

ð

Developer Press

 Apple Computer, Inc. 1995

ð

Developer Note

Macintosh PowerBook Processor
Card Upgrade Kit

Macintosh PowerBook Processor Card Upgrade Kit
with PowerPC 603e for Macintosh PowerBook 500 Series

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, GeoPort,
LaserWriter, LocalTalk, Macintosh,
Macintosh Quadra,PowerBook, and
Power Macintosh are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.
AOCE, Apple Desktop Bus, Disk First
Aid, Finder, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Internet is a trademark of Digital
Equipment Corporation.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
IBM is a registered trademark of
International Business Machines
Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.
POWER is a trademark of International
Business Machines Corporation.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables v

Preface

About This Developer Note

vii

Contents of This Note vii
Supplemental Reference Documents vii

Apple Publications vii
Other Publications viii

Conventions and Abbreviations ix
Typographical Conventions ix
Standard Abbreviations ix

Chapter 1

Introduction

1

Features 2
Compatibility Issues 2

POWER-Clean Code 2
Emulation for Compatibility 3
Code Fragments and Cache Coherency 3

Chapter 2

Architecture

5

Microprocessor 7
Main Memory 7

RAM 7
RAM Expansion 7
ROM 8

Memory Controller IC 8
Memory Control 8
Bus Bridge 9
Address Multiplexing 9

Chapter 3

Software Features

11

ROM Software 12
PowerPC 603 Power Modes 12
Machine Identification 12
New Memory Controller IC 12
Power Manager Software 13

Thi d t t d ith F M k 4 0 4

iv

Sound Features 13
Ethernet Driver 13

System Software 13
Control Strip 14
Large Partition Support 14

64-Bit Volume Addresses 14
System-Level Software 15
Application-Level Software 15
Limitations 16

Drive Setup 16
Dynamic Recompilation Emulator 16
Resource Manager in Native Code 16
Math Library 17
New BlockMove Extensions 17
POWER-Clean Native Code 19
POWER Emulation 19

POWER-Clean Code 20
Emulation and Exception Handling 20
Code Fragments and Cache Coherency 20
Limitations of PowerPC 601 Compatibility 20

Support for Native Drivers 21

Chapter 4

Large Volume Support

23

Overview of the Large Volume File System 24
API Changes 24
Allocation Block Size 24
File Size Limits 25
Compatibility Requirements 25

The API Modifications 25
Data Structures 25

Extended Volume Parameter Block 25
Extended I/O Parameter Block 27

New Extended Function 29

Glossary

33

Index

35

v

Figures and Tables

Chapter 2

Architecture

5

Figure 2-1

Block diagram of a computer with the processor upgrade
card installed 6

Table 2-1

Configurations of RAM banks 8

Table 2-2

Address multiplexing for some typical DRAM devices 10

Chapter 3

Software Features

11

Table 3-1

Summary of

BlockMove

 routines 18

Thi d t t d ith F M k 4 0 4

vii

P R E F A C E

About This Developer Note

This developer note describes the Macintosh PowerBook Processor Card
Upgrade Kit with PowerPC 603e for the PowerBook 500 series computers and
the system software that accompanies it.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

This note is published in two forms: an online version included with the Apple
Developer CD and a paper version published by APDA. For information about
APDA, see “Supplemental Reference Documents.”

Contents of This Note 0

The information in this developer note is arranged in four chapters.

■

Chapter 1, “Introduction,” introduces the Macintosh PowerBook Processor
Card Upgrade Kit and describes its new features.

■

Chapter 2, “Architecture,” describes the internal logic of the processor
upgrade card, including the main ICs that appear in the block diagram.

■

Chapter 3, “Software Features,” describes the new features of the ROM and
system software for the processor upgrade card.

■

Chapter 4, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

This developer note also includes a glossary and an index.

Supplemental Reference Documents 0

The following documents provide information that complements or extends
the information in this developer note.

Apple Publications 0

Developers should have copies of the appropriate Apple reference books,
including the relevant volumes of

Inside Macintosh;

Guide to the Macintosh
Family Hardware,

second edition; and

Designing Cards and Drivers for the
Macintosh Family,

third edition

.

 These Apple books are available in technical
bookstores and through APDA.

Thi d t t d ith F M k 4 0 4

viii

P R E F A C E

For information about the Power Manager, developers should have a copy of

Inside Macintosh: Devices.

For information about the control strip, developers
should have the Reference Library volume of the Developer CD Series, which
contains Macintosh Technical Note OS 06,

Control Strip Modules

.

For information about native drivers and the Driver Services Library,
developers should have a copy of

Designing PCI Cards and Drivers for Power
Macintosh Computers.

For information about the Macintosh PowerBook 500 series computers,
developers should also have a copy of

 Macintosh Developer Notes,

number 9. The developer notes are available on the Developer CD Series
and through APDA.

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Other Publications 0

For information about programming the PowerPC

 microprocessors,
developers should have copies of Motorola’s

PowerPC 601 RISC Microprocessor
User’s Manual

 and

PowerPC 603 Microprocessor Implementation Definition
Book IV.

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

ix

P R E F A C E

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note

A note like this contains information that is of interest but is not
essential for an understanding of the text.

◆

IMPORTANT

A note like this contains important information that you should read
before proceeding.

▲

▲ W A R N I N G

A note like this directs your attention to something that could cause
injury to staff, damage to equipment, or loss of data.

▲

Standard Abbreviations 0

Standard units of measure used in this note include

Other abbreviations used in this note include

GB gigabytes MB megabytes

k 1024 MHz megahertz

KB kilobytes ns nanoseconds

M 1,048,576

$

n

 hexadecimal value

n

ADB Apple Desktop Bus

API application program interface

CD compact disc

CSC color screen controller

DAA data access adapter (a telephone line interface)

x

P R E F A C E

DAC digital-to-analog converter

DRAM dynamic RAM

FPSCR floating-point status and control register

HFS hierarchical file system

IC integrated circuit

I/O input/output

MMU memory management unit

PDS processor-direct slot

POWER performance optimized with enhanced RISC

RAM random-access memory

RISC reduced instruction set computing

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SPR special-purpose register

SWIM Super Woz Integrated Machine (custom IC that controls the
floppy disk interface)

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Introduction

2

Features

The Macintosh PowerBook Processor Card Upgrade Kit replaces the secondary logic
card in the Macintosh PowerBook 500 series computers and upgrades the microprocessor
to a PowerPC

 603. The processor upgrade card supports all the hardware features of
the Macintosh PowerBook 500 series computer in which it is installed.

