustify: vjParentRi ght H+vj Par ent Bot t onV,
vi ewLi neSpaci ng: 24,
vi ewBounds: SetBounds(-55, -33, -3, -3),
-}

The slots of the pr ot ol nput Li ne are described in “protolnputLine” (page 7-17)
in Newton Programmer’s Reference.

protoRichInputLine

This proto works exactly like pr ot ol nput Li ne. The only difference is that
pr ot oRi chl nput Li ne allows mixed ink and text input, as determined by the
current user recognition preferences.

Using Text

CHAPTER 8

Text and Ink Input and Display

The dotsof prot oRi chl nput Li ne are described in “protoRichlnputLine”
(page 7-19) in Newton Programmer’s Reference.

protoLabellnputLine

This proto defines a view that features alabel, accepts any kind of input, and is
left-justified. The pr ot oLabel | nput Li ne can optionally include a picker.

When the pr ot oLabel | nput Li ne doesinclude a picker, the user selectsa
choice from the picker. That choice is entered as the text in the input line, and is
marked with a check mark in the picker.

Figure 8-2 shows an example of apr ot oLabel | nput Li ne with and without the

picker option:
Figure 8-2 An example of a pr ot oLabel | nput Li ne
Office i . . .
Simple pr ot Labl el nput Li ne (no picker option)
Picker option — & Who
indicated by
diamond
VT;“ Example of a picker displayed after lable is tapped.
Us Check mark indicates the currently selected choice.
Them
No one

Thepr ot oLabel | nput Li ne isbased on aview of thecl Par agr aphVi ew
class. It hastwo child views:

m Thel abel Li ne child view usesthe pr ot oSt at i cText proto to create the
static text label and to activate the picker if the proto includes one.

m Theent ryLi ne child view usesthe pr ot ol nput Li ne proto to create the
input field into which the user writes text. The text value entered into thisfield is
stored inthet ext slot of thisview.

You can have your label input line protos remember alist of recent items. To do
this, assign asymbol that incorporates your developer signatureto the' nenory

dlot of your prototype. The system automatically maintains the list of recent

items for your input line. To access the list, use the same symbol with the
AddMenor yl t em AddMenor yl t emni que, Get Menoryl t ens, and

Get Menor y S| ot functions, which are described in * Utility Functions’ (page 26-1).

Using Text 8-13

8-14

CHAPTER 8
Text and Ink Input and Display

IMPORTANT
You can programmatically access the value of thet ext dlot for
the pr ot oLabel | nput Li ne with the expression

ent ryLi ne. t ext . If you update the text slot programmeti-
cally, you need to call the Set Val ue function to ensure that the
view is updated. Below is an example:

Set Val ue(entrylLine, '"text, "new text")]
A

Thefollowing is an example of atemplate using pr ot oLabel | nput Li ne:

| abel Line := {...

_proto: protolLabel I nputLine,

vi ewBounds: {top: 90, left: 42, right: 194, bottom 114},

| abel : "Who",

| abel Commands: ["Me", "You", "Us", 'pickseparator,
"Theni, "No one"],

cur Label Conmand: O,

-}

The dots of thepr ot oLabel | nput Li ne are described in “protoL abel InputLine”
(page 7-19) in Newton Programmer’s Reference

protoRichLabellnputLine

This proto works exactly like pr ot oLabel | nput Li ne. The only differenceis
that pr ot oRi chLabel | nput Li ne allows mixed ink and text input, as
determined by the current user recognition preferences.

The dlots of the pr ot oRi chLabel | nput Li ne are described in
“protoRichLabellnputLine” (page 7-22) in Newton Programmer’s Reference.

Displaying Text and Ink

In addition to knowing about the views and protos that you can use for displaying
text and ink, you should understand how text and ink are displayed. Thisinvolves
the use of fonts, text styles, and rich strings. This section describes these objects
and how you can use them in your applications to control the display of text and ink.

Text and Ink in Views

When the user draws with the pen on the Newton screen, pen input datais captured
asink, which is aso known as sketch ink or raw ink.

What happens with the raw ink depends upon the configuration of the view in
which the input action was performed and the choices that the user made in the

Using Text

CHAPTER 8

Text and Ink Input and Display
Recognition menu. The view configuration is defined by the view flags and the

(optional) recognition configuration (r ecConf i g) frame of the view. The
Recognition menu is shown in Figure 8-3.

Figure 8-3 The Recognition menu

A Taxt
oL ek Teun

] Hspes
W ShER e

Prulwrsscm

When thevi ewFl ags input flags and ther ecConf i g frame of the view are set to
accept both text and ink, the Recognition menu choices control what kind of datais
inserted into the paragraph view.

Note that you can limit the choices that are available in the Recognition menu of
your application, though thisis rarely necessary or advisable.

The Recognition menu, recognition view flags, and the recognition configuration
frame are described in “ Recognition” (page 9-1).

Mixing Text and Ink in Views

Some views require textual input and cannot accept ink words. The recognition
controls are not used by these text-only views, in which writing is always
recognized and inserted as text. If the user drops an ink word into a text-only field,
the ink word is automatically recognized before control returns to the user.

Edit views can handle both ink words and sketch ink. If an edit view receives an
ink word, it either merges that word into an existing paragraph view or creates a
new view for the ink word. If an edit view receives sketch ink, it creates a polygon
view for theink drawing.

You can aso create fields that accepts only ink words. However, if the user types or
drops recognized text into such afield, the recognized text remains recognized text.

You can set a paragraph view to accept either text or ink input with the
following settings:

vi ewCl ass: cl ParagraphVi ew,
viewFl ags: vVisible + vOipping + vdickable +
vGesturesAl | owed + vCharsAl |l owed +
vNumber sAl | owed,
recConfig: rclnkO Text

Using Text 8-15

CHAPTER 8
Text and Ink Input and Display

Note

The view flags are described in “Views’ (page 3-1). The

recognition view flags are described in “ Recognition”

(page 9-1). ¢

Although raw ink isintended mostly for drawing, the user can still write with raw
ink by choosing “ Sketches’ from the Recognition menu. The recognizer
automatically segments raw ink into ink words. The raw ink can subsequently be
recognized, using deferred recognition. Unlike ink text, raw ink is not moved or
resized after it iswritten.

When raw ink from a 1.x system is dragged into a paragraph view, each piece of
ink is automatically converted into an ink word. This conversion is not reversible.

Note

You can use one of two representations for text and ink that are
mixed together. The first and more common representation isas a
rich string, as described in “Rich Strings’ (page 8-22). The second
representation, used in paragraph views, is as atext string with a
corresponding series of matching style runs. This representation,
which is used for editing operations in paragraph views, is
described in “Text and Styles” (page 8-25). ¢

Ink Word Scaling and Styling

Ink words are drawn using the pen thickness that the user specifiesin the Styles
menu. After the ink words are drawn, they are scaled by the system software. The
scaling valueis specified in the Text Editing Settings menu, which the user can
access by choosing Preferences from the Recognition menu.

The standard values for scaling ink words are 50 percent, 75 percent, and 100 percent.
After the system performs scaling, it assigns afont style and size to the ink word.
Theinitial styleisplain. Theinitia sizeis proportional to the x-height of the ink
word, as estimated by the recognizer. This size is defined so that an ink word of a
certain size will be roughly the same size as a text word displayed in afont of that
size. For example, an ink word of size 12 isdrawn at roughly the same sizeasa
text word in atypical 12-point font, as shown in Figure 8-4. The ink words in
Figure 8-4 were first scaled to 50 percent of their written size.

Figure 8-4 Resized and recognized ink

8-16

Using Text

CHAPTER 8

Text and Ink Input and Display

You can modify the size at which ink words are displayed in two ways: by
changing the scaling percentage or the font size. For example, suppose that you
draw an ink word and the system calculates its font size, as written, at 36 point. If
your ink text scaling is set to 50 percent, the ink word is displayed at half of the
written size, which makesits font size 18 point. If you subsequently change the
scaling of that ink word to 100 percent, its font size changes to 36 point.

If the user applies deferred recognition to the ink words, the recognized text is
displayed in the current font family, size, and style, as specified in the Styles menu.

Note

There isamaximum ink word size. Ink words are scaled to the
smaller of what would be produced by the selected scaling
percentage or the maximum size. &

Constraining Font Style in Views

You can override the use of stylesin a paragraph view so that al of the text in the
paragraph is displayed with a certain font specification. To do this, use the
vi ewFont glot of the paragraph view along with two of the text view flags.

If youincludevFi xedText St yl e inthetext flags for a paragraph view, all
recognized text in the view is displayed using the font family, point size, and
character style specified for vi ewFont . Thisisthe normal behavior for input fields.

If youinclude vFi xedl nkText St yl e in the text flags for a paragraph view, all
ink words in the view are displayed using the point size and character style
specified for vi ewFont . Note that the font family does not affect the display of
ink words.

Note

Using thevFi xedText St yl e or vFi xedl nkText St yl e flags
does not modify the' st yl es dot of the view. However, if you
use either of these flags, the system does not allow the user to
change the text style for your paragraph view. o

Thetext view flags are described in “Text Flags’ (page 7-2) in Newton
Programmer’s Reference.

Using Fonts for Text and Ink Display

Whenever recognized text is drawn on the Newton screen, the system software
examines the font specification associated with the text to determine how to draw
the text. The font specification includes the font family name, the font style, and
the point size for the text. You can specify afont with afont frame or with a packed
integer; both of these formats are described in this section.

Using Text 8-17

CHAPTER 8

Text and Ink Input and Display

The constants you can use in font specifications are shown in “ Font Constants for
Packed Font Integer Specifications’ (page 7-4) in Newton Programmer’s Reference.

The Font Frame

A font frame has the following format:

{fam ly: familyName, face: faceNumber, size: pointSze}

For familyName, you can specify a symbol corresponding to one of the available
built-in fonts, which are shown in Table 8-3.

Table 8-3 Font family symbols

Symbol Font Family
‘espy Espy (system) font
' geneva Genevafont

" newYor k New York font

"handwriting Casual (handwriting) font

For faceNumber, you can specify a combination of the values shown in Table 8-4:

Table 8-4 Font style (face) values

Constant Value Font face
kFaceNor nal 0x000 Normal font
kFaceBol d 0x001 Bold font
kFaceltalic 0x002 Italic font
kFaceUnder i ne 0x004 Underline font
kFaceCutl i ne 0x008 Outline font

kFaceSuper Scri pt 0x080 Superscript font
kFaceSubscri pt 0x100 Subscript font

8-18 Using Text

CHAPTER 8

Text and Ink Input and Display

Note

Apple recommending using the normal, bold, and underline font

styles. The other styles do not necessarily display well on

Newton screens. o

For pointSze, use an integer that specifies the point size value.

The Packed Integer Font Specification

You can specify afont in one 30-bit integer. A packed integer font specification
uses the lower 10 bits for the font family, the middle 10 bits for the font size, and
the upper 10 bits for the font style. Since only the ROM fonts have predefined font
family number constants, you can only specify ROM fontsin a packed value.

Using the Built-in Fonts

The system provides several constants you can use to specify one of the built-in fonts.
These constants are listed in Table 8-5. The fonts shown in the table can be specified
by the constant (usable at compile time only), by their font frame, or by an integer
value that packs all of the font information into an integer (sometimes thisis what
you see at run timeif you examine avi ewFont dlot inthe NTK Inspector).

Table 8-5 Built-in font constants

Constant
ROM f ont systen®

ROM f ont syst enBbol d

ROM f ont syst enBunder| i ne

ROM f ont syst entl0

ROM f ont syst enllObol d

ROM f ont syst enilOunder | i ne

ROM f ont syst enil2

ROM f ont syst enll2bol d

Using Text

Font frame
{fam ly:"' espy,
face: 0, size: 9}

{fam ly: "' espy,
face: 1, size: 9}

{fam ly: "' espy,
face: 4, size: 9}

{fam ly: ' espy,
face: 0, size:10}

{fam ly: ' espy,
face:1, size:10}

{fam ly: ' espy,
face: 4, size: 10}

{fam ly:' espy,
face: 0, size:12}

{fam ly: "' espy,
face: 1, size:12}

Integer value
9216

1057792

4203520

10240

1058816

4204544

12288

1060864

continued

8-19

CHAPTER 8

Text and Ink Input and Display

Table 8-5

Built-in font constants (continued)

Constant

ROM f ont syst enll2under | i ne

ROM f ont syst enil4

ROM f ont syst enml4bol d

ROM f ont syst entl4under | i ne

ROM f ont syst enil8

ROM f ont syst enil8bol d

ROM f ont syst enil8under | i ne

si npl eFont 9

si npl eFont 10

si mpl eFont 12

si mpl eFont 18

fancyFont9 or
user Font 9

fancyFont 10 or
user Font 10

fancyFont 12 or
user Font 12

fancyFont 18 or
user Font 18

8-20 Using Text

Font frame
{fam ly: ' espy,
face: 4, size:12}

{fam ly: "' espy,
face: 0, size:14}

{fanmly: "' espy,
face: 1, size:14}

{fam ly: ' espy,
face: 4, size:14}

{fam ly: "' espy,
face: 0, size: 18}

{fam |ly: "' espy,
face: 1, size: 18}

{fam ly: "' espy,
face: 4, size: 18}

{fam |l y: ' geneva,
face: 0, size:9}

{fanily:'geneva,
face: 0, size:10}

{fam |l y:' geneva,
face: 0, size:12}

{fam | y: ' geneva,
face: 0, size: 18}

{fam | y: "' newYork,
face: 0, size: 9}

{fam | y: "' newYork,
face: 0, size: 10}

{fam |y: "' newYork,
face: 0, size:12}

{fam | y: "' newYork,
face: 0, size: 18}

Integer value
4206592

14336

1062912

4208640

18432

1067008

4212736

9218

10242

12290

18434

9217

10241

12289

18433

continued

CHAPTER 8

Text and Ink Input and Display

Table 8-5 Built-in font constants (continued)
Constant Font frame Integer value
edi t Font 10 {fam |y: " handwiti ng, 10243
face: 0, size: 10}
edi t Font 12 {fam ly: " handwiti ng, 12291
face: 0, size:12}
edi t Font 18 {fam ly:" handwiting, 18435

face: 0, size:18}

Theintegersin Table 8-5 are derived by packing font family, face, and size
information into asingle integer value. Each NewtonScript integer is 30 bitsin
length. In packed font specifications, the lower 10 bits hold the font family, the
middle 10 bits hold the font size, and the upper 10 bits hold the font style.

These three parts added together specify a single font in one integer value. You can
use the constants listed in Table 8-6 at compile time to specify all of the needed infor-
mation. To do this, add one constant from each category together to yield a complete
font specification. At run time, of course, you'll need to use the integer values.

Table 8-6 Font packing constants

Constant Value Description

Font Family

(none defined) 0 | dentifies the System font (Espy)

t sFancy 1 | dentifies the New York font

tsSinple 2 | dentifies the Geneva font

t sHWFont 3 Identifies the Casual (Handwriting)
font

Font Size

t sSi ze(pointSze)

Font Face
tsPl ai n

t sBol d

Using Text

pointSze << 10

1048576

Specify the point size of the font in
pointSize

Normal font
Bold font

continued

8-21

8-22

CHAPTER 8

Text and Ink Input and Display

Table 8-6 Font packing constants (continued)

Constant Value Description
tsltalic 2097152 Italic font
tsUnderline 4194304 Underlined normal font
tsQutline 8388608 Outline font

t sSuper Scri pt 134217728 Superscript font

t sSubScri pt 268435456 Subscript font

Note that the “ Casual” font usesthe symbol ' handwr i t i ng for itsfont family.

You can use the MakeConpact Font function at runtime to create a packed
integer value from a specification of the font family, font size, and font face. You
can only specify ROM fonts with the packed integer format. Here is an example:

font Val ue : = MakeConpact Font ('tsSinple, 12, tsltalic)

If the font specified by the three parameters does not belong to a ROM font family,
MakeComnpact Font returns afont frame instead.

The MakeConpact Font function is described in “MakeCompactFont”
(page 7-28) in Newton Programmer’s Reference.

Rich Strings

Rich strings store text strings and ink in a single string. If you application supports
user-input text or ink, you can userich strings to represent all user data. You can
convert between the text and styles pairs in paragraph views and rich strings. Text
and styles pair are described in “Text and Styles’ (page 8-25).

Rich strings are especially useful for storing text with embedded ink in a soup. You
can use therich string functions, described in “Rich String Functions’ (page 8-24),
to work with rich strings.

The system software automatically handles rich strings properly, including their
use in performing the following operations:

m screen display
m sorting and indexing

m concatenation with standard functions such as St r Concat and Par anSSt r,
described in “Utility Functions® (page 26-1)

m measuring

Using Text

CHAPTER 8

Text and Ink Input and Display

Important Rich String Considerations

Although the Newton system software allows you to use rich strings anywhere that
plain strings are used, there are certain considerations to be aware of when using
rich strings. These include:

m Do not use functions that are not rich-string-aware. These include the Lengt h,
Set Lengt h, Bi nar yMunger, and St uf f XXX functions.

m Usethe St r Len function to find the length of astring.

m Usethe St r Munger function to perform operations that modify the length of a
string, such as appending or deleting characters.

m Do not assume that the rich string terminator character isthe last character in a
rich string object.

m Do not truncate arich string by inserting a string terminator character into
the string.

m Do not assign characters into arich string, due to the presence of ink place-
holder characters. Use the Set Char function instead of direct assignment.

m Do not use undocumented string functions, which are not guaranteed to work
with rich strings.

Using the Rich String Storage Format

Ink datais embedded in rich strings by inserting a placeholder character in the
string for each ink word. Data for each ink word is stored following the string
terminator character.

Each ink word is represented in the text portion of the rich string by the specia
character kl nkChar (0xF700), which isareserved Unicode character value.

Theink datafor al ink words in the string follows the string terminator character.
Thefinal 32 bitsin arich string encode information about the rich string.

Note

Thestringinthe' t ext dlot of aparagraph view uses the

kPar al nkChar (OxF701) character as a placeholder character
instead of the kI nkChar code. The' t ext dlot stringisnot a
rich string but might contain ink word placeholders. See “Text and
Styles’ (page 8-25) for more information. &

Automatic Conversion of Rich Strings

Text is automatically converted from the rich string format to a text/styles pair when-
ever aparagraph is opened and the Set Val ue function is called with arich string.

When a paragraph view is opened, the' t ext dlot isfirst examined to determine
whether or not the text contains any embedded ink. If so, new versions of the

Using Text 8-23

CHAPTER 8

Text and Ink Input and Display

view's' t ext and' st yl es slots are generated and placed in the context frame of

the view.

When Set Val ue iscalled with a string parameter that isarich string, itis
automatically decoded into atext and style pair. The result is stored in the view

frame of the paragraph view.

Rich String Functions

You can use the rich string functions to convert and work with rich strings. Each of
these functions, shown in Table 8-7, is described in “Rich String Functions and
Methods’ (page 7-31) in Newton Programmer’s Reference.

Table 8-7 Rich string functions

Function or method name
MakeRi chString

DecodeRi chStri ng

Extract RangeAsRi chStri ng

IsRichString

view CetRi chString

Striplnk

8-24 Using Text

Description

Converts the data from two slotsinto arich
string. MakeRi chSt ri ng usesthe text
fromthe't ext dlot of the view and the
styl es array fromthe'st yl es dot of the
view.

Converts arich string into a frame containing
a'text dotanda' styl es dot. These
slots can be placed in a paragraph view for
editing or viewing.

Returns arich string for arange of text
from a paragraph view.

Determinesif astringisarich string
(i.e., containsink).

Returns the text from a paragraph view as a
rich string or plain string, depending on
whether the paragraph view contains

any ink.

Strips any ink from arich string. Either
removes the ink words or replaces each
with a specified replacement character
or string.

CHAPTER 8

Text and Ink Input and Display

Text and Styles

Within a paragraph view, text is represented in two slots; the' t ext slot and the
"styl es dot. The' t ext dot contains the sequence of text charactersin the
paragraph, including an instance of the kPar al nkChar placeholder character
(0xF701) for each ink word.

