
WW®

Inside Macintosh®
Volume III

•
T T
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Copyright © 1985 by Apple Computer, Inc.

All rights reserved. N o part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without prior written
permission of Apple Computer, Inc. Printed in the United States of America.

© Apple Computer, Inc., 1985
20525 Mariani Avenue
Cupertino, C A 95014
(408) 996-1010

Apple, the Apple logo, LaserWriter, Lisa, Macintosh, the Macintosh logo, and
MacWorks are registered trademarks of Apple Computer, Inc.

MacDraw, MacPaint, and MacWrite are registered trademarks of Claris
Corporation.

Simultaneously published in the United States and Canada.

Written by Caroline Rose with Bradley Hacker, Robert Anders, Katie Withey,
Mark Metzler, Steve Chernicoff, Chris Espinosa, Andy Averill, Brent Davis, and
Brian Howard, assisted by Sandy Tompkins-Leffler and Louella Pizzuti. Special
thanks to Cary Clark and Scott Knaster.

This book was produced using the Apple Macintosh computer and the LaserWriter
printer.

ISBN 0-201-17733-1
L M N O P Q R S T - M U - 9 3 210
Twelfth printing, November 1990

Inside Macintosh
Volume III

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL
IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights which vary
from state to state.

Contents
1 P r e f a c e
3 About Inside Macintosh
4 A Horse of a Different Color
5 The Structure of a Typical Chapter
5 Conventions

7 1 F i n d e r In ter face
9 About This Chapter
9 Signatures and File Types

15 2 T h e M a c i n t o s h H a r d w a r e
17 About This Chapter
17 Overview of the Hardware
18 The Video Interface
20 The Sound Generator
22 The S C C
25 The Mouse
29 The Keyboard and Keypad
33 The Disk Interface
36 The Real-Time Clock
39 The VIA
42 System Startup
43 Summary

47 3 S u m m a r y
49 About This Chapter
50 AppleTalk Manager
65 Binary-Decimal Conversion Package
66 Control Manager
71 Desk Manager
73 Device Manager
80 Dialog Manager
85 Disk Driver
8 8 Disk Initiahzation Package
90 Event Manager, Operating System
94 Event Manager, Toolbox
98 File Manager

113 Font Manager
118 International Utilities Package

Inside Macintosh

124 Memory Manager
130 Menu Manager
134 Package Manager
135 Printing Manager
141 QuickDraw
154 Resource Manager
157 Scrap Manager
159 Segment Loader
161 Serial Drivers
165 Sound Driver
172 Standard File Package
176 System Error Handler
179 TextEdit
184 Utilities, Operating System
190 Utilities, Toolbox
193 Vertical Retrace Manager
195 Window Manager
201 Assembly Language

205 A p p e n d i x A: Resu l t C o d e s

211 A p p e n d i x B: Rout ines T h a t M a y M o v e or P u r g e M e m o r y

215 A p p e n d i x C: S y s t e m T r a p s

227 A p p e n d i x D : Globa l V a r i a b l e s

233 G l o s s a r y

261 I n d e x

PREFACE

3 About Inside Macintosh
3 The Language
4 What 's in Each Volume
4 Version Numbers
4 A Horse of a Different Color
5 The Structure of a Typical Chapter
5 Conventions

Inside Macintosh

III-2

Preface

ABOUT INSIDE MACINTOSH

Inside Macintosh is a three-volume set of manuals that tells you whatyou need to know to write
software for the Apple® Macintosh™ 128K, 512K, or XL (or a Lisa® running MacWorks™
XL). Although directed mainly toward programmers writing standard Macintosh applications,
Inside Macintosh also contains the information needed to write simple utility programs, desk
accessories, device drivers, or any other Macintosh software. It includes:

• the user interface guidelines for applications on the Macintosh

• a complete description of the routines available for your program to call (both those built
into the Macintosh and others on disk), along with related concepts and background
information

• a description of the Macintosh 128K and 512K hardware

It does not include information about:

• Programming in general.

• Getting started as a developer. For this, write to:

Developer Relations
Mail Stop 27-S
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

• Any specific development system, except where indicated. You'll need to have additional
documentation for the development system you're using.

• The Standard Apple Numeric Environment (SANE), which your program can access to
perform extended-precision floating-point arithmetic and transcendental functions. This
environment is described in the Apple Numerics Manual.

You should already be familiar with the basic information that's in Macintosh, the owner's guide,
and have some experience using a standard Macintosh application (such as MacWrite™).

The Language

The routines you'll need to call are written in assembly language, but (with a few exceptions)
they're also accessible from high-level languages, such as Pascal on the Lisa Workshop
development system. Inside Macintosh documents the Lisa Pascal interfaces to the routines and
the symbolic names defined for assembly-language programmers using the Lisa Workshop; if
you're using a different development system, its documentation should tell you how to apply the
information presented here to that system.

Inside Macintosh is intended to serve the needs of both high-level language and assembly-
language programmers. Every routine is shown in its Pascal form (if it has one), but assembly-
language programmers are told how they can access the routines. Information of interest only to
assembly-language programmers is isolated and labeled so that other programmers can
conveniently skip it.

About Inside Macintosh III-3

Inside Macintosh

Familiarity with Lisa Pascal (or a similar high-level language) is recommended for all readers,
since it's used for most examples. Lisa Pascal is described in the documentation for the Lisa
Pascal Workshop.

What's in Each Volume

Inside Macintosh consists of three volumes. Volume I begins with the following information of
general interest:

• a "road map" to the software and the rest of the documentation

• the user interface guidelines

• an introduction to memory management (the least you need to know, with a complete
discussion following in Volume II)

• some general information for assembly-language programmers

It then describes the various parts of the User Interface Toolbox, the software in ROM that
helps you implement the standard Macintosh user interface in your application. This is followed
by descriptions of other, RAM-based software that's similar in function to the User Interface
Toolbox. (The software overview in the Road Map chapter gives further details.)

Volume II describes the Operat ing System, the software in ROM that does basic tasks such as
input and output, memory management, and interrupt handling. As in Volume I, some
functionally similar RAM-based software is then described.

Volume III discusses your program's interface with the Finder and then describes the Macintosh
128K and 512K hardware. A comprehensive summary of all the software is provided, followed
by some useful appendices and a glossary of all terms defined in Inside Macintosh.

Version Numbers

This edition of Inside Macintosh describes the following versions of the software:

• version 105 of the ROM in the Macintosh 128K or 512K

• version 112 of the ROM image installed by MacWorks in the Macintosh XL

• version 1.1 of the Lisa Pascal interfaces and the assembly-language definitions

Some of the RAM-based software is read from the file named System (usually kept in the System
Folder). This manual describes the software in the System file whose creation date is May 2,
1984.

A HORSE OF A DIFFERENT COLOR

On an innovative system like the Macintosh, programs don't look quite the way they do on other
systems. For example, instead of carrying out a sequence of steps in a predetermined order, your
program is driven primarily by user actions (such as clicking and typing) whose order cannot be
predicted.

Ill-4 About Inside Macintosh

Preface

You'll probably find that many of your preconceptions about how to write applications don't
apply here. Because of this, and because of the sheer volume of information in Inside
Macintosh, it's essential that you read the Road Map chapter. It will help you get oriented and
figure out where to go next.

THE STRUCTURE OF A TYPICAL CHAPTER

Most chapters of Inside Macintosh have the same structure, as described below. Reading through
this now will save you a lot of time and effort later on. It contains important hints on how to find
what you're looking for within this vast amount of technical documentation.

Every chapter begins with a very brief description of its subject and a list of what you should
already know before reading that chapter. Then there's a section called, for example, "About the
Window Manager", which gives you more information about the subject, telling you what you
can do with it in general, elaborating on related user interface guidelines, and introducing
terminology that will be used in the chapter. This is followed by a series of sections describing
important related concepts and background information; unless they're noted to be for advanced
programmers only, you'll have to read them in order to understand how to use the routines
described later.

Before the routine descriptions themselves, there's a section called, for example, "Using the
Window Manager". It introduces you to the routines, telling you how they fit into the general
flow of an application program and, most important, giving you an idea of which ones you'll
need to use. Often you'll need only a few routines out of many to do basic operations; by reading
this section, you can save yourself the trouble of learning routines you'll never use.

Then, for the details about the routines, read on to the next section. It gives the calling sequence
for each routine and describes all the parameters, effects, side effects, and so on.

Following the routine descriptions, there may be some sections that won't be of interest to all
readers. Usually these contain information about advanced techniques, or behind the scenes
details for the curious.

For review and quick reference, each chapter ends with a summary of the subject matter,
including the entire Pascal interface and a separate section for assembly-language programmers.

CONVENTIONS

The following notations are used inlnside Macintosh to draw your attention to particular items of
information:

Note: A note that may be interesting or useful

Warning: A point you need to be cautious about

Assembly-language note: A note of interest to assembly-language programmers only

Conventions III-5

Inside Macintosh

[Not in ROM]

Routines marked with this notation are not part of the Macintosh ROM. Depending on how
the interfaces have been set up on the development system you're using, these routines may or
may not be available. They're available to users of Lisa Pascal; other users should check the
documentation for their development system for more information. (For related information of
interest to assembly-language programmers, see chapter 4 of Volume I.)

III-6 Conventions

THE FINDER INTERFACE

About This Chapter
Signatures and File Types
Finder-Related Resources

Version Data
Icons and File References
Bundles
An Example
Formats of Finder-Related Resources

Inside Macintosh

III-8

The Finder Interface

ABOUT THIS CHAPTER

This chapter describes the interface between a Macintosh application program and the Finder.

You should already be familiar with the details of the User Interface Toolbox and the Operating
System.

SIGNATURES AND FILE TYPES

Every application must have a unique signature by which the Finder can identify it. The
signature can be any four-character sequence not being used for another application on any
currently mounted volume (except that it can't be one of the standard resource types). To ensure
uniqueness on all volumes, you must register your application's signature by writing to:

Macintosh Technical Support
Mail Stop 3-T
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Note: There's no need to register your own resource types, since they'll usually exist
only in your own applications or documents.

Signatures work together with file types to enable the user to open or print a document (any file
created by an application) from the Finder. When the application creates a file, it sets the file's
creator and file type. Normally it sets the creator to its signature and the file type to a four-
character sequence that identifies files of that type. When the user asks the Finder to open or print
the file, the Finder starts up the application whose signature is the file's creator and passes the file
type to the application along with other identifying information, such as the file name. (More
information about this process is given in chapter 2 of Volume II.)

An application may create its own special type or types of files. Like signatures, file types must
be registered with Macintosh Technical Support to ensure uniqueness. When the user chooses
Open from an application's File menu, the application will display (via the Standard File Package)
the names of all files of a given type or types, regardless of which application created the files.
Having a unique file type for your application's special files ensures that only the names of those
files will be displayed for opening.

Note: Signatures and file types may be strange, unreadable combinations of characters;
they're never seen by end users of Macintosh.

Applications may also create existing types of files. There might, for example, be an application
that merges two MacWrite documents into a single document. In such cases, the application
should use the same file type as the original application uses for those files. It should also specify
the original application's signature as the file's creator; that way, when the user asks the Finder to
open or print the file, the Finder will call on the original application to perform the operation. To
learn the signature and file types used by an existing application, check with the application's
manufacturer.

Signatures and File Types III-9

Inside Macintosh

Files that consist only of text—a stream of characters, with Return characters at the ends of
paragraphs or short lines—should be given the standard file type TEXT'. This is the type that
MacWrite gives to text only files it creates, for example. If your application uses this file type, its
files will be accepted by MacWrite and it in turn will accept MacWrite text-only files (likewise for
any other application that deals with TEXT' files, such as MacTerminal). Your application can
give its own signature as the file's creator if it wants to be called to open or print the file when the
user requests this from the Finder.

For files that aren't to be opened or printed from the Finder, as may be the case for certain data
files created by the application, the creator should be set to '????' (and the file type to whatever is
appropriate).

FINDER-RELATED RESOURCES

To establish the proper interface with the Finder, every application's resource file must specify
the signature of the application along with data that provides version information. In addition,
there may be resources that provide information about icons and files related to the application.
All of these Finder-related resources are described below, followed by a comprehensive example
and (for interested programmers) the exact formats of the resources.

Version Data

Your application's resource file must contain a special resource that has the signature of the
application as its resource type. This resource is called the version data of the application. The
version data is typically a string that gives the name, version number, and date of the application,
but it can in fact be any data at all. The resource ID of the version data is 0 by convention.

Part of the process of installing an application on the Macintosh is to set the creator of the file that
contains the application. You set the creator to the application's signature, and the Finder copies
the corresponding version data into a resource file named Desktop. (The Finder doesn't display
this file on the Macintosh desktop, to ensure that the user won't tamper with it.)

Note: Additional, related resources may be copied into the Desktop file; see "Bundles"
below for more information.

Icons and File References

For each application, the Finder needs to know:

• the icon to be displayed for the application on the desktop, if different from the Finder's
default icon for applications (see Figure 1)

• if the application creates any files, the icon to be displayed for each type of file it creates, if
different from the Finder's default icon for documents

The Finder learns this information from resources called file references in the application's
resource file. Each file reference contains a file type and an ID number, called a local ID, that
identifies the icon to be displayed for that type of file. (The local ID is mapped to an actual
resource ID as described under "Bundles" below.)

Ill-10 Signatures and File Types

The Finder Interface

Application Document

Figure 1. The Finder's Default Icons

The file type for the application itself is 'APPL'. This is the file type in the file reference that
designates the application's icon. You also specify it as the application's file type at the same time
that you specify its creator—when you install the application on the Macintosh.

The ID number in a file reference corresponds not to a single icon but to an icon list in the
application's resource file. The icon list consists of two icons: the actual icon to be displayed on
the desktop, and a mask consisting of that icon's outline filled with black (see Figure 2).

A bundle in the application's resource file groups together all the Finder-related resources. It
specifies the following:

• the application's signature and the resource ID of its version data

• a mapping between the local IDs for icon lists (as specified in file references) and the actual
resource IDs of the icon lists in the resource file

• local IDs for the file references themselves and a mapping to their actual resource IDs

When you install the application on the Macintosh, you set its "bundle bit"; the first time the
Finder sees this, it copies the version data, bundle, icon lists, and file references from the
application's resource file into the Desktop file. If there are any resource ID conflicts between the
icon lists and file references in the application's resource file and those in Desktop, the Finder wi
change those resource IDs in Desktop. The Finder does this same resource copying and ID
conflict resolution when you transfer an application to another volume.

Note: The local IDs are needed only for use by the Finder.

An Example

Suppose you've written an application named SampWriter. The user can create a unique type ol
document from it, and you want a distinctive icon for both the application and its documents. T
application's signature, as recorded with Macintosh Technical Support, is 'SAMP'; the file type
assigned for its documents is 'SAMF'. You would include the following resources in the
application's resource file:

Icon Mask

Figure 2. Icon and Mask

Bundles

Finder-Related Resources III-11

Inside Macintosh

Description
The string 'SampWriter Version 1-2/1/85'

The icon for the application
The icon's mask

The icon for documents
The icon's mask

File type 'APPL'
Local ID 0 for the icon list

File type 'SAMF
Local ID 1 for the icon list

Signature 'SAMP'
Resource ID 0 for the version data

For icon lists, the mapping:
local ID 0 - » resource ID 128
local ID 1 —> resource ID 129

For file references, the mapping:
local ID 2 —» resource ID 130
local ID 3 —> resource ID 131

Note: See the documentation for the development system you're using for information
about how to include these resources in a resource file.

Formats of Finder-Related Resources

The resource type for an application's version data is the signature of the application, and the
resource ID is 0 by convention. The resource data can be anything at all; typically it's a string
giving the name, version number, and date of the application.

The resource type for an icon list is 'ICN#'. The resource data simply consists of the icons, 128
bytes each.

The resource type for a file reference is 'FREF. The resource data has the format shown below.

Number of bytes Contents
4 bytes File type

2 bytes Local ID for icon list

The resource type for a bundle is 'BNDL'. The resource data has the format shown below. The
format is more general than needed for Finder-related purposes because bundles will be used in
other ways in the future.

Resource Resource ID
Version data with 0
resource type 'SAMP'

Icon list 128

Icon list 129

File reference 130

File reference 131

Bundle 132

111-12 Finder-Related Resources

The Finder Interface

Number of bytes Contents
4 bytes Signature of the application

2 bytes Resource ID of version data

2 bytes Number of resource types in bundle minus 1
For each resource type:

4 bytes Resource type

2 bytes Number of resources of this type minus 1

For each resource:
2 bytes Local ID

2 bytes Actual resource ID

A bundle used for establishing the Finder interface contains the two resource types ICN#' and
•FREF'.

Finder-Related Resources 111-13

Inside Macintosh

111-14

2 THE MACINTOSH HARDWARE

17 About This Chapter
17 Overview of the Hardware
18 The Video Interface
20 The Sound Generator
22 Diagram
22 The SCC
25 Diagram
25 The Mouse
28 Diagram
29 The Keyboard and Keypad
30 Keyboard Communication Protocol
31 Keypad Communication Protocol
33 The Disk Interface
34 Controlling the Disk-State Control Lines
34 Reading from the Disk Registers
35 Writing to the Disk Registers
36 Explanations of the Disk Registers
36 The Real-Time Clock
37 Accessing the Clock Chip
38 The One-Second Interrupt
39 The VIA
39 VIA Register A
39 VIA Register B
40 The VIA Peripheral Control Register
40 The VIA Timers
41 VIA Interrupts
42 Other VIA Registers
42 System Startup
43 Summary

Inside Macintosh

111-16

The Macintosh Hardware

ABOUT THIS CHAPTER

This chapter provides a basic description of the hardware of the Macintosh 128K and 512K
computers. It gives you information that you'll need to connect other devices to the Macintosh
and to write device drivers or other low-level programs. It will help you figure out which
technical documents you'll need to design peripherals; in some cases, you'll have to obtain
detailed specifications from the manufacturers of the various interface chips.

This chapter is oriented toward assembly-language programmers. It assumes you're familiar with
the basic operation of microprocessor-based devices. Knowledge of the Macintosh Operating
System will also be helpful.

Warning: Only the Macintosh 128K and 512K are covered in this chapter. In particular,
note that the memory addresses and screen size are different on the Macintosh XL (and
may be different in future versions of the Macintosh). To maintain software compatibility
across the Macintosh line, and to allow for future changes to the hardware, you're strongly
advised to use the Toolbox and Operating System routines wherever possible.

To learn how your program can determine which hardware environment it's operating in, see the
description of the Environs procedure in chapter 13 of Volume II.

OVERVIEW OF THE HARDWARE

The Macintosh computer contains a Motorola MC68000 microprocessor clocked at 7.8336
megahertz, random access memory (RAM), read-only memory (ROM), and several chips that
enable it to communicate with external devices. There are five I/O devices: the video display; the
sound generator; a Synertek SY6522 Versatile Interface Adapter (VIA) for the mouse and
keyboard; a Zilog Z8530 Serial Communications Controller (SCC) for serial communication; and
an Apple custom chip, called the IWM ("Integrated Woz Machine") for disk control.

The Macintosh uses memory-mapped I/O, which means that each device in the system is accessed
by reading or writing to specific locations in the address space of the computer. Each device
contains logic that recognizes when it's being accessed and responds in the appropriate manner.

The MC68000 can directly access 16 megabytes (Mb) of address space. In the Macintosh, this is
divided into four equal sections. The first four Mb are for RAM, the second four Mb are for
ROM, the third are for the SCC, and the last four are for the IWM and the VIA. Since each of the
devices within the blocks has far fewer than four Mb of individually addressable locations or
registers, the addresses within each block "wrap around" and are repeated several times within the
block.

RAM is the "working memory" of the system. Its base address is address 0. The first 256 bytes
of RAM (addresses 0 through $FF) are used by the MC68000 as exception vectors; these are
the addresses of the routines that gain control whenever an exception such as an interrupt or a trap
occurs. (The summary at the end of this chapter includes a list of all the exception vectors.)
RAM also contains the system and application heaps, the stack, and other information used by
applications. In addition, the following hardware devices share the use of RAM with the
MC68000:

Overview of the Hardware III-17

Inside Macintosh

• the video display, which reads the information for the display from one of two screen
buffers

• the sound generator, which reads its information from one of two sound buffers

• the disk speed controller, which shares its data space with the sound buffers

The MC68000 accesses to RAM are interleaved (alternated) with the video display's accesses
during the active portion of a screen scan line (video scanning is described in the next section).
The sound generator and disk speed controller are given the first access after each scan line. At
all other times, the MC68000 has uninterrupted access to RAM, increasing the average RAM
access rate to about 6 megahertz (MHz).

ROM is the system's permanent read-only memory. Its base address, $400000, is available as
the constant romStart and is also stored in the global variable ROMBase. ROM contains the
routines for the Toolbox and Operating System, and the various system traps. Since the ROM is
used exclusively by the MC68000, it's always accessed at the full processor rate of 7.83 MHz.

The address space reserved for the device I/O contains blocks devoted to each of the devices
within the computer. This region begins at address $800000 and pontinues to the highest address
at $FFFFFF.

Note: Since the VIA is involved in some way in almost every operation of the Macintosh,
the following sections frequently refer to the VIA and VIA-related constants. The VIA
itself is described later, and all the constants are listed in the summary at the end of this
chapter.

THE VIDEO INTERFACE

The video display is created by a moving electron beam that scans across the screen, turning on
and off as it scans in order to create black and white pixels. Each pixel is a square, approximately
1/74 inch on a side.

To create a screen image, the electron beam starts at the top left corner of the screen (see
Figure 1). The beam scans horizontally across die screen from left to right, creating the top line
of graphics. When it reaches the last pixel on the right end of the top line it turns off, and
continues past the last pixel to the physical right edge of the screen. Then it flicks invisibly back
to the left edge and moves down one scan line. After tracing across the black border, it begins
displaying the data in the second scan line. The time between the display of the rightmost pixel
on one line and the leftmost pixel on the next is called the horizontal blanking interval. When
the electron beam reaches the last pixel of the last (342nd) line on the screen, it traces out to the
right edge and then flicks up to the top left corner, where it traces the left border and then begins
once again to display the top line. The time between the last pixel on the bottom line and the first
one on the top line is called the vertical blanking interval. At the beginning of the vertical
blanking interval, the VIA generates a vertical blanking interrupt.

The pixel clock rate (the frequency at which pixels are displayed) is 15.6672 MHz, or about .064
microseconds (u.sec) per pixel. For each scan line, 512 pixels are drawn on the screen, requiring
32.68 jxsec. The horizontal blanking interval takes the time of an additional 192 pixels, or 12.25
|isec. Thus, each full scan line takes 44.93 u.sec, which means the horizontal scan rate is 22.25
kilohertz.

111-18 Overview of the Hardware

The Macintosh Hardware

Figure 1. Video Scanning Pattern

A full screen display consists of 342 horizontal scan lines, occupying 15367.65 usee, or about
15.37 milliseconds (msec). The vertical blanking interval takes the time of an additional 28 scan
lines—1258.17 usee, or about 1.26 msec. This means the full screen is redisplayed once every
16625.8 |xsec. That's about 16.6 msec per frame, which means the vertical scan rate (the full
screen display frequency) is 60.15 hertz.

The video generator uses 21,888 bytes of RAM to compose a bit-mapped video image 512 pixels
wide by 342 pixels tall. Each bit in this range controls a single pixel in the image: A 0 bit is
white, and a 1 bit is black.

There are two screen buffers (areas of memory from which the video circuitry can read
information to create a screen display): the main buffer and the alternate buffer. The starting
addresses of the screen buffers depend on how much memory you have in your Macintosh. In a
Macintosh 128K, the main screen buffer starts at $1A700 and the alternate buffer starts at
$12700; for a 512K Macintosh, add $60000 to these numbers.

Warning: To be sure you don't use the wrong area of memory and to maintain
compatibility with future Macintosh systems, you should get the video base address and bit
map dimensions from screenBits (see chapter 6 of Volume I).

Each scan line of the screen displays the contents of 32 consecutive words of memory, each word
controlling 16 horizontally adjacent pixels. In each word, the high-order bit (bit 15) controls the
leftmost pixel and the low-order bit (bit 0) controls the rightmost pixel. The first word in each
scan line follows the last word on the line above it. The starting address of the screen is thus in

The Video Interface 111-19

Inside Macintosh

the top left comer, and the addresses progress from there to the right and down, to the last byte in
the extreme bottom right corner.

Normally, the video display doesn't flicker when you read from or write to it, because the video
memory accesses are interleaved with the processor accesses. But if you're creating an animated
image by repeatedly drawing the graphics in quick succession, it may appear to flicker if the
electron beam displays it when your program hasn't finished updating it, showing some of the
new image and some of the old in the same frame.

One way to prevent flickering when you're updating the screen continuously is to use the vertical
and horizontal blanking signals to synchronize your updates to the scanning of video memory.
Small changes to your screen can be completed entirely during the interval between frames (the
first 1.26 msec following a vertical blanking interrupt), when nothing is being displayed on the
screen. When making larger changes, the trick is to keep your changes happening always ahead
of the spot being displayed by the electron beam, as it scans byte by byte through the video
memory. Changes you make in the memory already passed over by the scan spot won't appear
until the next frame. If you start changing your image when the vertical blanking interrupt occurs,
you have 1.26 msec of unrestricted access to the image. After that, you can change progressively
less and less of your image as it's scanned onto the screen, starting from the top (the lowest video
memory address). From vertical blanking interrupt, you have only 1.26 msec in which to change
the first (lowest address) screen location, but you have almost 16.6 msec to change the last
(highest address) screen location.

Another way to create smooth, flicker-free graphics, especially useful with changes that may take
more 16.6 msec, is to use the two screen buffers as alternate displays. If you draw into the one
that's currently not being displayed, and then switch the buffers during the next vertical blanking,
your graphics will change all at' once, producing a clean animation. (See chapter 11 of Volume II
to find out how to specify tasks to be performed during vertical blanking.)

If you want to use the alternate screen buffer, you'll have to specify this to the Segment Loader
(see chapter 2 of Volume II for details). To switch to the alternate screen buffer, clear the
following bit of VIA data register A (vBase+vBufA):

vPage2 .EQU 6 ;0 = alternate screen buffer

For example:

BCLR #vPage2,vBase+vBufA

To switch back to the main buffer, set the same bit.

Warning: Whenever you change a bit in a VIA data register, be sure to leave the other
bits in the register unchanged.

Warning: The alternate screen buffer may not be supported in future versions of the
Macintosh.

THE SOUND GENERATOR

The Macintosh sound circuitry uses a series of values taken from an area of RAM to create a
changing waveform in the output signal. This signal drives a small speaker inside the Macintosh

111-20 The Video Interface

The Macintosh Hardware

and is connected to the external sound jack on the back of the computer. If a plug is inserted into
the external sound jack, the internal speaker is disabled. The external sound line can drive a load
of 600 or more ohms, such as the input of almost any audio amplifier, but not a direcdy
connected external speaker.

The sound generator may be turned on or off by writing 1 (off) or 0 (on) to the following bit of
VIA data register B (vBase+vBufB):

vSndEnb -EQU 7 ;0 = sound enabled, 1 = disabled

For example:

BSET #vSndEnb,vBase+vBufB ;turn off sound

By storing a range of values in the sound buffer, you can create the corresponding waveform in
the sound channel. The sound generator uses a form of pulse-width encoding to create sounds.
The sound circuitry reads one word in the sound buffer during each horizontal blanking interval
(including the "virtual" intervals during vertical blanking) and uses the high-order byte of the
word to generate a pulse of electricity whose duration (width) is proportional to the value in the
byte. Another circuit converts this pulse into a voltage that's attenuated (reduced) by a three-bit
value from the VIA. This reduction corresponds to the current setting of the volume level. To set
the volume directly, store a three-bit number in the low-order bits of VIA data register A
(vBase+vBufA). You can use the following constant to isolate the bits involved:

vSound .EQU 7 ;sound volume bits

Here's an example of how to set the sound level:

MOVE.B vBase+vBufA,DO ;get current value of register A
ANDI.B #255-vSound,D0 /clear the sound bits
ORI.B #3,DO ;set medium sound level
MOVE.B D0,vBase+vBufA ;put the data back

After attenuation, the sound signal is passed to the audio output line.

The sound circuitry scans the sound buffer at a fixed rate of 370 words per video frame, repeating
the full cycle 60.15 times per second. To create sounds with frequencies other than multiples of
the basic scan rate, you must store phase-shifted patterns into the sound buffer between each
scan. You can use the vertical and horizontal blanking signals (available in the VIA) to
synchronize your sound buffer updates to the buffer scan. You may find that it's much easier to
use the routines in the Sound Driver to do these functions.

Warning: The low-order byte of each word in the sound buffer is used to control the
speed of the motor in the disk drive. Don't store any information there, or you'll interfere
with the disk I/O.

There are two sound buffers, just as there are two screen buffers. The address of the main sound
buffer is stored in the global variable SoundBase and is also available as the constant soundLow.
The main sound buffer is at $1FD00 in a 128K Macintosh, and the alternate buffer is at $1A100;
for a 512K Macintosh, add $60000 to these values. Each sound buffer contains 370 words of
data. As when you want to use the alternate screen buffer, you'll have to specify to the Segment
Loader that you want the alternate buffer (see chapter 2 of Volume II for details). To select the
alternate sound buffer for output, clear the following bit of VIA data register A (vBase+vBufA):

The Sound Generator 111-21

Inside Macintosh

vSndPg2 .EQU 3 ;0 = alternate sound buffer

To return to the main buffer, set the same bit.

Warning: Be sure to switch back to the main sound buffer before doing a disk access, or
the disk won't work properly.

Warning: The alternate sound buffer may not be supported in future versions of the
Macintosh.

There's another way to generate a simple, square-wave tone of any frequency, using almost no
processor intervention. To do this, first load a constant value into all 370 sound buffer locations
(use $00's for minumum volume, $FF's for maximum volume). Next, load a value into the
VIA's timer 1 latches, and set the high-order two bits of the VIA's auxiliary control register
(vBase+vACR) for "square wave output" from timer 1. The timer will then count down from the
latched value at 1.2766 p.sec/count, over and over, inverting the vSndEnb bit of VIA register B
(vBase+vBufB) after each count down. This takes the constant voltage being generated from the
sound buffer and turns it on and off, creating a square-wave sound whose period is

2 * 1.2766 p.sec * timer l's latched value

Note: You may want to disable timer 1 interrupts during this process (bit 6 in the VIA's
interrupt enable register, which is at vBase+vBER).

To stop the square-wave sound, reset the high-order two bits of the auxiliary control register.

Note: See the SY6522 technical specifications for details of the VIA registers. See also
"Sound Driver Hardware" in chapter 8 of Volume II.

Diagram

Figure 2 shows a block diagram for the sound port.

THE SCC

The two serial ports are controlled by a Zilog Z8530 Serial Communications Controller
(SCC). The port known as SCC port A is the one with the modem icon on the back of the
Macintosh. SCC port B is the one with the printer icon.

