
HW 13 - Macintosh Portable ROM Expansion 1 of 9

Hardware

New Technical Notes

Developer Support

ð
®Macintosh

HW 13 - Macintosh Portable ROM Expansion
Hardware

Written by: Dennis Hescox October 1989

This Technical Note explains the practice of and theory behind compatible use of the expansion
ROM in the Macintosh Portable.

Due to the unique nature of the Macintosh Portable, developers now have the ability to add
ROM to the Macintosh. To provide for compatible shared use of this ROM space with Apple
and other developers, this Note describes the feature and suggests methods of shared
implementation.

Address Space

The Macintosh Portable contains 256K of processor ROM, which is fundamentally the same as
the ROM in the Macintosh SE. This ROM is located at the low end of a 1 MB ROM space.
With an expansion card, one can either completely replace the 1 MB ROM or simply add an
additional 4 MB of ROM. The original 1 MB of address space is reserved for use by Apple,
but the additional 4 MB address space is available for third-party developers.

Apple reserved ROM space is located from $90 0000 through $9F FFFF. You can replace this
ROM space with an expansion board, thus overriding these ROMs; however, if you override
these ROMs your machine will no longer work with most applications. This ability to override
the original ROMs is intended for Apple in the event that a ROM upgrade is ever necessary for
the Macintosh Portable. Developers should use the 4 MB ROM address space from $A0 0000
through $DF FFFF, which is illustrated in Figure 1, for expansion.

Since Apple could provide a ROM upgrade (on a ROM expansion board), we recommend that
developers use a standard 32-pin DIP socketed ROM part for any expansion board. Following
this recommendation ensures that the user will never have to choose between an Apple ROM
upgrade and a third-party expansion board, since Apple could provide sockets for third-party
ROMs if we were to produce such an upgrade.

Macintosh Technical Notes

2 of 9 HW 13 - Macintosh Portable ROM Expansion

Hardware

Reserved Hardware

PDS ROM

ROM

Expansion

System ROM

RAM

Expansion

RAM/ROM Overlay

$100 0000

$F0 0000

$E0 0000

$D0 0000

$C0 0000

$B0 0000

$A0 0000

$90 0000

$80 0000

$70 0000

$60 0000

$50 0000

$40 0000

$30 0000

$20 0000

$10 0000

$00 0000

Figure 1–Macintosh Portable Memory Map

Expansion ROM Board

If Apple were to produce an expansion ROM board for an upgrade, it would have the following
characteristics. Side one would contain four 32-pin ROM sockets compatible with 128K x 8
bit or 512K x 8 bit ROMs, a dip switch for choosing between 128K or 512K socket address
sizes, and appropriate decoupling capacitors. Side two would contain Apple’s expansion
ROMs and any additional circuitry. This design implies that developers would be able to use at
most either 512K or 2 MB of the total 4 MB expansion space.

When designing your own expansion board, remember that it must contain circuitry for
decoding, controlling, and buffering, and it should use CMOS, since the Macintosh Portable
restricts ROM expansion boards to a maximum of 25ma. The number of wait states inserted
depends upon the DTACK generated by your board, which connects to the Macintosh Portable
through a single 50-pin connector (slot). The machine provides all of the appropriate signals
(address bus, data bus, and control) to the expansion slot, where they are decoded into chip
selects and routed to address and data buffers. These signal names and descriptions are
illustrated in Figure 2 and described in Table 1. It is also important to buffer the address and
data buffers to reduce capacitive loading.

Developer Support Center October 1989

HW 13 - Macintosh Portable ROM Expansion 3 of 9

Hardware

+5V
A2
A4
A6
A8

A10
A12
A14
A16
A18
A20
A22

GND
/DTACK

/ROM_CS
/EXT_DTACK

D0
D2
D4
D6
D8

D10
D12
D14
+5V

A1
A3
A5
A7
A9
A11
A13
A15
A17
A19
A21
A23
GND
/AS
16Mhz_Clock
/DELAY_CS
D1
D3
D5
D7
D9
D11
D13
D15
+5V

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Figure 2–Internal ROM Expansion Connector Signals

Macintosh Technical Notes

4 of 9 HW 13 - Macintosh Portable ROM Expansion

Hardware

Pin Number Signal Name Signal Description
1 +5V Vcc
2-24 A1-23 Unbuffered 68HC000

address signals A1-23
25-26 GND Logic Ground
27 /DTACK /DTACK input to

68HC000
28 /AS 68HC000 address strobe

signal
29 /ROM_CS Permanent ROM chip

select signal. Selects in
range $90 0000 through
$9F FFFF.

30 16 Mhz_clock 16 Mhz system clock.
31 /EXT_DTACK External /DTACK signal

that disables main system
/DTACK

32 /DELAY_CS This signal is generated by
the addressing PAL and is
used to put the ROM
board into the idle mode
by inserting multiple wait
states.