The' st yl es dot specifies how each text run is displayed in the paragraph. A
text run is a sequence of charactersthat are all displayed with the same font
specification. The' st yl es dot consists of an array of alternating length and style
information: one length value and one style specification for each text run. For ink
words, the length value is always 1, and the style specification is a binary object
that contains the ink data.

For example, consider the paragraph text shown in Figure 8-5.

Figure 8-5 A paragraph view containing an ink word and text

Try 4his one

In the paragraph view shown in Figure 8-5, the' t ext slot contains the following
sequence of Unicode characters:

T 'r' 'y "' OxF701 'o' 'n' 'e'
The' st yl es dot for this paragraph consists of the following array:
styles: [4, 12289, 1, <inkData, length 42>, 4, 12289]

Thefirst pair of valuesin the array, (4, 12289), coverstheword “Try” and the
space that follows it. The length value, 4, specifies that the text run consists of four
characters. The packed integer font specification value 12289 specifies plain,
12-point, New York.

The second pair of valuesinthearray, (1, i nkDat a), coverstheink word. The
length valueis 1, which is always the case for ink words. Thevaluei nkDat aisa
binary object that contains the compressed data for the handwritten “this’ that is
part of the text in the paragraph view. The datais automatically extracted from the
tablet data as part of a preliminary recognition process that precedes word recognition.

Thethird and final pair of valuesinthe' st yl es dot array, (4, 12289), covers
the word “one” and the space that precedesiit. Thistext run is 4 characters long and
isdisplayed 12 points high in the plain version of the New York font family.

Note
The packed integer font specification values
are shown in Table 8-6 (page 8-21). &

Using Text 8-25

CHAPTER 8

Text and Ink Input and Display

Setting the Caret Insertion Point

When you application starts up, you might want to establish the insertion point for
keyboard entry in caret insertion writing mode. There are three functions that you
can use for this purpose:

m to establish theinsertion point in an input field, use the Set Key Vi ewfunction,
which is described in “ SetKeyView” (page 7-43) in Newton Programmer’s
Reference.

m to establish theinsertion point in an edit view, use the Posi t i onCar et
function, which is described in “ PositionCaret” (page 7-49) in Newton
Programmer’s Reference.

m to establish theinsertion point in an edit view or paragraph, you can use the
Set Car et | nf o function, which is described in “ SetCaretInfo” (page 7-50) in
Newton Programmer’s Reference.

Using Keyboards

You can provide the user with on-screen keyboard input in your applications using
the built-in keyboard views. You can aso define new keyboard views and register
them with the system, which will activate caret input when these views are opened.

Keyboard Views

There are four different floating keyboards built into the system root view. Each of
the built-in keyboards can be accessed as a child of the root with a symbol.

To use the full aphanumeric keyboard, which is shown in Figure 8-6, use the
symbol ' al phaKeyboar d.

Figure 8-6 The built-in alphanumeric keyboard

8-26

Using Text

CHAPTER 8

Text and Ink Input and Display

To use the numeric keyboard, which is shown in Figure 8-7, use the symbol
" numer i cKeyboar d.

Figure 8-7 The built-in numeric keyboard

To use the phone keyboard, which is shown in Figure 8-8, use the symbol
' phoneKeyboar d.

Figure 8-8 The built-in phone keyboard

To use the time and date keyboard, which is shown in Figure 8-9, use the symbol
' dat eKeyboar d.

Figure 8-9 The built-in time and date keyboard

An on-screen keyboard can be opened by the user with adouble tap on an input
field. The kind of keyboard displayed is determined by what type of input field is
recognized. For example, afield in which only numbers are recognized would use
the numeric keyboard. The user can a so open akeyboard from the corrector
pop-up list, which appears when you correct a recognized word.

Using Text 8-27

8-28

CHAPTER 8

Text and Ink Input and Display

If you want to open one of these keyboards programmatically, use code like the
following to send it the Open message:

Get root (). al phaKeyboar d: Open()

The keystrokes entered by the user are sent to the current key receiver view.
There can be only one key receiver at atime, and only views of the classes

cl Par agr aphVi ewand cl Edi t Vi ewcan be key receiver views. When a
keyboard is open, a caret is shown in the key receiver view at the location where
characters will be inserted.

The keyboard views are based on cl Keyboar dVi ew, which is described in
“Keyboard View (clKeyboardView)” (page 7-35) in Newton Programmer’s
Reference.

Using Keyboard Protos

The keyboard protos to provide users of your applications with on-screen
keyboards with which to enter text. The following keyboard protos are available:

m pr ot oKeyboar d provides a standard keyboard view that floats above all
other views.

m pr ot oKeypad alows you to define a customized floating keyboard.
m pr ot oKeyboar dBut t on includes a keyboard button in aview.

m prot oSmal | Keyboar dBut t on includes a small keyboard button
inaview.

m pr ot oAl phaKeyboar d provides an aphanumeric keyboard that you can
includein aview.

m prot oNuneri cKeyboar d provides a numeric keyboard that you can include
inaview.

m pr ot oPhoneKeyboar d provides a phone keyboard that you can includein
aview.

m prot oDat eKeyboar dBut t on provides atime and date keyboard that you can
includein aview.

protoKeyboard

This proto creates a keyboard view that floats above all other views. It is centered
within its parent view and appears in alocation that won't obscure the
key-receiving view (normally, the view to which the keystrokes from the keyboard
are to be sent). The user can drag the keyboard view by its drag-dot to a different
location, if desired. Figure 8-10 shows an example of what apr ot oKeyboar d
looks like on the screen.

Using Text

CHAPTER 8

Text and Ink Input and Display

Figure 8-10 An example of a pr ot oKeyboar d

This proto enables the caret (if it is not already visible) in the key-receiving view
while the keyboard is displayed. Characters corresponding to tapped keys are
inserted in the key-receiving view at the insertion bar location. The caret is disabled
when the keyboard view is closed.

This proto is used in conjunction with pr ot oKeypad to implement a floating
keyboard. The pr ot oKeyboar d proto defines the parent view, and
pr ot oKeypad isachild view that defines the key characteristics.

protoKeypad

This proto defines key characteristics for akeyboard view (cl Keyboar dVi ew
class). It also contains functionality that automatically registers an open keyboard
view with the system. If you want to get this behavior in your custom keyboard,
use pr ot oKeypad.

You use this proto along with pr ot oKeyboar d to implement a floating keyboard.
The view using the pr ot oKeypad proto should be a child of the view using the
pr ot oKeyboar d proto.

protoKeyboardButton

This proto is used to include the keyboard button in aview. Thisis the same keyboard
button shown on the status bar in the notepad. Tapping the button causes the on-
screen keyboard to appear. If the keyboard is aready displayed, a picker listing
available keyboard typesis displayed. The user can tap one to open that keyboard.

Figure 8-11 shows an example of the keyboard button.

Figure 8-11 The keyboard button

Using Text 8-29

CHAPTER 8

Text and Ink Input and Display

protoSmallKeyboardButton

This proto is used to include a small keyboard button in a view. Tapping the button
causes the on-screen keyboard to appear. If the keyboard is already displayed, a
picker listing available keyboard typesis displayed. The user can tap one to open
that keyboard.

Figure 8-12 shows an example of the small keyboard button.

Figure 8-12 The small keyboard button

8-30

protoAlphaKeyboard

This proto is used to include an aphanumeric keyboard in aview. Thisis the same
asthe' al phaKeyboar d keyboard view provided in the root view, as described in
“Keyboard Views’ (page 8-26). An example of pr ot 0Al phaKeyboar d is shown
in Figure 8-6 (page 8-26).

protoNumericKeyboard

This proto is used to include a numeric keyboard in aview. Thisisthe same asthe
" nuner i cKeyboar d keyboard view provided in the root view, as described in
“Keyboard Views’ (page 8-26). An example of pr ot oNurrer i cKeyboar d is
shown in Figure 8-7 (page 8-27).

protoPhoneKeyboard

This proto is used to include a phone keyboard in aview. Thisisthe same asthe

' phoneKeyboar d keyboard view provided in the root view, as described in
“Keyboard Views’ (page 8-26). An example of pr ot oPhoneKeyboar d is shown
in Figure 8-8 (page 8-27).

protoDateKeyboard

This proto is used to include a time and date keyboard in aview. Thisisthe same
asthe' dat eKeyboar d keyboard view provided in the root view, as described in
“Keyboard Views’ (page 8-26). An example of pr ot oDat eKeyboar d is shown
in Figure 8-9 (page 8-27).

Defining Keys in a Keyboard View

When you define a keyboard view, you need to specify the appearance and behavior
of each key in the keyboard. This section presents the definition of an example
keyboard view, which is shown in Figure 8-13 (page 8-31).

Using Text

CHAPTER 8

Text and Ink Input and Display

The Key Definitions Array

Each keyboard view contains a key definitions array, which determines the layout
of theindividual keysin the keyboard. The key definitions array is an array of rows.
Each row isan array of values that looks like this:

row0 : = [rowHeight, rowMaxKeyHeight,
keyOLegend, keyOresult, keyODescriptor,
keylLegend, keylresult, keylDescriptor,
key2l egend, key2result, key2Descriptor,

]

Thefirst two elements describe the height to alot for the row (rowHeight) and the
height of the tallest key in the row (rowMaxKeyHeight), in key units. These two
measurements are often the same, but they may differ. Key units are described in
“Key Dimensions’ (page 8-35).

Next in the row array is a series of three elements for each key in the row:
m keylLegend

m keyResult

m keyDescriptor

These values are described in the following sections.

Figure 8-13 shows the example keyboard view that is used to explain key definition
in this section.

Figure 8-13 A generic keyboard view

[z 1l=]
[+ 051]
[==
BN EY

The following is the view definition of the keyboard shown in Figure 8-13. The
valuesin the row arrays are explained in the remainder of this section.

rowd := [keyVUnit, keyVUnit,
"1",1, keyHuUnit+keyVUnit +keyFramed+2*keyl nset Uni t +keyAutoHi | i t e,
"2",2, keyHunit+keyVUnit +keyFraned+2*keyl nset Unit +tkeyAutoHilite
"3",3, keyHunit+keyVUnit +keyFramed+2*keyl nset Uni t +keyAutoHilite];

Using Text 8-31

CHAPTER 8

Text and Ink Input and Display

rowl := [keyVUnit, keyVUnit,
"4" 4, keyHunit +keyVUni t +keyFr amed+2*keyl nset Uni t +tkeyAutoHilite,
"5" 5, keyHunit +keyVUnit +keyFr amed+2*keyl nset Uni t +tkeyAutoHilite,
"6", 6, keyHunit+keyVUnit+keyFramed+2*keyl nset Unit+keyAutoHilite];

row2 := [keyVunit, keyVuUnit,
"7", 7, keyHunit +keyVUnit +keyFramed+2*keyl nset Uni t +tkeyAutoHilite,
"8",8, keyHunit+keyVUnit +keyFramed+2*keyl nset Uni t +tkeyAutoHilite,
"9" 9, keyHunit +keyVUnit +keyFramed+2*keyl nset Uni t +tkeyAutoHilite];

rowd := [keyVunit, keyVuUnit,
"x"$*) keyHUni t +keyVUni t +keyFr amed+2*keyl nset Uni t +keyAutoHilite,
"0", 0, keyHunit+keyVUnit +keyFramed+2*keyl nset Unit +keyAutoHilite,
"#", $#, keyHUnit +keyVUnit +keyFr amed+2*keyl nset Uni t +tkeyAutoHilite];

keypad := {...

vi ewCl ass: cl Keyboar dVi ew,
vi ewBounds: {left:65, top:65, right:153, bottom 145},
vi ewFl ags: vVi si bl e+vd i ckabl e+vFl oati ng,
vi ewFor mat : vf FraneBl ack+vf Fi | | Wi t e+vf Pen(1),
keyDefinitions: [row0d, rowl, row2, row3d3], // defined above
keyPressScript: func (key)
begin
Print("You pressed " & key);
end,

The Key Legend

The key legend specifies what appears on the keycap. It can be one of the following
types of data:

m ni |, inwhich case the key result is used as the legend.

A string, which is displayed centered in the keycap.

A character constant, which is displayed centered in the keycap.
A bitmap object, which is displayed centered in the keycap.

Aninteger. The number is displayed centered in the keycap and is used directly
asthe key result, unlessthe keyResul t sAr eKeycodes dlotissettot rue, as
described in the next section.

m A method. The method is evaluated and its result is treated as if it had been
specified as the legend.

8-32 Using Text

CHAPTER 8

Text and Ink Input and Display

An array. An element of the array is selected and treated as one of the above
datatypes. The index of the array element is determined by the value of the
keyArrayl ndex dot (which can be changed dynamically). Note that arrays of
arrays are not allowed here, but an array can include any combination of other
data types.

The Key Result

The key result is the value returned when the key is pressed. This value is passed as
aparameter to thekeyPr essScri pt method. If this method doesn’t exist, the
result is converted (if possible) into a sequence of characters that are posted as key
eventsto the key receiver view.

The key result element can be one of the following types of data:

A string, character constant, or bitmap object, which is simply returned.

An integer, which is returned. Alternately, if thekeyResul t sAr eKeycodes
dotissettot r ue, theinteger istreated as akey code. In this case, the character
corresponding to the specified key codeis returned. If you are using keycodes,
make sure to register your keyboard by including the kKbdUsesKeycodes
view flag.

See Figure 8-14 (page 8-34) for the numeric key codes returned by each of the
keys on a keyboard.

A method. The method is evaluated and itsresult is treated asif it had been
specified as the result.

An array. An element of the array is selected and treated as one of the above
datatypes. The index of the array element is determined by the value of the
keyAr r ayl ndex slot (which can be changed dynamically). Note that arrays of
arrays are not allowed, but an array can include any combination of other

data types.

Using Text 8-33

CHAPTER 8
Text and Ink Input and Display

Figure 8-14 Keyboard codes

-8

3 TAY T8 76 60 Jf 61 ff 62 ff 64 65| 6D 67 Jf 6F el 2213 TFTF
P Y (o o e L o o o e Y e Gt R

R 2fe3 s o 16 e afac i o))-8 |18 s 2 B3 %)
i 7 [K3 | 0 - f foeee oo Qe

] ocf oo cef oF] 12 75 077 19
fwh 0§V NE R T

S

=
=
)
>
~
N
=)
—
al
TN
95
~
~
|
m
—
=

s 39 00 O 02f1 03 050 04l 26f(28 25 29 fI" 27 24

ok A fS @0 fF B WA W) WK WL W Wew

) o6l o7 o8l 09 oBfl D) 2EJ<BYFC) B E)
s WV E W 1
B 3A 7 A 31 W AN 3B |78 § 7D f7C
ontol Wopion ¢ :3# ¢ pton_ ool L L |->

The Key Descriptor

The appearance of each key in akeyboard is determined by its key descriptor. The
key descriptor isa30-bit value that determines the key size, framing, and other
characteristics. The descriptor is specified by combining any of the constants
shown in Table 8-8.

Table 8-8 Key descriptor constants

keySpacer Nothing is drawn in this space; it is a spacer, not a key.
keyAutoHi lite Highlight this key when it is pressed.

keyl nset Uni t Inset this key’s frame a certain number of pixels within its

space. Multiply this constant by the number of pixelsyou
want to inset, from 0-7 (for example, keyl nset Uni t * 3).

continued

8-34 Using Text

CHAPTER 8
Text and Ink Input and Display

Table 8-8 Key descriptor constants (continued)

keyFr amed Specify the thickness of the frame around the key. Multiply
this constant by the number of pixels that you want to use
for the frame thickness, from 0-3.

keyRoundi ngUni t Specify the roundedness of the frame corners. Multiply this
constant by the number of pixelsthat you want to use for
the corner radius, from 0-15, zero being square.

keyLeft Open No frame lineis drawn aong the left side of this key.
keyTopQOpen No frame line is drawn along the top side of this key.
keyRi ght Open No frame line is drawn along the right side of this key.
keyBot t omOpen No frame line is drawn aong the bottom side of this key.
keyHUni t A combination of these four constants specifies the
keyHHal f horizontal dimension of the key in units. For details,
keyHQuart er see the next section.

keyHEi ght h

keyVUni t A combination of these four constants specifies the
keyVHal f vertical dimension of the key in units. For details, see
keyVQuart er the next section.

keyVEi ght h

Key Dimensions

The width and height of keys are specified in units, not pixels. A key unitisnot a
fixed size, but is used to specify the size of akey relative to other keys. The width
of aunit depends on the total width of al keysin the view and on the width of the
view itself. Key widths and heights can be specified in whole units, half units,
quarter units, and eighth units.

When it is displayed, the whole keyboard is scaled to fit entirely within whatever
size view bounds you specify for it.

To fit the whole keyboard within the width of aview, the total unit widths are
summed for each row, and the scaling is determined based on the widest row. This
row is scaled to fit within the view width, giving an equal pixel width to each
whole key unit. A similar processis used to scale keys vertically to fit within the
height of aview.

Fractional key units (half, quarter, eighth), when scaled, must be rounded to an
integer number of pixels, and thus may not be exactly the indicated fraction of a
whole key unit. For example, if the keys are scaled to fit in the view bounds,
awhole key unit ends up to be 13 pixels wide. This means that a key specified to
have awidth of 1 3/8 units (keyHuni t +keyHEi ght h* 3) isrounded to 13 + 5, or
18 pixels, which is not exactly 1 3/8 *13.

Using Text 8-35

CHAPTER 8

Text and Ink Input and Display

Key dimensions are specified by summing a combination of horizontal and vertical
key unit constants within thekeyDescr i pt or . For example, to specify a key that
is2 3/4 unitswide by 1 1/2 units high, specify these constants for

keyDescri ptor:

keyHUnit*2 + keyHQuarter*3 + keyVUnit + keyVHal f

Using the Keyboard Registry

If your application includes its own keyboard, you need to register it with the system
keyboard registry. This makes it possible for the system to call any keyboard-related
functions that you have defined and to handle the insertion caret properly.

The Regi st er OpenKeyboar d method of aview isfor registering a keyboard for
use with that view.

Usethe Unr egi st er OpenKeyboar d method of aview to remove the keyboard
view from the registry. If the insertion caret is visible, calling this method hidesiit.

Note

The system automatically unregisters the keyboard when the
registered view is hidden or closed. The protokeypad proto
also automatically handles registration for you in its

vi ewSet upDoneScr i pt . You do not need to call the

Unr egi st er OQpenKeyboar d method in these cases. ¢

You can use the OpenKeypadFor function to open a context-sensitive keyboard
for aview. Thisfunction first attempts to open the keyboard defined in the view’s
_keyboar d dot. If the view does not define a keyboard in that dlot,
OpenKeypadFor determinesif the view allows only a single type of input, such
as date, time, phone number, or numbers. If so, OpenKeypadFor opensthe
appropriate built-in keyboard for that input type. If none of these other conditions
ismet, OpenKeypadFor opensthe al phaKeyboar d keyboard for the view.

Note

The Newton System Software uses the OQpenKeypadFor
function to open a context-sensitive keyboard when the user
double-taps on aview in which a_keyboar d dotisdefined. o

Theses methods and functions, aswell as severa others you can use with the
keyboard registry in your applications, are described in “ Keyboard Registry
Functions and Methods’ (page 7-44) in Newton Programmer’s Reference.

Defining Tabbing Orders

You can define the tabbing order for an input view with the _t abChi | dr en dlot,
which contains an array of view paths.

8-36 Using Text

CHAPTER 8

Text and Ink Input and Display

Each view path must specify the actual view that accepts the input. An example of
asuitable path is shown here:

"yl nput Li ne, ' nyLabel I nputLine. entryLi ne

When the user tabs through thislist, it loops from end to beginning and, with
reverse-tabbing, from beginning to end.

You can usethe _t abPar ent dot to inform the system that you want tabbing in a
view restricted to that view. Each view in which _t abPar entisnon-ni | definesa
tabbing context. This makes it possible to have several views on the screen at once
with independent tabbing within each view. In this case, the user must tap in
another view to access the tabbing order in that view.

