

ð

Developer Note

4/17/96
Developer Press
© Apple Computer, Inc. 1996

ð

Developer Note

12” and 7” PC Compatibility Cards

ð

Apple Computer, Inc.
© 1996, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, Apple SuperDrive,
AppleTalk, EtherTalk, LaserWriter,
LocalTalk, and Macintosh are registered
trademarks of Apple Computer, Inc.
Apple Desktop Bus, Finder, and
FinePrint are trademarks of Apple
Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
Helvetica, Palatino, and Times are
registered trademarks of Linotype-Hell
AG and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables vii

Preface About This Note ix

What This Note Contains ix
Conventions and Abbreviations x

Typographical Conventions x
Standard Abbreviations x

Other Reference Material xii
For More Information xii

Chapter 1 Introduction 1

Physical Size 3
Overview of Functional Capabilities 4

Processor Capabilities 5
Memory Capabilities 5
Video Support 5
Audio Support 6
I/O Support 6

Floppy Disk Drive 7
Hard Disk 7
Serial Ports 7
Parallel Printer Port 7
Keyboard and Mouse 7

Joystick and MIDI Devices 8
ISA Access 8
System BIOS 8

Chapter 2 Hardware Design 9

Hardware Overview 10
Hardware Features 15

Microprocessors 15
PCI System Bus and Devices 15
Bus Snooping 15
Byte Order 16
Interrupts 16
Bus Arbitration 17
Memory Controller 18

DRAM Control 18
BIOS Control 20
Clock Generation 21
NOT USED iii

System Reset 21
Video System 22

Connecting the Monitor 22
Monitors Supported 22
Video Timing 24
Video ICs 24

Audio System 24
Audio IC 25
Sound Synthesizer Chip Set 25

I/O System 26
Serial Port Support 26
Printer Port Support 27
Keyboard and Mouse Controller 27
Message Mailbox 27
Autoconfiguration 28

Audio and Video I/O Support 28
GIMO Support for Video Output 28
Loop-Back Video Support 30
Audio I/O Support 32

Chapter 3 I/O Specifications 33

PCI Connector 35
DB26 Connector 45
DB15 Connector (Game Port) 46
GIMO Connector 46
Audio Connectors 47
DIMM Connector 48
XD Connector 52

Chapter 4 Software Support 55

Initializing the Interface Driver 56
Opening the Driver 56
Closing the Driver 56

Configuring the PC System 57
rsSetDriveConfig 57
rsGetNetDriveConfig 59
rsSetNetDriveConfig 60
rsSetComPortConfig 60
rsSetParallelPortConfig 62
rsSetDeactivateKey 62

Control and Status Calls 63
rsPCStatus 64
rsEnableVideo 65
iv

rsDisableVideo 65
rsMountDisks 66
rsDontMountDisks 67
rsActivateKB 67
rsDeactivateKB 68
rsBeginMouseTracking 68
rsEndMouseTracking 69
rsEndPrintJob 69

Detecting Errors 70
rsSetNotificationProc 70
rsLastError 71

Passing Messages 72
Message Conventions 72

Macintosh Interface 72
PC System Interface 72

Registering Messages 72
Registering Messages From the Mac OS 73
Registering Messages From the PC System 73

Sending a Message 73
Sending a Message From the Mac OS 74
Sending a Message From the PC system 75

Installing a Message Handler 75
Installing a Message Handler on the Mac OS 76
Installing a Message Handler on the PC System 77

Removing a Message Handler 78
Removing a Message Handler on the Mac OS 78
Removing a Message Handler on the PC System 78

Gestalt Selector 78
Summary of Constants 80
Messaging Code Samples 81

Registering Owner Type 81
Supplementary Information 82

Installing Command Receiver 82
Supplementary Information 82

Sending a Message to the PC System 82
Supplementary Information 83

Index 85
v

Figures and Tables

Chapter 1 Introduction 1

Figure 1-1 Simplified block diagram of PC and Macintosh functions 3
Figure 1-2 12" card dimensions 4
Figure 1-3 7" card dimensions 4

Chapter 2 Hardware Design 9

Figure 2-1 12” card with featured ICs 11
Figure 2-2 7" card with featured ICs 12
Figure 2-3 Detailed block diagram—12” card 13
Figure 2-4 Detailed block diagram—7" 14
Figure 2-5 Example of big-endian and little-endian data formats 16
Figure 2-6 DRAM control—12” card 19
Figure 2-7 DRAM control for the 7” card 20
Figure 2-8 GIMO connectors and Berlin adapter card 29
Figure 2-9 I/O connections to Power Macintosh 7200 30
Figure 2-10 I/O connections to Power Macintosh 7500 and 8500 31
Figure 2-11 I/O connections for Power Macintosh 9500 32

Table 2-1 Definition of interrupts 17
Table 2-2 PC arbitration priorities 18
Table 2-3 Clock signal distribution 21
Table 2-4 Monitors and display modes supported 23
Table 2-5 Serial port signals 27

Chapter 3 I/O Specifications 33

Figure 3-1 Locations of I/O connectors for the 12” card 34
Figure 3-2 Locations of I/O connectors for the 7” card 35
Figure 3-3 PCI bus signals used in the 12” and 7” cards 36

Table 3-1 PCI bus specifications 36
Table 3-2 PCI connector pin assignments 38
Table 3-3 CBE(3:0) L encoding 44
Table 3-4 DB26 connector pin assignments 45
Table 3-5 DB15 connector pin assignments 46
Table 3-6 GIMO connector pin assignments 47
Table 3-7 Audio connector pin assignments 48
Table 3-8 DIMM connector pin assignments 48
Table 3-9 XD connector pin assignments 53
vii

Chapter 4 Software Support 55

Table 4-1 PC status word 64
Table 4-2 Return codes for PC printing or serial communication errors 70
Table 4-3 Special events 71
Table 4-4 Summary of constants 80
viii

P R E F A C E

About This Note

The 12” and 7” PC Compatibility Cards are x86-based microprocessor cards
that you can plug into any Macintosh computer that has a PCI slot. This
developer note describes the features and capabilities of the cards and is
intended for use by software and hardware developers.

The 12” and 7” PC Compatibility Cards are referred to in this developer note
as the 12” card and 7” card, respectively, as the cards, or as the PCI cards.

To use this note, you must know how to use and program both Macintosh
and PC-compatible computers. You must also be familiar with the PCI
(Peripheral Component Interconnect) bus.

The user’s guide for your computer provides information about setting up
the computer and installing the cards in a specific computer configuration.
This note does not provide that type of information.

This preface describes the contents of the note, explains visual cues and
conventions, and lists other books to which you can refer.

What This Note Contains 0

This note consists of four chapters and an index.

■ Chapter 1, “Introduction,” summarizes the hardware and software features
of the cards and describes their functional and physical characteristics.

■ Chapter 2, “Hardware Design,” provides more detailed information about
the hardware design of each card, including the microprocessor, memory,
video, audio, and I/O systems.

■ Chapter 3, “I/O Specifications,” describes the I/O connectors that enable
the cards to communicate with the host Macintosh computer, the monitor,
sound devices, and video devices. It provides specifications for the
connectors, including pin assignments and signal descriptions.

■ Chapter 4, “Software Support,” describes the interface driver that controls
communication between the Macintosh host computer and the 12" and
7" cards. It provides information about initializing the driver, configuring
the cards, and passing messages between the Mac OS and the cards.
ix

P R E F A C E

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Courier font.

Note

A note like this contains information that is interesting but not essential
for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you should read
before proceeding. ▲

▲ W A R N I N G

A note like this directs your attention to something that could cause
damage or result in a loss of data. ▲

Standard Abbreviations 0
When unusual abbreviations appear in this developer note, the corresponding
terms are also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out. The following abbreviations are used in this
note:

ADP audio digital processor

API application-programming interface

ASIC application specific IC

BIOS basic input/output system

CLUT color lookup table

CPU central processing unit

DAC digital-to-analog converter

DAP digital audio processor

DIMM dual inline memory module

DOS Disk Operating System

DRAM dynamic RAM

EPROM electrically programmable ROM
x

P R E F A C E

FM frequency modulation

GIMO Graphics Internal Monitor Out

Hz hertz

IC integrated circuit

I/O input/output

IRQ interrupt request

ISA Industry Standard Architecture (in PC environment)

K 1024

KB kilobyte

kHz kilohertz

L1 level 1 (cache)—internal to microprocessor

L2 level 2 (cache)—external

MB megabyte

MFM modified frequency modulation

MHz megahertz

MIDI Musical Instrument Digital Interface

ns nanosecond

PC Personal Computer (usually refers to an x86-based computer)

PCI Peripheral Component Interconnect

PLL phased lock loop

RAM random-access memory

RGB red, green, blue

RISC reduced instruction set computing

ROM read-only memory

SVGA super video graphics adapter

TTL transistor-transistor logic

UART universal asynchronous receiver/transmitter

V volt

VESA Video Electronics Standards Association

VGA video graphics adapter

VRAM video RAM

W watt

XD X data bus; standard connector in PC environment—interfaces
with the ISA bus
xi

P R E F A C E

Other Reference Material 0

This developer note assumes that you are familiar with Apple Macintosh
computers and PC-compatible computers and know how to operate and
program them. Additional information is available in the following
publications:

■ The developer notes provided for developers working with Macintosh
computers.

■ The user’s guides shipped with Macintosh computers. These publications
explain how to set up the computer and install the 12"or 7" card. The user’s
guide also provides basic troubleshooting information.

■ Designing PCI Cards and Drivers for Power Macintosh Computers, part number
R0650ll/A, available from Apple Computer, Inc.

■ Inside Macintosh, Volume VI, published by Addison-Wesley Publishing
Company, Inc.

■ Inside Macintosh: Devices, published by Addison-Wesley Publishing
Company, Inc.

■ PCI Local Bus Specification, available from the PCI Special Interest Group,
Intel Corporation.

For More Information 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most popular
third-party development tools. ADC offers convenient payment and shipping
options, including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact
xii

P R E F A C E

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com
xiii

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
Introduction 1

C H A P T E R 1

Introduction

The 12” and 7” PC Compatibility Cards are x86-based cards. You can plug the 7" card
into any Macintosh computer that has a PCI (Peripheral Component Interconnect) slot.
You can plug the 12" card into any Macintosh computer that supports a full-size PCI slot.
The cards provide the computer with full PC compatibility and the ability to run DOS,
Windows 3.1, and Windows 95. The cards perform identical functions; however, the
smaller 7" card can be plugged into CPUs with limited enclosure space. In addition, the
two cards have different microprocessors and PC/PCI chip sets.

Note

The 12" and 7" cards are referred to generically in this developer note as
cards, PCI cards, or compatibility cards. The functions performed by the
cards are referred to as PC system functions, as opposed to the
Macintosh system functions performed by the Macintosh host
computer. ◆

▲ W A R N I N G

12" and 7" cards are designed to plug into PCI slots in Macintosh
computers. Do not plug them into PCI slots in DOS- or Windows-based
PCs. In addition, you should use only one card (12" or 7") in your
Macintosh computer. It is possible to insert more than one of these cards
into a Macintosh with multiple PCI slots. However, if you do this, it will
compromise the functionality of the cards and cause problems with
resource allocation and I/O connections. ▲

The cards differ from previous Apple cards in this category in the following ways:

■ They communicate with the Macintosh computer by means of the PCI bus rather than
the Apple RISC (reduced instruction set computing) bus.

■ They have enhanced microprocessors.

■ They have enhanced video capabilities.

■ They do not share user memory; that is, there is no portion of Macintosh memory set
aside for PC use. However, there is some memory sharing at a system level, where the
Macintosh computer and the PC can both access certain segments of Macintosh
memory. The Macintosh and PC use this facility to communicate with each other.

■ They have external L2 caches as well as the L1 caches integral to the microprocessors.

This chapter summarizes the features of each card and explains the functional and
physical characteristics. Figure 1-1 shows a simplified block diagram of the 12” card and
indicates how it interfaces with the Macintosh computer. The interface for the 7” card is
similar.
2

C H A P T E R 1

Introduction

Figure 1-1 Simplified block diagram of PC and Macintosh functions

Physical Size 1

The 12" card is a full-sized PCI card, measuring 12.283 inches by 4.2 inches. Figure 1-2
shows an outline of the card with dimensions. The 7" card is a PCI card with smaller
dimensions, measuring 6.875 inches by 4.2 inches. Figure 1-3 shows an outline of the
7" card with dimensions.

IMPORTANT

The measurements shown in Figure 1-2 and Figure 1-3 are intended to
show the relative dimensions of the cards. They are not intended to be
taken as manufacturing specifications. ▲

Microprocessor

Onboard DRAM
and DIMM

Chip set

CPU
bus

CPU bus

PCI
connectorPC PCI bus Custom IC

(Mustard)

PCI bridge

Cache

Video RAM

SIO integral
peripheral
controller

Keyboard/
mouse

controller

VGA
accelerator

GIMO
connector

Video-out
connector

Video-out
connector

Sound
controller

I/O controller

Audio in

GIMO connectors

DRAM/VRAM

SCSI hard disk

Floppy disk

Serial port

Ethernet

Keyboard/
mouse

PowerPC/Apple
chip set

memory control
PCI bridge

PowerPC 60x
processor

Cache

9 18 26

1 10
19

PC system Macintosh system

Berlin
adapter card
Physical Size 3

C H A P T E R 1

Introduction
Figure 1-2 12" card dimensions

Figure 1-3 7" card dimensions

Overview of Functional Capabilities 1

This section gives an overview of the functional capabilities of the 12" and 7" cards. The
section includes information about the microprocessor; onboard DRAM and memory
expansion; support for video and audio devices; support for Apple devices, such as
floppy disk, hard disk, serial ports, parallel printer port, keyboard, and mouse; support
for a PC-compatible joystick and MIDI (Musical Instrument Digital Interface) devices;
and support for the ISA (Industry Standard Architecture) bus. Finally it provides
information about the BIOS (basic input/output system). Chapter 2, “Hardware
Design,” provides more detailed technical information about the components that
provide this support. Chapter 3, “I/O Specifications,” describes the I/O connectors.

PCI connector edge

12.283 inches

12.5 inches

12.74 inches

3.62
inches

4.2
inches

5.0
inches

6.875 inches

PCI connector edge

7.125 inches

3.62
inches

4.2
inches

5.0
inches
4 Overview of Functional Capabilities

C H A P T E R 1

Introduction
Processor Capabilities 1
The 12" card has a Pentium-class microprocessor that operates at a clock speed of
100 MHz and supports a 64-bit data bus. The 7" card has a 5x86-class microprocessor that
operates at a clock speed of 100 MHz and supports a 32-bit data bus. Both
microprocessors have internal L1 caches.

Since the microprocessors are different, the PC/PCI chip sets are also different. The
12" card uses an Opti chip set, made up of the 82C556, 82C557, and 82C558 ICs. The
7" card uses the Sis 5x86-SIS chip set composed of the 85C496 and the 85C497 ICs. The
BIOS is different for each card because of the different microprocessors and chip sets.

The main reason for using different microprocessors for the two cards is onboard space.
The Pentium-class microprocessor with its chip set requires considerably more space
than the 5x86-class microprocessor and its chip set. The Pentium-class microprocessor is
therefore not used in the smaller card.

Memory Capabilities 1
The 12" card has 8 MB of built-in DRAM. Memory capacity may be extended up to
64 MB using a 168-pin DIMM (dual inline memory module). The DIMM is plugged into
the DIMM slot on the card and expands total memory capacity up to 72 MB in two or
three 64-bit memory banks. The card also has a 256 KB cache memory.

The 7" card has 8 MB of DRAM, provided by a 168-pin DIMM, which plugs into the
DIMM slot on the card. To expand memory capacity for the 7" card, you can replace the
8 MB DIMM with DIMMs of higher capacity, up to a total of 64 MB. Memory on the
7" card is organized in 32-bit memory banks, up to a total of four banks. The card also
has a 128 KB cache memory.

Video Support 1
An ATI 264CT VGA (video graphics adapter) controller accelerator and onboard video
DRAM provide video support for fixed-frequency 12-inch to 21-inch monitors. Table 2-4
on page 23 provides a detailed list of these monitors.

The way in which the monitors are connected to the system varies, depending on the
Macintosh computer in which the 12" and 7" cards are operating. “GIMO Support for
Video Output” beginning on page 28 and “Loop-Back Video Support” beginning on
page 30 provide detailed information on this subject.

The cards have a DB26 connector. You can use the connector and a cable to connect a
second monitor that can be dedicated to the PC side of the system, while the Macintosh
computer’s DB15 connector supports the Macintosh display.

The DB15 connector on the cards does not support video but allows you to connect a
PC-compatible joystick or MIDI device, as described in “Joystick and MIDI Devices” on
page 8.
Overview of Functional Capabilities 5

C H A P T E R 1

Introduction
▲ W A R N I N G

Do not connect a monitor or other video device to the DB15 connector
on the 12” and 7” cards. ▲

Audio Support 1
The 12" and 7" cards provide enhanced sound capabilities that are compatible with 16-bit
stereo Sound Blaster Pro capabilities. The audio circuitry, which consists of a Creative
Technologies Vibra 16S 16-bit audio chip and the Yamaha OPL3 FM synthesizer chip set,
enables the cards to provide audio output compatible with the Sound Blaster Pro and to
mix PC sound output with the sound output of the Macintosh host computer.