Macintosh serial ports conform to the EIA standard RS422, which differs from the more common
RS232C standard. While RS232C modulates a signal with respect to a common ground ("single-
ended" transmission), RS422 modulates two signals against each other ("differential"
transmission). The RS232C receiver senses whether the received signal is sufficiently negative
with respect to ground to be a logic " 1 " , whereas the RS422 receiver simply senses which line is
more negative than the other. This makes RS422 more immune to noise and interference, and
more versatile over longer distances. If you ground the positive side of each RS422 receiver and
leave unconnected the positive side of each transmitter, you've converted to EIA standard RS423,
which can be used to communicate with most RS232C devices over distances up to fifty feet or
so.

111-22 The Sound Generator

The Macintosh Hardware

Sound
output
connector

h i /

*

Internal speaker

(disconnected when
sound output

connecter i3 used)

6522 (V IA)
Sound

Amplifier

Sound/disk-3peed
buffer (in RAM)

High Low
(even) (odd)
byte byte

Alternate
buffer

0 |Sound| Di3k~h
1 [Sound | Disk \<
2
3 |Sound | Di3k~)^

PAO
PA1
PA2

PA3

PB7
(timer 1)1

Volume control
(eight I eve 13)

Sound
reset , On-off switch

(square-wave
generator)

Digital-to-analog
convertor

16E[Sound
16F[Sound
170[Sound

+ 1711 Sound | Disk \<

Alternate buffer

Word3 from
selected buffer <

High
byte

1 [Sound Pi3k

16F[Sound| Di3k
170 [Sound | Disk \<

Low

>

byte

Digital-to-analog
convertor

*

171 ISoundl D i s k h

To motor speed control
lines for internal and
external disk drives

Figure 2. Diagram of Sound Port

The SCC 111-23

Inside Macintosh

The serial inputs and outputs of the SCC are connected to the ports through differential line
drivers (26LS30) and receivers (26LS32). The line drivers can be put in high-impedance mode
between transmissions, to allow other devices to transmit over those lines. A driver is activated
by lowering the SCC's Request To Send (RTS) output for that port. Port A and port B are
identical except that port A (the modem port) has a higher interrupt priority, making it more
suitable for high-speed communication.

Figure 3 shows the DB-9 pinout for the SCC output jacks.

Warning: Do not draw more than 100 milliamps at +12 volts, and 200 milliamps at +5
volts from all connectors combined.

Each port's input-only handshake line (pin 7) is connected to the SCC's Clear To Send (CTS)
input for that port, and is designed to accept an external device's Data Terminal Ready (DTR)
handshake signal. This line is also connected to the SCC's external synchronous clock (TRxC)
input for that port, so that an external device can perform high-speed synchronous data exchange.
Note that you can't use the line for receiving DTR if you're using it to receive a high-speed data
clock.

The handshake line is sensed by the Macintosh using the positive (noninverting) input of one of
the standard RS422 receivers (26LS32 chip), with the negative input grounded. The positive
input was chosen because this configuration is more immune to noise when no active device is
connected to pin 7.

Note: Because this is a differential receiver, any handshake or clock signal driving it must
be "bi-polar", alternating between a positive voltage and a negative voltage, with respect to
the internally grounded negative input. If a device tries to use ground (0 volts) as one of its
handshake logic levels, the Macintosh will receive that level as an indeterminate state, with
unpredictable results.

1
2
3
4
5
6
7
8
9

Qround
+ 5 volts
Ground
Transmit data +
Transmit data -
+ 12 VOlt3
Handshake/external clock
Receive data +
Receive data -

Figure 3. Pinout for SCC Output lacks

111-24 The SCC

The Macintosh Hardware

The SCC itself (at its PCLK pin) is clocked at 3.672 megahertz. The internal synchronous clock
(RTxC) pins for both ports are also connected to this 3.672 MHz clock. This is the clock that,
after dividing by 16, is normally fed to the SCC's internal baud-rate generator.

The SCC chip generates level-1 processor interrupts during I/O over the serial lines. For more
information about SCC interrupts, see chapter 6 of Volume II.

The locations of the SCC control and data lines are given in the following table as offsets from
the constant sccWBase for writes, or sccRBase for reads. These base addresses are also available
in the global variables SCCWr and SCCRd. The SCC is on the upper byte of the data bus, so
^ou must use only even-addressed byte reads (a byte read of an odd SCC read address tries to
reset the entire SCC). When writing, however, you must use only o<i<i-addressed byte writes (the
MC68000 puts your data on both bytes of the bus, so it works correctly). A word access to any
SCC address will shift the phase of the computer's high-frequency timing by 128 nanoseconds
(system software adjusts it correctly during the system startup process).

Location
sccWB ase+aData

sccRBase+aData

sccWBase+bData

sccRBase+bData

sccWBase+aCd

sccRBase+aCd

sccWBase+bCd

sccRBase+bCtl

Contents
Write data register A

Read data register A

Write data register B

Read data register B

Write control register A

Read control register A

Write control register B

Read control register B

Warning: Don't access the SCC chip more often than once every 2.2 psec. The SCC
requires that much time to let its internal lines stabilize.

Refer to the technical specifications of the Zilog Z8530 for the detailed bit maps and control
methods (baud rates, protocols, and so on) of the SCC.

Diagram

Figure 4 shows a circuit diagram for the serial ports.

THE MOUSE

The DB-9 connector labeled with the mouse icon connects to the Apple mouse (Apple II,
Apple III, Lisa, and Macintosh mice are electrically identical). The mouse generates four square-
wave signals that describe the amount and direction of the mouse's travel. Interrupt-driven
routines in the Macintosh ROM convert this information into the corresponding motion of the
pointer on the screen. By turning an option called mouse scaling on or off in the Control Panel
desk accessory, the user can change the amount of screen pointer motion that corresponds to a

The Mouse 111-25

Inside Macintosh

8530 (SCC)

T x D A

R T S A

T x D B

R T S B

R x D A

_ C T S A

TRxC A

R x D B

cTs B

T R x C B

W / R E Q A

W / R E Q B

RTxC ĵ

RTxC, B

26LS30

I P _ O D I

S lew-rate
+5V— Mx controls

VEE Mode

< R F I F i l t e r >

< R F I F i l t e r >

< R F I Filter>

< R F I Filter>
t=Not

connected

\L_ 3.672
^ MHz

TXD+

T X D - + 5 V ~±

I5 I4 i3 i2 l1

Note: - C R F I F i l t e r V -
R1 R2

- V v - j - A V -

R1 + R2 = 40 to 60 ohrr.3
C = 150 to 300 pF

Figure 4. Diagram of Serial Ports

111-26 The Mouse

The Macintosh Hardware

given mouse motion, depending on how fast the mouse is moved; for more information about
mouse scaling, see the discussion of parameter RAM in chapter 13 of Volume II.

Note: The mouse is a relative-motion device; that is, it doesn't report where it is, only
how far and in which direction it's moving. So if you want to connect graphics tablets,
touch screens, light pens, or other absolute-position devices to the mouse port, you must
either convert their coordinates into motion information or install your own device-handling
routines.

The mouse operates by sending square-wave trains of information to the Macintosh that change
as the velocity and direction of motion change. The rubber-coated steel ball in the mouse contacts
two capstans, each connected to an interrupter wheel: Motion along the mouse's X axis rotates
one of the wheels and motion along the Y axis rotates the other wheel.

The Macintosh uses a scheme known as quadrature to detect which direction the mouse is moving
along each axis. There's a row of slots on an interrupter wheel, and two beams of infrared light
shine through the slots, each one aimed at a phototransistor detector. The detectors are offset just
enough so that, as the wheel turns, they produce two square-wave signals (called the interrupt
signal and the quadrature signal) 90 degrees out of phase. The quadrature signal precedes the
interrupt signal by 90 degrees when the wheel turns one way, and trails it when the wheel turns
the other way.

The interrupt signals, XI and Y l , are connected to the SCC's DCDA and DCDB inputs,
respectively, while the quadrature signals, X2 and Y2, go to inputs of the VIA's data register B.
When the Macintosh is interrupted (from the SCC) by the rising edge of a mouse interrupt signal,
it checks the VIA for the state of the quadrature signal for that axis: If it's low, the mouse is
moving to the left (or down), and if it's high, the mouse is moving to the right (or up). When the
SCC interrupts on the falling edge, a high quadrature level indicates motion to the left (or down)
and a low quadrature level indicates motion to the right (or up):

S C C
Mouse interrupt
XI (o rYl)

Positive edge

VIA
Mouse quadrature
X2(orY2)

Low
High

Mouse
Motion direction in
X (or Y) axis
Left (or down)
Right (or up)

Right (or up)
Left (or down)

Negative edge Low
High

Figure 5 shows the interrupt (Yl) and quadrature (Y2) signals when the mouse is moved
downwards.

The switch on the mouse is a pushbutton that grounds pin 7 on the mouse connector when
pressed. The state of the button is checked by software during each vertical blanking interrupt.
The small delay between each check is sufficient to debounce the button. You can look directly at
the mouse button's state by examining the following bit of VIA data register B (vBase+vBufB):

vSW .EQU 3 ;0 = mouse button is down

If the bit is clear, the mouse button is down. However, it's recommended that you let the
Operating System handle this for you through the event mechanism.

Figure 6 shows the DB-9 pinout for the mouse jack at the back of the Macintosh.

The Mouse 111-27

Inside Macintosh

Figure 5. Mouse Mechanism

1 Ground
2 + 5 v o l t 3
3 Ground
4 Mouse X2 (V IA quadrature 3ignal)
5 Mou3e X1 (SCC interrupt 3ignal)
6 (not connected)
7 Mouse switch
8 Mouse Y2 (VIA quadrature signal)
9 Mouse Y1 (SCC interrupt signal)

Figure 6. Pinout for Mouse Jack

Warning: Do not draw more than 200 milliamps at +5 volts from all connectors
combined.

Diagram

Figure 7 shows a circuit diagram for the mouse port.

111-28 The Mouse

The Macintosh Hardware

6522 (V IA)

CRFI F i l t e r >

X2

Y2

8530 (SCC)

27 27
ohm3 ohm3

^ 4 7 0 pF

27 27
ohms ohms
W - r - W -

470 pF

X2 -CRFI F i l t e r) —

< R F I Fi l ter) ^

S
+5V

I5 I4 l3 I2 I1

f " f 7 V
Y2

Y1

Switch

R1 R2

Note: —CRFI Fi l ter^— = ^ v V - j - A V -

R1 + R2 = 40 to 60 ohm3
C = 150 to 300 pF

Figure 7. Diagram of Mouse Port

THE KEYBOARD AND KEYPAD

The Macintosh keyboard and numeric keypad each contain an Intel 8021 microprocessor that
scans the keys. The 8021 contains ROM and RAM, and is programmed to conform to the
interface protocol described below.

The keyboard plugs into the Macintosh through a four-wire RJ-11 telephone-style jack. If a
numeric keypad is installed in the system, the keyboard plugs into it and it in turn plugs into the

The Keyboard and Keypad 111-29

Inside Macintosh

Macintosh. Figure 8 shows the pinout for the keyboard jack on the Macintosh, on the keyboard
itself, and on the numeric keypad.

Warning: Do not draw more than 200 milliamps at +5 volts from all connectors
combined.

Keyboard Communication Protocol

The keyboard data line is bidirectional and is driven by whatever device is sending data. The
keyboard clock line is driven by the keyboard only. All data transfers are synchronous with the
keyboard clock. Each transmission consists of eight bits, with the highest-order bits first.

When sending data to the Macintosh, the keyboard clock transmits eight 330-usec cycles (160
usee low, 170 usee high) on the normally high clock line. It places the data bit on the data line 40
|i.sec before the falling edge of the clock line and maintains it for 330 usee. The data bit is
clocked into the Macintosh's "VTA shift register on the rising edge of the keyboard clock cycle.

When the Macintosh sends data to the keyboard, the keyboard clock transmits eight 400-usec
cycles (180 usee low, 220 usee high) on the clock line. On the falling edge of the keyboard clock
cycle, the Macintosh places the data bit on the data line and holds it there for 400 usee. The
keyboard reads the data bit 80 usee after the rising edge of the keyboard clock cycle.

Only the Macintosh can initiate communication over the keyboard lines. On power-up of either
the Macintosh or the keyboard, the Macintosh is in charge, and the external device is passive.
The Macintosh signals that it's ready to begin communication by pulling the keyboard data line
low. Upon detecting this, the keyboard starts clocking and the Macintosh sends a command.
The last bit of the command leaves the keyboard data line low; the Macintosh then indicates it's
ready to receive the keyboard's response by setting the data line high.

The first command the Macintosh sends out is the Model Number command. The keyboard's
response to this command is to reset itself and send back its model number to the Macintosh. If
no response is received for 1/2 second, the Macintosh tries the Model Number command again.
Once the Macintosh has successfully received a model number from the keyboard, normal

1
2
3
4

Ground
Clock
Data
+ 5 V0lt3

Figure 8. Pinout for Keyboard Jack

111-30 The Keyboard and Keypad

The Macintosh Hardware

operation can begin. The Macintosh sends the Inquiry command; the keyboard sends back a Key
Transition response if a key has been pressed or released. If no key transition has occurred after
1/4 second, the keyboard sends back a Null response to let the Macintosh know it's still there.
The Macintosh then sends the Inquiry command again. In normal operation, the Macintosh sends
out an Inquiry command every 1/4 second. If it receives no response within 1/2 second, it
assumes the keyboard is missing or needs resetting, so it begins again with the Model Number
command.

There are two other commands the Macintosh can send: the Instant command, which gets an
instant keyboard status without the 1/4-second timeout, and the Test command, to perform a
keyboard self-test. Here's a list of the commands that can be sent from the Macintosh to the
keyboard:

Command name
Inquiry

Instant

Model Number

Test

Value
$10

$14

$16

$36

Keyboard response
Key Transition code or Null ($7B)

Key Transition code or Null ($7B)

Bit 0: 1
Bits 1-3: keyboard model number, 1-8
Bits 4-6: next device number, 1-8
Bit 7: 1 if another device connected
ACK ($7D) orNAK ($77)

The Key Transition responses are sent out by the keyboard as a single byte: Bit 7 high means a
key-up transition, and bit 7 low means a key-down. Bit 0 is always high. The Key Transition
responses for key-down transitions on the keyboard are shown (in hexadecimal) in Figure 9.
Note that these response codes are different from the key codes returned by the keyboard driver
software. The keyboard driver strips off bit 7 of the response and shifts the result one bit to the
right, removing bit 0. For example, response code $33 becomes $19, and $2B becomes $15.

Keypad Communication Protocol

When a numeric keypad is used, it must be inserted between the keyboard and the Macintosh; that
is, the keypad cable plugs into the jack on the front of the Macintosh, and the keyboard cable
plugs into a jack on the numeric keypad. In this configuration, the timings and protocol for the
clock and data lines work a little differently: The keypad acts like a keyboard when
communicating with the Macintosh, and acts like a Macintosh when communicating over the
separate clock and data lines going to the keyboard. All commands from the Macintosh are now
received by the keypad instead of the keyboard, and only the keypad can communicate directly
with the keyboard.

When the Macintosh sends out an Inquiry command, one of two things may happen, depending
on the state of the keypad. If no key transitions have occurred on the keypad since the last
Inquiry, the keypad sends an Inquiry command to the keyboard and, later, retransmits the
keyboard's response back to the Macintosh. But if a key transition has occurred on the keypad,
the keypad responds to an Inquiry by sending back the Keypad response ($79) to the Macintosh.
In that case, the Macintosh immediately sends an Instant command, and this time the keypad
sends back its own Key Transition response. As with the keyboard, bit 7 high means key-up and
bit 7 low means key-down.

The Keyboard and Keypad 111-31

Inside Macintosh

s
65

1
25

2
27

3
29

4
2B

5
2F

6
2D

7
35

8
39

9
33

0
3B 37 31

Backspace
67

Tab
61

0
19

V
1B

E
1D

R
1F

T
23

Y
13

U
41

I
45

O
3F

P
47

C
43

]
3D

\
55

Caps Lock
73

A
01

S
03

D
05

F
07

G
OB

H
09

J
4D

K
51

L
4B

5
53 4F

Return
49

Shift
71

Z X C V B N M , . / Shi
OD OF 11 13 17 5B 5D 57 5F 59 71

ft

Option
75

g
6F

space
63

Enter
69

Option
75

U.S. keyboard

s
65

1
25

2
27

3
29

4
2B

5
2F

6
2D

7
35

8
39

9
33

0
3B 37 31

i—
67

—H
61

0
19

V
1B

E
1D

R
1F

T
23

Y
21

U
41

I
45

O
3F

P
47

[
43

]
3D

~ ?

73
A
01

S
03

D
05

F
07

G
OB

H
09

J
4D

K
51

L
4B

5
53 4F 49 55

O \
71 OD

Z X C V B N M , . / Q
OF 11 13 17 5B 5D 57 5F 59 15 71

75
>

6F
space

69 63 75

International keyboard (Great Britain key cap3 shown)

Clear - 3J •B
OF 1D OD 05
7 8 9 B
33 37 39 1B
4 5 6 8

2D 2F 31 11
1 2 3 Enter

27 29 2B
C) •

25 03 19

Keypad (U.S. key cap3 3hown)

Figure 9. Key-Down Transitions

The Key Transition responses for key-down transitions on the keypad are shown in Figure 9.
Again, note that these response codes are different from the key codes returned by the keyboard
driver software. The keyboard driver strips off bit 7 of the response and shifts the result one bit
to the right, removing bit 0.

111-32 The Keyboard and Keypad

The Macintosh Hardware

THE DISK INTERFACE

The Macintosh disk interface uses a design similar to that used on the Apple II and Apple ITJ
computers, employing the Apple custom IWM chip. Another custom chip called the Analog
Signal Generator (ASG) reads the disk speed buffer in RAM and generates voltages that control
the disk speed. Together with the VIA, the IWM and the ASG generate all the signals necessary
to read, write, format, and eject the 3 1/2-inch disks used by the Macintosh.

The IWM controls four of the disk state-control lines (called CAO, CA1, CA2, and LSTRB),
chooses which drive (internal or external) to enable, and processes the disk's read-data and write-
data signals. The VIA provides another disk state-control line called SEL.

A buffer in RAM (actually the low-order bytes of words in the sound buffer) is read by the ASG
to generate a pulse-width modulated signal that's used to control the speed of the disk motor.
The Macintosh Operating System uses this speed control to allow it to store more sectors of
information in the tracks closer to the edge of the disk by mnning the disk motor at slower
speeds.

Figure 10 shows the DB-19 pinout for the external disk jack at the back of the Macintosh.

10 9 8 7 3 2

19 18 17 16 15 14 13 12 11 I©

1 Ground 11 CAO
2 Ground 12 CA1
3 Ground 13 CA2
4 Ground 14 LSTRB
5 - 1 2 volts 15 Write request
6 + 5 V0lt3 16 SEL
7 + 12 VOlt3 17 External drive enable
8 + 12 volts 18 Read data
9 (not connected) 19 Write data

10 Motor 3peed control

Figure 10. Pinout for Disk Jack

Warning: This connector was designed for a Macintosh 3 1/2-inch disk drive, which
represents a load of 500 milliamps at +12 volts, 500 milliamps at +5 volts, and 0 milliamps
at - 1 2 volts. If any other device uses this connector, it must not exceed these loads by
more than 100 milliamps at +12 volts, 200 milliamps at +5 volts, and 10 milliamps at -12
volts, including loads from all other connectors combined.

The Disk Interface 111-33

Inside Macintosh

The IWM contains registers that can be used by the software to control the state-control lines
leading out to the disk. By reading or writing certain memory locations, you can turn these state-
control lines on or off. Other locations set various IWM internal states. The locations are given
in the following table as offsets from the constant dBase, the base address of the IWM; this base
address is also available in a global variable named IWM. The IWM is on the lower byte of the
data bus, so use odd-addressed byte accesses only.

Location to
IWM line turn line on
Disk state-control lines:

CAO dBase+phOH

CA1 dBase+phlH

CA2 dBase+ph2H

LSTRB dBase+ph3H

Disk enable line:
ENABLE dBase+motorOn

Location to
turn line off

dBase+phOL

dBase+phlL

dBase+ph2L

dBase+ph3L

dBase+motorOff

IWM internal states:
SELECT dBase+extDrive

Q6

Q7

dBase+q6H

dBase+q7H

dBase+intDrive

dBase+q6L

dBase+q7L

To turn one of the lines on or off, do any kind of memory byte access (read or write) to the
respective location.

The CAO, CA1, and CA2 lines are used along with the SEL line from the VIA to select from
among the registers and data signals in the disk drive. The LSTRB line is used when writing
control information to the disk registers (as described below), and the ENABLE line enables the
selected disk drive. SELECT is an IWM internal line that chooses which disk drive can be
enabled: On selects the external drive, and off selects the internal drive. The Q6 and Q7 lines are
used to set up the internal state of the IWM for reading disk register information, as well as for
reading or writing actual disk-storage data.

You can read information from several registers in the disk drive to find out whether the disk is
locked, whether a disk is in the drive, whether the head is at track 0, how many heads the drive
has, and whether there's a drive connected at all. In turn, you can write to some of these
registers to step the head, turn the motor on or off, and eject the disk.

Reading from the Disk Registers

Before you can read from any of the disk registers, you must set up the state of the IWM so that it
can pass the data through to the MC68000's memory space where you'll be able to read it. To do
that, you must first turn off Q7 by reading or writing dBase+q7L. Then turn on Q6 by accessing
dBase+q6H. After that, the TWM will be able to pass data from the disk's RD/SENSE line
through to you.

111-34 The Disk Interface

Controlling the Disk State-Control Lines

The Macintosh Hardware

Once you've set up the IWM for disk register access, you must next select which register you
want to read. To read one of the disk registers, first enable the drive you want to use (by
accessing dBase+intDrive or dBase+extDrive and then dBase+motorOn) and make sure LSTRB
is low. Then set CAO, CA1, CA2, and SEL to address the register you want. Once this is done,
you can read the disk register data bit in the high-order bit of dBase+q7L. After you've read the
data, you may read another disk register by again setting the proper values in CAO, CA1, CA2,
and SEL, and then reading dBase+q7L.

Warn ing : When you're finished reading data from the disk registers, it's important to
leave the IWM in a state that the Disk Driver will recognize. To be sure it's in a valid logic
state, always turn Q6 back off (by accessing dBase+q6L) after you've finished reading the
disk registers.

The following table shows how you must set the disk state-control lines to read from the various
disk registers and data signals:

State-control lines Register
CA2 C A 1 CAO SEL addressed Information in register

0 0 0 0 DERTN Head step direction

0 0 0 1 CSTIN Disk in place

0 0 1 0 STEP Disk head stepping

0 0 1 1 WRTPRT Disk locked

0 1 0 0 MOTORON Disk motor mnning

0 1 0 1 TKO Head at track 0

0 1 1 1 TACH Tachometer

1 0 0 0 RDDATAO Read data, lower head

1 0 0 1 RDDATA1 Read data, upper head

1 1 0 0 SIDES Single- or double-sided drive

1 1 1 1 DRVTN Drive installed

Writing to the Disk Registers

To write to a disk register, first be sure that LSTRB is off, then turn on CAO and CA1. Next, set
SEL to 0. Set CAO and CA1 to the proper values from the table below, then set CA2 to the value
you want to write to the disk register. Hold LSTRB high for at least one [isec but not more than
one msec (unless you're ejecting a disk) and bring it low again. Be sure that you don't change
CA0-CA2 or SEL while LSTRB is high, and that CAO and CA1 are set high before changing

The following table shows how you must set the disk state-control lines to write to the various
disk registers:

SEL.

CA1
0
0
1

Control lines
CAO S

0

0
1

SEL
0
0
0

Register
addressed
DIRTN
STEP
MOTORON

Register function
Set stepping direction
Step disk head one track
Turn on/off disk motor
Eject the disk 1 1 0 EJECT

The Disk Interface 111-35

Inside Macintosh

Explanations of the Disk Registers

The information written to or read from the various disk registers can be interpreted as follows:

• The DIRTN signal sets the direction of subsequent head stepping: 0 causes steps to go
toward the inside track (track 79), 1 causes them to go toward the outside track (track 0).

• CSTIN is 0 only when a disk is in the drive.

• Setting STEP to 0 steps the head one full track in the direction last set by DIRTN. When
the step is complete (about 12 msec), the disk drive sets STEP back to 1, and then you can
step again.

• WRTPRT is 0 whenever the disk is locked. Do not write to a disk unless WRTPRT is 1.

• MOTORON controls the state of the disk motor: 0 turns on the motor, and 1 turns it off.
The motor will run only if the drive is enabled and a disk is in place; otherwise, writing to
this line will have no effect.

• TKO goes to 0 only if the head is at track 0. This is valid beginning 12 msec after the step
that puts it at track 0.

• Writing 1 to EIECT ejects the disk from the drive. To eject a disk, you must hold LSTRB
high for at least 1/2 second.

• The current disk speed is available as a pulse train on TACH. The TACH line produces 60
pulses for each rotation of the drive motor. The disk motor speed is controlled by the ASG
as it reads the disk speed RAM buffer.

• RDDATAO and RDDATA1 carry the instantaneous data from the disk head.

• SIDES is always 0 on single-sided drives and 1 on double-sided drives.

• DRVIN is always 0 if the selected disk drive is physically connected to the Macintosh,
otherwise it floats to 1.

THE REAL-TIME CLOCK

The Macintosh real-time clock is a custom chip whose interface lines are available through the
VIA. The clock contains a four-byte counter that's incremented once each second, as well as a
line that can be used by the VIA to generate an interrupt once each second. It also contains 20
bytes of RAM that are powered by a battery when the Macintosh is turned off. These RAM
bytes, called parameter RAM, contain important data that needs to be preserved even when the
system power is not available. The Operating System maintains a copy of parameter RAM that
you can access in low memory. To find out how to use the values in parameter RAM, see chapter
13 of Volume II.

111-36 The Disk Interface

The Macintosh Hardware

Accessing the Clock Chip

The clock is accessed through the following bits of VIA data register B (vBase+vBufB):

These three bits constitute a simple serial interface. The rTCData bit is a bidirectional serial data
line used to send command and data bytes back and forth. The rTCClk bit is a data-clock line,
always driven by the processor (you set it high or low yourself) that regulates the transmission of
the data and command bits. The rTCEnb bit is the serial enable line, which signals the real-time
clock that the processor is about to send it serial commands and data.

To access the clock chip, you must first enable its serial function. To do this, set the serial enable
line (rTCEnb) to 0. Keep the serial enable line 1 ow during the entire transaction; if you set it to 1,
you'll abort the transfer.

Warning: Be sure you don't alter any of bits 3-7 of VIA data register B during clock
serial access.

A command can be either a write request or a read request. After the eight bits of a write request,
the clock will expect the next eight bits across the serial data line to be your data for storage into
one of the internal registers of the clock. After receiving the eight bits of a read request, the clock
will respond by putting eight bits of its data on the serial data line. Commands and data are
transferred serially in eight-bit groups over the serial data line, with the high-order bit first and the
low-order bit last.

To send a command to the clock, first set the rTCData bit of VIA data direction register B
(vBase+vDirB) so that the real-time clock's serial data line will be used for output to the clock.
Next, set the rTCClk bit of vBase+vBufB to 0, then set the rTCData bit to the value of the first
(high-order) bit of your data byte. Then raise (set to 1) the data-clock bit (rTCClk). Then lower
the data-clock, set the serial data line to the next bit, and raise the data-clock line again. After the
last bit of your command has been sent in this way, you can either continue by sending your data
byte in the same way (if your command was a write request) or switch to receiving a data byte
from the clock (if your command was a read request).

To receive a byte of data from the clock, you must first send a command that's a read request.
After you've clocked out the last bit of the command, clear the rTCData bit of the data direction
register so that the real-time clock's serial data line can be used for input from the clock; then
lower the data-clock bit (rTCClk) and read the first (high-order) bit of the clock's data byte on the
serial data line. Then raise the data-clock, lower it again, and read the next bit of data. Continue
this until all eight bits are read, then raise the serial enable line (rTCEnb), disabling the data
transfer.

The following table lists the commands you can send to the clock. A 1 in the high-order bit
makes your command a read request; a 0 in the high-order bit makes your command a write
request. (In this table, "z" is the bit that determines read or write status, and bits marked "a" are
bits whose values depend on what parameter RAM byte you want to address.)

rTCData
rTCClk
rTCEnb

-EQU
.EQU
.EQU

0
1
2

;real-time clock serial data line
;real-time clock data-clock line
; real-time clock serial enable

The Real-Time Clock 111-37

Inside Macintosh

Command byte
zOOOOOOl

Register addressed by the c o m m a n d
Seconds register 0 (lowest-order byte)

Seconds register 1

Seconds register 2

Seconds register 3 (highest-order byte)

Test register (write only)

Write-protect register (write only)

RAM address lOOaa ($10-$13)

RAM address Oaaaa ($00-$0F)

zOOOOlOl

zOOOlOOl

zOOOllOl

00110001

00110101

zOlOaaOl

zlaaaaOl

Note that the last two bits of a command byte must always be 01.

If the high-order bit (bit 7) of the write-protect register is set, this prevents writing into any other
register on the clock chip (including parameter RAM). Clearing the bit allows you to change any
values in any registers on the chip. Don't try to read from this register; it's a write-only register.

The two highest-order bits (bits 7 and 6) of the test register are used as device control bits during
testing, and should always be set to 0 during normal operation. Setting them to anything else will
interfere with normal clock counting. Like the write-protect register, this is a write-only register;
don't try to read from it.

All clock data must be sent as full eight-bit bytes, even if only one or two bits are of interest. The
rest of the bits may not matter, but you must send them to the clock or the write will be aborted
when you raise the serial enable line.

It's important to use the proper sequence if you're writing to the clock's seconds registers. If you
write to a given seconds register, there's a chance that the clock may increment the data in the
next higher-order register during the write, causing unpredictable results. To avoid this
possibility, always write to the registers in low-to-high order. Similarly, the clock data may
increment during a read of all four time bytes, which could cause invalid data to be read. To
avoid this, always read the time twice (or until you get the same value twice).

Warning: When you've finished reading from the clock registers, always end by doing a
final write such as setting the write-protect bit. Failure to do this may leave the clock in a
state that will run down the battery more quickly than necessary.

The One-Second Interrupt

The clock also generates a VIA interrupt once each second (if this interrupt is enabled). The
enable status for this interrupt can be read from or written to bit 0 of the VIA's interrupt enable
register (vBase+vDER). When reading the enable register, a 1 bit indicates the interrupt is
enabled, and 0 means it's disabled. Writing $01 to the enable register disables the clock's one-
second interrupt (without affecting any other interrupts), while writing $81 enables it again. See
chapter 6 of Volume II for more information about writing your own interrupt handlers.

Warning: Be sure when you write to bit 0 of the VIA's interrupt enable register that you
don't change any of the other bits.

111-38 The Real-Time Clock

The Macintosh Hardware

THE VIA

The Synertek SY6522 Versatile Interface Adapter (VIA) controls the keyboard, internal real
time clock, parts of the disk, sound, and mouse interfaces, and various internal Macintosh
signals. Its base address is available as the constant vBase and is also stored in a global variable
named VIA. The VIA is on the upper byte of the data bus, so use even-addressed byte accesses
only.