For example, in Figure 8-15, there are two independent tabbing orders. The first
consists of the input lines that contain the text “One,” “Two,” “Three,” and “Four”.
The second tabbing order consists of the input lines that contain the text “Five”
and “Six."

Figure 8-15 Independent tabbing orders within a parent view
Tabbing
Ohe
T
Three
Label Ftn®
Five
Laksl S8
.
L0, 7]

The user tapsin any of the top four slots; thereafter, pressing the tab key on akeypad
or external keyboard moves among the four slotsin that tabbing order. If the user
taps one of the bottom two slots, the tab key jumps between those two slots.

Thedots tabParent and _t abChi | dr en can coexist in aview, but the
_tabChi | dr en slot takes precedence in specifying the next key view. If the
current view does not definethe _t abPar ent dot, the search moves upward from
the current view until one of the following conditions is met:

m aview descended from pr ot ol nput Li ne witha_t abPar ent dot isfound.
m aprotofl oater viewisfound

Using Text 8-37

8-38

CHAPTER 8

Text and Ink Input and Display

m aview descended from pr ot ol nput Li ne withthevAppl i cati on flag setin
thevi ewFl ags dlot

The Caret Pop-up Menu

Normally, when the user taps the insertion caret, the system-provided Punctuation
pop-up Menu opens. However, you can override this with a pop-up menu of your
own creation.

When the user taps the insertion caret, the system starts searching for a slot named
_car et Popup. The search begins in the view owning the caret, and follows both
the proto and parent inheritance paths. The default Punctuation pop-up is stored in
the root view.

The _car et Popup slot must hold a frame containing two slots. The first slot,
pop, definesalist of pop-up items suitable for passing to DoPopup. The second
slot must contain api ckAct i onScri pt . If not, control passes to the punctuation
pop-up, which hasits own version of the pi ckActi onScri pt . Thisroutine then
inserts a string, corresponding to the selected character at the caret, by using the
function Post Key St ri ng.

Handling Input Events

You sometimes need to respond to input events that occur in text views. This
section describes how to test for a selection hit and respond to keystrokes and
insertion events.

Testing for a Selection Hit

After the user taps the screen, you can determineif the point “hits’ a specific
character or word in a paragraph view.

Thevi ew: Poi nt ToChar O f set method returns the offset within the paragraph
that is closest to the point (x, y). This method is described in “PointToCharOff set”
(page 7-51) in Newton Programmer’s Reference.

Thevi ew: Poi nt ToWbr d method returns a frame that indicates the position of
the word within the paragraph that is closest to the point (x, y). This method is
described in “PointToWord” (page 7-52) in Newton Programmer’s Reference.

Note

Both of these functions return ni | if the view is not a paragraph
view. Also, the point you are testing must correspond to avisible
position within the paragraph view; you cannot hit-test on
off-screen portions of aview. &

Using Text

CHAPTER 8

Text and Ink Input and Display

Summary of Text

Text Constants and Data Structures

Text Flags

vW dt hl sPar ent W dt h (1 << 0)
vNoSpaces (1 << 1)
vW dt hGr owsW t hText (1 << 2)
VFi xedText Styl e (1 << 3)
vFi xedl nkText STyl e (1 << 4)
vExpecti ngNunbers (1 << 9)

Font Family Constants for Use in Frames

' espy

' geneva

' newYor k
"handwiting

Font Face Constants for Use in Frames

kFaceNor mal 0x000
kFaceBol d 0x001
kFaceltalic 0x002
kFaceUnderl i ne 0x004
kFaceQutline 0x008
kFaceSuper Scri pt 0x0080
kFaceSubScri pt 0x100

Built-in Font Constants

ROM f ont syst end 9216
ROM f ont syst enBbol d 1057792
ROM f ont syst enBunder | i ne 4203520
ROM f ont syst entl0 10240
ROM f ont syst emlObol d 1058816

Summary of Text 8-39

CHAPTER 8

Text and Ink Input and Display

ROM f ont syst emlOunder | i ne 4204544
ROM f ont syst enil2 12288
ROM f ont syst enil2bol d 1060864
ROM f ont syst eml2under | i ne 4206592
ROM f ont syst enil4 14336
ROM f ont syst enll4bol d 1062912
ROM f ont syst eml4under | i ne 4208640
ROM f ont syst enil8 18432
ROM f ont syst enll8bol d 1067008
ROM f ont syst eml8under | i ne 4212736
si npl eFont 9 9218
si mpl eFont 10 10242
si mpl eFont 12 12290
si npl eFont 18 18434

fancyFont9 or

user Font 9 9217
fancyFont 10 or

user Font 10 10241
fancyFont 12 or

user Font 12 12289
fancyFont 18 or

user Font 18 18433
edi t Font 10 10243
edi t Font 12 12291
edi t Font 18 18435

Font Family Constants for Packed Integer Font Specifications

t sFancy 1
tsSimpl e 2
t sHWFont 3

8-40 Summary of Text

CHAPTER 8

Text and Ink Input and Display

Font Face Constants for Packed Integer Font Specifications

tsPlain

t sBol d
tsltalic

t sUnderl i ne
tsQutline

t sSuper Scri pt
t sSubScri pt

Keyboard Registration Constants

0

1048576
2097152
4194304
8388608

134217728
268435456

kKbdUsesKeyCodes 1

kKbdTr acksCar et 2

kKbdf or I nput 4

Key Descriptor Constants

keySpacer (1 << 29)
keyAutoH lite (1 << 28)
keyl nset Uni t (1 << 25)
keyFraned (1 << 23)
keyRoundi ngUni t (1 << 20)
keyLeft Open (1 << 19)
keyTopQpen (1 << 18)
keyRi ght Open (1 << 17)
keyBot t omOpen (1 << 16)
keyHUni t (1 << 11)
keyHHal f (1 << 10)
keyHQuart er (1 << 9)
keyHEi ght h (1 << 8)
keyVuUni t (1 << 3)
keyVHal f (1 << 2)
keyVQuart er (1 <<1)
keyVEi ght h (1 << 0)

Summary of Text

8-41

8-42

CHAPTER 8

Text and Ink Input and Display

Keyboard Modifier Keys

kl sSof t Keyboar d (1 << 24)
kConmmandModi fi er (1 << 25)
kShi ft Modi fier (1 << 26)
kCapsLockMbdi fi er (1 << 27)
kOpti onsModi fi er (1 << 28)
kControl Modi fi er (1 << 29)
Views

clEditView

ad EditView = {

vi ewBounds: boundsFrame,
Vi ewFl ags: constant,

Vi ewFor mat : formatFlags,
vi ewLi neSpaci ng: integer,

vi ewLi nePat t er n: integer,

view:Edi t AddWor dScr i pt (form, bounds)

Not esText (childArray)

clParagraphView

aCd EditView = {
vi ewBounds:

vi ewFont :

text:

Vi ewFl ags:

Vi ewFor mat :

vi ewdusti fy:

t abs:

styl es:

t ext Fl ags:
copyProtection:

Summary of Text

boundsFrame,
fontFrame,
string,
constant,
formatFlags,
constant,
array,

array,
constant,
constant,

/1 tab stops
/1 style runs

CHAPTER 8

Text and Ink Input and Display

clKeyboardView

ad EditView = {

_noRepeat : constant,

vi ewBounds: boundsFrame,

keyDefi ni ti ons: array, /1 defines key | ayout
vi ewFl ags: constant,

Vi ewFor mat : constant,

keyArrayl ndex: array, /1 key | egends

keyH ghl i ght Keys: array, /1 keys to highlight
keyResul t sAreKeycodes: Boolean,

keyRecei ver Vi ew. view, /1 view for keystrokes
keySound: soundFrame,

keyPressScri pt: function

}

Protos

protolnputLine

aprot ol nput Li ne: = {

_proto : protol nputLine,

vi ewBounds: boundsFrame,

vi ewFl ags: constant,

text: string,

Vi ewFont : constant,

vi ewdustify: constant,

Vi ewFor mat : constant,

vi ewTr ansf er Mbde: constant,

vi ewLi neSpaci ng: integer,

vi ewLi nePatt ern: binary, /1 8-byte pattern
menory: symbol,

vi ewChangedScri pt: function.

protoRichinputLine

apr ot oRi chl nput Li ne: = {

_proto : protoRi chlnputlLine,
vi ewBounds: boundsFrame,
vi ewrl ags: constant,

Summary of Text

8-43

CHAPTER 8

Text and Ink Input and Display

t ext: string,

vi ewFont : constant,

vi ewJusti fy: constant,

vi ewFor mat : constant,

vi ewTr ansf er Mode: constant,

vi ewLi neSpaci ng: integer,

vi ewLi nePat t ern: binary, /] 8-byte pattern
menory: symbol,

vi ewChangedScri pt: function,

}

protoLabellnputLine

apr ot oLabel I nput Li ne: = {
_proto : protolLabel | nputLine,

vi ewBounds: boundsFrame,

entryFl ags: constant,

| abel : string,

| abel Font: constant,

| abel Conmands: array, /] strings for list
cur Label Conmand: integer,

i ndent : integer,

vi ewLi neSpaci ng: integer,

vi ewLi nePat t er n: binary, /1 8-byte pattern
t ext Set up: function,

updat eText : function,

t ext Changed: function,

set Label Text: function,

set Label Commands: function,

| abel i ck: function,

| abel Acti onScri pt: function,

}

protoRichLabellnputLine

apr ot oRi chLabel I nput Li ne: = {
_proto : protoRi chLabel I nputLi ne,

Vi ewBounds: boundsFrame,
entryFl ags: constant,
| abel : string,

Summary of Text

CHAPTER 8

Text and Ink Input and Display

| abel Font : constant,

| abel Conmands: array, /1 strings for list
cur Label Command: integer,

i ndent : integer,

vi ewLi neSpaci ng: integer,

vi ewLi nePat t er n: binary, /1 8-byte pattern
t ext Set up: function,
updat eText : function,

t ext Changed: function,

set Label Text: function,

set Label Commands: function,

| abel dick: function,

| abel Acti onScri pt: function,

}

protoKeyboard

apr ot oKeyboard: = {

_proto : protoKeyboard,

saveBounds: boundsFrame,
freeze: Boolean,

}

protoKeypad

apr ot oKeypad: = {

_proto : protoKeypad,

keyDefi ni tions: array, /1 defines key | ayout
vi ewFont : constant,

vi ewFor mat : constant,
keyArrayl ndex: integer,
keyHi ghl i ght Keys: Boolean,
keyResul t sAr eKeycodes: Boolean,
keyRecei ver Vi ew. constant,
keySound: constant,
keyPressScri pt: function,

}

Summary of Text

8-45

8-46

CHAPTER 8

Text and Ink Input and Display

protoKeyboardButton

apr ot oKeyboar dButt on: = {
_proto : protoKeyboardButton,

Vi ewFl ags: constant,

vi ewBounds: boundsFrame,
vi ewdusti fy: constant,

def aul t Keyboard symbol,

}

protoSmallKeyboardButton

apr ot oSmal | Keyboar dBut t on: = {
_proto : protoSmal | Keyboar dButt on,

Vi ewFl ags: constant,

vi ewBounds: boundsFrame,
vi ewdusti fy: constant,
current: symbol,

}

protoAlphaKeyboard

apr ot oAl phaKeyboar d: = {
_proto : protoAl phaKeyboard,

vi ewBounds: boundsFrame,
vi ewdusti fy: constant,
}

protoNumericKeyboard

apr ot oNurrer i cKeyboard: = {
_proto : protoNumeri cKeyboard,

vi ewBounds: boundsFrame,
vi ewdusti fy: constant,
}

Summary of Text

CHAPTER 8

Text and Ink Input and Display

protoPhoneKeyboard

apr ot oPhoneKeyboard: = {
_proto : protoPhoneKeyboard,

vi ewBounds: boundsFrame,
vi ewdustify: constant,

}

protoDateKeyboard

apr ot oDat eKeyboard: = {
_proto : protoDat eKeyboard,

vi ewBounds: boundsFrame,
vi ewdustify: constant,
}

Text and Ink Display Functions and Methods

This section summarizes the functions and methods you can use to work with text
and ink in your applications.

Functions and Methods for Edit Views

view:Edi t AddWor dScr i pt (form, bounds)
Not esText (childArray)

Functions and Methods for Measuring Text Views

Text Bounds(rSr, fontSpec, viewBounds)
Tot al Text Bounds(paraSpec, editSpec)

Functions and Methods for Determining View Ink Types

Addl nk(edit, poly)
Vi ewAl | owsl nk(view)
Vi ewAl | owsl nkWor ds(view)

Summary of Text 8-47

CHAPTER 8

Text and Ink Input and Display

Font Attribute Functions and Methods

Font Ascent (fontSpec)

Font Descent (fontSpec)

Font Hei ght (fontSpec)

Font Leadi ng(fontSpec)

Get Font Face(fontSpec)

Get Font Fani | yNun(fontSpec)

Get Font Fami | y Sy n{fontSpec)

Get Font Si ze(fontSpec)
MakeConpact Font (family, size, face)
Set Font Face(fontSpec, newFace)

Set Font Fami | y(fontSpec, newFamily)
Set Font Par s (fontSpec, whichParms)
Set Font Si ze(fontSpec, newSze)

Rich String Functions and Methods

DecodeRi chStri ng(richSring, defaultFontSpec)
view:Ext r act RangeAsRi chSt ri ng(offset, length)
view:Get Ri chString()

I sRi chStri ng(testString)

MakeRi chStri ng(text, styleArray)

St ri pl nk(richSring, replaceString)

Functions and Methods for Accessing Ink in Views

Get | nkAt (para, index)
Next | nkl ndex(para, index)
Par aCont ai nsl nk(para)
Pol yCont ai nsl nk(poly)

8-48 Summary of Text

CHAPTER 8

Text and Ink Input and Display

Keyboard Functions and Methods

This section summarizes the functions and methods that you can use to work with
keyboards in your applications.

General Keyboard Functions and Methods

Cet Car et Box()

view: Keyboar dl nput ()

Keyl n(keyCode, down)

Post KeyStri ng(view, keyString)
Set Key Vi ew(view, offset)

Keyboard Registry Functions and Methods

Keyboar dConnect ed()

OpenKeyPadFor (view)

Regd obal Keyboar d(kbdSymbol, kbdTemplate)
view: Regi st er OpenKeyboar d(flags)
UnRegd obal Keyboar d(kbdSymbol)

view: Unr egi st er OQpenKeyboar d()

Caret Insertion Writing Mode Functions and Methods

Get Renot eWiting()
Set Renpt eW i t i ng(newSetting)

Insertion Caret Functions and Methods

Get Caret I nfo()

Get KeyVi ew()

view:Posi ti onCar et (X, y, playSound)
Set Car et | nf o(view, info)

Application-Defined Methods for Keyboards
Vi ewCar et ChangedScr i pt (view, offset, length)

Summary of Text 8-49

8-50

CHAPTER 8

Text and Ink Input and Display

Input Event Functions and Methods

This section summarizes the functions and methods that you can use to work with
input events in your applications.

Functions and Methods for Hit-Testing

view:Poi nt ToChar O f set (x,y)
view:Poi nt ToWor d(x,y)

Functions and Methods for Handling Insertions

view:Handl el nsert | t ers (insertSpec)
I nsertltensAt Car et (insertSpec)

Functions and Methods for Handling Ink Words

Get | nkWor dI nf o(inkWord)
view:Handl el nkWor d(strokeBundle)
view:Handl eRaw nk(strokeBundle)

Application-Defined Methods for Handling Ink in a View

view:Vi ewl nkWor dScr i pt (strokeBundle)
view:Vi ewRawl nkScri pt (strokeBundle)

Summary of Text

CHAPTER 9

Recognition

This chapter and Chapter 10, “Recognition: Advanced Topics,” describe the use of
the Newton recognition system. The recognition system accepts written input from
views and returns text, ink text, graphical objects, or sketch ink to them.

This chapter describes how to use view flags to enable the recognition of text,
shapes and gestures in views. If you are devel oping an application that must derive
text or graphical datafrom pen input, you should become familiar with the contents
of this chapter. Before reading this chapter, you should be familiar with NewtonScript
message passing among views and the use of view flags to specify the characteristics
of views, as described in Chapter 3, “Views.”

You need not read Chapter 10, “Recognition: Advanced Topics,” unless you need to
provide unusual input views or specialized recognition behavior. (See that chapter’'s
first page for acomplete list of itstopics.)

About the Recognition System

The Newton recognition system enables views to convert handwritten input into
text or graphical shapes, and to take action in response to system-defined gestures
such as taps and scrubs.

Any type of view can accept pen input, and different types of views provide
different amounts of system-supplied behavior. Views based on the system-supplied
cl Edi t Vi ewand cl Par agr aphVi ew classes handle most forms of pen input
automatically. Applications need not handle recognition events in these types of
views explicitly unless they need to do something unusual. Thecl Vi ewclass, on
the other hand, provides no built-in recognition behavior. Views of this type must
provide all recognition behavior themselves.

The system provides recognizer engines (also called recognizers) that classify

pen input as clicks, strokes, gestures, shapes, or words. Each view can specify
independently which recognizersit uses and how the recognition system isto process
pen input that occurs within its boundaries. For example, you could configure a view
to recognize text and shapes, or you might enable only text recognition in aview
not intended to accept graphical input.

About the Recognition System 9-1

CHAPTER 9

Recognition

Although no recognizers are associated with clicks and strokes, they do pass
through the recognition system, allowing your view to respond to them by means
of optiona Vi ewCl i ckScri pt and Vi ewSt r okeScri pt methods that you
supply as necessary. The Vi ewCl i ckScri pt method of aview that accepts pen
input takes application-specific action when the pen contacts or leaves the surface
of the screen within the view’s boundaries. The Vi ewSt r okeScr i pt method
performs application-specific processing of input strokes before they are passed on
to the gesture, shape, or text recognizers.

The gesture recognizer identifies system-defined gestures such as scrubbing items
on the screen, adding spaces to words, selecting items on the screen, and so on.
Views based on thecl Edi t Vi ewand cl Par agr aphVi ew classes (edit views
and paragraph views, respectively) respond automatically to standard system-
defined gestures; other kinds of views do not. Your view can provide an optional
Vi ewGest ur eScri pt method to perform application-specific processing of
system-defined gestures. You cannot define new gestures to the system.

Only views based on the cl Edi t Vi ew class can recognize shapes. The shape
recognizer uses symmetry found in input strokesto classify them as shapes. The
shape recognizer may make the original shape more symmetrical, straighten its
curves, or close the shape. There is no devel oper interface to shape recognition.

The system provides two text recognizers—one optimized for a printed handwriting
style and another optimized for a cursive handwriting style. The printed text
recognizer (also called the printed recognizer) requires that the user lift the pen
from the screen between letters. The cursive text recognizer (also called the cursive
recognizer) accepts cursive input (letters connected within a single word), printed
input (disconnected |etters within a single word), or any combination of these two
kinds of input.

In views that recognize text, the system enables the printed recognizer by default
unless the cursive recognizer is enabled explicitly. The user can specify the use of a
particular text recognizer from within the Handwriting Recognition preferences
dlip. This user preference slip and others that affect recognition behavior are
discussed in “User Preferences for Recognition” beginning on page 9-14.

Only one text recognizer can be active at atime—all views on the screen share the
same text recognizer—but individual views can specify options that customize its
behavior for aparticular view. Individual views can also use any combination of
other recognizersin addition to the specified text recognizer. Regardless of which
text recognizer isin use, the recognition system limits the size of individual input
strings to 32 characters—longer words may not be recognized correctly.

Although the Newton platform currently supports only its built-in recognizers,
future versions of the system may permit the use of third-party recognizer engines.

The next section describes how the recognition system classifies input as text,
shapes, or gestures.

About the Recognition System

CHAPTER 9

Recognition

Classifying Strokes

Recognition is an iterative process that compares raw input strokes with various
system-defined models to identify the best matches for further processing. When
the user writes or draws in an edit view or paragraph view that accepts user input,
the system

m notifiesthe view that a pen event occurred within its boundaries.

m provides user feedback, in the form of electronic ink drawn on the screen as the
pen moves across its surface.

m attempts to group strokes meaningfully according to temporal and spatial data.