33-48 D0-15 68HC000 unbuffered data
signals D0-15

49-50 +5V Vcc

Table 1–Internal ROM Expansion Connector Signal Descriptions

Developer Support Center October 1989

HW 13 - Macintosh Portable ROM Expansion 5 of 9

Hardware

-1
9.

95
 [

-.
78

5]

60
.8

3
[2

.3
95

]

51.94 [2.045]

60.42 [2.379]

68.58 [2.700]

58.55 [2.305]

7.62 [.300]

(3x) 3.00 [.118]
ESD Grounding Strip
both sides of PCB

(3x) 3.38 [.133]
Tooling Holes

2.34 [.092]

6.
52

 [
.2

57
]

52
.2

7
[2

.0
58

]

 5.37 [.211]

See Detail A

50-Pin Connector

-10.11 [-.398]

-27.28 [-1.074] 68.18 [2.684]

Pin 1

Dimensions are in Millimeters [Inches]

Detail A

6.00 [.236]

6.00 [.236]

No components or traces.
This area for grounding to
rear cover. Both Sides.

Figure 3–Internal ROM Expansion Board Guidelines

Software Standards

For the purposes of expansion ROM, Apple has introduced Electronic Disks (EDisks), which
appear to the user as very fast, silent disk drives. The EDisk driver supports EDisks, which
use RAM or ROM as their storage media.

ROM EDisks, which can be produced by third parties, are connected to the system using the
internal ROM expansion slot. The 4 MB address space allocated for this type of expansion
supports any number of ROM EDisks, as long as they start on a 64K boundary (their size may
exceed 64K). ROM EDisks behave like RAM EDisks, except that they are read-only and
cannot be resized.

Macintosh Technical Notes

6 of 9 HW 13 - Macintosh Portable ROM Expansion

Hardware

The EDisk Driver

The EDisk driver provides a system interface to EDisks similar to that provided by the Sony
and SCSI disk drivers. It supports 512 byte block I/O operations and does not support file
system tags. The EDisk driver is a ROM 'DRVR' resource with an ID of 48, RefNum of
-49, and driver name of “.EDisk”. Since it is a disk driver, it also creates a Drive Queue
Element for each EDisk. Information on how these driver calls apply to the Sony driver appear
in the Disk Driver chapters of Inside Macintosh, Volumes II, IV, & V.

EDisk Implementation Details

The remainder of this section describes some of the implementation details, data formats, and
algorithms used by the EDisk driver that may be useful for developers who want to produce
ROM EDisks.

Data Checksumming

To provide better data integrity, the EDisk driver supports checksumming of each data block,
which is computed when a write is performed to a block and checked on every read operation.
It computes a 32-bit checksum for each 512-byte block. This calculation is performed by
adding each longword in the block to a running longword checksum, which is initially zero,
and is rotated left by one bit before each longword is added. The following assembly code
demonstrates this algorithm:

Lea TheBlock,a0 ; A0 is pointer to the block to checksum
Moveq.L #0,D0 ; D0 is the checksum, initially zero
Moveq.L #(512/4)-l,D1 ; loop counter for 1 block (4 bytes per

 iteration)
@Loop Rol.L #l,D0 ; rotate the checksum

Add.L (A0)+,D0 ; add the data to the running checksum
Dbra D1,@Loop ; loop through each longword in the block

Internal ROM EDisk Details

When the EDisk driver is opened, it searches the address range from the base of the system
ROM to $00E0 0000 for internal ROM EDisks. An internal ROM EDisk must begin with an
EDisk header block, which must start on a 64K boundary (but may be any size). If a valid
header block is found, it is compared to all other known headers, and if it is identical to
another, it is ignored to eliminate duplicates caused by address wrapping. If the header block is
unique, the EDisk driver supports it and creates a drive queue entry for it. The driver can
support any number of internal ROM EDisks, and it is limited only by the address space
allocated for ROM.

EDisk Header Format

There is a 512-byte header block associated with ROM EDisks. This header describes the
layout of the EDisk and uniquely identifies it. The general format of the header block is
described below. The EDisk header marks the beginning of an EDisk, and it should occur at
the beginning of the ROM space that is used for EDisk storage (i.e., starting at the first byte of
a 64K ROM block).

Developer Support Center October 1989

HW 13 - Macintosh Portable ROM Expansion 7 of 9

Hardware

EDiskHeader Record 0,increment ; layout of the EDisk signature block
HdrScratch DS.B 128 ; scratch space for r/w testing and vendor info
HdrBlockSize DS.W 1 ; size of header block (512 bytes for version 1)
HdrVersion DS.W 1 ; header version number (this is version 1)
HdrSignature DS.B 12 ; 45 44 69 73 6B 20 47 61 72 79 20 44
HdrDeviceSize DS.L 1 ; size of device, in bytes
HdrFormatTime DS.L 1 ; time when last formatted (pseudo unique ID)
HdrFormatTicks DS.L 1 ; ticks when last formatted (pseudo unique ID)
HdrCheckSumOff DS.L 1 ; offset to the Checksum table, if present
HdrDataStartOff DS.L 1 ; offset to the first byte of data storage
HdrDataEndOff DS.L 1 ; offset to the last byte+l of data storage
HdrMediaIconOff DS.L 1 ; offset to the media Icon and Mask, if present
HdrDriveIconOff DS.L 1 ; offset to the drive Icon and Mask, if present
HdrWhereStrOff DS.L 1 ; offset to the Get Info Where: string, if