Note

Sound Blaster Pro products developed by Creative Technologies
support sound systems in PC-compatible computers. Their hardware
and software specifications have become de facto standards in the
industry. ◆

Each card has two audio connectors, one for input and one for output. Audio inputs
from such sources as CD players are transferred to the cards via the Macintosh main
circuit board. Sound outputs from the cards are transferred to the sound system on the
Macintosh’s main circuit board, to external speakers, or to an external audio jack. You
can use these connectors with most Macintosh computers in which the 12" and 7" cards
may be installed.

Some Macintosh computers do not support this type of audio connection. In this case,
audio inputs and outputs may be transferred between the CPU and the cards by means
of the GIMO connector and Berlin adapter card described in “GIMO Support for Video
Output” beginning on page 28. Currently it is computers with smaller enclosures (for
which the 7" card is designed) that use the GIMO connector to transfer audio inputs and
outputs.

PC beeps generated by the PC subsystem generate a line level audio signal that is
summed into the Macintosh audio subsystem or the CD-ROM audio path. You can also
disable PC audio if you prefer.

I/O Support 1
A PC/PCI chip set provides an integrated solution for the AT-compatible I/O.
Conventional ISA expansion is not allowed; refer to “XD Connector” beginning on
page 52 for further information on this subject.

The 12" card has the Opti chip set composed of the 82C556, 82C557, and 82C558 ICs. The
7" card has the Sis 5x86-SIS chip set composed of the 85C496 and 85C497 ICs. These chip
sets, in conjunction with a custom IC, referred to in this document as the Mustard ASIC,
provide the I/O support required by the cards for Macintosh floppy disk and hard disk
drives, the Macintosh serial ports, and the Macintosh keyboard and mouse.
6 Overview of Functional Capabilities

C H A P T E R 1

Introduction
Floppy Disk Drive 1

The Mac OS provides support that allows the cards to access the Macintosh computer’s
3.5-inch internal floppy disk drive. The drive can read and write floppy disks that are
DOS MFM (modified frequency modulation) formatted. If you insert a disk that is not
DOS formatted when you are using the DOS side of the system, the disk will be
promptly ejected from the drive.

Note

Modified frequency modulation (MFM) is an encoding system used to
record data on magnetic surfaces such as floppy diskettes. It is used in
the PC environment. ◆

Hard Disk 1

The Mac OS also provides support that allows the cards to access the Macintosh
computer’s internal hard drive and other SCSI port(s).

Serial Ports 1

The 12" and 7" cards can access the serial ports on the Macintosh host computer, and you
can connect a PC serial device to the Macintosh serial port. To allow this, the Mustard
ASIC provides hardware support that emulates the registers of standard serial port ICs
found in most PC/AT computers. “Serial Port Support” on page 26 provides further
information on this subject.

Parallel Printer Port 1

The Mustard ASIC emulates a compatible parallel port interface and enables the driver
software to send data to a printer through the Macintosh computer. The printer may be
connected to the Macintosh, or it may be part of a network and be selected by means of
the Chooser.

Keyboard and Mouse 1

Both cards contain an 8242 keyboard/mouse controller. The PC’s keyboard and mouse
determine which interface to this controller is emulated in the Mustard ASIC, allowing
the cards to access the keyboard and mouse by means of the ADB (Apple Desktop Bus).

The cards can work with other user input devices, such as a trackball. However, such
devices must be connected to the Macintosh host computer by means of the ADB port.

You can define a key combination that allows you to switch the operation of the user
interface devices (such as a keyboard, mouse, or a shared monitor) between the 12" or
7" card and the Macintosh host computer. You will find information on setting the key
combination in the user’s guide supplied with the computer.
Overview of Functional Capabilities 7

C H A P T E R 1

Introduction
Joystick and MIDI Devices 1

You can connect a PC-compatible joystick to the DB15 (15-pin) connector on the edge of
the cards. This connector is accessible on the rear panel of the Macintosh host computer.
However, you need a standard joystick/media adapter to make the connection. The
joystick can only be used with programs running on the PC side of the system. You can
also connect MIDI devices through the same connector.

ISA Access 1
Each card has an XD connector that provides limited access to the unbuffered ISA bus.
This enables you to create a parallel port for third-party hardware keys. You do this by
connecting an expansion card to the XD connector and then connecting a hardware key
to the expansion card.

IMPORTANT

External cards connected to the ISA bus must have only one load if they
are unbuffered. If they have more than one load, you must provide
buffering for them. ▲

System BIOS 1
The cards use a 128K system BIOS. The BIOS is stored in Macintosh memory and
downloaded to the DRAM on the cards when the computer is booting. The BIOS is
different for each card, because they have different microprocessors and chip sets.
8 Overview of Functional Capabilities

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Hardware Design 2

C H A P T E R 2

Hardware Design

As described in Chapter 1, there are two versions of the PC Compatibiity Card: the 12”
version and the 7” version. They perform the same functions; however, there are the
following differences between the cards:

■ The smaller 7” card is used in Macintosh systems where space is a critical factor.

■ The two cards have different microprocessors and chip sets.

■ The two cards implement onboard DRAM in different ways.

This chapter

■ provides a hardware overview of the cards

■ describes the functional blocks of circuitry, including the microprocessor, memory
system, video system, and I/O system

■ provides specifications for the monitors supported

Currently, both cards may be installed in the Power Macintosh 7200, 7500, 8500, and 9500
computers. The 7" card is also designed for installation in future systems that may have
mechanical size constraints.

Unless otherwise specified, the information provided in this chapter applies to both
cards.

Hardware Overview 2

Both cards are two-sided; that is, there are components on each side of the card. Figure
2-1 on page 11 shows outlines of both sides of the 12” card, with key ICs. Figure 2-2 on
page 12 shows equivalent views of the 7" card. Figure 2-3 on page 13 is a functional block
diagram of the 12” card. Figure 2-4 on page 14 is a functional block diagram of the
7" card.

The circuitry housed on the 12” and 7" cards includes the following:

■ The microprocessor or CPU.
n the 12” card has a 100 MHz Pentium-class processor.
n the 7" card has a 100 MHz 5x86-class processor.

■ The memory system, including the DRAM, cache memory, and memory expansion
module.
n the 12” card has 8 MB of onboard DRAM. It also has a 168-pin DIMM slot. It allows

you to increase DRAM capacity by installing DIMMs with capacities up to 64 MB,
providing a total DRAM capacity of 72 MB. The card has a 256 KB cache.

n the 7" card has 8 MB of onboard DRAM supplied by an 8 MB DIMM housed in the
card’s 168-pin DIMM slot. You can expand the 7" card’s DRAM capacity up to
64 MB by replacing the 8 MB DIMM with DIMMs of higher capacity. The card has a
128 KB cache.
10 Hardware Overview

C H A P T E R 2

Hardware Design

■ The PC chip set, which provides a controller for memory, for the PCI bus, and for the
ISA bus.
n the 12” card uses the Opti chip set composed of the 82C556, 82C557, and

82C558 ICs.
n the 7" card uses the Sis 486-SIS chip set composed of the 85C496 and 85C497 ICs.

■ The ATI 264CT integrated VGA (video graphics adapter) graphics accelerator IC with
a built in color lookup table (CLUT) for video output. This IC supports the PCI bus
I/O, and a variety of memory types and sizes, screen resolutions, and color depths.

■ The Creative Technologies Vibra 16S 16-bit audio IC and the Yamaha OPL3 FM
synthesizer chip set, which provide audio output compatible with the Sound
Blaster Pro products.

Figure 2-1 12” card with featured ICs

Note

Card dimensions are shown in Figure 1-2 and Figure 1-3 on page 4.
Connectors are shown in Figure 3-1 on page 34 and Figure 3-2 on
page 35. ◆

Side A

Side B

Slot for DIMM

Onboard DRAM

Video RAM

Audio IC

PCI bridge ASIC

Yamaha OPL3
FM synthesizer

ATI
264CT

82C558

82C556

Vibra
16S

82C557

Pentium-
class

processor

Sockets
for VRAM

VGA controller

PCI edge connector

PCI edge connector

Note: PCI edge connector is shown to define orientation.

Part of
PC chip set

Part of PC chip set

Cache
Hardware Overview 11

C H A P T E R 2

Hardware Design
Figure 2-2 7" card with featured ICs

Side A

Side B

Slot for DIMM

Audio IC

Yamaha OPL3
FM synthesizer

85C497
Vibra
16S

PCI edge connector

Microprocessor

PCI edge connector

Part of
PC chip set

Part of
PC chip
set

85C496

VGA controller

5x86
ATI

264CT

ASIC

Video DRAM

PCI bridge

Note: PCI edge connector is shown to define orientation.
12 Hardware Overview

C H A P T E R 2

Hardware Design
Figure 2-3 Detailed block diagram—12” card

PCI muxed
address/
data bus

Macintosh
PCI bus
connector

[31:0]

Data
[63:0]

Address[31:0]

Data
cache

Data
path IC

Latch

Connector

Game port

Connector
DRAM
8 MB

168-pin DRAM
DIMM

PCI muxed
address/
data bus

Optional
audio cable

Ribbon cable
for video out

Pentium-class
processor

PCI muxed address/data bus

Memory
data

Memory
address

Memory data[63:0]

Tag
data (8)

[31:0]

[31:0]

Memory
address (12)

XA[23:9]

XA[23:0]

XD[8:0]

Cache
tags

VGA
accelerator

(built-in
RAMDAC)

SIO ISA bus

& PCI data
bridge

Video
DRAM
1 MB

Memory
controller &

PCI bridge

Sound Blaster
compatible
audio IC

(plus game timer)

8242
keyboard
control

Buffer

Mustard ASIC

PCI bus bridge I/F

Address translation

Keyboard/mouse emulation
Serial ports A/B emulation

Parallel port emulation
PC legacy logic

Message mailbox

Reset block

Interrupt register and mask

9 18 26

1 10
19

Macintosh/PC
video outVideo

mux

External
loopback

Macintosh
video in

A
ud

io
A

ud
io Berlin adapter

video buffering

GIMO
connector

Video
buffer

Address
Hardware Overview 13

C H A P T E R 2

Hardware Design
Figure 2-4 Detailed block diagram—7"

PCI muxed
address/
data bus

Macintosh
PCI bus
connector

[31:0]

Data
32

Address[31:0]

A[4:16]

Data
cache

Buffer

Connector

Game port

Connector

Video
buffer

168-pin DRAM
DIMM

PCI muxed
address/
data bus

Optional
audio cable

Ribbon cable
for video out

5x86-class
processor

PCI muxed address/data bus

Memory
data

Memory
address Address

Memory data[63:0]

Tag
data

8

[31:0]

[31:0]

Memory
address (12)

XA[23:0]

XD[7:0]

Cache
tags

VGA
accelerator

(built-in
RAMDAC)

SIO ISA
bus

Video
DRAM
1 MB

Memory
controller &

PCI bridge

Sound Blaster
compatible
audio IC

(plus game timer)

8242
keyboard
control

Mustard ASIC

PCI bus bridge I/F

Address translation

Keyboard/mouse emulation
Serial ports A/B emulation

Parallel port emulation
PC legacy logic

Message mailbox

Reset block

Interrupt register and mask

9 18 26

1 10
19

Video
mux

External
loopback

Macintosh
video in

Macintosh/PC
video out

A
ud

io
A

ud
io Berlin adapter

video buffering

GIMO
connector
14 Hardware Overview

C H A P T E R 2

Hardware Design
Hardware Features 2

This section describes the microprocessors on each card, PCI bus and bus devices, cache
operation, byte order, interrupts, bus arbitration, memory controller, BIOS control,
system clocks, and system reset.

Microprocessors 2
The microprocessor on the 12” card is a Pentium-class microprocessor that runs at
100 MHz. It supports a 64-bit data path and a 32-bit address bus. The 7" card has a
100 MHz 5x86-class processor. It supports a 32-bit data path and a 32-bit address bus.

You should refer to the hardware reference manuals supplied by the microprocessor
manufacturer for further information on the different microprocessors.

PCI System Bus and Devices 2
The PCI bus on the PC system is a multiplexed address and data bus. The bus operates
synchronously at the same clock speed as the microprocessor bus (25 MHz or 33 MHz).
The bus supports burst reads and writes from the Mustard ASIC alternate bus master.
The key devices attached to the bus are the memory controller/bridge IC, the VGA
accelerator IC, and the Mustard ASIC. The PCI connector plugs into the PCI bus on the
Macintosh side of the system by means of the PCI slot in the Macintosh host computer.
“PCI Connector” beginning on page 35 provides detailed information about the PCI bus
signals.

Bus Snooping 2
Bus snooping is the method used by cache subsystems to monitor memory accesses
performed by different bus masters. This means that the internal microprocessor cache
can monitor activity on the PCI bus that is likely to change the contents of either the L1
or L2 cache memory.

The PC memory is fully cache coherent with the local PCI bus, and there are no cache
coherency problems with Macintosh memory. Bus snooping required by the Macintosh
host computer is done by the Macintosh and does not affect the PC system.
Hardware Features 15

C H A P T E R 2

Hardware Design
Byte Order 2
There are two ways of defining the order in which bytes of data are addressed.
Big endian is a type of data formatting in which each field is addressed by referring to its
most significant byte. The most significant byte is the one with the highest number. For
example, if you are accessing a 4-byte, 32-bit data word, the most significant byte is byte
03, and the most significant bit is bit 31. The most significant byte is selected by the
lowest address, and the least significant byte by the highest address. Macintosh
computers use the big-endian data format.

Little endian is a type of data formatting in which each field is addressed by referring to
its most significant byte. The most significant byte is the one with the lowest number. For
example, if you are accessing a 4-byte, 32-bit word, the most significant byte is byte 00,
and the most significant bit is bit 00. The most significant byte is selected by the highest
address, and the least significant byte by the lowest address. Computers based on Intel
architectures, such as IBM PCs, use the little-endian format.

Although the Macintosh generally uses a big-endian data format, the PCI bus by
definition is little-endian on both the PC and Macintosh sides. Byte swapping, therefore,
takes place on the Macintosh side before the Macintosh places data on the PCI bus.

Figure 2-5 Example of big-endian and little-endian data formats

For further information about big-endian and little-endian addressing, refer to Designing
Cards and Drivers for Power Macintosh Computers, Appendix B, “Big-Endian and
Little-Endian Addressing.”

Interrupts 2
The Mustard ASIC generates all interrupt requests that require Macintosh resources for
the microprocessors on the 12” and 7" cards. The controller (the 82C558 IC on the
12” card , and the 85C497 IC on the 7" card) generates the maskable interrupt that results
from the various IRQ (interrupt request) sources. In each instance, the interrupt provides

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Big-endian
format

31 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Little-endian
format

Least significant byteMost significant byte

Address bits

Least significant byteMost significant byte

Most
significant bit

Least
significant bit
16 Hardware Features

C H A P T E R 2

Hardware Design
a mechanism that allows each device (keyboard, serial port, and so forth) to interrupt the
CPU asynchronously. Table 2-1 defines the interrupts used in both cards.

All transfers between the PC system and the Macintosh host computer are interrupt
driven. The master interrupt register, which is part of the Mustard ASIC, contains the
state of all interrupt sources on the card. Each of these sources can be individually
masked by an accompanying master interrupt enable register. You can determine the
precise reason for the interrupt by examining the registers for the ports associated with
the interrupts listed in Table 2-1.

You can access the interrupt and status registers in the Mustard ASIC from the
Macintosh environment only. In the PC environment, you will see the standard
definitions for the COM1, COM2, and parallel ports.

The system interrupts for the 12” card are controlled by the 82C558 IC. On the 7” card,
the 85C497 IC controls the interrupts.

Bus Arbitration 2
On the PC side of the PCI bus there are two functional circuit blocks that can act as bus
master. They are the Mustard ASIC and the PC chip set.

Each bus master must arbitrate for control of the bus using a straightforward
request-grant handshake. Each bus master has a unique request signal (REQ L) that it
asserts to request access to the bus. An arbitration algorithm examines the request and
assigns access to the bus based on a rotating priority system. When access is granted, a
grant signal (GNT L), unique to each master, is returned.

A bus error on the PC system bus causes the PC system (12” or 7”) to hang. When this
happens, Macintosh operation is not affected, and you can use the Macintosh computer
to restart the PC system. You can restart from the Macintosh using Restart from the
Finder menu, or by using the Cmd-Ctl-Alt-Del key sequence on the Macintosh keyboard.
Note that on some keyboards, the Alt key is labeled Option or Alt Option. If the PC

Table 2-1 Definition of interrupts

Interrupt number Description

1 Keyboard data ready

3 COM2 port

4 COM1 port

5 Sound Blaster

6 Message interface

7 Parallel port 1 (printer)

12 Mouse
Hardware Features 17

C H A P T E R 2

Hardware Design
keyboard is still responding, you can restart the PC system using the Ctl-Alt-Del key
sequence on the PC keyboard.