There are two parallel data registers within the VIA, called A and B, each with a data direction
register. There are also several event timers, a clocked shift register, and an interrupt flag register
with an interrupt enable register.

Normally you won't have to touch the direction registers, since the Operating System sets them
up for you at system startup. A 1 bit in a data direction register means the corresponding bit of
the respective data register will be used for output, while a 0 bit means it will be used for input.

Note: For more information on the registers and control structure of the VIA, consult the
technical specifications for the SY6522 chip.

VIA Register A

VIA data register A is at vBase+vBufA. The corresponding data direction register is at
vBase+vDirA.

Bit(s) Name Description
7 vSCCWReq SCC wait/request

6 vPage2 Alternate screen buffer

5 vHeadSel Disk SEL line

4 vOverlay ROM low-memory overlay

3 vSndPg2 Alternate sound buffer

0-2 vSound (mask) Sound volume

The vSCCWReq bit can signal that the SCC has received a character (used to maintain serial
communications during disk accesses, when the CPU's interrupts from the SCC are disabled).
The vPage2 bit controls which screen buffer is being displayed, and the vHeadSel bit is the SEL
control line used by the disk interface. The vOverlay bit (used only during system startup) can be
used to place another image of ROM at the bottom of memory, where RAM usually is (RAM
moves to $600000). The sound buffer is selected by the vSndPg2 bit. Finally, the vSound bits
control the sound volume.

VIA Register B

VIA data register B is at vBase+vBufB. The corresponding data direction register is at
vBase+vDirB.

The VIA 111-39

Inside Macintosh

Bit Name Description
7 vSndEnb Sound enable/disable
6 vH4 Horizontal blanking

5 vY2 Mouse Y2

4 vX2 Mouse X2

3 vSW Mouse switch
2 rTCEnb Real-time clock serial enable
1 rTCClk Real-time clock data-clock line

0 rTCData Real-time clock serial data

The vSndEnb bit turns the sound generator on or off, and the vH4 bit is set when the video beam
is in its horizontal blanking period. The vY2 and vX2 bits read the quadrature signals from the Y
(vertical) and X (horizontal) directions, respectively, of the mouse's motion lines. The vSW bit
reads the mouse switch. The rTCEnb, rTCClk, and rTCData bits control and read the real-time
clock.

The VIA Peripheral Control Register

The VIA's peripheral control register, at vBase+vPCR, allows you to set some very low-level
parameters (such as positive-edge or negative-edge triggering) dealing with the keyboard data and
clock interrupts, the one-second real-time clock interrupt line, and the vertical blanking interrupt.

Bit(s) Description
5-7 Keyboard data interrupt control

4 Keyboard clock interrupt control

1-3 One-second interrupt control

0 Vertical blanking interrupt control

The VIA Timers

The timers controlled by the VIA are called timer 1 and timer 2. Timer 1 is used to time various
events having to do with the Macintosh sound generator. Timer 2 is used by the Disk Driver to
time disk I/O events. If either timer isn't being used by the Operating System, you're free to use
it for your own purposes. When a timer counts down to 0, an interrupt will be generated if the
proper interrupt enable has been set. See chapter 6 of Volume II for information about writing
your own interrupt handlers.

To start one of the timers, store the appropriate values in the high- and low-order bytes of the
timer counter (or the timer 1 latches, for multiple use of the value). The counters and latches are
at the following locations:

111-40 The VIA

The Macintosh Hardware

Location
vBase+vTIC

vBase+vTlCH

vBase+vTIL

vBase+vTlLH

vBase+vT2C

vBase+vT2CH

Contents
Timer 1 counter (low-order byte)

Timer 1 counter (high-order byte)

Timer 1 latch (low-order byte)

Timer 1 latch (high-order by te)

Timer 2 counter (low-order byte)

Timer 2 counter (high-order byte)

Note: When setting a timer, it's not enough to simply store a full word to the high-order
address, because the high- and low-order bytes of the counters are not adjacent. You must
explicitly do two stores, one for the high-order byte and one for the low-order byte.

VIA Interrupts

The VIA (through its IRQ line) can cause a level-0 processor interrupt whenever one of the
following occurs: Timer 1 or timer 2 times out; the keyboard is clocking a bit in through its serial
port; the shift register for the keyboard serial interface has finished shifting in or out; the vertical
blanking interval is beginning; or the one-second clock has ticked. For more information on how
to use these interrupts, see chapter 6 of Volume II.

The interrupt flag register at vBase+vIFR contains flag bits that are set whenever the interrupt
corresponding to that bit has occurred. The Operating System uses these flags to determine
which device has caused an interrupt. Bit 7 of the interrupt flag register is not really a flag: It
remains set (and the IRQ line to the processor is held low) as long as any enabled VIA interrupt is
occurring.

Bit Interrupting device
7 IRQ (all enabled VIA interrupts)

6 Timer 1

5 Timer 2

4 Keyboard clock

3 Keyboard data bit

2 Keyboard data ready

1 Vertical blanking interrupt

0 One-second interrupt

The interrupt enable register, at vBase+vIER, lets you enable or disable any of these interrupts.
If an interrupt is disabled, its bit in the interrupt flag register will continue to be set whenever that
interrupt occurs, but it won't affect the IRQ flag, nor will it interrupt the processor.

The bits in the interrupt enable register are arranged just like those in the interrupt flag register,
except for bit 7. When you write to the interrupt enable register, bit 7 is "enable/disable": If bit 7
is a 1, each 1 in bits 0-6 enables the corresponding interrupt; if bit 7 is a 0, each 1 in bits 0-6
disables that interrupt. In either case, 0's in bits 0-6 do not change the status of those interrupts.
Bit 7 is always read as a 1.

The VIA 111-41

Inside Macintosh

Other VIA Registers

The shift register, at vBase+vSR, contains the eight bits of data that have been shifted in or that
will be shifted out over the keyboard data line.

The auxiliary control register, at vBase+vACR, is described in the SY6522 documentation. It
controls various parameters having to do with the timers and the shift register.

SYSTEM STARTUP

When power is first supplied to the Macintosh, a carefully orchestrated sequence of events takes
place.

First, the processor is held in a wait state while a series of circuits gets the system ready for
operation. The VIA and IWM are initialized, and the mapping of ROM and RAM are altered
temporarily by setting the overlay bit in VIA data register A. This places the ROM starting at the
normal ROM location $400000, and a duplicate image of the same ROM starting at address 0
(where RAM normally is), while RAM is placed starting at $600000. Under this mapping, the
Macintosh software executes out of the normal ROM locations above $400000, but the MC68QP0
can obtain some critical low-memory vectors from the ROM image it finds at address 0.

Next, a memory test and several other system tests take place. After the system is fully tested and
initialized, the software clears the VIA's overlay bit, mapping the system RAM back where it
belongs, starting at address 0. Then the disk startup process begins.

First the internal disk is checked: If there's a disk inserted, the system attempts to read it. If no
disk is in the internal drive and there's an external drive with an inserted disk, the system will try
to read that one. Otherwise, the question-mark disk icon is displayed until a disk is inserted. If
the disk startup fails for some reason, the "sad Macintosh" icon is displayed and the Macintosh
goes into an endless loop until it's turned off again.

Once a readable disk has been inserted, the first two sectors (containing the system startup
blocks) are read in and the normal disk load begins.

111-42 The VIA

The Macintosh Hardware

SUMMARY

Warning: This information applies only to the Macintosh 128K and 512K, not to the
Macintosh XL.

Constants

; VIA base addresses

vBase .EQU $EFE1FE ;main base for VIA chip (in variable VIA)
aVBufB • EQU vBase /register B base
aVBufA .EQU $EFFFFE /register A base
aVBufM • EQU aVBufB /register containing mouse signals
aVIFR .EQU $EFFBFE /interrupt flag register
aVIER .EQU $EFFDFE /interrupt enable register

; Offsets from vBase

vBufB .EQU 512*0 /register B (zero offset)
vDirB .EQU 512*2 /register B direction register
vDirA .EQU 512*3 /register A direction register
vTIC • EQU 5 1 2*4 /timer 1 counter (low-order byte)
vTlCH .EQU 512*5 /timer 1 counter (high-order byte)
VT1L • EQU 512*6 /timer 1 latch (low-order byte)
vTlLH .EQU 512*7 /timer 1 latch (high-order byte)
vT2C .EQU 512*8 /timer 2 counter (low-order byte)
VT2CH .EQU 512*9 /timer 2 counter (high-order byte)
vSR .EQU 512*10 /shift register (keyboard)
vACR .EQU 512*11 /auxiliary control register
vPCR • EQU 512*12 /peripheral control register
vIFR .EQU 512*13 /interrupt flag register
vIER • EQU 512*14 /interrupt enable register
vBufA .EQU 512*15 /register A

; VIA register A constants

vAOut .EQU $7F /direction register A: 1 bits = outputs
vAInit .EQU $7B /initial value for vBufA (medium volume)
vSound • EQU 7 /sound volume bits

; VIA register A bit numbers

vSndPg2 .EQU 3 ;0 = alternate sound buffer
vOverlay .EQU 4 ,-1 = ROM overlay (system startup only)
vHeadSel • EQU 5 /disk SEL control line
vPage2 .EQU 6 ;0 = alternate screen buffer
vSCCWReq -EQU 7 /SCC wait/request line

Summary 111-43

Inside Macintosh

; VIA register B constants

vBOut .EQU $87 /direction register B: 1 bits = outputs
vBInit -EQU $07 /initial value for vBufB

; VIA register B bit numbers

rTCData .EQU 0 ;real-time clock serial data line
rTCClk • EQU 1 ;real-time clock data-clock line
rTCEnb .EQU 2 ;real-time clock serial enable
vSW .EQU 3 ;0 = mouse button is down
vX2 .EQU 4 ;mouse X quadrature level
vY2 .EQU 5 ;mouse Y quadrature level
vH4 .EQU 6 ;1 = horizontal blanking
vSndEnb .EQU 7 ;0 = sound enabled, 1 = disabled

; SCC base addresses

sccRBase .EQU $9FFFF8 ;SCC
sccWBase .EQU $BFFFF9 ;SCC

; Offsets from SCC base addresses

base read address (in variable SCCRd)
base write address (in variable SCCWr)

aData .EQU 6
aCtl .EQU 2
bData .EQU 4
bCtl .EQU 0

/channel A data in or out
;channel A control
,-channel B data in or out
/channel B control

; Bit numbers for control register RRO

rxBF
txBE

.EQU

.EQU

; IWM base address

dBase .EQU $DFE1FF

; Offsets from dBase

;1 = SCC receive buffer full
;1 = SCC send buffer empty

;IWM base address (in variable IWM)

phOL .EQU 512*0
phOH -EQU 512*1
phlL .EQU 512*2
phlH .EQU 512*3
ph2L .EQU 512*4
ph2H .EQU 512*5
ph3L .EQU 512*6
ph3H .EQU 512*7
mtrOff .EQU 512*8
mtrOn .EQU 512*9
intDrive .EQU 512*10
extDrive .EQU 512*11
q6L .EQU 512*12

CAO off (0)
CAO on (1)
CA1 off (0)
CA1 on (1)
CA2 off (0)
CA2 on (1)
LSTRB off (low)
LSTRB on (high)
disk enable off
disk enable on
select internal drive
select external drive
Q6 off

111-44 Summary

The Macintosh Hardware

q6H .EQU 512*13 ;Q6 on
q7L .EQU 512*14 ;Q7 off
q7H .EQU 512*15 ;Q7 on

; Screen and sound addresses for 512K Macintosh (will also work for
; 128K, since addresses wrap)

screenLow .EQU $7A700
soundLow .EQU $7FD00
pwmBuffer .EQU $7FD01
ovlyRAM .EQU $600000
ovlyScreen .EQU $67A700
romStart .EQU $400000

;top left corner of main screen buffer
;main sound buffer (in variable SoundBase)
;main disk speed buffer
;RAM start address when overlay is set
;screen start with overlay set
;ROM start address (in variable ROMBase)

Variables

ROMBase Base address of ROM
SoundBase Address of main sound buffer
SCCRd SCC read base address
SCCWr SCC write base address
FvVM IWM base address
VIA VIA base address

Exception Vectors

Location Purpose
$00 Reset: initial stack pointer (not a vector)

$04 Reset: initial vector

$08 Bus error

$0C Address error

$10 Illegal instruction

$14 Divide by zero

$18 CHK instruction

$1C TRAPV instruction

$20 Privilege violation

$24 Trace interrupt

$28 Line 1010 emulator

$2C Line 1111 emulator

$30-$3B Unassigned (reserved)

$3C Uninitialized interrupt

$40-$5F Unassigned (reserved)

Summary 111-45

Inside Macintosh

Location Purpose
$60 Spurious interrupt
$64 VIA interrupt

$68 SCC interrupt

$6C VIA+SCC vector (temporary)
$70 Interrupt switch

$74 Interrupt switch + "VTA

$78 Interrupt switch + SCC

$7C Interrupt switch + VIA + SCC

$80-$BF TRAP instructions
$C0-$FF Unassigned (reserved)

111-46 Summary

3 SUMMARY

49 About This Chapter
50 AppleTalk Manager
65 Binary-Decimal Conversion Package
66 Control Manager
71 Desk Manager
73 Device Manager
80 Dialog Manager
85 Disk Driver
88 Disk Initialization Package
90 Event Manager, Operating System
94 Event Manager, Toolbox
98 File Manager
113 Font Manager
118 International Utilities Package
124 Memory Manager
130 Menu Manager
134 Package Manager
135 Printing Manager
141 QuickDraw
154 Resource Manager
157 Scrap Manager
159 Segment Loader
161 Serial Drivers
165 Sound Driver
172 Standard File Package
176 System Error Handler
179 TextEdit
184 Utilities, Operating System
190 Utilities, Toolbox
193 Vertical Retrace Manager
195 Window Manager
201 Assembly Language
201 Miscellaneous Variables
201 Hardware

Inside Macintosh

111-48

Summary

ABOUT THIS CHAPTER

This chapter includes all the summaries that appear at the end of other chapters of Inside
Macintosh. The summaries are arranged in alphabetical order of the part of the Toolbox or
Operating System being summarized.

Note: The summaries of the Event Managers are listed under "Event Manager, Operating
System" and "Event Manager, Toolbox". The Toolbox and Operating System Utilities are
listed similarly.

The last section of this chapter, "Assembly Language", contains information for assembly-
language programmers only. It lists some miscellaneous global variables along with hardware-
related definitions for the Macintosh 128K and 512K.

About This Chapter 111-49

Inside Macintosh

APPLETALK MANAGER

Constants

CONST lapSize = 20;
ddpSize = 26;
nbpSize = 26;
atpSize = 56;

{ABusRecord size for ALAP}
{ABusRecord size for DDP}
{ABusRecord size for NBP}
{ABusRecord size for ATP}

Data Types

TYPE ABProtoType = (lapProto,ddpProto,iibpProto,atpProto);

ABRecHandle =
ABRecPtr =
ABusRecord =

RECORD
abOpcode:
abResult:
abUserReference:
CASE ABProtoType
lapProto:
(lapAddress:
lapReqCount:

lapActCount

lapDataPtr:

AABRecPtr;
AABusRecord;

ABCallType;
INTEGER;
LONGINT;
OF

LAPAdrBlock;
INTEGER;

INTEGER;

Ptr) ;

{type of call}
{result code}
{for your use}

{destination or source node ID}
{length of frame data or buffer }
{ size in bytes}
{number of frame data bytes }
{ actually received}
{pointer to frame data or pointer }
{ to buffer}

ddpProto:
(ddpType:
ddpSocket:
ddpAddress:
ddpReqCount:

ddpActCount:
ddpDataPtr:
ddpNodelD:

nbpProto:
(nbpEntityPtr:
nbpBufPtr:
nbpBufSize:
nbpDataField:

nbpAddress:
nbpRetransmitlnfo:

Byte;
Byte;
AddrBlock;
INTEGER;

INTEGER;
Ptr;
Byte);

{DDP protocol type}
{source or listening socket number}
{destination or source socket address}
{length of datagram data or buffer }
{ size in bytes}
{number of bytes actually received}
{pointer to buffer}
{original destination node ID}

EntityPtr;
Ptr;
INTEGER;
INTEGER;

AddrBlock;
RetransType),

{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{number of addresses or }
{ socket number}
{socket address}
{retransmission information}

111-50 AppleTalk Manager

Summary

atpProto:
(atpSocket: Byte;

atpAddress: AddrBlock;

atpReqCount: INTEGER;
atpDataPtr Ptr;
atpRspBDSPtr: BDSPtr;
atpBitMap: BitMapType;
atpTransID: INTEGER;
atpActCount: INTEGER;
atpUserData: LONGINT;
atpXO: BOOLEAN;
atpEOM: BOOLEAN;
atpTimeOut: Byte;
atpRetries: Byte;
atpNumBufs: Byte;

atpNumRsp: Byte;

atpBDSSize: Byte;
atpRspUData: LONGINT;

atpRspBuf: Ptr;
atpRspSize: INTEGER);

END;

{listening or responding socket }
{ number}
{destination or source socket }
{ address}
{request size or buffer size}
{pointer to buffer}
{pointer to response BDS}
{transaction bit map}
{transaction ID}
{number of bytes actually received}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{maximum number of retries}
{number of elements in response }
{ BDS or number of response }
{ packets sent}
{number of response packets }
{ received or sequence number}
{number of elements in response BDS}
{user bytes sent or received in }
{ transaction response}
{pointer to response message buffer}
{size of response message buffer}

ABCallType = (tLAPRead,tLAPWrite,tDDPRead,tDDPWrite,tNBPLookup,
tNBPConfirm,tNBPRegister,tATPSndRequest,
tATPGetRequest,tATP SdRsp,tATPAddRsp,tATPRequest,
tATPResponse);

LAPAdrBlock = PACKED RECORD
dstNodelD: Byte; {destination node ID}
srcNodelD: Byte; {source node ID}
lapProtType: ABByte {ALAP protocol type}

END;

ABByte = 1..127; {ALAP protocol type}

AddrBlock = PACKED RECORD
aNet: INTEGER; {network number}
aNode: Byte; {node ID}
aSocket: Byte {socket number}

END;

BDSPtr = ABDSType;
BDSType = ARRAY[0..7] OF BDSElement; {response BDS}

AppleTalk Manager 111-51

Inside Macintosh

BDSElement = RECORD

BitMapType = PACKED ARRAY[0..7] OF BOOLEAN;

EntityPtr = ^EntityName;
EntityName = RECORD

objStr: Str32; {object}
typeStr: Str32; {type}
zoneStr: Str32 {zone}

END;

Str32 = STRING[32];

RetransType =
PACKED RECORD

retransInterval: Byte; {retransmit interval in 8-tick units}
retransCount: Byte {total number of attempts}

END;

Routines [Not in ROM]

Opening and Closing AppleTalk

FUNCTION MPPOpen : OSErr;
FUNCTION MPPClose : OSErr;

AppleTalk Link Access Protocol

FUNCTION LAPOpenProtocol (theLAPType: ABByte; protoPtr: Ptr)
FUNCTION LAPCloseProtocol (theLAPType: ABByte) : OSErr;

OSErr;

FUNCTION LAPWrite (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode
<— abResult
—» abUserReference
—> lapAddress.dstNodeID
—> lapAdareSsiapProtType
—> lapReqCount
-> lapDataPtr

{always tLAPWrite}
{result code}
{for your use}
{destination node ID}
{ALAP protocol type}
{length of frame data}
{pointer to frame data}

111-52 AppleTalk Manager

buffSize: INTEGER; {buffer size in bytes}
buffPtr: Ptr; {pointer to buffer}
dataSize: INTEGER; {number of bytes actually received}
userBytes: LONGINT {user bytes}

END;

Summary

FUNCTION LAPRead (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
4— abOpcode {always tLAPRead}
<— abResult {result code}
—> abUserReference {for your use}
4~ lapAddress.dstNodelD {destination node ID}
<- lapAddress.srcNodeID {source node ED}
—> lapAddress.lapProtType {ALAP protocol type}
—> lapReqCount {buffer size in bytes}
4~ lapActCount {number of frame data bytes actually received}
-» lapDataPtr {pointer to buffer}

FUNCTION LAPRdCancel (abRecord: ABRecHandle) : OSErr;

Datagram Delivery Protocol

FUNCTION DDPOpenSocket (VAR theSocket: Byte; sktListener: Ptr) : OSErr;
FUNCTION DDPCloseSocket (theSocket: Byte) : OSErr;
FUNCTION DDPWrite (abRecord: ABRecHandle; doChecksum: BOOLEAN; async:

BOOLEAN) : OSErr;
4- abOpcode {always tDDPWrite}
4- abResult {result code}
- > abUserReference {for your use}
—> ddpType {DDP protocol type}
—> ddpSocket {source socket number}

ddpAddress {destination socket address}
—» ddpReqCount {length of datagram data}

ddpDataPtr {pointer to buffer}

FUNCTION DDPRead (abRecord: ABRecHandle; retCksumErrs: BOOLEAN; async:
BOOLEAN) : OSErr;

4- abOpcode {always tDDPRead}
4- abResult {result code}
—> abUserReference {for your use}

ddpType {DDP protocol type}
—» ddpSocket {listening socket number}
4- ddpAddress {source socket address}
- > ddpReqCount {buffer size in bytes}
4- ddpActCount {number of bytes actually received}
—> ddpDataPtr {pointer to buffer}
4- ddpNodelD {original destination node ID}

FUNCTION DDPRdCancel (abRecord: ABRecHandle) : OSErr;

AppIeTalk Transaction Protocol

FUNCTION ATPLoad :
FUNCTION ATPUnload :
FUNCTION ATPOpenSocket
FUNCTION ATPCloseSocket

OSErr;
OSErr;
(addrRcvd: AddrBlock; VAR atpSocket: Byte) : OSErr;
(atpSocket: Byte) : OSErr;

AppIeTalk Manager 111-53

Inside Macintosh

FUNCTION ATPSndRequest (abRecord: ABRecHandle; a s y n c : BOOLEAN) : OSErr;
4- abOpcode {always tATPSndRequest}
<— abResult {result code}
- » abUserReference {for your use}
—» atpAddress {destination socket address}

atpReqCount {request size in bytes}
—> atpDataPtr {pointer to buffer}
—> atpRspBDSPtr {pointer to response BDS}
—> atpUserData {user bytes}
—> atpXO {exactly-once flag}
<— atpEOM {end-of-message flag}
-» a^TimeOut {retry timeout interval in seconds}
-> atpRetries {maximum number of retries}
-> atpNurnBufs {number of elements in response BDS}
<- atpNumRsp {number of response packets actually received}

rCTION ATPRequest (abRecord: ABRecHandle; a s y n c : BOOLEAN) :
<— abOpcode {always tATPRequest}
<— abResult {result code}
- » abUserReference {for your use}
—» atpAddress {destination socket address}
-¥ atpReqCount {request size in bytes}
—> atpDataPtr {pointer to buffer}
<- atpActCount {number of bytes actually received}
—» atpUserData {user bytes}
—> atpXO {exactly-once flag}
<— atpEOM {end-of-message flag}
- » afpTimeOut {retry timeout interval in seconds}
- » atpRetries {maximum number of retries}
<— atpRspUData {user bytes received in transaction response}
—> atpRspBuf {pointer to response message buffer}

atpRspSize {size of response message buffer}

FUNCTION ATPReqCancel (abRecord: ABRecHandle; a s y n c : BOOLEAN) : OSErr;

FUNCTION ATPGetRequest (abRecord: ABRecHandle; a s y n c : BOOLEAN) : OSErr;
abOpcode {always tATPGetRequest}

<— abResult {result code}
-» abUserReference {for your use}
-» atpSocket {listening socket number}
<— atpAddress {source socket address}
—» atpReqCount {buffer size in bytes}
—» atpDataPtr {pointer to buffer}

atpBitMap {transaction bit map}
<r- atpTransID {transaction ID}
<— atpActCount {number of bytes actually received}
<— atpUserData {user bytes}

atpXO {exactly-once flag}

111-54 AppleTalk Manager

Summary

FUNCTION ATPSndRsp (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always tATPSdRsp}
<— abResult {result code}
- > abUserReference {for your use}
- 4 atpSocket {responding socket number}
- 4 atpAddress {destination socket address}
—> atpRspBDSPtr {pointer to response BDS}
- 4 atpTransID {transaction ID}
—> atpEOM {end-of-message flag}
—> atpNumBufs {number of response packets being sent}
- 4 atpBDSSize {number of elements in response BDS}

FUNCTION ATPAddRsp (abRecord: ABRecHandle) : OSErr;
<— abOpcode {always tATPAddRsp}

abResult {result code}
—> abUserReference {for your use}

atpSocket {responding socket number}
- > atpAddress {destination socket address}
—> atpReqCount {buffer size in bytes}

atpDataPtr {pointer to buffer}
atpTransID {transaction ID}

—» atpUserData {user bytes}
alpEOM {end-of-message flag}

- 4 atpNumRsp {sequence number}

FUNCTION ATPResponse
«- abOpcode

abResult
abUserReference

—> atpSocket
atpAddress

—> atpTransID
-» atpRspUData
—» atpRspBuf
-> atpRspSize

(abRecord: ABRecHandle; async: BOOLEAN)
{always tATPResponse}
{result code}
{for your use}
{responding socket number}
{destination socket address}
{transaction ID)
{user bytes sent in transaction response}
{pointer to response message buffer}
{size of response message buffer}

OSErr;

FUNCTION ATPRspCancel (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;

Name-Binding Protocol

FUNCTION NBPRegister (abRecord: ABRecHandle; async: BOOLEAN) :
<— abOpcode {always tNBPRegister}

abResult {result code}
—> abUserReference {for your use}
—> nbpEntityPtr {pointer to entity name}
-> nbpBufPtr {pointer to buffer}
-> nbpBufSize {buffer size in bytes}
—> nbpAddress.aSocket {socket address}

nbpRetransmitlnfo {retransmission information}

AppIeTalk Manager 111-55

Inside Macintosh

FUNCTION NBPLookup (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
abOpcode {always tNBPLookup}

<— abResult {result code}
—> abUserReference {for your use}
—> nbpEntityPtr {pointer to entity name}
—> nbpBufPtr {pointer to buffer}
—» nbpBufSize {buffer size in bytes}
<r"> nbpDataField {number of addresses received}
—> nbpRetransrrutTnfo {retransmission information}

FUNCTION NBPExtract (theBuffer: Ptr; numlnBuf: INTEGER; whichOne:
INTEGER; VAR abEntity: EntityName; VAR address:
AddrBlock) : OSErr;

FUNCTION NBPConfirm (abRecord: ABRecHandle; async: BOOLEAN) : OSErr;
<— abOpcode {always iNBPConfkm}

abResult {result code}
—» abUserReference {for your use}
-> nbpEntityPtr {pointer to entity name}

nbpDataField {socket number}
—» nbpAddress {socket address}

nbpRetransrmtlnfo {retransmission information}

FUNCTION NBPRemove (abEntity: EntityPtr) : OSErr;
FUNCTION NBPLoad : OSErr;
FUNCTION NBPUnload : OSErr;

Miscellaneous Routines

FUNCTION GetNodeAddress (VAR myNode,myNet: INTEGER) : OSErr;
FUNCTION IsMPPOpen : BOOLEAN;
FUNCTION IsATPOpen : BOOLEAN;

Result Codes

Name Value Meaning

atpBadRsp -3107 Bad response from ATPRequest

atpLenErr -3106 ATP response message too large

badATPSkt -1099 ATP bad responding socket

badBuffNum -1100 ATP bad sequence number

buf2SmallErr -3101 ALAP frame too large for buffer

DDP datagram too large for buffer

cbNotFound -1102 ATP control block not found

cksumErr -3103 DDP bad checksum

ddpLenErr -92 DDP datagram or ALAP data length too big

111-56 AppleTalk Manager

Summary

N a m e
ddpSktErr

Value
-91

M e a n i n g
DDP socket error: socket already active; not a well-known socket;
socket table full; all dynamic socket numbers in use

excessCollsns -95 ALAP no CTS received after 32 RTS's, or line sensed in use 32
times (not necessarily caused by collisions)

extractErr -3104 NBP can't find tuple in buffer

lapProtErr - 9 4 ALAP error attaching/detaching ALAP protocol type: attach error
when ALAP protocol type is negative, not in range, already in tab:
or when table is full; detach error when ALAP protocol type isn't i
table

nbpBuffOvr -1024 NBP buffer overflow

nbpConfDiff -1026 NBP name confirmed for different socket

nbpDuplicate -1027 NBP duplicate name already exists

nbpNISErr -1029 NBP names information socket error

nbpNoConfirm -1025 NBP name not confirmed

nbpNotFound -1028 NBP name not found

noBridgeErr -93 No bridge found

noDataArea -1104 Too many outstanding ATP calls

noErr 0 No error

noMPPError -3102 MPP driver not installed

noRelErr -1101 ATP no release received

noSendResp -1103 ATPAddRsp issued before ATPSndRsp

portlnUse -97 Driver Open error, port already in use

portNotCf -98 Driver Open error, port not configured for this connection

readQErr -3105 Socket or protocol type invalid or not found in table

recNotFnd -3108 ABRecord not found

reqAborted -1105 Request aborted

reqFailed -1096 ATPSndRequest failed: retry count exceeded

sktClosedErr -3109 Asynchronous call aborted because socket was closed before call
was completed

tooManyReqs -1097 ATP too many concurrent requests

tooManySkts -1098 ATP too many responding sockets

AppIeTalk Manager 111-57

Inside Macintosh

Assembly-Language Information

Constants

; Serial port use types

useFree .EQU 0 ;unconfigured
useATalk .EQU 1 ;Configured for AppleTalk
useASync .EQU 2 ;configured for the Serial Driver

; Bit in PortBUse for .ATP driver status

atpLoadedBit .EQU 4 ;set if .ATP driver is opened

; Unit numbers for AppleTalk drivers

mppUnitNum .EQU 9 ;.MPP driver
atpUnitNum .EQU 10 ;.ATP driver

; csCode values for Control calls (MPP)

writeLAP .EQU 243
detachPH .EQU 244
attachPH .EQU 245
writeDDP ,EQU 246
closeSkt .EQU 247
openSkt .EQU 248
loadNBP .EQU 249
confirmName .EQU 250
lookupName .EQU 251
removeName .EQU 252
registerName .EQU 253
killNBP .EQU 254
unloadNBP • EQU 255

; csCode values for Control

relRspCB .EQU 249
closeATPSkt .EQU 250
addResponse • EQU 251
sendResponse .EQU 252
getRequest • EQU 253
openATPSkt .EQU 254
sendRequest .EQU 255
relTCB .EQU 256

