
Super Serial Card: Using with Machine Language (12/96)

Article Created: 22 September 89
Article Reviewed/Updated: 16 December 1996

TOPIC ---

This article describes assembly language addressing methods for the 6502 and
6551 microprocessors thruogh the Super Serial Card.

DISCUSSION --

The 6502 does a false read to the current page. This is inherent in the 6502
design. A false read occurs during a read to memory. The 6502 will hold the
target address + 1 line open after it accesses the target address. This does not
alter the contents of the address but can affect a memory-mapped I/O device that
is toggled by the address line.

The false read does not affect the Super Serial Card as none of the card's
functions are set when the address line is held open by the false read. However,
for good programming to an I/O device, where false reads could toggle a
function, you should use the indirect indexed-addressing mode with the address
for your indirect accesses in the zero page.

The following example is available in the Tech Info Library and uses the
absolute, indirect-addressing method; it has been modified here as an example of
indirect, indexed-addressing. The program uses zero-page addresses $FA and $FB,
because these are generally unused by both DOS and BASIC. See pages 74 and 75 of
the "Apple II Reference Manual" for a map of the zero-page locations.

Super Serial Card: Accessing It Through Machine Language
--
Although Apple's Super Serial Card can be used from Applesoft BASIC, it is often
desirable to use machine language to increase the speed with which characters
are sent and received. The assembler program below illustrates a method of
communicating with another computer through the Super Serial Card. You may use
this routine as a starting point for your own program.

On page 291 of the "Apple IIe Reference Manual" and on pages 261 to 265 of the
Apple IIc Reference Manual, there are lists of the registers and entry points
used by routines resident in the Super Serial Card. The equates in the program
below use these locations, as well as input/output hooks found in the Apple II
family of computers.

Tech Info Library

The initialization routine (INIT) stores the address of the Super Serial Card's
initialization routine in CSW (the Apple II monitor character output hook). This
activates the card for output by jumping to COUT. Following this, DOS or ProDOS
hooks are reinstalled.

The OUTput routine checks the 6551 status port bit 4. If this is equal to zero,
the previous character has not yet been sent, so we must check the status byte
again until that register is clear. When the value in bit 4 becomes one, the
6551 is ready to send another character. To do this, store the data in the
transmit register (TDREG) of the chip.

Bit 3 of the status port is checked by the INput routine. If this bit is zero,
the program either loops continuously or returns to the calling program,
depending on the state of the return flag found in location $FF. If bit 3 is
one, a character is waiting at the input port, and the character is then read
from the read register (RDREG) of the 6551.

The DEMO portion of this program calls the INIT routine, and sends each letter
of the alphabet to the connected device. After each character is sent, the
program waits to see if a response has been received from the external device.
If a character is waiting, the program ends.

Assembly Language Source Code Demo

Here is a demo of accessing the Super Serial Card with Assembly Language.

 ORG $2000
 COUT EQU $FDED ; CHARACTER OUT IN MONITOR
 CSWL EQU $36 ; OUTPUT HOOK
 CSWH EQU $37
 WAIT EQU $FCA8 ; MONITOR ROUTINE TO WAIT
 BASELO EQU $FA ; ZERO PAGE INDEX ADDRESS FOR INDIRECT ADDRESSING
 BASEHI EQU $FB ; THE TARGET ADDRESS IS STORED IN FA AND FB
 IO EQU $C0 ; IO PAGE HIBYTE ADDRESS THIS GOES IN BASEHI
 ;
 ; SSC EQUATES
 ;

 DIPSW1 EQU $81 ; +N0 DIPSWITCH BLOCK 1
 DIPSW2 EQU $82 ; +N0 DIPSWITCH BLOCK 2
 TDREG EQU $88 ; +N0 6551 DATA REGISTER
 RDREG EQU $88 ; +N0 6551 DATA REGISTER
 STATUS EQU $89 ; +N0 6551 STATUS REGISTER
 RESET EQU $89 ; +N0 6551 SOFTWARE RESET
 COMMAND EQU $8A ; +N0 6551 COMMAND REG
 CONTROL EQU $8B ; +N0 6551 CONTROL REG
 ;
 START JMP DEMO ; SKIP AROUND ALL THE SUBROUTINES
 ;
 ; USE THE SSC FIRMWARE TO INITIALIZE THE 6551.