The Macintosh system bus supports three bus masters: the Macintosh memory
controller, the Mustard ASIC on the 12” or 7” card, and any other PCI card in the
Macintosh.

IMPORTANT

Any other PCI card in the Macintosh must be of a different type from the
12” or 7” card. ▲

Table 2-2 summarizes the fixed arbitration device assignments and priorities.

Memory Controller 2
Memory control for the 12” card is provided by the 82C557 IC, and by the 85C496 IC for
the 7” card. These ICs perform the following system-level functions for the related card:

■ control DRAM

■ control cache memory

■ act as a bridge between the PC system’s local bus and PCI bus

DRAM Control 2

The memory controller controls all transfers between the microprocessor and the
onboard DRAM and DIMM. It generates the row and column address strobe signals
(RAS, CAS) and the read and write enable signals (MEMR L and MEMW L) for the
DRAMs and the DIMM. It drives these signals and the memory address lines directly to
the memory devices without external buffers.

The DRAM controller in the memory controller chip supports page-mode operations.
For memory read operations the page hit cycles are either 3-2-2-2 or 4-2-2-2 bursts. For
write operations, the page hits are single wait-state accesses. Both read and write
operations are designed for DRAM devices with a 70ns access time.

Table 2-2 PC arbitration priorities

Priority Macintosh side PC system side

High I/O IC Memory controller (Mustard ASIC)

Low Any PCI device Any PCI device
18 Hardware Features

C H A P T E R 2

Hardware Design
12” Card Memory Control—DRAM and External Cache 2

Basic memory for the 12” card is provided by four 2 MB DRAMs that provide 8 MB of
memory. The DRAMs are organized as a 1-by-64-megabit memory bank (bank 0), as
shown in Figure 2-6.

The 12” card has a 168-pin DIMM slot that can accommodate DIMMs with
parity-checking capability. (The parity bits are not currently enabled.) You can use
DIMMs of different capacities in the slot (8 MB, 16 MB, 32 MB, or 64 MB), expanding
memory capacity up to 72 MB. This block of memory also has a 64-bit data path and is
addressed as bank 1.

The 12” card has 8 static RAMs that make up the 256 KB cache memory. Each static RAM
has an 8-bit data bus. The memory controller controls all transfers between the
microprocessor and the external cache. It generates the cache chip select signal, CCS L
7:0, and the read/write signal, ECAWE L. It buffers the control signals and drives them
out to the cache. It drives the cache address lines through external latches, which hold
the last address as the microprocessor generates the next address.

Figure 2-6 DRAM control—12” card

Pentium-class
microprocessor

PC chip set
82C558

PC chip set
82C556 memory

controller

32K

64-bit data bus
D(63:0)

To other devices

64-bit data bus
MD(63:0)

64-bit data bus

MD(63:32)

D(63:56)
D(55:48)
D(47:40)
D(39:32)
D(31:24)
D(23:16)
D(15:8)
D(7:0)

8 static RAMs provide
256KB cache memory

DIMM

2MB2MB
2MB

2MB

4 DRAMsMD(63:48)
MD(47:32)
MD(31:16)
MD(15:0) Data bank 0

8-bit data buses

16-bit data buses

MD(63:0)

DIMMs up to
64 MB capacity
increase DRAM
capacity up to

72 MB
Hardware Features 19

C H A P T E R 2

Hardware Design
7” Card Memory Control—DRAM and External Cache 2

DRAM for the 7” card is provided by a 168-pin DIMM that accommodates an 8 MB, 16
MB, 32 MB, or 64 MB DIMM. The 7” card comes with an 8 MB DIMM installed. You can
replace this DIMM with one of higher capacity, to provide a maximum DRAM capacity
of 64 MB. As shown in Figure 2-7, the DIMM has a 32-bit data bus and is addressed as
banks 1 through 4.

The 7” card has four static RAMs that make up the 128 KB cache memory. Each static
RAM has an 8-bit data bus. The memory controller controls all transfers between the
microprocessor and the external cache. It generates the cache chip select signal, KCE L
3:0, and the read/write signal, KWEX. It buffers the control signals and drives them out
to the cache. It drives the cache address lines through external latches that hold the last
address as the microprocessor generates the next address.

Figure 2-7 DRAM control for the 7” card

Sensing DIMM Presence 2

The Mustard ASIC senses the presence of a DIMM in the DIMM slot when the system
starts up and then registers that information. However, the PC BIOS determines the size
of the memory using a sizing algorithm, and the BIOS programs the memory controller’s
configuration registers with the starting and ending address of each memory bank.

BIOS Control 2

PC computers use a BIOS. The 12” and 7” cards have a combined BIOS consisting of
both system and VGA BIOS. The BIOS is stored in Macintosh memory and downloaded
to the DRAM on the 12” and 7” cards when the system starts up.

5x86-class
microprocessor

PCI chip set
82C496 memory

controller

32KD(31:24)
D(23:16)
D(15:8)
D(7:0)

128KB x 8
cache memory

DIMM

4 static RAMs

8-bit data buses

MD(31:0) DIMMs up to 64 MB
provide DRAM. Basic
installation has an
8MB DIMM

32-bit data bus
D(31:0)
20 Hardware Features

C H A P T E R 2

Hardware Design
Note

The 12” and 7” cards have different BIOS because they have different
microprocessors and chip sets. ◆

At reset, the microprocessor on the card issues the starting reset-vector address from
within the range of addressable memory. The Mustard ASIC remaps this address range
down to the lower 1 MB region where the BIOS actually resides. It also performs the
address translation between the BIOS address on the PC system and the corresponding
addresses in memory on the Macintosh side.

Clock Generation 2

The system clock is generated by a standard oscillator that produces a 14.3 MHz clock
signal. This signal is transferred to a PLL (phased lock loop) device, the IMISC-464 clock
divider, which creates the microprocessor bus clock (66 MHz on the 12” card and 33
MHz on the 7” card), the PCI clock (33 MHz), and the buffered 14.3 MHz clock. Table 2-3
provides information about clock signal distribution.

System Reset 2

The Mustard ASIC contains the reset logic that allows the Macintosh host computer to
start up or reset the PC system. Hard reset is controlled by the Macintosh software. The
Mustard ASIC generates a PWRONRST (power on reset) signal, which, in the 12” card
the 82C557 converts into a Reset signal for the 82C556/558 and the CPU. In the 7” card,
the 85C497 generates reset for the 85C496, the CPU, and the ISA bus. With both cards
you can do a soft reset by means of the Ctl-Alt-Del keys on the PC keyboard. This type of
reset is handled by the 8242 keyboard controller when the proper key code is sent to the
Mustard ASIC through the keyboard port.

Table 2-3 Clock signal distribution

Clock signal Destination Frequency Function

12” card

CPU CLK Microprocessor 66 MHz Provides the bus timing for the microprocessor.
All system timing is referenced from this clock.

7” card

CPU CLK Microprocessor 33 MHz Provides the bus timing for the microprocessor.
All system timing is referenced from this clock.

12” and 7” cards

XPCI CLK ATI-264CT video
controller and
Mustard ASIC

33 MHz Clock for the PCI bus in the PC system.
Hardware Features 21

C H A P T E R 2

Hardware Design
Video System 2

The 12” and 7” cards in conjunction with video cards provide a complete video system
to support PC video. This system consists of a VGA controller (ATI 264CT) with an
integrated CLUT, a digital-to-analog converter (DAC), and a clock generator.

PC video out is supported not only on VGA monitors but also on Macintosh
fixed-frequency monitors that emulate VGA modes. This means you can use your
existing Macintosh monitors in a shared configuration for both Macintosh and PC video.

Connecting the Monitor 2
Video output from the 12” and 7” cards can be displayed on a monitor that is shared
with the host Macintosh computer or, with some CPUs, on a dedicated monitor.
“Loop-Back Video Support” beginning on page 30 and “GIMO Support for Video
Output” beginning on page 28 provide detailed information on this subject. If you are
using a shared monitor, you can switch from Macintosh to PC screen using a
programmable key sequence.

Monitors Supported 2
The VGA controller/accelerator provides complete VGA compatibility for modes 0–7
and D–13h. Both cards come with 1 MB of video DRAM installed. The 12” card has two
additional DRAM sockets that allow you to add another 1 MB of video DRAM. The
1 MB DRAM enables a 32-bit data path, and the additional memory enables a 64-bit data
path. This additional width in the data path supports additional color depths, as
indicated in Table 2-4.

The ATI 264CT senses which monitor is attached whenever you use the loopback cable
to connect the monitor to the cards. This is true even in shared-monitor mode. When you
use the GIMO connector to connect the monitor, the Macintosh host computer
determines the monitor for the PC and makes the appropriate adjustments.
22 Video System

C H A P T E R 2

Hardware Design
Note

The modes listed in Table 2-4 apply to the PC display connected to the
system, or to the second Macintosh display, if you have elected to use
the 12” or 7” card as a secondary Macintosh display card. ◆

Table 2-4 Monitors and display modes supported

Monitor
Resolution
(pixels)

Horizontal
scan (kHz)

Vertical
refresh (Hz)

Maximum color depth
(bits per pixel)

1 MB
video DRAM

2 MB
video DRAM

21” color 1152 × 870 68.681 75.062 8 8

21” 2-page (mono) 1152 × 870 68.681 75.062 8 8

19” RGB 1024 × 768 60.241 74.927 8 8

16” color 832 × 624 49.725 74.550 16 16

15” RGB portrait 640 × 870 68.850 75 8 8

13” color 640 × 480 35 66.667 16 32

12” mono 640 × 480 35 66.667 8 8

Multi Scan 15” 640 × 480
832 × 624

35
49.725

66.667
74.550

16
16

32
16

Multi Scan 17” 640 × 480
832 × 624
1024 × 768

35
49.725
60.241

66.667
74.55
74.927

16
16
8

32
16
8

Multi Scan 20” 640 × 480
832 × 624
1024 × 768
1152 × 870
1280 × 1024

35
49.725
60.241
68.681
79.976

66.667
74.55
74.927
75.062
75.025

16
16
8
8
4

32
16
8
8
4

VGA 640 × 480 31.463 60 16 32

SVGA 800 × 600 35.156 55.98 16 32

VESA 800 × 600
800 × 600
800 × 600
1024 × 768
1024 × 768
1024 × 768
1280 × 960
1280 × 1024
1280 × 1024

37.879
48.077
46.875
48.363
56.476
60.023
75
65.625
79.976

60.3165
72.188
75
60
70
75
75
60
75.025

16
16
16
8
8
8
4
4
4

32
16
16
16
16
8
4
8
4

Video System 23

C H A P T E R 2

Hardware Design
Video Timing 2

To accommodate the various VGA and SVGA modes on the Macintosh monitors, the
video controller must have its timing parameters changed by the BIOS. To do that, the
Macintosh software reads the video sense lines and loads the appropriate values for the
video BIOS before starting up the PC. The system and video BIOS reside in Macintosh
system memory and can be modified by the software.

Video ICs 2

Video support for the cards is provided by an ATI-264CT VGA controller and by the
video DRAM.

The ATI-264CT VGA controller is a 208-pin graphics controller IC with a built-in
accelerator, referred to as the coprocessor. It is compatible with the VGA display adapter
and provides for modes 0–7 and D–13h. SVGA modes for 640 by 480 and 800 by 600 are
also supported up to 64K colors, and SVGA modes for 1024 by 768 up to 256 colors. You
should refer to the reference material provided with the device for detailed information
about the controller.

Each card has 1 MB by 32 bits of installed video DRAM. The 12” card also has sockets
that allow you to expand video DRAM capacity to 2 MB, with a 64-bit data path and
higher resolution support.

Audio System 2

The sound system for the cards is built around a Creative Technologies Vibra 16S 16-bit
audio IC and a synthesizer chip set that includes a Yamaha OPL3-L FM synthesizer and
YAC516 DAC IC. These ICs provide the cards with 16-bit stereo Sound Blaster Pro
capabilities.

Note

Sound Blaster Pro products, such as the audio IC and the synthesizer
chip set, support the sound capabilities of PC systems, in this case, the
12” and 7” cards. Sound Blaster Pro installation software is a de facto
standard set by Creative Technologies. ◆
24 Audio System

C H A P T E R 2

Hardware Design
Audio IC 2

The Creative Vibra 16S IC provides 16-bit audio support. It is compatible with
Sound Blaster 16 and with Roland MPU401 UART (universal asynchronous receiver/
transmitter) mode. It also complies with Multimedia PC Level 2 specifications. The
device also has an integrated 16-bit SigmaDelta codec that handles ADP (audio digital
processor) inputs, ADP digital outputs, and DAC outputs.

The audio IC provides the following:

■ a 16-bit bus interface with the ISA bus

■ a digital audio processor (DAP) block that interprets Sound Blaster 16 commands and
provides downward compatibility with Sound Blaster products

■ a mixer block that controls volume and mixing functions

■ a joystick quad timer and data buffer that allow MIDI devices to be connected to the
GamePort without external TTL (transistor-transistor logic) support

For complete specifications, you should refer to the reference material provided with the
audio IC.

Sound Synthesizer Chip Set 2
This chip set consists of two ICs: the synthesizer and the digital-to-analog converter. The
Yamaha synthesizer is a YMF262 Type 13 OPL3 device. It uses FM (frequency
modulated) synthesis to generate sounds. The IC includes the following features:

■ 24 operators that can be configured in four-operator mode for six channels

■ 36 operators that can be configured in two-operator mode for 18 channels, or for 15
channels with five rhythm channels

■ eight selectable FM source waveforms

■ four channels of sound output

■ hardware vibrato and tremolo effects

■ two programmable times that can generate interrupt requests

Because the YMF262 outputs voice data as digital data, it is necessary to convert this
data back to analog form. This function is performed by the YAC516, a delta sigma DAC
with an eight times oversampling filter.

For complete specifications, you should refer to the reference material provided with
these two ICs.
Audio System 25

C H A P T E R 2

Hardware Design
I/O System 2

The interface between the Macintosh computer and the 12” and 7” cards is provided by
the PCI connector, which connects the PCI bus on the PC system with the PCI bus on the
Macintosh side. I/O control on the cards is provided by the Mustard ASIC and the 8242
controller, which controls the mouse and keyboard. The Mustard ASIC acts as a bridge
between the two PCI buses. The ASIC also contains PC I/O emulation logic, which
integrates many of the I/O functions required to support the PC. It supports the
following features:

■ emulation of two 16C450-compatible serial ports

■ emulation of one Centronics parallel printer port

■ emulation of keyboard and mouse controller that allows the cards to access the
Macintosh keyboard and mouse by means of the ADB

■ a 64-bit message mailbox with a 32-bit command port

■ address translation

■ power-on reset logic

■ general-purpose I/O ports (autoconfiguration logic)

■ interrupt status and mask registers

The Mustard ASIC can function either as a slave or as an alternate bus master on the
Apple PCI bus or on the PC PCI bus.

Serial Port Support 2
From the PC environment, you can connect a modem or other serial device to the
Macintosh serial port. This is an 8-pin serial connection on the computer’s back panel,
identified by either a printer or modem icon.

To support serial ports, the Mustard ASIC contains two identical sets of UART emulation
registers. These registers emulate the hardware of the standard 16C450 serial port ICs
found in many PC/AT computers. When the microprocessor on the 12” or the 7” card
accesses these registers, interrupts are generated in the Macintosh host computer. These
interrupts signal a driver on the Macintosh computer to route the data to the Macintosh
serial ports.

The Macintosh serial ports are RS-422 ports and do not support the following RS-232
signals: Carrier Detect (CD), Data Set Ready (DSR), Request to Send (RTS), and Ring
Indicator (RI) signals.

An adapter cable is needed to connect a PC serial device to a Macintosh serial port. To
help you design a custom cable to make the serial connection, Table 2-5 shows the signal
names and pin numbers on the RS-422 8-pin connector on the Macintosh serial port, the
26 I/O System

C H A P T E R 2

Hardware Design
pins that carry these signals on PC-style DB9 and DB25 connectors, and the signal names
on the RS-232 connector.

Printer Port Support 2
The Mustard ASIC contains logic that implements all the registers of the standard
Centronics parallel port found on PCs. When the PC accesses these registers, interrupts
are generated in the Macintosh host computer that cause the driver software in the
Mac OS to send data to a print spooler file. The spooler file is then sent to whatever
printer the user selects in the Macintosh environment.

Note

The parallel port interface does not control printer hardware signals and
does not support bidirectional data transfer. ◆

Keyboard and Mouse Controller 2
The Mustard ASIC contains logic that emulates in hardware the PC keyboard and
mouse. It also generates the appropriate serial clock protocol and serial bit stream
required to communicate with the 8242 keyboard/mouse controller. The controller is
configured to support the PS2 mouse, and it makes the protocol identical for both the
mouse and keyboard.