; ALAP header

lapDstAdr .EQU 0
lapSrcAdr .EQU 1
lapType .EQU 2

/destination node ID
;source node ID
;ALAP protocol type

111-58 AppleTalk Manager

Summary

; ALAP header size

lapHdSz .EQU 3

; ALAP protocol type values

shortDDP .EQU 1 ;short DDP header
longDDP .EQU 2 ;long DDP header

; Long DDP header

ddpHopCnt .EQU 0 ;count of bridges passed (4 bits)
ddpLength • EQU 0 /datagram length (10 bits)
ddpChecksum .EQU 2 ;checksum
ddpDstNet .EQU 4 /destination network number
ddpSrcNet .EQU 6 /source network number
ddpDstNode .EQU 8 /destination node ID
ddpSrcNode .EQU 9 /source node ID
ddpDstSkt -EQU 10 /destination socket number
ddpSrcSkt .EQU 11 /source socket number
ddpType .EQU 12 /DDP protocol type

/ DDP long header size

ddpHSzLong .EQU ddpType+1

/ Short DDP header

ddpLength
sDDPDstSkt
sDDPSrcSkt
sDDPType

.EQU 0

.EQU ddpChecksum

.EQU sDDPDstSkt+1

.EQU sDDPSrcSkt+1

/datagram length
/destination socket number
/source socket number
/DDP protocol type

/ DDP short header size

ddpHSzShort .EQU sDDPType+1

; Mask for datagram length

ddpLenMask .EQU $03PF

/ Maximum size of DDP data

ddpMaxData .EQU 586

/ ATP header

atpControl .EQU 0 /control information
atpBitMap .EQU 1 /bit map
atpRespNo .EQU 1 /sequence number
atpTransID .EQU 2 /transaction ID
atpUserData .EQU 4 /user bytes

AppIeTalk Manager 111-59

Inside Macintosh

; ATP header size

atpHdSz .EQU 8

; DDP protocol type for ATP packets

atp -EQU 3

; ATP function code

atpReqCode • EQU $40 ;TReq packet
atpRspCode .EQU $80 ;TResp packet
atpRelCode .EQU $C0 ;TRel packet

; ATPFlags control information . bits

sendChk .EQU 0 ;send-checksum bit
tidValid .EQU 1 /transaction ID validity bit
atpSTSBit .EQU 3 ;send-transmission-status bit
atpEOMBit .EQU 4 ;end-of-message bit
atpXOBit .EQU 5 ;exactly-once bit

; Maximum number of ATP request packets

atpMaxNum .EQU 8

; ATP buffer data structure

bdsBuffSz
bdsBuffAddr
bdsDataSz
bdsUserData

.EQU

.EQU

.EQU

.EQU

;size of data to send or buffer size
;pointer to data or buffer
;number of bytes actually received
;user bytes

; BDS element size

bdsEntrySz

; NBP packet

nbpControl
nbpTCount
nbpID
nbpTuple

.EQU

.EQU

.EQU

.EQU

.EQU

12

/packet type
;tuple count
;packet identifier
;start of first tuple

; DDP protocol type for NBP packets

nbp .EQU 2

111-60 AppleTalk Manager

Summary

; NBP packet types

brRq
lkUp
lkUpReply

; NBP tuple

tupleNet
tupleNode
tupleSkt
tupleEnum
tupleName

• EQU
.EQU
.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

1
2
3

;broadcast request
;lookup request
/lookup reply

/network number
/node ID
/socket number
/used internally
/entity name

/ Maximum number of tuples in NBP packet

tupleMax .EQU 15

/ NBP meta-characters

equals
star

• EQU
• EQU

i _ i

/ NBP names table entry

ntLink
ntTuple
ntSocket
ntEntity

.EQU

.EQU

.EQU

.EQU

0
4
7
9

/"wild-card" meta-character
/"this zone" meta-character

/pointer to next entry
/tuple
/socket number
/entity name

; NBP names information socket number

nis .EQU 2

Routines

L i n k Access Pro toco l

WriteLAP function
- » 26 csCode
—> 30 wdsPointer

AttachPH function
—» 26 csCode
- > 28 protType
—> 30 handler

word ;always writeLAP
pointer ;write data structure

word jalways attachPH
byte ;ALAP protocol type
pointer ^protocol handler

AppleTalk Manager 111-61

Inside Macintosh

DetachPH function
—> 26 csCode word ;always detachPH
- » 28 protType byte ;ALAP protocol type

Datagram Delivery Protocol

OpenSkt function
-> 26 csCode word ;always openSkt

28 socket byte ;socket number
-» 30 listener pointer ;socket listener

CloseSkt function
—» 26 csCode word -.always closeSkt
—» 28 socket byte ;socket number

WriteDDP function
—> 26 csCode word ;always writeDDP
—> 28 socket byte ;socket number
—> 29 checksumFlag byte ;checksumflag
—> 30 wdsPointer pointer ;write data structure

AppIeTalk Transaction Protocol

OpenATPSkt function
—» 26 csCode word
<H> 28 atpSocket byte
—> 30 addrBlock long word

QoseATPSkt function
—> 26 csCode word
—> 28 atpSocket byte

SendRequest function

;always openATPSkt
;socket number
;socket request specification

;always closeATPSkt
;socket number

-» 18 userData long word ;user bytes
<- 22 reqTID word ;transaction ID used in request
-> 26 csCode word ;always sendRequest
<— 28 currBitMap byte ;bit map
< ^ 29 atpFlags byte ;control information
-> 30 addrBlock long word ;destination socket address

34 reqLength word ;request size in bytes
36 reqPointer pointer ;pointer to request data

—> 40 bdsPointer pointer ;pointer to response BDS
44 numOfBuffs byte ;number of responses expected

—> 45 timeOutVal byte ;timeout interval
<- 46 numOfResps byte ;number of responses received
<-> 47 retryCount byte ;number of retries

Request function
4- 18 userData long word ;user bytes
-> 26 csCode word ;always getRequest
-> 28 atpSocket byte ;socket number

111-62 AppIeTalk Manager

Summary

GetRequest function
<— 18 userData long word ;user bytes
—» 26 csCode word ;always getRequest
—> 28 atpSocket byte ;socket number
<— 29 atpFlags byte ;control information
<r- 30 addrBlock long word ;source of request
<-> 34 reqLength word request buffer size
—» 36 reqPointer pointer pointer to request buffer
<— 44 bitMap byte ;bitmap
<— 46 transID word ;transaction ID

SendResponse function
<— 18 userData long word ;user bytes from TRel
—» 26 csCode word ;always sendResponse
—> 28 atpSocket byte ;socket number
—> 29 atpFlags byte ;control information
—> 30 addrBlock long word ".response destination
—> 40 bdsPointer pointer ;pointer to response BDS
—> 44 numOfBuffs byte ;number of response packets being sent
—> 45 bdsSize byte ;BDS size in elements
—> 46 transID word ;transaction ID

AddResponse function
—> 18 userData long word ;user bytes
—> 26 csCode word ;always addResponse
—> 28 atpSocket byte ;socket number
—> 29 atpFlags byte ;control information
—> 30 addrBlock long word ;response destination
—> 34 reqLength word ;response size
—> 36 reqPointer pointer ;pointer to response
—> 44 rspNum byte ".sequence number
—> 46 transID word ;transaction ID

RelTCB function
—> 26 csCode word ;always relTCB
—> 30 addrBlock long word ;destination of request
—> 46 transID word ;transaction ID of request

RelRspCB function
—> 26 csCode word ;always relRspCB
—> 28 atpSocket byte ;socket number that request was received on
—> 30 addrBlock long word jsource of request
—» 46 transID word ".transaction ID of request

AppleTalk Manager 111-63

Inside Macintosh

Name-Binding Protocol

RegisterName function
- 4 26 csCode word ;always registerName

28 interval byte ;retry interval
29 count byte ;retry count

-> 30 ntQElPtr pointer ;names table element pointer
—> 34 verifyFlag byte ;set if verify needed

LookupName function
—» 26 csCode word ;always lookupName
-> 28 interval byte ;retry interval
<-> 29 count byte ;retry count
- » 30 entityPtr pointer ;pointer to endty name
—» 34 retBuffPtr pointer jpointer to buffer

38 retBuffSize word ;buffer size in bytes
40 maxToGet word ;matches to get

<— 42 numGotten word ;matches found

ConfirmName function
-» 26 csCode word ;always confirmName
- » 28 interval byte ;retry interval

29 count byte ;retry count
—» 30 entityPtr pointer jpointer to entity name

34 confirmAddr pointer ;entity address
<— 38 newSocket byte ;socket number

RemoveName function
—> 26 csCode word ;always removeName
—» 30 entityPtr pointer ;pointer to entity name

LoadNBP function
-> 26 csCode word ;always loadNBP

UnloadNBP function
-> 26 csCode word ;always unloadNBP

Variables

SPConfig

PortBUse

ABusVars

Use types for serial ports (byte)
(bits 0-3: current configuration of serial port B

bits 4-6: current configuration of serial port A)

Current availability of serial port B (byte)
(bit 7: 1 = not in use, 0 = in use

bits 0-3: current use of port bits
bits 4-6: driver-specific)

Pointer to AppIeTalk variables

111-64 AppIeTalk Manager

Summary

BINARY-DECIMAL CONVERSION PACKAGE

Routines

PROCEDURE NumToString (theNum: LONGINT; VAR theString: Str255);
PROCEDURE StringToNum (theString: Str255; VAR theNum: LONGINT);

Assembly-Language Information

Constants

; Routine selectors

numToString .EQU 0
StringToNum .EQU 1

Binary-Decimal Conversion Package 111-65

Routines

N a m e On entry On exit
NumToString AO: ptr to theString (preceded by length byte) AO: ptr to theString

DO: theNum (long)

StringToNum AO: ptr to theString (preceded by length byte) DO: theNum (long)

Trap Macro Name

Pack7

Inside Macintosh

CONTROL MANAGER

Constants

CONST { Control definition IDs }

pushButProc = 0, {simple button}
checkBoxProc = 1, {check box}
radioButP roc = 2, {radio button}
useWFont = 8, {add to above to use window's font}
scrollBarProc = 16; {scroll bar}

{ Part codes }

inButton = 10 {simple button}
inCheckBox = 11 {check box or radio button}
inUpButton = 20 ,- {up arrow of a scroll bar}
inDownButton = 21 ; {down arrow of a scroll bar}
inPageUp = 22 {"page up" region of a scroll bar}
inPageDown = 23 ,- {"page down" region of a scroll bar}
inThumb = 129; {thumb of a scroll bar}

{ Axis constraints for DragControl }

noConstraint = 0; {no constraint}
hAxisOnly = 1; {horizontal axis only}
vAxisOnly = 2; {vertical axis only}

{ Messages to control definition function }

drawCntl = 0; {draw the control (or control part)}
testCntl = 1; {test where mouse button was pressed}
calcCRgns = 2 ; {calculate control's region (or indicator's)}
initCntl = 3; {do any additional control initialization}
dispCntl = 4; {take any additional disposal actions}
posCntl = 5; {reposition control's indicator and update it}
thumbCntl = 6; {calculate parameters for dragging indicator}
dragCntl = 7 ; {drag control (or its indicator)}
autoTrack = 8 ; {execute control's action procedure}

Data Types

TYPE ControlHandle
ControlPtr

"ControlPtr;
ACont roIRecord;

111-66 Control Manager

Summary

ControlRecord =
PACKED RECORD

nextControl:
contrlOwner:
contrlRect:
contrlVis:
contrlHilite:
contrlvalue:
contrlMin:
contrlMax:
contrlDefProc:
contrlData:
cont rlAct ion:
contrlRfCon:
contrlTitle:

END;

ControlHandle;
WindowPtr;
Rect ;
Byte;
Byte;
INTEGER;
INTEGER
INTEGER
Handle;
Handle;
ProcPtr;
LONGINT;
Str255

{next control}
{control's window}
{enclosing rectangle}
{255 if visible}
{highlight state}
{control's current setting}
{control's minimum setting}
{control's maximum setting}
{control definition function}
{data used by contrlDefProc}
{default action procedure}
{control's reference value}
{control's title}

Routines

Initialization and Allocation

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; title:
Str255; visible: BOOLEAN; value: INTEGER;
min,max: INTEGER; procID: INTEGER; refCon:
LONGINT) : ControlHandle;

FUNCTION GetNewControl (controlID: INTEGER; theWindow: WindowPtr) :
Cont rolHandle;

PROCEDURE DisposeControl (theControl: ControlHandle);
PROCEDURE KillControls (theWindow: WindowPtr);

Control Display

PROCEDURE SetCTitle
PROCEDURE GetCTitle
PROCEDURE HideControl
PROCEDURE ShowControl
PROCEDURE DrawControls
PROCEDURE HiliteControl

(theControl: ControlHandle; title: Str255);
(theControl: ControlHandle; VAR title: Str255)
(theControl: ControlHandle);
(theControl: ControlHandle);
(theWindow: WindowPtr);
(theControl: ControlHandle; hiliteState:
INTEGER);

Mouse Location

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR
whichControl: ControlHandle) : INTEGER;

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point;
actionProc: ProcPtr) : INTEGER;

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) :
INTEGER;

Control Manager 111-67

Inside Macintosh

Control Movement and Sizing

PROCEDURE MoveControl (theControl: ControlHandle; h,v: INTEGER);
PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;

limitRect,slopRect: Rect; axis: INTEGER);
PROCEDURE SizeControl (theControl: ControlHandle; w,h: INTEGER);

Control Setting and Range

PROCEDURE SetCtlValue (theControl: ControlHandle; theValue: INTEGER);
FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER;
PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER);
FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER;
PROCEDURE SetCtlMax (theControl: ControlHandle; maxValue INTEGER);
FUNCTION GetCtlMax (theControl: ControlHandle) : INTEGER;

Miscellaneous Routines

PROCEDURE SetCRefCon (theControl: ControlHandle; data: LONGINT);
FUNCTION GetCRefCon (theControl: ControlHandle) : LONGINT;
PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc ProcPtr);
FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr;

Action Procedure for TrackControl

If an indicator: PROCEDURE MyAction;
If not an indicator: PROCEDURE MyAction (theControl: ControlHandle;

partCode: INTEGER);

Control Definition Function

FUNCTION MyControl (varCode: INTEGER; theControl: ControlHandle;
message: INTEGER; param: LONGINT) : LONGINT;

Assembly-Language Information

Constants

; Control definition IDs

pushButProc .EQU 0 ;simple button
checkBoxP roc -EQU 1 ;check box
radioButP roc -EQU 2 ;radio button
useWFont .EQU 8 ;add to above to use window's font
scrollBarProc .EQU 16 ;scroll bar

111-68 Control Manager

Summary

Part codes

inButton .EQU 10 ;simple button
inCheckBox .EQU 11 ;check box or radio button
inUpButton .EQU 20 ;up arrow of a scroll bar
inDownButton .EQU 21 ;down arrow of a scroll bar
inPageUp .EQU 22 ;"page up" region of a scroll bar
inPageDown • EQU 23 ;"page down" region of a scroll bar
inThumb .EQU 129 ;thumb of a scroll bar

; Axis constraints for DragControl

noConstraint .EQU 0 ;no constraint
hAxisOnly • EQU 1 ;horizontal axis only
vAxisOnly .EQU 2 ;vertical axis only

; Messages to control . definition function

drawCtlMsg .EQU 0 ;draw the control (or control part)
hitCtlMsg • EQU 1 ;test where mouse button was pressed
calcCtlMsg • EQU 2 /calculate control's region (or indicator's)
newCtlMsg • EQU 3 ;do any additional control initialization
dispCtlMsg .EQU 4 ;take any additional disposal actions
posCtlMsg • EQU 5 ;reposition control's indicator and update it
thumbCtlMsg • EQU 6 ;calculate parameters for dragging indicator
dragCtlMsg .EQU 7 ;drag control (or its indicator)
trackCtlMsg .EQU 8 /execute control's action procedure

Control Record Data Structure

nextControl
contrlOwner
contrlRect
contrlVis
contrlHilite
contrlValue
contrlMin
contxlMax
contxlDefHandle
contrlData
contrlAction
contrlRfCon
contrlTitle
contrlSize

Handle to next control in control list
Pointer to this control's window
Control's enclosing rectangle (8 bytes)
255 if control is visible (byte)
Highlight state (byte)
Control's current setting (word)
Control's minimum setting (word)
Control's maximum setting (word)
Handle to control definition function
Data used by control definition function (long)
Address of default action procedure
Control's reference value (long)
Handle to control's title (preceded by length byte)
Size in bytes of control record except contrlTitle field

Control Manager 111-69

Inside Macintosh

Special Macro Names

Pascal name
DisposeControl
GetCtlMax
GetCtlMin
SetCtlMax
SetCtlMin

Macro name
_DisposControl

GetMaxCtl
_GetMinCtl
_SetMaxCtl

SetMinCtl

Variables

DragHook Address of procedure to execute during TrackControl and DragControl
DragPattern Pattern of dragged region's outline (8 bytes)

111-70 Control Manager

Summary

DESK MANAGER

Routines

Opening and Closing Desk Accessories

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;
PROCEDURE CloseDeskAcc (refNum: INTEGER);

Handling Events in Desk Accessories

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);
FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN;

Performing Periodic Actions

PROCEDURE SystemTask;

Advanced Routines

FUNCTION SystemEvent (theEvent: EventRecord) : BOOLEAN;
PROCEDURE SystemMenu (menuResult: LONGINT);

Assembly-Language Information

Constants

; Desk accessory flag

dNeedTime .EQU 5

; Control routine messages

accEvent .EQU 64
accRun .EQU 65

accCursor .EQU 66

accMenu .EQU 67
accUndo .EQU 68

;set if driver needs time for performing a
; periodic action

handle a given event
take the periodic action, if any, for
this desk accessory
change cursor shape if appropriate;
generate null event if window was
created by Dialog Manager

handle a given menu item
handle the Undo command

Desk Manager 111-71

Inside Macintosh

accCut .EQU 70 ;handle the Cut command
accCopy .EQU 71 ;handle the Copy command
accPaste .EQU 72 ;handle the Paste command
accClear .EQU 73 ;handle the Clear command

Special Macro Names

Pascal n a m e Macro name
SystemEdit SysEdit

Variables

MBarEnable Unique menu ID for active desk accessory, when menu bar belongs to the
accessory (word)

SEvtEnb 0 if SystemEvent should return FALSE (byte)

111-72 Desk Manager

Summary

DEVICE MANAGER

Constants

CONST { Values for requesting read/write access }

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm

{whatever is currently allowed}
{request to read only}
{request to write only}
{request to read and write}

{ Positioning modes }

fsAtMark
fsFromStart
fsFromMark
rdVerify

= 3
- 64;

{at current position}
{offset relative to beginning of medium}
{offset relative to current position}
{add to above for read-verify}

Data Types

TYPE ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam) ;

"ParamBlockRec;
RECORD
QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;

ParmBlkPtr
ParamBlockRec =

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion
ioResult:
ioNamePtr:
ioVRefNum:

CASE ParamBlkType OF
ioParam:
(ioRefNum: INTEGER;
ioVersNum: SignedByte;
ioPermssn: SignedByte;
ioMisc: Ptr;
ioBuffer: Ptr;
ioReqCount: LONGINT;
ioActCount: LONGINT;
ioPosMode: INTEGER;
ioPosOffset: LONGINT);

fileParam:
. . . {used by File Manager}

volumeParam:
. . . {used by File Manager}

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{driver name}
{volume reference or drive number}

{driver reference number}
{not used}
{read/write permission}
{not used}
{pointer to data buffer}
{requested number of bytes}
{actual number of bytes}
{positioning mode}
{positioning offset}

Device Manager 111-73

Inside Macintosh

cntrlParam:
(ioCRefNum: INTEGER; {driver reference number}
csCode: INTEGER; {type of Control or Status call}
csParam: ARRAY[0..10] OF INTEGER) {control or status information}

END;

DCtlHandle = "DCtlPtr;
DCtlPtr = "DCtlEntry;
DCtlEntry
RECORD
dCtlDriver: Ptr;

dCtlFlags:
dCtlQHdr:
dCtlPosition:

dCtISt orage: Handle;

dCtlRefNum:
dCtlCurTicks:
dCtlWindow:
dCtlDelay:

dCtlEMask:
dCtlMenu:

END;

{pointer to ROM driver or handle to }
{ RAM driver}

INTEGER; {flags}
QHdr; {driver I/O queue header}
LONGINT; {byte position used by Read and }

{ Write calls}
{handle to RAM driver's private }
{ storage}

INTEGER; {driver reference number}
LONGINT; {used internally}
WindowPtr; {pointer to driver's window}
INTEGER; {number of ticks between periodic }

{ actions}
INTEGER; {desk accessory event mask}
INTEGER {menu ID of menu associated with }

{ driver}

High-Level Routines [Not in ROM]

FUNCTION OpenDriver
FUNCTION CloseD:
FUNCTION FSRead

FUNCTION FSWrite

FUNCTION Control

FUNCTION Status

FUNCTION KilllO

(name: Str255; VAR refNum: INTEGER) : OSErr;
FUNCTION CloseDriver (refNum: INTEGER) : OSErr;

(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
: OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
: OSErr;
(refNum: INTEGER; csCode: INTEGER; csParamPtr: Ptr)
: OSErr;
(refNum: INTEGER; csCode: INTEGER; csParamPtr: Ptr)
: OSErr;
(refNum: INTEGER) : OSErr;

Low-Levei Routines

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
<— 24 ioRefNum word
—> 27 ioPermssn byte

111-74 Device Manager

Summary

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<r~ 16 ioResult word
—» 24 ioRefNum word

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<- 16 ioResult word
-» 22 ioVRefNum word
-> 24 ioRefNum word
-> 32 ioBuffer pointer
-> 36 ioReqCount long word
<- 40 ioActCount long word
-> 44 ioPosMode word

46 ioPosOffset long word

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
-> 22 ioVRefNum word
- > 24 ioRefNum word
—> 32 ioBuffer pointer
—> 36 ioReqCount long word
<— 40 ioActCount long word
—> 44 ioPosMode word

46 ioPosOffset long word

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
<— 16 ioResult word
—> 22 ioVRefNum word

24 ioRefNum word
-> 26 csCode word

28 csParam record

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer

16 ioResult word
-> 22 ioVRefNum word
-> 24 ioRefNum word
—> 26 csCode word
<— 28 csParam record

FUNCTION PBKilllO (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word

Device Manager 111-75

Inside Macintosh

Accessing a Driver's Device Control Entry

FUNCTION GetDCtlEntry (refNum: INTEGER) : DCtlHandle; [NotinROM]

Result Codes

N a m e Value Meaning
abortErr -27 I/O request aborted by KilllO
badUnitErr -21 Driver reference number doesn't match unit table
controlErr -17 Driver can't respond to this Control call
dlnstErr -26 Couldn't find driver in resource file
dRemovErr -25 Attempt to remove an open driver
noErr 0 No error

notOpenErr -28 Driver isn't open
openErr -23 Requested read/write permission doesn't match driver's

open permission
readErr -19 Driver can't respond to Read calls
statusErr -18 Driver can't respond to this Status call
unitEmptyErr -22 Driver reference number specifies NIL handle in unit table
writErr -20 Driver can't respond to Write calls

Assembly-Language Information

Constants

; Flags in trap words

asnycTrpBit .EQU 10 ;set for an asynchronous call
noQueueBit .EQU 9 ;set for immediate execution

; Values for requesting read/write access

fsCurPerm .EQU 0 ;whatever is currently allowed
fsRdPerm .EQU 1 /request to read only
fsWrPerm .EQU 2 ;request to write only
fsRdWrPerm .EQU 3 /request to read and write

/ Positioning modes

fsAtMark .EQU 0 /at current position
fsFromStart .EQU 1 /offset relative to beginning of medium
fsFromMark .EQU 3 /offset relative to current position
rdVerify .EQU 64 /add to above for read-verify

111-76 Device Manager

Summary

Driver flags

dReadEnable .EQU 0
dWritEnable .EQU 1
dCtlEnable .EQU 2
dStatEnable .EQU 3
dNeedGoodBye .EQU 4

dNeedTime .EQU 5

dNeedLock .EQU 6

set if driver can respond to Read calls
set if driver can respond to Write calls
set if driver can respond to Control calls
set if driver can respond to Status calls
set if driver needs to be called before the
application heap is reinitialized
set if driver needs time for performing a
periodic action
set if driver will be locked in memory as
soon as it's opened (always set for ROM
drivers)

; Device control entry flags

dOpened .EQU 5 ;set if driver is open
dRAMBased .EQU 6 ;set if driver is RAM-based
drvrActive .EQU 7 ;set if driver is currently executing

; csCode values for driver control routine

accRun .EQU 65 ;take the periodic action, if any, for this
; driver

goodBye -EQU -1 ;heap will be reinitialized, clean up if
; necessary

killCode .EQU 1 ;handle the KilllO call

; Low-order byte of Device Manager traps

aRdCmd .EQU 2 ;Read call (trap $A002)
aWrCmd .EQU 3 /Write call (trap $A003)

; Offsets from SCC base addresses

aData
aCtl
bData
bCtl

.EQU 6 /channel A data in or out

.EQU 2 /channel A control

.EQU 4 /channel B data in or out

.EQU 0 /channel B control

Standard Parameter Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
ioTrap Routine trap (word)
ioCmdAddr Routine address
ioCompletion Address of completion routine
ioResult Result code (word)
ioVNPtr Pointer to driver name (preceded by length byte)
ioVRefNum Volume reference number (word)
ioDrvNum Drive number (word)

Device Manager 111-77

Inside Macintosh

Control and Status Parameter Block Data Structure

ioRefNum Driver reference number (word)
csCode Type of Control or Status call (word)
csParam Parameters for Control or Status call (22 bytes)

I/O Parameter Block Data Structure

ioRefNum Driver reference number (word)
ioPermssn Open permission (byte)
ioBuffer Pointer to data buffer
ioReqCount Requested number of bytes (long)
ioActCount Actual number of bytes (long)
ioPosMode Positioning mode (word)
ioPosOffset Positioning offset (long)

Device Driver Data Structure

drvrFlags Flags (word)
drvrDelay Number of ticks between periodic actions (word)
drvrEMask Desk accessory event mask (word)
drvrMenu Menu ID of menu associated with driver (word)
drvrOpen Offset to open routine (word)
drvrPrime Offset to prime routine (word)
drvrCtl Offset to control routine (word)
drvrStatus Offset to status routine (word)
drvrClose Offset to close routine (word)
drvrName Driver name (preceded by length byte)

Device Control Entry Data Structure

dCtlDriver Pointer to ROM driver or handle to RAM driver
dCtlFlags Flags (word)
dCtlQueue Queue flags: low-order byte is driver's version number (word)
dCtlQHead Pointer to first entry in driver's I/O queue
dCtlQTail Pointer to last entry in driver's I/O queue
dCtlPosition Byte position used by Read and Write calls (long)
dCtlStorage Handle to RAM driver's private storage
dCtlRefNum Driver's reference number (word)
dCtlWindow Pointer to driver's window
dCtlDelay Number of ticks between periodic actions (word)
dCtlEMask Desk accessory event mask (word)
dCtlMenu Menu ED of menu associated with driver (word)

Structure of Primary Interrupt Vector Table

autolntl Vector to level-1 interrupt handler
autoInt2 Vector to level-2 interrupt handler

111-78 Device Manager

Summary

autolnt3 Vector to
autoInt4 Vector to
autolntS Vector to
autoInt6 Vector to
autolnt7 Vector to

level-3 interrapt handler
level-4 interrupt handler
level-5 interrupt handler.
level-6 interrupt handler
level-7 interrupt handler

Macro Names

Pascal n a m e
PBRead
PBWrite
PBControl
PBStatus
PBKilllO

Macro name
Read

_Write
_Control
_Status
KffllO

Routines for Writing Drivers

Rou t ine J u m p vector On entry
Fetch JFetch Al : ptr to device

control entry

Stash JStash Al : ptr to device
control entry

DO: character to stash

IODone JIODone Al : ptr to device
control entry

DO: result code (word)

On exit
DO: character fetched; bit 15=1

if last character in buffer

DO: bit 15=1 if last character
requested

Variables

UTableBase Base address of unit table
JFetch Jump vector for Fetch function
JStash Jump vector for Stash function
JIODone Jump vector for IODone function
LvllDT Level-1 secondary interrupt vector table (32 bytes)
Lvl2DT Level-2 secondary interrupt vector table (32 bytes)
VIA VIA base address
ExtStsDT External/status interrupt vector table (16 bytes)
SCCWr SCC write base address
SCCRd SCC read base address

Device Manager 111-79

Inside Macintosh

DIALOG MANAGER

Constants

CONST { Item types }

ctrlIt em
btnCtrl
chkCtrl
radCtrl
resCtrl
statText
editText
iconltem
picItem
userltem
itemDisable

4
0
1
2
3
8
16
32
64
0;
12

{add to following four constants}
{standard button control}
{standard check box control}
{standard radio button control}
{control defined in control template}
{static text}
{editable text (dialog only)}
{icon}
{QuickDraw picture}
{application-defined item (dialog only)}
{add to any of above to disable}

{ Item numbers of OK and Cancel buttons }

ok = 1;
cancel = 2;

{ Resource IDs of alert icons }

stoplcon
noteIcon
cautionlcon

= 0
= 1
= 2

Data Types

TYPE DialogPtr = WindowPt.r;
DialogPeek = ADialogRecord;

DialogRecord =
RECORD

window:
items:
textH:
editField:
editOpen:
aDefItem:

END;

WindowRecord;
Handle;
TEHandle;
INTEGER;
INTEGER;
INTEGER

{dialog window}
{item list}
{current editText item}
{editText item number minus 1}
{used internally}
{default button item number}

DialogTHndl = ADialogTPtr;
DialogTPtr = ADialogTemplate;

111-80 Dialog Manager

Summary

DialogTemplate
RECORD

boundsRect: Rect;
procID: INTEGER
visible: BOOLEAN
fillerl: BOOLEAN
goAwayFlag: BOOLEAN
filler2: BOOLEAN
refCon: LONGINT
itemsID: INTEGER
title: Str255

END;

AlertTHndl
AlertTPtr
AlertTemplate

{becomes window's portRect}
{window definition ID}
{TRUE if visible}
{not used}
{TRUE if has go-away region}
{not used}
{window's reference value}
{resource ID of item list}
{window's title}

^AlertTPtr;
AAle rt Template;
RECORD

boundsRect: Rect ;
itemsID: INTEGER;
stages: StageList

END:

{becomes window's portRect}
{resource ID of item list}
{alert stage information}

StageList PACKED RECORD
boldItm4: 0
boxDrwn4:
sound4:
boldItm3:
boxDrwn3:
sound3:
boldItm2:
boxDrwn2:
sound2:
boldltml:
boxDrwnl:
soundl:

END;

.1; {default button item number minus 1}
BOOLEAN;
0. .3
0. .1;
BOOLEAN;
0. .3
0. .1;
BOOLEAN;
0. .3
0. .1;
BOOLEAN;
0. .3

{TRUE if alert box to be drawn}
{sound number}

Routines

Initialization

PROCEDURE InitDialogs (resumeProc: ProcPtr);
PROCEDURE ErrorSound (soundProc: ProcPtr);
PROCEDURE SetDAFont (fontNum: INTEGER) ; [Not in ROM]

Creating and Disposing of Dialogs

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; procID: INTEGER; behind:
WindowPtr; goAwayFlag: BOOLEAN; refCon: LONGINT;
items: Handle) : DialogPtr;

Dialog Manager 111-81

Inside Macintosh

FUNCTION GetNewDialog

PROCEDURE CloseDialog
PROCEDURE DisposDialog
PROCEDURE CouldDialog
PROCEDURE FreeDialog

(dialogID: INTEGER; dStorage: Ptr; behind:
WindowPtr) : DialogPtr;
(theDialog: DialogPtr);
(theDialog: DialogPtr);
(dialogID: INTEGER);
(dialogID: INTEGER);

Handling Dialog Events

PROCEDURE ModalDialog
FUNCTION IsDialogEvent
FUNCTION DialogSelect

PROCEDURE DlgCut
PROCEDURE DlgCopy
PROCEDURE DlgPaste
PROCEDURE DlgDelete
PROCEDURE DrawDialog

(filterProc: ProcPtr; VAR itemHit: INTEGER);
(theEvent: EventRecord) : BOOLEAN;
(theEvent: EventRecord; VAR theDialog:
DialogPtr; VAR itemHit: INTEGER) : BOOLEAN;
(theDialog: DialogPtr)
(theDialog: DialogPtr)
(theDialog: DialogPtr)
(theDialog: DialogPtr)
(theDialog: DialogPtr)

[Not in ROM]
[Not in ROM]
[Not in ROM]
[Not in ROM]

Invoking Alerts

FUNCTION
FUNCTION
FUNCTION
FUNCTION
PROCEDURE
PROCEDURE

Alert
StopAlert
NoteAlert
CautionAlert
CouldAlert
FreeAlert

(alertID: INTEGER; filterProc: ProcPtr)
(alertID: INTEGER; filterProc: ProcPtr)
(alertID: INTEGER; filterProc: ProcPtr)
(alertID: INTEGER; filterProc: ProcPtr)
(alertID: INTEGER);
(alertID: INTEGER);

INTEGER,
INTEGER,
INTEGER,
INTEGER

Manipulating Items in Dialogs and Alerts

PROCEDURE ParamText
PROCEDURE GetDItem

PROCEDURE SetDItem

PROCEDURE GetlText
PROCEDURE SetlText
PROCEDURE SellText

FUNCTION GetAlrtStage :
PROCEDURE ResetAlrtStage;

(param0,paraml,param2,param3: Str255);
(theDialog: DialogPtr; itemNo: INTEGER; VAR
itemType: INTEGER; VAR item: Handle; VAR box:
Rect);
(theDialog: DialogPtr; itemNo: INTEGER;
itemType: INTEGER; item: Handle; box: Rect);
(item: Handle; VAR text: Str255);
(item: Handle; text: Str255);
(theDialog: DialogPtr; itemNo: INTEGER;
strtSel,endSel: INTEGER);
INTEGER; [Not in ROM]
[Not in ROM]

Userltem Procedure

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: INTEGER);

111-82 Dialog Manager

Summary

Sound Procedure

PROCEDURE MySound (soundNo: INTEGER);

FilterProc Function for Modal Dialogs and Alerts

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER) : BOOLEAN;

Assembly-Language Information

Constants

; Item types

ctrlItem .EQU 4 ;add to following four constants
btnCtrl -EQU 0 ;standard button control
chkCtrl .EQU 1 ;standard check box control
radCtrl .EQU 2 ;standard radio button control
resCtrl .EQU 3 ;control defined in control template
statText .EQU 8 ;static text
editText .EQU 16 ;editable text (dialog only)
iconltem .EQU 32 ; icon
picItem .EQU 64 ;QuickDraw picture
userltem .EQU 0 ;application-defined item (dialog only)
itemDisable .EQU 128 ;add to any of above to disable

; Item numbers of OK and Cancel buttons

okButton .EQU 1
cancelButton .EQU 2

; Resource IDs of alert icons

stoplcon .EQU 0
notelcon .EQU 1
cautionlcon .EQU 2

; Masks for stages word in alert template

volBits .EQU 3 ;sound number
alBit .EQU 4 ;whether to draw box
okDismissal .EQU 8 ;item number of default button minus 1

Dialog Manager 111-83

Inside Macintosh

Dialog Record Data Structure

dWindow Dialog window
items Handle to dialog's item list
teHandle Handle to current editText item
editField Item number of editText item minus 1 (word)
aDefltem Item number of default button (word)
dWindLen Size in bytes of dialog record

Dialog Template Data Structure

dBounds Rectangle that becomes portRect of dialog window's grafPort (8 bytes)
dWindProc Window definition ID (word)
dVisible Nonzero if dialog window is visible (word)
dGoAway Nonzero if dialog window has a go-away region (word)
dRefCon Dialog window's reference value (long)
dltems Resource ID of dialog's item list (word)
dTide Dialog window's tide (preceded by length byte)

Alert Template Data Structure

aBounds Rectangle that becomes portRect of alert window's grafPort (8 bytes)
altems Resource ID of alert's item list (word)
aStages Stages word; information for alert stages

Item List Data Structure

dlgMaxIndex Number of items minus 1 (word)
itmHndl Handle or procedure pointer for this item
itrnRect Display rectangle for this item (8 bytes)
itmType Item type for this item (byte)
itrnData Length byte followed by data for this item (data must be even number of bytes)

Variables

ResumeProc Address of resume procedure
DAStrings Handles to ParamText strings (16 bytes)
DABeeper Address of current sound procedure
DlgFont Font number for dialogs and alerts (word)
ACount Stage number (0 through 3) of last alert (word)
ANumber Resource ID of last alert (word)

111-84 Dialog Manager

Summary

DISK DRIVER

Constants

CONST { Positioning modes }

fsAtMark
fsFromStart
fsFromMark
rdVerify

0
1
3
64

{at current sector}
{relative to first sector}
{relative to current sector}
{add to above for read-verify}

Data Types

TYPE DrvSts = RECORD
track: INTEGER; {current track}
writeProt: SignedByte; {bit 7=1 if volume is locked}
disklnPlace: SignedByte; {disk in place}
installed: SignedByte; {drive installed}
sides: SignedByte; {bit 7=0 if single-sided drive}
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {reserved for future use}
dQDrive: INTEGER; {drive number}
dQRefNum: INTEGER; {driver reference number}
dQFSID: INTEGER; {file-system identifier}
twoSideFmt: SignedByte; {-1 if two-sided disk}
needsFlush: SignedByte; {reserved for future use}
diskErrs: INTEGER {error count}

END;

Routines [Not in ROM]

FUNCTION DiskEject (drvNum: INTEGER) : OSErr;
FUNCTION SetTagBuffer (buffPtr: Ptr) : OSErr;
FUNCTION DriveStatus (drvNum: INTEGER; VAR status: DrvSts) : OSErr;

Result Codes

N a m e
noErr

nsDrvErr

paramErr

wPrErr

Va lue M e a n i n g
0 No error

-56 No such drive

-50 Bad positioning information

-44 Volume is locked by a hardware setting

Disk Driver 111-85

Inside Macintosh

N a m e Va lue
firstDskErr -84

sectNFErr -81
seekErr -80
spdAdjErr -79
twoSideErr -78
initlWMErr -77
tkOBadErr -76
cantStepErr -75
wrUnderrun -74
badDBtSlp -73
badDCksum -72
noDtaMkErr -71
badBtSlpErr -70
badCksmErr -69
dataVerErr -68
noAdrMkErr -67
noNybErr -66
offLinErr -65
noDriveErr -64

M e a n i n g
First of the range of low-level disk errors

Can't find sector
Drive error
Can't correctly adjust disk speed
Tried to read side 2 of a disk in a single-sided drive
Can't initialize disk controller chip
Can't find track 0
Drive error
Write underrun occurred
Bad data mark
Bad data mark
Can't find data mark
Bad address mark
Bad address mark
Read-verify failed
Can't find an address mark
Disk is probably blank
No disk in drive
Drive isn't connected

lastDskErr -64 Last of the range of low-level disk errors

Assembly-Language Information

Constants

Positioning modes

fsAtMark
fsFromStart
fsFromMark
rdVerify

.EQU
• EQU
.EQU
.EQU

0 ;at current sector
1 /relative to first sector
3 /relative to current sector
64 ;add to above for read-verify

csCode values for Control/Status calls

ejectCode
tgBuffCode
drvStsCode

.EQU
• EQU
.EQU

/Control call, DiskEject
/Control call, SetTagBuffer
/Status call, DriveStatus

Structure of Status Information

dsTrack Current track (word)
dsWriteProt Bit 7=1 if volume is locked (byte)
dsDisklnPlace Disk in place (byte)
dslnstalled Drive installed (byte)
dsSides Bit 7=0 if single-sided drive (byte)
dsQLink Pointer to next queue entry
dsDQDrive Drive number (word)

111-86 Disk Driver

Summary

dsDQRefNum
dsDQFSID
dsTwoSideFmt
dsDiskErrs

Driver reference number (word)
File-system identifier (word)
- 1 if two-sided disk (byte)
Error count (word)

Equivalent Device Manager Calls

Pascal rou t ine
DiskEject

SetTagBuffer

DriveStatus

Call
Control with csCode=ejectCode

Control with csCode=tgBuffCode
Status with csCode=drvStsCode, status returned in csParam through
csParam+21

Variables

BufTgFNum
BufTgFFlag
BufTgFBkNum
BufTgDate

File tags buffer: file number (long)
File tags buffer: flags (word: bit 1=1 if resource fork)
File tags buffer: logical block number (word)
File tags buffer: date and time of last modification (long)

Disk Driver 111-87

Inside Macintosh

DISK INITIALIZATION PACKAGE

Routines

PROCEDURE DILoad;
PROCEDURE DIUnload;
FUNCTION DIBadMount (where: Point; evtMessage: LONGINT) : INTEGER;
FUNCTION DIFormat (drvNum: INTEGER) : OSErr;
FUNCTION DIVerify (drvNum: INTEGER) : OSErr;
FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr;

Result Codes

N a m e Value M e a n i n g
badMDBErr -60 Bad master directory block

extFSErr -58 External file system

firstDskErr -84 First of the range of low-level disk errors

ioErr -36 I/O error

lastDskErr -64 Last of the range of low-level disk errors

memFullErr -108 Not enough room in heap zone

noErr 0 No error

noMacDskErr -57 Not a Macintosh disk

nsDrvErr -56 No such drive

paramErr -50 Bad drive number

volOnLinErr -55 Volume already on-line

Assembly-Language Information

Constants

; Routine selectors

diBadMount .EQU 0
diLoad .EQU 2
diUnload .EQU 4
diFormat .EQU 6
diVerify .EQU 8
diZero .EQU 10

111-88 Disk Initialization Package

Summary

Trap Macro Name

Pack2

Disk Initialization Package 111-89

Inside Macintosh

EVENT MANAGER, OPERATING SYSTEM

Constants

CONST { Event codes }

nullEvent = 0 {null}
mouseDown = 1 {mouse-down}
mouseUp = 2, {mouse-up}
keyDown = 3, {key-down}
keyUp = 4, {key-up}
autoKey = 5 {auto-key}
updateEvt = 6, {update; Toolbox only}
diskEvt 7, {disk-inserted}
activateEvt 8, {activate; Toolbox only}
networkEvt - 10 {network}
driverEvt = 11 {device driver}
applEvt 12 {application-defined}
app2Evt 13 {application-defined}
app3Evt - 14 {application-defined}
app4Evt = 15 {application-defined}

{ Masks for keyboard event message }

charCodeMask = $000000FF; {character code}
keyCodeMask = $0000FF00; {key code}

{ Masks for forming event mask }

mDownMask = 2;
mUpMask = 4;
keyDownMask = 8;
keyUpMask 16;
autoKeyMask = 32;
updateMask = 64;
diskMask = 128;
activMask = 256;
networkMask = 1024;
driverMask 2048;
applMask = 4096;
app2Mask = 8192;
app3Mask 16384;
app4Mask = -32768;
everyEvent = -1;

{mouse-down}
{mouse-up}
{key-down}
{key-up}
{auto-key}
{update}
{disk-inserted}
{activate}
{network}
{device driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}
{all event types}

111-90 Event Manager, Operating System

Summary

{ Modifier flags in event record }

activeFlag = 1; {set if window being activated}
btnState = 128; {set if mouse button up}
cmdKey = 256; {set if Command key down}
shiftKey = 512; {set if Shift key down}
alphaLock = 1024; {set if Caps Lock key down}
optionKey = 2048; {set if Option key down}

{ Result codes returned by PostEvent }

noErr = 0; {no error (event posted) }
evtNotEnb = 1; {event type not designated in system event mask}

Data Types

TYPE EventRecord = RECORD
what:
message:
when:
where:
modifiers:

END;

INTEGER
LONGINT
LONGINT
Point;
INTEGER

{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

EvQEl = RECORD
qLink:
qType:
evtQWhat:
evtQMessage:
evtQWhen:
evtQWhere:
evtQModifiers:

END;

QElemPtr; {next queue entry}
INTEGER; {queue type}
INTEGER; {evfent code}
LONGINT; {event message}
LONGINT; {ticks since startup}
Point; {mouse location}
INTEGER {modifier flags}

Routines

Posting and Removing Events

FUNCTION PostEvent (eventCode: INTEGER; eventMsg: LONGINT)
PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

OSErr;

Accessing Events

FUNCTION GetOSEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

FUNCTION OSEventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

Event Manager, Operating System 111-91

Inside Macintosh

; Event codes

nullEvt • EQU 0 ; null
mButDwnEvt .EQU 1 ; mouse-down
mButUpEvt .EQU 2 ; mouse-up
keyDwnEvt .EQU 3 ;key-down
keyUpEvt .EQU 4 ;key-up
autoKeyEvt .EQU 5 ;auto-key
updatEvt .EQU 6 ;update; Toolbox only
disklnsertEvt .EQU 7 ;disk-inserted
activateEvt • EQU 8 ;activate; Toolbox only
networkEvt .EQU 10 ;network
ioDrvrEvt • EQU 11 ;device driver
applEvt .EQU 12 ;application-defined
app2Evt .EQU 13 ;application-defined
app3Evt .EQU 14 ;application-defined
app4Evt .EQU 15 ;application-defined

; Modifier flags in event record

activeFlag -EQU 0 ;set if window being activated
btnState .EQU 2 ;set if mouse button up
cmdKey .EQU 3 ;set if Command key down
shiftKey .EQU 4 ;set if Shift key down
alphaLock .EQU 5 ;set if Caps Lock key down
optionKey .EQU 6 ;set if Option key down

; Result codes returned by PostEvent

noErr .EQU 0 ;no error (event posted)
evtNotEnb .EQU 1 ;event type not designated in ;

; event mask

111-92 Event Manager, Operating System

Setting the System Event Mask

PROCEDURE SetEventMask (theMask: INTEGER); [Not in ROM]

Directly Accessing the Event Queue

FUNCTION GetEvQHdr : QHdrPtr; [Not in ROM]

Assembly-Language Information

Constants

Summary

Event Record Data Structure

evtNum Event code (word)
evtMessage Event message (long)
evtTicks Ticks since startup (long)
evtMouse Mouse location (point; long)
evtMeta State of modifier keys (byte)
evtMBut State of mouse button (byte)
evtBlkSize Size in bytes of event record

Event Queue Entry Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
evtQWhat Event code (word)
evtQMessage Event message (long)
evtQWhen Ticks since startup (long)
evtQWhere Mouse location (point; long)
evtQMeta State of modifier keys (byte)
evtQMBut State of mouse button (byte)
evtQBlkSize Size in bytes of event queue entry

Routines

Trap macro
_PostEvent

_FlushEvents

GetOSEvent
and

OSEventAvail

On entry
AO: eventCode (word)
DO: eventMsg (long)

DO: low word: eventMask
high word: stopMask

AO: ptr to event record
theEvent

DO: eventMask (word)

On exit
DO: result code (word)

DO: 0 or event code (word)

DO: 0 if non-null event,
- 1 if null event (byte)

Variables

SysEvtMask System event mask (word)
EventQueue Event queue header (10 bytes)

Event Manager, Operating System 111-93

Inside Macintosh

EVENT MANAGER, TOOLBOX

Constants

CONST { Event codes }
nullEvent = 0;
mouseDown 1;
mouseUp 2;
keyDown = 3;
keyUp = 4;
autoKey = 5;
updateEvt = 6;
diskEvt = 7;
activateEvt = 8;
networkEvt 10
driverEvt = 11
applEvt = 12
app2Evt = 13
app3Evt = 14
app4Evt 15

{null}
{mouse down}
{mouse up}
{key-down}
{key-up}
{auto-key}
{update}
{disk-inserted}
{activate}
{network}
{device driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

{ Masks for keyboard event message }

charCodeMask = $000000FF; {character code}
keyCodeMask = $0000FF00; {key code}

{ Masks for forming event mask }

mDownMask = 2;
mUpMask = 4;
keyDownMask = 8;
keyUpMask = 16;
autoKeyMask = 32;
updateMask = 64;
diskMask = 128;
activMask = 256;
networkMask = 1024;
driverMask = 2048;
applMask = 4096;
app2Mask = 8192;
app3Mask = 16384;
app4Mask = -327 68;
everyEvent = -1;

{mouse down}
{mouse up}
{key-down}
{key-up}
{auto-key}
{update}
{disk-inserted}
{activate}
{network}
{device driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}
{all event types}

111-94 Event Manager, Toolbox

Summary

{ Modifier flags in event record }

activeFlag = 1; {set if window being activated}
btnState = 128; {set if mouse button up}
cmdKey = 256; {set if Command key down}
shiftKey = 512; {set if Shift key down}
alphaLock = 1024; {set if Caps Lock key down}
optionKey = 2048; {set if Option key down}

Data Types

TYPE EventRecord = RECORD
what:
message:
when:
where:
modifiers:

END;

INTEGER; {event code}
LONGINT; {event message}
LONGINT; {ticks since startup}
Point; {mouse location}
INTEGER {modifier flags}

KeyMap = PACKED ARRAY[0..127] OF BOOLEAN;

Routines

Accessing Events

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent:
EventRecord) : BOOLEAN;

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent:
EventRecord) : BOOLEAN;

Reading the Mouse

PROCEDURE GetMouse
FUNCTION Button :
FUNCTION StillDown

(VAR mouseLoc: Point);
BOOLEAN;
BOOLEAN

FUNCTION WaitMouseUp : BOOLEAN

Reading the Keyboard and Keypad

PROCEDURE GetKeys (VAR theKeys: KeyMap);

Miscellaneous Routines

FUNCTION TickCount
FUNCTION GetDblTime
FUNCTION GetCaretTime

LONGINT
LONGINT
LONGINT

[Not in ROM]
[Not in ROM]

Event Manager, Toolbox 111-95

Inside Macintosh

Event Message in Event Record

Event type

Keyboard

Activate, update

Disk-inserted

Mouse-down,
mouse-up, null

Network

Device driver

Application-
defined

Even t message

Character code and key code in low-order word

Pointer to window

Drive number in low-order word, File Manager result code in high-
order word

Undefined

Handle to parameter block

See chapter describing driver

Whatever you wish

Assembly-Language Information

Constants

; Event codes

nullEvt .EQU 0 ; null
mButDwnEvt .EQU 1 ;mouse-down
mButUpEvt .EQU 2 ;mouse-up
keyDwnEvt .EQU 3 ;key-down
keyUpEvt -EQU 4 ;key-up
autoKeyEvt .EQU 5 ;auto-key
updatEvt .EQU 6 ;update
disklnsertEvt • EQU 7 ;disk-inserted
activateEvt .EQU 8 /activate
networkEvt -EQU 10 /network
ioDrvrEvt .EQU 11 /device driver
applEvt .EQU 12 /application-defined
app2Evt .EQU 13 /application-defined
app3Evt .EQU 14 /application-defined
app4Evt .EQU 15 /application-defined

; Modifier flags in event record

activeFlag .EQU 0 /set if window being activated
btnState .EQU 2 /set if mouse button up
cmdKey .EQU 3 /set if Command key down
shiftKey .EQU 4 /set if Shift key down
alphaLock .EQU 5 / set if Caps Lock key down
optionKey .EQU 6 /set if Option key down

111-96 Event Manager, Toolbox

Summary

; Journaling mechanism Control call

jPlayCtl .EQU 16 ;journal in playback mode
jRecordCtl .EQU 17 ;journal in recording mode
jcTickCount -EQU 0 ;journal code for TickCount
jcGetMouse .EQU 1 ;journal code for GetMouse
jcButton .EQU 2 ;journal code for Button
jcGetKeys .EQU 3 ;journal code for GetKeys
j cEvent .EQU 4 ;journal code for GetNextEvent and EventAvail

Event Record Data Structure

evtNum Event code (word)
evtMessage Event message (long)
evtTicks Ticks since startup (long)
evtMouse Mouse location (point; long)
evtMeta State of modifier keys (byte)
evtMBut State of mouse button (byte)
evtBlkSize Size in bytes of event record

Variables

KeyThresh
KeyRepThresh
WindowList
ScrDmpEnb

Ticks
DoubleTime
CaretTime
JoumalRef
JournalFlag

Auto-key threshold (word)
Auto-key rate (word)
0 if using events but not windows (long)
0 if GetNextEvent shouldn't process Command-Shift-number
combinations (byte)
Current number of ticks since system startup (long)
Double-click interval in ticks (long)
Caret-blink interval in ticks (long)
Reference number of journaling device driver (word)
Journaling mode (word)

Event Manager, Toolbox 111-97

Inside Macintosh

FILE MANAGER

Constants

CONST { Flags in file information used by the Finder }

fHasBundle =
fInvisible =
fTrash =
fDesktop =
fDisk

8192; {set if file has a bundle}
16384; {set if file's icon is invisible}
-3; {file is in Trash window}
-2; {file is on desktop}
0; {file is in disk window}

{ Values for requesting read/write access }

fsCurPerm = 0
fsRdPerm = 1
fsWrPerm = 2
fsRdWrPerm = 3

{whatever is currently allowed}
{request to read only}
{request to write only}
{request to read and write}

{ Positioning modes }

fsAtMark = 0;
fsFromStart = 1;
fsFromLEOF = 2;
fsFromMark = 3;
rdVerify = 64;

{at current mark}
{offset relative to beginning of file}
{offset relative to logical end-of-file}
{offset relative to current mark}
{add to above for read-verify}

Data Types

TYPE FInfo = RECORD
fdType: OSType; {file type}
fdCreator: OSType; {file's creator}
fdFlags: INTEGER; {flags}
fdLocation: Point; {file's location}
fdFldr: INTEGER {file's window}

END;

ParamBlkType (ioParam,fileParam,volumeParam,cntrlParam);

ParmBlkPtr =
ParamBlockRec =

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

""ParamBlockRec ;
RECORD
QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{volume or file name}
{volume reference or drive number}

111-98 File Manager

Summary

CASE ParamBlkType OF
ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOffset:

fileParam:
(ioFRefNum:
ioFVersNum:
fillerl:
ioFDirlndex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrlnfo
ioFlNum:
ioFlStBlk:
ioFlLgLen:
ioFlPyLen:
ioFlRStBlk:

INTEGER; {path reference number}
SignedByte; {version number}
SignedByte; {read/write permission}
Ptr; {miscellaneous}
Ptr; {data buffer}
LONGINT; {requested number of bytes}
LONGINT; {actual number of bytes}
INTEGER; {positioning mode and newline character}
LONGINT); {positioning offset}

INTEGER;
SignedByte;
SignedByte;
INTEGER;
SignedByte;
SignedByte
FInfo;
LONGINT;
INTEGER;
LONGINT;
LONGINT;
INTEGER;

ioFlRLgLen:
ioFlRPyLen:

LONGINT;
LONGINT;

ioFlCrDat:
ioFlMdDat:

volumeParam:
(filler2:
ioVolIndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBILn:
ioVNmAlBlks
ioVAlBlkSiz
ioVClpSiz:
ioAlBlSt:
ioVNxtFNum:
ioVFrBlk:

cntrlParam:
. . . {used by Device

END;

LONGINT;
LONGINT)

LONGINT
INTEGER
LONGINT
LONGINT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
LONGINT
LONGINT
INTEGER
LONGINT
INTEGER)

path reference number}
version number}
not used}
sequence number of file}
file attributes}
version number}
information used by the Finder}
file number}
first allocation block of data fork}
logical end-of-file of data fork}
physical end-of-file of data fork}
first allocation block of resource }
fork}

logical end-of-file of resource fork}
physical end-of-file of resource }
fork}

date and time of creation}
date and time of last modification}

not used}
volume index}
date and time of initialization}
date and time of last backup}
bit 15=1 if volume locked}
number of files in directory}
first block of directory}
length of directory in blocks}
number of allocation blocks}
size of allocation blocks}
number of bytes to allocate}
first allocation block in block map}
next unused file number}
number of unused allocation blocks}

Manager}

File Manager 111-99

Inside Macintosh

VCB = RECORD
qLink: QElemPtr; {next queue entry}
qType: INTEGER ; {queue type}
vcbFlags: INTEGER {bit 15=1 if dirty}
vcbSigWord: INTEGER {always $D2D7}
vcbCrDate: LONGINT ; {date and time of initialization}
vcbLsBkUp: LONGINT {date and time of last backup}
vcbAtrb: INTEGER ; {volume attributes}
vcbNmFls: INTEGER {number of files in directory}
vcbDirSt: INTEGER {first block of directory}
vcbBlLn: INTEGER {length of directory in blocks}
vcbNmBlks: INTEGER {number of allocation blocks}
vcbAlBlkSiz: LONGINT {size of allocation blocks}
vcbClpSiz: LONGINT {number of bytes to allocate}
vcbAlBlSt: INTEGER, {first allocation block in block map}
vcbNxtFNum: LONGINT, {next unused file number}
vcbFreeBks: INTEGER, {number of unused allocation blocks}
vcbVN: STRING[27]; {volume name}
vcbDrvNum INTEGER, {drive number}
vcbDRefNum: INTEGER, {driver reference number}
vcbFSID: INTEGER, {file-system identifier}
vcbVRefNum: INTEGER, {volume reference number}
vcbMAdr: Ptr; {pointer to block map}
vcbBufAdr: Ptr; {pointer to volume buffer}
vcbMLen: INTEGER; {number of bytes in block map}
vcbDirlndex: INTEGER; {used internally}
vcbDirBlk: INTEGER {used internally}

END;

DrvQEl = RECORD
qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:

QElemPtr
INTEGER
INTEGER
INTEGER,
INTEGER

{next queue entry}
{queue type}
{drive number}
{driver reference number}
{file-system identifier}

dQDrvSize: INTEGER {number of logical blocks}
END;

High-Level Routines [Not in ROM]

Accessing Volumes

FUNCTION GetVInfo

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

GetVRefNum
GetVol
SetVol
FlushVol
UnmountVol
Eject

(drvNum: INTEGER; volName: StringPtr; VAR vRefNum:
INTEGER; VAR freeBytes: LONGINT) : OSErr;
(pathRefNum: INTEGER; VAR vRefNum: INTEGER) : OSErr;
(volName: StringPtr; VAR vRefNum: INTEGER) : OSErr;
(volName: StringPtr; vRefNum: INTEGER) : OSErr
(volName: StringPtr; vRefNum: INTEGER) : OSErr
(volName: StringPtr; vRefNum: INTEGER) : OSErr
(volName: StringPtr; vRefNum: INTEGER) : OSErr

III-100 File Manager

Summary

Accessing Files

FUNCTION Create

FUNCTION FSOpen

FUNCTION OpenRF

FUNCTION FSRead

FUNCTION FSWrite

FUNCTION GetFPos
FUNCTION SetFPos

FUNCTION GetEOF
FUNCTION SetEOF
FUNCTION Allocate
FUNCTION FSClose

(fileName: Str255; vRefNum: INTEGER; creator: OSType;
fileType: OSType) : OSErr;
(fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;
(fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
OSErr;
(refNum: INTEGER; VAR count: LONGINT; buffPtr: Ptr)
OSErr;
(refNum: INTEGER; VAR filePos: LONGINT) : OSErr;
(refNum: INTEGER; posMode: INTEGER; posOff: LONGINT)
OSErr;
(refNum: INTEGER; VAR logEOF: LONGINT) : OSErr;
(refNum: INTEGER; logEOF: LONGINT) : OSErr;
(refNum: INTEGER; VAR count: LONGINT) : OSErr;
(refNum: INTEGER) : OSErr;

Changing Information About Files

FUNCTION GetFInfo (fileName: Str255; vRefNum: INTEGER; VAR fndrlnfo:
FInfo) : OSErr;

FUNCTION SetFInfo (fileName: Str255; vRefNum: INTEGER; fndrlnfo: FInfo):
OSErr;

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName: Str255) :

OSErr;
FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;

Low-Level Routines

Initializing the File I/O Queue

PROCEDURE FInitQueue;

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;
<r- 16 ioResult word
<-» 22 ioVRefNum word

File Manager III-101

Inside Macintosh

FUNCTION PBGetVInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-» 12 ioCompletion pointer
<— 16 ioResult word
<-> 18 ioNamePtr pointer
<-> 22 ioVRefNum word
—> 28 ioVolIndex word
<— 30 ioVQDate long word
<— 34 ioVLsBkUp long word
<r- 38 ioVAtrb word
<r- 40 ioVNmFls word
<— 42 ioVDirSt word
<- 44 ioVBILn word
<— 46 ioVNmAlBlks word
<— 48 ioVAlBlkSiz long word
<— 52 ioVClpSiz long word
<— 56 ioAlBlSt word
<— 58 ioVNxtFNum long word
<— 62 ioVFrBlk word

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
<— 18 ioNamePtr pointer
<— 22 ioVRefNum word

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4— 16 ioResult word
—> 18 ioNamePtr pointer
- > 22 ioVRefNum word

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—» 18 ioNamePtr pointer
—> 22 ioVRefNum word

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErr;
<— 16 ioResult word
—> 18 ioNamePtr pointer
-> 22 ioVRefNum word

FUNCTION PBOffLine (paramBlock: ParmBlkPtr) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer

22 ioVRefNum word

III-102 File Manager

Summary

FUNCTION PBEject (paramBlock: ParmBlkPtr) : OSErr;
—> 12 ioCompletion pointer
4— 16 ioResult word
—» 18 ioNamePt pointer
-> 22 ioVRefNum word

Accessing Files

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
12 ioCompletion pointer

4 - 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word

26 ioFVersNum byte

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4 - 16 ioResult word
—> 18 ioNamePtr pointer
-» 22 ioVRefNum word
4 - 24 ioRefNum word
—» 26 ioVersNum byte
—> 27 ioPermssn byte
—> 28 ioMisc pointer

FUNCTION PBOpenRF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4 - 16 ioResult word

18 ioNamePtr pointer
-> 22 ioVRefNum word
4 - 24 ioRefNum word

26 ioVersNum byte
- 4 27 ioPermssn byte
—> 28 ioMisc pointer

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
12 ioCompletion pointer

4 - 16 ioResult word
-> 24 ioRefNum word
- 4 32 ioBuffer pointer
—> 36 ioReqCount long word
4 - 40 ioActCount long word
- 4 44 ioPosMode word
4-> 46 ioPosOffset long word