A view that accepts pen input is notified of pen events within its boundaries by

Vi ewd i ckScri pt messages that are sent when the pen contacts the screen

and when it is lifted from the screen. Views based on the cl Edi t Vi ewand

cl Par agr aphVi ew classes handle these events automatically; other views may
not, depending on the type of view in which the pen event occurred. Your view can
supply an optional Vi ewd i ckScri pt method to take application-specific action
in response to these events as necessary.

The electronic ink displayed as the pen moves across the screen is called raw ink.
Raw ink is drawn in the same place on the screen as the original input strokes.
Views based onthe cl Par agr aphVi ewview class can be configured to replace
the raw ink with another representation of the input strokes called ink text. Ink text
isaversion of the original strokes that has been scaled for display and formatted
into paragraphs: spaces between groups of strokes are made uniform and groups of
strokes are wrapped to the margins of the screen. The sizeto which ink text is
scaled is specified by the user from the Text Editing Settings user preference dlip.
This user preference dlip and others that affect recognition behavior are discussed
in “User Preferences for Recognition” beginning on page 9-14.

The recognition system encapsulates raw input strokes in an object called a stroke
unit. Stroke units cannot be examined directly from NewtonScript; however, you
can pass them to functions that construct useful objects from them or perform
recognition using the stroke data they contain.

Views configured to image input asink text display a scaled representation of the
original input strokes without performing any further processing; that is, they
circumvent the remainder of the recognition process described here.

When stroke units are made available to aview that performs recognition, all of
the recognizers enabled for the view compete equally to classify the input. Each
recognizer compares the input to a system-defined model; if there is a match,
the recognizer involved claims the stroke unit asits own.

Once a stroke unit is claimed by one of the recognizers, it is not returned to the
other recognizers for additional classification; however, recognizers may combine

About the Recognition System 9-3

94

CHAPTER 9

Recognition

multiple stroke unitsinto meaningful groups. For example, certain letters (such as
an uppercase E) might be composed of multiple strokes. The process of grouping
input strokes is influenced by the user preference settings for handwriting style and
letter styles.

The recognizer that claimed one or more stroke units returns to the view one or
more interpretations of the strokes. The gesture and shape recognizers return
only one interpretation to the view. The text recognizer usually returns multiple
interpretations to the view.

Associated with each interpretation is a value, called the scor e, which indicates
how well the input matched the system-defined model used by the recognizer that
interpreted it. When multiple recognizers are enabled, the system selects the best
interpretations based on their scores and the application of appropriate heuristics.
For example, the text recognizer might choose between interpreting a stroke as a
zero or asthe letter O based on whether you have specified that the view accepts
numeric or alphabetic input.

The recognizer that claimed the strokes places its best interpretations in another
kind of unit that is returned to the view. The text recognizer returns word units, the
shape recognizer returns shape units, and the gesture recognizer returns gesture
units. Each of these units contains data representing one or more strokes. A word
unit represents a single recognized word, a shape unit represents asingle
recognized shape, and a gestur e unit represents a single recognized gesture, as
shown in Figure 9-1. The next severa sections describe how the system handles
each of these units.

Gestures

When the recognition system returns a gesture unit to the view, the view performs
the action associated with that gesture automatically. The action taken is dependent
on the kind of view that received the gesture unit.

Edit views and paragraph views respond automatically to system-defined gestures
such as scrubbing items on the screen, adding spaces to words, selecting items on
the screen, and so on. Other kinds of views may do nothing in responseto a
particular gesture.

You can provide an optional Vi ewGest ur eScri pt method to take actionin
response to any standard gesture. For example, you can use this method to respond
to gestures in views that are not paragraph views or edit views. You can aso use
this method to override or augment the standard behavior of a particular view in
response to system-defined gestures. At present, you cannot define custom gestures
to the system.

About the Recognition System

CHAPTER 9
Recognition

Figure 9-1 Recognizers create units from input strokes

Pen on tablet

Stroke units _ AN ABC /\(\\
= 0O

Recognizers

b

Shape Word Gesture
unit unit unit
| L
Text Ink text Ink

Shapes

When the recognition system returns a shape unit to the view, the shape is displayed
asthecl Pol ygonVi ewchild view of acl Edi t Vi ewview. The shape unit contains
asingle, cleaned-up version of the original strokes. The shape recognizer may

make the original shape more symmetrical, straighten its curves, or close the shape.

There is no developer interface to shape recognition. To manipul ate shapes
returned by the recognition system, you must extract polygon view children from
edit views yourself. You can do so from within an optional

Vi ewAddChi | dScri pt method that you supply. The system invokes this method
for each cl Pol ygonVi ewor cl Par agr aphVi ew child added to an edit view.

About the Recognition System 9-5

CHAPTER 9

Recognition

Text

When the recognition system returns aword unit to a view based on the

cl Par agr aphVi ewor cl Edi t Vi ew classes, the view displays or uses the best
interpretation of the original input strokes. Paragraph views display words directly;
edit views create acl Par agr aphVi ew child automatically to display text that the
recognition system returns. Additionally, the recognition system constructs a
correction information frame from the word unit and saves learning data as
appropriate. For more information, see “ Correction and Learning” (page 9-13)

and “Accessing Correction Information” (page 10-23). Your view can provide an
optiona Vi ewr dScri pt method to perform application-specific processing of
the word unit.

The set of possible interpretations that the text recognizer returnsto aview is
affected by

m the text recognizer that the view uses to interpret the input strokes
m options you have specified for the text recognizer in use
m thedictionaries that are available to the view for recognition use

A dictionary is asystem construct against which the user’sinput strings are
matched, as a means of ensuring the validity of the text recognizer’s output. The
system supplies dictionaries that define names, places, dates, times, phone numbers,
and commonly used words to the text recognizers. The user can expand the
system’s built-in vocabulary by adding new words to a RAM-based user dictionary
accessed from the Personal Word List dlip. In addition, you can provide custom
dictionaries for the recognition system’s use. For example, you might create a
custom dictionary to supply specialized vocabulary, such as medical or lega
terminology. The section “ System Dictionaries’ beginning on page 9-11 describes
the system-supplied dictionaries in more detail. The use of custom dictionaries for
recognition is described in “Using Custom Dictionaries’ beginning on page 10-24.

Although the interpretations returned by the printed recognizer are never limited to
dictionary words, its output isinfluenced strongly by the set of dictionaries
available for its use. The interpretations returned by the cursive recognizer can be
restricted to those words appearing in the set of dictionaries available for its use;
however its default behavior isto return non-dictionary wordsin addition to words
appearing in available dictionaries.

Options specified for the currently enabled recognizer may also influence the
interpretations it returns to the view. For example, the cursive recognizer’s default
settings enable its letter-by-letter recognition option, to increase the likelihood of

its returning strings not in the currently available set of dictionaries. The user can
control this option and others from within the Handwriting Settings preferences dlip.

Note that even when the cursive and printed recognizers are configured similarly,
the results they return for the same input may differ. For example, using the cursive

About the Recognition System

CHAPTER 9

Recognition

recognizer’s | etter-by-letter option may produce different results than using the
printed recognizer (which always provides | etter-by-letter recognition.) Options
for both recognizers are described throughout this chapter and in Chapter 10,
“Recognition: Advanced Topics.”

Unrecognized Strokes

If the input strokes are not recognized, the system encapsulates them in an object
known as a stroke bundle. A stroke bundleis a NewtonScript object that
encapsulates stroke data for multiple strokes. The strokes in the bundle have been
grouped by the system according to temporal and spatial data gathered when the
user first entered them on the screen. You can access the information in stroke
bundles to provide your own form of deferred recognition, or to examine or modify
stroke data before it is recognized. For information on using stroke bundles, see
Chapter 10, “Recognition: Advanced Topics.”

Stroke bundles may be returned to the view under any of the following circumstances:
m No recognizers are enabled for the view.

m Recognizers are enabled for the view but recognition fails.

m Theview is configured to image input as ink text.

m Theview'svStrokesAl | owed flagisset and aVi ewSt r okeScri pt method
is provided.

When the system passes a stroke bundleto acl Edi t Vi ewview, the view images
the strokes in the bundle as ink text or sketch ink. Other kinds of views may require
you to provide code that displays the strokes.

When no recognizers are enabled for acl Edi t Vi ewview, it displays input as
sketch ink. Input views for which no recognizers are enabled are not as unusual as
they might seem at first; for example, you might provide aview that accepts stroke
input without performing recognition as a means of capturing the user’s handwritten
signature. And some views, such as those used in the built-in Notepad application,
allow the user to enable and disable recognizers at will.

When recognizers are enabled for the view but recognition fails, the view may
return ink text or sketch ink. Recognition may fail if input strokes are too sloppy to
classify or if the view is not configured correctly for the intended input. For more
information, see “Recognition Failure” beginning on page 9-11.

When the view is configured to display input asink text, the system skips the
remainder of the recognition process—it does not attempt to further classify the input
strokes as |etters or words. Instead, the view simply images the strokes as ink text.

The most important difference between ink text and sketch ink has to do with how
these two forms of ink are represented. Ink text isinserted into existing text in
paragraph views in the same way as recognized words are: as the contents of a

About the Recognition System 9-7

CHAPTER 9

Recognition

cl Par agr aphVi ewview child. Ink text automatically wraps to the paragraph
boundaries, just as recognized text does. Ink text is aso usually reduced in size
when it is drawn, according to the user preference specified by the Ink Text Scaling
item in the Text Editing preferences dip. Sketch ink, on the other hand, is treated as
agraphic: it isinserted into the view asacl Pol ygonVi ewview child. Sketch ink
isawaysdrawn at full size, and in the position at which it was written on the screen.

Thus, stroke bundles are normally returned only to views that do not perform
recognition. To cause the system to always return stroke bundles to the view (in
addition to any word units, gesture units or shape units that may be passed to the
view), set the view'sv St r okesAl | owed flag and provide aVi ewSt r okeScr i pt
method, as described in “ Customized Processing of Input Strokes” beginning on
page 10-40.

The recognition system'’s classification of user input is essentially a process of
elimination. Enabling and configuring only the recognizers and dictionaries
appropriate to a particular context is the primary means by which you optimize the
recognition system’s performance within your application.

Enabling Recognizers

Each view hasavi ewFl ags dlot that contains a bit field. The bitsin thisfield
specify characteristics that the view does not inherit from its view class, such asits
recognition behavior. When you set aview flag, it sets bitsin thisfield to enable
combinations of recognizers and dictionaries suited to the input you anticipate the
view to receive.

Not all of the bitsin thisfield affect recognition; some are used to set other
characteristics, such asthe view’s placement on the screen. The bitsin thisfield
that affect the recognition system are referred to as the view’sinput mask. When
the view is constructed at run time, the system copies the input mask bits and other
view flags bitsinto the view’svi ewFl ags slot. shows the relationship of
recognition-related view flags to bitsin thevi ewFl ags slot.

You can set bitsin thevi ewFl ags slot from within the graphical view editor in
Newton Toolkit or you can set them programmeatically from within your own
NewtonScript code. Either approach allows you to set combinations of bitsto
produce avariety of behaviors.

This book uses the NewtonScript approach for all examples. For information on
using the graphical view editor in Newton Toolkit, see Newton Toolkit User’s Guide.

About the Recognition System

CHAPTER 9
Recognition

Figure 9-2 Recognition-related view flags

vAddr essFi el d
vNaneFi el d vd i ckabl e
vCapsRequi r ed vStrokesAl | oned

vGest ur esAl | oned
vAnyt hi ngAl | oned
\

vSi ngl eUni t
N /

\
i1/1j1}j1)1|1|1}1}1|1|]1|]1]1]1|1]|1
o|j0ojoj0|0|O|O|O|O|O|O|O|O|O|O]|O

24 20 ‘ ‘ ‘ ‘ 15 ‘ ‘ ‘ 10 5 0
N\ | I)

\
vNot hi ngAl | owed

vCustonDictionaries

vTi meF@ eld vChar sAl | owed

vDat eFi _el d vNunber sAl | owed
vPhoneFi el d viettersAl | owed
Reserved for system use vPunct uati onAl | owed

vShapesAl | owed

View Flags

The system supplies a number of constants, called view flags, which are used to set
bitsinaview'svi ewFl ags slot programmatically. In general, each of these flags
activates a combination of recognizers and dictionaries suited to recognizing a
particular kind of input. Thus, aview’s view flags specify the kinds of datait is
likely to recognize successfully. For a summary of the view flags that affect
recognition, see “ Constants’ (page 9-31).

There are two ways to set view flags from NewtonScript: you can place view flag
constants in your view template'svi ewFl ags sot or you can supply arecognition
configuration (r ecConf i g) frame for the view. Occasionally, the use of both
techniques is appropriate, but in most cases you'll use only one or the other.

Recognition Configuration Frames

Recognition configuration frames (r ecConf i g frames) provide an aternate
programmatic interface to the recognition system. They can be used to provide any
behavior that view flags provide, and can also be used to provide specialized
recognition behaviors that view flags cannot. For example, view flags generally set

About the Recognition System 9-9

9-10

CHAPTER 9

Recognition

multiple bitsin the input mask to produce a particular behavior. You can use a
r ecConf i g frameto set individua bits in the input mask, alowing you to control
aspects of recognition behavior that view flags do not.

Some features of the recognition system require the use of ar ecConf i g frame.
For example, to create a view that provides single-letter input areas suitable for
accepting pen input in a crossword puzzle application, you must supply a
recConf i g framethat providesanr cGr i dl nf o frame. The system-supplied
rcGi dl nf o frameis used to specify the location of one or more single-letter
input views.

This chapter focuses on the use of view flags to configure recognition. The use of
recConf i g framesis described in Chapter 10, “Recognition: Advanced Topics.”
System-supplied r ecConf i g frames are described in “ System-Supplied recConfig
Frames’ (page 8-18) in Newton Programmer’s Reference.

View Flags vs. RecConfig Frames

In most cases, view flags provide the easiest and most efficient way to configure
the recognition system. Although r ecConf i g frames provide more flexible and
precise control over the configuration of recognition behavior, they require more
effort to use correctly.

It is recommended that you use view flags to configure recognition unless you need
some specia recognition behavior that they cannot provide. Examples of such
behavior include constraining recognition on a character-by-character basis,
implementing customized forms of deferred recognition, and defining baseline or
grid information.

The rest of this chapter discusses configuration of the recognition system only in
terms of the view flag model. You need to read this material even if you plan to use
r ecConf i g framesin your application, because the description of r ecConfi g
framesin Chapter 10, “Recognition: Advanced Topics,” assumes an understanding
of the view flag model upon which these frames are based.

Where to Go From Here

If you're anxious to begin experimenting with view flags, you can skip ahead to
“Using the Recognition System” beginning on page 9-21 and test the effects of
various flags using the viewFlags sampl e application provided with Newton
Toolkit. However, it is recommended that you read the rest of this section before
attempting to work with the recognition system.

About the Recognition System

CHAPTER 9

Recognition

Recognition Failure

Recognition may fail when the handwritten input is too sloppy for the system to
make a good match against itsinternal handwriting model, when the view is not con-
figured correctly for the intended input, or (in the case of dictionary-based recognition
only) when none of the interpretations of the input strokes match a dictionary entry.
In such cases, the recognition system may return sketch ink or ink text.

Ink text looks similar to sketch ink; however, ink text is scaled and placed in a

cl Par agr aphVi ewview astext. Sketch ink is not placed in a paragraph but
drawninacl Pol ygonVi ewview on top of anything else that appearsin the
polygon view’scl Edi t Vi ew parent. Both ink text and sketch ink hold stroke data
that can be used to recognize the strokes at another time. Deferred recognition—
the process of recognizing saved ink at alater time—is described in more detail in
“Deferred Recognition” (page 10-5), in Chapter 10, “Recognition: Advanced
Topics.”

System Dictionaries

The system supplies a variety of dictionaries against which names, places, dates,
times, phone numbers, and commonly used words are matched. There are two
kinds of dictionaries used for text recognition: enumerated and lexical. An
enumerated dictionary issimply alist of strings that can be matched. A lexical
dictionary specifies agrammar or syntax that is used to classify user input. The
kind of dictionary used for a particular task is dependent upon task-specific
requirements. For example, it would be impractical to create an enumerated
dictionary of phone numbers; however, the clearly defined format imposed on these
numbers makes them ideal candidates for definition in alexical dictionary.

The specific set of dictionaries that the system provides for a particular purpose
generally varies according to the user’s locale. For example, because currency
formats vary from country to country, the particular lexical dictionary that the
system uses for matching monetary values may change according to the current
locale. However, you usually need not be concerned with the specific set of
dictionaries used by a particular locale. For more information, see Chapter 20,
“Localizing Newton Applications.”

Dictionaries can bein ROM or in RAM (internal or card-based). Most of the system-
supplied dictionaries arein ROM; however, the user dictionary residesin RAM.

Applications must never add items to the user dictionary without the user’'s
consent. The user dictionary isintended to be solely in the user’s control—adding
itemsto it is akin to changing the user’s handwriting preferences or Names entries.
It's also important to leave room for users to store their own items.

About the Recognition System 9-11

9-12

CHAPTER 9
Recognition

IMPORTANT
An excessively large user dictionary can slow the system when
performing searches that are not related to your application. It is
therefore recommended that applications do not add itemsto the
user dictionary at all. a

The system supports atotal of about 1,000 items in the RAM-based user dictionary
(also known as the review dictionary). Note that this number may change in future
Newton devices. A persistent copy of the user word list is kept on the internal store
in the system soup. The user dictionary is loaded into system memory (not the
NewtonScript heap or store memory) when the system restarts and saved when the
user closes the Persona Word List slip. For more information, see “Working With
the Review Dictionary” (page 10-30).

A separate dictionary called the expand dictionary alows you or the user to
define word expansions that are substituted for abbreviations automatically. The
substitution takes place after the abbreviation has been recognized, but before it has
been displayed. For example, you could specify that the string w/ be expanded to
the string with, or the string appt expand to appointment. In addition to permitting
the substitution of an entirely different string for the one recognized, the expand
dictionary can be used to correct recurring recognition mistakes or misspellings
automatically.

The expand dictionary is not used directly by the recognition system. Instead, each
word to be expanded is added to both the user dictionary and the expand dictionary.
Then the user dictionary and any appropriate additional dictionaries are used to
perform stroke recognition. Before the recognizer returns the list of recognized
words to the view, it determines whether any of the itemsin thelist are present in
the expand dictionary. If so, the expanded version of the word is inserted into the
list of recognized words before the original version of the word. The original version
isasoincluded in thelist, just in case the user doesn’t want to expand the word.

Aswords not present in any of the currently enabled dictionaries are recognized, the
auto-add mechanism may add them to the user dictionary automatically. This
feature is enabled when the cursive recognizer is active, but not when the printed
recognizer is active. (Although both recognizers use dictionaries to improve
accuracy, the use of dictionaries does not benefit the printed recognizer enough to
justify default use of the auto-add mechanism.) You can improve the printed
recognizer’s treatment of problematic words by making them available from a
dictionary, but it is recommended that you create a custom dictionary that provides
those words; the user dictionary is intended to be under the user’s control.

The auto-add dictionary isalist of words that have been added to the user
dictionary automatically. If the auto-add dictionary is not empty, the Recently
Written Words slip displays its contents when the user opens the Personal Word
List slip. The Recently Written Words slip prompts the user to indicate whether
each of the words it displays should remain in the user dictionary. To encourage the

About the Recognition System

CHAPTER 9

Recognition

user to make individual decisions about each word in the list, this slip does not
permit selection.

Although the Recently Written Words slip asks the user whether to add words to
the Personal Word List, the words have already been added to both the user
dictionary and the auto-add dictionary by the time they are displayed in thisdip if
the cursive recognizer isin use. Rather than actually adding words to any
dictionaries, this dip actually removes those words that the user does not confirm
as candidates for addition to the user and auto-add dictionaries.

Note

When the printed text recognizer isin use, the automatic
addition of words to the user dictionary and the auto-add
dictionary isdisabled.

The size of the auto-add dictionary islimited to 100 words. A persistent copy of the
auto-add dictionary is kept on the internal store in the system soup. The auto-add
dictionary isloaded in system memory (not the NewtonScript heap or store
memory) when the system restarts and saved when the user opens or edits the
Recently Written Words dlip. For more information, see “Working With the Review
Dictionary” beginning on page 10-30.

Another dictionary, the symbols dictionary, is always enabled for any view that
performs text recognition. This dictionary includes a phabetic characters, numerals,
and some punctuation marks. Use of this dictionary permits the user to correct
single characters by writing over them on the screen.

Correction and Learning

When the recognition system returns aword unit to the view, it constructs a
correction information frame from the word unit and may save learning data as
well. The correction information frame holds information used to correct
misrecognized words. Learning data is used by the system to improve the cursive
recognizer’'s accuracy.

The system provides a devel oper interface to the information in the correction
information frame, as well as a user interface to a subset of this data. For complete
descriptions of the pr ot oCor r ect | nf o, pr ot oWor dl nf o and

pr ot oWor dl nt er p system prototypes that provide access to correction
information, see “Recognition System Prototypes’ (page 8-31) in Newton
Programmer’s Reference

The picker (popup menu) shown in Figure 9-3 provides the user interface to
correction information. This picker is displayed automatically when the user
double-taps a previously recognized word. This picker’sitemsinclude

m thefive best interpretations returned by the recognizer.
m the alternative capitalization of the most highly scored interpretation.

About the Recognition System 9-13

CHAPTER 9

Recognition

m the expansions of words that match entries in the expansion dictionary.
m agraphical representation of the original input strokes asink.

m buttons for the soft keyboard and text-corrector views.
m aTry Letters button when the cursive recognizer is active.

Figure 9-3 Text-corrector picker

9-14

628 Sun 11712 # Unfiled Notes
[Ewed 1178 B8

H Daph
lunch with dgl';h:;:

DAphne
Dapnne
..................................... DAPhne

..................................... Dﬂﬁh nd,

Thewordsin thislist are one example of correction information stored by the
system as it recognizes words. In addition to word lists, correction information
includes the original stroke data and information known as learning data.

Learning data is information gathered as the user corrects misrecognized words. It
is used to modify the system’s internal handwriting model to more closely match
the way the user actually writes. Thisinformation is called learning data because
the system can be said to learn various characteristics of the user’s handwriting
style, with aresulting increase in recognition accuracy. Not all recognizers return
learning data.

User Preferences for Recognition

The user can specify several preferences that affect the overall configuration of the
recognition system. Thisinformation is provided for reference purposes only;
generally, you should not change the user’s recognition preferences settings.

About the Recognition System

CHAPTER 9

Recognition

This section describes only those user preferences for which the system provides a
NewtonScript interface. It does not provide a comprehensive summary of the user
interface to recognition, which may vary on different Newton devices. For a
description of the user interface to a particular Newton device, see the user manua
for that device.

The user preference settings for recognition that this section describes are stored as
the values of slots in a system-maintained frame that holds user configuration data.
These slots are described in “ System-Wide Settings’ (page 8-2) in Newton
Programmer’s Reference.

The user preference settings described here may be affected by the setting of a
pr ot oRecToggl e view associated with the view performing recognition. For a
description of this view, see “RecToggle Views' beginning on page 9-18.

Recognition-oriented user preference settings may also be overridden by a

r ecConf i g frame associated with the view performing recognition. For complete
information onr ecConf i g frames, see Chapter 10, “Recognition: Advanced
Topics.”

Handwriting Recognition Preferences

The Handwriting Recognition preferences slip shown in Figure 9-4 specifies the
overall characteristics of the user’s handwriting. In general, you should not override
the user settings specified in this dlip.

The Printing and Cursive radio buttons specify whether a printed or cursive style
of lettering is used. This system-wide setting enables either the printed or cursive
recognizer by setting the value of thel et t er Set Sel ect i on dot in the system’s
user configuration data. It is strongly recommended that you do not change

this setting.

The user can also specify the amount of blank space the recognizer may find
between words; this setting influences the recognition system’s initial grouping of
stroke data. The value returned by the slider control in thisslip iskept in the

| ett er SpaceCursi veOpt i on dotin the system’s user configuration data. This
value may be overridden by views that perform recognition.

About the Recognition System 9-15

CHAPTER 9
Recognition

Figure 9-4 Handwriting Recognition preferences

Options
Button

9-16

| etterSetSel ection
| etterSpaceCursiveQption

My handwriting style is My handwriting style is

i Printing {separate letters) i Printing {separate letters)
& Cursive (connected letters) & Cursive (connected letters)

onetercld> o feo 123
O

closely spaced widely spaced closely spaced widely spaced

i1 Configure for guest user i__i Configure for guest user

+Options] [AIign Pen] @ [00ptions] [Align Pen] @

Checking the “ Configure for guest user” checkbox causes the system to

m saveall current recognition system settings.

m savethe owner’slearning data.

m temporarily reset all recognition system preferences to their default values.

m learn the guest user’s writing style as misrecognized words are corrected if the
cursive recognizer isin use. (The printed recognizer does not use learning data.)

When the user deselects the “ Configure for guest user” checkbox, the guest user’s
learning datais discarded and the origina user’s learning data, preferences, and
other settings are restored. Note that the system’s use of the auto-add mechanismis
not affected by the setting of this checkbox—when the cursive recognizer is
enabled, the system always adds new words to the auto-add dictionary.

The Options button displays a picker from which the user can access options for
various preferences. Theitemsincluded in this picker vary according to whether
the printed or cursive recognizer is enabled. When the cursive recognizer is enabled,
this picker provides the Text Editing Settings, Handwriting Settings, Letter Shapes,
and Fine Tuning items. When the printed recognizer is enabled, this picker provides
only the Text Editing Settings and Fine Tuning items. Because the system provides
no developer interface to the Letter Shapes dlip, it is not discussed here.

Figure 9-5 shows the Text Editing Settings slip that is displayed for both the
printed and cursive recognizers. Of the adjustments available from the Text Editing
Settings dlip, the “Add new words to Personal Word List” checkbox is of interest to
developers. The cursive recognizer adds new words to the RAM-based user
dictionary automatically when this checkbox is selected. The printed recognizer
never adds new words automatically, regardless of the setting of this checkbox. You

About the Recognition System

CHAPTER 9

Recognition
can aways add new words to the user dictionary programmatically, regardless of

which recognizer is enabled. To display or edit the persona word list, the user taps
the book icon on the soft keyboard.

Figure 9-5 Text Editing Settings slip

Z# Text Editing Settings
#ink Text Scaling 75% Scaling

W Inzert new words at caret
A Add new words to Ferzonal Waord List

The system provides two versions of the Fine Tuning slip, one for each of the
cursive and printed text recognizers, as shown in Figure 9-6. Both dlips provide a
“Transform my handwriting” slider control that allows the user to fine-tune the
system’s use of temporal cues to determine when a group of strokes is complete.
Thisdlider setsthe value of thet i meout Cur si veOpt i on slotin the system'’s
user configuration data.

Figure 9-6 Fine Tuning handwriting preferences slips

speedCur si veQpti on
ti meout Cur si veOpti on
Recognize iy handwriting

slowly, more fast, less
accurately accurately

Z# Fine Tuning

Transform my handwriting Transform my handwritin

immediately a.fter a delaly;

immediately

For cursive recognizer For printed recognizer

The Fine Tuning slip used by the cursive recognizer includes an additional slider
that allows the user to trade some measure of accuracy for afaster response from
the recognizer. The “Recognize my handwriting” sider sets the value of the
speedCur si veOpt i on slot in the system’s user configuration data.

When the cursive recognizer is enabled, the Options button in the Handwriting
Recognition preferences slip provides access to the Handwriting Settings dlip
shown in Figure 9-7.

About the Recognition System 9-17

CHAPTER 9
Recognition

Figure 9-7 Handwriting Settings slip

9-18

Z# Handwriting Settings
B Letter-t-latter in fields letterlnFieldsOption
¥ Letter-by-letter in notes J— | ettersCursiveOption

¥ Learn my handwriting

| ear ni ngEnabl edOpt i on

When the “Learn my handwriting” checkbox is selected, the system sets the value
of thel ear ni ngEnabl edOpt i on dot initsuser configuration datatot r ue.
When this dlot holds the value t r ue, the system modifiesits internal handwriting
model as the user corrects misrecognized words when the cursive recognizer is
enabled. The printed recognizer does not provide or use learning data.

The user can cause the cursive recognizer to perform character-based recognition
(rather than dictionary-based recognition) in certain kinds of views by selecting the
“Letter-by-letter in fields” or “Letter-by-letter in notes” checkboxesin the
Handwriting Settings slip. (The printed recognizer can always return character
combinations that do not appear in dictionaries.)

The “Letter-by-letter in fields’ checkbox enables the cursive recognizer’s | etter-by-
letter option in pr ot oLabel | nput Li ne viewsthat use this recognizer. The
intended use of thisflag isto permit the user to enable |etter-by-letter recognition
automatically for views that are unlikely to find user input in dictionaries. For
example, an application that restricts the cursive recognizer to returning dictionary
words might enable this recognizer’s | etter-by-letter option selectively for views
intended to accept surnames. When the “ L etter-by-letter in fields” box is selected,
thevalueof thel et t er I nFi el dsOpt i on dot inthe system’s user configuration
dataisset tot r ue. For moreinformation, see the description of thisglot in
“System-Wide Settings’ (page 8-2) in Newton Programmer’s Reference.

The“ Letter-by-letter in notes’ checkbox enables | etter-by-letter recognition for
views based on the cl Edi t Vi ew class that use the cursive recognizer. When the
“Letter-by-letter in notes” box is selected, thel et t er sCur si veOpti on dotin
the system’s user configuration datais set tot r ue. The built-in Notes application
and notes associated with items in the Names and Dates applications demonstrate
this behavior. For more information, seethel et t er sCur si veQpt i on description
in “ System-Wide Settings’ (page 8-2) in Newton Programmer’s Reference.

RecToggle Views

The pr ot oRecToggl e view is abutton that allows the user to control the
recognition behavior of one or more views easily. This button is usually provided
as achild of your application’s status bar. When the user taps this button, it

About the Recognition System

CHAPTER 9

Recognition

displays a picker from which the user can choose recognition behaviors that you
specify. When this picker is collapsed, the appearance of the button indicates the
current recognition settings for the view or views that it controls. Figure 9-8 shows
the appearance of typical pr ot oRecToggl e view when it is collapsed and when
it is expanded to display the pick list of recognizersit can enable.

Figure 9-8 Use of pr ot oRecToggl e view in the Notes application

Expanded

Collapsed

“ Sketches
7 {Z) Preferences

A Text
¢ Ink Text

fl shapes

The default picker provides all of the items shown in Figure 9-8 in the order
illustrated. You can specify that this picker display a subset of these itemsin the
order you specify.

The topmost item in the picker indicates the recognizer that ther ecToggl e view
enables by default; unless you specify otherwise, ther ecToggl e view enables the
text recognizer by default, as shown in the figure.

You can a'so provide code that restores the user’s most recent r ecToggl e setting
orinitializesther ecToggl e to a predetermined setting each time your
application opens.

The picker’s Preferences item opens the Handwriting Recognition user preferences
slip by default.

For more information on pr ot oRecToggl e views, see Chapter 10, “Recognition:
Advanced Topics,” aswell as the description of this prototype in Newton
Programmer’s Reference.

Flag-Naming Conventions

This section describes conventions used to name recognition-related view flags, as
well as the significance of the use of the words Fi el d and Al | owed in flag names.

The Entry Flags area of the Newton Toolkit (NTK) view editor actually sets view
flags. The distinction that Newton Toolkit makes between “view flags’ and “entry
flags’ is an artifact of the way certain views create child views dynamically at
run time.

For example, when the user tapsa pr ot oLabel | nput Li ne view, it creates and
opensacl Par agr aphVi ewchild that is the input line view in which text

About the Recognition System 9-19

9-20

CHAPTER 9

Recognition

recognition takes place. The Entry Flags area of the NTK screen specifies the view
flags for this dynamically created child view separately from the view flags for the
container view in which it appears. When the system creates the child view, it
copies the Entry Flags bitsinto the child view’svi ewFl ags slot.

For simplicity’s sake, this chapter refersto al recognition-oriented flags as “ view
flags.” This chapter and its corresponding section of the Newton Programmer’s
Reference document all such flags as view flags.

Although the NTK view editor describesvAnyt hi ngAl | owed asa“flag” itis
actually amask that setsall bitsinac! Edi t Vi ewview'sinput mask. This chapter
refers to this construct asthe “vAnyt hi ngAl | owed mask.” See (page 9-8) for a
graphical depiction of the relationships between bits in the input mask and
recognition-related view flags.

Theuse of Fi el d inthe names of some flagsand Al | owed in othersis meant to
reflect these flags' intended use, rather than afunctional difference.

The“field” flags are intended for setting up input views that accept a single kind of
input, such as dates. For example, setting the vDat eFi el d flag specifies that the
view accepts numeric input in aformat commonly used for dates in the current
locale. Setting this flag enables the set of dictionaries appropriate for recognizing
such input.

On the other hand, the more inclusive “alowed” flags are intended for use with
views that must recognize several kinds of input; for example, setting the
vNumber sAl | owed flag specifies that the view accepts a wide range of numeric
input, such as currency values, times, and dates. Setting the vNunber sAl | owed
flag aone, then, enables amore inclusive set of dictionaries than obtained by
setting the vDat eFi el d flag alone.

Despite differences in naming conventions (and despite the fact that the Field Type
popup menu in the NTK view editor considers these flags mutually exclusive), the
“field” and “allowed” flags can be mixed in any combination. Keep in mind,
though, that the more choices the recognizer has, the more opportunity it has to
make the wrong choice.

Recognition Compatibility

In addition to the cursive recognizer available in previous systems, version 2.0 of
system software adds a recognizer optimized for printed characters. This recognizer,
represented by the Printed radio button in the Handwriting Recognition preferences
slip, isthe default text recognizer used when you or the user do not specify otherwise.

Selecting the Cursive radio button in the Handwriting Recognition preferences slip
equates to selecting the Mixed Cursive and Printed radio button available in
previous versions of this dip: the cursive recognizer is enabled, all printed and

About the Recognition System

CHAPTER 9

Recognition

cursive letter styles in the system’s handwriting model are enabled, and the system
disables unused letter styles over time as the user corrects misrecognized words.

The default settings of the cursive recognizer in version 2.0 enabl e this recognizer’s
|etter-by-letter recognition option. Previous versions of the system disabled this
option by default, causing the cursive recognizer to return only words appearing in
the set of dictionaries available to the view performing recognition.

TheprotolLetterBylLetter prototype, which appears at the lower-left corner
of the screen in the Notepad application on the M essagePad 100 and M essagePad
110, is obsolete. It has been replaced by the pr ot oRecToggl e prototype. For
more information, see “RecToggle Views’ (page 9-18).

Prior to version 2.0 of Newton system software, correction information was not
accessible from NewtonScript. Version 2.0 of Newton system software makes this
information available as frame data. For more information, see “ Correction and
Learning” (page 9-13).

Combining thevLet t er sAl | owed flag with flags used to specify recognition of
numeric values (such asvPhoneFi el d, vNunber sAl | owed, vDat eFi el d,
vTi meFi el d, and vAddr essFi el d) produced undesirable results in system
software prior to version 2.0. System software version 2.0 supports these kinds of
view flag combinations.

Deferred recognition—the ability to convert strokes to text at some time other than
when the strokes are first entered on the screen—was introduced in Newton system
software version 1.3 with no application programming interface. Version 2.0 of
Newton system software provides a NewtonScript interface to this feature.

Using the Recognition System

This section describes how to use view flags to enable recognition in views. This
chapter discusses only those view flags that interact with the recognition system.
For asummary of these view flags, see® Constants’ (page 9-31). For information
on other kinds of view flags, see Chapter 3, “Views.” For complete descriptions of
all view flags, see Newton Programmer’s Reference.

For information on the use of r ecToggl e views, r ecConf i g frames and advanced
features of the recognition system, see Chapter 10, “Recognition: Advanced
Topics”

Types of Views

Thekind of view that you use to recognize input affects the amount of work you'll
have to do to support recognition. Views based on the cl Edi t Vi ewclass handle
most recognition events automatically once you've specified their intended

Using the Recognition System 9-21

9-22

CHAPTER 9

Recognition

recognition behavior by setting view flags or providing ar ecConf i g frame.
Specifically, cl Edi t Vi ewviews createcl Par agr aphVi ewor

cl Pol ygonVi ew child views automatically as required to display output from the
recognition system. To use other kinds of views for recognition, you may need to
providevi ewxXxxScri pt methods that create these child views and respond in
other ways to recognition system events.

Configuring the Recognition System

You can take the following approaches to configuring the recognition system:

m Set view flags only. This approach works well for most applications and is
described in this chapter.

m Set view flags and allow the user to configure recognition from a
pr ot oRecToggl e view that you provide. The easiest way to do thisis by
setting the vAnyt hi ngAl | owed mask, which is described in this chapter.
This approach supports the use of ink text in cl Edi t Vi ewviews. Use of
the pr ot oRecToggl e view isdescribed in Chapter 10, “Recognition:
Advanced Topics.”

m Set view flags and supply arecognition configuration frame based on
ROM r cl nkOr Text . This approach supportsink text in cl Edi t Vi ewviews.
You should provide apr ot oRecToggl e view aswell, to alow the user to
switch easily between text and ink text.

m Supply arecognition configuration frame of some other kind. This approach
offers you the most control and flexibility, but also requires the most work to
implement. The difficulty of enabling ink text according to the value of a
pr ot oRecToggl e view depends on the particular implementation of your
r ecConf i g frame. Recognition configuration frames are described in
Chapter 10, “Recognition: Advanced Topics”

m UsetheRecogSet t i ngsChanged message sent by the pr ot oRecToggl e
view to enable recognition behaviors dynamically. Thistechnique is described in
Chapter 10, “Recognition: Advanced Topics.”

Except where noted otherwise, all of the flags described in this chapter are set in
theview'svi ewFl ags slot. When setting the values of vi ewFl ags dots,
remember that in order to produce useful behavior you may need to set other bitsin
addition to the recognition-oriented ones that this chapter describes. To preserve
settings that your view’svi ewFl ags dot inherits from its view class, you should
logically OR changesto hitsin thisslot.

For information on non-recognition view flags provided by the system, see
Chapter 3, “Views.”

Using the Recognition System

CHAPTER 9

Recognition

Obtaining Optimum Recognition Performance

To obtain the most accurate results from the recognition system, you must define as
precisely as possible the type of input that the view is to recognize. Aside from
potentialy introducing errors, enabling superfluous recognizers may slow the
recognition system’s performance.

The view flags that enable text recognition also enable dictionaries suited to
recognizing particular kinds of input, such as dates, phone numbers, and so on.
Some view flags activate multiple dictionaries, and the sets of dictionaries activated
by various flags may overlap. The system shows no preference towards any single
dictionary in a set except for a slight weighting of resultsin favor of words found
in the user dictionary, which most view flags enable.

The specific dictionaries that a particular flag enables varies according to the user’'s
locale and the ROM version of the Newton device. You usually need not be
concerned with thisimplementation detail, nor should you rely on the presence of a
particular dictionary when setting view flags.

When you need to control precisely which dictionaries a view uses for recognition,
you can setitsvCust onDi cti onari es flagand useadi cti onari es dotto
specify explicitly which dictionaries are to be used. For information about custom
dictionaries, see “Using Your RAM-Based Custom Dictionary” (page 10-28), in
Chapter 10, “Recognition: Advanced Topics.” For information about locale and the
recognition system, see “How L ocale Affects Recognition” (page 20-2), in
Chapter 20, “Localizing Newton Applications.”