Message Mailbox 2
The message-passing interface in the Mustard ASIC supports simple interrupt-driven
communication between the PC and the Macintosh host computer. The message-passing
interface contains two data registers and one command register. The interface uses a
mechanism of arbitration and grants to control the direction of message transfer. Refer to

Table 2-5 Serial port signals

Macintosh
 pin
number

RS-422
signal
name Description

DB9
pin
number

DB25
pin
number

RS-232 signal
name

1 HSKo Handshake signal, output 4 20 DTR

2 HSKi Handshake signal, input 8 5, 8 CTS, DCD

3 TXD- Transmit data inverted 3 2 TXD

4 GND Ground 5 7 GND

5 RXD- Receive data inverted 2 3 RXD

6 TXD+ Transmit data n.c. n.c. —

7 GPi General-purpose input n.c n.c. —

8 RXD+ Receive data 5 7 GND
I/O System 27

C H A P T E R 2

Hardware Design
“Passing Messages” beginning on page 72 for a description of the software API used for
passing messages.

Autoconfiguration 2
The Mustard ASIC automatically configures the PC system each time the PC is reset. The
following configurations are sensed and set when the system is reset:

■ presence of DIMM in DIMM slot

■ setup switches for audio path

■ setup path for interrupts from the ISA bus

Audio and Video I/O Support 2

The way in which the cards support audio and video I/O depends on the Macintosh
computer in which the cards are installed. This section gives an overview of the different
I/O configurations supported. You should refer to the developer note and user’s guide
for your specific computer for more detailed information.

GIMO Support for Video Output 2
The 12” and 7” card each has an onboard GIMO (Graphics Internal Monitor Out)
connector socket. Figure 3-1 on page 34 and Figure 3-2 on page 35 show the position of
the GIMO connector on the 12” card and the 7” card, respectively. “GIMO Connector” on
page 46 provides specifications for the connector.

Certain CPUs, such as the Power Macintosh 7200, have equivalent GIMO connector
sockets. If you are using the cards in this type of computer, you can connect the monitor
using a ribbon cable and an adapter card known as the Berlin adapter card. Figure 2-8
shows a simplified view of the ribbon cable with GIMO connectors, and the Berlin
adapter card with its GIMO connector socket and edge connector.
28 Audio and Video I/O Support

C H A P T E R 2

Hardware Design
Figure 2-8 GIMO connectors and Berlin adapter card

To make the connection, you plug the GIMO connector on the ribbon cable into the
GIMO connector socket on the PCI card, as shown in Figure 2-9. You then connect the
GIMO connector on the other end of the cable to the GIMO connector socket on the
Berlin adapter card and then plug the Berlin adapter card into the GIMO connector
socket on the CPU’s main circuit board. This is the best way to integrate the
PC compatibility card with the Macintosh host system, since the PC video can be
alternately driven onto the built-in monitor or the external monitor without using an
additional loop-back cable.

GIMO connector on
Berlin adapter card

Edge connector
plugs into GIMO
connector socket
on main circuit
board of CPU

Ribbon cable

Red line

GIMO connector
socket on Berlin
adapter card

Berlin adapter card

GIMO connector plugs
into GIMO connector socket
on PC compatibility card
Audio and Video I/O Support 29

C H A P T E R 2

Hardware Design
Figure 2-9 I/O connections to Power Macintosh 7200

Loop-Back Video Support 2
The Power Macintosh 7500, 8500, and 9500 CPUs do not have a GIMO connector socket
to support the Berlin adapter card. The video interface with these CPUs is implemented
by means of a loop-back cable, as shown in Figure 2-10. This is a special Y-shaped cable
with three connectors. It connects the CPU’s DB15 connector to the PCI card’s DB26
connector, and it also provides a connector for a monitor.

IMPORTANT

The H-shaped loop-back cables used with DOS compatibility cards in
Power Macintosh 6100 computers are not compatible with the 12” and
7” cards. You should not try to use them with these cards. ▲

You can also configure systems like the Power Macintosh 9500 with a secondary video
card that allows you to connect a second Macintosh display if you wish.

If you are interfacing with a CPU that can accommodate a Berlin adapter and GIMO
connector, such as the Power Macintosh 7200, you can use the loop-back cable to connect
a second monitor, which may be used as a dedicated DOS/Windows screen.

Video connections for the Power Macintosh 9500 are made in a similar way, as shown in
Figure 2-11 on page 32.

Main circuit board

PCI connector

Berlin adapter card

Ribbon cable

16-pin GIMO connector (on CPU board)

PCI card, full sized or half sized

Audio-in
cable

CD-ROM drive or
other sound source

Audio-out cable

DB15 connector
(on CPU board)

shared video-out for
PC and Macintosh
30 Audio and Video I/O Support

C H A P T E R 2

Hardware Design
Figure 2-10 I/O connections to Power Macintosh 7500 and 8500

Main circuit board
(no GIMO connector)

PCI connector

DB26 connector for
PC card’s video output

PC card’s DB26
video connector

Loop-back
cable

Monitor cable
Monitor

To Macintosh
video-out
connector PC card

Audio-in
cable

CD-ROM drive or
other sound source

Audio-out cable

DB15 connector
(built-in) for

Macintosh video-out
Audio and Video I/O Support 31

C H A P T E R 2

Hardware Design
Figure 2-11 I/O connections for Power Macintosh 9500

Audio I/O Support 2
The 12” and 7” cards have connectors for audio I/O located on the edge of the cards, as
shown in Figure 3-1 on page 34 (12” card) and Figure 3-2 on page 35 (7” card). “Audio
Connectors” on page 47 provides specifications for these connectors. As shown in Figure
2-9 on page 30, Figure 2-10 on page 31, and Figure 2-11, the audio output cable is
connected to the audio output connector on the PCI card and then plugged into the
audio out connector on the CPU’s main circuit board. The audio input cable is connected
to the audio input connector on the PCI card and then plugged into an audio source such
as a CD-ROM drive or other sound source.

Main circuit board
(no GIMO connector
and no built-in video)

PCI connector

DB26 connector

PC card’s DB26 video connector

Loop-back
cable

Monitor cable
Monitor

To Macintosh
video out

connector PC card

Audio-in
cable

CD-ROM drive or
other sound source

Audio-out cable

DB15 connector (on PCI
video card) Mac video out
32 Audio and Video I/O Support

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
I/O Specifications 3

C H A P T E R 3

I/O Specifications
The 12” and 7” PC Compatibility Cards interface with other elements in the system, such
as the main CPU, the monitor, sound devices, and video devices, through a variety of
connectors located on the cards. Figure 3-1 shows the physical locations of the I/O
connectors on the 12” card. Figure 3-2 shows the locations of the connectors on the
7" card.

The way the interface is implemented depends on the CPU in which the card is installed.
This section describes the actual physical connectors on each of the cards. For more
information on the components that make up the I/O system for the two cards, see “I/O
System” beginning on page 26. For more information on CPU-dependent I/O
configurations, see “Audio and Video I/O Support” beginning on page 28.

This chapter describes the following connectors:

■ the PCI connector, which allows you to connect the cards to the host computer’s main
logic board

■ the DB26 connector, which allows you to connect a monitor to the system

■ the DB15 connector, which allows you to connect a mouse, keyboard, PC-compatible
joystick, or a MIDI device

■ the GIMO connector, which allows you to connect a monitor to the system

■ two audio connectors for sound input and sound output

■ a DIMM connector, which allows you to install additional memory

■ an XD connector, which provides you with access to the ISA bus

Figure 3-1 Locations of I/O connectors for the 12” card

168-pin DIMM connector

GIMO
connector

XD connector

Ribbon cable
PCI edge connector

Pentium-
class

processor

Sound out
CD

sound in

Video
connector

(DB26)

Mounting bracket
for DB connectors

Game I/O
(DB15)

Shown to provide
reference point

Berlin
adapter card

This edge
plugs into the
Macintosh CPU
main circuit board
34

C H A P T E R 3

I/O Specifications
Figure 3-2 Locations of I/O connectors for the 7” card

PCI Connector 3

The PCI local bus is a bus architecture that allows you to connect cards such as the 12”
and 7” cards to the computer’s main circuit board. Figure 3-3 shows in functional groups
the PCI bus signals used on the cards. The PCI signals not used in the 12” and 7” cards
and ground and power signals are not shown in Figure 3-3. Table 3-1 on page 36 lists
some of the bus specifications.

Table 3-2 on page 38 lists and describes the PCI bus signals used on the 12” and 7” cards.
For further information about the PCI bus, refer to Designing PCI Cards and Drivers for
Power Macintosh Computers, published by Apple Computer, and PCI Local Bus
Specification, published by Intel Corporation.

168-pin DIMM connector

GIMO
connector

XD connector

Ribbon cable

Berlin
adapter card

This edge
plugs into the
Macintosh CPU
main circuit board

PCI edge connector

Sound outCD
sound in

Video
connector

(DB26)

Mounting bracket
for DB connectors

Game I/O
(DB15)
PCI Connector 35

C H A P T E R 3

I/O Specifications
Figure 3-3 PCI bus signals used in the 12” and 7” cards

Table 3-1 PCI bus specifications

Feature Description

Bus clock rate 33 MHz

Addressing Dynamic

Signal loading One load per signal

Transaction length determination Determined at end of transaction

Bus termination Not required

Bus control arbitration Centralized

Addressing spaces Memory, I/O, and configuration

Wait-state generators Slave and master

Kinds of expansion Cards and ASIC chips

AD[31:0]

ADCBE[3:0] L

ADPAR

ADPCICLK

ADRESET L

ADFRAME L

ADTRDY L

ADIRDY L

ADSTOP L

ADDEVSEL L

ADIDSEL L

ADLOCK L

ADREQ L

ADGNT L

ADPERR

ADSERR

Address
and data

Interface
control

System

Arbitration

Error
reporting

PCI
bus
36 PCI Connector

C H A P T E R 3

I/O Specifications

With respect to the pin assignments and signal descriptions listed in Table 3-2, you
should note the following:

■ An “L” used as a suffix to the signal name, for example, FRAME L, indicates a signal
that is active when driven low. Signals with no suffix are active when they are driven
high.

■ In this context, the following terms are used to define the different components in the
system:
n Agent indicates any entity that operates on the PCI bus.
n Master indicates any agent that initiates a bus transaction.
n A host bridge is a low latency path through which the processor may directly access

PCI devices that are mapped anywhere in memory, I/O, or configuration address
spaces.

n Target indicates any agent that responds with a positive acknowledgment
(DEVSEL L) to a bus transaction initiated by the master.

■ The term tristate is applied to signals that are capable of three states: high, low, or off.
When the signal is off, it is said to be in a tristate condition or to be tristated.

■ Address bits 31:00 and data bits 31:00 (AD(31:0)) are multiplexed on the same PCI
pins. A bus transaction starts with the address phase followed by one or more data
phases. As described in the following table, certain control signals (FRAME L,
TRDY L, and IRDY L) determine the bus phase. AD(7:0) is the least significant byte,
and AD(31:24) is the most significant byte.

■ Groups of pins that are grounded, provide power inputs, or are not connected are
listed at the end of the table.

Timeout 5 bus clocks

Burst capability Any number of bytes

Power allocation 25 W per card for 12” card
15 W per card for 7” card

Table 3-1 PCI bus specifications (continued)

Feature Description
PCI Connector 37

C H A P T E R 3

I/O Specifications

Table 3-2 PCI connector pin assignments

Pin number Signal Description

A6 IRQ L This is a maskable interrupt request resulting
from various IRQ sources. Use of interrupts is
optional on the PCI bus.

A15 RESET L This is the reset signal. When it is driven low, all
PCI registers, sequences, and signals are reset to a
consistent state. If the signals are tristate, this
means that they are returned to the tristate (off)
condition.

A17 GNT L This is the grant signal. When a master device
requests access to the PCI bus, this signal is
asserted to indicate that access has been granted.
It is a point-to-point signal, and each master has
its own GNT L.

A20 AD(30) Address/data bit 30.

A22 AD(28) Address/data bit 28.

A23 AD(26) Address/data bit 26.

A25 AD(24) Address/data bit 24.

A26 IDSEL L This is the initialization device select signal.
When memory chips are being initialized by
configuration read and write transactions, this
signal is used to select individual ICs.

A28 AD(22) Address/data bit 22.

A29 AD(20) Address/data bit 20.

A31 AD(18) Address/data bit 18.

A32 AD(16) Address/data bit 16.

A34 FRAME L This is the cycle frame signal. A bus transaction
begins when this signal is asserted (driven low)
by the master. The first clock cycle during which
FRAME L is active is the address phase. This
means that the address/data lines, AD(31:00), are
carrying the physical address of the location to be
accessed. Data phases on the bus are controlled
by IRDY L and TRDY L. However, FRAME L
remains active throughout the bus transaction. It
is driven high (inactive) at the end of the final
data phase.
38 PCI Connector

C H A P T E R 3

I/O Specifications
A36 TRDY L This is the target-ready signal. When it is
asserted, it indicates that the selected device, in
this context the 12” or 7” card, is able to complete
the current data phase of the bus transaction. If a
write cycle is in progress, TRDY L going active
(low) indicates that valid data is present on the
AD(31:0) lines. When TRDY L goes active during
a read cycle, it indicates the master is prepared to
accept data. A data phase is completed during
any clock cycle where both TRDY L and IRDY L
are active. If one signal is active before the other,
wait cycles are inserted until both signals are
active at the same time.

A38 STOP L When this stop signal is asserted, it means that
the target device is requesting the bus master to
stop the current transaction.

A43 PAR This is the parity bit for AD(31:0). All devices on
the PCI bus, in this context the 12” and 7” cards,
must generate parity. Parity is even for these
devices. PAR is stable one clock after the address
phase. During write transactions, this is one clock
after IRDY L is asserted, and during read
transactions, it is one clock after TRDY L is
asserted. PAR remains valid for one clock cycle
after the completion of the last data phase. The
master drives PAR during address and write data
phases, and the target drives PAR during read
data phases.

A44 AD(15) Address/data bit 15.

A46 AD(13) Address/data bit 13.

A47 AD(11) Address/data bit 11.

A49 AD(9) Address/data bit 9.

A50, A51 — No pins with these numbers.

A52 CBE(0) L Bus command and byte enable signals (C or BE)
are multiplexed on this pin. Pins B26, B33, and
B44 carry the other three signals that make up
this group. During the address phase of a bus
transaction, CBE(3:0) L define the bus
commands. Table 3-3 on page 44 shows how
these signals are encoded during a bus
transaction.

During the data phase, the signal(s) enable the
selected byte. For example, when CBE(0) L is
driven low, byte 0 is enabled. The byte enable
signals remain active throughout the data phase.

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
PCI Connector 39

C H A P T E R 3

I/O Specifications
A54 AD(6) Address/data bit 6.

A55 AD(4) Address/data bit 4.

A57 AD(2) Address/data bit 2.

A58 AD(0) Address/data bit 0.

B16 PCI CLK This PCI clock input supplies timing for all
transactions on the PCI bus. All other PCI signals,
with the exception of RESET L and
IRQ L, are sampled on the rising edge of
PCI CLK. The PCI bus typically operates at 33
MHz, with a minimum frequency of 0 Hz.

B18 REQ L The master device asserts this signal to request
access to the PCI bus. It is a point-to-point signal,
and each master has its own REQ L.

B20 AD(31) Address/data bit 31.

B21 AD(29) Address/data bit 29.

B23 AD(27) Address/data bit 27.

B24 AD(25) Address/data bit 25.

B26 CBE(3) L Bus command and byte enable signal 3. Refer to
the description for pin A52 for further
information.

B27 AD(23) Address/data bit 23.

B29 AD(21) Address/data bit 21.

B30 AD(19) Address/data bit 19.

B32 AD(17) Address/data bit 17.

B33 CBE(2) L Bus command and byte enable signal 2. Refer to
the description for pin A52 for further
information.

B35 IRDY L This is the initiator-ready signal. When it is
asserted, it indicates that the bus master, in this
context the Macintosh computer, is able to
complete the current data phase of the bus
transaction. If a write cycle is in progress,
TRDY L going active (low) indicates that valid
data is present on the AD(31:0) lines. When
TRDY L goes active during a read cycle, it
indicates the master is prepared to accept data. A
data phase is completed during any clock cycle
where both TRDY L and IRDY L are active. If one
signal is active before the other, wait cycles are
inserted until both signals are active at the same
time.

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
40 PCI Connector

C H A P T E R 3

I/O Specifications
B37 DEVSEL L This is the device select signal. When a device
has decoded the device address and recognizes
itself as the target of the current access, it outputs
this signal. The signal is input to the host,
indicating that a device on the bus has been
selected.