 ;
 INIT LDA CSWL ; STORE THE CURRENT CSW
 PHA ; SO THAT WE DO NOT DISCONNECT
 LDA CSWH ; DOS OR ProDOS
 PHA
 LDA #$00 ; STORE $Cs00 IN CSW
 STA CSWL
 STX CSWH ; THIS ALREADY CONTAINS $Cs
 LDA #$00
 JSR COUT ; JUMP TO COUT TO INIT THE CARD
 PLA
 STA CSWH ; RESTORE THE DOS OR ProDOS
 PLA ; HOOKS AND THEN RETURN
 STA CSWL
 RTS
 ;
 ; OUTPUT A CHARACTER TO 6551
 ;
 OUT PHA ; STORE DATA ON STACK
 LDA #STATUS ; GET THE STATUS ADDRESS
 STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
 OLP LDA (BASELO),Y ; CHECK BIT 4 OF STATUS BYTE
 AND #$10 ; TO SEE IF IT'S OK TO SEND
 BEQ OLP ; CHARACTER WAITING TO GO OUT
 LDA #TDREG ; ADDRESS FOR TRANSMIT
 STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
 PLA ; GET DATA BACK FROM STACK
 STA (BASELO),Y ; AND OUTPUT THE CHARACTER
 RTS
 ;
 ; INPUT A CHARACTER FROM 6551
 ;
 IN LDA #STATUS ; GET THE STATUS ADDRESS
 STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
 LDA (BASELO),Y ; CHECK STATUS
 AND #$08 ; BIT 3 OF STATUS
 BEQ INTST ; NO CHAR WAITING TO BE RECEIVED
 LDA #RDREG ; GET THE READ ADDRESS
 STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
 LDA (BASELO),Y ; GET THE INPUT FROM 6551
 RTS
 INTST LDA $FF ; CHECK RETURN FLAG
 BNE IN ; IF NOT 0 THEN WAIT FOR INPUT

 RTS ; IF ZERO, DON'T WAIT
 ;
 ; BEGIN THE DEMO PROGRAM
 ;
 DEMO LDY #$10 ; Y CONTAINS $s0 - DEMO USES SLOT 1
 LDX #$C1 ; LOAD X WITH $Cs
 JSR INIT ; INIT THE CARD
 LDA #IO ; HIBYTE ADDRESS C0 FOR IO ACCESS
 STA BASEHI ; STORE IT IN ZERO PAGE AS HIBYTE OF ADDRESS

 LDA #$FF ; SET RETURN FLAG FOR INPUT
 STA $FF ; FF MEANS WAIT FOR CHAR
 JSR IN ; INPUT A CHARACTER - SEE ABOVE
 OLOOP LDX #$41 ; OUTPUT THE ASCII CODES
 OLP1 TXA ; FROM A-Z TO THE SSC. IT WILL STOP
 JSR OUT ; WHEN THE SSC RECEIVES A CHAR.
 LDA #$80 ; DELAY BETWEEN CHARACTERS
 JSR WAIT ; TO ALLOW TIME FOR INPUT.
 LDA #$00
 STA $FF ; RETURN IF NO CHARS WAITING
 JSR IN ; CHECK FOR A CHARACTER
 BNE ALLDONE ; THEY SENT SOMETHING - WE END
 INX
 CPX #$5B ; THE LETTER 'Z'
 BNE OLP1
 LDA #$0D
 JSR OUT ; SEND A CARRIAGE RETURN
 JMP OLOOP ; BEGIN THE ALPHABET AGAIN
 ALLDONE RTS ; END ROUTINE

Article Change History:
16 Dec 1996 - Reviewed for technical accuracy, revised formatting.

Copyright 1989-96, Apple Computer, Inc.

Keywords: <None>

==

This information is from the Apple Technical Information Library.

19961218 09:46:46.00

4435Tech Info Library Article Number:

