
Power Macintosh: Run Time Environment (3/95)

Article Created: 10 March 1994
Article Reviewed/Updated: 6 March 1995

TOPIC ---

This article provides a technical description of the Run Time Environment and
the switch from the 680x0 segment loader to the new Code Fragment Manager.

DISCUSSION --

A run-time environment is a set of conventions that determine how code and data
are loaded into memory and managed. The PowerPC run-time environment is
significantly different from the one provided in 680x0-based Macintosh System
Software. Fortunately, this change is for the better. The most significant
change is the use of fragments to organize code and data in memory. Fragments
can be an application, import library (such as system software), or extension.
Fragments provide the following benefits:

• Fragments let software in import libraries be easily shared with other
programs.

• Fragments provide a simplified means for all software components to address
global data. With 680x0 systems, it was provided only for applications.

• The use of fragments is one of the elements that allow future modernization of
the Macintosh operating system. It lets new system features such as a
microkernal be easily implemented.

Fragments
=========

A fragment is a method of organizing code and data. Fragments can loosely be
categorized into three areas:

• An Application is a fragment launched by the user.

• Extensions are fragments which extend the capabilities of other fragments.

• Import library -- These fragments can be shared with other fragments. System
software is an example of this type of fragment. Since this fragment can be
shared, an import library is also referred to as a shared library. In addition,

Tech Info Library

since import libraries are linked dynamically at application launch time (that
is, not when the application was created or installed), they are also referred
to as dynamically linked libraries.

At application launch time, the Code Fragment Manager makes sure all the
necessary fragments are loaded to memory and prepared for execution. This
manager uses the Code Fragment Loader to perform the loading into memory.

Fragment Storage
================

The physical storage for a fragment is called a container. A container can be
any logically contiguous memory location such as a data fork of a file,
Macintosh ROM, or a resource.

PowerPC executable code is stored in the data fork of the application file. A
'cfrg'0, is added to the resource fork to indicate that this application is a
PowerPC application. In contrast, 680x0 applications place executable code as
'CODE' resources in the resource fork.

This arrangement of code and resources allows the creation of a single
application that can run on both 680x0- and PowerPC-based Macintosh computers.
By combining the two structures together, you get what is called a fat
application.

Fat Applications

If a fat application is executed on a 680x0-based Macintosh computer, the system
software ignores the 'cfrg'0 resource because it is an unknown type and loads
just the 680x0 'CODE' resources. If executed on a Power Macintosh, the system
software recognizes the 'cfrg'0 resource and loads the PowerPC code from the
data fork.

A fat application is very useful when supporting mixed 680x0 and PowerPC
environments. However, it may not be desirable to have a fat application. For
example, there may be cases where the 680x0 performance is insufficient to run
the application. In this instance, a 'CODE' resource should be installed so when
the PowerPC-only application is run on a 680x0 system, a dialog box shows up to
explain the situation.

A developer can distribute a single fat application. With Installer 4.0, the
user has the option of installing only PowerPC or 680x0 executable application
or both.

Import Library
==============

An import library (shared library or dynamically linked library) makes
applications be smaller. Since import code is loaded dynamically at application
launch time, this code does not have to be part of the application. If only one
application utilizes this library, there is little advantage unless the import

library is stored in ROM (like system software).

The big advantage of an import library is when multiple applications utilize the
same import library since a library is loaded into memory only once. Thus,
several applications can have access to the library, without each having to have
the RAM overhead to support the functionality.

In addition, centralizing functionality lets updates be made easily. By changing
only one set of code, many applications are updated simultaneously.

An import library can be created for such sharable functions such as a spell
checker. In addition, it can be used to support infrequently used application
functions. The Code Fragment Manager can load these functions on demand after
application launch. This results in smaller RAM usage and quicker launching.

Memory Organization
===================

The organization of memory in the PowerPC run-time environment is reasonably
similar to the 680x0 environment. The system partition occupies the lower memory
addresses while applications take the remaining space starting at the higher
memory addresses. As with the 680x0 application partition, the Process Manager
allocates space for a stack, heap, and global variable space.

The main difference between the PowerPC and 680x0 memory organization is the
location of an application's code section and global variables. This difference
varies depending on whether the Power Macintosh has virtual memory turned on or
not.

In 680x0 environment, virtual memory uses a single monolithic file on a single
volume as backing store. This backing store is mapped to a virtual memory
address space. Its size is set via the Memory Control Panel. Unused pages of
memory are written to this backing store and loaded into main memory as needed.

This backing store is necessary because the Resource Manager is not re-entrant.
Since 68K code is found in code resources in the resource fork of an
application, it is accessed by the Resource Manager. However, since it is not
re-entrant, the manager cannot be accessed at an interrupt level. Therefore when
a page fault occurs, the code must be written to the system wide backing file
because it cannot be retrieved from its original location.

A backing store sometimes prolongs the launch of an application. This occurs
when an application’s code is loaded into main memory only to be immediately
written out to the backing store file.

This virtual memory delay is eliminated by the use of a scheme called file
mapping. The Virtual Memory Manager uses the data fork of the application as the
paging file. The entire code fragment is mapped to logical address space.
Assuming the application code does not change (this is a guideline), it can be
presumed to be read-only. As such, only the needed portions of code are actually
loaded into physical memory.

NOTE: This file mapping only applies to native applications. These applications
have code stored in the data fork.

As a result of this file paging scheme, native applications have a special note
attached to their Get Info boxes. At the bottom of Get Info window, there is a
message indicating that if virtual memory is turned on, the application’s RAM
requirements change.

The same application's memory requirement changes when Virtual Memory is turned
on (which is indicated in the note). This change in memory requirements is made
automatically by the system.

If virtual memory is not turned on, code is loaded into the application heap.
The Finder and Process Manager will automatically expand the memory as
necessary. This is similar to the 680x0 run-time environment.

Article Change History:
06 Mar 1995 - Added keyword; made multiple technical updates.
11 May 1994 - Changed Title to better reflect the article.
21 Mar 1994 - Made various corrections to the Fragment section.

Support Information Services
Copyright 1994-95, Apple Computer, Inc.

Keywords: kppc,kalley

==

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

14865Tech Info Library Article Number:

