
Developer Press
© Apple Computer, Inc. 1994

Developer Note

DOS Compatibility Card
For the Power Macintosh 6100 Computer

Apple Computer, Inc.
© 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book
is intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
Macintosh Centris, and Macintosh
Quadra are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Apple SuperDrive and Power
Macintosh are trademarks of
Apple Computer, Inc.
Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered
service mark of Quantum Computer
Services, Inc.
Brooktree is a registered trademark of
Brooktree Corporation.
Centronics is a registered trademark of
Centronics Data Computer Corporation.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

IBM is a registered trademark of
International Business Machines
Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
Sound Blaster is a registered trademark
of Creative Labs, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

Contents

Figures and Tables vii

Preface

About This Note

ix

Contents of This Note ix
Supplementary Documents ix

Obtaining Information From APDA x
Conventions and Abbreviations x

Typographical Conventions x
Standard Abbreviations xi

Chapter 1

Introduction

1

Appearance and Features 2
How the DOS Compatibility Card Works 4

Outline of Operation 4
I/O Capabilities 6

Floppy Disk 6
Hard Disk 6
Serial Ports 6
Parallel Printer Port 7
Keyboard and Mouse 7
Sound 7
Video Monitor 8
Game Controller 9

Chapter 2

Hardware Design

11

Processor and Memory System 14
80486DX2 Microprocessor 14

PC System Bus and Devices 14
Cache Snooping 15
Byte Order 15
Misaligned Transfers 15
Interrupts 17

Bus Arbitration 18
Expansion 19
84031 Memory Controller 19

DRAM Control 19
BIOS Control 20

Thi d t t d ith F M k 4 0 4

iv

Clock Generation 20
ISA Bus Control 20

84035 Data Path Controller 20
Clocks 21
System Reset 21
Interrupt Control 21

Video System 22
Connecting a Monitor 22
Monitors Supported 22

Monitor Sense Lines 23
Video Timing 24

Video System ICs 26
82C450 VGA Controller 26
MU9C9760 SynDAC 26

I/O System 26
Pretzel Logic I/O Controller IC 26
DMA Channels 27
Serial Port Support 27
Printer Port Support 28
Keyboard and Mouse Emulation 28
Message Mailbox 28
Power-on Reset 28
Autoconfiguration 29
Declaration ROM 29

PDS Adapter Card 29
AJA Bus Controller IC 29
Bus Demultiplexing 30
Burst Transfers 30

Sound Expansion Card 30
CT2501 Sound System IC 30
YMF262 FM Synthesizer IC 31
YAC512 Sound DAC IC 31

Chapter 3

The PC Interface Driver

33

Initializing the Driver 34
Open 34
Close 34

Configuring the PC 34
rsSetMemoryConfig 35
rsSetDriveConfig 35
rsGetNetDriveConfig 36
rsSetNetDriveConfig 37
rsSetComPortConfig 37
rsSetParallelPortConfig 38
rsSetDeactivateKey 39

v

Control and Status Calls 39
rsPCStatus 40
rsBootPC 41
rsResetPC 41
rsEnableVideo 41
rsDisableVideo 42
rsMountDisks 42
rsDontMountDisks 42
rsActivateKB 43
rsDeactivateKB 43
rsBeginMouseTracking 43
rsEndMouseTracking 44
rsEndPrintJob 44

Detecting Errors 44
rsSetNotificationProc 44
rsLastError 45

Passing Messages 45
Message Conventions 45

Macintosh Interface 46
PC Interface 46

Registering Messages 46
On the Mac OS 46
On the PC 47

Sending a Message 47
On the Mac OS 47
On the PC 48

Installing a Message Handler 49
On the Mac OS 49
On the PC 50

Removing a Message Handler 51
On the Mac OS 51
On the PC 51

Index

53

vii

Figures and Tables

Chapter 1

Introduction

1

Figure 1-1

The DOS Compatibility Card assembly 2

Figure 1-2

The DOS Compatibility Card installed 4

Figure 1-3

Simplified block diagram of the DOS Compatibility Card 5

Figure 1-4

Monitor adapter cable 8

Figure 1-5

Monitor adapter cable and game controller installed 9

Table 1-1

Comparison of the DOS Compatibility Card and a
midrange PC 3

Table 1-2

Corresponding serial-port signals 6

Chapter 2

Hardware Design

11

Figure 2-1

Detailed block diagram 13

Figure 2-2

Video timing parameters 25

Table 2-1

Transfer size comparison 16

Table 2-2

Definitions of PC interrupts 17

Table 2-3

Arbitration priorities 18

Table 2-4

Monitors and display modes 23

Table 2-5

VIdeo timing parameters for supported monitors 24

Chapter 3

The PC Interface Driver

33

Table 3-1

Bits in the PC status word 40

Thi d t t d ith F M k 4 0 4

ix

P R E F A C E

About This Note

This developer note describes the DOS Compatibility Card, an 80486
processor designed to operate in the PDS slot of a Power Macintosh 6100
computer. This developer note describes the features of the DOS
Compatibility Card and the way it communicates with the host computer.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh product described
in the note. If you are not already familiar with Macintosh computers or if
you would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

Contents of This Note 0

This note has three chapters and an index.

■

Chapter 1, “Introduction,” presents a summary of the features of the DOS
Compatibility Card and a brief description of the way it operates.

■

Chapter 2, “Hardware Design,” describes the design of the DOS
Compatibility Card and the interface devices that allow it to operate
in a Power Macintosh 6100 computer.

■

Chapter 3, “The PC Interface Driver,” describes the system software that
allows programs on the DOS Compatibility Card to communicate with
programs on the host Macintosh computer.

Supplementary Documents 0

For installation and operating instructions, refer to the

DOS Compatibility Card
User’s Manual

 that accompanies the product.

For information about the MC68040 PDS (processor-direct slot) interface, refer
to

Designing Cards and Drivers for the Macintosh Family,

third edition, and the

Quadra PDS Developers Guide.

 For information about the PowerPC 601 PDS
interface, refer to

Macintosh Developer Note Number 8,

 APDA catalog number
R0566LL/A. The developer note contains descriptions of the first generation
of Power Macintosh models, including the Power Macintosh 6100. Developer
notes for the individual Macintosh models are also published electronically in
the quarterly Reference Library Edition of the Developer CD series, available
through APDA.

Thi d t t d ith F M k 4 0 4

x

P R E F A C E

Developers may also need copies of the appropriate Apple reference books.

You should have the relevant books of the

Inside Macintos

h series, particularly

Inside Macintosh: PowerPC

System Software

and

Inside Macintosh: Processes.

Obtaining Information From APDA 0

The Apple publications listed above are available from APDA. APDA is
Apple’s worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xi

P R E F A C E

Note

A note like this contains information that is interesting but not essential
for an understanding of the text.

◆

IMPORTANT

A note like this contains important information that you should read
before proceeding.

▲

Standard Abbreviations 0

When unusual abbreviations appear in this book, the corresponding terms are
also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out. Here are the standard units of measure
used in this developer note:

Other abbreviations used in this note include

A amperes mA milliamperes

dB decibels

µ

A microamperes

GB gigabytes MB megabytes

Hz hertz MHz megahertz

in. inches mm millimeters

k 1000 ms milliseconds

K 1024

µ

s microseconds

KB kilobytes ns nanoseconds

kg kilograms

Ω

ohms

kHz kilohertz sec. seconds

k

Ω

kilohms V volts

lb. pounds W watts

$

n

 hexadecimal value

n

ADB Apple Desktop Bus

AGC automatic gain control

BIOS basic input/output system

CAS column address strobe (a memory control signal)

CD compact disc

CGA Color Graphics Adapter

CLUT color lookup table

CPU central processing unit

DAC digital-to-analog converter

DC direct current

DMA direct memory access

continued

xii

P R E F A C E

DOS disk operating system

DRAM dynamic RAM

EGA Enhanced GRaphics Adapter

EISA Extended Industry Standard Architecture

FIFO first in, first out

GND ground

IC integrated circuit

I/O input and output

ISA Industry Standard Architecture

Mac OS Macintosh Operating System

MDA Monochrome Display Adapter

n.c. no connection

NMI nonmaskable interrupt

PC personal computer

PDS processor-direct slot

PGA pin grid array

PPC PowerPC

PRAM parameter random-access memory

RAM random-access memory

RAS row address strobe

RGB red-green-blue, a video signal format with separate red, green,
and blue color components

ROM read-only memory

SCSI Small Computer System Interface

SIMM Single Inline Memory Module

SVGA super video graphics adapter

TCP/IP Transport Control Protocol/Interface Program

UART universal asynchronous receiver-transmitter

VGA video graphics adapter

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Introduction

2

Appearance and Features

The DOS Compatibility Card is a plug-in assembly designed to provide IBM-compatible
PC functionality on a Power Macintosh 6100 computer. The DOS Compatibility Card
includes an 80486 microprocessor and interface devices that allow it to use the I/O
capabilities of the host computer. When installed in a Macintosh computer, the DOS
Compatibility Card provides a cost-effective system with performance equivalent to a
stand-alone PC.

Appearance and Features 1

The DOS Compatibility Card assembly consists of a 7-inch processor card, a processor-
direct slot (PDS) adapter card, and a shield bracket. The assembly fits inside a Power
Macintosh 6100 computer and is plugged into the computer’s PDS slot. Figure 1-1 shows
the DOS Compatibility Card assembly. For installation instructions, please refer to the

DOS Compatibility Card User’s Manual.

Figure 1-1

The DOS Compatibility Card assembly

The following list is a summary of the hardware features of the DOS Compatibility Card.
Each of these features is described later in this developer note.

■

Processor.

The DOS Compatibility Card has an 80486DX2 microprocessor operating
at a clock speed of 66 MHz.

■

Expansion RAM.

The card accepts one standard 72-pin DRAM SIMM containing
either 2, 4, 8, 16, or 32 MB. Recommended DRAM speed is 80 ns or less.

■

Shared RAM.

The card can use part of the DRAM in the Macintosh host computer.
The user can select a memory size of 2, 4, 8, 16, 32, or 64 MB, provided the Macintosh
computer has enough memory installed.

Shield bracket

Processor card

PDS adapter card

Sound card

C H A P T E R 1

Introduction

Appearance and Features

3

■

Direct memory access.

A DMA channel supports I/O transfers when memory is
installed on the card; when using shared memory, DMA is provided through the
Macintosh system.

■

Video support.

A VGA video system on the card supports

Macintosh monitors from
13-inch through 20-inch size and all available VGA monitors.

■

Sound card.

The DOS Compatibility Card provides standard PC sound output and
comes with a sound expansion card that produces 16-bit sound output compatible
with Sound Blaster cards. Sounds are played through the host computer’s sound
output jack and built-in speaker.

■

Serial ports.

The DOS Compatibility Card uses the host computer’s two serial ports
by way of serial port interfaces emulated in hardware.

■

Parallel port.

The card has access to a printer on the host computer by way of a
parallel port interface emulated in hardware.

■

Floppy disk.

The card uses the host computer’s 3.5-inch internal floppy drive.

■

Hard Disk.

The card has access to the host computer’s internal hard drive and
external SCSI devices.

■

Keyboard and mouse.