For best performance, you need to specify the minimum combination of recognizers
and dictionaries required to process the kind of input you expect the view to receive.
This eguates to enabling the minimum set of view flags that allow the view to
recognize appropriate input correctly. By restricting the possible interpretations
returned by the recognition system to only those that are appropriate for a particular
view, you increase the system’s chances of interpreting the input correctly. For
example, when configuring aview for the entry of numeric data, you would not
specify that the recognition system return al phabetic characters to that view.

The printed and cursive text recognizers appear nearly identical to NewtonScript
applications. The main difference between them is that while the cursive recognizer
can be made to use the value of the vi ewFl ags slot asastrict definition of what it
can recognize, the printed recognizer uses this value as only a hint—that is, it can
always return values not specified by the input view’s view flags. When configuring
views for text recognition, you should set view flags that describe the input you
anticipate the view to receive and then verify that you obtain acceptable results
from both text recognizers.

Because the printed recognizer lets you write anything in the input view, it may be
difficult to determine whether your vi ewFl ags settings are appropriate when this
recognizer is enabled; the cursive recognizer usually provides better feedback in

Using the Recognition System 9-23

9-24

CHAPTER 9

Recognition
thisregard. If necessary, you can provide aVi ewbr dScri pt or

Vi ewChangedScri pt method that validates the recognizer’s output; this method
can be especially useful when working with the printed recognizer.

Accepting Pen Input

When setting up any view, you must specify whether it accepts pen input at all. If
you set the vNot hi ngAl | owed flag (or turn off all recognition-oriented flags), the
view does not accept pen input. If you want the view to accept pen input, you must
setthevd i ckabl e flaginitsvi ewFl ags sot. Setting thisflag only causes the
view to accept pen taps and send Vi ewd i ckScri pt messages; it does not
enable ink handling or send messages to any of the unit-handling methods that
provide recognition behavior.

Setting thevC i ckabl e flag specifies that the view system isto send the

Vi ewd i ckScri pt message to the view once for each pen tap that occurs within
the view. Note that thisisthe case only whenvd i ckabl e isthe only flag set for
the view—other flags, such asthevCust onDi ct i onari es flag, set the

vC i ckabl e hit in the view's input mask also.

When thisflag is set, the system sends additional messages to the view to signal
taps, strokes, gestures, and words. All pen input is signaled by the

Vi ewd i ckScri pt message, which indicates that the pen contacted the screen
or was lifted from it within the boundaries of the view. If you supply a

Vi ewd i ckScri pt method, it should returnt r ue to indicate that the message
was handled, or ni | to pass the message on to another view. If this message is not
handled by the view and additional recognition flags are set, other messages may
be sent to the view, depending on what was written. These other messages include
Vi ewSt r okeScri pt, Vi ewGest ureScri pt, and Vi ewbdr dScr i pt —in that
order, if al are sent.

Each of the corresponding input-related view methods accept as an argument a unit
object passed to it by the system. The unit contains information about the pen
input. You cannot examine the unit directly from NewtonScript, but you can passit
to other system-supplied functions that extract information from it such as the
beginning and ending points of the stroke, an array of stroke points, the stroke
bounds, and so on.

Taps and Overlapping Views

When views overlap, taps can “fal through” from the top view to the one beneath,
causing unexpected results. For example, when the user taps in an area of the top
view that doesn’'t handle taps, and the view beneath provides a button in the
vicinity of the tap, the button may be activated unintentionally.

Using the Recognition System

CHAPTER 9

Recognition
You can solve this problem by setting the top view’svd i ckabl e flag without

providing aVi ewCl i ckScri pt method. (The top view need not handle the taps,
only prevent them from being passed on to the other view.)

Recognizing Shapes

ThevShapesAl | owed flag enables the recognition of geometric shapes such as
circles, straight lines, polygons, and so on. Do not set this flag for views that
handle text input only. Thisflag isintended for use only in views based on the

cl Edi t Vi ewclass. Thecl Edi t Vi ewclass provides the built-in Notepad
application’s note stationery with much of its recognition behavior.

The shapes displayed on the screen are cl Pol ygon views returned as the children
of thecl Edi t Vi ewthat accepted the input strokes. There is no devel oper
interface to shape recognition; to manipulate shapes returned by the recognition
system, you must extract the polygon views from the edit view yourself. In some
cases, you may find the Vi ewAddChi | dScri pt method useful for this purpose.
The Vi ewAddChi | dScri pt messageissent when achild view isadded to aview.

When multiple shapes are returned to an edit view, its Vi ewAddChi | dScri pt
method is called once for each shape.

When multiple ink text words are returned to an edit view, the

Vi ewAddChi | dScri pt method isinvoked when thecl Par agr aphVi ewthat
holds theink text is added as the child of the edit view, but this method is not
invoked as ink text words are added to the paragraph view.

In views not based on the cl Edi t Vi ewclass, the arrival of each ink word is
signalled by aVi ewl nkWor dScri pt message.

Recognizing Standard Gestures

Setting the vGest ur esAl | owed flag supplies system-defined behavior for the
gestures tap, double tap, highlight, scrub, line, caret, and caret-drag. Most input
views set thevGest ur esAl | owed flag, as they need to respond to standard
gestures such as scrubbing to delete text or ink. At present, you cannot define new
gestures to the system.

When thevGest ur esAl | owed flag is set, the gesture recognizer invokes the
view’s Vi ewGest ur eScr i pt method before handling the gesture. Normally,
you don’t need to supply aVi ewGest ur eScri pt method for cl Edi t Vi ewor
cl Par agr aphVi ewviews. These views handle all system-defined gestures
automatically.

Your Vi ewGest ur eScri pt method isinvoked only for gestures that the view
system does not handle automatically. For information on intercepting standard
gestures before the view system handles them, see “ Customized Processing of

Using the Recognition System 9-25

9-26

CHAPTER 9

Recognition

Double Taps’ beginning on page 10-41. See also “ViewGestureScript” (page 8-71)
in Newton Programmer’s Reference.

Combining View Flags

Generally, you must combine multiple view flags to produce useful recognition
behavior. For example, most views that accept user input set thevd i ckabl e flag
to enable pen input and the vGest ur esAl | owed flag to enable recognition of
standard gestures such scrubbing and inserting spaces.

Except where noted otherwise, the NewtonScript “plus’ operator (+) isused to
combine view flags, asin the following code fragment.

myVi ewTenpl ate : =
{
/] recogni ze taps, gestures, and shapes
vi ewFl ags: vd i ckabl e+tvGest ur esAl | owed+vShapesAl | owed,

)

Note

Most combinations of view flagsincludethevd i ckabl e flag.
If you do not set thevd i ckabl e flag, the view does not accept
peninput a all. &

Sometimes a particular combination of view flags produces results that seem
incorrect. For example, you might be surprised to discover that aview setting only
theflagsvC i ckabl e+vLet t er sAl | owed can occasionally recognize numeric
values. (ThevLet t er sAl | owed flag enables the recognition of single text
characters by the cursive recognizer.) This behavior is caused by the presence of
the symbols dictionary in the set of dictionaries available to the view. The symbols
dictionary includes al phabetic characters, numerals and some punctuation marks.
Most view flags enable this dictionary to support the correction of single letters or
numerals by overwriting. As a side effect, it becomes possible to recognize
extraneous characters or numeralsin fields that ostensibly should not support such
input. This behavior israrely a problem, however, because the recognition system
is designed to show a strong preference for “ appropriate” interpretations of input as
defined by the view flags set for the view.

Although you might expect that the presence of the symbols dictionary would
allow aview setting only theflagsvC i ckabl e+vNunber sAl | owed to return
alphabetic characters, this behavior is quite difficult to produce. Views that set the
vNunmber sAl | owed flag show a much stronger preference for single-digit
numbers than single al phabetic characters. However, letters that do not look similar
to numeric values—for example, the letter W—may produce this particular form of
misrecognition.

Using the Recognition System

CHAPTER 9

Recognition

When troubleshooting recognition errors, remember that view flags may enable
multiple dictionaries and that the sets of dictionaries enabled by various flags
may overlap.

Asagenera rule, the fastest and most accurate recognition occurs when the fewest
recognizers and dictionaries necessary to successfully analyze the input are
enabled. Enabling unnecessary recognizers and dictionaries may decrease the
speed and accuracy with which recognition is performed.

Recognizing Text

ThevChar sAl | owed andvLet t er sAl | owed flags enable text recognition in
views that accept pen input. Either flag enables the text recognizer specified by the
Handwriting Recognition preferences dlip.

Each of these flags specifies different recognition options and dictionary sets. The
unique behaviors associated with each flag are demonstrated most clearly by the
cursive recognizer. The cursive recognizer can be made to return only words
present in the set of dictionaries available to the view performing recognition. In
contrast, the printed recognizer can aways return words or letter combinations that
are not present in dictionaries.

ThevChar sAl | owed flag enables a default set of dictionaries that provide
vocabulary used in common speech, names of days, names of months, proper
names, and wordsin the user dictionary. When the vChar sAl | owed flag is set
andthevLet t er sAl | owed flag is not, the cursive recognizer returns only words
that appear in the set of dictionaries available to the view performing recognition.

Note that the complete set of dictionaries available to the view may include those
enabled by other flags. For example, the NTK view editor provides a Field Type
popup menu that allows you to specify whether the view is to accept phone, date,
time, address or name data. The choicesin this menu set thevPhoneFi el d,
vDat eFi el d, vTi neFi el d, vAddr essFi el d and vNaneFi el d flags,
respectively. Each of these flags enables one or more dictionaries suited to
recognizing the specified input data. Custom dictionaries may also be made
available to the view performing recognition by setting the

vCust onDi cti onari es flag and providing avalid di cti onari es dot in the
view that performs recognition.

ThevLett er sAl | owed flag enables the cursive recognizer’s | etter-by-letter
recognition option. When thevLet t er sAl | owed flag is set, the cursive recognizer
may return words not appearing in dictionaries as well as nonword |etter
combinations. Note that this configuration increases the cursive recognizer’s chances
of misrecognizing words that appear in the set of dictionaries availableto it.

Although both text recognizers provide a letter-based recognition feature, the two
recognition engines are completely distinct. Consequently, the results produced by

Using the Recognition System 9-27

9-28

CHAPTER 9
Recognition

the cursive recognizer’s | etter-by-letter option may be different from those returned
by the printed recognizer for the same input data.

Although the printed recognizer can always return non-dictionary words, it does
make extensive use of the dictionaries available to the view for recognition. Users
may improve the printed recognizer’'s accuracy for problematic non-dictionary
words by adding them to the user dictionary. You can supply custom dictionaries to
improve the recognition of specialized vocabulary. It is recommended that
applications do not add words to the user dictionary.

Recognizing Punctuation

ThevPunct uat i onAl | owed flag permits the cursive recognizer to return
common punctuation marks such as the period (.); comma. (,); question mark (?);
single quotation marks (* and "); double quotation marks (“ and ”); and so on. The
printed recognizer can always return these characters, regardless of whether this
flag is set.

Views restricted to the entry of phone numbers, dates, or times need not set the
vPunct uat i onAl | owed flag because the vPhoneFi el d, vDat eFi el d, and
vTi meFi el d flags aready allow the entry of appropriate punctuation.

The cursive recognizer can also apply some simple rules when deciphering
ambiguous input; for example, it can make use of the fact that most punctuation
marks follow rather than precede words.

Suppressing Spaces Between Words

Setting the vSi ngl eUni t flag causes the recognition system to ignore spatial
information when grouping input strokes as words; instead, the system relies on
temporal cues to determine when the user has finished writing aword. When this
flag is set, the recognizer ignores short delays, such as those that occur between
writing the individual charactersin aword. Longer delays cue the recognizer to group
the most recently completed set of strokes as aword. The amount of time considered
to be alonger delay is afunction of the speed of the processor and the recognition
system, as well asthe value of thet i neout Cur si veQpt i on user preference.

ThevSi ngl eUni t flagisuseful for viewsin which the presence of gratuitous
spaces may confuse the recognizer; for example, phone number entry fields usually
suppress the recognition of spaces. If you want to suppress all spacesin the displayed
text, you can use the vNoSpaces flag in conjunction with thevSi ngl eUni t flag.

Rather than suppressing the input of spatia cues, the vNoSpaces flag suppresses
the insertion of spaces between groups of strokes or recognized text in views based
onthecl Par agr aphVi ewclass. This post-processing flag does not restrict the
interpretation of the input strokes or affect word segmentation, asthevSi ngl eUni t
flag does.

Using the Recognition System

CHAPTER 9

Recognition
ThevNoSpaces flag must appear in an evaluate slot named t ext Fl ags that you

createin theview. ThevSi ngl eUni t flag appearsintheview’svi ewFl ags sot,
asusual.

Forcing Capitalization

ThevCapsRequi r ed flag directs the system to capitalize the first letter of each
word returned by the recognizer before displaying the text in the view.

Setting the vCapsRequi r ed flag does not affect the recognizer’s behavior—it
affects post-processing performed on the recognizer’s output beforeit is returned to
the view.

Justifying to Width of Parent View

Setting the vW dt hl sPar ent W dt h flag for aview based on the
cl Par agr aphVi ew class causes the view to extend its right boundary to match
that of its parent automatically.

ThevW dt hl sPar ent W dt h flag must appear in an evaluate slot named
t ext Fl ags that you create in the view.

Like other flags set in thet ext Fl ags dot, thevW dt hl sPar ent W dt h flag
does not affect the recognizer’s behavior—it affects post-processing performed on
the recognizer’s output before it is returned to the view.

Restricting Input to Single Lines or Single Words

Including the oneLi neOnl y flag in your view’svi ewdust i f y slot causesthe
view to accept only asingle line of text input, with no word wrapping provided.

You can restrict input to a single word by including the oneWor dOnl y flag in the
view'svi ewdusti fy dot. If thisflag is set, the view replaces the currently
displayed word with the new one when the user writesin the view. You can also
restrict input to single characters by using this flag in conjunction with a custom
dictionary of single letters.

For more information on these flags, see their descriptions in Chapter 3, “Views.”
For information on the use of custom dictionaries, see “Using Custom
Dictionaries’ beginning on page 10-24.

Validating Clipboard and Keyboard Input

It is possible for the user to enter invalid valuesin fields by dragging text from the
Clipboard or by using akeyboard to typein the field. For example, setting the
vPhoneFi el d flag normally restricts input to numeric valuesin phone number
formats; however, the user can still enter invalid valuesin such afield by dragging

Using the Recognition System 9-29

9-30

CHAPTER 9

Recognition

or typing them. To prevent invalid input by these means, you can implement a
Vi ewChangedScri pt method that validates its view's input.

Using the vAnythingAllowed Mask

ThevAnyt hi ngAl | owed mask can be used only with views based on the

cl Edi t Vi ewclass. When used by itself, this mask sets all of the bitsin the view's
input mask, potentially enabling all of the system-supplied recognizers and
dictionaries. However, the actual recognition behavior of views that use this mask
varies according to current user preference settings.

For aview that setsthe vAnyt hi ngAl | owed mask, the recognition system
replaces the set of view flags you' ve specified with a set of flags derived from the
current settings of user preferences that affect recognition.The actual set of
recognizers enabled for the view is controlled by

m user preferences specified in the system’s user configuration data.
m the application’s pr ot oRecToggl e view, if it has one.
m theview'sr ecConfi g frame, if it has one.

Slotsin the system’s user configuration data specify recognition behaviors that al
views inherit. However, an optional pr ot oRecToggl e view can specify different
behaviorsfor individual views by overriding values inherited from user configuration
data. Similarly, each view can provide ar ecConf i g frame that overrides settings
specified by the pr ot oRecToggl e view or the system’s user configuration data.

Thus, in practice, the vAnyt hi ngAl | owed mask usudly is not what its name
implies: if any bit in this mask is turned off (by another flag, or by ar ecToggl e
view, for example), the input mask is no longer vAnyt hi ngAl | owed.

The built-in Notepad application provides a good example of the behavior of views
that use the vAnyt hi ngAl | owed mask, including the use of a
pr ot oRecToggl e view to change recognition settings.

Using the Recognition System

CHAPTER 9

Recognition

Summary

Constants

Text Recognition View Flags

Constant

vChar sAl | owed

vLettersAl | owed

vAddr essFi el d

vNunber sAl | owed

vNaneFi el d

vCust onDi cti onari es

vPunct uat i onAl | oned

vCapsRequi r ed

Summary

Value

1 << 12
or
0x01000

1 << 14
or
0x04000

1 << 21
or
0x0200000

1 << 13
or
0x02000

1 << 22
or
0x0400000

1 << 24
or
0x01000000

1 << 15
or
0x08000

1 << 23
or
0x0800000

Description

Enables default text recognizer and default
dictionary set.

Enables letter-by-letter text recognition.

Enables recognizers and dictionaries suitable for
the input of address datain the current locale.

Enables the recognition of numeric characters,
monetary values (for example, $12.25), decimal
points, and signs (+ or -).

Enables text recognition optimized for name
data; usually combined w/ vCapsRequi r ed.

Enables text recognition using dictionaries
specified by theview'sdi cti onari es dot.

Enables recognition of punctuation marks by the
cursive recognizer. (Printed recognizer always
recognizes punctuation marks.)

Forces capitalization of the first character of
each recognized word.

9-31

CHAPTER 9

Recognition

Non-Text Recognition View Flags

Constant
vNot hi ngAl | owed

vAnyt hi ngAl | owed

vd i ckabl e

vStrokesAl | owed

vGest ur esAl | owed

vShapesAl | owed

vSi ngl eUni t

vNoSpaces

vW dt hl sParent W dt h

9-32 Summary

Value

0x00000000
or
0x0000

65535 << 9
or
0x01FFFEOO

1<<9
or
0x0200

1 << 10
or
0x0400

1 <11
or
0x0800

1 << 16
or
0x010000

1 << 8
or
0x0100

1<<1
or
0x0002

1<<0
or
0x0001

Description
The view accepts no handwritten or keyboard input.

Recognize any input. Use only for views based on
thecl Edi t Vi ewclass.

Accept tapsand send Vi ewd i ckScri pt
message to the view once for each tap that
occurs within the view.

Accept stroke input and send the
Vi ewSt r okeScri pt message at the end
of each stroke.

Recogni ze gesture strokes such as scrub, highlight,
tap, double tap, caret, caret-drag, and line. Send
the Vi ewGest ur eScri pt message when the
view recognizes a gesture that it does not handle
automatically.

Enables shape recognition. Use only for views
based onthecl Edi t Vi ewclass.

Disable the use of spatial cues (distance between
strokes). Meaningful for text recognizers only.

Directs aview based on the cl Par agr aphVi ew
class to not insert spaces between existing text and
new text.

Extend right boundary of cl Par agr aphVi ew
view to match that of its parent.

Constant

CHAPTER 9

Recognition

View Flags Enabling

Lexical Dictionaries

Value

vNunber sAl | owed 1 << 13

vPhoneFi el d

vDat eFi el d

vTi nmeFi el d

or
0x02000

1 << 18
or
0x040000

1 << 19
or
0x080000

1 << 20
or
0x0100000

Data Structures

Description

Enables recognition of numbers, monetary values (for
example, $12.25), decimal points, and mathematical
signs (+ and -).

Enables recognition of phone numbers. Note that the
set of lexical dictionaries enabled by thisflag varies
with the text recognizer currently in use.

Enables recognition of date formats (such as March
3-95), names of months, and names of days.

Enabl es recognition of times.

Recognition-Related User Configuration Slots

Usethe Get User Confi g and Set User Conf i g global functions to access

these dots.

Slot name
| etterSetSel ection

Notes
Text recognizer in use.

| ear ni ngEnabl edOpt i on t r ue enables cursive learning.
| etterSpaceCursiveOption Space between stroke groups.
ti meout Cursi veOpti on Time between individual strokes.

speedCur si veOpti on

Time spent analyzing input.

letterlnFiel dsOption t r ue enables cursive recognizer’'s

letter-by-letter optionin
pr ot oLabel | nput Li ne views.

| ettersCursiveOption t r ue enables cursive recognizer’'s

doAut oAdd

Summary

letter-by-letter option in built-in Names
and Dates applications
pr ot oLabel | nput Li ne views.

t r ue adds new words to user dictionary and
auto-add dictionary automatically.

continued

9-33

CHAPTER 9

Recognition

Slot name
doText Recogni ti on

doShapeRecogni ti on

dol nkWor dRecogni ti on

Summary

Notes

t r ue enables text recognition
unconditionally.

t r ue enables shape recognition
unconditionally.

t r ue causes text recognizer to return ink
text rather than sketch ink.