B39 LOCK L This is the lock signal and, when it is asserted, it
indicates that the operation may require multiple
transactions to complete. When LOCK L is
asserted, it locks the address that is currently
being accessed, but transactions that are not
exclusive may proceed to an address that is not
currently locked. When a master device is
granted access to the PCI bus, it is not
guaranteed control of the LOCK L signal.
Different agents may use the PCI bus, but only
one master has ownership of LOCK L. If a device
implements executable memory, it must also
implement LOCK L and guarantee exclusive
access to the memory block. The target for this
sort of access must guarantee exclusive access to
a minimum of 16 aligned bytes. Host bridges
must also implement LOCK L.

B44 CBE(1) L Bus command and byte enable signal 1. Refer to
the description for pin A52 for further
information.

B45 AD(14) Address/data bit 14.

B47 AD(12) Address/data bit 12.

B48 AD(10) Address/data bit 10.

B50, B51 — No pins with these numbers.

B52 AD(8) Address/data bit 8.

B53 AD(7) Address/data bit 7.

B55 AD(5) Address/data bit 5.

B56 AD(3) Address/data bit 3.

B58 AD(1) Address/data bit 1.

A12, A13, A18,
A24, A30, A35,
A37, A42, A48,
A56, B3, B12,
B13, B15, B17,
B22, B28, B34,
B38, B46, B49,
B57

GND On the 12” and 7” cards, these pins are connected
to ground. They are also generally connected to
ground on the PCI bus.

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
PCI Connector 41

C H A P T E R 3

I/O Specifications
A1 GND
(TRST L)

On the 12” and 7” cards, this pin is connected to
ground. On the PCI bus, it may be used for Test
Reset, which asynchronously initializes the TAP
(Test Access Port) controller.

B2 GND
(TCK)

On the 12” and 7” cards, this pin is connected to
ground. On the PCI bus, it may be used for Test
Clock, which clocks state information and test
data into and out of the PCI card during TAP
operations.

B11 GND
(PRSNT2 L)

On the 12” and 7” cards, this pin is connected to
ground. On the PCI bus, it may be used for
Present 2, which is used in conjunction with
Present 1 (pin B9) to indicate the presence of a
PCI card in the PCI slot and to indicate the power
requirements for the card. In the case of the
12” and 7” cards cards, Present 1 is open and
Present 2 is grounded, indicating the presence of
a PCI card with a 15 W maximum power
requirement.

A5, A8, A10,
A16, A59, A61,
A62, B5, B6,
B19, B59, B61,
B62

+5 V On the 12” and 7” cards, these pins are connected
to +5 V. They are also generally connected to +5
V on the PCI bus.

A3 +5 V
(TMS)

On the 12” and 7” cards, this pin is connected to
+5 V. On the PCI bus, it is used for Test Mode
Select, which controls the state of the TAP
controller.

A4 +5 V
(TDI)

On the 12” card, this pin is connected to +5 V. On
the 7” card it is tied to B4. On the PCI bus, it is
used for Test Data Input, which serially shifts test
data and test instructions into the PCI card
during TAP operations.

A2 +12 V On the 12” and 7” cards, this pin is connected to
the +12 V power supply. It is also generally
connected to +12 V on the PCI bus.

B1 –12 V On the 12” and 7” cards, this pin is connected to
the –12 V power supply. It is also generally
connected to –12 V on the PCI bus.

A7 Not connected
(INTC L)

On the 12” and 7” cards, this pin is not
connected. On the PCI bus, it is generally used
for Interrupt C, which requests an interrupt and
is only used on a multifunction device.

A9, A11, A14,
A19, B10, B14

Not connected
(reserved)

On the 12” and 7” cards, these pins are not
connected. On the PCI bus, they are reserved for
future use.

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
42 PCI Connector

C H A P T E R 3

I/O Specifications
A21, A27, A33,
A39, A45, A53,
B25, B31, B36,
B41, B43, B54

Not connected
(+3.3 V)

On the 12" and 7" cards, these pins are not
connected. On the PCI bus, they are connected to
the +3.3 V power supply.

A40 Not connected
(SDONE)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Snoop Done, which
indicates the status of the snoop operation for the
current cache access.

A41 Not connected
(SBO L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Snoop Backoff,
which indicates a hit to a modified cache line.

A60 Not connected
(REQ64 L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Request 64-bit
Transfer, which indicates the bus master’s desire
to transfer data in 64-bit blocks.

B4 Not connected
(TDO)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Test Data Output,
which serially shifts test data and test
instructions out of the PCI card during TAP
operations.

B7 Not connected
(INTB L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Interrupt B, which
requests an interrupt and is only used on a
multifunction device.

B8 Not connected
(INTD L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Interrupt D, which
requests an interrupt and is only used on a
multifunction device.

B9 Not connected
(PRSNT1 L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Present 1, which, in
conjunction with Present 2 (pin B11), indicates
the presence of a PCI card in the PCI slot and
indicates the power requirements for the card.
Present 2 is grounded and Present 1 is open,
indicating the presence of a PCI card with a 15 W
maximum power requirement.

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
PCI Connector 43

C H A P T E R 3

I/O Specifications
Table 3-3 shows how the bus command and byte enable (CBE(3:0)) signals are encoded.

B40 Not connected
(PERR L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for Parity Error, which
reports data parity errors during all PCI
transactions except special cycles.

B42 Not connected
(SERR L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, it is used for System Error, which
reports address parity errors, data parity errors
during special cycles, and any catastrophic
system error.

B60 Not connected
(ACK64 L)

On the 12" and 7" cards, this pin is not connected.
On the PCI bus, Acknowledge 64-bit Transfer
indicates that the target device is able to transfer
data in 64-bit blocks.

Table 3-3 CBE(3:0) L encoding

CBE setting Command

Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 Interrupt acknowledge

0 0 0 1 Special cycle

0 0 1 0 I/O read

0 0 1 1 I/O write

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 Memory read

0 1 1 1 Memory write

1 0 0 0 Reserved

1 0 0 1 Reserved

1 0 1 0 Configuration read (used at initialization)

1 0 1 1 Configuration write (used at initialization)

1 1 0 0 Memory read multiple

1 1 0 1 Dual address cycle

1 1 1 0 Memory read line

1 1 1 1 Memory write and invalidate

Table 3-2 PCI connector pin assignments (continued)

Pin number Signal Description
44 PCI Connector

C H A P T E R 3

I/O Specifications
DB26 Connector 3

The DB26 connector allows you to connect a monitor to the PC system. It is used with
CPUs that do not have a GIMO connector and therefore do not support the Berlin
adapter card. The DB26 connector provides a loop-back connection to the video output
connector on the CPU main logic board. The loop back is implemented by a split video
cable that also provides a connector for an external monitor. If the CPU does have a
Berlin adapter card and GIMO connector, you can use the DB26 connector to hook up a
second monitor.

Figure 3-1 on page 34 and Figure 3-2 on page 35 show the location of this connector on
the 12" and 7" cards, respectively. “Loop-Back Video Support” on page 30 provides more
information about this type of interface.

 Table 3-4 lists the pin assignments and signal descriptions for the DB26 connector.

Table 3-4 DB26 connector pin assignments

Pin number Signal Description

1 MAC HSYNC Macintosh horizontal synchronize

2, 4, 6, 8 GND Logic ground

3 MAC BLUE Macintosh blue signal

5 SENSE0 Sense line 0

7 BLUE OUT Blue output from PCI card

9 HSYNC OUT Horizontal synchronize output from PCI card

10 MAC CSYNC Macintosh contrast synchronize

11, 13, 15,
17, 21, 24

GND Chassis ground

12 MAC GREEN Macintosh green signal

14 SENSE1 Sense line 1

16 GREEN OUT Green output from PCI card

18 CSYNC OUT Contrast synchronize output from PCI card

19 MAC VSYNC Macintosh vertical synchronize

20 MAC RED Macintosh red signal

22 CABLE DET L Cable detect low

23 SENSE2 Sense line 2

25 RED OUT Red output from PCI card

26 VSYNC OUT Vertical synchronize output from PCI card
DB26 Connector 45

C H A P T E R 3

I/O Specifications
DB15 Connector (Game Port) 3

The DB15 connector allows you to connect MIDI devices to the card. It also allows you to
connect a PC-compatible joystick, which can be used as a game controller. See Figure 3-1
on page 34 for the location of the connector on the 12" card, and Figure 3-2 on page 35 for
the location of the connector on the 7” card.The joystick can be used only with programs
running on the PC side of the system. You should refer to the user’s guide supplied with
your Macintosh computer for information on installing a joystick or MIDI device. Table
3-5 lists the pin assignments for the connector.

GIMO Connector 3

The GIMO connector is a 16-pin connector on the PCI card that enables you to connect a
monitor to the 12” or 7” card, provided that the CPU in which the card is installed has a
GIMO connector and a Berlin adapter card. The video connection is made by means of a
ribbon cable that plugs into the GIMO connector on the card and then plugs into the
Berlin adapter card in the CPU. This cable also carries the audio input and output signals
when the card is installed in systems that do not have discrete audio cables.

Table 3-5 DB15 connector pin assignments

Pin number Signal Description

1, 8, 9 +5 V +5 V power input

2 JOYF0 O Joystick F0 output

3 JRC0 O A x-axis control

4, 5 GND Chassis ground

6 JRC1 O A y-axis control

7 JOYF1 O Joystick F1 output

10 JOYF2 O Joystick F2 output

11 JRC2 O B x-axis control

12 MIDI OUT O MIDI output

13 JRC3 O B y-axis control

14 JOYF3 O Joystick F3 output

15 MIDI IN O MIDI input output
46 DB15 Connector (Game Port)

C H A P T E R 3

I/O Specifications
Figure 3-1 on page 34 and Figure 3-2 on page 35 show the location of this connector on
the 12" and 7" cards, respectively. “GIMO Support for Video Output” on page 28
provides more information about this type of interface.

Table 3-6 shows the pin assignments for the GIMO 16-pin connector, Molex part number
87256-1641, or AMP part number 104338-3. The connector is at location J11 on the
12" card and J4 on the 7” card. The pin assignments are the same for each card.

Audio Connectors 3

In most CPUs, audio input and output are provided by two identical four-wire ribbon
cables. The audio input cable routes sound inputs to the 12" or 7" card from a sound
source such as a CD player. The cards have a Sound Blaster–compatible audio system,
and the audio output cable routes sound to the Macintosh sound system, speakers, or an
external audio jack. Figure 2-9 on page 30 shows how the audio connections are made.

Note

In those CPUs that do not have discrete audio connectors, audio I/O is
implemented by means of a ribbon cable and the GIMO connector. ◆

Table 3-6 GIMO connector pin assignments

Pin number Signal Description

1, 9, 13 GND Ground

2 IREF Refresh

3 VSYNC Vertical synchronize

4 HSYNC Horizontal synchronize

5 RGB SEL(0) RGB select 0

6 VGA CSYNC VGA contrast synchronize

7 +5 V +5 V power supply

8 GIMO BLUE GIMO blue

10 GIMO GREEN GIMO green

11 GIMO DET L GIMO detect

12 GIMO RED GIMO red

14 GIMO OUTL GIMO sound output left

15 GIMO GND GIMO ground

16 GIMO OUTR GIMO sound output right
Audio Connectors 47

C H A P T E R 3

I/O Specifications
 lists the pin assignments and signal descriptions for the four-pin audio connectors, JST
part number B-4B-PH-K. The connector at location J5 is for audio input, and the
connector at J6 for audio output.

DIMM Connector 3

If you want to increase memory capacity, you can plug a DIMM into the DIMM slot
provided on the 12" card, or remove the 8 MB DIMM from the 7” card and replace it with
a DIMM of higher capacity. See “Memory Capabilities” on page 5 for further information
about DIMM configurations.

The DIMM connector is a 160-pin connector, Berg part number 95566-11102. Table 3-8
lists the pin assignments for this connector. The pins that are connected to ground, the +5
V power supply, and pins that are not connected are listed at the end of the table.

Table 3-7 Audio connector pin assignments

Pin number Signal
Connector
 location Description

1 n.c. J5 Not connected

2 CD INR J5 CD input right channel

3 CD GND J5 Ground

4 CD INL J5 CD input left channel

1 n.c. J6 Not connected

2 SND OUTR J6 Sound output right channel

3 SND GND J6 Ground

4 SND OUTL J6 Sound output left channel

Table 3-8 DIMM connector pin assignments

Pin number 12” card 7” card

Signal Description Signal Description

2 MD(0) Data bit 0 D(0) Data bit 0

3 MD(1) Data bit 1 D(1) Data bit 1

4 MD(2) Data bit 2 D(2) Data bit 2

5 MD(3) Data bit 3 D(3) Data bit 3

7 MD(4) Data bit 4 D(4) Data bit 4
48 DIMM Connector

C H A P T E R 3

I/O Specifications
8 MD(5) Data bit 5 D(5) Data bit 5

9 MD(6) Data bit 6 D(6) Data bit 6

10 MD(7) Data bit 7 D(7) Data bit 7

13 MD(8) Data bit 8 D(8) Data bit 8

14 MD(9) Data bit 9 D(9) Data bit 9

15 MD(10) Data bit 10 D(10) Data bit 10

16 MD(11) Data bit 11 D(11) Data bit 11

17 MD(12) Data bit 12 D(12) Data bit 12

19 MD(13) Data bit 13 D(13) Data bit 13

20 MD(14) Data bit 14 D(14) Data bit 14

21 MD(15) Data bit 15 D(15) Data bit 15

27 DWE L Write enable BMWE Write enable

28 CAS(0) Column address
strobe byte 0

BCAS(0) Column address
strobe byte 0

29 CAS(2) Column address
strobe byte 2

BCAS(2) Column address
strobe byte 2

30 RAS(2) Row address
strobe byte 2

DRAS(1) Row address
strobe byte 1

33 MA(0) Address bit 0 BMA(11) Address bit 11

34 MA(2) Address bit 2 BMA(9) Address bit 9

35 MA(4) Address bit 4 BMA(7) Address bit 7

36 MA(6) Address bit 6 BMA(5) Address bit 5

37 MA(8) Address bit 8 BMA(3) Address bit 3

38 MA(10) Address bit 10 BMA(1) Address bit 1

45 RAS(2) Row address
strobe byte 2

DRAS(2) Row address
strobe byte 2

46 CAS(4) Column address
strobe byte 4

BCAS(0) Column address
strobe byte 0

47 CAS(6) Column address
strobe byte 6

BCAS(2) Column address
strobe byte 2

48 DWE L Write enable BMWE Write enable

52 MD(16) Data bit 16 D(16) Data bit 16

53 MD(17) Data bit 17 D(17) Data bit 17

Table 3-8 DIMM connector pin assignments (continued)

Pin number 12” card 7” card

Signal Description Signal Description
DIMM Connector 49

C H A P T E R 3

I/O Specifications
55 MD(18) Data bit 18 D(18) Data bit 18

56 MD(19) Data bit 19 D(19) Data bit 19

57 MD(20) Data bit 20 D(20) Data bit 20

58 MD(21) Data bit 21 D(21) Data bit 21

60 MD(22) Data bit 22 D(22) Data bit 22

65 MD(23) Data bit 23 D(23) Data bit 23

67 MD(24) Data bit 24 D(24) Data bit 24

69 MD(25) Data bit 25 D(25) Data bit 25

70 MD(26) Data bit 26 D(26) Data bit 26

71 MD(27) Data bit 27 D(27) Data bit 27

72 MD(28) Data bit 28 D(28) Data bit 28

74 MD(29) Data bit 29 D(29) Data bit 29

75 MD(30) Data bit 30 D(30) Data bit 30

76 MD(31) Data bit 31 D(31) Data bit 31

86 MD(32) Data bit 32 D(0) Data bit 0

87 MD(33) Data bit 33 D(1) Data bit 1

88 MD(34) Data bit 34 D(2) Data bit 2

89 MD(35) Data bit 35 D(3) Data bit 3

91 MD(36) Data bit 36 D(4) Data bit 4

92 MD(37) Data bit 37 D(5) Data bit 5

93 MD(38) Data bit 38 D(6) Data bit 6

94 MD(39) Data bit 39 D(7) Data bit 7

97 MD(40) Data bit 40 D(8) Data bit 8

98 MD(41) Data bit 41 D(9) Data bit 9

99 MD(42) Data bit 42 D(10) Data bit 10

100 MD(43) Data bit 43 D(11) Data bit 11

101 MD(44) Data bit 44 D(12) Data bit 12

103 MD(45) Data bit 45 D(13) Data bit 13

104 MD(46) Data bit 46 D(14) Data bit 14

105 MD(47) Data bit 47 D(15) Data bit 15

Table 3-8 DIMM connector pin assignments (continued)

Pin number 12” card 7” card

Signal Description Signal Description
50 DIMM Connector

C H A P T E R 3

I/O Specifications
112 CAS(1) Column address
strobe byte 1

BCAS(1) Column address
strobe byte 1

113 CAS(3) Column address
strobe byte 3

BCAS(3) Column address
strobe byte 3

114 RAS(3) Row address
strobe byte 3

DRAS(3) Row address
strobe byte 3

117 MA(1) Address bit 1 BMA(10) Address bit 10

118 MA(3) Address bit 3 BMA(8) Address bit 8

119 MA(5) Address bit 5 BMA(6) Address bit 6

120 MA(7) Address bit 7 BMA(4) Address bit 4

121 MA(9) Address bit 9 BMA(2) Address bit 2

122 MA(11) Address bit 11 BMA(0) Address bit 0

124 DIMM
DET

Detect DIMM DIMM
DET

Detect DIMM

126 MA(0) Address bit 0 BMA(11) Address bit 11

129 RAS(3) Row address
strobe byte 3

DRAS(1) Row address
strobe byte 1

130 CAS(5) Column address
strobe byte 5

CAS(1) Column address
strobe byte 1

131 CAS(7) Column address
strobe byte 7

n.c. Not connected

136 MD(48) Data bit 48 D(16) Data bit 16

137 MD(49) Data bit 49 D(17) Data bit 17

139 MD(50) Data bit 50 D(18) Data bit 18

140 MD(51) Data bit 51 D(19) Data bit 19

141 MD(52) Data bit 52 D(20) Data bit 20

142 MD(53) Data bit 53 D(21) Data bit 21

144 MD(54) Data bit 54 D(22) Data bit 22

149 MD(55) Data bit 55 D(23) Data bit 23

151 MD(56) Data bit 56 D(24) Data bit 24

153 MD(57) Data bit 57 D(25) Data bit 25

154 MD(58) Data bit 58 D(26) Data bit 26

155 MD(59) Data bit 59 D(27) Data bit 27

Table 3-8 DIMM connector pin assignments (continued)

Pin number 12” card 7” card

Signal Description Signal Description
DIMM Connector 51

C H A P T E R 3

I/O Specifications
XD Connector 3

A 50-pin connector on the cards provides limited unbuffered access to the ISA bus. This
enables you to create a parallel port for third-party dongles, otherwise known as
hardware keys. You do this by connecting an expansion card to the XD connector and

156 MD(60) Data bit 60 D(28) Data bit 28

158 MD(61) Data bit 61 D(29) Data bit 29

159 MD(62) Data bit 62 D(30) Data bit 30

160 MD(63) Data bit 63 D(31) Data bit 31

1, 12, 23,
31, 32, 43,
44, 54, 68,
78, 85, 96,
107, 116,
127, 138,
152, 162

GND Ground GND Ground

6, 18, 26,
40, 49, 59,
73, 84, 90,
102, 110,
133, 143,
157, 168

+5 V +5 V power supply +5 V +5 V power supply

11, 22, 24,
25, 39, 41,
42, 50, 51,
61, 62, 63,
64, 66, 77,
79, 80, 81,
82, 83, 95,
106, 108,
109, 111,
115, 123,
125, 128,
132, 134,
135, 145,
146, 147,
148, 150,
161, 163,
164, 165,
166, 167

n.c. Not connected n.c. Not connected

Table 3-8 DIMM connector pin assignments (continued)

Pin number 12” card 7” card

Signal Description Signal Description
52 XD Connector

C H A P T E R 3

I/O Specifications
then connecting a hardware key to the expansion card. The XD connector may also be
used for a sound expansion card.

The XD connector is a 50-pin connector, JAE part number KX15-50K3E9. Table 3-9 shows
the pin assignments for this connector.

Table 3-9 XD connector pin assignments

Pin number Signal Description

1 ISA IRQ(3) ISA interrupt request 3

2 SA(10) S address bit 10

3 ISA IRQ(4) ISA interrupt request 4

4 SA(9) S address bit 9

5 ISA IRQ(7) ISA interrupt request 7

6 SMEMW S memory write

7 IOCHK I/O check

8 IRQ(9) Interrupt request 9

9 DREQ(6) DMA request 6

10 MINUS 12 V –12 V power supply

11 DACK DMA acknowledge

12 SMEMR S memory read

13 REFRESH Refresh

14 +12 V +12 V power supply

15 IOR I/O read

16 AEN Address enable

17 DREQ(3) DMA request 3

18 OSC Oscillator

19 RESETDRV Reset drive

20 +5 V +5 V power supply

21 SA(7) S address bit 7

22 XD(7) Buffered data bit 7

23 SA(4) S address bit 4

24 0WS 0 write strobe

25, 29, 45 GND Ground

26 IOW I/O write

27 ISA Detect Detect external device on ISA bus
XD Connector 53

C H A P T E R 3

I/O Specifications
28 SA(1) S address bit 1

30 SA(0) S address bit 0

31 DACK(3) DMA acknowledge 3

32 TC Terminate count

33 BALE Bus address latch enable

34 SA(2) S address bit 2

35 IOCHRDY I/O check ready

36 SA(8) S address bit 8

37 SA(5) S address bit 5

38 IRQ(10) Interrupt request 10

39 ATCLK AT clock

40 XD(0) Buffered data bit 0

41 SA(3) S address bit 3

42 +5 V +5 V power supply

43 SA(6) S address bit 6

44 XD(1) Buffered data bit 1

46 XD(2) Buffered data bit 2

47 XD(5) Buffered data bit 5

48 XD(3) Buffered data bit 3

49 XD(6) Buffered data bit 6

50 XD(4) Buffered data bit 4

Table 3-9 XD connector pin assignments (continued)

Pin number Signal Description
54 XD Connector

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0
Software Support 4

C H A P T E R 4

Software Support
The interface driver for the 12” and 7” PC Compatibility Cards controls communication
between them and the Mac OS (Macintosh Operating System). Applications running on
the Mac OS can use the driver to configure and control the cards. Applications running
in both environments can use the driver to exchange messages.

This chapter describes the routines that allow you to initialize the driver, configure the
PC system, make control and status calls, and pass messages between the Mac OS and
the PC driver. You should also refer to Inside Macintosh: Devices for information about
opening and closing the interface driver.

Note

When installed in a Macintosh computer, the 12” and 7” cards
implement PC functions, that is, the functions of a Pentium-based or
5x86-based computer. For the sake of brevity, these functions are
referred to in this chapter as the PC system. Figure 1-1 on page 3
summarizes the PC system functions implemented by the cards. ◆

Initializing the Interface Driver 4

Before you can use the interface driver, your application must initialize it by calling an
open routine. When initialization is complete, the application calls a close routine. You
can open and close the driver only from the Mac OS. The name of the driver is
"\p.Symbiosis".

Opening the Driver 4

The driver must be open before your application can communicate with it. As described
in Inside Macintosh: Devices, there are various ways of opening drivers. The two principal
ways are OpenDriver and PBOpen. In this case, PBOpen is the preferred way.

When you call the PBOpen routine, it opens the driver specified by the name parameter,
"\p.Symbiosis". The routine allocates and initializes the driver’s memory, installs the
interrupt handler, and makes patches to the system as needed by the driver. The PBOpen
routine initializes all devices to the null device and puts the PC system into a reset state.
The PBOpen routine fails if the driver cannot allocate enough memory or if it cannot find
the 12” or the 7” card.

Closing the Driver 4

When you have finished communicating with the driver, you can close it using either the
CloseDriver or PBClose routine. It is preferable to use PBClose. When you call the
PBClose routine, it releases all memory allocated to the interface driver, removes the
driver’s interrupt handler, removes any patches installed by the open routine, and puts
the PC system into a reset state.
56 Initializing the Interface Driver

C H A P T E R 4

Software Support
Configuring the PC System 4

An application running on the Mac OS can use the interface driver to configure the PC
system. You can also use the driver to perform the following operations:

■ configure the disk drives available to the cards

■ set and read the status of the network driver

■ configure the communications port

■ configure the parallel port

■ define the key combination that switches focus between the PC system and the
Macintosh

This section describes the routines that perform these configuration tasks. Each routine
lists the parameter block settings associated with that particular routine.

rsSetDriveConfig 4

You can use the rsSetDriveConfig control routine to configure each of the PC
system’s fixed drives (A:, B:, C:, and D:). These drives can be configured as a floppy
drive, Macintosh file, SCSI partition, or have no corresponding driver.

The status code for this routine is rsSetDriveConfig = 500.

The application running on the Macintosh computer should call rsSetDriveConfig at
least once before starting the PC system. If you want to change the drive configuration
after the PC system has been started, you can also call this routine. When you do this, the
drive configuration does not change until the PC system is restarted.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetDriveConfig.

—> csParam+0 long Pointer to RSFixedDriveConfig.
Configuring the PC System 57

C H A P T E R 4

Software Support
The RSFixedDriveConfig data structure pointed to by csParam is shown below.

Field descriptions

RSFixedDriveConfig[0]
Contains the configuration for drive A:.

RSFixedDriveConfig[1]
Contains the configuration for drive B:.

RSFixedDriveConfig[2]
Contains the configuration for drive C:.

RSFixedDriveConfig[3]
Contains the configuration for drive D:.

type field Specifies what type of drive is configured: rsFloppyDrive,
rsFileDrive, rsPartitionDrive, or rsNULLDrive.
If the value is rsNULLDrive = 0, the corresponding drive does
not exist to the PC system and no other fields need to be filled in.
If the value is rsFloppyDrive = 1, the corresponding drive is an
Apple SuperDrive connected to one of the Macintosh computer’s
floppy drive connectors.
If the value is rsFileDrive = 2, the corresponding drive is
connected to a Macintosh file system file. The vRefNum field
contains the volume the file is on, dirID contains the directory ID
of the file, and fileNamePtr contains a pointer to the filename.
The driver opens and closes the file as needed.
If the value is rsPartitionDrive = 3, the corresponding drive
is connected to a SCSI drive partition. The vRefNum field contains
the SCSI ID, dirID contains the starting sector number of the
partition, and fileNamePtr contains the number of sectors in the
partition.
If the value is set to rsIgnore, the configuration of the
corresponding drive is not changed.

typedef struct{

short type; // Type of device this drive is

short vRefNum; // Volume refNum or SCSI ID

long dirID; // Directory ID or starting sector
number on SCSI drive

long fileNamePtr; // Filename or number of sectors on
SCSI drive

} RSFixedDriveConfig[4], *RSFixedDriveConfigPtr;
58 Configuring the PC System

C H A P T E R 4

Software Support
rsGetNetDriveConfig 4

You can use the rsGetNetDriveConfig control routine to obtain configuration data
about the drives. This routine returns a pointer to an array of 22 RSNetDriveConfig
data structures, one for each drive letter from E through Z.

The status code for this routine is rsGetNetDriveConfig = 650.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

The RSNetDriveConfig data structure pointed to by csParam is shown below.

The RSNetDriveConfig data structure contains the current configuration for folder
sharing for each PC system drive letter. If the PC system has its LASTDRIVE parameter
set to less than Z or if other block device drivers are loaded on the PC system, not all
drive letters will be available. The data structures for drives that are not available have
their status parameters set to 1 by the interface driver.

The caller can use the returned pointer to modify an entry in the RSNetDriveConfig
data structure and then call the rsSetNetDriveConfig control call.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsGetNetDriveConfig.

<— csParam+0 long Pointer to RSNetDriveConfig.

typedef struct{

char status; // 0 = unused, -1 = in use, 1 = cannot be used

char changed; // Used by the driver, do not use

short vRefNum; // Reference number of volume containing shared drive

long dirID; // Directory ID

} RSNetDriveConfig[26], *RSNetDriveConfigPtr;
Configuring the PC System 59

C H A P T E R 4

Software Support
rsSetNetDriveConfig 4

You can use the rsSetNetDriveConfig control routine to establish links between
Macintosh directories and PC system drive letters. The call simply notifies the interface
driver that an entry in the RSNetDriveConfig data structure has been modified.

The control code for this routine is rsSetNetDriveConfig = 600.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsSetComPortConfig 4

You can use the rsSetComPortConfig control routine to set the configurations of the
two PC system communications ports, COM1 and COM2. Each communications port
can have a virtual connection to either the modem port, the printer port, a
communication toolbox port, a spool file, or the null device.

The rsSetComPortConfig routine should be called at least once before the PC system
is started up. It can also be called after the PC system has been started, in which case, the
change in configuration takes effect immediately without a restart.

The control code for this routine is rsSetComPortConfig = 300.

The device types for the PC communications ports are

■ rsModemComPort = 1

■ rsPrinterComPort = 2

■ rsSpoolComPort = 3

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetNetDriveConfig.

—> csParam+0 long Entry number of RSNetDriveConfig (0=E).

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.
60 Configuring the PC System

C H A P T E R 4

Software Support
A pointer to an RSComConfig data structure is passed in the csParam field.

Field descriptions

RSComFig[0] Contains the configuration for COM1.
RSComConfig[1] Contains the configuration for COM2.
type field Specifies what type of connection to make: rsNULLComPort,

rsModemComPort, rsPrinterComPort, rsSpoolComPort,
rsComToolBoxComPort, or rsIgnore.

vRefNum parameter
The value of this parameter is the volume reference number, dirID
is the directory ID, type is the port type (ModemComPort, and so
on), and fileNamePtr is the pointer to the name of the spool file.

PC port connected to the null device
Any output from the PC system is ignored.

PC port connected to the modem or printer port
PC system controls the port by means of the UART emulation in
hardware on the 12” or 7” card. For example, when the PC system
sets the baud rate divisor in the UART emulation register, the
interface driver intercepts the operation and translates the action to
a control call to the driver for the modem or printer port.

PC port connected to a spool file
All output from the PC system is captured and written to the
specified file. The driver opens and closes the file as needed.

type field is set to rsIgnore
The port’s configuration does not change.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetComPortConfig.

—> csParam+0 long Pointer to RSComConfig.

typedef struct{

short type; // Port type (rsModemComPort,
rsPrinterComPort, etc.)

short vRefNum; // Volume reference number for serial
spool file

long dirID; // Directory ID

long fileNamePtr
;

// Pointer to the filename

} RSComConfig[2], *RSComConfigPtr;
Configuring the PC System 61

C H A P T E R 4

Software Support
rsSetParallelPortConfig 4

You can use the rsSetParallelPortConfig control routine to set the configuration of
the parallel port emulation. The parallel port is used for a printer. A pointer to an
RSParallelConfig data structure is passed in csParam.

When a print job has been completed, the driver notifies the application by means of the
rsSetNotificationProc procedure, defined in “rsSetNotificationProc” on page 70.
The driver also notifies the application if it has trouble saving the spool data.

The control call for this routine is rsSetParallelPortConfig = 400.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

The RSParallelConfig data structure in the csParam field is defined below.

Field descriptions

eojTimeOut field Specifies the number of seconds the parallel port may be inactive
before the driver will force an end of job timeout. If this field is set
to 0, the driver does not force the end of job based on time.

vRefNum field Contains the reference number of the volume that contains the
directory.

spoolDirID field The ID of the directory where the spool files will be stored.

rsSetDeactivateKey 4

You can use the rsSetDeactivateKey control routine to set the deactivate key along
with its modifiers and a user-defined task. When the PC system has control of the

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetParallelPortConfig.

—> csParam+0 long Pointer to RSParallelConfig.

typedef struct{

short eojTimeOut; // End of job after n seconds of no data

short vRefNum; // RefNum of the Macintosh volume the directory is on

long spoolDirID; // RefNum for spool directory

} RSParallelConfig, *RSParallelConfigPtr;
62 Configuring the PC System

C H A P T E R 4

Software Support
keyboard, the driver monitors the keyboard input data for the deactivate key
combination and calls the user-defined task when that key combination occurs.

The status code for this routine is rsDeactivateKey = 104.

The user-defined task is called during NeedTime, which is the period after the
deactivate key and modifiers are pressed. (If a driver has the dNeedTime flag set, it gets
called in round-robin fashion at System Task time.)

If the user-defined task is null, no task is called. The modifiers are specified as they
appear in KeyMap+6. The value of the deactivate key is the Macintosh key code of the
desired key. KeyMap refers to the variable type referred to by the GetKeys call. This is
documented in Inside Macintosh: Macintosh Toolbox Essentials, Chapter 2, “Event
Manager.”

Parameter block

—> indicates input to the driver
<— indicates output from the driver

Upon return, the parameter block is set as follows.

Control and Status Calls 4

An application running on the Mac OS can use the interface driver to make control and
status calls to the PC system. You can use the routines in this section to do the following:

■ get the status of the PC system

■ enable and disable the PC system’s video display

■ enable and disable disk mounting on the PC system

■ activate and deactivate keyboard operation by the PC system

■ activate and deactivate mouse tracking by the PC system

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetDeactivateKey.

—> csParam+0 long Pointer to user-defined task.

—> csParam+4 word Modifiers.

—> csParam+6 word The deactivate key.

<— csParam+0 long Pointer to the previous user-defined task.

<— csParam+4 word The previous modifiers.

<— csParam+6 word The previous deactivate key.
Control and Status Calls 63

C H A P T E R 4

Software Support
■ terminate print spooling from the PC system

In some instances, for example, in the case of bits 0, 1, and 7, it is better to use the Gestalt
function. Refer to “Gestalt Selector” on page 78 for further information.

Note

Applications can call Gestalt to get information about the operating
environment. The Gestalt function then calls other selector functions. ◆

rsPCStatus 4

You can use the rsPCStatus status routine to get information about the state of the PC
hardware. This routine returns the current state of the PC system.

The status code for this routine is rsPCStatus = 701.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

The status word is a 32-bit word. When the bits are set (1), they indicate different
conditions in the PC system, for example, whether it is running, if the screen is enabled,
and so forth. Table 4-1 lists the meaning of the bits in the status word.

Note

In the case of bits 0, 1, and 7, it is better to use the Gestalt function to get
the required information. ◆

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsPCStatus.

<— csParam+4 long The status word.

Table 4-1 PC status word

Bit Meaning

0 1 = PC running (rsBooted)

1 1 = VGA screen enabled (rsVGA Enabled)

2 1 = keyboard enabled (rsKeyboardEnabled)

3 1 = mouse enabled (rsMouseEnabled)
64 Control and Status Calls

C H A P T E R 4

Software Support
rsEnableVideo 4

You can use the rsEnableVideo control routine to enable the VGA display output. You
use this routine when you have a shared video monitor and want to switch it from the
Mac OS to the PC system.

The control call for this routine is rsEnableVideo = 705.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsDisableVideo 4

You can use the rsDisableVideo control routine to disable the VGA display output
when the Macintosh video output is connected to the video connector. If the Macintosh
video is not connected, this call does nothing.

The control call for this routine is rsDisableVideo = 706.

4 1 = disk mounting enabled (rsDiskMountEnabled)

5 1 = shared memory enabled (rsSharedEnabled)

6 1 = DMA enabled (rsDMAEnabled)

7 1 = video cable enabled (rsCableInstalled)

8 1 = modem port is used by COM1

9 1 = printer port is used by COM1

10 1 = modem port is used by COM2

11 1 = printer port is used by COM2

24–31 Reserved

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsEnableVideo.

Table 4-1 PC status word (continued)

Bit Meaning
Control and Status Calls 65

C H A P T E R 4

Software Support
Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsMountDisks 4

You can use the rsMountDisks control routine to enable PC disks to be mounted and
unmounted. After the call has been made, the interface driver monitors all disk-insertion
events, looking for PC-formatted disks. If the disk inserted is not a Macintosh-formatted
disk, it is considered to be a PC disk, and it is made available to the PC system if the PC
system is active. PC disks are mounted and unmounted automatically, and the
rsMountDisks call merely enables the process.

The status code for this routine is rsMountDisks = 501.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsDisableVideo.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsMountDisks.
66 Control and Status Calls

C H A P T E R 4

Software Support
rsDontMountDisks 4

You can use the rsDontMountDisks control routine to stop the interface driver from
monitoring disk-insertion events. If the interface driver has already mounted a PC disk
before you make this call, the PC disk remains in the drive and available to the PC
system.

The status code for this routine is rsDontMountDisks = 502.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsActivateKB 4

You can use the rsActivateKB control routine to direct data from the Macintosh
computer keyboard to the PC system. All keys except the Command key are trapped.
This means that instead of being passed to the Macintosh, key codes (keystrokes) are
translated and transmitted to the PC system.

The status code for this routine is rsActivateKB = 102.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsDontMountDisks.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsActivateKB.
Control and Status Calls 67

C H A P T E R 4

Software Support
rsDeactivateKB 4

You can use the rsDeactivateKB control routine to stop transmission of keyboard data
to the PC system and direct the keyboard data to the Mac OS.

The status code for this routine is rsDeactivateKB = 103.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsBeginMouseTracking 4

You can use the rsbeginMouseTracking control routine to direct mouse movements
and button presses to the PC system. This routine also causes the driver to hide the
Macintosh cursor.

The status code for this routine is rsBeginMouseTracking = 201.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsDeactivateKB.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsBeginMouseTracking.
68 Control and Status Calls

C H A P T E R 4

Software Support
rsEndMouseTracking 4

You can use the rsEndMouseTracking control routine to direct the mouse movements
and button presses to the Mac OS. This routine also causes the driver to show the
Macintosh cursor.

The status code for this routine is rsEndMouseTracking = 202.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

rsEndPrintJob 4

You can use the rsEndPrintJob control routine to end the current print job and, if
there is one, close the spool file. Any subsequent data transferred from the PC system to
the parallel port starts a new spool file.

The control call for this routine is rsEndPrintJob = 401.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsEndMouseTracking.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsEndPrintJob.
Control and Status Calls 69

C H A P T E R 4

Software Support
Detecting Errors 4

Applications running on the Mac OS can use the routines described in this section to
detect error conditions or other special events on the PC system. Table 4-2 summarizes
the return codes used to indicate PC system printing or serial communication errors.

rsSetNotificationProc 4

You can use the rsSetNotificationProc control routine to install a user-defined
procedure that is called whenever a special event happens within the driver. The
procedure can be called at interrupt time and puts off handling the event until a
noninterrupt time.

The control call to set the address of the notification procedure is
rsSetNotificationProc = 900.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

Table 4-2 Return codes for PC printing or serial communication errors

Code Description Error type

rsPrintSpoolErr = 0x7F00 Print spool file open or a
write error

Printing

rsPSFileReady = 0x7F01 Ready to print to spool file Printing

rsCOM1SpoolErr = 0x7F01 Serial spool file open or a
write error

Serial
communication

rsCOM2SpoolErr = 0x7F02 Serial spool file open or a
write error

Serial
communication

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSetNotificationProc.

—> csParam+0 long Pointer to the notification procedure.

—> csParam+4 long A1Param value.
70 Detecting Errors

C H A P T E R 4

Software Support
Upon return, the parameters are set as follows:

The caller passes a pointer to the user-defined procedure and to a parameter that is
passed to that procedure in the A1Param value. The control routine returns the previous
values. Calling rsSetNotificationProc with a NULL pointer disables the notification
procedure.

When the user-defined procedure is called, the D0.w register contains the event and the
A1 register contains the A1Param value. The procedure can use registers D0–2 and A0–1.

The events are listed inTable 4-3.

rsLastError 4

You can use the rsLastError status routine to obtain the last nonzero error code
returned.

The status code for this routine is rsLastError = 702.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

<— csParam+0 long Pointer to the previous notification procedure.

<— csParam+4 long Previous A1Param value.

Table 4-3 Special events

Event Description

rsPrintSpoolErr Problem opening or writing to a print spool file

rsCOM1SpoolErr Problem opening or writing to the COM1 spool file

rsCOM2SpoolErr Problem opening or writing to the COM2 spool file

rsDiskFileErr Problem reading the disk file

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsLastError.

<— csParam+4 long Pointer to the last error routine.
Detecting Errors 71

C H A P T E R 4

Software Support
Passing Messages 4

Applications running on the Mac OS and the PC system can send messages to each other
by calling the interface driver. Applications can also install a receive procedure for
receiving messages. When the interface driver receives a message that is intended for
your application, the driver calls your receive procedure. Your procedure then decides
whether or not to accept the data in the message and, if it accepts the data, where to
store it.

The registers referenced in the following sections are registers in the Pentium and 5x86
processors on the 12” and 7” PC Compatibility Cards. Registers AX, BX, CX, DX, DI, SI,
ES, and DS are to x86 processors what the D0-7 and A0-7 registers are to 68K processors.

Message Conventions 4

Before communication can take place, an application running on the Mac OS and an
application running on the PC system must have the same definitions of the messages
they transfer. A message consists of a message parameter block containing up to 64 KB of
data. The parameters and the data can consist of any data in any format. The command
must be a unique value recognized by the applications on the Mac OS and the PC system
that are sending and receiving messages. These applications must request command
numbers from the interface driver before sending messages.

Macintosh Interface 4

Applications running on the Mac OS communicate with the interface driver through
driver calls. Your application should first open the driver using the open call and then
use the control routines described in the following sections to register, send, and receive
messages.

PC System Interface 4

Applications running on the PC system communicate with the interface driver through a
software interrupt interface. The application loads registers with appropriate values,
including a function selector in register AH, and then calls the interface driver with an
INT 5Fh call. PC system applications can determine whether the interface driver is
available by calling INT 5Fh with register AH = 0. If the interface driver is installed, it
returns 0A5h in register AH and the highest implement function code (currently 4) in
register AL.

Registering Messages 4
For an application on the Mac OS to send messages to an application on the PC system,
both applications must register their messages with the interface driver. This is done by
72 Passing Messages

C H A P T E R 4

Software Support
calling the driver with a 32-bit selector that is defined in both applications and with a
count of the number of messages to be used by the applications. The interface driver
allocates a range of messages for that selector and returns the base command number to
the caller. The interface driver makes sure that both the PC application and the
Macintosh application registering messages under the same selector will receive the
same base command number.

Registering Messages From the Mac OS 4

To register your messages from a Macintosh application, make an
rsRegisterMessage control call with the message selector in csParam+0 and the
number of message commands to allocate in csParam+4.

The routine that registers message type is rsRegisterMessage = 803.

Parameter block

—> indicates input to the driver
<— indicates output from the driver
<—> indicates bidirectional transfer (input and output)

The interface driver returns the base command number in csParam+0. If the interface
driver cannot allocate the messages, an error code is returned in ioResult.

Registering Messages From the PC System 4

To register your messages from a PC application, load the 32-bit selector into register
EBX and the message count into register CX. Then call INT 5Fh with AH = 4. The
interface driver returns the base command number in register BX. Register AH contains
an error code if the message could not be allocated.

Sending a Message 4
To send a message, you must pass a message parameter block (MsgPBlk) to the interface
driver. The rsSendMessage routine is always asynchronous. The message control code
for sending a message is rsSendMessage = 800. This routine simply queues the
message parameter block and returns to the caller. The msgResult field is set to 1 (busy)
until the message has been sent.

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsRegisterMessage.

<—> csParam+0 long 32-bit message selector.

—> csParam+4 long Number of message commands to allocate.
Passing Messages 73

C H A P T E R 4

Software Support
After the message has been sent, the msgResult field is set to 0 (no error) or -3
(MsgTimeout). The msgActCount field contains the number of bytes actually sent. If
you have specified a completion routine, it is then called.

Sending a Message From the Mac OS 4

To send a message on the Mac OS, build a MsgPBlk data structure and then pass the
pointer to the interface driver in an rsSendMessage control call.
The MsgPBlk data structure for applications on the Mac OS has the following format:

Parameter block

—> indicates input to the driver
<— indicates output from the driver

Your completion routine is called at deferred time and can use registers D0–D2 and
A0–A2. You must save all other registers. Upon return, A0 contains a pointer to the
MsgPBlk structure.

MsgPBlk RECORD 0

msgQLink DS.1 1 ; Next queue element

msgQType DS.w 1 ; Queue flag

msgCmd DS.w 1 ; The message type or command

msgParam1 DS.1 1 ; Message parameter 1

msgParam2 DS.1 1 ; Message parameter 2

msgBuffer DS.1 1 ; Pointer to the message data buffer

msgReqCount DS.1 1 ; Requested data length

msgActCount DS.1 1 ; Actual data length

msgCompletion DS.1 1 ; Pointer to completion routine or
NULL

msgResult DS.w 1 ; The result of any message operation

msgFlags DS.w 1 ; Message flags (Swap, and Shared);
set to zero!

msgUserData DS.1 1 ; For the caller’s use

MsgPBlkcSize Equ * ; Size of record

ENDR

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsSendMessage.

—> csParam+0 long Pointer to MsgBlk.
74 Passing Messages

C H A P T E R 4

Software Support
Note

Deferred time refers to deferred task time. Hardware and software
interrupts occur all the time. The system processes these interrupts.
After doing so, but before returning control to the interrupt process, the
system looks for any registered deferred tasks and executes them. Refer
to Inside Macintosh: Processes for further information on this subject. ◆

Sending a Message From the PC system 4

To send a message on the PC system, build a MsgPBlk structure and call the interface
driver with AH = 1 (rsSendMessage) and ES:BX = the pointer to the MsgPBlk
structure. When you execute an INT 5Fh, the message is queued, msgResult is set to 1
(busy), and control returns to your application.

Your completion routine is called with a FAR call, and it should return with an RETF.
Your routine may also use registers AX, BX, CX, DX, DI, SI, ES, and DS. When your
completion routine is called, ES:BX is a pointer to the MsgPBlk structure.

The MsgPBlk data structure on the PC system has the following format:

Note

The sizes of some fields are different from the Mac OS equivalent. ◆

Installing a Message Handler 4

Before you can receive messages, you must install a message handler, using the
rsInstallMsgHandler routine. The interface driver calls the message handler when
the driver receives a message with a command value greater than or equal to
recCmdBase and less than recCmdBase+recCmdCount in the MsgRecElem data

MsgPBlk STRUCT

link DWORD ; Link to next queue element

msgCmd WORD ; The message command or type

msgParam1 DWORD ; Param 1

msgParam2 DWORD ; Param 2

msgCompletion DWORD ; Pointer to completion routine or NULL

msgBuffer DWORD ; Pointer to the data buffer

msgReqCount DWORD ; Length of the data

msgActCount DWORD ; # of bytes actually transferred

msgResult BYTE ; The result of message operation

msgFlags BYTE ; Message flags (Shared and Swapped);
set to zero

msgUserData DWORD ; For use by caller

MsgVXD DWORD ; For use by ApplePC VxD

MsgPBlk ENDS
Passing Messages 75

C H A P T E R 4

Software Support
structure. The driver passes the message’s 16-bit command and the two 32-bit
parameters to your message handler. Refer to “Installing a Message Handler on the Mac
OS” on page 76 and “Installing a Message Handler on the PC System” on page 77 for
information about about the format of the MsgRecElem data structure.

The message handler examines the command and parameters and determines whether
there is any data to be received. If there is, the handler passes back a pointer to the
MsgBlk data structure. The interface driver then receives the data and puts it into the
buffer pointed to by msgBuffer. The driver then updates msgActCount with the
number of bytes of data received and sets msgResult to 0 (no error), –1 (MsgOverrun),
–2 (MsgUnderrun), or –3 (MsgTimeout). The driver then calls your completion routine,
if there is one.

A message handler is described by a MsgRecElem record. The recProc field points to
the handler procedure. The values of recBaseCmd and recCmdCount are the values
allocated by rsRegisterMessage.

IMPORTANT

Before your application terminates, you must remove your message
handler so that the interface driver will not call it after the application
has terminated. See “Removing a Message Handler” on page 78 for
more information. ▲

Installing a Message Handler on the Mac OS 4

To install a message handler on the Mac OS, build a MsgRecElem record and pass a
pointer to it in a control call to the interface driver. The MsgRecElem data structure for
applications on the Mac OS has the following format:

MsgRecElem RECORD 0

recQLink DS.1 1 ; Next queue element

recQType DS.w 1 ; Queue flags

recFlags DS.w 1 ; Not used. Set to zero

recProc DS.1 1 ; Pointer to the receive procedure

recCmdBase DS.w 1 ; First command received by this
procedure

recCmdCount DS.w 1 ; Number of commands allocated
for this procedure

recUserData DS.1 1 ; For caller’s use

recVXD ; For use by Apple PC VxD

MsgRecElemSize Equ *

ENDR
76 Passing Messages

C H A P T E R 4

Software Support
Parameter block

—> indicates input to the driver
<— indicates output from the driver

When your message handler procedure is called, register D0.w contains the message
command, register D1.1 contains the msgParam1 value, register D2.1 contains the
msgParam2 value, and register A1 contains a pointer to the MsgRecElem record. Your
routine must pass back a pointer to a MsgPBlk structure in A0 if you wish to receive the
message data. Otherwise, return 0 in A0. The handler procedure is called at interrupt
time with interrupts masked at the slot interrupt level. It can use registers D0–D2 and
A0–A1.

The completion routine for the MsgPBlk structure returned by the receive procedure is
called at deferred time and can use registers D0–D2 and A0–A1. You must save all other
registers. Upon return, A0 contains a pointer to the MsgPBlk structure.

Installing a Message Handler on the PC System 4

To install a message handler on the PC system, build a MsgRecElem record and call
INT 5Fh with AH = 2 and ES:BX containing a pointer to the MsgRecElem structure.
For an application running on the PC system, the MsgRecElem data structure has the
following format:

When your message handler is called, AX contains the message command, ECX contains
msgParam1, EDX contains msgParam2, and ES:DI contains a pointer to the
MsgRecElem record. Your application must pass a pointer to a MsgPBlk structure in
ES:BX if you wish to receive the message data. Otherwise, return 0 in BX. The handler is

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsInstallMesHandler.

—> csParam+0 long Pointer to MsgRecElem.

MsgRecElem STRUCT

Link DWORD ; Pointer to next link

Code DWORD ; Pointer to the code for this link

cmdBase WORD ; Base message number for this procedure

cmdCount WORD ; Number of message numbers for this
procedure

userData DWORD ; For caller’s use

msgVXD DWORD ; Reserved for driver use

MsgRecElem ENDS
Passing Messages 77

C H A P T E R 4

Software Support
called at interrupt time with interrupts turned off. It can use registers AX, BX, CX, DX,
DI, SI, ES, and DS.