The card uses the host computer’s keyboard and mouse
through hardware emulation.

■

Joystick.

The monitor adapter cable includes a DB-15 connector that supports a
standard PC-style joystick.

The DOS Compatibility Card installed in a Power Macintosh 6100 computer provides
performance and features comparable with midrange 80486DX computers currently
available. Table 1-1 compares the features the two computers.

Table 1-1

Comparison of the DOS Compatibility Card and a midrange PC

Feature DOS Compatibility Card Midrange PC

Processor 66 MHz 80486DX2 Same

Network support IPX and TCP/IP Optional

Onboard RAM None 4 MB

Expansion RAM 1 SIMM (up to 32 MB) 8 SIMMs (up to 64 MB)

Video support VGA, EGA, CGA, MDA Same

Video RAM 512 KB DRAM Same

Sound card Sound out only Optional

Serial ports 2 (COM1 and COM2) Same

Parallel port 1 (emulated, XT/AT compatible) 1

Keyboard AT compatible Same

Mouse PS/2 compatible Same

continued

C H A P T E R 1

Introduction

4

How the DOS Compatibility Card Works

Notice that the DOS Compatibility Card has greater sound and networking capabilities
than a midrange PC. In addition, the card provides external SCSI expansion through the
host computer (for hard drives and removable-media devices only).

How the DOS Compatibility Card Works 1

The DOS Compatibility Card is designed to operate in the PDS slot of the Power
Macintosh 6100. The card assembly consists of shield bracket, a processor card, and a
PDS adapter card that is plugged into the PDS slot of the Power Macintosh 6100.

Figure 1-2 shows an edge view of the DOS Compatibility Card assembly installed
in a Power Macintosh 6100 computer. For installation instructions, refer to the

DOS
Compatibility Card User’s Manual.

Figure 1-2

The DOS Compatibility Card installed

Outline of Operation 1

Figure 1-3 shows a simplified block diagram of the DOS Compatibility Card installed in
a Power Macintosh 6100 computer.

Floppy disk 3.5-inch 3.5-inch and 5.25-inch

AT expansion None 3 slots

External SCSI Yes No

Table 1-1

Comparison of the DOS Compatibility Card and a midrange PC (continued)

Feature DOS Compatibility Card Midrange PC

Processor card
(end view)

PDS adapter card
(end view)

Power Macintosh 6100
main logic board

Shield bracket
(outline)

C H A P T E R 1

Introduction

How the DOS Compatibility Card Works

5

Figure 1-3

Simplified block diagram of the DOS Compatibility Card

The diagram shows some of the hardware devices on the processor card: the memory
controller and DRAM SIMM, and the VGA controller and video RAM. It also shows the
Pretzel Logic IC, which acts as a bus converter between the processor card and the
Macintosh computer and provides the interface to Macintosh devices that emulate PC
devices. Logic devices on the PDS adapter card translate the PDS control signals from
the Macintosh computer and demultiplex its 64-bit data bus down to a 32-bit bus for the
80486. Chapter 2, “Hardware Design,” gives more information about the devices on the
DOS Compatibility Card and the way they operate in conjunction with the Macintosh
host computer.

Note

The processor card in the DOS Compatibility Card assembly
is functionally similar to the 80486 card used in the earlier
Macintosh Quadra 610 DOS Compatible computer.

◆

CPU

80486DX2

DRAM SIMM

DOS Compatibility Card

Power Macintosh 6100

Memory
and bus

controllers

AT bus

Keyboard Floppy disk SCSI hard disk Serial ports Ethernet port

PDS

Video
DRAM

VGA
controller

PDS
adapter

Keyboard
controller

I/O controller
Curio
I/O

interface

Video and
memory
controller

CPU

PPC 601

Pretzel
Logic IC

Video
DRAM

C H A P T E R 1

Introduction

6

How the DOS Compatibility Card Works

I/O Capabilities 1

The DOS Compatibility Card uses I/O devices built into or connected to the Macintosh
host computer. This section describes the I/O capabilities; for more information on their
operation, see “I/O System” in Chapter 2.

Floppy Disk 1

The DOS Compatibility Card has access to the Macintosh host computer’s 3.5-inch
internal floppy drive. The drive can read and write DOS-formatted floppy disks. I/O
data transfers use the DMA channel when RAM SIMM is installed on the card. When
using shared memory, I/O data transfers are handled by the disk drivers in the
Macintosh Operating System (Mac OS).

Hard Disk 1

The DOS Compatibility Card has access to the host computer’s internal hard drive and
other SCSI devices. I/O data transfers use the DMA channel when RAM SIMM is
installed on the card. When using shared memory, I/O data transfers are handled by the
disk drivers in the Mac OS.

Serial Ports 1

The DOS Compatibility Card has access to the serial ports on the Macintosh host
computer. To provide software compatibility, an IC on the card emulates the registers of
the standard serial port ICs found in most PC/AT computers. For more information on
register emulation, see “Serial Port Support” on page 27.

An adapter cable is necessary to connect a PC serial device to a Macintosh serial port.
Table 1-2 shows the signals on the 8-pin connector on the Macintosh serial ports and the
corresponding connections on the 25-pin connector used with a PC serial port.

Table 1-2

Corresponding serial-port signals

Pin number
on the
Macintosh port

RS-422
signal name

Pin number
on the PC port

RS-232
signal name

1 HSKo 20 DTR

2 HSKi 5, 8 CTS, DCD

3 TXD– 2 TXD

4 GND 7 GND

5 RXD– 3 RXD

6 TXD+ n. c. none

7 GPi n. c. none

8 RXD+ 7 GND

C H A P T E R 1

Introduction

How the DOS Compatibility Card Works

7

Note

The serial ports on some Macintosh models have 9-pin sockets.
Those sockets accept either 9-pin or 8-pin connectors.

◆

The Macintosh serial ports are RS-422 ports and do not support all the RS-232 signals. In
particular, the Carrier Detect (CD), Data Set Ready (DSR), Request To Send (RTS), and
Ring Indicator (RI) signals are not available. Not all RS-232 devices will work using the
RS-422 protocol.

Parallel Printer Port 1

A custom IC on the DOS Compatibility Card emulates a compatible parallel port
interface and enables the driver software to send printer data to a printer through the
Macintosh host computer. The printer may be connected directly to the Macintosh
computer’s serial port or it may be on a network and selected by means of the Chooser.
The IC provides register compatibility only; for more information, see “Printer Port
Support” on page 28.

Keyboard and Mouse 1

The DOS Compatibility Card includes hardware that emulates a PC keyboard and
mouse using inputs from the keyboard and mouse on the Macintosh host computer. The
software protocols for the keyboard and mouse are the same as on a standard PC.

Note

The DOS Compatibility Card can work with another user input device,
such as a trackball, but the device must be connected to the Macintosh
host computer by way of the ADB port.

◆

The user can define a key combination to switch operation of the user interface
devices (the keyboard, the mouse, and the monitor, if shared) between the card and
the Macintosh host computer. The key combination consists of at least one modifier
key and another key. For information about setting the key, see Chapter 2 in the
user’s manual.

Sound 1

The DOS Compatibility Card contains audio mixing circuitry that enables it to mix PC
sound output with the CD sound output of the Macintosh host computer. A ribbon cable
carries the CD sound signal from the host computer to the card. Another
ribbon cable carries the mixed sound back to the host computer where it is mixed
with the computer’s sound output and sent to the internal speaker and the sound
output jack.

Sound is generated on the DOS Compatibility Card by either the 8254 interval timer
(square wave output) or the sound expansion card. The interval timer is responsible
for the standard system beep and sound effects. The sound expansion card provides
16-bit stereo sound output only and is software compatible with the Sound Blaster
register model.

C H A P T E R 1

Introduction

8

How the DOS Compatibility Card Works

Video Monitor 1

A DOS Compatibility Card installed in a Power Macintosh 6100 computer can either
have its own monitor or share the same monitor used for the Macintosh host computer.
When using separate monitors for the card and the Macintosh host computer, both
screens can be updating at the same time. (Only one at a time can be receiving user input
from the keyboard and mouse.) The monitors that can be shared are

■

Macintosh Color 14-inch

■

Macintosh Color 16-inch

■

Macintosh Multiple Scan 17-inch

■

Macintosh Multiple Scan 20-inch

■

VGA (640 by 480 pixels)

■

SVGA (800 by 600 pixels)

The DOS Compatibility Card uses a special monitor adapter cable to allow the card and
the Macintosh host computer to share a single monitor. This cable connects the DB15
video output connector on the Macintosh computer and the DB-26 output connector on
the DOS Compatibility Card. The shared video monitor is connected to the DB-15
connector closest to the host computer. Figure 1-4 shows the monitor adapter cable.
Figure 1-5 shows the back of a Power Macintosh 6100 computer with the monitor
adapter cable installed.

Figure 1-4

Monitor adapter cable

The DOS Compatibility Card detects the monitor type by means of the monitor sense
lines and stores the information for the host computer to interrogate at startup time.
For more information about the monitor sense lines, see the section “Video System” on
page 22.

To game controller

26-pin connector
to DOS Compatibility Card

To monitor cable

15-pin connector
to Macintosh monitor port

C H A P T E R 1

Introduction

How the DOS Compatibility Card Works

9

Game Controller 1

The DB-15 connector adjacent to the DB-26 connector on the monitor adapter cable is
used to connect a PC/AT compatible game controller (joystick). Figure 1-5 shows the
back of a Power Macintosh 6100 computer with the game controller installed. The game
controller can be used only with programs running on the PC side.

Figure 1-5

Monitor adapter cable and game controller installed

Game controller

Monitor
adapter
cable

C H A P T E R 2

Hardware Design 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Hardware Design

12

The DOS Compatibility Card assembly contains three printed circuits cards: the
processor card, the PDS adapter card, and the sound expansion card. The processor
card contains the processor and memory system, the video display system, and the
I/O system. The PDS adapter card contains the PDS bus demultiplexer and controller.
The sound expansion card contains the sound generation ICs. The individual ICs in
each system are

■

processor and memory system:

n

80486 microprocessor

n

84031 memory controller

n

84035 data path controller

■

video display system:

n

82C450 VGA controller

n

MU9C9760 SynDAC (video DAC, CLUT, and clock synthesizer)

■

I/O system:

n

8242 keyboard and mouse controller

n

Pretzel Logic I/O interface controller

■

PDS adapter card:

n

74F245 bus buffers (8)

n

AJA bus controller

■

sound expansion card:

n

CT2501 (combination bus interface, codec, and audio mixer)

n

YMF262 digitally controlled FM synthesizer

n

YAC512 audio DAC for the YMF262

All the ICs in the DOS Compatibility Card are commercially available parts except the
Pretzel Logic IC and the AJA IC, which are Apple custom parts. The individual ICs are
described later, in the sections that describe each of the systems.

The block diagram in Figure 2-1 shows the main components of the processor card and
the PDS adapter card.

The processor card has a high-speed processor bus linking the 80486 microprocessor to
the RAM SIMM by way of the 84031 memory controller. The processor card also has an
I/O bus: the XD (data) bus. The XD bus is used for devices on the card: the keyboard
controller, the game controller, the VGA controller, and the sound card. The 84031
memory controller acts as the I/O bus controller that isolates the XD bus from the
processor bus. The XD bus is 8 bits wide and operates synchronously with the processor
bus at a fraction of its speed. The 84035 data path controller provides additional PC/AT
compatible I/O ports that are accessible through the I/O controller.

C H A P T E R 2

Hardware Design

13

Figure 2-1

Detailed block diagram

CPU

80486DX2

Pretzel
Logic

68040 PDS
connector

68040 PDS

I/O
interface
controller

AJA

Bus de-
multiplexer

84031

Memory
controller

D(31:0)

A(31:2)

XD(7:0)

DB-26
connector

Sound
expansion
connector

PPC 601 PDS
connector

XA(15:0)

72-pin RAM SIMM

ROM

Declaration

8242

Keyboard
controller

82C450

VGA
controller

CLUT

84035

Data path
controller

558

Game
timer

Video
DRAM

C H A P T E R 2

Hardware Design

14

Processor and Memory System

Processor and Memory System 2

The processor and memory system includes the 80486DX2 microprocessor and the
control devices for the onboard memory: the 84031 memory controller and the
84035 data path controller.

80486DX2 Microprocessor 2

The DOS Compatibility Card has a 80486DX2 microprocessor running at 66 MHz
(33 MHz processor bus clock). The 80486DX2 supports 32-bit data paths and 32-bit
addresses; that allows up to 4 GB of physically addressable memory. The DX2 version
of the 80486 is pin compatible with the DX version but operates at twice the clock
frequency.

Some of the key features of the 80486DX2 are listed below. Please refer to the

Intel
80486SX/DX Hardware Reference Manual

 for further information.

■

full 32-bit addressing architecture with 32 bit data interface

■

internal 8 KB unified instruction and data cache

■

instruction prefetch mechanism during idle bus activity

■

internal memory management unit supporting both memory segmentation
and paging

■

internal write buffer (1 longword deep) to support posted writes

■

dynamic bus sizing to support 8-bit and 16-bit peripherals

■

support for synchronous 16-byte block reads

■

backward compatible with existing 80x86 code

The 80486DX2 in the DOS Compatibility Card is in a 168-pin ceramic PGA package. With
a clock speed of 66 MHz, this package requires a heat sink.

PC System Bus and Devices 2

The PC system bus is defined as the unbuffered 80486 pins that are required to support
slave and alternate bus masters. This bus operates synchronously at the same clock
speed as the processor bus clock (33 MHz). The bus supports burst reads and compelled
writes (due to the write-through cache). The key devices attached to this bus are the
memory and bus controller IC and the Pretzel Logic bus interface IC.

C H A P T E R 2

Hardware Design

Processor and Memory System

15

Cache Snooping 2

The 80486 cache supports bus snooping to track activity on the bus that alters the
memory represented in the internal cache. However, no alternate master exists on the PC
system bus in the DOS Compatibility Card, so the snoop control lines are deactivated.

The memory space reserved for the PC (whether local or shared memory) cannot be
cached or modified by the Mac OS, so it presents no coherency issues.

The interface provides no hooks to support bus snooping in either the PC environment
or the Macintosh environment.

Byte Order 2

Big-endian

 and

little-endian

 are two ways of defining the order in which bytes are
addressed.

Big-endian

 means that the most significant byte corresponds to the lowest
address and the least significant byte corresponds to the highest address.

Little-endian

means that the most significant byte corresponds to the highest address and the least
significant byte corresponds to the lowest address.

The PowerPC microprocessors support big-endian byte addressing and the 80x86 family
uses little-endian byte addressing. This disparity poses a problem for the DOS
Compatibility Card because its 80486 microprocessor is dependent on the Mac OS to
load applications and data from peripheral devices. When the Mac OS loads PC data
from floppy disk, it stores that data at addresses that match the big-endian convention.
To allow the PC to function properly, it must be able to read the data just like the
Mac OS; that is, the transfer must be address invariant. To make that possible with the
disparity in addressing modes, the interface IC performs a byte swapping operation.

Byte swapping is performed for all PC data resident on the Macintosh host computer,
that is, for both shared memory data and DMA (I/O) data. The interface IC also swaps
the bytes of data in one of the message mailbox data registers. The other data register
does not provide for byte swapping and thus provides data invariance.

For more information about the two ways of addressing memory, please refer to
Appendix A, “Overview of PowerPC Technology,” in

Macintosh Developer Note Number 8

.

Misaligned Transfers 2

Data misalignment occurs when the DOS Compatibility Card is configured for
shared memory.

Unlike the 68040, the PowerPC 601 has a 64-bit data bus that provides greater capability
for handling misaligned transfers. The PPC 601 defines misaligned transfers as those that
are not doubleword aligned, whereas the 68040 defines a misaligned transfer as one that
is not longword aligned. Because the interface IC (Pretzel Logic, described on page 26)
was originally designed to support a 68040 bus interface, misaligned transfers (3-byte
transfers) from the 80486 are broken into two transfer cycles and do not take advantage
of the PowerPC 601 microprocessor’s extended data bus.

C H A P T E R 2

Hardware Design

16

Processor and Memory System

Table 2-1 describes the different transfer sizes supported by the PowerPC 601 and the
80486. The table also identifies the 68040 transfers, which are a subset of the
PowerPC 601 transfers.

All accesses in the Macintosh environment are longword aligned: the low-order 2 bits of
the address are zeros. Each time the 80486 performs a 1-, 2-, 3-, or 4-byte access, the
Macintosh host computer performs a 4-byte access. The full 32 bits of data are presented
on the PC side and the 80486 accepts the required byte lanes. When the 80486 requests
multiple bytes of data from a nonaligned address (that is, when the data extends across a
longword address), the 80486 splits the access into two separate transfers.

Table 2-1

Transfer size comparison

Transfer size PPC 601 bytes enabled 80486 bytes enabled

1 byte 7 0

6 1

5 2

4 3

3* 3

2* 2

1* 1

0* 0

2 bytes 7, 6 0, 1

5, 4 2, 3

— 1, 2

3, 2* 0, 1

1, 0* 2, 3

3 bytes 7, 6, 5 1, 2, 3

6, 5, 4 0, 1, 2

5, 4, 3 1, 2, 3

4, 3, 2 0, 1, 2

3, 2, 1 1, 2, 3

2, 1, 0 0, 1, 2

4 bytes 3, 2, 1, 0* 0, 1, 2, 3

7, 6, 5, 4 0, 1, 2, 3

8 bytes 7, 6, 5, 4, 3, 2, 1, 0 not supported

NOTE

Asterisk (*) indicates byte transfers supported on the 68040.

C H A P T E R 2

Hardware Design

Processor and Memory System

17

When the 80486 performs a misaligned write, the interface IC (Pretzel Logic) first checks
to see if the transfer is an aligned transfer on the Macintosh host computer. If it is, the
write is allowed to proceed. If the write is misaligned with respect to the host computer
(for example, a 3-byte transfer, or a 2-byte transfer that does not fall on a word
boundary), the interface IC forces the 80486 to break the transfer into multiple single-
byte operations. This ensures that misaligned transfers on the PC side get mapped to the
proper addresses in the host computer’s memory.

Interrupts 2

The 84031 and 84035 ICs, described in later sections, are responsible for generating all
interrupt requests to the 80486 microprocessor. The 84035 data path controller IC
generates the maskable interrupt resulting from the various IRQ sources. For interrupt
functions, the 84035 is equivalent to two cascaded 8259 interrupt controllers (PIC) as
found in the original PC/AT. Table 2-2 shows the interrupt definitions for the PC on the
DOS Compatibility Card.

The source of the PDS non-maskable interrupt (SLOT_E signal) is the Pretzel Logic IC
(described on page 26). With the exception of transfers in which the PDS becomes
bus master, all service between the PC side and the Macintosh host computer is
interrupt driven.

The master interrupt status register in the Pretzel Logic IC contains the state of all
interrupt sources on the card. Each of these interrupt sources can be individually masked
by an accompanying master interrupt enable register. Additionally, higher resolution

Table 2-2

Definitions of PC interrupts

Interrupt
number Description

0 Interval timer

1 Keyboard and mouse

2 PIC 2

3* COM2 port*

4* COM1 port*

5 Sound expansion card

6* Message mailbox*

7* Parallel port 1*

8 Real time clock

12 Auxiliary port

NOTE

Asterisk (*) indicates interrupt requests
with source in the interface (Pretzel Logic) IC.

C H A P T E R 2

Hardware Design

18

Processor and Memory System

into the cause of the interrupt can be determined by use of the secondary interrupt status
registers for COM1 and COM2 ports, keyboard and mouse port, and DMA channel.

The interrupt and status registers in the Pretzel Logic IC are accessible from the
Macintosh environment only. From the PC environment, the registers for the COM1 and
COM2 ports and for the printer port match their standard definitions.

Bus Arbitration 2

The PC system bus supports the 80486 microprocessor (as bus master) and the two 8-bit
DMA channels on the sound expansion connector. DMA cycles between the PC and
Macintosh memory or peripherals do not use the DMA controllers in the 84035 data path
controller IC but instead require the processor to poll the DMA status register and
perform I/O reads and writes to the DMA data register in the Pretzel Logic IC.

The 84031 memory controller IC and the Pretzel Logic IC respond on the PC system bus
as slave devices.

The HOLD signal to the 80486 microprocessor is formed by the logical OR of the DMA
controller’s output with the autoconfiguration control output. The HOLD signal is used
by the DMA controller to hold off the processor for DMA transfer and at startup time to
tristate the processor address bus and allow the Pretzel Logic IC to autoconfigure.

Because there is no way of signaling a bus error to the 80486 microprocessor, no bus
timers exist on the PC side to monitor the PC system bus activity and terminate faulty
cycles. For an address outside the decoded range, the 84031 bus controller signals
completion and operation continues.

A bus error on the PC system bus will cause the PC to hang. When that happens, the
Macintosh environment is not affected, so it can be used to restart the PC, either by the
Ctl-Alt-Del key sequence if the PC keyboard is still responding or by the Cmd-Ctl-Alt-Del
key sequence if not.

The 84031 memory controller IC acts as the master of the XD(ISA) bus on the PC
side. The 8242 keyboard controller and the 82C450 VGA controller respond only as
slave devices on this bus.

The Macintosh system bus on the Power Macintosh 6100 can support three bus masters.
Table 2-3 summarizes the fixed arbitration device assignments and priorities.

Table 2-3

Arbitration priorities

Priority Device

Highest DRAM refresh

I/O DMA

Video refresh

Pretzel Logic (PDS)

Lowest PowerPC 601 processor

C H A P T E R 2

Hardware Design

Processor and Memory System

19

When performing DMA cycles to the PC, the Pretzel Logic IC becomes a PowerPC 601
bus master.

When configured for shared memory operation, the Pretzel Logic IC provides a way to
limit bus monopolizing by the PDS slot. Internal to the Pretzel Logic IC is a count
register that can be configured to allow the IC to park on the PowerPC 601 bus if the
pending number of posted writes is equal to or less than the specified count.

The DOS Compatibility Card relies on the host’s PowerPC 601 microprocessor to
maintain a watchdog timer for the PDS. This timer is necessary to prevent the Macintosh
from hanging while waiting for a response from the Pretzel Logic IC.

Expansion 2

The DOS Compatibility Card does not provide any way to add ISA or EISA expansion
boards. The local ISA bus (XD) is closed and supports only the 8242 keyboard controller,
80450 VGA controller, the 558 game timer, and the sound expansion card. The COM1,
COM2, and LPT1 peripherals usually found on the AT-ISA bus are directly accessible
from the Pretzel Logic IC through the processor system bus.

A 50-pin connector is provided on the card for access to a subset of the ISA signals. That
connector is normally occupied by the sound expansion card.

84031 Memory Controller 2

The 84031 memory controller IC performs the following system-level functions:

■

DRAM control

■

ROM control

■

system clock generation

■

ISA bus control

■

VL (local) bus arbitration

DRAM Control 2

The DRAM on the card is directly interfaced to the local data bus. The /RAS, /CAS, /
DWE, and MA lines are driven directly from the 84031 memory controller IC without
external buffers.

The DRAM controller in the 84031 supports page mode operation. For memory read
operations, the page hit cycles are either 3-2-2-2 or 4-2-2-2 bursts. For write operations,
the page hits are 1-wait-state accesses. Both read and write operations are designed for
DRAM devices with 80 ns access time and have RAS-CAS delays of two T states.

The DOS Compatibility Card has a slot for one 32-bit-wide SIMM that supports up to
two banks of DRAM (for double-sided modules). No system DRAM is soldered on the
card. A single-sided SIMM can hold 1 MB, 4 MB, or 16 MB using 1, 4, or 16 Mbit DRAM
devices, respectively. Double-sided SIMM modules can hold double those amounts
of memory.

C H A P T E R 2

Hardware Design

20

Processor and Memory System

The DOS Compatibility Card does not require a DRAM SIMM with parity.

The presence of a DRAM SIMM on the card is sensed by the Pretzel Logic IC at startup
and stored in a register in the IC. Upon reading this register bit, the startup software
determines the size of the memory and programs the 84031’s configuration registers
with starting and ending addresses for each bank. If a DRAM SIMM is not present,
shared memory is assumed and the software disables all local DRAM banks in the 84031.

BIOS Control 2

The DOS Compatibility Card has no ROM except for the declaration ROM common to
all Macintosh expansion cards. The BIOS is stored in the host computer’s RAM and
accessed by way of the shared memory channel in the Pretzel Logic IC.

Note

The BIOS and the BIOS extensions in the host computer’s memory are
always accessed by way of the shared memory interface, regardless of
whether a DRAM SIMM is installed on the card.

◆

At reset the 80486 microprocessor issues the starting reset-vector address from within the
address range of the BIOS image in the upper 64 KB of shared system memory. The
Pretzel Logic IC remaps this address range down to the lower 1 MB region where the
BIOS actually resides. The Pretzel Logic IC also performs the address translation
between the BIOS addresses on the PC side and the corresponding addresses in shared
memory on the Macintosh host computer.

Clock Generation 2

The 84031 memory controller IC receives a 2X clock and generates a low-skew 1X and 2X
clock for the system and the 80486 processor. In addition, it divides down the 2X clock to
generate the BUSCLK signal for the ISA bus.

ISA Bus Control 2

The 84031 handles all accesses to the ISA bus by the 80486. In addition, the 84031
performs data buffering to form the XD bus for local peripherals such as the keyboard,
joystick, and VGA controllers. The 84031 also provides support for local bus slaves such
as the Pretzel Logic IC.

84035 Data Path Controller 2

The 84035 data path controller IC performs the following system-level functions:

■

system reset

■

interrupt control

■

speaker drive

C H A P T E R 2

Hardware Design

Processor and Memory System

21

In addition, the 84035 contains the PC/AT-compatible DMA channels and the system
arbitration logic for DMA masters and local bus masters. Those functions are needed by
the sound expansion card.

Clocks 2

The 84035 data path controller IC receives a 14.31818 MHz clock signal and divides it by
12 to form the 1.19 MHz clock used by the 8254 timers. In addition, the 84035 receives a
32.768 kHz clock signal for the internal real-time clock. All CPU related functions are
based on the 1X clock generated by the 84031 memory controller IC.

System Reset 2

The 84035 data path controller IC generates the reset signals for the DOS Compatibility
Card. The 84035 generates the SYSRESET and CPURESET signals based on the
/PWRGOOD signal from the Pretzel Logic IC. The CPURESET signal is also affected by
soft reset requests received over the control link from the 84031.

The /PWRGOOD signal controls several other signals. It disables all outputs and gates
off all inputs to the 84035 except for the /PWRSTB signal (PRAM, RTC power), the
14 MHz clock (14.31818 MHz input), the 32 kHz clock (32.768 kHz input), and the
/PWRGOOD signal itself. When the /PWRGOOD signal goes high, the outputs are
enabled and the SYSRESET and CPURESET signals are driven high. The 84035 holds the
SYSRESET and CPURESET signals high for 8 million cycles of the SCLK clock to ensure
proper startup of the 14.31818 MHz oscillator and to allow time for the VCO in the 80486
to stabilize.

The SYSRESET and CPURESET signals are generated as follows: The SYSRESET signal is
generated based on the /PWRGOOD signal alone. The CPURESET signal is generated
based on /PWRGOOD but is also generated for soft resets. Soft resets can occur due to a
keyboard controller reset, a CPU shutdown cycle, or the transition of bit 0 of port 92 in
the 84035 from a 0 to a 1.

Keyboard reset and shutdown are sent to the 84035 data path controller through the
control link from the 84031 memory controller, which decodes shutdown cycles and
receives keyboard reset from the 8242 keyboard controller.

The 84035 data path controller IC generates the /A20M signal to the 80486 micro-
processor. The 84035 generates the /A20M signal by ORing together the GATEA20 signal
from the keyboard controller and bit 1 of port 92 in the 84035. The keyboard controller’s
GATEA20 information comes from the 84031 memory controller through the control link.

Interrupt Control 2

The 84035 data path controller IC contains two 8259-compatible interrupt controllers.
The interrupt priorities are listed in Table 2-2 on page 17.

C H A P T E R 2

Hardware Design

22

Video System

Video System 2

The DOS Compatibility Card includes a complete video system to support PC video.
The video system consists of a DRAM-based frame buffer and a VGA controller with
an integrated color lookup table (CLUT), triple digital-to-analog converter (DAC), and
clock generator.

Connecting a Monitor 2

Video output from the DOS Compatibility Card can be displayed either on a dedicated
monitor or on a monitor shared with the host Macintosh computer. When using a
dedicated monitor, the video-out end of the video adapter cable (a DB-15 socket) is
connected directly to the monitor. This mode of operation provides separate video from
the PC on the card and the Macintosh host computer.

When using a shared monitor, the video output from the DOS Compatibility Card is
connected to the same video cable as the video output from the Macintosh. The user can
switch from one video screen to the other using a programmable key sequence. When
the user selects Macintosh video, the software sets a bit in port A of the interface IC. This
bit is connected directly to the blanking input of the SynDAC IC (described on page 26)
and causes the PC’s video to be blanked (held at 0.0 V). The port A bit also controls a
multiplexer between the PC and Macintosh sync lines so that the video signal from the
Macintosh host computer is sent to the shared monitor.

When the user selects PC video, the software on the Macintosh host computer writes
black RGB values into all entries of the CLUT and sets the DC offset register in the DAC
to make the black and blank levels equal (0.0 V). The port A bit is then switched so that
the SynDAC unblanks the PC’s video signal and the video multiplexer sends the PC’s
video signal to the shared monitor.

To provide appropriate termination of the video signal, the DOS Compatibility Card
determines whether it is sharing the monitor with the Macintosh host computer. If the
monitor is being shared, the computer end of the video cable is terminated on the host
computer’s main logic board. If the DOS Compatibility Card is using a dedicated
monitor, then the card connects the proper 75-ohm termination resistor to its video
output line.

Monitors Supported 2

The DOS Compatibility Card has 512 KB of DRAM soldered on that provides all the
standard VGA modes and some extended SVGA modes. No video DRAM expansion is
provided because none is needed to meet full VGA compatibility. The VGA controller

C H A P T E R 2

Hardware Design

Video System

23

supports the 14-inch and 17-inch RGB Apple monitors as well as the standard VGA
monitors. Table 2-4 summarizes the monitor sizes and display modes supported by the
DOS Compatibility Card.

Note

Monitors of other sizes can be used on the Macintosh host computer but
cannot be shared by the DOS Compatibility Card.

◆

Monitor Sense Lines 2

Monitor types are sensed by way of sense lines in the video cable. Monitor sense line
settings are stored in the interface IC upon power-up when the card is operating in
dedicated monitor mode. The software reads the sense lines and selects the appropriate
video timings and configurations for the VGA controller.

The extended encodings are not supported when the PC has a dedicated monitor
because the Pretzel Logic IC is unable to separately drive and read the sense lines. When
using a monitor other than the Macintosh 14-inch RGB monitor, the user is required to
indicate use of a 16-inch RGB monitor or a VGA monitor by a setting in the Monitors
control panel.

Table 2-4

Monitors and display modes

Monitor size Modes supported

Macintosh 14-inch All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h)

VGA All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h)

SVGA All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)

Macintosh 16-inch All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)

Macintosh 17-inch
multiscan

All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)

Macintosh 20-inch
multiscan

All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)

C H A P T E R 2

Hardware Design

24

Video System

Video Timing 2

Table 2-5 and Figure 2-2 define the video monitors and timings supported by the
Macintosh host computer that are also supported by DOS Compatibility Card. For
the Macintosh monitors that are fixed frequency (the 14-inch and 16-inch monitors), the
VGA controller on the card needs to be configured for this horizontal and vertical
retrace rate.

Note

The DOS Compatibility Card can operate with a 17-inch (or larger)
monitor. If such a large monitor is shared, the user can use the Monitors
control panel to set the display to either 640 by 480 pixels or 832 by 624
pixels. If the large monitor is connected directly to the card, the display
is 640 by 480 pixels.

◆

Table 2-5

VIdeo timing parameters for supported monitors

Parameter 14-inch RGB 17-inch RGB VGA SVGA

Display size (pixels) 640 by 480 832 by 624 640 by 480 800 by 600

Pixel clock 30.24 MHz 57.28 MHz 25.18 MHz 36.00 MHz

Pixel time 33.07 ns 17.46 ns 39.72 ns 27.78 ns

Line rate 35.00 kHz 49.73 kHz 31.47 kHz 35.16 kHz

Line time 28.57

µ

s
(864 pixels)

20.11

µ

s
(1152 pixels)

31.78

µ

s
(800 pixels)

28.44

µ

s
(1024 pixels)

Horizontal active video 640 pixels 832 pixels 640 pixels 800 pixels

Horizontal blanking 224 pixels 320 pixels 160 pixels 224 pixels

Horizontal front porch 64 pixels 32 pixels 16 pixels 16 pixels

Horizontal sync pulse 64 pixels 64 pixels 96 pixels 112 pixels

Horizontal back porch 96 pixels 224 pixels 48 pixels 96 pixels

Frame rate 66.72 Hz 74.55 Hz 59.94 Hz 52.71 Hz

Frame time 15.01 ms
(525 lines)

13.41 ms
(667 lines)

16.68 ms
(525 lines)

18.97 ms
(667 lines)

Vertical active video 480 lines 624 lines 480 lines 600 lines

Vertical blanking 45 lines 43 lines 45 lines 28 lines

Vertical front porch 3 lines 1 line 10 lines 1 line

Vertical sync pulse 3 lines 3 lines 2 lines 4 lines

Vertical back porch 39 lines 39 lines 33 lines 23 lines

C H A P T E R 2

Hardware Design

Video System 25

Figure 2-2 Video timing parameters

To accommodate the various VGA and SVGA modes on the Macintosh monitors, the
video controller must have its timing parameters changed by the BIOS. To do that, the
Macintosh software reads the video sense lines and loads the appropriate values for the
video BIOS before starting up the PC. (Remember that system and video BIOS reside in
Macintosh system memory and are modifiable by the software.)