File Manager 111-103

Inside Macintosh

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
<— 16 ioResult word
-» 24 ioRefNum word
—> 32 ioBuffer pointer
—» 36 ioReqCount long word
<— 40 ioActCount long word
-» 44 ioPosMode word
<-» 46 ioPosOffset long word

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
12 ioCompletion pointer

<— 16 ioResult word
—> 24 ioRefNum word

36 ioReqCount long word
<— 40 ioActCount long word
<— 44 ioPosMode word
<— 46 ioPosOffset long word

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 44 ioPosMode word
<-» 46 ioPosOffset long word

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
<— 28 ioMisc long word

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—» 24 ioRefNum word
—> 28 ioMisc long word

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word
—> 36 ioReqCount long word
<— 40 ioActCount long word

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 24 ioRefNum word

III-104 File Manager

Summary

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
4— 16 ioResult word
—> 24 ioRefNum word

Changing information About Files

FUNCTION PBGetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
- 4 12 ioCompletion pointer
4 - 16 ioResult word
4 4 18 ioNamePtr pointer
- 4 22 ioVRefNum word
4 - 24 ioFRefNum word
- 4 26 ioFVersNum byte
- 4 28 ioFDirlhdex word
4 - 30 ioFlAttrib byte
4 - 31 ioFlVersNum byte
4 - 32 ioFlFndrlnfo 16 bytes
4 - 48 ioFlNum long word
4 - 52 ioFlStBlk word
4 - 54 ioFILgLen long word
4 - 58 ioFlPyLen long word
4 - 62 ioFlRStBlk word
4 - 64 ioFlRLgLen long word
4 - 68 ioFlRPyLen long word
4— 72 ioFlCrDat long word
4 - 76 ioFIMdDat long word

FUNCTION PBSetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
- 4 12 ioCompletion pointer
4 - 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word
- 4 26 ioFVersNum byte
- 4 32 ioFlFndrlnfo 16 bytes
-> 72 ioFlCrDat long word
- 4 76 ioFIMdDat long word

FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
4 - 16 ioResult word
- 4 18 ioNamePtr pointer
—> 22 ioVRefNum word
—> 26 ioFVersNum byte

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
-> 12 ioCompletion pointer
4 - 16 ioResult word
- 4 18 ioNamePtr pointer
-> 22 ioVRefNum word
- 4 26 ioFVersNum byte

File Manager III-105

Inside Macintosh

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—» 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word
—> 26 ioVersNum byte
—» 28 ioMisc byte

FUNCTION PBRename (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
12 ioCompletion pointer

<— 16 ioResult word
—» 18 ioNamePtr pointer

22 ioVRefNum word
—» 26 ioVersNum byte
- 4 28 ioMisc pointer

FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
—> 12 ioCompletion pointer
<— 16 ioResult word
—> 18 ioNamePtr pointer
—> 22 ioVRefNum word
—> 26 ioFVersNum byte

Accessing Queues [Not in ROM]

FUNCTION GetFSQHdr : QHdrPtr;
FUNCTION GetVCBQHdr : QHdrPtr;
FUNCTION GetDrvQHdr : QHdrPtr;

Result Codes

N a m e Value M e a n i n g
badMDBErr -60 Master directory block is bad; must reinitialize volume

bdNamErr -37 Bad file name or volume name (perhaps zero-length)

dirFulErr -33 File directory full

dskFulErr -34 All allocation blocks on the volume are full

dupFNErr -48 A file with the specified name and version number already exists

eofErr -39 Logical end-of-file reached during read operation

extFSErr -58 External file system; file-system identifier is nonzero, or path

reference number is greater than 1024

fBsyErr -47 One or more files are open

fLckdErr -45 File locked

fnfErr -43 File not found

fnOpnErr -38 File not open

III-I06 File Manager

Summary

N a m e Value M e a n i n g
fsRnErr -59 Problem during rename

gfpErr -52 Error during GetFPos

ioErr -36 I/O error

memFullErr -108 Not enough room in heap zone

noErr 0 No error

noMacDskErr -57 Volume lacks Macintosh-format directory

nsDrvErr -56 Specified drive number doesn't match any number in the drive queue

nsvErr -35 Specified volume doesn't exist

opWrErr -49 The read/write permission of only one access path to a file can allow
writing

paramErr -50 Parameters don't specify an existing volume, and there's no default paramErr
volume

permErr -54 Attempt to open locked file for writing

posErr -40 Attempt to position before start of file

rfNumErr -51 Reference number specifies nonexistent access path

tmfoErr -42 Too many files open

volOffLinErr -53 Volume not on-line

volOnLinErr -55 Specified volume is already mounted and on-line

vLckdErr -46 Volume is locked by a software flag

wrPermErr -61 Read/write permission doesn't allow writing

wPrErr -44 Volume is locked by a hardware setting

Assembly-Language Information

Constants

; Flags in file information used by the Finder

fHasBundle .EQU 13 ;set if file has a bundle
fInvisible .EQU 14 ;set if file's icon is invisible

; Flags in trap words

asnycTrpBit .EQU 10 ;set for an asynchronous call
noQueueBit .EQU 9 ;set for immediate execution

File Manager 111-107

Inside Macintosh

Values for requesting read/write access

fsCurPerm .EQU 0 ;whatever is currently allowed
fsRdPerm .EQU 1 /request to read only
fsWrPerm .EQU 2 /request to write only
fsRdWrPerm • EQU 3 /request to read and write

; Positioning modes

fsAtMark .EQU 0 /at current mark
fsFromStart .EQU 1 /offset relative to beginning of file
fsFromLEOF .EQU 2 /offset relative to logical end-of-file
fsFromMark • EQU 3 /offset relative to current mark
rdVerify .EQU 64 /add to above for read-verify

Structure of File Information Used by the Finder

fdType File type (long)
fdCreator File's creator (long)
fdFlags Flags (word)
fdLocation File's location (point; long)
fdFldr File's window (word)

Standard Parameter Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
ioTrap Routine trap (word)
ioCmdAdeh Routine address
ioCompletion Address of completion routine
ioResult Result code (word)
ioFileName Pointer to file name (preceded by length byte)
ioVNPtr Pointer to volume name (preceded by length byte)
ioVRefNum Volume reference number (word)
ioDrvNum Drive number (word)

I/O Parameter Block Data Structure

ioRefNum Path reference number (word)
ioFileType Version number (byte)
ioPermssn Read/write permission (byte)
ioNewName Pointer to new file or volume name for Rename
ioLEOF Logical end-of-file for SetEOF (long)
ioOwnBuf Pointer to access path buffer
ioNewType New version number for SetFilType (byte)
ioBuffer Pointer to data buffer
ioReqCount Requested number of bytes (long)
ioActCount Actual number of bytes (long)
ioPosMode Positioning mode and newline character (word)

III-108 File Manager

Summary

ioPosOffset Positioning offset (long)
ioQElSize Size in bytes of I/O parameter block

Structure of File Information Parameter Block

ioRefNum Path reference number (word)
ioFileType Version number (byte)
ioFDirlndex Sequence number of file (word)
ioHAttrib File attributes (byte)
ioFFlType Version number (byte)
ioFlUsrWds Information used by the Finder (16 bytes)
ioFFlNum File number (long)
ioFlStBlk First allocation block of data fork (word)
ioFlLgLen Logical end-of-file of data fork (long)
ioFlPyLen Physical end-of-file of data fork (long)
ioFlRStBlk First allocation block of resource fork (word)
ioFlRLgLen Logical end-of-file of resource fork (long)
ioFlRPyLen Physical end-of-file of resource fork (long)
ioFlCrDat Date and time of creation (long)
ioFlMdDat Date and time of last modification (long)
ioFQElSize Size in bytes of file information parameter block

Structure of Volume Information Parameter Block

ioVolIndex Volume index (word)
ioVCrDate Date and time of initialization (long)
ioVLsBkUp Date and time of last backup (long)
ioVAtrb Volume attributes (word)
ioVNmFls Number of files in directory (word)
ioVDirSt First block of directory (word)
ioVBILn Length of directory in blocks (word)
ioVNmAlBlks Number of allocation blocks on volume (word)
ioVAlBlkSiz Size of allocation blocks (long)
ioVClpSiz Number of bytes to allocate (long)
ioAlBlSt First allocation block in block map (word)
ioVNxtFNum Next unused file number (long)
ioVFrBlk Number of unused allocation blocks (word)
ioVQElSize Size in bytes of volume information parameter block

Volume Information Data Structure

drSigWord Always $D2D7 (word)
drCrDate Date and time of initialization (long)
drLsBkUp Date and time of last backup (long)
drAtrb Volume attributes (word)
drNmFls Number of files in directory (word)
drDirSt First block of directory (word)
drBILn Length of directory in blocks (word)
drNmAlBlks Number of allocation blocks on volume (word)
drAlBlkSiz Size of allocation blocks (long)

File Manager III-109

Inside Macintosh

drClpSiz Number of bytes to allocate (long)
drAlBlSt First allocation block in block map (word)
drNxtFNum Next unused file number (long)
drFreeBks Number of unused allocation blocks (word)
drVN Volume name preceded by length byte (28 bytes)

File Directory Entry Data Structure

flFlags Bit 7=1 if entry used; bit 0=1 if file locked (byte)
flTyp Version number (byte)
flUsrWds Information used by the Finder (16 bytes)
flFlNum File number (long)
flStBlk First allocation block of data fork (word)
flLgLen Logical end-of-file of data fork (long)
flPyLen Physical end-of-file of data fork (long)
flRStBlk First allocation block of resource fork (word)
flRLgLen Logical end-of-file of resource fork (long)
flRPyLen Physical end-of-file of resource fork (long)
flCrDat Date and time file of creation (long)
flMdDat Date and time of last modification (long)
flNam File name preceded by length byte

Volume Control Block Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
vcbFlags Bit 15=1 if volume control block is dirty (word)
vcbSigWord Always $D2D7 (word)
vcbCrDate Date and time of initialization (word)
vcbLsBkUp Date and time of last backup (long)
vcbAtrb Volume attributes (word)
vcbNmFls Number of files in directory (word)
vcbDirSt First block of directory (word)
vcbBILn Length of directory in blocks (word)
vcbNmBlks Number of allocation blocks on volume (word)
vcbAlBlkSiz Size of allocation blocks (long)
vcbClpSiz Number of bytes to allocate (long)
vcbAlBlSt First allocation block in block map (word)
vcbNxtFNum Next unused file number (long)
vcbFreeBks Number of unused allocation blocks (word)
vcbVN Volume name preceded by length byte (28 bytes)
vcbDrvNum Drive number of drive in which volume is mounted (word)
vcbDRefNum Driver reference number of driver for drive in which volume is mounted

(word)
vcbFSID File-system identifier (word)
vcbVRefNum Volume reference number (word)
vcbMAdr Pointer to volume block map
vcbBuf Adr Pointer to volume buffer
vcbMLen Number of bytes in volume block map (word)

III-110 File Manager

Summary

File Control Block Data Structure

fcbFlNum File number (long)
fcbMdRByt Flags (byte)
fcbTypByt Version number (byte)
fcbSBlk First allocation block of file (word)
fcbEOF Logical end-of-file (long)
fcbPLen Physical end-of-file (long)
fcbCrPs Mark (long)
fcbVPtr Pointer to volume control block (long)
fcbBf Adr Pointer to access path buffer (long)

Drive Queue Entry Data Structure

qLink Pointer to next queue entry
qType Queue type (word)
dQDrive Drive number (word)
dQRefNum Driver reference number (word)
dQFSID File-system identifier (word)
dQDrvSize Number of logical blocks (word)

Macro Names

Pascal n a m e Macro name
FInitQueue _InitQueue
PBMountVol MountVol
PBGetVInfo GetVolInfo
PBGetVol GetVol
PBSetVol SetVol
PBFlushVol _FlushVol
PBUnmountVol UnmountVol
PBOffLine _OffLine
PBEject _Eject
PBCreate Create
PBOpen Open
PBOpenRF OpenRF
PBRead Read
PBWrite Write
PBGetFPos GetFPos
PBSetFPos SetFPos
PBGetEOF GetEOF
PBSetEOF SetEOF
PBAllocate Allocate
PBFlushFile FlushFile
PBClose Close
PBGetFInfo GetFilelnfo
PBSetFInfo SetFilelnfo
PBSetFLock SetFilLock
PBRstFLock RstFilLock

File Manager Ill-Ill

Inside Macintosh

PBSetFVers _SetFilType
PB Rename _Rename
PBDelete Delete

Variables

FSQHdr File I/O queue header (10 bytes)
VCBQHdr Volume-control-block queue header (10 bytes)
DefVCBPtr Pointer to default volume control block
FCBSPtr Pointer to file-control-block buffer
DrvQHdr Drive queue header (10 bytes)
ToExtFS Pointer to external file system

III-112 File Manager

Summary

FONT MANAGER

Constants

CONST { Font numbers }

systemFont = 0 ; {system font}
applFont = 1; {application font}
newYork = 2;
geneva = 3;
monaco = 4;
Venice = 5;
london = 6;
athens = 7;
sanFran = 8;
toronto = 9;
cairo = 11;
losAngeles = 12;
times = 20;
helvetica = 21;
courier = 22;
symbol = 23;
taliesin = 24;

{ Special characters }

commandMark = $11; {Command key symbol}
checkMark = $12; {check mark}
diamondMark = $13; {diamond symbol}
appleMark = $14; {apple symbol}

{ Font types }

propFont = $9000;
fixedFont = $B000;
fontWid = $ACB0;

{proportional font}
{fixed-width font}
{font width data}

Data Types

TYPE FMInput = PACKED RECORD
family: INTEGER;
size: INTEGER;
face: Style;
needBits: BOOLEAN;
device: INTEGER;
numer: Point;
denom: Point

END;

{font number}
{font size}
{character style}
{TRUE if drawing}
{device-specific information}
{numerators of scaling factors}
{denominators of scaling factors}

Font Manager 111-113

Inside Macintosh

FMOutPtr ="FMOutput;
FMOutput =

PACKED RECORD
errNum: INTEGER; {not used}
fontHandle: Handle; {handle to font record}
bold: Byte; {bold factor}
italic: Byte; {italic factor}
ulOffset: Byte; {underline offset}
ul Shadow: Byte; {underline shadow}
ulThick: Byte; {underline thickness}
shadow: Byte; {shadow factor}
extra: SignedByte; {width of style}
ascent: Byte; {ascent}
descent: Byte; {descent}
widMax: Byte; {maximum character width}
leading: SignedByte; {leading}
unused: Byte; {not used}
numer: Point; {numerators of scaling factors}
denom: Point {denominators of scaling factors}

END;

FontRec =
RECORD
fontType: INTEGER {font type}
firstChar: INTEGER {ASCII code of first character}
lastChar: INTEGER {ASCII code of last character}
widMax: INTEGER {maximum character width}
kernMax: INTEGER {negative of maximum character kern
nDescent: INTEGER, {negative of descent}
fRectWidth: INTEGER, {width of font rectangle}
fRectHeight: INTEGER, {height of font rectangle}
owTLoc: INTEGER, {offset to offset/width table}
ascent: INTEGER, {ascent}
descent: INTEGER, {descent}
leading: INTEGER, {leading}
rowWords: INTEGER, {row width of bit image / 2}
bitImage: ARRAY[1 .rowWords,1..fRectHeight] OF INTEGER;

{bit image}
locTable: ARRAY[firstChar..lastChar+2] OF INTEGER; }

{location table}
{ owTable: ARRAY[firstChar..lastChar+2] OF INTEGER; }

{offset/width table}
END;

Routines

Initializing the Font Manager

PROCEDURE InitFonts;

III-114 Font Manager

Summary

Getting Font Information

PROCEDURE GetFontName (fontNum: INTEGER; VARtheName: Str255);
PROCEDURE GetFNum (fontName: Str255; VAR theNum: INTEGER);
FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN;

Keeping Fonts in Memory

PROCEDURE SetFontLock (lockFlag: BOOLEAN);

Advanced Routine

FUNCTION FMSwapFont (inRec: FMInput) : FMOutPtr;

Assembly-Language Information

Constants

; Font numbers

sysFont .EQU 0 ;system font
applFont .EQU 1 ;application font
newYork .EQU 2
geneva .EQU 3
monaco .EQU 4
venice .EQU 5
london .EQU 6
athens .EQU 7
sanFran • EQU 8
toronto .EQU 9
cairo .EQU 11
losAngeles .EQU 12
times • EQU 20
helvetica .EQU 21
courier .EQU 22
symbol .EQU 23
taliesin • EQU 24

; Special characters

commandMark .EQU $11 ;Command key symbol
checkMark .EQU $12 ;check mark
diamondMark .EQU $13 ;diamond symbol
appleMark .EQU $14 ;apple symbol

; Font types

propFont .EQU $9000 ;proportional font

Font Manager III-115

Inside Macintosh

fixedFont .EQU $B000 ;fixed-width font
fontWid .EQU $ACB0 ;font width data

; Control and Status call code

fMgrCtll .EQU 8 ;code used to get and modify font
; characterization table

Font Input Record Data Structure

frrJaFamily Font number (word)
fmlnSize Font size (word)
fmlnFace Character style (word)
fmlnNeedBits Nonzero if drawing (byte)
fmlnDevice Device-specific information (byte)
fmlnNumer Numerators of scaling factors (point; long)
fmlnDenom Denominators of scaling factors (point; long)

Font Output Record Data Structure

fmOutFontH
fmOutBold
fmOutltalic
fmOutUlOffset
fmOutUlShadow
fmOutUlThick
fmOutShadow
fmOutExtra
fmOutAscent
fmOutDescent
fmOutWidMax
fmOutLeading
fmOutNumer
fmOutDenom

Handle to font record
Bold factor (byte)
Italic factor (byte)
Underline offset (byte)
Underline shadow (byte)
Underline thickness (byte)
Shadow factor (byte)
Width of style (byte)
Ascent (byte)
Descent (byte)
Maximum character width (byte)
Leading (byte)
Numerators of scaling factors (point; long)
Denominators of scaling factors (point; long)

Font Record Data Structure

fFontType Font type (word)
fFirstChar ASCII code of first character (word)
fLastChar ASCII code of last character (word)
fWidMax Maximum character width (word)
fKernMax Negative of maximum character kern (word)
fNDescent Negative of descent (word)
fFRectWidth Width of font rectangle (word)
fFRectHeight Height of font rectangle (word)
fOWTLoc Offset to offset/width table (word)
fAscent Ascent (word)
fDescent Descent (word)
fLeading Leading (word)

III-116 Font Manager

Summary

fRowWords Row width of bit image / 2 (word)

Special Macro Names

Pascal n a m e Macro name
GetFontName GetFName

Variables

ApFontID Font number of application font (word)
FScaleDisable Nonzero to disable scaling (byte)
ROMFontO Handle to font record for system font

Font Manager III-117

Inside Macintosh

INTERNATIONAL UTILITIES PACKAGE

Constants

CONST { Masks for currency format }

currSymLead = 16; {set
currNegSym = 32; {set
currTrailingZ = 64; {set
currLeadingZ = 128; {set

if currency symbol leads}
if minus sign for negative}
if trailing decimal zeroes}
if leading integer zero}

{ Order of short date elements }

mdy = 0
dmy = 1
ymd = 2

{month day year}
{day month year}
{year month day}

{ Masks for short date format }

dayLdingZ = 32;
mntLdingZ = 64;
century = 128;

{set if leading zero for day}
{set if leading zero for month}
{set if century included}

{ Masks for time format }

secLeadingZ = 32;
minLeadingZ = 64;
hrLeadingZ = 128;

{set if leading zero for seconds}
{set if leading zero for minutes}
{set if leading zero for hours}

{ High-order byte of version information }

verUS
verFrance
verBritain
verGermany
verltaly
verNetherlands
ve rBelgiumLux
verSweden
verSpain
verDenmark
verPortugal
verFrCanada
verNorway
verlsrael
verJapan
verAustralia
verArabia
verFinland

9
10
11
12
13
14
15
16
17

III-118 International Utilities Package

Summary

verFrSwiss = 18;
verGrSwiss = 19;
verGreece = 20;
verlceland = 21;
verMalta = 22;
verCyprus = 23;
verTurkey = 24;
verYugoslavia = 25;

Data Types

TYPE IntlOHndl = AIntlOPtr;
IntlOPtr = AIntlORec;
IntlORec =

PACKED RECORD
decimalPt: CHAR; {decimal point character}
thousSep: CHAR; {thousands separator}
listSep: CHAR; {list separator}
currSyml: CHAR; {currency symbol}
currSym2: CHAR;
currSym3: CHAR;
currFmt: Byte; {currency format}
dateOrder: Byte; {order of short date elements}
shrtDateFmt: Byte; {short date format}
dateSep: CHAR; {date separator}
timeCycle: Byte; {0 if 24-hour cycle, 255 if 12
timeFmt: Byte; {time format}
mornStr: PACKED ARRAY[1.-4] OF CHAR;

{trailing string for first 12-hour cycle}
eveStr: PACKED ARRAY[1..4] OF CHAR;

{trailing string for last 12-hour cycle}
timeSep: CHAR, {time separator}
timelSuff CHAR, {trailing string for 24-hour
time2Suff CHAR,
time3Suff CHAR,
time4Suff CHAR,
time5Suff CHAR
time6Suff CHAR
time7Suff CHAR
time8Suff CHAR
metricSys Byte {255 if metric, 0 if not}
intlOVers INTEGER {version information}

END;

International Utilities Package III-119

Inside Macintosh

IntllHndl
IntllPtr =
IntllRec =

AIntllPtr;
'IntllRec;

PACKED RECORD
days :
months:
suppressDay:
IngDateFmt:
dayLeadingO:
abbrLen:
stO:
stl:
st2 :
st3:
st4:
intllVers:
localRtn:

END;

ARRAY[1..7] OF STRING[15]; {day names}
ARRAY[1..12] OF STRING[15]; {month names}
Byte; {0 for day name, 255 for none}
Byte; {order of long date elements}
Byte; {255 for leading 0 in day number}
Byte; {length for abbreviating names}
PACKED ARRAY[1..4] OF CHAR
PACKED ARRAY[1..4] OF CHAR
PACKED ARRAY[1..4] OF CHAR
PACKED ARRAY[1..4] OF CHAR
PACKED ARRAY[1..4] OF CHAR

{strings
for }
long }
date }
format}

INTEGER; {version information}
INTEGER {routine for localizing string }

{ comparison; actually may be }
{ longer than one integer}

DateForm = (shortDate,longDate,abbrevDate);

Routines

PROCEDURE IUDateString (dateTime: LONGINT; form: DateForm; VAR result:
Str255);

PROCEDURE IUDatePString (dateTime: LONGINT; form: DateForm; VAR result:
Str255; intlParam: Handle);

PROCEDURE IUTimeString (dateTime: LONGINT; wantSeconds: BOOLEAN; VAR
result: Str255);

PROCEDURE IUTimePString (dateTime: LONGINT; wantSeconds: BOOLEAN; VAR
result: Str255; intlParam: Handle);

FUNCTION IUMetric : BOOLEAN;
FUNCTION IUGetlntl (thelD: INTEGER) : Handle;
PROCEDURE IUSetlntl (refNum: INTEGER; thelD: INTEGER; intlParam:

Handle);
FUNCTION IUCompString (aStr,bStr: Str255) : INTEGER; [Not in ROM]
FUNCTION IUMagString (aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER;
FUNCTION IUEqualString (aStr,bStr: Str255) : INTEGER; [NotinROM]
FUNCTION IUMaglDString (aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER;

III-120 International Utilities Package

Summary

Assembly-Language Information

Constants

; Masks for currency format

currSymLead .EQU 16 ; set if currency symbol leads
currNegSym .EQU 32 ;set if minus sign for negative
currTrailingZ .EQU 64 ;set if trailing decimal zeroes
currLeadingZ .EQU 128 ;set if leading integer zero

; Order of short date elements

mdy .EQU
dmy .EQU
ymd -EQU

0 ;month day year
1 ;day month year
2 ;year month day

; Masks for short date format

dayLdingZ .EQU 32
mntLdingZ .EQU 64
century .EQU 128

;set if leading zero for day
;set if leading zero for month
;set if century included

; Masks for time format

secLeadingZ .EQU 32 ;set if leading zero for seconds
minLeadingZ .EQU 64 ;set if leading zero for minutes
hrLeadingZ .EQU 128 ;set if leading zero for hours

High-order byte of version information

verUS -EQU 0
verFrance -EQU 1
verBritain • EQU 2
verGermany .EQU 3
verltaly .EQU 4
verNetherlands • EQU 5
verBelgiumLux .EQU 6
verSweden .EQU 7
verSpain -EQU 8
verDenmark • EQU 9
verPortugal .EQU 10
verFrCanada .EQU 11
verNorway .EQU 12
verlsrael .EQU 13
verJapan .EQU 14
verAustralia .EQU 15
verArabia .EQU 16
verFinland .EQU 17
verFrSwiss .EQU 18
verGrSwiss .EQU 19

International Utilities Package III-121

Inside Macintosh

verGreece .EQU 20
verlceland .EQU 21
verMalta .EQU 22
verCyprus .EQU 23
verTurkey .EQU 24
ve r Yugo s 1 a vi a -EQU 25

; Date form for IUDateString and IUDatePString

shortDate .EQU 0 ; short form of date
longDate .EQU 1 ;long form of date
abbrevDate .EQU 2 ;abbreviated long form

; Routine selectors

iuDateString .EQU 0
iuTimeString .EQU 2
iuMetric • EQU 4
iuGetlntl .EQU 6
iuSetlntl .EQU 8
iuMagString .EQU 10
iuMaglDString .EQU 12
iuDateP St ring .EQU 14
iuTimeP St ring • EQU 16

International Resource 0 Data Structure

decimalPt Decimal point character (byte)
thousSep Thousands separator (byte)
listSep List separator (byte)
currSym Currency symbol (3 bytes)
currFmt Currency format (byte)
dateOrder Order of short date elements (byte)
shrtDateFmt Short date format (byte)
dateSep Date separator (byte)
timeCycle 0 if 24-hour cycle, 255 if 12-hour (byte)
timeFmt Time format (byte)
mornStr Trailing string for first 12-hour cycle (long)
eveStr Trailing string for last 12-hour cycle (long)
timeSep Time separator (byte)
timeSuff Trailing string for 24-hour cycle (8 bytes)
metricSys 255 if metric, 0 if not (byte)
intlOVers Version information (word)

International Resource 1 Data Structure

days Day names (112 bytes)
months Month names (192 bytes)
suppressDay 0 for day name, 255 for none (byte)
IngDateFmt Order of long date elements (byte)

III-122 International Utilities Package

Summary

dayLeadingO 255 for leading 0 in day number (byte)
abbrLen Length for abbreviating names (byte)
stO Strings for long date format (longs)
stl
st2
st3
st4
intllVers Version information (word)
localRtn Comparison localization routine

Trap Macro Name

Pack6

International Utilities Package III-123

Inside Macintosh

MEMORY MANAGER

Constants

CONST { Result codes }

memFullErr = -108
memLockedErr = -117
memPurErr = -112
memWZErr = -111
nilHandleErr = -109
noErr = 0;

{not enough room in heap zone}
{block is locked}
{attempt to purge a locked block}
{attempt to operate on a free block}
{NIL master pointer}
{no error}

Data Types

TYPE SignedByte = -128..127;
Byte = 0..255;
Ptr = ASignedByte;
Handle = APtr;
Str255 = STRING[255];
StringPtr = AStr255;
StringHandle = AStringPtr;
ProcPtr = Ptr;
Fixed = LONGINT;
Size = LONGINT;
THz = AZone;
Zone = RECORD

bkLim: Ptr;
purgePtr: Ptr;
hFstFree: Ptr;
zcbFree: LONGINT
gzProc: ProcPtr
moreMast: INTEGER
flags: INTEGER
cntRel: INTEGER
maxRel: INTEGER
cntNRel: INTEGER
maxNRel: INTEGER
cntEmpty: INTEGER
cntHandles: INTEGER
minCBFree: LONGINT
purgeProc: ProcPtr
sparePtr: Ptr;
allocPtr: Ptr;
heapData: INTEGER

END;

{zone trailer block}
{used internally}
{first free master pointer}
{number of free bytes}
{grow zone function}
{master pointers to allocate}
{used internally}
{not used}
{not used}
{not used}
{not used}
{not used}
{not used}
{not used}
{purge warning procedure}
{used internally}
{used internally}
{first usable byte in zone}

III-124 Memory Manager

Summary

Routines

Initialization and Allocation

PROCEDURE InitApplZone;
PROCEDURE SetApplBase
PROCEDURE InitZone

FUNCTION GetApplLimit
PROCEDURE SetApplLimit
PROCEDURE MaxApplZone;
PROCEDURE MoreMasters;

(startPtr: Ptr) ;
(pGrowZone: ProcPtr; cMoreMasters: INTEGER;
limitPtr,startPtr: Ptr) ;
Ptr; [Not in ROM]
(zoneLimit: Ptr) ;
[Not in ROM]

Heap Zone Access

FUNCTION GetZone : THz;
PROCEDURE SetZone (hz: THz) ;
FUNCTION SystemZone : THz; [Not in ROM]
FUNCTION ApplicZone : THz; [NotinROM]

Allocating and Releasing Relocatable Blocks

FUNCTION
PROCEDURE
FUNCTION
PROCEDURE
FUNCTION
FUNCTION
PROCEDURE

(logicalSize: Size) : Handle;
(h: Handle);

GetHandleSize (h: Handle) : Size;
SetHandleSize (h: Handle; newSize: Size);
HandleZone (h: Handle) : THz;
RecoverHandle (p: Ptr) : Handle;
ReallocHandle (h: Handle; logicalSize: Size);

NewHandle
DisposHandle

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;
PROCEDURE DisposPtr (p: Ptr) ;
FUNCTION GetPtrSize (p: Ptr) : Size;
PROCEDURE SetPtrSize (p: Ptr; newSize: Size);
FUNCTION PtrZone (p: Ptr) : THz;

Freeing Space in the Heap

FUNCTION FreeMem : LONGINT;
FUNCTION MaxMem (VAR grow: Size) : Size;
FUNCTION CompactMem (cbNeeded: Size) : Size;
PROCEDURE ResrvMem (cbNeeded: Size);
PROCEDURE PurgeMem (cbNeeded: Size);
PROCEDURE EmptyHandle (h: Handle);

Memory Manager 111-125

Inside Macintosh

Properties of Relocatable Blocks

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

HLock
HUnlock
HPurge
HNoPurge

(h: Handle)
(h: Handle)
(h: Handle)
(h: Handle)

Grow Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);
FUNCTION GZSaveHnd : Handle; [NotinROM]

Miscellaneous Routines

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size);
FUNCTION TopMem : Ptr; [NotinROM]
PROCEDURE MoveHHi (h: Handle) ; [NotinROM]
FUNCTION MemError : OSErr; [NotinROM]

Grow Zone Function

FUNCTION MyGrowZone (cbNeeded: Size) : LONGINT;

Assembly-Language Information

Constants

; Values for tag byte of a block header

tyBkFree .EQU 0 ;free block
tyBkNRel • EQU 1 ;nonrelocatable block
tyBkRel • EQU 2 relocatable block

; Flags for the high-order byte of a master pointer

lock .EQU 7 ;lock bit
purge • EQU 6 ;purge bit
resourc • EQU 5 ;resource bit

; Result codes

memFullErr .EQU -108 ;not enough room in heap zone
memLockedErr .EQU -117 ;block is locked
memPurErr .EQU -112 ;attempt to purge a locked block
memWZErr .EQU -111 ;attempt to operate on a free block
nilHandleErr .EQU -109 ;NIL master pointer
noErr .EQU 0 ;no error

III-126 Memory Manager

Summary

Zone Record Data Structure

bkLim Pointer to zone trailer block
hPstFree Pointer to first free master pointer
zcbFree Number of free bytes (long)
gzProc Address of grow zone function
mAllocCnt Master pointers to allocate (word)
purgeProc Address of purge warning procedure
heapData First usable byte in zone

Block Header Data Structure

tagBC Tag byte and physical block size (long)
handle Relocatable block: relative handle

Nonrelocatable block: zone pointer
blkData First byte of block contents

Parameter Block Structure for InitZone

startPtr Pointer to first byte in zone
limitPtr Pointer to first byte beyond end of zone
cMoreMasters Number of master pointers for zone (word)
pGrowZone Address of grow zone function

Routines

T r a p macro
_InitApplZone

_SetApplBase

InitZone

SetApplLimit

MoreMasters

GetZone

SetZone

NewHandle

On entry

AO: startPtr (ptr)

AO: ptr to parameter block
0 startPtr (ptr)
4 limitPtr (ptr)
8 cMoreMasters (word)

10 pGrowZone (ptr)

AO: zoneLimit (ptr)

AO: hz (ptr)

DO: logicalSize (long)

On exit
DO: result code (word)

DO: result code (word)

DO: result code (word)

DisposHandle AO: h (handle)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: result code (word)

AO: function result (handle)
DO: result code (word)

DO: result code (word)

Memory Manager III-127

Inside Macintosh

h (handle)
newSize (long)

h (handle)

p(ptr)

h (handle)
logicalSize (long)

logicalSize (long)

P(ptr)

P(ptr)

P(ptr)
newSize (long)

p(ptr)

cbNeeded (long)

cbNeeded (long)

cbNeeded (long)

h (handle)

h (handle)

h (handle)

h (handle)

h (handle)

growZone (ptr)

sourcePtr (ptr)
destPtr (ptr)
byteCount (long)

On entry
AO: h (handle)

AO:
DO:

AO:

AO:

AO:
DO:

DO:

AO:

AO:

AO:
DO:

AO:

DO:

DO:

DO:

AO:

AO:

AO:

AO:

AO:

AO:

AO:
A l :
DO:

On exit
DO: if >=0, function result (long)

if <0, result code (word)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

AO: function result (handle)
DO: unchanged

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: result code (word)

DO: if >=0, function result (long)
if <0, result code (word)

DO: result code (word)

AO: function result (ptr)
DO: result code (word)

DO: function result (long)

DO: function result (long)
AO: grow (long)

DO: function result (long)

DO: result code (word)

DO: result code (word)

AO: h (handle)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

DO: result code (word)

III-128 Memory Manager

T r a p macro

_GetHandleSize

_SetHandleSize

_HandleZone

_RecoverHandle

_ReallocHandle

JNewPtr

JDisposPtr

GetPtrSize

_SetPtrSize

_PtrZone

_FreeMem

JVIaxMem

_CompactMem

_ResrvMem

PurgeMem

_Empty Handle

HLock

_HUnlock

HPurge

HNoPurge

SetGrowZone

BlockMove

Summary

Variables

DefitStack Default space allotment for stack (long)
MinStack Minimum space allotment for stack (long)
MemTop Address of end of RAM (on Macintosh XL, end of RAM available to MemTop

applications)
ScrnBase Address of main screen buffer
BufPtr Address of end of jump table
CurrentA5 Address of boundary between application globals and application parameters
CurStackBase Address of base of stack; start of application globals
ApplLimit Application heap limit
HeapEnd Address of end of application heap zone
ApplZone Address of application heap zone
SysZone Address of system heap zone
TheZone Address of current heap zone
GZRootHnd Handle to relocatable block not to be moved by grow zone function

Memory Manager 111-129

Inside Macintosh

MENU MANAGER

Constants

CONST { Value indicating item has no mark }

noMark = 0;

{ Messages to menu definition procedure }

mDrawMsg = 0; {draw the menu}
mChooseMsg = 1; {tell which item was chosen and highlight it}
mSizeMsg = 2; {calculate the menu's dimensions}

{ Resource ID of standard menu definition procedure }

textMenuProc = 0;

Data Types

TYPE MenuHandle
MenuPtr
Menulnfo

AMenuPtr;
AMenuInfo;
RECORD

menuID:
menuWidth:
menuHeight:
menuProc:
enableFlags:

menuData:
END;

INTEGER
INTEGER
INTEGER,
Handle;
LONGINT;

Str255

{menu ID}
{menu width in pixels}
{menu height in pixels}
{menu definition procedure}
{tells if menu or items are }
{ enabled}
{menu title (and other data)}

Routines

Initialization and Allocation

PROCEDURE InitMenus;
FUNCTION NewMenu
FUNCTION GetMenu
PROCEDURE DisposeMenu

(menuID: INTEGER; menuTitle: Str255)
(resourcelD: INTEGER) : MenuHandle;
(theMenu: MenuHandle);

MenuHandle;

Forming the Menus

PROCEDURE AppendMenu (theMenu: MenuHandle; data: Str255);
PROCEDURE AddResMenu (theMenu: MenuHandle; theType: ResType);
PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType;

afterItem: INTEGER);

III-130 Menu Manager

Summary

Forming the Menu Bar

PROCEDURE InsertMenu (theMemi: MenuHandle; beforelD: INTEGER) ;
PROCEDURE DrawMenuBar;
PROCEDURE DeleteMenu (menuID: INTEGER);
PROCEDURE ClearMenuBar;
FUNCTION GetNewMBar (menuBarlD: INTEGER) : Handle;
FUNCTION GetMenuBar : Handle;
PROCEDURE SetMenuBar (menuList: Handle);

Choosing From a Menu

FUNCTION MenuSelect (startPt: Point) : LONGINT;
FUNCTION MenuKey (ch: CHAR) : LONGINT;
PROCEDURE HiliteMenu (menuID: INTEGER);

Controlling the Appearance of Items

PROCEDURE Setltem (theMenu: MenuHandle; item: INTEGER; itemString:
Str255);

PROCEDURE Getltem (theMenu: MenuHandle; item: INTEGER; VAR
itemString: Str255);

PROCEDURE Disableltem (theMenu: MenuHandle; item: INTEGER);
PROCEDURE Enableltem (theMenu: MenuHandle; item: INTEGER);
PROCEDURE Checkltem (theMenu: MenuHandle; item: INTEGER; checked:

BOOLEAN);
PROCEDURE SetltemMark (theMenu: MenuHandle; item: INTEGER; markChar:

CHAR);
PROCEDURE GetltemMark (theMenu: MenuHandle; item: INTEGER; VAR

markChar: CHAR);
PROCEDURE Setltemlcon (theMenu: MenuHandle; item: INTEGER; icon: Byte);
PROCEDURE Getltemlcon (theMenu: MenuHandle; item: INTEGER; VAR icon:

Byte);
PROCEDURE SetltemStyle (theMenu: MenuHandle; item: INTEGER; chStyle:

Style);
PROCEDURE GetltemStyle (theMenu: MenuHandle; item: INTEGER; VAR chStyle:

Style);

Miscellaneous Routines

PROCEDURE CalcMenuSize (theMenu: MenuHandle);
FUNCTION CountMItems (theMenu: MenuHandle) : INTEGER;
FUNCTION GetMHandle (menuID: INTEGER) : MenuHandle;
PROCEDURE FlashMenuBar (menuID: INTEGER);
PROCEDURE SetMenuFlash (count: INTEGER);

Menu Manager III-131

Inside Macintosh

Meta-Characters for AppendMenu

Meta-character Usage

; or Return Separates multiple items
A Followed by an icon number, adds that icon to the item

! Followed by a character, marks the item with that character

< Followed by B, I, U, O, or S, sets the character style of the item

/ Followed by a character, associates a keyboard equivalent with the item

(Disables the item

Menu Definition Procedure

PROCEDURE MyMenu (message: INTEGER; theMenu: MenuHandle; VAR menuRect:
Rect; hitPt: Point; VAR whichltem: INTEGER);

Assembly-Language Information

Constants

; Value indicating item has no mark

noMark .EQU 0

; Messages to menu definition procedure

mDrawMsg .EQU 0 ;draw the menu
mChooseMsg .EQU 1 ;tell which item was chosen and highlight it
mSizeMsg .EQU 2 ;calculate the menu's dimensions

; Resource ID of standard menu definition procedure

textMenuProc .EQU 0

Menu Record Data Structure

menuID Menu ID (word)
menuWidth Menu width in pixels (word)
menuHeight Menu height in pixels (word)
menuDefHandle Handle to menu definition procedure
menuEnable Enable flags (long)
menuData Menu tide (preceded by length byte) followed by data defining the items
menuBlkSize Size in bytes of menu record except menuData field

III-132 Menu Manager

Summary

Special Macro Names

Pascal n a m e
DisposeMenu
Getltemlcon
GetltemMark
GetltemStyle
GetMenu
Setltemlcon
SetltemMark
SetltemStyle
SetMenuFlash

Macro name
_DisposMenu
_GetItmIcon
_GetItmMark
_GetItmStyle
_GetRMenu
_SetItmIcon
_SetItmMark
_SetItmStyle

SetMFlash

Variables

MenuList Handle to current menu list
MBarEnable Nonzero if menu bar belongs to a desk accessory (word)
MenuHook Address of routine called repeatedly during MenuSelect
MBarHook Address of routine called by MenuSelect before menu is drawn (see below)
TheMenu Menu ID of currently highlighted menu (word)
MenuFlash Count for duration of menu item blinking (word)

MBarHook routine

On entry stack: pointer to menu rectangle

On exit DO: 0 to continue MenuSelect
1 to abort MenuSelect

Menu Manager 111-133

Inside Macintosh

PACKAGE MANAGER

Constants

CONST { Resource IDs for packages }

dsklnit = 2;
stdFile = 3;
flPoint = 4;
trFunc = 5;
intUtil = 6;
bdConv = 7;

{Disk Initialization}
{Standard File}
{Floating-Point Arithmetic}
{Transcendental Functions}
{International Utilities}
{Binary-Decimal Conversion}

Routines

PROCEDURE InitPack
PROCEDURE InitAllPacks;

(packID: INTEGER);

Assembly-Language Information

Constants

Resource IDs for packages

dsklnit .EQU 2 ;Disk Initialization
stdFile .EQU 3 /Standard File
flPoint .EQU 4 ;Floating-Point Arithmetic
trFunc .EQU 5 ,-Transcendental Functions
intUtil .EQU 6 ;International Utilities
bdConv • EQU 7 ;Binary-Decimal Convers ion

Trap Macros for Packages

Disk Initialization _Pack2
Standard File _Pack3
Floating-Point Arithmetic _Pack4
Transcendental Functions _Pack5
International Utilities _Pack6
Binary-Decimal Conversion _Pack7

(synonym: _FP68K)
(synonym: _Elems68K)

III-134 Package Manager

Summary

PRINTING MANAGER

Constants

CONST { Printing methods }

bDraftLoop = 0;
bSpoolLoop = 1;

{draft printing}
{spool printing}

{ Printer specification in prStl field of print record }

bDevCItoh = 1;
bDevLaser = 3;

{Imagewriter printer}
{LaserWriter printer}

{ Maximum number of pages in a spool file }

iPFMaxPgs = 128;

{ Result codes }

noErr = 0 ;
iPrSavPFil = -1;
controlErr = -17;
ilOAbort = -27;
iMemFullErr = -108;
iPrAbort = 128;

{no error}
{saving spool file}
{unimplemented control instruction}
{I/O abort error}
{not enough room in heap zone}
{application or user requested abort}

{ PrCtlCall parameters }

iPrDevCtl
lPrReset
lPrLineFeed
IPrLFSixth
lPrPageEnd
iPrBitsCtl
IScreenBits
lPaintBits
iPrlOCtl

7;
$00010000
$00030000
$0003FFFF
$00020000
4
0
1
5

{printer control}
{reset printer}
{carriage return only}
{standard 1/6-inch line feed}
{end page}

{bit map printing}
{default for printer}
{square dots (72 by 72)}

{text streaming}

{ Printer Driver information }

sPrDrvr = '.Print'
iPrDrvrRef = -3;

{Printer Driver resource name}
{Printer Driver reference number}

Printing Manager 111-135

Inside Macintosh

Data Types

TYPE TPPrPort = ATPrPort;
TPrPort = RECORD

gPort: GrafPort; {grafPort to draw in}
{more fields for internal use}

END;

THPrint = ^TPPrint;
TPPrint = "TPrint;
TPrint = RECORD

iPrVersion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXInfo:
prJob:
printX:

END;

TPrInfo = RECORD
iDev:
iVRes:
iHRes:
rPage:

END;

TPrJob =
RECORD

iFstPage: INTEGER; {first page to print}
iLstPage: INTEGER; {last page to print}
iCopies: INTEGER; {number of copies}
bJDocLoop: SignedByte; {printing method}
fFromUsr: BOOLEAN; {used internally}
pldleProc: ProcPtr; {background procedure}
pFileName: StringPtr; {spool file name}
iFileVol: INTEGER; {spool file volume reference number}
bFileVers: SignedByte; {spool file version number}
bJobX: SignedByte {used internally}

END;

TPrStl = RECORD
wDev: INTEGER; {high byte specifies device}
{more fields for internal use}

END;

INTEGER; {Printing Manager version}
TPrlnfo; {printer information subrecord}
Rect; {paper rectangle}
TPrStl; {additional device information}
TPrlnfo; {used internally}
TPrXInfo; {additional device information}
TPrJob; {job subrecord}
ARRAY[1..19] OF INTEGER {not used}

INTEGER; {used internally}
INTEGER; {vertical resolution of printer}
INTEGER; {horizontal resolution of printer}
Rect {page rectangle}

III-136 Printing Manager

Summary

TPrXInfo = RECORD
iRowBytes: INTEGER
iBandV: INTEGER
iBandH: INTEGER
iDevBytes: INTEGER
{more fields for internal use}

END;

TPRect = ARect;

{used internally}
{used internally}
{used internally}
{size of buffer}

TPrStatus = RECORD
iTotPages:
iCurPage:
iTotCopies:
iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

END;

INTEGER; {number of pages in spool file}
INTEGER; {page being printed}
INTEGER; {number of copies requested}
INTEGER; {copy being printed}
INTEGER; {used internally}
INTEGER; {used internally}
BOOLEAN; {TRUE if started printing page}
BOOLEAN; {used internally}
THPrint; {print record}
TPPrPort; {printing grafPort}
PicHandle {used internally}

Routines [Not in ROM]

Initialization and Termination

PROCEDURE PrOpen;
PROCEDURE PrClose;

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint);
(hPrint: THPrint) FUNCTION PrValidate

FUNCTION PrStlDialog (hPrint: THPrint)
FUNCTION PrJobDialog (hPrint: THPrint)
PROCEDURE PrJobMerge

BOOLEAN;
BOOLEAN;
BOOLEAN;

(hPrintSrc,hPrintDst: THPrint);

Printing

FUNCTION PrOpenDoc

PROCEDURE PrOpenPage
PROCEDURE PrClosePage (pPrPort: TPPrPort);
PROCEDURE PrCloseDoc
PROCEDURE PrPicFile

(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr)
TPPrPort;
(pPrPort: TPPrPort; pPageFrame: TPRect);

(pPrPort: TPPrPort);
(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VARprStatus: TPrStatus);

Printing Manager 111-137

Inside Macintosh

Error Handling

FUNCTION PrError : INTEGER;
PROCEDURE PrSetError (iErr: INTEGER);

Low-Level Driver Access

PROCEDURE PrDrvrOpen;
PROCEDURE PrDrvrClose;
PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3:

LONGINT);
FUNCTION PrDrvrDCE : Handle;
FUNCTION PrDrvrVers : INTEGER;

Assembly-Language Information

Constants

; Printing methods

bDraftLoop .EQU 0 ;draft printing
bSpoolLoop .EQU 1 ;spool printing

; Result codes

noErr • EQU 0 ;no error
iPrSavPFil .EQU -1 /saving spool file
controlErr .EQU -17 ;unimplemented control instruction
ilOAbort • EQU -27 ;I/0 abort error
iMemFullErr .EQU -108 ;not enough room in heap zone
iPr Abort • EQU 128 ;application or user requested abort

; Printer Driver Control call parameters

iPrDevCtl .EQU 7 ;printer control
lPrReset .EQU 1 ; reset printer
iPrLineFeed .EQU 3 ; carriage return/paper advance
iPrLFSixth .EQU 3 ;standard 1/6-inch line feed
lPrPageEnd .EQU 2 ; end page
iPrBitsCtl •EQU 4 ;bit map printing
lScreenBits .EQU 0 ; default for printer
lPaintBits .EQU 1 ; square dots (72 by 72)
iPrlOCtl .EQU 5 ;text st reaming

; Printer Driver information

iPrDrvrRef .EQU -3 ;Printer Driver reference number

III-138 Printing Manager

Summary

Printing GrafPort Data Structure

gPort GrafPort to draw in (portRec bytes)
iPrPortSize Size in bytes of printing grafPort

Print Record Data Structure

iPrVersion Printing Manager version (word)
prlnfo Printer information subrecord (14 bytes)
rPaper Paper rectangle (8 bytes)
prSd Additional device information (8 bytes)
prXInfo Additional device information (16 bytes)
prJob Job subrecord (iPrJobSize bytes)
iPrintSize Size in bytes of print record

Structure of Printer Information Subrecord

iVRes Vertical resolution of printer (word)
iHRes Horizontal resolution of printer (word)
rPage Page rectangle (8 bytes)

Structure of Job Subrecord

iFstPage First page to print (word)
iLstPage Last page to print (word)
iCopies Number of copies (word)
bJDocLoop Printing method (byte)
pldleProc Address of background procedure
pFileName Pointer to spool file name (preceded by length byte)
iFileVol Spool file volume reference number (word)
bFileVers Spool file version number (byte)
iPrJobSize Size in bytes of job subrecord

Structure of PrXInfo Subrecord

iDevBytes Size of buffer (word)

Structure of Printer Status Record

iTotPages Number of pages in spool file (word)
iCurPage Page being printed (word)
iTotCopies Number of copies requested (word)
iCurCopy Copy being printed (word)
fPgDirty Nonzero if started printing page (byte)
hPrint Handle to print record
pPrPort Pointer to printing grafPort
iPrStatSize Size in bytes of printer status record

Printing Manager III-139

Inside Macintosh

111-140 Printing Manager

Variables

PrintErr Result code from last Printing Manager routine (word)

Summary

QUICKDRAW

Constants

CONST { Source transfer modes }

srcCopy = 0;
srcOr = 1;
srcXor = 2;
srcBic = 3;
notSrcCopy = 4;
notSrcOr = 5;
notSrcXor 6;
notSrcBic = 7;

{ Pattern transfer modes }

patCopy = 8;
patOr = 9;
patXor = 10
patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

{ Standard colors for ForeColor and BackColor }

blackColor = 33;
whiteColor = 30;
redColor = 205;
greenColor = 341;
blueColor = 409;
cyanColor = 273;
magentaColor = 137;
yellowColor = 69;

{ Standard picture comments }

picLParen = 0;
picRParen = 1;

Data Types

TYPE Styleltem = (bold,italic,underline,outline,shadow,condense,extend);
Style = SET OF Styleltem;

QuickDraw III-141

Inside Macintosh

VHSelect= (v,h);
Point = RECORD CASE INTEGER OF

0:

1:
END;

(v: INTEGER; {vertical coordinate}
h: INTEGER); {horizontal coordinate}
(vh: ARRAY[VHSelect] OF INTEGER)

Rect = RECORD CASE INTEGER OF
0: (top: INTEGER;

left: INTEGER;
bottom: INTEGER;
right: INTEGER);

(topLeft:
botRight:

END;

Point;
Point)

RgnHandle
RgnPtr
Region

NRgnPtr;
^Region;
RECORD

rgn Size: INTEGER;
rgnBBox: Rect;

{size in bytes}
{enclosing rectangle}

{more data if not rectangular}

BitMap

END;

RECORD
baseAddr:
rowBytes:
bounds:

END;

Ptr; {pointer to bit image}
INTEGER; {row width}
Rect {boundary rectangle}

Pattern = PACKED ARRAY[0..7] OF 0..255;

Bitsl6 = ARRAY[0..15] OF INTEGER;

Cursor = RECORD
data:
mask:
hotSpot:

END;

Bitsl6; {cursor image}
Bitsl6; {cursor mask}
Point {point aligned with mouse}

III-142 QuickDraw

Summary

QDProcsPtr = "QDProcs;
QDProcs = RECORD

textProc: Ptr; {text drawing}
lineProc: Ptr; {line drawing}
rectProc: Ptr; {rectangle drawing}
rRectProc: Ptr; {roundRect drawing}
ovalProc: Ptr; {oval drawing}
arcProc: Ptr; {arc/wedge drawing}
rgnProc: Ptr; {region drawing}
bitsProc: Ptr; {bit transfer}
commentProc: Ptr; {picture comment processing}
txMeasProc: Ptr; {text width measurement}
getPicProc: Ptr; {picture retrieval}
putPicProc: Ptr {picture saving}

END;

GrafPtr = AGrafPort;
GrafPort = RECORD

device: INTEGER;
portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattern;
fillPat: Pattern;
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;
txSize: INTEGER;
spExtra: Fixed;
fgColor: LONGINT ;
bkColor: LONGINT;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: Handle;
rgnSave: Handle;
polySave: Handle;
grafProcs: QDProcsPtr

END;

{device-specific information}
{grafPort's bit map}
{grafPort's rectangle}
{visible region}
{clipping region}
{background pattern}
{fill pattern}
{pen location}
{pen size}
{pen's transfer mode}
{pen pattern}
{pen visibility}
{font number for text}
{text's character style}
{text's transfer mode}
{font size for text}
{extra space}
{foreground color}
{background color}
{color bit}
{used internally}
{picture being saved}
{region being saved}
{polygon being saved}
{low-level drawing routines}

PicHandle = APicPtr;
PicPtr = ^Picture;
Picture = RECORD

picSize: INTEGER; {size in bytes}
picFrame: Rect; {picture frame}
{picture definition data}

END;

QuickDraw III-143

Inside Macintosh

PolyHandle = APolyPtr;
PolyPtr
Polygon

= ^Polygon;
= RECORD

polySize:
polyBBox:
polyPoints:

END;

INTEGER; {size in bytes}
Rect; {enclosing rectangle}
ARRAY[0..0] OF Point

PenState •• RECORD
pnLoc:
pnSize:
pnMode:
pnPat:

END;

Point; {pen location}
Point; {pen size}
INTEGER; {pen's transfer mode}
Pattern {pen pattern}

FontInfo RECORD
ascent:
descent:
widMax:
leading:

END;

INTEGER; {ascent}
INTEGER; {descent}
INTEGER; {maximum character width}
INTEGER {leading}

GrafVerb = (frame,paint,erase,invert,fill);

Variables

VAR thePort:
white:
black:
gray:
ltGray:
dkGray:
arrow:
screenBits:
randSeed:

GrafPtr; {pointer to current grafPort}
Pattern; {all-white pattern}
Pattern; {all-black pattern}
Pattern; {50% gray pattern}
Pattern; {25% gray pattern}
Pattern; {75% gray pattern}
Cursor; {standard arrow cursor}
BitMap; {the entire screen}
LONGINT; {determines where Random sequence begins}

Routines

GrafPort Routines

PROCEDURE InitGraf
PROCEDURE OpenPort
PROCEDURE InitPort
PROCEDURE ClosePort
PROCEDURE SetPort
PROCEDURE GetPort
PROCEDURE GrafDevice
PROCEDURE SetPortBits
PROCEDURE PortSize

(globalPtr: Ptr);
(port: GrafPtr);
(port: GrafPtr);
(port: GrafPtr) ;
(port: GrafPtr);
(VAR port: GrafPtr);
(device: INTEGER);
(bm: BitMap);
(width,height: INTEGER);

III-144 QuickDraw

Summary

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

MovePortTo
SetOrigin
SetClip
GetClip
ClipRect
BackPat

Cursor Handling

(leftGlobal,topGlobal: INTEGER);
(h,v: INTEGER);
(rgn: RgnHandle);
(rgn: RgnHandle);
(r: Rect);
(pat: Pattern);

PROCEDURE InitCursor;
PROCEDURE SetCursor (crsr: Cursor);
PROCEDURE HideCursor;
PROCEDURE ShowCursor;
PROCEDURE ObscureCursor;

Pen and Line Drawi

PROCEDURE HidePen;
PROCEDURE ShowPen;
PROCEDURE GetPen
PROCEDURE GetPenState
PROCEDURE SetPenState
PROCEDURE PenSize
PROCEDURE PenMode
PROCEDURE PenPat
PROCEDURE PenNormal;
PROCEDURE MoveTo
PROCEDURE Move
PROCEDURE LineTo
PROCEDURE Line

g

(VAR pt: Point);
(VAR pnState: PenState);
(pnState: PenState);
(width,height: INTEGER);
(mode: INTEGER);
(pat: Pattern);

(h,v: INTEGER);
(dh,dv: INTEGER);
(h,v: INTEGER);
(dh,dv: INTEGER);

Text Drawing

PROCEDURE TextFont (font: INTEGER);
PROCEDURE TextFace (face: Style);
PROCEDURE TextMode (mode: INTEGER) ;
PROCEDURE TextSize (size: INTEGER);
PROCEDURE SpaceExtra (extra: Fixed);
PROCEDURE DrawChar (ch: CHAR);
PROCEDURE Drawstring (s: Str255);
PROCEDURE DrawText (textBuf: Ptr; firstByte,byteCount: INTEGER);
FUNCTION CharWidth (ch: CHAR) : INTEGER;
FUNCTION StringWidth (s: Str255) : INTEGER;
FUNCTION TextWidth (textBuf: Ptr; firstByte,byteCount:

INTEGER;
INTEGER)

PROCEDURE GetFontlnfo (VAR info: Fontlnfo);

QuickDraw 111-145

Inside Macintosh

Drawing in Color

PROCEDURE ForeColor
PROCEDURE BackColor
PROCEDURE ColorBit

(color: LONGINT);
(color: LONGINT);
(whichBit: INTEGER);

Calculations with Rectangles

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);
PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);
PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);
FUNCTION SectRect (srcl,src2: Rect; VAR dstRect: Rect) : BOOLEAN;
PROCEDURE UnionRect (srcl,src2: Rect; VAR dstRect: Rect);
FUNCTION PtlnRect (pt: Point; r: Rect) : BOOLEAN;
PROCEDURE Pt2Rect (ptl,pt2: Point; VAR dstRect: Rect);
PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);
FUNCTION EgualRect (recti,rect2: Rect) : BOOLEAN-
FUNCTION EmptyRect (r: Rect) : BOOLEAN;

Graphic Operations on Rectangles

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

FrameRect
PaintRect
EraseRect
InvertRect
FillRect

(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect; pat: Pattern);

Graphic Operations on Ovals

PROCEDURE FrameOval (r: Rect);
PROQEDURE PaintOval (r: Rect);
PROCEDURE EraseOval (r: Rect);
PROCEDURE InvertOval (r: Rect);
PROCEDURE FillOval (r: Rect; pat: Pattern);

Graphic Operations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);
PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat:

Pattern);

III-146 QuickDraw

Summary

Graphic Operations on Arcs and Wedges

PROCEDURE FrameArc
PROCEDURE PaintArc
PROCEDURE EraseArc
PROCEDURE InvertArc
PROCEDURE FillArc

(r: Rect; startAngle,arcAngle:
(r: Rect; startAngle,arcAngle:
(r: Rect; startAngle,arcAngle:
(r: Rect; startAngle,arcAngle:
(r: Rect; startAngle,arcAngle:
Pattern);

INTEGER)
INTEGER)
INTEGER)
INTEGER)
INTEGER; pat:

Calculations with Regions

FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION

NewRgn :
OpenRgn;
CloseRgn
DisposeRgn
CopyRgn
SetEmptyRgn
SetRectRgn
RectRgn
OffsetRgn
InsetRgn
SectRgn
UnionRgn
DiffRgn
XorRgn
PtlnRgn
RectlnRgn
EqualRgn
EmptyRgn

RgnHandle;

(dstRgn: RgnHandle);
(rgn: RgnHandle);
(srcRgn,dstRgn: RgnHandle);
(rgn: RgnHandle);

RgnHandle;
RgnHandle;
RgnHandle;
RgnHandle;

(rgn:
(rgn:
(rgn:
(rgn:

left,top,right,bottom: INTEGER)
r: Rect);
dh,dv: INTEGER) ;
dh,dv: INTEGER);

(srcRgnA,srcRgnB,dstRgn: RgnHandle)
(s rcRgnA,srcRgnB,dstRgn: RgnHandle)
(srcRgnA,srcRgnB,dstRgn: RgnHandle)
(s rcRgnA,s rcRghB,dstRgn: RgnHandle)
(pt: Point; rgn: RgnHandle) : BOOLEAN;
(r: Rect; rgn: RgnHandle) : BOOLEAN;
(rgnA,rgnB: RgnHandle) : BOOLEAN;
(rgn: RgnHandle) : BOOLEAN;

Graphic Operations on Regions

PROCEDURE FrameRgn (rgn: RgnHandle);
PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgn: RgnHandle);
PROCEDURE InvertRgn (rgn: RgnHandle);
PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

Bit Transfer Operations

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle);
PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect;

mode: INTEGER; maskRgn: RgnHandle);

QuickDraw 111-147

Inside Macintosh

Pictures

FUNCTION OpenPicture (picFrame: Rect) : PicHandle;
PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: Handle);
PROCEDURE ClosePicture;
PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect);
PROCEDURE KillPicture (myPicture: PicHandle);

Calculations with Polygons

FUNCTION OpenPoly : PolyHandle;
PROCEDURE ClosePoly;
PROCEDURE KillPbly (poly: PolyHandle) ;
PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER) ;

Graphic Operations on Polygons

PROCEDURE FramePoly
PROCEDURE PaintPoly
PROCEDURE ErasePoly
PROCEDURE InvertPoly
PROCEDURE FillPoly

(poly: PolyHandle);
(poly: PolyHandle);
(poly: PolyHandle);
(poly: PolyHandle) ;
(poly: PolyHandle; pat: Pattern);