Features 1

Here is a summary of the major features of the Macintosh PowerBook Processor Card
Upgrade Kit. Each feature is described more fully later in this developer note.

■

microprocessor

: The processor upgrade card has a PowerPC 603 microprocessor
running at a clock frequency of 100 MHz.

■

RAM:

The processor upgrade card includes 8 MB of low-power, self-refreshing
dynamic RAM (DRAM).

■

RAM expansion:

The processor upgrade card accepts a RAM expansion card with up
to 56 MB, for a total of 64 MB of RAM. The RAM expansion card is the same as the
one in an unmodified Macintosh PowerBook 500 series computer.

■

SCSI target mode:

The processor upgrade card is compatible with SCSI target mode
(formerly called SCSI disk mode), which allows the user to read and store data on the
computer’s internal hard disk from another Macintosh computer.

▲ W A R N I N G

Installation of a Macintosh PowerBook Processor Card Upgrade Kit
must be done by an experienced technician. Care is required to avoid
damage to the pins on the secondary logic board connector.

▲

Compatibility Issues 1

The Macintosh PowerBook Processor Card Upgrade Kit makes many significant changes
in the Macintosh PowerBook computer in which it is installed. This section highlights
key areas you should investigate in order to ensure that your hardware and software
work properly with the upgraded PowerBook models. These topics are covered in more
detail in subsequent sections.

POWER-Clean Code 1

The term

POWER-clean

 refers to code that is free of the POWER instructions that would
prevent it from running correctly on a PowerPC 603 or PowerPC 604 microprocessor.
Applications for computers that have the processor upgrade card with the PowerPC 603
should be free of those instructions.

C H A P T E R 1

Introduction

Compatibility Issues

3

The instruction set of the PowerPC 601 microprocessor includes some of the same
instructions as those found in the instruction set of the POWER processor, and some
compilers used to generate native code for the first generation of Power Macintosh
models generated some of those POWER-only instructions. However, the PowerPC 603
microprocessor used in the processor upgrade card does not support the POWER-only
instructions. When you compile applications for Power Macintosh computers, you
should turn off the option that allows the compiler to generate POWER-only instructions.

Emulation for Compatibility 1

The software for the processor upgrade card includes emulation of the POWER-only
instructions of the PowerPC 601. Although the term

POWER emulation

 is often used, a
more appropriate name for this feature is

PowerPC 601 compatibility.

 Rather than
supporting the entire POWER architecture, the goal is to support those features of the
POWER architecture that are available to programs running in user mode on the
PowerPC 601–based Power Macintosh computers.

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer encourages developers to revise any applications that use those instructions
to conform with the PowerPC architecture. Even though emulation works, performance
is degraded; POWER-clean code is better.

Code Fragments and Cache Coherency 1

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or Code Fragment Manager calls, are likely to encounter problems when
running on the PowerPC 603.

C H A P T E R 2

Architecture 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Architecture

6

The Macintosh PowerBook Processor Card Upgrade Kit replaces the secondary logic
board that contains the processor/memory subsystem in a Macintosh PowerBook 500
series computer. Figure 2-1 is the block diagram of a PowerBook 500 series computer
with a processor upgrade card installed.

Figure 2-1

Block diagram of a computer with the processor upgrade card installed

Expansion RAM
 8–56 MB

Memory expansion card

CPU
PowerPC 603e

Processor upgrade card

PBX
memory controller
and bus adapter

Memory card connector

ROM
4 MB

RAM
8 MB

System interconnect

Main logic board

System interconnect

16-bit system bus

Power

ADB port

Sound
out

Sound
in

Floppy disk connector

DAA connector

Keyboard

Power
Manager
(includes
ADB and
keyboard
interfaces)

Whitney

peripheral
support logic

Sound
system

Modem connector Flat-panel display connector Internal SCSI connector

Ethernet

Serial port

External SCSI

Ethernet
ID ROM

Keystone
video

controller

Video RAM
512K

Ariel
CLUT/DAC

Video port

CSC
(color screen

controller)

Combo
SCSI and

SCC

Sonic
Ethernet
controller

Video RAM
512K

PDS
connector

Trackball

C H A P T E R 2

Architecture

Microprocessor

7

The processor/memory subsystem on the upgrade card operates at 33 MHz on the
PowerPC 603 bus. An Apple custom IC called the PBX IC acts as the bridge to the I/O
bus, translating processor bus cycles into single or multiple I/O bus cycles, as needed.

Microprocessor 2

The microprocessor in the Macintosh PowerBook Processor Card Upgrade Kit is a
PowerPC 603e, an enhanced version of the PowerPC 603.

Its principal features include

■

full RISC processing architecture

■

a load-store unit that operates in parallel with the processing units

■

a branch manager that can usually implement branches by reloading the incoming
instruction queue without using any processing time

■

two internal memory management units (MMUs), one for instructions and one
for data

■

two separate on-chip caches for data and instructions, of 16 KB each

For complete technical details, see

PowerPC 603 Microprocessor Implementation Definition
Book IV.

Main Memory 2

The Macintosh PowerBook Processor Card Upgrade Kit contains the main RAM, the
system ROM, and a connector for an optional RAM expansion card.

RAM 2

The processor upgrade card contains built-in RAM consisting of 8 MB of dynamic RAM
(DRAM). The RAM ICs are low-power, self-refreshing type with an access time of 70 ns.