 present
HdrDriveInfo DS.L 1 ; longword for Return Drive Info call, if

 present
DS.B 512-* ; rest of block is reserved

EDiskHeaderSize EQU * ; size of EDisk header block
ENDR

HdrScratch is a 128-byte field that is used for read and write testing on RAM
EDisks to determine if the memory is ROM or RAM. On ROM
EDisks, it should be filled in by the vendor with a unique string
to identify this version of the ROM EDisk (e.g., “Copyright
1989, Apple Computer, Inc. System Tools 6.0.4 9/5/89”).

HdrBlockSize is a 2-byte field that indicates the size of the EDisk header block.
The size is currently 512 bytes.

HdrVersion is a 2-byte field that indicates the version of the EDisk header
block. The version number is currently $0001.

HdrSignature is a 12-byte field that identifies a valid EDisk header block. The
signature must be set to 45 44 69 73 6B 20 47 61 72
79 20 44 in hexadecimal.

HdrDeviceSize is a 4-byte field that indicates the size of the device in bytes,
which may be greater than the actual usable storage space. One
might also think of the device size as the offset (from the
beginning of the header block) of the last byte of the storage
device.

HdrFormatTime is a 4-byte field that indicates the time of day when the EDisk
was last formatted. The EDisk driver updates this for RAM
EDisks when the format control call is made. This information
may be useful for uniquely identifying a RAM EDisk.

HdrFormatTicks is a 4-byte field that indicates the value of the system global
Ticks when the EDisk was last formatted, which should be a
unique number. The EDisk driver updates this for RAM EDisks
when the format control call is made. This information may be
useful for uniquely identifying a RAM EDisk.

Macintosh Technical Notes

8 of 9 HW 13 - Macintosh Portable ROM Expansion

Hardware

HdrCheckSumOff is a 4-byte field that is the offset (from the beginning of the
header block) of the checksum table, or zero if checksumming
should not be performed on this EDisk.

HdrDataStartOff is a 4-byte field that is the offset (from the beginning of the
header block) of the first block of EDisk data.

HdrDataEndOff is a 4-byte field that is the offset (from the beginning of the
header block) of the byte after the end of the last block of EDisk
data.

HdrMediaIconOff is a 4-byte field that is the offset (from the beginning of the
header block) of the 128-byte icon and 128-byte icon mask,
which represents the disk media. An offset of zero indicates that
the EDisk driver should use the default media icon for this
EDisk.

HdrDriveIconOff is a 4-byte field that is the offset (from the beginning of the
header block) of the 128-byte icon and 128-byte icon mask,
which represents the disk drive physical location. An offset of
zero indicates that the EDisk driver should use the default drive
icon for this EDisk.

HdrWhereStrOff is a 4-byte field that is the offset (from the beginning of the
header block) of the Pascal string that describes the disk location
for the Finder Get Info command. An offset of zero indicates
that the EDisk driver should use the default string for this EDisk.

HdrDriveInfo is a 4-byte field that should be returned by the drive information
control call. A value of zero indicates that the EDisk driver
should use the default drive info for this EDisk.

You should not override the default media or drive icons without first giving serious
consideration as to how a different icon will affect the user interface. What often appears to be
a clever idea for a cute icon usually turns out to be a source of frustration for the user when
deciding what the item is and where it is physically located.

Some Final Thoughts

Do Not Use More Space Than You Need

As wonderful and indispensable as your ROM product may be, users may wish to also use
ROMs from another developer. Although ROM address space is quite large (in today’s terms),
board space and number of ROM chip sockets is limited. If you use only the space you really
need and leave room (address space and empty chip sockets) in your ROM product to add other
ROMs, users will never have to make a choice between your product and another,
unanticipated stroke of genius.

Developer Support Center October 1989

HW 13 - Macintosh Portable ROM Expansion 9 of 9

Hardware

Keep It Relocatable

Just because your code is in ROM does not mean that it will always reside at a specific address.
When moving your ROM to another board (an Apple upgrade or another third-party board),
users should neither have to worry about address range conflicts nor socket location. In
addition, Apple may implement ROM expansion in a future product with expanded or different
address space; keeping your ROM code relocatable could mean the difference between
additional sales or incompatibility and upgrades.

Further Reference:
• Inside Macintosh, Volume II, IV, & V, The Disk Driver

	Address Space
	Expansion ROM Board
	Detail A
	Software Standards
	The EDisk Driver
	EDisk Implementation Details
	Some Final Thoughts