CHAPTER 10

Recognition:
Advanced Topics

This chapter describes advanced uses of the Newton recognition system. If you are
developing an application that supportsink text, implements specialized recognition
system behavior, or provides unusual input views, you'll need to understand one or
more topics presented here. This chapter describes

m theuseof r ecConf i g frames. Anindividual view can usear ecConf i g frame
to specify its own recognition behavior, support ink text, specify baseline
information, support deferred recognition, and define input areas for single letters.

m the use of text-corrector views and text-correction information.
m the programmatic manipulation of system dictionaries and custom dictionaries.

Before reading this chapter, you should understand the contents of Chapter 9,
“Recognition,” which provides an overview of the recognition system and
describes how to implement its most common behaviors. Depending on your
application development goals, you may also find it helpful to be familiar with
soups, as described in Chapter 11, “Data Storage and Retrieval ”

About Advanced Topicsin Recognition

This section provides conceptual information regarding

m how views configure recognizers and dictionaries based on the interaction of
view flags, r ecConf i g frames, r ecToggl e views, and recognition-related
user preferences.

m theuse of pr ot oChar Edi t views.
m deferred recognition.

How the System Uses Recognition Settings

A number of settings that control the behavior of the various recognizers are
specified by the system’s user configuration data. All views that perform recognition
inherit behavior from these values, which iswhy it's rarely appropriate for individual

About Advanced Topics in Recognition 10-1

10-2

CHAPTER 10

Recognition: Advanced Topics

applications to change these system-wide settings. Instead, individual views can
customize their own recognition behavior by using ar ecConf i g frame or
r ecToggl e view to override these inherited values locally.

In practice, most views' recognition behavior is defined by a combination of
inherited and overridden values. For example, because most users tend not to
change the speed at which they write, it's common for views to use inherited values
for thet i meout Cur si veOpt i on slot, which specifiesthe relative delay required
to consider agroup of input strokes complete. At the same time, individual views
may customize certain recognition settings by overriding values that would
otherwise be inherited from the system’s user configuration data. For example, a
view can use ar ecConf i g frame to disable the automatic addition of new words
to the user dictionary.

A view based on the pr ot oRecToggl e system prototype provides another way to
override inherited recognition settings. This view provides a picker that allows the
user to change recognition settings easily. Each view controlled by this picker must
providea_recogSetti ngs slot that the picker sets according to the user’s
current choice of recognition settings. Thevalueinthe _r ecogSet ti ngs sot
overrides values inherited from the system’s user configuration data.

Your application suppliesonly one _r ecogSet ti ngs slot for eachr ecToggl e
view it provides. Because views use parent inheritance to find a_r ecogSet t i ngs
dlot, asingler ecToggl e view and asingle _r ecogSet t i ngs slot can control
the recognition behavior of one view or multiple views, depending on the
_recogSettings sot'spositionin the view hierarchy. For more information, see
“Creating the _recogSettings Slot” beginning on page 10-20.

You can aso provide an optional RecogSet t i ngsChanged method in the

_par ent chain of any view controlled by ther ecToggl e view. If a

RecogSet t i ngsChanged method is provided, ther ecToggl e view sends this
messageto sel f when the user chooses anitem inther ecToggl e picker.Your
RecogSet t i ngsChanged method can perform any application-specific task that
is appropriate; typically, this method reconfigures recognition settings in response
tothe changeinther ecToggl e view's state.

Finally, any view can provide an optional r ecConf i g frame that specifies the
view’s recognition behavior at the local level.

Althoughr ecConf i g frames have thus far been presented as simply an alternate
interface to the recognition system, they are actually used internally by the system
to represent the recognition behavior of each view. When the user writes, draws, or
gesturesin aview, the system buildsar ecConf i g frame that specifies the precise
settings of al the recognizers needed for the view. If you supply ar ecConfi g
frame for the view, ther ecConf i g frame that the system builds is based on the

r ecConf i g frame you have supplied and any recognition-related user preferences

that may apply.

About Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

On the other hand, if the view does not supply ar ecConf i g frame, the recognition
system builds one based on the set of view flags enabled for that view, the contents
of itsdi cti onari es dot (if present) and any recognition-related user preferences
that may apply. Thus, every view that performs recognition is eventually associated
with ar ecConf i g frame that the system uses to perform setup tasks when the
view is opened.

Note that ther ecConf i g frame actually used to configure recognition is the one
that the system builds, not the one that you supply. Ther ecConf i g frame that
you supply isreferenced by the pr ot o dot of ther ecConf i g frame that the
system builds.

Ther ecConfi g frame built by the system is passed to arecognition area, which is
an object used internally by the system to describe the recognition characteristics
of one or more views. Because similar views can share an area, the use of
recognition areas minimizes the reconfiguration of the recognition system required
to respond to changes in views on the screen.

A small number of recognition areas are kept in a cache. You can change the
recognition behavior of aview dynamically by specifying new recognition settings
and invalidating the area cache. The next time the view accepts input, the system
builds a new recognition area reflecting its currently-specified recognition behavior
and the dictionariesit is to use for recognition.

In addition to providing an efficient and flexible means of configuring the
recognition system programmatically, r ecConf i g frames provide support for
future expansion of the recognition system. Ther ecConf i g frame allows
applications to specify recognition configurations in a uniform way that is not
dependent on the use of any particular recognizer engine. Although the Newton
platform currently supports only its built-in recognizers, future versions of the
system may permit the use of third-party recognizer engines.

The system provides several standardr ecConf i g framesthat can be placed in your
view'sr ecConf i g dot or used as a starting point for building your own

r ecConf i g frames. For descriptions of system-supplied r ecConf i g frames, see
“System-Supplied recConfig Frames’ (page 8-18) in Newton Programmer’s
Reference.

In summary, the recognition behavior that aview exhibitsis ultimately determined
by a combination of the following values:

m vauesinherited from the system’s user configuration data.
m valuesintheview'svi ewFl ags andent r yFl ags dots.

m valuesintheview'sdi cti onari es dot whenthevCust onDi cti onari es
flag is set.

m values specified by an optional r ecToggl e view, which may override values
inherited from user configuration data or supply additional values.

About Advanced Topics in Recognition 10-3

CHAPTER 10

Recognition: Advanced Topics
m values specified by an optiona r ecConf i g frame, which may override values

inherited from user configuration data, override values specified by a
recToggl e view, or supply additional values.

ProtoCharEdit Views

The pr ot oChar Edi t system prototype provides a comb-style entry view (or
comb view) that allows the user to edit individual charactersin words easily.

Figure 10-1 Example of pr ot oChar Edi t view

10-4

o B S e

Individual character positions (or cells) in the comb view are delimited by vertical
dotted lines. Each cell that can be edited has a dotted line beneath it to indicate that
it can be changed. The user can edit a character by writing a new character over
one currently occupying a cell; the recognized value of the character isdisplayed in
the cell. When the user taps a cell, it displays a picker containing the best
interpretations of the input strokes. The user can correct the character in that
position by choosing an item from the picker.

The user can delete an individua character by tapping it and then selecting
“Delete” from the picker that is displayed. Alternatively, the user can delete one or
more characters by writing the scrub gesture over one or more cells.

The user can insert a space by tapping on the cell at the position that the new space
isto occupy and choosing Insert from the picker that is displayed.

Alternatively, the user can enter the caret gesture in acell to perform the same
operation. When an insertion takes place in a cell aready occupied by a character,
the comb view shifts that character and those comprising the rest of the word to
theright.

Tapping ablank cell before or after aword in the comb view displays alist of
punctuation characters that may be appropriate for that position.

The recognition behavior of apr ot oChar Edi t view is controlled by values you
supply in an optional t enpl at e dot. If thisdot'svalueisni | , the comb view is
said to be unfor matted because input is not restricted in any way. The recognition
behavior of an unformatted comb view is similar to that of the text-corrector view
provided by the built-in Notepad application: all characters are allowed, insertion
and deletion are supported fully, and spaces are added at the ends of wordsto allow
them to be extended.

About Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

A formatted comb view utilizes atemplate you define which specifies characteristics
of the view’s behavior or appearance. A comb view’s template may specify an

initial value for the string that the view displays, the editing characteristics for each
position in the comb view, and filters that restrict the values recognized in each of
these positions. The template may also define methods for initializing and post-
processing the string displayed by the comb view. These methods may be useful
when the string displayed in the comb needs to be different from the input string or
when an externally-displayed string must differ from itsinternal representation.

When the user taps a character in aformatted comb view, it displaysthe list of
characters specified by its template, if that list contains ten or fewer items. (Note
that this value may change in future platforms.) Otherwise, it displays the list of
top-ranking alternate interpretations returned by the text recognizer.

Ambiguous Characters in protoCharEdit Views

Because there are several characters that are ambiguous in appearance—for
example, the value zero (0) and the letter O, or the value one (1) and the letter L—
the built-in system fonts provide enhanced versions of these characters that
improve their readability. However, continuous use of these characters can be
distracting to the user. Thus, these fonts contain character codes that map to
aternate versions of the ambiguous characters, and the system provides functions
for mapping between the codes for the normal and enhanced characters. For more
information, see the descriptions of the MapAnbi guousChar act er s and
UnMapAnbi guousChar act er s functions under “protoCharEdit Functions and
Methods’ (page 8-47) in Newton Programmer’s Reference.

Deferred Recognition

Deferred recognition is the ability to convert strokes to text at some time other
than when the strokes are first entered on the screen. Views that are to perform
deferred recognition must be capable of capturing ink text or ink. For example, a
view that basesitsr ecConf i g frame on the system-supplied ROM | nkOr Text
frame and uses apr ot oRecToggl e view to configure the recognition system
need not do anything more to provide the deferred recognition feature.

This section describes the user interface to deferred recognition and then provides a
programmer’s overview of this feature.

User Interface to Deferred Recognition

A view that performs deferred recognition uses the same settings as it would for
real-time text recognition: a combination of settings specified by user preferences
and settings specified by the view flags or r ecConf i g frame associated with the
view in which recognition takes place.

About Advanced Topics in Recognition 10-5

CHAPTER 10

Recognition: Advanced Topics

The user can enter unrecognized ink by enabling ink text or sketch ink. Inthis
mode, strokes appear as ink. To convert theink to text, the user double-taps the ink
word; the user can cause multiple words to be recognized by selecting them
beforehand and then double-tapping the selection. The recognition system responds
by inverting the ink word or selection, as shown in Figure 10-2, and returning the
recognized text, which replaces the selection.

Figure 10-2 User interface to deferred recognition, with inverted ink

10-6

10:35 Wed 7/3 # All Notes
E)wed 7s3 OB

Programmer’s Overview of Deferred Recognition

Deferred recognition is available in views based on the cl Edi t Vi ewclassor
cl Par agr aphVi ewviews that support ink text. This feature works with any
amount of input, from asingle letter to afull page of text.

To initiate deferred recognition, the user double-taps the child views that display
the ink to be recognized. The recognized text is added to an edit view asif the user
had just written it. That is, anew cl Par agr aphVi ew child is added, or the
recognized text is appended to anearby cl Par agr aphVi ew. After the recognized
text has been added, the original view containing the sketch ink or theink text is
removed from its edit view parent.

Deferred recognition also invokes the Vi ewAddChi | dScri pt and

Vi ewDr opChi | dScri pt methods of the recognized text and unrecognized ink
views. Words added to nearby paragraphsinvoke Vi ewChangedScr i pt
methods for those paragraphs, updating the t ext dlot in those views; for some
paragraph views, the vi ewBounds dlot is updated as well.

You can passr ecConf i g frames to the global functions Recogni ze,

Recogni zePar a, and Recogni zePol y to implement your own form of
deferred recognition. For more information, see “ Deferred Recognition Functions’
(page 8-89) in Newton Programmer’s Reference.

About Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Compatibility Information

The ReadDomai nOpt i ons function is obsolete. It has been replaced by the
ReadCur si veOpt i ons function.

The AddToUser Di cti onary function is obsolete. It has been replaced by the
AddWor d method of the review dictionary.

Two new dictionary constants, kMoneyOnl yDi ct i onary and
kNunber sOnl yDi ct i onary, provide access to new lexical dictionaries used for
recognizing monetary and numeric values, respectively.

Most lexica dictionaries are no longer locale-specific—aside from afew exceptions,
each lexical dictionary is used for all locales. For detailed information, see
“System-Supplied Dictionaries’ (page 8-16) in Newton Programmer’s Reference.

All of the dictionary information provided by previous versions of system software
isstill present in version 2.0; however, certain dictionary constants now provide a
superset of the information they previously referenced, as follows:

m ThekLast NanesDi cti onary isobsolete. Thisinformation is now included
inthe kShar edPr oper sDi cti onary dictionary.

m ThekLocal Conpani esDi cti onary constant is obsolete.Thisinformation is
now included inthe kShar edPr oper sDi ct i onar y dictionary.

m ThekLocal St at esAbbrevsDi cti onary constant is obsolete. This
information is now included in the kShar edPr oper sDi ct i onar y dictionary.

m ThekDat eLexDi cti onary constant is obsolete. It has been replaced by the
kLocal Dat eDi cti onary constant.

m ThekTi neLexDi cti onary constant is obsolete. It has been replaced by the
kLocal Ti meDi cti onary constant.

m ThekMoneyLexDi cti onary constant is obsolete. This information is now
included inthe kLocal Nunber Di ct i onary dictionary.

m ThekNunber LexDi cti onary constant is obsolete. Thisinformation is now
included inthekLocal Nunber Di cti onary dictionary.

Using Advanced Topicsin Recognition

This section describes how to provide advanced recognition behaviors. It presumes
understanding of conceptual material provided in this and other chapters. Topics
discussed here include

m usingr ecConf i g frames to specify recognition behavior
m changing the recognition behavior of views dynamically

Using Advanced Topics in Recognition 10-7

10-8

CHAPTER 10

Recognition: Advanced Topics

m using pr ot oRecToggl e views to specify recognition behavior
m defining single-letter input areas within aview

m accessing text correction information

m using custom dictionaries for recognition

m manipulating the review dictionary (includes the user dictionary, expand
dictionary, and auto-add dictionary)

m using pr ot oChar Edi t viewsfor correcting text
m using stroke bundles

Using recConfig Frames

This section describes how to use ar ecConf i g frame to specify aview's
recognition behavior. Note that the use of view flagsis generally the best (and
simplest) way to configure views to recognize common input such as words and
shapes. You need not use ar ecConf i g frame unless you require some recognition
behavior that cannot be provided using the view'svi ewFl ags and

di ctionari es dots. For example, the use of ar ecConf i g frameisrequired for
views that restrict recognition of individual charactersto a specified set, or
implement customized forms of deferred recognition.

This section describes the use of r ecConf i g framesfor
m enabling recognizers

m supporting ink text

m fine-tuning recognition options

m specifying the dictionaries used for recognition

A recConf i g frame can be used to specify any set of recognizers and
dictionaries, including combinations not supported by the view flag model;
however, views controlled by r ecConf i g frames are subject to the same
limitations as al views that perform recognition:

m Thetext recognizer (printed or cursive) made available to all viewsis determined
by thevalue of thel et t er Set Sel ect i on slot in the system’s user
configuration data. Individual views cannot override this system-wide setting.

m The system’s ability to save learning datais enabled by the value of the
| ear ni ngEnabl edOpt i on slot in the system’s user configuration data.
Individual views cannot override this system-wide setting.

Donotincludel et t er Set Sel ecti on or | ear ni ngEnabl edOpt i on dotsin
your r ecConf i g frame.

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Creating a recConfig Frame

For any view that isto usear ecConf i g frame, you must supply ar ecConfi g
sot, usually by defining it in your view’'s template. The framein your view’s

r ecConf i g slot must be modifiable; that is, it must be RAM-based. When your
view template suppliesar ecConf i g frame, the view system builds a RAM-based
r ecConf i g frame aong with the view—you need not do anything more to cause
the view to usether ecConf i g frame.

To create your own r ecConf i g frame at run time, you need to call the

Pr epRecConf i g function to create aRAM-based r ecConf i g frame that the
system can use. Although you could obtain similar results by cloning a

r ecConf i g framethat your view template defines, using the Pr epRecConf i g
function is more efficient:

m ThePrepRecConfi g function creates a smaller frame than that obtained by
cloning your view template’'sr ecConf i g frame.

m Theframethat the Pr epRecConf i g function returns can be used asit is by the
recognition system. Any other frame that you place in the view’sr ecConfi g
dot isused by the system to create ther ecConf i g frame actually used by the
view, with the result being the creation of two framesin RAM rather than just one.

m Consistent use of thisfunction to creater ecConf i g frames saves RAM by
permitting similar r ecConf i g framesto share the same frame map.

A function similar to the Pr epRecConf i g function, the Bui | dRecConfi g
function, is provided for debugging use. Do not use the Bui | dRecConfi g
function to create your RAM-based r ecConf i g frame. The argument to the

Bui | dRecConf i g function isthe view itself, rather than itsr ecConf i g frame.
This function builds an appropriate r ecConf i g frame for the specified view,
regardless of whether the view defines one. The system does not use the

r ecConf i g frame that this function returns, however—as stated previoudly, this
frame isfor debugging use only.

IMPORTANT
The contents of thei nput Mask dlotintheview'sr ecConfi g
frame must match the input mask (the recognition-related bits)
provided by the view'svi ewFl ags dot. For more information on
this slot and othersthat ther ecConf i g frame may contain, see
“protoRecConfig” (page 8-36) in Newton Programmer’s
Reference. a

You can base your r ecConf i g frame on one of the system-suppliedr ecConfi g
frames by simply placing the appropriate constant in your view template's
recConf i g dot. Alternatively, you can place in this slot aframe that usesits
_pr ot o dot to reference one of the system-supplied r ecConf i g frames. A third
way to definear ecConf i g frameisto supply all necessary values yourself. The

Using Advanced Topics in Recognition 10-9

10-10

CHAPTER 10

Recognition: Advanced Topics

exact complement of slots and values required is determined by the recognition
features your r ecConf i g frameisintended to supply; for more information,
including complete descriptions of the system-supplied r ecConf i g frames, see
“ System-Supplied recConfig Frames’ (page 8-18) in Newton Programmer’s
Reference.

Onceyou've created aRAM-based r ecConf i g frame, you must cause the
recognition system to useit. This process is described in “ Changing Recognition
Behavior Dynamically” beginning on page 10-17. For a code example showing
how to create ar ecConf i g frame based on one of the system-supplied
prototypes, see “ Creating Single-Letter Input Views’ beginning on page 10-15.

Using RecConfig Frames to Enable Recognizers

To enable or disable recognizers unconditionally, supply appropriate values

for thedoText Recogni ti on, doShapeRecogni ti on, or

dol nkWor dRecogni ti on slotsyour view'sr ecConf i g frame provides. For
descriptions of these slots, see “ protoRecConfig” (page 8-36) in Newton
Programmer’s Reference.

For some operations, you may wish to restrict the recognizers that the user can
enable in aview while still respecting the rest of the preferences indicated in the
system’s user configuration data. The optional slotsal | owText Recogni ti on
and al | owShapeRecogni ti on intheview'sr ecConf i g frame are intended
for use with views having an input mask that isvAnyt hi ngAl | owed. For
complete descriptions of these slots, see “ protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. Note that you can also allow the user to set the values of
these slotsfrom apr ot oRecToggl e view instead of setting them yourself in the
recConfi g frame.

Viewsthat usethe al | owSomethingRecogni t i on slots allow the user to turn on
only the recognizers that you specify while respecting all other user preferences.
Any subset of al | owSomethingRecogni ti on slots can be specified to alow
the user to enable any appropriate combination of recognizers from the

pr ot oRecToggl e view or user preferences.

For example, setting the value of theal | owText Recogni ti on slottotrue
allows the user to enable the text recognizer in the view controlled by the

r ecConfi g framewhilethe doText Recogni ti on dot in the system’s user
configuration data holds anon-ni | value.

Returning Text, Ink Text or Sketch Ink

This section discusses the use of r ecToggl e views with system-supplied view
classesand r ecConf i g framesto provide views that can display text, ink text, or
sketch ink.

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Sketch ink, like shapes, is displayed only in views based on thecl Edi t Vi ew
class. Asarule of thumb, consider sketch ink and ink text to be mutually exclusive
when configuring recognition in views; for best results, configure your input view
to recognize only one of these two data types.

Views based on thecl Edi t Vi ewclass handle sketch ink and ink text automatically.
For other views, the system invokes the view's Vi ewl nkWor dScri pt or

Vi ewRawl nkScri pt method when ink arrives. For more details, see the
descriptions of these methods in Newton Programmer’ s Reference.

The system-supplied ROM r ¢l nkOr Text constant provides a ready-to-use

r ecConf i g frame that allows views based on the cl Par agr aphVi ewclassto
contain ink text in addition to normal text. To use thisr ecConf i g frameto create
aview that supportsink text, you'll need to take the following steps:

m Create aview template that protos from the cl Par agr aphVi ewclass.

m Inyour view template, create ar ecConf i g slot that holds the
ROM r cl nkOr Text constant. For more information, see “ Creating a recConfig
Frame” beginning on page 10-9.

m Provideapr ot oRecToggl e view that allows the user to choose text or ink
text settings; if your application provides a status bar, you need to provide the
recToggl e view as one of its children. For more information, see “Creating
the recToggle View” beginning on page 10-19.

m Providea_recogSetti ngs dot at an appropriate position in ther ecToggl e
view’'s_par ent chain. For more information see “ Creating the _recogSettings
Slot” beginning on page 10-20.

Normally, the input view tries to recognize input using all currently enabled
recognizers. If no recognizers are enabled or if recognition fails for some reason—
for example, due to messy input or some sort of error—then the view system
converts the input strokes into ink. The dol nkWor dRecogni ti on slotin the
input view’sr ecConf i g frame specifies the kind of ink that the system creates
from the input strokes.

When thedol nkWor dRecogni ti on slot holdsanon-ni | value, the system
returnsink text; when this slot holdsthe ni | value, the system returns sketch ink.
Thisslot isdescribed fully in “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. Table 10-1 on page 10-12 summarizes the kinds of data
returned by the recognition system when recognition failsin an edit view or
paragraph view that is controlled by ar ecToggl e view.

Note that when the input view is set to recognize shapes, the smoothed and cleaned
up ink that is returned may beink text but is more likely to be a curve shape. Aside
from the failure of shape recognition, the only time raw ink is returned to the view
iswhen its associated r ecToggl e isset to “ Sketches'.

Using Advanced Topics in Recognition 10-11

10-12

CHAPTER 10

Recognition: Advanced Topics

Table 10-1 Recognition failure in paragraph or edit view controlled by r ecToggl e

Recognizer enabled

by r ecToggl e view Returns on failure
Text Ink text

Ink text Ink text (does not fail)
Shapes Sketch ink, smoothed
Sketch ink Nothing (occurs rarely)

Asan alternative to using ar ecConf i g frame to provide support for ink text, you
can set your ¢l Par agr aphVi ewview’svAnyt hi ngAl | owed mask. Although
thisistruly the easiest way to support ink text, it isless-preferred because it
provides you the least control over the view’s recognition behavior. A variation on
this approach that may provide better performance is to enable an appropriate set
of view flags rather than setting the vAnyt hi ngAl | owed mask. The best way to
support ink text, however, isthrough the use of ar ecConf i g frame that provides
appropriate values.

Regardless of the approach you take to provide ink text support, you should test
your view's recognition behavior under both text recognizers, and under any other
configurations your r ecToggl e view provides.

To support both ink text and sketch ink in asingle view, or to take other application-
specific action in response to changes in the state of ar ecToggl e view, your view
can provideaRecogSet t i ngsChanged method that reconfigures the its
recognition behavior dynamically. For more information, see “ Changing
Recognition Behavior Dynamically” beginning on page 10-17.

For more information on pr ot oRecToggl e views, see“Using protoRecToggle
Views’ beginning on page 10-19. For detailed descriptions of r ecConf i g frames,
see “protoRecConfig” (page 8-36) and “ System-Supplied recConfig Frames”
(page 8-18) in Newton Programmer’s Reference.

Fine-Tuning Text Recognition

To fine-tune either text recognizer’s interpretation of input strokes, you can add the
optional speedCur si veOpti on, ti neout Cursi veOpti on, and

| ett er SpaceCursi veOpti on sotstother ecConf i g frame. These
mechanisms for controlling recognizer behavior may affect various recognizers
differently. For more information, see “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. For adiscussion of thedi ct i onari es dot, see“Using
Your RAM-Based Custom Dictionary” beginning on page 10-28.

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Manipulating Dictionaries

You can control the view’s use of dictionaries by including in your r ecConfi g
framethedi cti onari es,rcSingl eLetters,or

i nhi bi t Synbol sDi cti onary dotsas appropriate. These slots are described in
“protoRecConfig” (page 8-36) in Newton Programmer’s Reference.

Single-Character Input Views

When recognizing single characters, the recognizer sometimes has difficulty
determining individual characters baseline or size; for example, it can be difficult
to distinguish between an upper case P and alower case p when relying strictly on
user input. If you know where the user will be writing with respect to a
well-defined baseline, you can provideanr cBasel nf o orr cGri dl nf o frameto
specify to the recognition system precisely where characters are written.

The rcBaselnfo Frame

Ther cBasel nf o frameis especially valuable in improving the recognition of
single characters, for which it is sometimes difficult to derive baseline or letter-size
values from user input.

Figure 10-3 depicts the editing box that an r cBasel nf o frame defines.

Figure 10-3 Single-character editing box specified by r cBasel nf o frame

4 Dbi gHei ght
77777777777 ¢t smal | Hei ght

base

y descent

The NewtonScript code used to create the baseline information for the editing box
shown in Figure 10-3 looks like the following example.

rcBaselnfo : = {
base: 140,// gl obal y-coordinate of baseline
smal | Hei ght : 15,// height of a | ower case x
bi gHei ght: 30, // hei ght of an upper case X
descent: 15,// size of descender bel ow baseline

}

Using Advanced Topics in Recognition 10-13

CHAPTER 10

Recognition: Advanced Topics

To obtain the best performance and to conserve available memory, create your
r cBasel nf o frame by cloning the frame provided by the

ROM _canoni cal Basel nf o constant. Store your frame in a slot named

r cBasel nf o inyour input view'sr ecConf i g frame.

For adetailed description of ther cBasel nf o frame, see “Data Structures Used in
recConfig Frames” (page 8-24) in Newton Programmer’s Reference.

The rcGridInfo Frame

Ther cG i dl nf o frame allows you to define the position of one or more single-
letter input areas within a single input view. Its purpose is to facilitate the creation
of views having multiple single-letter input areas, such as might be used by a
crossword puzzle application. Providing a separate view for each single letter input
areawould be extremely inefficient; theuse of anr cGri dI nf o frame alowsyou
to draw one view that provides theillusion of many input views, by defining to the
recognizer the size of an individual input area and the spacing between input areas.

Figure 10-4 depicts an example of the grid that anr cGr i dI nf o frame defines.
The boxes shown in this figure are not views themselves, just lines on the screen
that indicate the location of the input areas to the user. The recognition behavior is
provided by the view that draws these boxes; ther cGri dI nf o frame helpsthe
recognizer determine the precise location of user input, and, consequently, where to
display its output. By providing the proper slots, you canuseanr cG i dl nf o
frame to define arow, column, or matrix (as shown in the figure) of single-letter
input areas within aview.

Figure 10-4 Two-dimensional array of input boxes specified byr cGr i dI nf o frame

10-14

.....§..............> boxRi ght
...S.......S..> boxLeft

: v
: boxTop :
: ySpace

v v
boxBot t om

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

If you provide agrid in which the user isto write characters or words, you need to
useanr cG i dl nf o frame to define the grid to the text recognizer. For example,
the pr ot oChar Edi t system prototypeusesanr cG i dl nf o frame internaly to
define the input areas (cells) in the comb view it provides.

The recognizer usestheinformationinanr cG i dl nf o frame to make character-
segmentation decisions. You can usether cG i dl nf o frame in conjunction with
anr cBasel nf o frame to provide more accurate recognition within boxesin a
single view. Recognition in the most recently used grid box begins as soon as the
user writes in anew box in the grid.

The NewtonScript code used to create the grid shown in Figure 10-4 looks like the
following example.

rcGidlnfo := {
boxLeft: 100,// x coordinate of left of top-left box
boxRi ght:145,// x coordinate of right of top-left box
xSpace: 55,// x distance from boxLeft to boxLeft
boxTop: 50,// y coordinate of top of top-left box
boxBottom 95,// y coordinate of bottom of top-left box
ySpace: 55// y distance from boxTop to boxTop

s

To obtain the best performance and to conserve available memory, create your
rcGri dI nf o frame by cloning the frame provided by the

ROM canoni cal Char Gri d constant. Store your frame in aslot named
rcGidl nfoinyourview'srecConfi g frame.

For a detailed description of ther cGri dI nf o frame, see “Data Structures Used in
recConfig Frames’ (page 8-24) in Newton Programmer’s Reference

Creating Single-Letter Input Views

The following code fragment creates a single-letter input view’sr ecConf i g
frame. Thisframe, whichincludesr cBasel nf o andr cGri dI nf o frames, is
based on the ROM r cSi ngl eChar act er Conf i g frame supplied by the system.

/1l specify box (or horizontal array of boxes)
/1 into which character(s) are witten.

myView : = {
recConfig: ROMrcsingl echaracterconfig,
.}
/1 height of a |owercase letter
constant kSmal | Hei ght := 11;

Using Advanced Topics in Recognition 10-15

10-16

CHAPTER 10

Recognition: Advanced Topics

/'l indent fromleft of viewto first letter
const ant kBoxl ndent := 4;

/1 width of a single box in the grid
constant kCel | Wdth : = 24;

/] create editable recConfig frane and set initial values
myVi ew. Vi ewSet upDoneScri pt : = func()
begin
/1 prebuild RAM copy that we can change
recConfig : = PrepRecConfig(recConfig);

/1 set these same flags in nyVi ew vi ewFl ags
recConfig.input Mask : =
vC i ckabl e+vGest ur esAl | owed+vCust onDi cti onari es;

/1 get global bounds of enclosing view

| ocal box := :d obal Box();
/1 calc left edge of boxes in grid
local leftX := box.left + kBoxlndent;

/'l specify baseline and expected |etter height
recConfig.rcBaselnfo : =

{

/1 baseline for witing

base: box.top + viewli neSpaci ng,

/1 height of a small letter
smal | Hei ght: kSmal | Hei ght ,
}

[l specify horizontal info for an array of boxes
recConfig.rcGidlnfo : =

{

/1 left edge of first box

boxLeft: |eftX,

/1 right edge of first box

boxRi ght: leftX + kCel | Wdth,

/1 width to left edge of next box

xSpace: kCel | Wdt h,

b
/] use new settings

Pur geAr eaCache();
end;

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

The Pur geAr eaCache function causes the recognition system to adopt the
settings that the r ecConf i g frame specifies. This function is explained in more
detail in the next section, “Changing Recognition Behavior Dynamically.”

Normally, you need not call the Pur geAr eaCache function when specifying a
recConf i g frame as part of aview’s template. However, you must call this
function to changear ecConf i g frame at run time. For example, the previous
code fragment cal culates values determining the size and location of the grid view
according to the size of the enclosing parent view; thus, the parent view must
aready exist before the grid view'sr ecConf i g frame can be constructed.
Therefore, the grid view'sr ecConf i g frameis constructed from within the

Vi ewSet upDoneScri pt method of the parent view that encloses the grid view.
At thetimethevi ewSet upDoneScri pt method is executed, the system has
aready used ther ecConf i g frame supplied by the enclosing view's template. In
order to cause the system to use the new r ecConf i g frame—the one that defines
the grid view—the Vi ewSet upDoneScr i pt method must call the

Pur geAr eaCache function.

Changing Recognition Behavior Dynamically

To change a view’s recognition behavior dynamically, you must indicate the view's
new configuration (by setting view flags, changing the view’sdi cti onari es

dot, or defining ar ecConf i g frame) and make the recognition system use the
new settings. The system supplies three functions that you can use to make the
system adopt new recognition settings; each is appropriate for a particular situation.

The function you use to adopt new settings depends on whether you are changing
the recognition behavior of al views or just changing the behavior of individual
views. Changes to user preferences for recognition affect the recognition behavior
of al views. On the other hand, changing the value of asingle view’svi ewFl ags
orrecConf i g dot affects that view only.

Note
It is recommended that you do not change any user settings
without confirmation from the user. o

To change the recognition behavior of a single view dynamically, use the global
function Set Val ue to change the value of the view’'svi ewFl ags slot or
recConf i g dot. In addition to setting the new value, the Set Val ue function
invalidates the area cache, which is a buffer that stores a small number of
recognition areas. Your changes to recognition behavior are incorporated when the
recognition areafor your view isrebuilt.

Using Advanced Topics in Recognition 10-17

10-18

CHAPTER 10
Recognition: Advanced Topics

A WARNING

The Set Val ue function may not be appropriate for

setting theent r yFI ags slot in views that do not

have avi ewFl ags dlot. In these kinds of views, set the

value of theent r yFl ags dlot directly and then call the

Pur geAr eaCache function to invalidate the area cache. If you
have changed values in the system’s user configuration data, call
the ReadCur si veQpt i ons function instead of the

Pur geAr eaCache function. a

You can also use the Pur geAr eaCache function to invalidate the area cache. This
function provides an efficient way to force the reconstruction of recognition areas
after you've changed the values of dotsin multiple views. Note, however, that this
function does not resynchronize the recognition system with changes in the
system’s user configuration data. Do not call Pur geAr eaCache to effect changes
in user preferences for recognition.

User preferences that affect recognition behavior are saved as slot valuesin the
system’s user configuration data. Some of these values, such as that of the

ti meout Cur si veQOpt i on dot, affect all views; others affect only views that set
the vAnyt hi ngAl | owed mask. For detailed information about the slot you need
to set, seeitsdescription in “ System-Wide Settings’ (page 8-2) in Newton
Programmer’s Reference.

When setting user preferences for recognition, do not modify the system’s user
configuration data directly. Instead, use the Get User Confi g and
Set User Conf i g global functions to manipulate user configuration values.

After calling the Set User Conf i g function to set one or more new values, you
must call the ReadCur si veQpt i ons function to cause the recognition system to
use the new values. Do not call the Pur geAr eaCache function after changing
valuesin the system’s user configuration data—this function does not even test for
changes to user preferences. Because the ReadCur si veOpt i ons function
invalidates the area cache, you need not call the Pur geAr eaCache function after
calling the ReadCur si veQpt i ons function.

IMPORTANT
Theview'svi ewFl ags slot must contain the same recognition
flagsasthei nput Mask dotinitsr ecConfi g frame. Certain
view system operations depend on the vi ewFl ags slot being set
up properly. a

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Using protoRecToggle Views

A pr ot oRecToggl e view changes the recognition behavior of views by overriding
values inherited from the system’s user configuration data. Note that valuesin the
view'sr ecConf i g frame override settings specified by thepr ot oRecToggl e view.

The pr ot oRecToggl e view is usually used with cl Edi t Vi ewviews that set the
vAnyt hi ngAl | owed mask or cl Par agr aphVi ewviews that support ink text.

Take the following stepsto use apr ot oRecToggl e view.

m Createther ecToggl e view in NTK. If your application has a status bar, you
need to provide ther ecToggl e view as achild of the status bar.

m Configure input views appropriately to support the choices your r ecToggl e
view provides. To do so, you need to provide an appropriater ecConf i g frame
or set thevAnyt hi ngAl | owed mask for each view that is to be controlled by
ther ecToggl e view.

m Providea recogSettings dotat aplaceinthe par ent chainthat allows
each view controlled by ther ecToggl e view to inherit this dot.

You can take the following optional stepsto customize your r ecToggl e view's
appearance or behavior:

m Providea_r ecogPopup slot specifying the items to be included in the
pr ot oRecToggl e picker.

m Implement aRecogSet t i ngsChanged method inthe _par ent chain of any
view controlled by ther ecToggl e view.

The next several sections describes these steps in detail.

Creating the recToggle View

To createar ecToggl e view, you'll first need to sketch it out in the NTK layout
editor. When you do so, you'll notice that regardless of where you draw it, the view
will appear in the upper-left corner of the layout. Thisis becausether ecToggl e
view isintended to be displayed as a child of the status bar in applications that
have one.

When arecToggle view is achild of your application’s status bar, the view system
positionsther ecToggl e view on the status bar automatically, ignoring the value
of ther ecToggl e view template’'svi ewBounds slot in the process. When the
recToggl e view isnot a child of the status bar, you must create avi ewBounds
slot for it and set appropriate values for this slot.

Using Advanced Topics in Recognition 10-19

10-20

CHAPTER 10

Recognition: Advanced Topics

Configuring Recognizers and Dictionaries for recToggle Views

Regardless of whether you usear ecConf i g frame or view flags to specify your
view’s recognition behavior, the view must be capable of enabling recognizers and
dictionaries appropriate for each choiceinther ecToggl e picker. If your view
does not support all of the recognition settings provided by the default r ecToggl e
view, you need to providea_r ecogPopup slot that restricts the choices appearing
in the picker that ther ecToggl e view displays. For more information, see
“Providing the _recogPopup Slot” beginning on page 10-22.

If you areusing ar ecConf i g frameto specify your view’s recognition behavior,
you can place the ROM r cPr ef sConf i g constant in your r ecConf i g frame's
_pr ot o slot to provide ageneral-purpose r ecConf i g frame that allows
recognition of all forms of pen input. Note that you must also enable recognition
behavior and dictionaries as appropriate in order to produce useful behavior.

Creating the _recogSettings Slot

Applicationsthat usear ecToggl e view must providea_r ecogSet ti ngs slot
inaview that is a parent to both ther ecToggl e view and the input view it
controls. Your view template should specify an initial value of ni | for thisslot.
Each time the user chooses an item from the r ecToggl e picker, it savesavalue
representing its current setting in this slot. You can preserve the user’s recognition
settings by saving the contents of this slot when your application closes and
restoring this slot’s value when your application reopens.

When asingler ecToggl e view controls recognition for all of your application’s
views, the_recogSet ti ngs dot can residein the application’s base view, as
shown in Figure 10-5.

This approach can be used to synchronize the recognition behavior of multiple
views; for example, the built-in Notes application usesasingler ecToggl e view
to control the recognition behavior of al currently visible notes. All of the views
controlled by asingler ecToggl e view must provide the same set of recognizers
and dictionaries.

When each of several r ecToggl e views must control individual input views, you
must providea_r ecogSetti ngs dot for eachr ecToggl e view at an
appropriate placein the _par ent chain of each view that performs recognition, as
shown in Figure 10-6.

Using Advanced Topics in Recognition

CHAPTER 10

Recognition: Advanced Topics

Figure 10-5

Input Strokes

O recognized as

6‘ recognized as

6‘ recognized as

appBase
nyRecToggl e

Figure 10-6

Input Strokes

6\ recognized as
O recognized as
(i\ recognized as

One recToggl e controls all views

One RecToggle For Three YViews

.
9
.

OB

3]

Each ¥Yiew Has Own RecToggle

nriewrl

Each r ecToggl e view controls a single input view

recToggl el

recToggl e2

riew3

recToggl e3
—— appBase

Using Advanced Topics in Recognition

10-21

10-22

CHAPTER 10

Recognition: Advanced Topics

When the view receives input, it uses parent inheritance to find configuration
information. If a_r ecogSet t i ngs dot existsintheview’s _par ent chain, the
view uses the value of this slot, along with values supplied by an optional

r ecConf i g frame and values inherited