The PBX custom IC contains bank base registers that are used to make RAM addresses
contiguous, starting at address $0000 0000. See “Memory Controller IC” on page 8.

RAM Expansion 2

A connector on the secondary logic board accepts a RAM expansion card containing
from 8 to 56 MB of self-refreshing dynamic RAM.

IMPORTANT

The RAM expansion card for the processor upgrade card is the same as
the one for unmodified Macintosh PowerBook 500 series computers.

▲

C H A P T E R 2

Architecture

8

Memory Controller IC

The RAM expansion card can contain from one to four identical banks, with 2, 4, or
8 MB in each bank. Table 2-1 shows how the banks can be implemented with
standard RAM devices.

▲ W A R N I N G

Installation of a RAM expansion card must be done by an experienced
technician. Care is required to avoid damage to the pins on the RAM
expansion connector.

▲

ROM 2

The ROM in the processor upgrade card is implemented as a 1 M by 32-bit array
consisting of two 1 M by 16-bit ROM ICs. The ROM devices support burst mode so they
do not degrade the performance of the PowerPC 603 microprocessor. The ROM ICs
provide 4 MB of storage, which is located in the system memory map between addresses
$3000 0000 and $3FFF FFFF. The ROM data path is 32 bits wide and addressable only as
longwords. See Chapter 3, “Software Features,” for a description of the features of this
new ROM.

Memory Controller IC 2

The memory controller in the processor upgrade card is the PBX IC, a custom IC
that provides RAM and ROM memory control and also acts as the bridge between
the processor bus on the secondary logic board and the 68030-type I/O bus on the
main logic board. The PBX IC also provides bus cycle decoding for the SWIM floppy
disk controller.

Memory Control 2

The PBX IC controls the system RAM and ROM and provides address multiplexing and
refresh signals for the DRAM devices. For information about the address multiplexing,
see “Address Multiplexing” on page 9.

Table 2-1

Configurations of RAM banks

Size of
bank

Number
of devices
per bank Device size (bits)

2 MB 4 512K

×

 8

4 MB 8 1 M

×

 4

4 MB 2 1 M

×

 16

8 MB 4 2 M

×

 8

C H A P T E R 2

Architecture

Memory Controller IC

9

The PBX IC has a memory bank decoder in the form of an indexed register file. Each
nibble in the register file represents a 2 MB page in the memory address space (64 MB).
The value in each nibble maps the corresponding page to one of the eight banks of
physical RAM. By writing the appropriate values into the register file at startup time, the
system software makes the memory addresses contiguous.

Bus Bridge 2

The PBX IC acts as a bridge between the processor bus and the I/O bus. The bridge
functions are performed by two converters inside the PBX IC. One converter accepts
requests from the processor bus and presents them to the I/O bus in a manner consistent
with a 68030 microprocessor. The other converter accepts requests from the I/O bus and
provides access to the RAM and ROM on the processor bus.

The bus bridge in the PBX IC runs asynchronously so that the processor bus and the I/O
bus can operate at different rates. The processor bus operates at a clock rate of 33 MHz,
and the I/O bus operates at 25 MHz.

Address Multiplexing 2

Different types of DRAM devices require different row and column address
multiplexing. The operation of the multiplexing is determined by the way the address
pins on the devices are connected to individual signals on the RAM expansion card
connector and depends on the exact type of DRAM used.

IMPORTANT

The PBX IC in the processor upgrade card provides exactly the same
RAM address multiplexing as that provided by the Pratt IC used in
unmodified Macintosh PowerBook 500 series computers.

▲

Table 2-2 (on the next page) shows how the signals on the address bus are connected for
several types of DRAM devices. The device types are specified by their size and by the
number of row and column address bits they require.

Table 2-2 shows how the signals are multiplexed during the row and column address
phases. For each type of DRAM device, the first and second rows show the actual
address bits that drive each address pin during row addressing and column addressing,
respectively. The third row shows how the device’s address pins are connected to the
signals on the DRAM_ADDR bus.

IMPORTANT

Some types of DRAM devices don’t use all 12 bits in the row or column
address. Numbers for the unused address bits are shown in italic type;
numbers for the bits that are used are shown in boldface type.

▲

C H A P T E R 2

Architecture

10

Memory Controller IC

Table 2-2

Address multiplexing for some typical DRAM devices

Individual signals on DRAM_ADDR bus

Type of DRAM device

[11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

2 M

×

 8, 12 row bits, 9 column bits

Row address bits

21 20 19 18 17 16 15 14 13 12 11 10

Column address bits

19 21 18

22 9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

1 M

×

 16, 12 row bits, 8 column bits

Row address bits

21 20 19 18 17 16 15 14 13 12 11 10

Column address bits

19 21 18 22

9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

1 M

×

 4, 12 row bits, 8 column bits

Row address bits

21 20 19 18 17 16 15 14 13 12 11 10

Column address bits

19 21 18 22

9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

2 M

×

 8, 11 row bits, 10 column bits

Row address bits

21 20

19

18 17 16 15 14 13 12 11 10

Column address bits

19

21 18

22 9 8 7 6 5 4 3 2

Device address pins

9 10 — 8 7 6 5 4 3 2 1 0

1 M

×

 16, 10 row bits, 10 column bits

Row address bits

21

20 19

18

17 16 15 14 13 12 11 10

Column address bits

19

21 18

22

9 8 7 6 5 4 3 2

Device address pins

— 9 8 — 7 6 5 4 3 2 1 0

512K

 ×

 8, 10 row bits, 9 column bits

Row address bits

21

20 19

18

17 16 15 14 13 12 11 10

Column address bits

19 21

18

22

9 8 7 6 5 4 3 2

Device address pins

— 9 8 — 7 6 5 4 3 2 1 0

C H A P T E R 3

Software Features 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Software Features

12

ROM Software

This chapter describes the new ROM and system software features that the Macintosh
PowerBook Processor Card Upgrade Kit brings to the PowerBook 500 series computers.