Video

H sync space H image space

H line length

H back porch

H sync pulse

H front porch

HBLANK

/HSYNC

Black

Horizontal timing

Video

V sync space V image space

V line length

V back porch

V sync pulse

V front porch

VBLANK

/VSYNC

Vertical timing

White

Black

White

C H A P T E R 2

Hardware Design

26 I/O System

Video System ICs 2
Two ICs provide the video support for the PC:

■ 82C450 VGA controller

■ MU9C9760 SynDAC

82C450 VGA Controller 2

The 82C450 is an integrated VGA video controller that is backward compatible with
EGA, CGA, and MDA video modes. With the card’s 512 KB of video DRAM (four
256K-by-4 DRAM ICs), the SynDAC supports all standard VGA modes as well as 800 by
600 pixels at 4 bits per pixel (noninterlaced), 640 by 480 pixels at 8 bits per pixel, and
132-column text mode.

The video controller is connected to the system by way of the ISA bus (the XD bus on the
DOS Compatibility Card).

MU9C9760 SynDAC 2

The video system on the DOS Compatibility Card uses a device called the SynDAC: an
IC (MU9C9760) that combines a lookup table, a triple video DAC, and a dual clock
synthesizer. The SynDAC IC drives the video output line directly and is compatible with
the Brooktree BT475 CLUT/DAC IC. The SynDAC IC provides 256 colors from a palette
of 256K colors. The SynDAC IC also provides an internal pixel clock with eight
programmable frequencies.

I/O System 2

The I/O system on the DOS Compatibility Card consists of the Pretzel Logic IC and the
8242 keyboard and mouse controller.

Pretzel Logic I/O Controller IC 2
The main component of the I/O system is the Pretzel Logic IC. It acts as a bus converter
between the PC processor bus and the Macintosh processor bus. The Pretzel Logic IC
integrates many of the I/O functions required to support the PC and also helps support
the communication between the PC and the Macintosh host computer. The Pretzel Logic
IC has the following features:

■ Two DMA channels (one for shared memory and one for disk I/O)

■ Two serial ports (16C450 compatible)

■ One Centronics parallel printer port

■ Keyboard and mouse controller (8047 compatible)

C H A P T E R 2

Hardware Design

I/O System 27

■ A 64-bit message mailbox with a 32-bit command port

■ Power-on reset logic

■ Autoconfiguration logic

The Pretzel Logic IC functions as a slave device on the PC system bus. On the Macintosh
system bus, the Pretzel Logic IC functions both as a slave and as an alternate bus master.

To the Macintosh host computer, the DOS Compatibility Card appears as a PDS
expansion card capable of generating slot $E interrupts to the PPC 601 and either
responding as a system bus slave or becoming a system bus master. The Pretzel Logic IC
communicates with the host computer as a bus master when the PC is performing floppy
disk or hard disk accesses or when sharing Macintosh memory. The Pretzel Logic IC
responds as a system bus slave on the Macintosh host computer during interrupt
acknowledge cycles, keyboard and mouse accesses, and message mailbox accesses.

DMA Channels 2
When the DOS Compatibility Card is configured to operate in shared memory mode (no
SIMM installed), the Pretzel Logic IC uses one of its DMA channels for access to memory
in the Macintosh host computer. The DMA channel incorporates separate FIFOs for read
and write operations; each FIFO is four longwords deep. The write FIFO allows the
80486 to post up to four longword writes before forcing the processor to wait.

The address translation register provides 32-bit address translation between the PC and
the host computer. This feature supports block sizes of 2 to 64 MB and allows the PC
memory to be relocated anywhere within the unreserved memory area on the Macintosh
host computer.

The second DMA channel is used to perform I/O data transfers between Macintosh
peripherals and PC memory. This I/O DMA channel is used when a DRAM SIMM is
installed on the DOS Compatibility Card.

Serial Port Support 2
To support serial ports, the Pretzel Logic IC contains two identical sets of UART
emulation registers. These registers emulate the hardware of the standard 16C450
serial port ICs found in many PC/AT computers. When the PC accesses these registers,
interrupts are generated in the Macintosh host computer that cause the serial driver
in the Mac OS to route the data to the Macintosh serial ports.

The Macintosh serial ports are RS-422 ports and do not support all RS-232 signals.
In particular, the Carrier Detect (CD), Data Set Ready (DSR), Request To Send (RTS),
and Ring Indicator (RI) signals are not available. Table 1-2 (in Chapter 1) shows the
corresponding signals on the two types of serial ports.

Note
Not all RS-232 devices work properly using the RS-422 protocol. ◆

C H A P T E R 2

Hardware Design

28 I/O System

Printer Port Support 2
The Pretzel Logic IC implements all the registers of the standard Centronics parallel port
found on a PC. When the PC accesses these registers, interrupts are generated in the
Macintosh host computer that cause the driver software in the Mac OS to send data to a
print spooler file. The spooler file is then sent to whatever printer is selected by the user
in the Macintosh environment.

Note
The parallel port interface does not control printer hardware
signals and does not support bidirectional data transfer. ◆

Keyboard and Mouse Emulation 2
The Pretzel Logic IC emulates in hardware the PC’s keyboard and mouse. The 8242
keyboard and mouse controller is configured to support a PS2 mouse making the
protocol identical for the keyboard and mouse. The Pretzel Logic IC generates the
appropriate serial clock protocol and serial bit stream to communicate with the 8242.

Message Mailbox 2
The message-passing interface in the Pretzel Logic IC supports simple interrupt-driven
communication between the PC and the Macintosh host computer. The message-passing
interface contains two data registers and one command register. One of the data registers
incorporates byte swapping to allow address-invariant data to be moved between the
two systems. The interface uses a semaphore mechanism of arbitration and grants to
control the direction of the message passing. See “Passing Messages” beginning on
page 45 for a description of the software API for message passing.

Power-on Reset 2
The Pretzel Logic IC contains the reset logic that allows the Macintosh host computer to
start up the PC. Reset of the PC is controlled through the /PWRGOOD signal to the
84035 data path controller IC. Power for the PRAM on the PC is provided by the
Macintosh computer, so the PRAM is not invalidated when the PC is reset. When the
host computer is turned off, the PRAM becomes invalid; the next time the computer is
turned on, software on the Macintosh side reloads the PRAM on the PC side before the
PC system BIOS is executed.

Soft reset of the PC by way of the keyboard (Ctl-Alt-Del keys) is handled by the 8242
keyboard controller once the proper key code is sent by the Pretzel Logic IC through the
keyboard port.

C H A P T E R 2

Hardware Design

PDS Adapter Card 29

Autoconfiguration 2
The Pretzel Logic IC performs autoconfiguration each time the PC is reset. The following
configurations are sensed and set upon reset:

■ Presence of local DRAM (SIMM installed on the card)

■ Video monitor adapter cable installed on the Macintosh computer (this cable must be
installed to share a single monitor between the host computer and the card)

■ PDS card ID (000)

The video monitor adapter cable must be installed to share a single monitor between
the Macintosh host computer and the card. The PDS card ID for the DOS Compatibility
Card is 000.

Declaration ROM 2
For the onboard declaration ROM, the Pretzel Logic IC provides decoding of slot $E
addresses in the $FEXX XXXX range. The device used for the declaration ROM is a 32 KB
ROM IC with an access time of 150 ns.

PDS Adapter Card 2

The PDS adapter card is the interface between the processor card and the processor-
direct slot in the Power Macintosh 6100. It contains the bus demultiplexer buffers and
the AJA custom IC that controls them.

AJA Bus Controller IC 2
The control logic for the interface between the Pretzel Logic IC’s 68040 bus and the host
computer’s PowerPC 601 bus is implemented in a custom gate array called the AJA IC.
The AJA IC controls the bus demultiplexing and translates the PDS control signals from
the Macintosh computer.

The AJA IC provides the following functions:

■ selection of upper or lower longword on the bus

■ control of bus buffer direction

■ control of bus grant to allow for retry

■ bus arbitration to avoid preemption

C H A P T E R 2

Hardware Design

30 Sound Expansion Card

Bus Demultiplexing 2
The adapter card contains eight 74F245 buffer ICs. They perform the demultiplexing of
the 64-bit PowerPC 601 bus to the 32-bit bus that is connected to the Pretzel Logic IC.
The buffer ICs are controlled by the AJA IC.

Burst Transfers 2
The Macintosh host computer and the DOS Compatibility Card do not perform burst
transfers in the same way. The memory controller on the Power Macintosh 6100
computer performs burst transfers of 32-byte length (eight longwords), whereas the
card’s Pretzel Logic IC can perform block transfers of 16-byte length (four longwords).
To provide a compatible transfer mechanism between the two, burst transfers on the
Pretzel Logic IC are disabled and the bus controller breaks up burst transfers into four
single-longword-compelled transfers. The Pretzel Logic IC keeps the /ABB signal
asserted during the multiple compelled transfers so that it continues to be bus master.

Sound Expansion Card 2

The DOS Compatibility Card has an expansion connector that provides a subset of the
unbuffered XD bus. That connector is the interface to the sound expansion card.

The sound expansion card provides MPC level 1 and level 2 sound output capability.
The card does not provide sound input capability; instead, the Macintosh host computer
provides sound input and record features. The sound expansion card is compatible
with the Sound Blaster register set and uses the standard ISA bus interface and
8-bit DMA channel.

The sound expansion card is designed around three ICs:

■ CT2501 sound system IC

■ YMF262 FM operator IC

■ TAC512 DAC IC

CT2501 Sound System IC 2
The CT2501 is a single IC that incorporates all the functions of a 16-bit PC sound system
except FM synthesis and output filtering. The CT2501 sound system IC, also known as
the Vibra 16, includes the following features:

■ an 8-bit ISA bus interface including DMA support and interrupt generation

■ FIFO buffers and control logic for digital audio playback and format conversion for
the DAC

C H A P T E R 2

Hardware Design

Sound Expansion Card 31

■ a 16-bit stereo codec

■ a Sound Blaster–compatible mixer with AGC

■ a control interface for the FM synthesizer IC

The CT2501 sound system IC allows analog mixing of audio from the PC and from the
FM synthesizer IC. The audio signal from the sound card is the mixed with the CD audio
from the Macintosh host computer by circuitry on the DOS Compatibility Card. The
resulting sound signal is sent back to the Macintosh computer where it is mixed with the
Macintosh computer’s sound signals and sent to the sound outputs.

YMF262 FM Synthesizer IC 2
The YMF262 IC, a type I3 (OPL3) device, uses FM synthesis to generate sounds. The
YMF262 IC includes the following features:

■ 24 operators configurable in 4-operator mode for 6 channels

■ 36 operators configurable in 2-operator mode for either 18 channels or 15 channels
with 5 rhythm channels

■ 8 selectable FM source waveforms

■ 4 channels of sound output

■ hardware vibrato and tremolo effects

■ 2 programmable timers capable of generating interrupt requests

The YMF262 IC interfaces directly to the 8-bit ISA data and address bus; the CT2501 IC
provides the chip select signal.

YAC512 Sound DAC IC 2
The YAC512 IC is a two-channel, 16-bit digital-to-analog converter that interfaces with
the YMF262 FM synthesizer IC to provide analog sound output signals.

C H A P T E R 3

The PC Interface Driver 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

The PC Interface Driver

34

Initializing the Driver

The PC Interface driver provides communication and control between the Macintosh
Operating System (Mac OS) and the DOS Compatibility Card. Programs running on
the Mac OS can use the driver to configure and control the card. Programs in both
environments can use the driver to exchange messages; see the section “Passing
Messages” beginning on page 45.

Initializing the Driver 3

Before you can use the PC Interface driver, your application must initialize it by calling
the

open

 routine. Both opening and closing the driver are performed only from the
Mac OS.

Open 3

When you call the

open

 routine, it allocates and initializes the driver’s memory, installs
the interrupt handler, and makes patches to the system needed by the driver. The

open

routine initializes all devices to the null device and puts the PC into a reset state.

The

open

 routine fails if the driver cannot allocate enough memory or if it cannot find
the DOS Compatibility Card.

Close 3

When you call the

close

 routine, it releases all memory allocated to the PC Interface
driver, removes the driver’s interrupt handler, removes any patches installed by the

open

 routine, and puts the PC into the reset state.

Configuring the PC 3

A program running on the Mac OS can use the PC Interface driver to configure the PC
on the DOS Compatibility Card. You can use calls to the driver to perform the following
operations:

■

setting the memory available to the PC

■

configuring the disk drives available to the PC

■

setting and reading the status of the network driver

■

configuring the communications port

■

configuring the parallel port

■

defining the key combination that deactivates the PC

The routines that perform those configuration tasks are defined here.

C H A P T E R 3

The PC Interface Driver

Configuring the PC

35

rsSetMemoryConfig 3

You can use the

rsSetMemoryConfig

 control call to make memory on the Macintosh
computer available for the PC. The calling program first allocates the memory and sets it
locked and contiguous. The control call sets the base address and length of the memory.

 This call is needed only when no RAM SIMM is installed for the PC. The calling
program can determine whether a RAM SIMM is installed by calling the

rsPCStatus

status routine (described below).

Parameter block

→

 ioCompletion long

Pointer to the completion routine

←

 ioResult word

→

 ioRefNum word

→

 csCode word

Equals

rsSetMemoryConfig

→

 csParam+0 long

Logical base address of PC memory

→

 csParam+4 long

Physical base address of PC memory

→

 csParam+6 long

Length of PC memory

rsSetDriveConfig 3

You can use the

rsSetDriveConfig

 control call to configure each of the PC’s fixed disk
drives (A:, B:, C:, and D:) as a floppy drive, Macintosh file, or SCSI partition, or as having
no corresponding drive.

Parameter block

→

ioCompletion long

Pointer to the completion routine

←

ioResult word

→

ioRefNum word

→

csCode word

Equals

rsSetDriveConfig

→

csParam+0 long

Pointer to

RSFixedDriveConfig

The

csParam

 contains a pointer to an

RSFixedDriveConfig

 data structure.

typedefstruct{

short type; // Type of device this drive is

short vRefNum; // Volume refNum or SCSI ID

long dirID; // Directory ID or starting sector number on SCSI drives

long fileNamePtr;// File name or number of sectors on SCSI drive

} RSFixedDriveConfig[4], *RSFixedDriveConfigPtr;

RSFixedDriveConfig[0]

 contains the configuration for drive A:,

RSFixedDriveConfig[1]

 contains the configuration for drive B:,

RSFixedDriveConfig[2]

contains the configuration for drive C:, and

RSFixedDriveConfig[3

] contains the configuration for drive D:.

C H A P T E R 3

The PC Interface Driver

36

Configuring the PC

The

type

 field specifies what type the drive is configured as (

rsFloppyDrive

,

rsFileDrive

,

rsPartitionDrive

, or

rsNULLDrive

).

If the value of

type

 is

rsNULLDrive

, the corresponding drive does not exist to the PC
and no other fields need to be filled in.

If the value of

type

 is

rsFloppyDrive

, the corresponding drive on the PC is connected
to one of the Macintosh computer’s floppy drives.

If the value of

type

 is

rsFileDrive

, the corresponding drive is connected to a
Macintosh file system file. The

vRefNum

 field contains the volume the file is on,

dirID

contains the directory ID of the file, and

fileNamePtr

 contains a pointer to the file
name. The driver opens and closes the file as needed.

If the value of

type

 is

rsPartitionDrive

, the corresponding drive is connected to a
SCSI drive partition. The

vRefNum

 field contains the SCSI ID,

dirID

 contains the
starting sector number of the partition, and

fileNamePtr

 contains the number of
sectors in the partition.

If the value of

type

 is set to

rsIgnore

, the configuration of the corresponding drive is
not changed.

The program on the Macintosh computer should call

rsSetDriveConfig

 at least once
before starting the PC. The routine can also be called after the PC has been started to
change the drive configuration. In that case, the new drive configuration does not take
effect until the PC is restarted.

rsGetNetDriveConfig 3

You can use the rsGetNetDriveConfig status call to obtain drive configuration data.
This call returns a pointer to an array of 22 RSNetDriveConfig data structures, one for
each drive letter from E through Z.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsGetNetDriveConfig

← csParam+0 long Pointer to RSNetDriveConfig

typedef struct {

char status; // 0 = unused, -1 = in use, 1 = cannot be used

char changed; // Used by the driver, do not use

short vRefNum; // Reference number of volume containing shared drive

long dirID; // Directory ID

} RSNetDriveConfig[26], *RSNetDriveConfigPtr;

C H A P T E R 3

The PC Interface Driver

Configuring the PC 37

The RSNetDriveConfig data structure contains the current configuration for folder
sharing for each PC drive letter. If the PC has its LASTDRIVE parameter set to less
than Z or if other block device drivers are loaded on the PC, not all drive letters will
be available. The data structures for drives that are not available have their status
parameters set to 1 by the PC Interface driver.

The caller can use the returned pointer to modify an entry in the RSNetDriveConfig
data structure and then call the rsSetNetDriveConfig control call.

rsSetNetDriveConfig 3

You can use the rsSetNetDriveConfig control call to establish links between
Macintosh directories and PC drive letters.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsSetNetDriveConfig

→ csParam+0 word Entry number of RSNetDriveConfig (0=E)

This call simply notifies the PC Interface driver that an entry in the RSNetDriveConfig
data structure has been modified.

rsSetComPortConfig 3

You can use the rsSetComPortConfig control call to set the configurations of the two
communication ports (COM1 and COM2) on the PC. Each communication port can have
a virtual connection to either the modem port, the printer port, a communication tool
box port, a spool file, or the null device.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsSetComPortConfig

→ csParam+0 long Pointer to RSComConfig

A pointer to an RSComConfig data structure is passed in the csParam field.

typedef struct{

short type; // Port type (rsModemComPort, rsPrinterComPort, etc.)

short vRefNum; // Volume reference number for serial spool file

long dirID; // Directory ID

long fileNamePtr;// Pointer to the filename

} RSComConfig[2], *RSComConfigPtr;

C H A P T E R 3

The PC Interface Driver

38 Configuring the PC

RSComConfig[0] contains the configuration for COM1 and RSComConfig[1] contains
the configuration for COM2. The type field specifies what type of connection to make
(either rsNULLComPort, rsModemComPort, rsPrinterComPort, rsSpoolComPort,
rsComToolBoxComPort, or rsIgnore). The value of the vRefNum parameter is the
volume reference number, dirID is the directory ID, and fileNamePtr is the pointer to
the name of the spool file.

When a PC port is connected to the null device, any output from the PC is ignored.

When a PC port is connected to the modem or printer port, the PC controls the port by
means of the UART emulation in hardware on the DOS Compatibility Card. For
example, when the PC sets the baud rate divisor in the UART emulation register, the PC
Interface driver intercepts the operation and translates the action to a control call to the
driver for the modem or printer port.

When a PC port is connected to a spool file, all output from the PC is captured and
written to the specified file. The driver opens and closes the file as needed.

The rsSetComPortConfig routine should be called at least once before the PC is
started up. It can also be called after the PC has been started; in that case, the change
in configuration takes effect immediately.

If the type field is set to reIgnore, the port’s configuration does not change.

rsSetParallelPortConfig 3

You can use the rsSetParallelPortConfig function to set the configuration of the
parallel port emulation. A pointer to an RSParallelConfig data structure is passed
in csParam.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsSetParallelPortConfig

→ csParam long Pointer to RSParallelConfig

typedef struct{

short eojTimeOut; // End of job after n seconds of no data

short vRefNum; // Volume RefNum

long spoolDirID; // RefNum for spool directory

} RSParallelConfig, *RSParallelConfigPtr;

The spoolDirID field is the ID of the directory where the spool files will be stored. The
vRefNum field contains the reference number of the volume that contains the directory.
The eojTimeOut field specifies the number of seconds the parallel port must be inactive
before the driver will force an end of job. If this field is set to 0, the driver does not force
the end of job based on time.

C H A P T E R 3

The PC Interface Driver

Control and Status Calls 39

When a print job has been completed, the driver notifies the application by means of the
rsSetNotificationProc procedure (defined on page 44). The driver also notifies the
application if it has trouble saving the spool data.

rsSetDeactivateKey 3

You can use the rsSetDeactivateKey control call to set the deactivate key along with
its modifiers and a user-defined task. When the PC has control of the keyboard, the
driver monitors the keyboard input data for the deactivate key combination and calls the
user-defined task when that key combination occurs.

Parameter block

→ ioCompletion long Pointer to the completion routine
← ioResult word

→ ioRefNum word

→ csCode word Equals rsSetDeactivateKey
→ csParam+0 long Pointer to user-defined task
→ csParam+4 word Modifiers
→ csParam+6 word The deactivate key

Upon return, the parameter block is set as follows:

← csParam+0 long Pointer to the previous user-defined task
← csParam+4 word The previous modifiers
← csParam+6 word The previous deactivate key

The user-defined task is called during NeedTime after the deactivate key and modifiers
are pressed. If the user-defined task is null, no task is called. The modifiers are specified
as they appear in the KeyMap+6. The value of the deactivate key is the Macintosh key
code of the desired key.

Control and Status Calls 3

A program running on the Mac OS can use the PC Interface driver to make control and
status calls to the PC running on the DOS Compatibility Card. You can perform the
following functions:

■ getting the status of the PC

■ booting (starting) the PC

■ resetting the PC

■ enabling and disabling the video display of the PC

■ enabling and disabling disk mounting on the PC

■ activating and deactivating keyboard operation by the PC

■ activating and deactivating mouse tracking by the PC

■ terminating print spooling from the PC

C H A P T E R 3

The PC Interface Driver

40 Control and Status Calls

rsPCStatus 3

You can use the rsPCStatus status call to get information about the state of the PC
hardware. This call returns the current state of the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsPCStatus

← csParam+4 long The status word

Table 3-1 shows the meanings of the bits in the status word.

Table 3-1 Bits in the PC status word

Bit Meaning

0 1 = PC is running (rsBooted)

1 1 = VGA screen is enabled (rsVGAEnabled)

2 1 = keyboard is enabled (rsKeyboardEnabled)

3 1 = mouse is enabled (rsMouseEnabled)

4 1 = disk mounting is enabled (rsDiskMountEnabled)

5 1 = shared memory is enabled (rsSharedEnabled)

6 1 = DMA is enabled (rsDMAEnabled)

7 1 = video cable is enabled (rsCableInstalled)

8 1 = modem port is used by COM1

9 1 = printer port is used by COM1

10 1 = modem port is used by COM2

11 1 = printer port is used by COM2

24–27 0000–1111 = video identification

28–31 0000–1111 = type of expansion card (0000 = this card)

C H A P T E R 3

The PC Interface Driver

Control and Status Calls 41

rsBootPC 3

You can use the rsBootPC control call to start up the PC. This call resets the PC’s
processor and boots the PC’s system BIOS. If the PC is already running, this call resets it.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsBootPC

The calling program must set up the PC’s configuration before booting the PC. You can
use the following control calls (defined previously) to set the configuration.

■ rsSetMemoryConfig

■ rsSetDriveConfig

■ rsSetComPortConfig

■ rsSetParallelConfig

rsResetPC 3

You can use the rsResetPC control call to put the PC into a reset state. This call stops
the PC from running; any programs or data in the PC’s memory are lost. The calling
program must use the rsBootPC control call to start the PC running again.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsResetPC

rsEnableVideo 3

You can use the rsEnableVideo control call to enable the VGA display output. You use
the call when switching a shared video monitor from the Mac OS to the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsEnableVideo

C H A P T E R 3

The PC Interface Driver

42 Control and Status Calls

rsDisableVideo 3

You can use the rsDisableVideo control call to disable the VGA display output when
the Macintosh video output is connected to the video adapter cable. If the Macintosh
video is not connected, this call does nothing.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsDisableVideo

rsMountDisks 3

You can use the rsMountDisks call to enable the mounting and unmounting of PC
disks. After the call has been made, the PC Interface driver monitors all disk-insertion
events, looking for possible PC formatted disks. If the inserted disk is not a Macintosh
formatted disk, it is considered a PC disk and is made available to the PC if the PC is
active. The mounting and unmounting of the PC disks happens automatically; the
rsMountDisks call merely enables the process.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsMountDisks

rsDontMountDisks 3

You can use the rsDontMountDisks control call to stop the PC Interface driver from
monitoring disk-insertion events. If the PC Interface driver has already mounted a PC
disk before you make this call, the PC disk remains in the drive and available to the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsDontMountDisks

C H A P T E R 3

The PC Interface Driver

Control and Status Calls 43

rsActivateKB 3

You can use the rsActivateKB control call to direct the data from the computer’s
keyboard to the PC side. All keys except the Command key are trapped; key codes are
translated and transmitted to the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsActivateKB

rsDeactivateKB 3

You can use the rsDeactivateKB control call to stop the transmission of keyboard data
to the PC and direct the keyboard data to the Mac OS.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsDeactivateKB

rsBeginMouseTracking 3

You can use the rsBeginMouseTracking control call to cause the mouse movements
and button presses to be directed to the PC. This call also causes the driver to hide the
Macintosh cursor.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsBeginMouseTracking

C H A P T E R 3

The PC Interface Driver

44 Detecting Errors

rsEndMouseTracking 3

You can use the rsEndMouseTracking control calls to cause the mouse movements
and button presses to be directed to the Mac OS. This call also causes the driver to show
the Macintosh cursor.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsEndMouseTracking

rsEndPrintJob 3

You can use the rsEndPrintJob control call to end the current print job and close the
spool file (if any). Any subsequent data from the PC to the parallel port starts a new
spool file.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsEndPrintJob

Detecting Errors 3

Programs on the Mac OS can use the next two procedures to detect error conditions or
other special events on the PC.

rsSetNotificationProc 3

You can use the rsSetNotificationProc control call to install a user-defined proce-
dure that is called whenever a special event happens within the driver. The procedure
can be called at interrupt time and is responsible for deferring handling of the event until
noninterrupt time.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsSetNotificationProc

→ csParam+0 long Pointer to the notification procedure

→ csParam+4 long A1Param value

C H A P T E R 3

The PC Interface Driver

Passing Messages 45

Upon return, the parameters are set as follows:

← csParam+0 long Pointer to the previous notification procedure

← csParam+4 long Previous A1Param value

The caller passes a pointer to the user-defined procedure and a parameter to be passed
to that procedure in A1. The control call returns the previous values. Calling
rsSetNotificationProc with a NULL pointer disables the notification procedure.

When the user-defined procedure is called, the D0.w register contains the event and A1
contains the A1Param value. The procedure can use registers D0–D2 and A0–A1.

The events are

rsPrintSpoolErr = problem opening or writing to a print spool file

rsCOM1SpoolErr = problem opening or writing to the COM1 spool file

rsCOM2SpoolErr = problem opening or writing to the COM2 spool file

rsDiskFileErr = problem reading the disk file

rsLastError 3

You can use the rsLastError status call to obtain the last nonzero error code returned
by the driver.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsLastError

← csParam+4 long Pointer to the last error routine

Passing Messages 3

Programs on the Mac OS and the PC can send messages to each other by calling the PC
Interface driver. Programs can also install a receive procedure for receiving messages.
When the PC Interface driver receives a message that is intended for your program, the
driver calls your receive procedure. Your procedure decides whether or not to accept the
message’s data and, if so, where to store the data.

Message Conventions 3
Before communications can take place, a program on the Mac OS and a program on the
PC must have the same definitions of the messages they transfer. A message consists of a
16-bit command, two 32-bit parameters, and up to 64 KB of data. The parameters and the
data can consist of any data in any format. The command must be a unique value

C H A P T E R 3

The PC Interface Driver

46 Passing Messages

recognized by the programs on the Mac OS and the PC that are sending and receiving
messages. The programs on both the PC and the Mac OS must request command
numbers from the PC Interface driver before sending messages.

Macintosh Interface 3

Programs on the Mac OS communicate with the PC Interface driver through driver calls.
Your program should first open the driver using the open call and then use the control
calls defined in the next section to register, send, and receive messages.

PC Interface 3

Programs on the PC communicate with the PC Interface driver through a software
interrupt interface. The program loads registers with appropriate values, including a
function selector in register AH, and calls the PC Interface driver with an INT 5Fh call.
PC programs can determine whether the PC Interface driver interface is available by
calling INT 5Fh with register AH = 0. If the PC Interface driver is installed, it returns
0A5h in register AH and the highest implemented function code (currently 4) in
register AL.

Registering Messages 3
For a program on the Mac OS to send messages to a program on the PC, both programs
must register their messages with the PC Interface driver. This is done by calling the
driver with a 32-bit selector defined in both programs and a count of the number
of messages to be used by the programs. The PC Interface driver allocates a range of
messages for that selector and returns the base command number to the caller. The
PC Interface driver makes sure that both the PC program and the Macintosh program
registering messages under the same selector will receive the same base command
number.

On the Mac OS 3

To register your messages from a Macintosh program, make an rsRegisterMessage
control call with the message selector in csParam+0 and the number of message
commands to allocate in csParam+4.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsRegisterMessage

↔ csParam+0 long 32-bit message selector

→ csParam+4 long Number of message commands to allocate

The PC Interface driver returns the base command number in csParam+0. If the PC
Interface driver cannot allocate the messages, an error code is returned in ioResult.

C H A P T E R 3

The PC Interface Driver

Passing Messages 47

On the PC 3

To register your messages from a PC program, load the 32-bit selector into register EBX
and the message count in register CX; then call INT 5Fh with AH = 4. The PC Interface
driver returns the base command number in register BX. Register AH contains an error
code if the messages could not be allocated.

Sending a Message 3
To send a message, you must pass a message parameter block (MsgPBlk) to the PC
Interface driver. The rsSendMessage routine is always asynchronous; it simply queues
the message parameter block and returns to the caller. The msgResult field is set to 1
(busy) until the message has been sent.

After the message has been sent, the msgResult field is set to 0 (no error) or –3
(MsgTimeout). The msgActCount field contains the number of bytes actually sent. If
you have specified a completion routine, it is then called.

On the Mac OS 3

The MsgPBlk data structure for programs on the Mac OS has the following format

MsgPBlk RECORD 0

msgQLink DS.l 1 ; Next queue element

msgQType DS.w 1 ; Queue flags

msgCmd DS.w 1 ; The message type or command

msgParam1 DS.l 1 ; Message parameter 1

msgParam2 DS.l 1 ; Message parameter 2

msgBuffer DS.l 1 ; Pointer to the message data buffer

msgReqCount DS.l 1 ; Requested data length

msgActCount DS.l 1 ; Actual data length

msgCompletion DS.l 1 ; Pointer to completion routine or
NULL

msgResult DS.w 1 ; The result of any message operation

msgFlags DS.w 1 ; Message Flags (Swap, and Shared)
Set to zero!

msgUserData DS.l 1 ; For the callers use

MsgPBlkSize Equ * ; Size of record

ENDR

To send a message, build a MsgPBlk and then pass the pointer to the MsgPBlk to the PC
Interface driver in an rsSendMessage control call.

C H A P T E R 3

The PC Interface Driver

48 Passing Messages

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsSendMessage

→ csParam+0 long Pointer to MsgPBlk

Your completion routine is called at Deferred time and can use registers D0–D2 and
A0–A1. You must save all other registers. Upon return, A0 contains a pointer to the
MsgPBlk structure.

On the PC 3

The MsgPBlk data structure on the PC has the following format. Please note that the
sizes of some of the fields are different from the Mac OS equivalent.

MsgPBlk STRUCT

link DWORD ? ; Link to next Queue element

msgCmd WORD ? ; The message command or type

msgParam1 DWORD ? ; Param 1

msgParam2 DWORD ? ; Param 2

msgBuffer DWORD ? ; Pointer to the data buffer

msgReqCount DWORD ? ; Length of the data

msgActCount DWORD ? ; # of bytes actually transferred

msgCompletion DWORD ? ; Pointer to the completion routine

msgResult BYTE ? ; The error code after complete or 1

msgFlags BYTE ? ; Msg flags (Shared and Swapped)
Set to zero!

msgUserData DWORD ? ; For the callers use.

msgVXD DWORD ? ; Reserved for driver use

MsgPBlk ENDS

To send a message on the PC, build a MsgPBlk structure and call the PC Interface driver
with AH = 1 (rsSendMessage) and ES:BX = the pointer to the MsgPBlk structure.
When you execute an INT 5Fh, the message is queued, msgResult is set to 1 (busy),
and control returns to your program.

Your completion routine is called with a FAR call and it should return with an RETF.
Also, your routine may use registers AX, BX, CX,DX, DI,SI, ES, and DS. When your
completion routine is called, ES:BX is a pointer to the MsgPBlk structure.

C H A P T E R 3

The PC Interface Driver

Passing Messages 49

Installing a Message Handler 3
Before you can receive messages, you must install a message handler. The PC Interface
driver calls the message handler when the driver receives a message with a command
value greater than or equal to recCmdBase and less than recCmdBase + recCmdCount
in the MsgRecElem data structure. The driver passes the message’s 16-bit command and
the two 32-bit parameters to your message handler.

The message handler examines the command and parameters and determines whether
there is any data to be received. If there is, the handler passes back a pointer to a
MsgPBlk. The PC Interface driver then receives the data and puts it into the buffer
pointed to by msgBuffer. The driver then updates msgActCount with the number of
bytes of data received and sets msgResult to 0 (no error), –1 (MsgOverrun), –2
(MsgUnderrun), or –3 (MsgTimeout). The driver then calls your completion routine, if
there is one.

A message handler is described by a MsgRecElem record. The recProc field points to
the handler procedure; the values of recBaseCmd and recCmdCount are the values
allocated by rsRegisterMessage.

IMPORTANT

Before your program terminates, you must remove your message
handler so that the PC Interface driver will not call it after you are gone.
See the section “Removing a Message Handler” on page 51. ▲

On the Mac OS 3

The MsgRecElem data structure for programs on the Mac OS has the following format

MsgRecElem RECORD 0

recQLink DS.l 1 ; Next queue element

recQType DS.w 1 ; Queue flags

recFlags DS.w 1 ; Not used...Yet...Set to zero

recProc DS.l 1 ; Pointer to the receive procedure

recCmdBase DS.w 1 ; First command received by this
procedure

recCmdCount DS.w 1 ; Number of commands allocated for
this procedure

recUserData DS.l 1 ; For caller’s use (could be A5...)

MsgRecElemSize Equ *

ENDR

To install a message handler on the Mac OS, build a MsgRecElem record and pass a
pointer to it in a control call to the PC Interface driver.

C H A P T E R 3

The PC Interface Driver

50 Passing Messages

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsInstallMsgHandler

→ csParam+0 long Pointer to MsgRecElem

When your message handler procedure is called, D0.w contains the message command,
D1.l contains the msgParam1 value, D2.l contains the msgParam2 value, and A1
contains a pointer to the MsgRecElem record. Your routine must pass back a pointer to a
MsgPBlk structure in A0 if you wish to receive the message data; otherwise, return 0 in
A0. The handler procedure is called at interrupt time with interrupts masked at the slot
interrupt level. It can use registers D0–D2 and A0–A1.

The completion routine for the MsgPBlk returned by the receive procedure is called at
deferred time and can use registers D0–D2 and A0–A1. You must save all other registers.
Upon return, A0 contains a pointer to the MsgPBlk structure.

On the PC 3

For a program on the PC, the MsgRecElem data structure has the following format.

MsgRecElem STRUCT

Link DWORD ? ; Pointer to next link

Code DWORD ? ; Pointer to the code for this link

cmdBase WORD ? ; Base message number for this
procedure

cmdCount WORD ? ; Number of message numbers for this
procedure

userData DWORD ? ; For caller’s use

msgVXD DWORD ? ; Reserved for driver use

MsgRecElem ENDS

To install a message handler on the PC, build a MsgRecElem record and call INT 5Fh
with AH = 2 and ES:BX containing a pointer to the MsgRecElem structure.

When your message handler is called, AX contains the message command, ECX contains
msgParam1, EDX contains msgParam2, and ES:DI contain a pointer to the MsgRecElem
record. Your program must pass a pointer to a MsgPBlk structure in ES:BX if you wish to
receive the message data; otherwise, return 0 in BX. The handler is called at interrupt
time with interrupts turned off. It can use registers AX, BX, CX,DX, DI, SI, ES, and DS.

The completion routine for the MsgPBlk structure returned by the receive procedure is
called at interrupt time and can use registers AX, BX, CX,DX, DI, SI, ES, and DS. You
must save all other registers. Also, ES:BX contain a pointer to the MsgPBlk structure.

C H A P T E R 3

The PC Interface Driver

Passing Messages 51

Removing a Message Handler 3
Message handlers can be called until they are removed. Before your program terminates,
you must remove the handler so that the PC Interface driver will not call it after you
are gone.

On the Mac OS 3

To remove a message handler on the Mac OS, your program makes an appropriate
control call to the PC Interface driver and passes it a pointer to the handler.

Parameter block

→ ioCompletion long Pointer to the completion routine

← ioResult word

→ ioRefNum word

→ csCode word Equals rsRemoveMsgHandler

→ csParam+0 long Pointer to MsgRecElem

On the PC 3

To remove a message handler on the PC, your program makes a call to INT 5Fh with
AH = 3 and with a pointer to the MsgRecElem record in registers ES:BX.

53

Index

Numerals

16C450 serial port IC 27
80486DX2 microprocessor 14
8242 keyboard controller IC 28
82C450 VGA controller IC 26
84031memory controller IC 17, 18, 19–20
84035 data path controller IC 17, 20–21

reset logic in 21

A

abbreviations xi–xii
AJA bus controller IC 29
APDA x
AT/ISA bus 12
audio signals 31
autoconfiguration of the PC 29

B

big-endian addressing 15
BIOS 20
block diagrams

detailed 12
simplified 4

burst transfers 30
bus arbitration 18–19
bus demultiplexing 30
bus errors, on the PC 18
byte order 15
byte swapping 15

C

cache snooping 15
card assembly 2
clock signals 20, 21

close

 routine 34
configuring the PC 34

connectors
joystick 9
monitor 8
serial port 6

CT2501 sound system IC 30

D, E

data misalignment 15, 17
DMA 3, 18, 27
DMA channels

for I/O transfers 27
for memory access 27

DMA data register 18
DRAM

access time of 19
control of 19

F

features, summary of 2
floppy disk 6

G

game controller 9

H

hard disk 6

I

interrupt control 21
interrupts 17
interrupt status register 18
I/O devices 6
I/O system 26–29
ISA bus control 20

Thi d t t d ith F M k 4 0 4

I N D E X

54

J

joystick 9
joystick connector 9

K

keyboard 7
keyboard emulation 28
key combination, to switch to PC operation 7

L

little-endian addressing 15

M, N

Macintosh cursor 44
memory, shared 2, 27
memory controller IC 19
message passing 45

message conventions 46
message handler

installing 49
removing 51

registering messages 46
sending messages 47

message-passing hardware 28
microprocessor 14
misalignment of data 15, 17
monitor adapter cable 8
monitor connector 8
monitor sense lines 23
monitors.

See

 video monitors
mouse 7
mouse emulation 28

MsgPBlk

 data structure
on the Mac OS 47
on the PC 48

MsgRecElem

 data structure
on the Mac OS 49
on the PC 50

MU9C9760 SynDAC IC 26

O

open

 routine 34

P, Q

parallel port 7
PC, comparison of DOS Compatibility Card with 4
PC Interface driver 34, 51

close

 routine 34
configuring the PC 34
control and status calls 39

rsActivateKB

 routine 43

rsBeginMouseTracking

 routine 43

rsBootPC

 routine 41

rsDeactivateKB

 routine 43

rsDisableVideo

 routine 42

rsDontMountDisks

 routine 42

rsEnableVideo

 routine 41

rsEndMouseTracking

 routine 44

rsEndPrintJob

 routine 44

rsLastError

 routine 45

rsMountDisks

 routine 42

rsPCStatus

 routine 40

rsResetPC

 routine 41

rsSetNotificationProc

 routine 44
initializing 34
notifications and errors 44

open

 routine 34

rsGetNetDriveConfig

 routine 36

rsSetComPortConfig

 routine 37

rsSetDeactivateKey

 routine 39

rsSetDriveConfig

 routine 35

rsSetMemoryConfig

 routine 35

rsSetNetDriveConfig

 routine 37

rsSetParallelPortConfig

 routine 38
PC system bus 14
PDS adapter card 29–30
power-on reset 28
Pretzel Logic IC 18, 26

block transfers by 30
as bus master 19, 27
as bus slave 27
DMA data register 18
interrupt status register 18
reset logic 28

printer port 7, 28

R

RAM, shared 2, 27
RAM SIMM

device speed 2
sizes 2, 19

reset logic 28
ROM 20

declaration ROM 29

I N D E X

55

RS-232 signals 7, 27
RS-232 signals not supported 27
RS-422 signals 7, 27

rsActivateKB

 routine 43

rsBeginMouseTracking

 routine 43

rsBootPC

 routine 41

RSComConfig

 data structure 37, 38

rsDeactivateKB

 routine 43

rsDisableVideo

 routine 42

rsDontMountDisks

 routine 42

rsEnableVideo

 routine 41

rsEndMouseTracking

 routine 44

rsEndPrintJob

 routine 44

RSFixedDriveConfig

 data structure 35

RSGetNetDriveConfig

 routine 36

rsLastError

 routine 45

rsMountDisks

 routine 42

RSNetDriveConfig

 data structure 36, 37

RSParallelConfig

 data structure 38

rsPCStatus

 routine 40

rsRegisterMessage

 control call 46

rsResetPC

 routine 41

rsSendMessage

 routine 47

rsSetComPortConfig

 routine 37

rsSetDeactivateKey

 routine 39

rsSetDriveConfig

 routine 35

rsSetMemoryConfig

 routine 35

rsSetNetDriveConfig

 routine 37

rsSetNotificationProc

 routine 44

rsSetParallelPortConfig

 routine 38

S

serial ports 6, 27
shared memory 2, 27
soft reset 28
sound, output to host computer 7
Sound Blaster compatibility 7, 30
sound expansion card 7, 30–31
standard abbreviations xi–xii
SynDAC IC 26
system reset logic 21

T, U

termination of the video signal 22

V, W

video DAC IC 26
video monitors

connecting to the PC 22
monitor sense lines 23
shared 22
switching a shared monitor 22
types supported 8, 23

video RAM 23
video signal termination 22
video system 22
video system ICs 26

X

XD bus 12

Y, Z

YAC512 sound DAC IC 31
YMF262 FM synthesizer IC 31

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
and final pages were created on an Apple
LaserWriter Pro printer. Line art was
created using Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Allen Watson III

DEVELOPMENTAL EDITOR

Jeanne Woodward

ILLUSTRATOR

Shawn Morningstar

Special thanks to Dave Daetz,
Bill Galcher, Tom Llewellyn,
Bill Saperstein, and Jim Stockdale.

Thi d t t d ith F M k 4 0 4

	DOS Compatibility Card
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplementary Documents
	Conventions and Abbreviations

	Introduction
	Appearance and Features
	How the DOS Compatibility Card Works

	Hardware Design
	Processor and Memory System
	Video System
	I/O System
	PDS Adapter Card
	Sound Expansion Card

	The PC Interface Driver
	Initializing the Driver
	Configuring the PC
	Control and Status Calls
	Passing Messages

	Index