The completion routine for the MsgPBlk structure returned by the receive procedure is
called at interrupt time and can use registers AX, BX, CX, DX, DI, SI, ES, and DS. You
must save all other registers. ES:BX must also contain a pointer to the MsgPBlk structure.

Removing a Message Handler 4
Message handlers can be called until they are removed. Before your application
terminates, you must remove the handler so that the interface driver will not call it after
the application has terminated.

Removing a Message Handler on the Mac OS 4

To remove a message handler on the Mac OS, your application makes an appropriate
control call to the interface driver and passes the driver a pointer to the handler. The
message control code is rsRemoveMsgHandler = 802.

Parameter block

—> indicates input to the driver
<— indicates output from the driver

Removing a Message Handler on the PC System 4

To remove a message handler on the PC system, your application makes a call to
INT 5Fh with AH = 3 and with a pointer to the MsgRecElem record in registers ES:BX.

Gestalt Selector 4

The Gestalt function enables you to obtain information about software or hardware
components available on your system. The original Gestalt Manager consists of three
functions—Gestalt, New Gestalt, and Replace Gestalt. These functions are described in
Inside Macintosh, Volume VI, in the section “Using the Gestalt Manager.”

12” and 7” cards have an added Gestalt function. This is a Public Gestalt selector that
enables you to determine the state of certain features associated with the PC system. The
longword bit field result is a 32-bit four-character selector. The four characters are

—> ioCompletion long Pointer to the completion routine.

<— ioResult word Device driver’s result code.

—> ioRefNum word Device driver’s reference number.

—> csCode word Equals rsRemoveMsgHandler.

—> csParam+0 long Pointer to MsgRecElem.
78 Gestalt Selector

C H A P T E R 4

Software Support
pc (pc followed by two spaces). Only 4 bits of the word are currently in use, as shown
below. The remaining 28 bits are undefined.

gestaltDOSCompatibleState = pc

enum {

gestaltPCInstalled,

gestaltPCRunning,

gestaltPCHasTakenOver,

gestaltPCSharingMonitor

};

Field descriptions

gestaltPCInstalled
This is bit 0. If it is high, the PC Setup Init has been run and is
installed.

gestaltPCRunning
This is bit 1. It tells the caller whether or not the PC system is
running. If the bit is high, the PC system is running.

gestaltPCHasTakenOver
This is bit 2. It tells the caller whether or not the PC system is in the
foreground. If the bit is high, the PC system is in the foreground,
and you are running applications on the PC system rather than the
Mac OS. You may see physical signs of this condition. For example,
if you have a shared monitor, the PC screen will replace the
Macintosh screen. If you have two monitors, the Macintosh screen
will dim when the PC system is in the foreground.

gestaltPCSharingMonitor
This is bit 3. It tells the caller whether or not the system is set up
with a dedicated monitor for the PC system. If the bit is high, there
is no dedicated monitor for the PC system.
Gestalt Selector 79

C H A P T E R 4

Software Support
Summary of Constants 4

Table 4-4 provides a summary of the constants associated with the routines described in
this chapter.

Table 4-4 Summary of constants

Call and constant
Code/
call type Description

Setting up shared folders

rsSetNetDriveConfig = 600 Control Sets shared drive configuration

rsGetNetDriveConfig = 650 Status Gets drive letter information

Setting up parallel ports

rsSetParallelPortConfig = 400 Control Sets configuration for parallel
port

rsEndPrintJob = 401 Control Forces end of current print job

Setting up communication ports

rsModemComPort = 1 Device Sets up modem port

rsPrinterComPort = 2 Device Sets up printer port

rsSpoolComPort = 3 Device Data from communication port
dumped into a file

rsSetComPortConfig = 300 Control Sets the connection for the
communication port

PC hardware on/off switch—Macintosh <—> PC swap

rsEnableVideo = 705 Control Enables VGA output

rsDisableVideo = 706 Control Disables VGA output

PC error detection—printing and serial communication errors

rsPrintSpoolErr = 0x7F00 Noti-
fication

There is a problem opening or
writing the print spool files

rsPSFileReady = 0x7F01 Noti-
fication

At least one spool file is ready to
be printed

rsCOM1SpoolErr = 0X7F01 Noti-
fication

Serial spool file is open or there
is a write error on COM1

rsCOM2SpoolErr = 0X7F02 Noti-
fication

Serial spool file is open or there
is a write error on COM2
80 Summary of Constants

C H A P T E R 4

Software Support
Messaging Code Samples 4

This section summarizes the code associated with messages being passed from the
Macintosh to the PC system.

Registering Owner Type 4
The following parameter block is used to define the owner of the message:

pbp.csCode = rsRegisterMessage = 803

// owner == Application creator

pbp.csPtr = (void*)owner;

// cmdCount == Whatever is needed

pbp.csData = cmdCount;

err - PBControl((ParmBlkPtr)&pbp);

cmdBase = (int)pbp.csPtr;

PC event detection—notification procedure or event notification

rsSetNotificationProc = 900 Noti-
fication

Sets address of the notification
procedure

Messaging

rsRegisterMessage = 803 Control Registers message type

rsInstallMsgHandler = 801 Control Installs message handler

rsSendMessage = 800 Control Sends a message

rsRemoveMsgHandler = 802 Control Removes message handler

msgNoError = 0 Result No errors detected, message
completed

msgOverrun = -1 Result More data was available

msgUnderrun = -2 Result Less data was available

msgTimeout = -3 Result A timeout error has occurred

Mac MsgBlk ≠ PC MsgBlk Result The Macintosh message block is
not the same size as the PC
message block

Table 4-4 Summary of constants (continued)

Call and constant
Code/
call type Description
Messaging Code Samples 81

C H A P T E R 4

Software Support
Supplementary Information 4

The value cmdCount is needed to register a message. It contains the number of different
types of messages an application would like to support. For example, if an application
wants to send two types of messages (“send DOS command” and “receive error code”)
between the Macintosh computer and the PC system, it would set this value to 2.

Installing Command Receiver 4
The following parameter block is used to install the command receiver:

pRecElem–>recFlags = 0;

// Receive message proc.

pRecElem->recProc = (ProcPtr)RcvMsg;

pRecElem->recCmdBase = cmdBase;

pRecElem->recCmdCount = cmdCount;

// User-defined data

precElem->recUserData = nil;

pbp.csCode = rsInstallMsgHandler; = 801

pbp.csPtr = pRecElem;

err = PBControl ((ParmBlkPtr)&pbp);

Supplementary Information 4

Interpretation of messages is done by the RcvMsg procedure. As part of the application
that asks for a message block, it has to install a message receive procedure.

The result returned from registering a message is the base address of the messages that
your application will get back, cmdBase. If the application asks for 2 cmd and the base
address returned is C000, then all messages that have the address of C000 and C001
belong to that application and are interpreted however the application wishes to
interpret them.

The value cmdCount is needed to register a message. It contains the number of different
types of messages an application would like to support. For example, if an application
wants to send two types of messages (“send DOS command” and “receive error code”)
between the Macintosh computer and the PC system, it would set this value to 2.

Sending a Message to the PC System 4
The following code is used to pass a message to the PC system:

pMsg->msgCompletion = (ProcPtr)WrComp;

pMsg->msgUserData = nil;

pMsg->msgFlags = 0;

RSParamBlockRec Params;

pbp.ioCRefNum = gRSDrvrRefNum;
82 Messaging Code Samples

C H A P T E R 4

Software Support
pbp.csCode = rsSendMessage; = 800

// The message you wish to pass

pbp.csPtr = pMsg;

err = PBControl((ParmBlkPtr)&pbp);

Remove message = 802

Supplementary Information 4

The WrComp procedure is used by the message system to inform the application that the
message is complete. This allows the application to do whatever other processing is
needed based on the completion of the message being passed.

The value of gRSDrvrRefNum is the driver reference number returned by the PBOpen
call.
Messaging Code Samples 83

Index
Numerals

8242 keyboard/mouse controller 27

A

abbreviations x
address translation 21
ADP (audio digital processor) 25
APDA addresses xii
arbitration priorities 18
audio

chip 25
connectors 6, 47
IC 11, 24
support 6
system 24

autoconfiguration 28

B

Berlin adapter card 6, 28, 30, 45
big-endian format 16
BIOS (basic input/output system

control 20
BIOS (basic input/output system) 8

and memory sizing 20
bus arbitration 17
bus masters 17, 18
bus snooping 15
byte order 16

C

cache 10, 19, 20
capabilities 5
coherency 15
subsystems 15

capabilities
cache 5
DIMM 5
memory 5
processor 5

sound 6
video 5

card size 3
Centronics parallel port 27
clock

distribution 21
divider 21
generation 21

code samples 81
installing command receiver 82
registering owner type 81
sending messages 82

communication ports 80
configuring the PC 57
connecting monitors 45
connectors

audio 47
DB15 46
DB26 45
DIMM 48
Game Port 46
GIMO 46
MIDI devices 46
PC-compatible joystick 46
PCI 35
video 46
XD 52

constants 80
Mac MsgBlk ≠ PC MsgBlk 81
msgNoError 81
msgTimeout 81
msgUnderrun 81
rsCOM1SpoolErr 80
rsCom2SpoolErr 80
rsDisableVideo 80
rsEnableVideo 80
rsEndPrintJob 80
rsGetNetDriveConfig 80
rsInstallMsgHandllr 81
rsModemComPort 80
rsMsgOverrun 81
rsPrinterComPort 80
rsPrintSpoolErr 80
rsPSFileReady 80
rsRegisterMessage 81
rsRemoveMsgHandler 81
rsSendMessage 81
rsSetComPortConfig 80
rsSetNetDriveConfig 80
85

I N D E X
rsSetNotificationProc 81
rsSetParallelPortConfig 80
rsSpoolComPort 80

control calls 63
conventions x

D

DAC (digital-to-analog converter) 22, 24
DAP (digital audio processor) 25
DB15 connector 46
DB26 connector 45
detecting errors 70
differentiators 10
DIMM connector 48
DIMMs 10, 19, 20

capabilities 5
sensing 20

display modes supported 23
dongles 52
DRAMs 10, 19, 20

capabilities 5
control 18, 19, 20

E

error detection 70
expansion card for sound 52
external cache 19
external monitor 29

F

featured ICs 11, 12
floppy disk support 7
functional capabilities 4

G

Game Port 46
Gestalt selector 78
GIMO connector 6, 28, 30, 45, 46

H

handshaking 17

hard disk support 7
hardware keys 8, 52

I

ICs 11, 12
initializing interface driver 56
installing command receiver 82
installing message handler 75
interface, Macintosh-PC 2
interface driver 56

closing 56
opening 56

interrupts 16, 26, 27
control 17
definition 17

I/O connections 30
I/O connectors 34, 35
I/O support 6

floppy disk 7
hard disk 7
keyboard 7
mouse 7
parallel printer port 7
serial port 7

I/O system 26
IRQs 17
ISA bus 8, 52

J

joystick support 8, 46

K

keyboard
controller 27
support 7

L

little-endian format 16
loop back

connection 45
video support 30
86

I N D E X
M, N, O

Macintosh-PC interface 2
Mac MsgBlk ≠ PC MsgBlk 81
memory capabilities 5
memory controller 18
message handler

installing 75
removing 78

message mailbox 27
messages

passing 72
registering 72
sending 73

messaging
code samples 81
constants 81

microprocessors 15
MIDI devices 8, 46

connecting 25
monitors

built-in 29
connecting 22
connection 45
external 29
second 30
sensing 22
shared configurations 22
supported 22, 23

mouse
controller 27
support 7

msgNoError 81
msgTimeout 81
msgUnderrun 81
Mustard ASIC 20, 21, 26, 27, 28

P, Q

page-mode operations 18
parallel ports 80
parallel printer port support 7
passing messages 72
PBClose 56
PBOpen 56
PC

configuration 57
error detection 80
event detection 81
hardware on/off switch 80
printing error return codes 70

PCI bus 15
pin assignments 38

signal summary 36
specification summary 36

PCI chip sets 11
PCI connector 35
PCI devices 15
PC-Macintosh interface 2
printer port support 27
processors 15

bus speed 15
capabilities 5

p.Symbiosis 56
Public Gestalt selector 78

R

reference material xii
registering messages 72
registering owner type 81
removing a message handler 78
resetting the PC 17
restarting the PC 17
return codes, PC printing errors 70
routines
rsActivateKB 67
rsBeginMouseTracking 68
rsDeactivateKB 68
rsDisableVideo 65
rsDontMountDisks 67
rsEnableVideo 65
rsEndMouseTracking 69
rsEndPrintJob 69
rsGetNetDriveConfig 59
rsLastError 71
rsMountDisks 66
rsPCStatus 64
rsSetComPortConfig 60
rsSetDeactivateKey 62
rsSetDriveConfig 57
rsSetNetDriveConfig 60
rsSetNotificationProc 70
rsSetParallelPortConfig 62

RS-232 ports 26
RS-422 ports 26
rsActivateKB 67
rsBeginMouseTracking 68
rsCOM1SpoolErr 80
rsCom2SpoolErr 80
rsDeactivateKB 68
rsDisableVideo 65, 80
rsDontMountDisks 67
rsEnableVideo 65, 80
rsEndMouseTracking 69
rsEndPrintJob 69, 80
87

I N D E X
rsGetNetDriveConfig 59, 80
rsInstallMsgHandler 81
rsLastError 71
rsModemComPort 80
rsMountDisks 66
rsMsgOverrun 81
rsPCStatus 64
rsPrinterComPort 80
rsPrintSpoolErr 80
rsPSFileReady 80
rsRegisterMessage 81
rsRemoveMsgHandler 81
rsSendMessage 81
rsSetComPortConfig 60, 80
rsSetDeactivateKey 62
rsSetDriveConfig 57
rsSetNetDriveConfig 60, 80
rsSetNotificationProc 70, 81
rsSetParallelPortConfig 62, 80
rsSpoolComPort 80

S

second monitor 30
sending messages 73, 82
sensing DIMMs 28
serial port support 7, 26
shared folders 80
size, card 3
sizing algorithm 20
Sound Blaster Pro 6, 24
sound expansion card 52
sound system 24
static memory 19
status calls 63
synthesizer chip set 6, 11, 24, 25
system BIOS 8
system reset 21

T, U

typographical conventions x

U

universal asynchronous receiver/transmitter
(UART) 26

V, W

VGA (video graphics adapter) 11
VGA BIOS 24
VGA controller 22
video

accelerator 24
connector 46
support 5, 30
system 22
timing 24

X, Y, Z

XD connector 8, 52
88

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using
Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Joyce D. Mann

DEVELOPMENTAL EDITORs
Wendy Krafft and Beverley McGuire

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITOR
Alex Solinski

Special thanks to Dan Miranda, Dave
Townsley, Rich Collyer, Rich Kubota, and
Damon Schaefer

	12” and 7” PC Compatibility Cards
	Contents
	Figures and Tables
	About This Note
	What This Note Contains
	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Other Reference Material
	For More Information

	Introduction
	Physical Size
	Overview of Functional Capabilities
	Processor Capabilities
	Memory Capabilities
	Video Support
	Audio Support
	I/O Support
	Floppy Disk Drive
	Hard Disk
	Serial Ports
	Parallel Printer Port
	Keyboard and Mouse

	Joystick and MIDI Devices
	ISA ���Access
	System BIOS

	Hardware Design
	Hardware Overview
	Hardware Features
	Microprocessors
	PCI System Bus and Devices
	Bus Snooping
	Byte Order
	Interrupts
	Bus Arbitration
	Memory Controller
	DRAM Control
	BIOS Control
	Clock Generation
	System Reset

	Video System
	Connecting the Monitor
	Monitors Supported
	Video Timing
	Video ICs

	Audio System
	Audio IC
	Sound Synthesizer Chip Set

	I/O System
	Serial Port Support
	Printer Port Support
	Keyboard and Mouse Controller
	Message Mailbox
	Autoconfiguration

	Audio and Video I/O Support
	GIMO Support for Video Output
	Loop-Back Video Support
	Audio I/O Support

	I/O Specifications
	PCI Connector
	DB26 Connector
	DB15 Connector (Game Port)
	GIMO Connector
	Audio Connectors
	DIMM Connector
	XD Connector

	Software Support
	Initializing the Interface Driver
	Opening the Driver
	Closing the Driver

	Configuring the PC System
	Control and Status Calls
	Detecting Errors
	Passing Messages
	Message Conventions
	Macintosh Interface
	PC System Interface

	Registering Messages
	Registering Messages From the Mac OS
	Registering Messages From the PC System

	Sending a Message
	Sending a Message From the Mac OS
	Sending a Message From the PC system

	Installing a Message Handler
	Installing a Message Handler on the Mac OS
	Installing a Message Handler on the PC System

	Removing a Message Handler
	Removing a Message Handler on the Mac OS
	Removing a Message Handler on the PC System

	Gestalt Selector
	Summary of Constants
	Messaging Code Samples
	Registering Owner Type
	Supplementary Information

	Installing Command Receiver
	Supplementary Information

	Sending a Message to the PC System
	Supplementary Information

	Index