ROM Software 3

The ROM software in the Macintosh PowerBook Processor Card Upgrade Kit is based on
the ROM used in previous Macintosh PowerBook computers, enhanced with many new
features. New features and changes include the following:

■

control of PowerPC 603 power modes

■

machine identification

■

support of new memory controller IC

■

new Power Manager software

■

new sound features

■

Ethernet driver

The following sections describe each of these features.

PowerPC 603 Power Modes 3

The PowerPC 603 microprocessor has power-saving modes similar to the power-cycling
and sleep modes of earlier Macintosh PowerBook models. The ROM has been modified
to include the additional traps needed to control the power modes of the microprocessor.

Machine Identification 3

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The

gestaltMachineType

 value returned by the processor upgrade card is
120 (hexadecimal $78).

Inside Macintosh: Overview

 describes the Gestalt Manager and tells
how to use the

gestaltMachineType

 value to obtain the machine name string.

New Memory Controller IC 3

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the Pratt
memory controller IC used in the Macintosh PowerBook 500 series computers. The
memory initialization and size code has been rewritten to deal with

■

larger ROM size

■

a new type of DRAM devices

■

new memory configurations

C H A P T E R 3

Software Features

System Software

13

Power Manager Software 3

Changes to the Power Manager software include

■

power-cycling and sleep mode for the PowerPC 603 microprocessor

■

support for the new lithium ion batteries

■

support for turning on and off power to the Ethernet interface

Like other current Macintosh PowerBook models, the Macintosh PowerBook Processor
Card Upgrade Kit supports the public API for power management, which is described in

Inside Macintosh: Devices.

Sound Features 3

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The driver software also supports the
following new features:

■

improved sound performance by way of a new interface to the Singer sound IC

■

support for 16-bit stereo sound input

■

support for automatic gain control in software

■

mixing of sound output from the modem

The new ROM software also includes routines to arbitrate the control of the sound
hardware between the modem and the Sound Manager.

Ethernet Driver 3

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

System Software 3

The Macintosh PowerBook Processor Card Upgrade Kit comes with new system
software based on System 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the processor upgrade card incorporates
significant changes from System 7.5, it is not a reference release: that is,
it is not an upgrade for earlier Macintosh models.

▲

C H A P T E R 3

Software Features

14

System Software

The system software includes changes in the following areas:

■

control strip support (introduced on the Macintosh PowerBook 280 and 500 models)

■

large partition support

■

Drive Setup, a new utility

■

improved file sharing

■

a new Dynamic Recompilation Emulator

■

the Resource Manager completely in native code

■

an improved math library

■

new

BlockMove

 extensions

■

POWER-clean native code

■

POWER emulation

■

support for native drivers

These changes are described in the sections that follow.

Control Strip 3

The Macintosh PowerBook Processor Card Upgrade Kit includes the latest version of the
control strip that was introduced in the Macintosh PowerBook 280 and 500 models. It is a
strip of graphics with small button controls and indicators in the form of various icons.

For updated developer guidelines, refer to Macintosh Technical Note OS 6,

Control Strip
Modules,

 on the reference library edition of the developer CD.

Large Partition Support 3

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT

The largest possible file is still just under 2 GB.

▲

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components. See Chapter 4, “Large Volume Support.”

64-Bit Volume Addresses 3

The current disk driver API has a 32-bit volume address limitation. This limitation has
been circumvented by the addition of a new 64-bit extended volume API (

PBXGetVolInfo

)
and 64-bit data types (

UnsignedWide

,

Wide

,

XVolumeParam

, and

XIOParam

).

C H A P T E R 3

Software Features

System Software

15

For the definitions of the new API and data types, please see “The API Modifications” in
Chapter 4, “Large Volume Support.”

System-Level Software 3

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

■

virtual memory code

■

Disk INIT

■

FSM INIT

■

Apple disk drivers

■

file system ROM code

Application-Level Software 3

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size must be modified to use the new
64-bit API and data structures. Typical applications include utilities for disk formatting,
partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

■

Finder

■

Finder extensions (AppleScript, AOCE Mailbox, and Catalogs)

■

HDSC Setup

■

Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in Folder and Get Info windows and can obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified in
the same way as the Finder because their copy-engine code is similar to that in the Finder.

A later section describes the modified Drive Setup utility.

C H A P T E R 3

Software Features

16

System Software

Limitations 3

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications
do not address the following:

■

HFS file sizes are still limited to 2 GB or less.

■

Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2-terabyte volume, the minimum file size would be a whopping
32 MB.

■

Drives with the new large volume driver will not mount on computers running older
versions of the Macintosh Operating System.

Drive Setup 3

The software for the processor upgrade card includes a new disk setup utility named
Drive Setup. In addition to the ability to support large volumes, the Drive Setup utility
has several other enhancements over the older HDSC Setup utility, including

■

an improved user interface

■

support for multiple partitions

■

the ability to mount volumes from applications

■

the ability to start up (boot) from any HFS partition

■

support for removable-media drives

Dynamic Recompilation Emulator 3

The Dynamic Recompilation Emulator (or DR Emulator) is an extension to the current
interpretive emulator providing on-the-fly translation of 680x0 instructions into
PowerPC instructions for increased performance. The DR Emulator operates as an
enhancement to a modified version of the existing interpretive emulator.

The design of the DR Emulator mimics a hardware instruction cache and employs a
variable-size translation cache. Each compiled 680x0 instruction requires on average
fewer than 20 PowerPC instructions. In operation, the DR Emulator depends on locality
of execution to make up for the extra cycles used in translating the code.

The DR Emulator provides a high degree of compatibility for 680x0 code. One area
where compatibility will be less than that of the current interpretive emulator is for
self-modifying code that does not call the cache flushing routines. Such code also has
compatibility problems on Macintosh Quadra models with the cache enabled.

Resource Manager in Native Code 3

The Resource Manager in the software for the Macintosh PowerBook Processor Card
Upgrade Kit is similar to the one in the earlier Power Macintosh computers except that it
is completely in native PowerPC code. Because the Resource Manager is intensively used

C H A P T E R 3

Software Features

System Software

17

both by system software and by applications, the native version provides an
improvement in system performance.

The Process Manager has been modified to remove patches it formerly made to the
Resource Manager.

Math Library 3

The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The new math library has been improved to better exploit the floating-point features of
the PowerPC microprocessor. The math library now includes enhancements that assist
the compiler in carrying out its register allocation, branch prediction, and overlapping of
integer and floating-point operations.

Compared with the previous version, the new math library provides much improved
performance without compromising its accuracy or robustness. It provides performance
gains for often-used functions of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions 3

The system software for the Macintosh PowerBook Processor Card Upgrade Kit includes
new extensions to the

BlockMove

 routine. The extensions provide improved performance
for programs running in native mode.

The new

BlockMove

 extensions provide the following benefits for developers:

■

They’re optimized for the PowerPC 603 and PowerPC 604 microprocessors, rather
than the PowerPC 601.

■

They’re compatible with the new Dynamic Recompilation Emulator.

■

They provide a way to handle cache-inhibited address spaces.

■

They include new high-speed routines for setting memory to 0.

Note

The new

BlockMove

 extensions do not use the string instructions,
which are fast on the PowerPC 601 but slow on other PowerPC
implementations.

◆

Some of the new

BlockMove

 extensions can be called only from native code; see Table 3-1.

Except for

BlockZero

 and

BlockZeroUncached

, the new

BlockMove

 extensions use
the same parameters as

BlockMove. Calls to BlockZero and BlockZeroUncached
have only two parameters, a pointer and a length; refer to the header file (Memory.h).

C H A P T E R 3

Software Features

18 System Software

Table 3-1 summarizes the BlockMove routines according to three criteria: whether the
routine can be called from 680x0 code, whether it is okay to use for moving 680x0 code,
and whether it is okay to use with buffers or other uncacheable destination locations.

The fastest way to move data is to use the BlockMoveData routine. It is the
recommended method whenever you are certain that the data is cacheable and does
not contain executable 680x0 code.

The BlockMove routine is slower than the BlockMoveData routine only because it has
to clear out the software cache used by the DR Emulator. If the DR Emulator is not in
use, the BlockMove routine and the BlockMoveData routine are the same.

IMPORTANT

The versions of BlockMove for cacheable data use the dcbz instruction
to avoid unnecessary prefetching of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults and must be emulated on uncacheable or
write-through locations, making execution extremely slow. ▲

IMPORTANT

Driver software cannot call the BlockMove routines directly. Instead,
drivers must use the BlockCopy routine, which is part of the Driver
Services Library. The BlockCopy routine is an abstraction that allows
you to postpone binding the specific type of BlockMove operation until
implementation time. ▲

The Driver Services Library is a collection of useful routines that Apple Computer
provides for developers working with the new Power Macintosh models. For more
information, please refer to Designing PCI Cards and Drivers for Power Macintosh
Computers.

Table 3-1 Summary of BlockMove routines

BlockMove version

Can be
called from
680x0 code?

OK to use
for moving
680x0 code?

OK to
use with
buffers?

BlockMove Yes Yes No

BlockMoveData Yes No No

BlockMoveDataUncached No No Yes

BlockMoveUncached No Yes Yes

BlockZero No — No

BlockZeroUncached No — Yes

C H A P T E R 3

Software Features

System Software 19

POWER-Clean Native Code 3
The instruction set of the PowerPC 601 microprocessor includes some of the same
instructions as those found in the instruction set of the POWER processor, and the
compiler used to generate native code for the system software in the first generation of
Power Macintosh models generated some of those POWER-only instructions. However,
the PowerPC 603 IC used in the processor upgrade card does not support the POWER-
only instructions, so a new POWER-clean version of the compiler is being used to
compile the native code fragments.

Note
The term POWER-clean refers to code that is free of the POWER
instructions that would prevent it from running correctly on a
PowerPC 603 or PowerPC 604 microprocessor. ◆

Here is a list of the POWER-clean native code fragments in the system software for the
processor upgrade card.

■ interface library

■ private interface library

■ native QuickDraw

■ MathLib

■ Mixed Mode Manager

■ Code Fragment Manager

■ Font Dispatch

■ Memory Manager

■ standard text

■ the FMSwapFont function

■ Standard C Library

POWER Emulation 3
Earlier Power Macintosh computers included emulation for certain PowerPC 601
instructions that would otherwise cause an exception. The emulation code dealt with
memory reference instructions to handle alignment and data storage exceptions. It also
handled illegal instruction exceptions caused by some PowerPC instructions that were
not implemented in the PowerPC 601. With the Macintosh PowerBook Processor Card
Upgrade Kit, the emulation code has been enhanced to include the POWER instructions
that are implemented on the PowerPC 601 but not on the PowerPC 603 or PowerPC 604.

C H A P T E R 3

Software Features

20 System Software

Note
Although the term POWER emulation is often used, a more appropriate
name for this feature is PowerPC 601 compatibility. Rather than
supporting the entire POWER architecture, the goal is to support those
features of the POWER architecture that are available to programs
running in user mode on the PowerPC 601–based Power Macintosh
computers. ◆

POWER-Clean Code 3

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer recommends that developers revise any applications that use those
instructions to conform with the PowerPC architecture. POWER emulation works, but at
a significant cost in performance; POWER-clean code is preferable.

Emulation and Exception Handling 3

When an exception occurs, the emulation code first checks to see whether the instruction
encoding is supported by emulation. If it is not, the code passes the original cause
of the exception (illegal instruction or privileged instruction) to the application as a
native exception.

If the instruction is supported by emulation, the code then checks a flag bit to see
whether emulation has been enabled. If emulation is not enabled at the time, the
emulator generates an illegal instruction exception.

Code Fragments and Cache Coherency 3

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or Code Fragment Manager calls, are likely to encounter problems when
running on the PowerPC 603.

IMPORTANT

The emulation software in the Macintosh PowerBook Processor Card
Upgrade Kit cannot make the separate caches in the PowerPC 603
behave like the combined cache in the PowerPC 601. Applications
that generate executable code in memory must be modified to use the
Code Fragment Manager or maintain proper cache synchronization by
other means. ▲

Limitations of PowerPC 601 Compatibility 3

The emulation code in the Macintosh PowerBook Processor Card Upgrade Kit allows
programs compiled for the PowerPC 601 to execute without halting on an exception
whenever they use a POWER-only feature. For most of those features, the emulation

C H A P T E R 3

Software Features

System Software 21

matches the results that are obtained on a Power Macintosh computer with a
PowerPC 601. However, there are a few cases where the emulation is not an exact match;
those cases are summarized here.

■ MQ register. Emulation does not match the undefined state of this register after
multiply and divide instructions.

■ div and divo instructions. Emulation does not match undefined results after
an overflow.

■ Real-time clock registers. Emulation matches the 0.27 percent speed discrepancy of
the Power Macintosh models that use the PowerPC 601 microprocessor, but the values
of the low-order 7 bits are not 0.

■ POWER version of dec register. Emulation includes the POWER version, but
decrementing at a rate determined by the time base clock, not by the real-time clock.

■ Cache line compute size (clcs) instruction. Emulation returns values appropriate
for the type of PowerPC microprocessor.

■ Undefined special-purpose register (SPR) encodings. Emulation does not ignore
SPR encodings higher than 32.

■ Invalid forms. Invalid combinations of register operands with certain instructions
may produce results that do not match those of the PowerPC 601.

■ Floating-point status and control register (FPSCR). The FPSCR in the PowerPC 601
does not fully conform to the PowerPC architecture, but the newer PowerPC
microprocessors do.

Support for Native Drivers 3
The processor upgrade card uses a new native-driver model for system software and
device driver developers. Several components of system software are being modified to
support native drivers. The following components have been modified:

■ the Device Manager

■ interrupt tree services

■ driver loader library

■ driver support library

■ Slot Manager stubs

■ Macintosh startup code

■ interface libraries

■ system registry

For more information, refer to Designing PCI Cards and Drivers for Power
Macintosh Computers.

C H A P T E R 4

Large Volume Support 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Large Volume Support

24

Overview of the Large Volume File System

This chapter describes the large volume file system for the Macintosh PowerBook
Processor Card Upgrade Kit. The large volume file system is a version of the hierarchical
file system (HFS) that has been modified to support volume sizes larger than the current
4 GB limit. It incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System 4

The large volume file system includes

■

modifications to the HFS ROM code, Disk First Aid, and Disk INIT

■

a new extended API that allows reporting of volume size information beyond
the current 4 GB limit

■

new device drivers and changes to the Device Manager API to support devices
that are greater than 4 GB

■

a new version of HDSC Setup that supports large volumes and chainable
drivers (Chainable drivers are needed to support booting large volumes on
earlier Macintosh models.)

API Changes 4

The system software on the processor upgrade card allows all current applications to
work without modifications. Unmodified applications that call the file system still
receive incorrect values for large volume sizes. The Finder and other utility programs
that need to know the actual size of a volume have been modified to use the new
extended

PBXGetVolInfo

 function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended

PBXGetVolInfo

 function are described in
“The API Modifications” beginning on page 25.

Allocation Block Size 4

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB, and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

C H A P T E R 4

Large Volume Support

The API Modifications

25

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits 4

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements 4

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended

PBXGetVolInfo

 function).

The API Modifications 4

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended

PBXGetVolInfo

 function.

Data Structures 4

This section describes the two modified data structures used by the large volume
file system:

■

the extended volume parameter block

■

the extended I/O parameter block

Extended Volume Parameter Block 4

In the current

HVolumeParam

 record, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block is
needed in order to report the larger size information. The

XVolumeParam

 record
contains 64-bit integers for reporting the total bytes on the volume and the number of
free bytes available (parameter names

ioVTotalBytes

 and

ioVFreeBytes

). In
addition, several of the fields that were previously signed are now unsigned (parameter
names

ioVAtrb

,

ioVBitMap

,

ioAllocPtr

,

ioVAlBlkSiz

,

ioVClpSiz

,

ioAlBlSt

,

ioVNxtCNID

,

ioVWrCnt

,

ioVFilCnt

, and

ioVDirCnt

).

C H A P T E R 4

Large Volume Support

26

The API Modifications

struct XVolumeParam {

ParamBlockHeader

unsigned long ioXVersion; // XVolumeParam version == 0

short ioVolIndex; // volume index

unsigned long ioVCrDate; // date & time of creation

unsigned long ioVLsMod; // date & time of last modification

unsigned short ioVAtrb; // volume attributes

unsigned short ioVNmFls; // number of files in root directory

unsigned short ioVBitMap; // first block of volume bitmap

unsigned short ioAllocPtr; // first block of next new file

unsigned short ioVNmAlBlks; // number of allocation blocks

unsigned long ioVAlBlkSiz; // size of allocation blocks

unsigned long ioVClpSiz; // default clump size

unsigned short ioAlBlSt; // first block in volume map

unsigned long ioVNxtCNID; // next unused node ID

unsigned short ioVFrBlk; // number of free allocation blocks

unsigned short ioVSigWord; // volume signature

short ioVDrvInfo; // drive number

short ioVDRefNum; // driver reference number

short ioVFSID; // file-system identifier

unsigned long ioVBkUp; // date & time of last backup

unsigned short ioVSeqNum; // used internally

unsigned long ioVWrCnt; // volume write count

unsigned long ioVFilCnt; // number of files on volume

unsigned long ioVDirCnt; // number of directories on volume

long ioVFndrInfo[8]; // information used by the Finder

uint64 ioVTotalBytes; // total number of bytes on volume

uint64 ioVFreeBytes; // number of free bytes on volume

};

Field descriptions

ioVolIndex

An index for use with the

PBHGetVInfo

 function.

ioVCrDate

The date and time of volume initialization.

ioVLsMod

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb

The volume attributes.

ioVNmFls

The number of files in the root directory.

ioVBitMap

The first block of the volume bitmap.

ioAllocPtr

The block at which the next new file starts. Used internally.

ioVNmAlBlks

The number of allocation blocks.

ioVAlBlkSiz

The size of allocation blocks.

ioVClpSiz

The clump size.

C H A P T E R 4

Large Volume Support

The API Modifications

27

ioAlBlSt

The first block in the volume map.

ioVNxtCNID

The next unused catalog node ID.

ioVFrBlk

The number of unused allocation blocks.

ioVSigWord

A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo

The drive number of the drive containing the volume.

ioVDRefNum

For online volumes, the reference number of the I/O driver for the
drive identified by

ioVDrvInfo

.

ioVFSID

The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp

The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum

Used internally.

ioVWrCnt

The volume write count.

ioVFilCnt

The total number of files on the volume.

ioVDirCnt

The total number of directories (not including the root directory) on
the volume.

ioVFndrInfo

Information used by the Finder.

Extended I/O Parameter Block 4

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by

PBRead

 and

PBWrite

 calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an

XIOParam

record, you should set the

kUseWidePositioning

 bit in the

ioPosMode

 field.

Because file sizes are limited to 2 GB, the regular

IOParam

 record should always be used
when performing file-level I/O operations. The extended parameter block is intended
only for Device Manager I/O operations to large block devices at offsets greater
than 4 GB.

The only change in the parameter block is the parameter

ioWPosOffset

, which is of
type

int64

.

struct XIOParam {

QElemPtr qLink; // next queue entry

short qType; // queue type

short ioTrap; // routine trap

Ptr ioCmdAddr;// routine address

ProcPtr ioCompletion;// pointer to completion routine

OSErr ioResult;// result code

StringPtrioNamePtr;// pointer to pathname

short ioVRefNum;// volume specification

short ioRefNum;// file reference number

char ioVersNum;// not used

C H A P T E R 4

Large Volume Support

28 The API Modifications

char ioPermssn;// read/write permission

Ptr ioMisc; // miscellaneous

Ptr ioBuffer;// data buffer

unsigned longioReqCount;// requested number of bytes

unsigned longioActCount;// actual number of bytes

short ioPosMode;// positioning mode (wide mode set)

int64 ioPosOffset;// wide positioning offset

};

Field descriptions

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used; you should always

set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST
fsAtMark = 0; {at current mark}
fsFromStart = 1; {from beginning of file}
fsFromLEOF = 2; {from logical end-of-file}
fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

C H A P T E R 4

Large Volume Support

The API Modifications 29

New Extended Function 4

This section describes the extended PBXGetVolInfo function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling the
Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector to
check for new File Manager features. The response parameter has the
gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVolInfo 4

You can use the PBXGetVolInfo function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, Boolean async);

paramBlock A pointer to an extended volume parameter block.
async A Boolean value that specifies asynchronous (true) or synchronous

(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Parameter block

Arrow Meaning

→ Input

← Output

↔ Both

→ ioCompletion ProcPtr Pointer to a completion routine.

← ioResult OSErr Result code of the function.

↔ ioNamePtr StringPtr Pointer to the volume’s name.

↔ ioVRefNum short On input, a volume
specification; on output, the
volume reference number.

→ ioXVersion unsigned long Version of XVolumeParam
(value = 0).

→ ioVolIndex short Index used for indexing
through all mounted volumes.

← ioVCrDate unsigned long Date and time of initialization.

← ioVLsMod unsigned long Date and time of last
modification.

continued

C H A P T E R 4

Large Volume Support

30 The API Modifications

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is
similar to the PBHGetVInfo function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

← ioVAtrb unsigned short Volume attributes.

← ioVNmFls unsigned short Number of files in the
root directory.

← ioVBitMap unsigned short First block of the
volume bitmap.

← ioVAllocPtr unsigned short Block where the next
new file starts.

← ioVNmAlBlks unsigned short Number of allocation blocks.

← ioVAlBlkSiz unsigned long Size of allocation blocks.

← ioVClpSiz unsigned long Default clump size.

← ioAlBlSt unsigned short First block in the volume
block map.

← ioVNxtCNID unsigned long Next unused catalog node ID.

← ioVFrBlk unsigned short Number of unused
allocation blocks.

← ioVSigWord unsigned short Volume signature.

← ioVDrvInfo short Drive number.

← ioVDRefNum short Driver reference number.

← ioVFSID short File system handling
this volume.

← ioVBkUp unsigned long Date and time of last backup.

← ioVSeqNum unsigned short Used internally.

← ioVWrCnt unsigned long Volume write count.

← ioVFilCnt unsigned long Number of files on the volume.

← ioVDirCnt unsigned long Number of directories
on the volume.

← ioVFndrInfo[8] long Used by the Finder.

← ioVTotalBytes uint64 Total number of bytes
on the volume.

← ioVFreeBytes uint64 Number of free bytes
on the volume.

C H A P T E R 4

Large Volume Support

The API Modifications 31

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are

RESULT CODES

Trap macro Selector

_HFSDispatch $0012

noErr 0 Successful completion; no error occurred
nsvErr –35 No such volume
paramErr –50 No default volume

33

ADB

See

Apple Desktop Bus.

APDA

Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API

See

application program interface.

Apple Desktop Bus (ADB)

An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

AppleTalk

Apple Computer’s local area
networking protocol.

application programming interface (API)

The calls and data structures that allow
application software to use the features of
the operating system.

color depth

The number of bits required to
encode the color of each pixel in a display.

DAC

See

digital-to-analog converter.

data burst

Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

data cache

In a PowerPC microprocessor, the
internal registers that hold data being processed.

digital-to-analog converter (DAC)

A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA)

A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI

Data Link Provider Interface, the
standard networking model used in
Open Transport.

DMA

See

direct memory access.

DRAM

See

dynamic random-access memory.

DR Emulator

The Dynamic Recompilation
Emulator, an improved 680x0-code emulator for
the PowerPC microprocessors.

dynamic random-access memory (DRAM)

Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

Ethernet

A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GeoPort

A software and hardware solution for
digital telecom and wide-area connectivity using
the serial port.

input/output (I/O)

Parts of a computer system
that transfer data to or from peripheral devices.

I/O

See

input/output.

LocalTalk

The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

native code

Instructions that run directly on a
PowerPC microprocessor. See also

680x0 code.

nonvolatile RAM

RAM that retains its contents
even when the computer is turned off; also
known as

parameter RAM

.

Open Transport

A networking architecture
that allows communications applications to
run independently of the underlying network;
formerly known as

Transport-Independent
Interface (TII).

PBX

The custom IC that provides the interface
between the PowerPC 603 bus and the I/O bus
on the Macintosh PowerBook Processor Card
Upgrade Kit with PowerPC 603e for the
Macintosh PowerBook 500 series.

POWER

A RISC architecture developed by
IBM; the name is an acronym for performance
optimized with enhanced RISC.

POWER-clean

Refers to PowerPC code free of
instructions that are specific to the PowerPC 601
and POWER instruction sets and are not found
on the PowerPC 603 and PowerPC 604
microprocessors.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

34

PowerPC

Trade name for a family of RISC
microprocessors. The PowerPC 601, 603, and 604
microprocessors are used in Power Macintosh
computers.

PBX

The custom IC that provides the interface
between the PowerPC 603 bus and the I/O bus
on the Macintosh PowerBook Processor Card
Upgrade Kit with PowerPC 603e for the
Macintosh PowerBook 500 series.

reduced instruction set computing (RISC)

A technology of microprocessor design in which
all machine instructions are uniformly formatted
and are processed through the same steps.

RISC

See

reduced instruction set computing.

SCSI

See

Small Computer System Interface.

SIMM

See

Single Inline Memory Module.

Single Inline Memory Module (SIMM)

A
plug-in card for memory expansion, containing
several RAM ICs and their interconnections.

680x0 code

Instructions that can run on a
PowerPC microprocessor only by means of an
emulator. See also

native code.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

Versatile Interface Adapter (VIA)

The interface
for system interrupts that is standard on most
Apple computers.

VIA

See

Versatile Interface Adapter

.

video RAM (VRAM)

Random-access memory
used to store both static graphics and video
frames.

VRAM

See

video RAM

.

35

Index

A

abbreviations ix–x

B

BlockCopy

 routine 18

BlockMoveData

 routine 18

BlockMoveDataUncached

 routine 18

BlockMove

 extensions 17–18

BlockMove

 routine 18

BlockMoveUncached

 routine 18

BlockZero

 routine 18

BlockZeroUncached

 routine 18

C

cache coherency 3, 20
Code Fragment Manager 20
compatibility 2–3

with the PowerPC 601 3, 20, 21
control strip 14
custom ICs, PBX 7, 8

D

dcbz

 instruction 18
Device Manager 27
Driver Services Library 18
Drive Setup utility 16
Dynamic Recompilation Emulator 16

E

Emulator, Dynamic Recompilation 16
Ethernet driver 13

F

features summary 2
Finder modifications for large volume support 15, 24
floating-point library 17

G

Gestalt

 function 29

gestaltMachineType

 value 12

H

HFS volume format 24

I, J, K

identifying the computer 12
interpretive emulator 16
I/O bus 9

L

large partition support 14
large volume support 14, 24–31

allocation blocks 24
extended API 14
extended data structures 25
extended parameter block 25, 27
limitations 16
maximum file size 25
modified applications 15
requirements 25

M

main processor 7
math library 17
memory controller IC 8
memory controller software 12

Thi d t t d ith F M k 4 0 4

I N D E X

36

N, O

native drivers 21
components modified for 21

P, Q

PBX custom IC 8
as bus bridge 9

PBXGetVolInfo

 function 29
POWER-clean code 2, 3, 19, 20
POWER emulation 3, 19, 20

exception handling 20
POWER instructions 2

emulation of 19, 20
Power Manager software 13
PowerPC 601 microprocessor 19, 20

compatibility limitations 21
compatibility with 20

PowerPC 603 microprocessor 7, 19, 20
power modes 12

processor bus 9
processor/memory subsystem 7

R

RAM
contiguous banks of 9
devices 7
expansion 7–8

address multiplexing 9
reference documents vii
Resource Manager in native code 16
ROM 8

software features 12

S, T, U

large volume support, 64-bit addresses 14
sound features 13
System 7.5 14
system software 13

V, W

VCB allocation block size 24

X, Y, Z

XIOParam

 data structure 27

XVolumeParam

 parameter block 25

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using
Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Allen Watson

DEVELOPMENTAL EDITOR

Beverly Zegarski

ILLUSTRATOR

Sandee Karr

Special thanks to Paul Freeburn,
Mike Puckett, and Charlie Tritschler

Thi d t t d ith F M k 4 0 4

	Macintosh PowerBook Processor Card Upgrade Kit
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Supplemental Reference Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Features
	Compatibility Issues
	POWER-Clean Code
	Emulation for Compatibility
	Code Fragments and Cache Coherency

	Architecture
	Microprocessor
	Main Memory
	RAM
	RAM Expansion
	ROM

	Memory Controller IC
	Memory Control
	Bus Bridge
	Address Multiplexing

	Software Features
	ROM Software
	PowerPC 603 Power Modes
	Machine Identification
	New Memory Controller IC
	Power Manager Software
	Sound Features
	Ethernet Driver

	System Software
	Control Strip
	Large Partition Support
	Drive Setup
	Dynamic Recompilation Emulator
	Resource Manager in Native Code
	Math Library
	New BlockMove Extensions
	POWER-Clean Native Code
	POWER Emulation
	Support for Native Drivers

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function

	Glossary
	Index