Calculations with Points

PROCEDURE AddPt
PROCEDURE SubPt
PROCEDURE SetPt
FUNCTION EqualPt
PROCEDURE LocalToGlobal
PROCEDURE GlobalToLocal

(srcPt: Point; VAR dstPt: Point);
(srcPt: Point; VARdstPt: Point);
(VAR pt: Point; h,v: INTEGER);
(ptl,pt2: Point) : BOOLEAN;
(VAR pt: Point);
(VAR pt: Point);

Miscellaneous Routines

FUNCTION Random : INTEGER;
FUNCTION GetPixel (h,v: INTEGER) : BOOLEAN;
PROCEDURE StuffHex (thingPtr: Ptr; s: Str255);
PROCEDURE ScalePt (VARpt: Point; srcRect,dstRect: Rect);
PROCEDURE MapPt (VARpt: Point; srcRect,dstRect: Rect);
PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);
PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);
PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect)

III-148 QuickDraw

Summary

Customizing QuickDraw Operations

PROCEDURE SetStdProcs
PROCEDURE StdText

PROCEDURE StdLine
PROCEDURE StdRect
PROCEDURE StdRRect

PROCEDURE StdOval
PROCEDURE StdArc

PROCEDURE StdPoly
PROCEDURE StdRgn
PROCEDURE StdBits

PROCEDURE StdComment
FUNCTION StdTxMeas

PROCEDURE StdGetPic
PROCEDURE StdPutPic

(VAR procs: QDProcs);
(byteCount: INTEGER; textBuf: Ptr; numer,denom:
Point);
(newPt: Point);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; ovalwidth,ovalHeight:
INTEGER);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; startAngle,arcAngle:
INTEGER);
(verb: GrafVerb; poly: PolyHandle);
(verb: GrafVerb; rgn: RgnHandle);
(VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);
(kind,dataSize: INTEGER; dataHandle: Handle);
(byteCount: INTEGER; textAddr: Ptr; VAR numer,
denom: Point; VAR info: Fontlnfo) : INTEGER;
(dataPtr: Ptr; byteCount: INTEGER);
(dataPtr: Ptr; byteCount: INTEGER);

Assembly-Language Information

Constants

; Size in bytes of QuickDraw global variables

grafSize • EQU 20

; Source trans fer modes

srcCopy .EQU 0
srcOr .EQU 1
srcXor • EQU 2
srcBic .EQU 3
notSrcCopy .EQU 4
notSrcOr • EQU 5
notSrcXor .EQU 6
notSrcBic .EQU 7

; Pattern transfer modes

patCopy .EQU 8
patOr -EQU 9
patXor .EQU 10
patBic .EQU 11
notPatCopy -EQU 12
notPatOr .EQU 13
notPatXor • EQU 14
notPatBic .EQU 15

QuickDraw 111-149

Inside Macintosh

; Standard colors for ForeColor and BackColor

blackColor .EQU 33
whiteColor .EQU 30
redColor .EQU 205
greenColor • EQU 341
blueColor .EQU 409
cyanColor .EQU 273
magentaColor .EQU 137
yellowColor .EQU 69

; Standard picture comments

picLParen .EQU 0
picRParen .EQU 1

; Character style

boldBit .EQU 0
italicBit .EQU 1
ulineBit .EQU 2
outlineBit • EQU 3
shadowBit .EQU 4
condenseBit • EQU 5
extendBit .EQU 6

; Graphic operations

frame .EQU 0
paint .EQU 1
erase .EQU 2
invert -EQU 3
fill • EQU 4

Point Data Structure

v Vertical coordinate (word)
h Horizontal coordinate (word)

Rectangle Data Structure

top Vertical coordinate of top left corner (word)
left Horizontal coordinate of top left corner (word)
bottom Vertical coordinate of bottom right corner (word)
right Horizontal coordinate of bottom right corner (word)
topLeft Top left corner (point; long)
botRight Bottom right corner (point; long)

III-150 QuickDraw

Summary

Region Data Structure

rgnSize Size in bytes (word)
rgnBBox Enclosing rectangle (8 bytes)
rgnData More data if not rectangular

Bit Map Data Structure

baseAddr Pointer to bit image
rowBytes Row width (word)
bounds Boundary rectangle (8 bytes)
bitMapRec Size in bytes of bit map data structure

Cursor Data Structure

data Cursor image (32 bytes)
mask Cursor mask (32 bytes)
hotSpot Point aligned with mouse (long)
cursRec Size in bytes of cursor data structure

Structure of QDProcs Record

textProc Address of text-drawing routine
lineProc Address of line-drawing routine
rectProc Address of rectangle-drawing routine
rRectProc Address of roundRect-drawing routine
ovalProc Address of oval-drawing routine
arcProc Address of arc/wedge-drawing routine
polyProc Address of polygon-drawing routine
rgnProc Address of region-drawing routine
bitsProc Address of bit-transfer routine
commentProc Address of routine for processing picture comments
txMeasProc Address of routine for measuring text width
gefPicProc Address of picture-retrieval routine
putPicProc Address of picture-saving routine
qdProcsRec Size in bytes of QDProcs record

GrafPort Data Structure

device Font-specific information (word)
portBits GrafPort's bit map (bitMapRec bytes)
portBounds Boundary rectangle of grafPort's bit map (8 bytes)
portRect GrafPort's rectangle (8 bytes)
visRgn Handle to visible region
clipRgn Handle to clipping region
bkPat Background pattern (8 bytes)
fillPat Fill pattern (8 bytes)
pnLoc Pen location (point; long)

QuickDraw III-151

Inside Macintosh

pnSize Pen size (point; long)
pnMode Pen's transfer mode (word)
pnPat Pen pattern (8 bytes)
pnVis Pen visibility (word)
txFont Font number for text (word)
txFace Text's character style (word)
txMode Text's transfer mode (word)
txSize Font size for text (word)
spExtra Extra space (long)
fgColor Foreground color (long)
bkColor Background color (long)
colrBit Color bit (word)
picSave Handle to picture being saved
rgnSave Handle to region being saved
polySave Handle to polygon being saved
grafProcs Pointer to QDProcs record
portRec Size in bytes of grafPort

Picture Data Structure

picSize Size in bytes (word)
picFrame Picture frame (rectangle; 8 bytes)
picData Picture definition data

Polygon Data Structure

polySize Size in bytes (word)
polyBBox Enclosing rectangle (8 bytes)
polyPoints Polygon points

Pen State Data Structure

psLoc Pen location (point; long)
psSize Pen size (point; long)
psMode Pen's transfer mode (word)
psPat Pen pattern (8 bytes)
psRec Size in bytes of pen state data structure

Font Information Data Structure

ascent Ascent (word)
descent Descent (word)
widMax Maximum character width (word)
leading Leading (word)

III-152 QuickDraw

Summary

Special Macro Names

Pascal n a m e Macro name
SetPortBits
InvertRect
InvertRoundRect
DisposeRgn
SetRectRgn
OffsetRgn
InvertRgn
ClosePoly

SetPBits
InverRect
InverRoundRect
DisposRgn
SetRecRgn
OfSetRgn
InverRgn
ClosePgon

Variables

RndSeed Random number seed (long)

QuickDraw III-153

Inside Macintosh

RESOURCE MANAGER

Constants

CONST { Masks for resource attributes }

resSysHeap - 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}
resLocked = 16; {set if locked}
resProtected = 8; {set if protected}
resPreload = 4; {set if to be preloaded}
resChanged = 2; {set if to be written to resource file}

{ Resource Manager result codes }

resNotFound = -192; {resource not found}
resFNotFound = -193; {resource file not found}
addResFailed = -194; {AddResource failed}
rmvResFailed = -196; {RmveResource failed}

{ Masks for resource file attributes }

mapReadOnly = 128; {set if file is read-only}
mapCompact = 64; {set to compact file on update}
mapChanged = 32; {set to write map on update}

Data Types

TYPE ResType = PACKED ARRAY[1..4] OF CHAR;

Routines

Initialization

FUNCTION InitResources : INTEGER;
PROCEDURE RsrcZonelnit;

Opening and Closing Resource Files

PROCEDURE CreateResFile (fileName: Str255);
FUNCTION OpenResFile (fileName: Str255) : INTEGER;
PROCEDURE CloseResFile (refNum: INTEGER);

III-154 Resource Manager

Summary

Checking for Errors

FUNCTION ResError : INTEGER;

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;
FUNCTION HomeResFile (theResource: Handle) : INTEGER;
PROCEDURE UseResFile (refNum: INTEGER);

Getting Resource Types

FUNCTION CountTypes : INTEGER;
PROCEDURE GetlndType (VARtheType: ResType; index: INTEGER);

Getting and Disposing of Resources

PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE

SetResLoad
CountResources
GetlndResource
GetResource
GetNamedRes ource
LoadResource
ReleaseResource
DetachResource

(load: BOOLEAN);
(theType: ResType) : INTEGER;
(theType: ResType; index: INTEGER) : Handle;
(theType: ResType; thelD: INTEGER) : Handle;
(theType: ResType; name: Str255) : Handle;
(theResource: Handle);
(theResource: Handle);
(theResource: Handle);

Getting Resource Information

FUNCTION UniquelD (theType: ResType) : INTEGER;
PROCEDURE GetResInfo (theResource: Handle; VAR thelD: INTEGER; VAR

theType: ResType; VAR name: Str255);
FUNCTION GetResAttrs (theResource: Handle) : INTEGER;
FUNCTION SizeResource (theResource: Handle) : LONGINT;

Modifying Resources

PROCEDURE SetResInfo (theResource: Handle; thelD: INTEGER; name:
Str255);

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER) ;
PROCEDURE ChangedResource (theResource: Handle);
PROCEDURE AddResource (theData: Handle; theType: ResType; thelD:

INTEGER; name: Str255);
PROCEDURE RmveResource (theResource: Handle);
PROCEDURE UpdateResFile (refNum: INTEGER);
PROCEDURE WriteResource (theResource: Handle);
PROCEDURE SetResPurge (install: BOOLEAN);

Resource Manager III-155

Inside Macintosh

Advanced Routines

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;
PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

Assembly-Language Information

Constants

; Resource attributes

resSysHeap .EQU 6 ;set if read into system heap
resPurgeable .EQU 5 ;set if purgeable
resLocked .EQU 4 ;set if locked
resProtected .EQU 3 ;set if protected
resPreload .EQU 2 ;set if to be preloaded
resChanged .EQU 1 ;set if to be written to resource

; Resource Manager result codes

resNotFound .EQU -192 ;resource not found
resFNotFound .EQU -193 ;resource file not found
addResFailed .EQU -194 ;AddResource failed
rmvResFailed .EQU -196 ;RmveResource failed

; Resource file attributes

mapReadOnly • EQU 7 ;set if file is read-only
mapCompact • EQU 6 ;set to compact file on update
mapChanged .EQU 5 ;set to write map on update

Special Macro Names

Pascal n a m e
SizeResource

Macro name
SizeRsrc

Variables

TopMapHndl
SysMapHndl
SysMap
CurMap
ResLoad
ResErr
ResErrProc
SysResName

Handle to resource map of most recendy opened resource file
Handle to map of system resource file
Reference number of system resource file (word)
Reference number of current resource file (word)
Current SetResLoad state (word)
Current value of ResError (word)
Address of resource error procedure
Name of system resource file (length byte followed by up to 19 characters)

III-156 Resource Manager

Summary

SCRAP MANAGER

Constants

CONST { Scrap Manager result codes }

noScrapErr = -100; {desk scrap isn't initialized}
noTypeErr = -102; {no data of the requested type}

Data Types

TYPE PScrapStuff = "ScrapStuff;
ScrapStuff = RECORD

scrapSize:
scrapHandle:
scrapCount:
scrapState:
scrapName:

END;

Routines

Getting Desk Scrap Information

FUNCTION InfoScrap : PScrapStuff;

Keeping the Desk Scrap on the Disk

FUNCTION UnloadScrap : LONGINT;
FUNCTION LoadScrap : LONGINT;

Writing to the Desk Scrap

FUNCTION ZeroScrap : LONGINT;
FUNCTION PutScrap (length: LONGINT; theType: ResType; source: Ptr) :

LONGINT;

Reading from the Desk Scrap

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset: LONGINT)
: LONGINT;

LONGINT; {size of desk scrap}
Handle; {handle to desk scrap}
INTEGER; {count changed by ZeroScrap}
INTEGER; {tells where desk scrap is}
StringPtr {scrap file name}

Scrap Manager III-157

Inside Macintosh

Assembly-Language Information

Constants

; Scrap Manager result codes

noScrapErr .EQU -100
noTypeErr .EQU -102

;desk scrap isn't initialized
;no data of the requested type

Special Macro Names

Pascal n a m e
LoadScrap
UnloadScrap

Macro name
LodeScrap

_UnlodeScrap

Variables

ScrapSize Size in bytes of desk scrap (long)
ScrapHandle Handle to desk scrap in memory
ScrapCount Count changed by ZeroScrap (word)
ScrapState Tells where desk scrap is (word)
ScrapName Pointer to scrap file name (preceded by length byte)

III-158 Scrap Manager

Summary

SEGMENT LOADER

Constants

CONST { Message returned by CountAppleFiles }

appOpen = 0 ; {open the document(s)}
appPrint = 1; {print the document(s)}

Data Types

TYPE AppFile = RECORD
vRefNum: INTEGER; {volume reference number}
fType: OSType; {file type}
versNum: INTEGER; {version number}
fName: Str255 {file name}

END;

Routines

PROCEDURE CountAppFiles (VAR message: INTEGER; VAR count: INTEGER); [Not

PROCEDURE GetAppFiles
PROCEDURE ClrAppFiles
PROCEDURE GetAppParms

PROCEDURE UnloadSeg
PROCEDURE ExitToShell;

in ROM]
(index: INTEGER; VAR theFile: AppFile); [Notin ROM]
(index: INTEGER) ; [Not in ROM]
(VAR apName: Str255; VAR apRefNum: INTEGER; VAR
apParam: Handle) ;
(routineAddr: Ptr) ;

Assembly-Language Information

Advanced Routines

Trap macro On entry
_Chain (AO): pointer to application's file name (preceded by length byte)

4(A0): configuration of sound and screen buffers (word)

JLaunch (AO): pointer to application's file name (preceded by length byte)
4(A0): configuration of sound and screen buffers (word)

_LoadSeg stack: segment number (word)

Segment Loader III-159

Inside Macintosh

Variables

AppParmHandle
CurApName
CurApRefNum
CurPageOption
CurJTOffset
FinderName

Handle to Finder information
Name of current application (length byte followed by up to 31 characters)
Reference number of current application's resource file (word)
Sound/screen buffer configuration passed to Chain or Launch (word)
Offset to jump table from location pointed to by A5 (word)
Name of the Finder (length byte followed by up to 15 characters)

III-160 Segment Loader

Summary

SERIAL DRIVERS

Constants

CONST { Driver reset information }

baud300 = 380; {300 baud}
baud600 18S); {600 baud}
baudl200 = 94, {1200 baud}
baudl800 = 62, {1800 baud}
baud2400 = 46 {2400 baud}
baud3600 = 30 {3600 baud}
baud4800 = 22 {4800 baud}
baud7200 = 14 {7200 baud}
baud9600 = 10 {9600 baud}
baudl9200 = 4; {19200 baud}
baud57600 = 0; {57600 baud}
stoplO = 16384; {1 stop bit}
stopl5 = -32768; {1.5 stop bits}
stop20 -16384; {2 stop bits}
noParity = 0; {no parity}
oddParity = 4096; {odd parity}
evenParity = 12288; {even parity}
data5 = 0; {5 data bits}
data 6 = 2048; {6 data bits}
data7 = 1024; {7 data bits}
data 8 = 3072; {8 data bits}

{ Masks for errors }

swOverrunErr = 1 ; {set if software overrun error}
parityErr = 16; {set if parity error}
hwOverrunErr = 32; {set if hardware overrun error}
framingErr = 64; {set if framing error}

{ Masks for changes that cause events to be posted }

ctsEvent = 32; {set if CTS change will cause event to be }
{ posted}

breakEvent = 128; {set if break status change will cause event }
{ to be posted}

{ Indication that an XOff character was sent }

xOffWasSent = $80;

{ Result codes }

noErr = 0; {no error}
openErr = -23; {attempt to open RAM Serial Driver failed}

Serial Drivers 111-161

Inside Macintosh

Data Types

TYPE SPortSel = (sPortA, {modem port}
sPortB {printer port});

PACKED RECORD
fXOn : Byte; {XOn/XOff output flow control flag}
fCTS : Byte; {CTS hardware handshake flag}
xOn: CHAR; {XOn character}
xOff : CHAR; {XOff character}
errs : Byte; {errors that cause abort}
evts : Byte; {status changes that cause events}
flnX : Byte; {XOn/XOff input flow control flag}
null : Byte {not used}

END;

SerStaRec = PACKED RECORD
cumErrs: Byte;
xOffSent: Byte;
rdPend: Byte;
wrPend: Byte;
ctsHold: Byte;
xOffHold: Byte

END;

Routines [Not in ROM]

Opening and Closing the RAM Serial Driver

FUNCTION RAMSDOpen (whichPort: SPortSel) : OSErr;
PROCEDURE RAMSDClose (whichPort: SPortSel);

Changing Serial Driver Information

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) : OSErr;
FUNCTION SerSetBuf (refNum: INTEGER; serBPtr: Ptr; serBLen: INTEGER)

OSErr;
FUNCTION SerHShake (refNum: INTEGER; flags: SerShk) : OSErr;
FUNCTION SerSetBrk (refNum: INTEGER) : OSErr;
FUNCTION SerClrBrk (refNum: INTEGER) : OSErr;

Getting Serial Driver Information

FUNCTION SerGetBuf (refNum: INTEGER; VAR count: LONGINT) : OSErr;
FUNCTION SerStatus (refNum: INTEGER; VAR serSta: SerStaRec) : OSErr;

{cumulative errors}
{XOff sent as input flow control}
{read pending flag}
{write pending flag}
{CTS flow control hold flag}
{XOff flow control hold flag}

III-162 Serial Drivers

Summary

Advanced Control Calls (RAM Serial Driver)

c s C o d e c s P a r a m Effect
13 baudRate Set baud rate (actual rate, as an integer)

19 char Replace parity errors

21 Unconditionally set XOff for output flow control

22 Unconditionally clear XOff for input flow control

23 Send XOn for input flow control if XOff was sent last

24 Unconditionally send XOn for input flow control

25 Send XOff for input flow control if XOn was sent last

26 Unconditionally send XOff for input flow control

27 Reset SCC channel

Driver Names and Reference Numbers

Driver Driver name Reference n u m b e r

Modem port input . AIn - 6

Modem port output .AOut - 7

Printer port input .Bin - 8

Printer port output .BOut - 9

Assembly-Language Information

Constants

; Result codes

noErr .EQU 0 ;no error
openErr .EQU -23 /attempt to open RAM Serial Driver failed

Structure of Control Information for SerHShake

shFXOn XOn/XOff output flow control flag (byte)
shFCTS CTS hardware handshake flag (byte)
shXOn XOn character (byte)
shXOff XOff character (byte)
shErrs Errors that cause abort (byte)
shEvts Status changes that cause events (byte)
shFInX XOn/XOff input flow control flag (byte)

Serial Drivers 111-163

Inside Macintosh

Structure of Status Information for SerStatus

ssCumErrs Cumulative errors (byte)
ssXOffSent XOff sent as input flow control (byte)
ssRdPend Read pending flag (byte)
ssWrPend Write pending flag (byte)
ssCTSHold CTS flow control hold flag (byte)
ssXOffHold XOff flow control hold flag (byte)

Equivalent Device Manager Calls

Pascal rou t ine
SerReset

SerSetBuf

SerHShake

SerSetBrk

SerClrBrk

SerGetBuf

SerStatus

Call
Control with csCode=8, csParam=serConfig

Control with csCode=8, csParam=serBPtr, csParam+4=serBLen

Control with csCode=10, csParam through csParam+6=flags

Control with csCode=12

Control with csCode=ll

Status with csCode=2; count returned in csParam

Status with csCode=8; serSta returned in csParam through csParam+5

III-164 Serial Drivers

Summary

SOUND DRIVER

Constants

CONST { Mode values for synthesizers }

swMode = -1
ftMode = 1
ffMode = 0

{square-wave synthesizer}
{four-tone synthesizer}
{free-form synthesizer}

Data Types

TYPE { Free-form synthesizer }

FFSynthPtr = AFFSynthRec;
FFSynthRec = RECORD

mode: INTEGER; {always ffMode}
count: Fixed; {"sampling" factor}
waveBytes: FreeWave {waveform description}

END;

FreeWave = PACKED ARRAY[0..30 0 00] OF Byte;

{ Square-wave synthesizer }

SWSynthPtr = ASWSynthRec;
SWSynthRec = RECORD

mode: INTEGER; {always swMode}
triplets: Tones {sounds}

END;

Tones = ARRAY[0..5000] OF Tone;
Tone = RECORD

count: INTEGER; {frequency}
amplitude: INTEGER; {amplitude, 0-255}
duration: INTEGER {duration in ticks}

END;

{ Four-tone synthesizer }

FTSynthPtr = ^FTSynthRec;
FTSynthRec = RECORD

mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

Sound Driver III-165

Inside Macintosh

FTSndRecPtr = AFTSoundRec;
FTSoundRec = RECORD

duration: INTEGER; {duration in ticks}
soundlRate: Fixed; {tone 1 cycle rate}
soundlPhase: LONGINT; {tone 1 byte offset}
sound2Rate: Fixed; {tone 2 cycle rate}
sound2Phase: LONGINT; {tone 2 byte offset}
sound3Rate: Fixed; {tone 3 cycle rate}
sound3Phase: LONGINT; {tone 3 byte offset}
sound4Rate: Fixed; {tone 4 cycle rate}
sound4Phase: LONGINT; {tone 4 byte offset}
soundlWave: WavePtr; {tone 1 waveform}
sound2Wave: WavePtr; {tone 2 waveform}
sound3Wave: WavePtr; {tone 3 waveform}
sound4Wave: WavePtr {tone 4 waveform}

END;

WavePtr = AWave;
Wave = PACKED ARRAY[0..255] OF Byte;

Routines [Not in ROM]

PROCEDURE StartSound (synthRec: Ptr; numBytes: LONGINT; completionRtn:
ProcPtr);

PROCEDURE StopSound;
FUNCTION SoundDone : BOOLEAN;
PROCEDURE GetSoundVol (VAR level: INTEGER);
PROCEDURE SetSoundVol (level: INTEGER);

Assembly-Language Information

Routines

Pascal name Equivalent for assembly language

StartSound Call Write with ioRefNum=-4, ioBuffer=synthRec, ioReqCount=numBytes

StopSound Call KilllO and (for square-wave) set CurPitch to 0

SoundDone Poll ioResult field of most recent Write call's parameter block

GetSoundVol Get low-order three bits of variable SdVolume

SetSoundVol Call this Pascal procedure from your program

Variables

SdVolume Speaker volume (byte: low-order three bits only)
SoundPtr Pointer to four-tone record
SoundLevel Amplitude in 740-byte buffer (byte)
CurPitch Value of count in square-wave synthesizer buffer (word)

III-166 Sound Driver

Summary

Sound Driver Values for Notes

The following table contains values for the rate field of a four-tone synthesizer and the count field
of a square-wave synthesizer. A just-tempered scale—in the key of C, as an example—is given
in the first four columns; you can use a just-tempered scale for perfect tuning in a particular key.
The last four columns give an equal-tempered scale, for applications that may use any key; this
scale is appropriate for most Macintosh sound applications. Following this table is a list of the
ratios used in calculating these values, and instructions on how to calculate them for a just-
tempered scale in any key.

Just-Tempered Scale Equal-Tempered Scale

Rate for Count for Rate for Count for
Four-Tone Square-Wave Four-Tone Square-Wave

N o t e L o n g F i x e d W o r d In teger L o n g

3 octaves below middle C

C 612B 0.37956
C# 667C 0.40033
Db 67A6 0.40488
D 6D51 0.42702
Ebb 6E8F 0.43187
D# 7 IDF 0.44481
Eb 749A 0.45547
E 7976 0.47446
F 818F 0.50609
F# 88A5 0.53377
Gb 8A32 0.53983
G 91C1 0.56935
G# 97D4 0.59308
Ab 9B79 0.60732
A A1F3 0.63261
Bbb A3CA 0.63980
A# AAOC 0.66425
Bb ACBF 0.67479
B B631 0.71169

2 octaves below middle C

C C257 0.75914
c # CCF8 0.80066
Db CF4C 0.80975
D DAA2 0.85403
Ebb DD1D 0.86372
D# E3BE 0.88962
Eb E935 0.91096
E F2ED 0.94893
F 1031E 1.01218
F# 1114A 1.06754
Gb 11465 1.07967
G 12382 1.13870

5CBA 23738 604C
57EB 22507 6606
56EF 22255
526D 21101 6C17
5180 20864
4F21 20257 7284
4D46 19782
4A2F 18991 7953
458C 17804 808A
41F0 16880 882F
4133 16691

3DD1 15825 9048
3B58 15192 98DC
39F4 14836
37A3 14243 A1F3
3703 14083

34FD 13565 AB94
3429 13353
3174 12660 B5C8

2E5D 11869 C097
2BF6 11254 CC0B
2B77 11127
2936 10550 D82D
28C0 10432
2790 10128 E508
26A3 9891
2517 9495 F2A6
22C6 8902 10114
20F8 8440 1105D
2099 8345
1EE9 7913 12090

F i x e d W o r d In teger

0.37616
0.39853

5D92
5851

23954
22609

0.42223 535C 21340

0.44733 4EAF 20143

0.47392
0.50211
0.53197

4A44
4619
422A

19012
17945
16938

0.56360
0.59711

3E73
3AF2

15987
15090

0.63261 37A3 14243

0.67023 3484 13444

0.71008 3191 12689

0.75230
0.79704

2EC9
2C29

11977
11305

0.84444 29AE 10670

0.89465 2757 10071

0.94785
1.00421
1.06392

2522
230C
2115

9506
8972
8469

1.12720 1F3A 7994

Sound Driver 111-167

Inside Macintosh

N o t e L o n g F ixed

2 octaves below middle C

G# 12FA8 1.18616
Ab 136F1 1.21461
A 143E6 1.26523
Bbb 14794 1.27960
A# 15418 1.32849
Bb 1597E 1.34958
B 16C63 1.42339

1 octave below middle C

C 184AE 1.51828
C# 199EF 1.60130
Db 19E97 1.61949
D 1B543 1.70805
Ebb 1BA3B 1.72746
D# 1C77B 1.77922
Eb 1D26A 1.82193
E 1E5D9 1.89784
F 2063D 2.02437
F# 22294 2.13507
Gb 228C9 2.15932
G 24704 2.27740
G# 25F4F 2.37230
Ab 26DE3 2.42924
A 287CC 2.53046
Bbb 28F28 2.55920
A# 2A830 2.65698
Bb 2B2FC 2.69916
B 2D8C6 2.84677

Middle C

C 3095B 3.03654
C# 333DE 3.20261
Db 33D2E 3.23898
D 36A87 3.41612
Ebb 37476 3.45493
D# 38EF7 3.55846
Eb 3A4D4 3.64386
E 3CBB2 3.79568
F 40C7A 4.04874
F# 44528 4.27014
Gb 45193 4.31865
G 48E09 4.55482
G# 4BE9F 4.74461
Ab 4DBC5 4.85847
A 50F98 5.06091

W o r d In teger L o n g

1DAC 7596 131B8
1CFA 7418
1BD1 7121 143E6
1B81 7041
1A7E 6782 15729
1A14 6676
18BA 6330 16B90

172F 5935 1812F
15FB 5627 19816
15BC 5564
149B 5275 1B05A
1460 5216
13C8 5064 1CA10
1351 4945
128C 4748 1E54D
1163 4451 20228
107C 4220 220BB
104D 4173

F74 3956 241 IF
ED6 3798 26370
E7D 3709
DE9 3561 287CC
D O 3521
D3F 3391 2AE51
D0A 3338
C5D 3165 2D721

B97 2967 3025D
AFD 2813 3302C
ADE 2782
A4E 2638 360B5
A30 2608
9E4 2532 39420
9A9 2473
946 2374 3CA99
8B1 2225 40450
83E 2110 44176
826 2086

7BA 1978 4823E
76B 1899 4C6E1
73F 1855
6F4 1780 50F98

F i x e d W o r d In teger

1.19421 1D79 7545

1.26523 1BD1 7121

1.34047 1A42 6722

1.42017 18C8 6344

1.50462
1.59409

1764
1614

5988
5652

1.68887 14D7 5335

1.78931 13 AC 5036

1.89571
2.00842
2.12785

1291
1186
108A

4753
4486
4234

2.25438
2.38843

F9D
EBC

3997
3772

2.53046 DE9 3561

2.68092 D21 3361

2.84035 C64 3172

3.00923
3.18817

BB2
BOA

2994
2826

3.37776 A6C 2668

3.57861 9D6 2518

3.79140
4.01685
4.25571

949
8C3
845

2377
2243
2117

4.50876
4.77687

7CE
75E

1998
1886

5.06091 6F4 1780

III-168 Sound Driver

Summary

N o t e L o n g F ixed W o r d In teger

Middle C

Bbb 51E4F 5.11839 6E0 1760
A# 55060 5.31396 6A0 1696
Bb 565F8 5.39832 685 1669
B 5B18B 5.69353 62F 1583

1 octave above middle C

C 612B7 6.07310 5CC 1484
C# 667BD 6.40523 57F 1407
Db 67A5C 6.47797 56F 1391
D 6D50D 6.83223 527 1319
Ebb 6E8EB 6.90984 518 1304
D# 7 IDEE 7.11691 4F2 1266
Eb 749A8 7.28772 4D4 1236
E 79764 7.59137 4A3 1187
F 818F3 8.09746 459 1113
F# 88A51 8.54030 41F 1055
Gb 8A326 8.63730 413 1043
G 91C12 9.10965 3DD 989
G# 97D3D 9.48921 3B6 950
Ab 9B78B 9.71696 39F 927
A A1F30 10.12183 37A 890
Bbb A3C9F 10.23680 370 880
A# AAOBF 10.62791 350 848
Bb ACBEF 10.79662 343 835
B B6316 11.38705 317 791

2 octaves above middle C

C C256D 12.14619 2E6 742
C# CCF79 12.81044 2BF 703
Db CF4B9 12.95595 2B7 695
D DAA1B 13.66447 293 659
Ebb DD1D6 13.81967 28C 652
D# E3BDC 14.23383 279 633
Eb E9350 14.57544 26A 618
E F2EC8 15.18274 251 593
F 1031E7 16.19493 22C 556
F# 1114A1 17.08058 210 528
Gb 11464C 17.27460 20A 522
G 123824 18.21930 1EF 495
G# 12FA7B 18.97844 1DB 475
Ab 136F15 19.43391 1D0 464
A 143E61 20.24367 1BD 445
Bbb 14793D 20.47359 1B8 440
A# 15417F 21.25584 1A8 424
Bb 1597DE 21.59323 1A1 417
B 16C62D 22.77412 18C 396

L o n g F i x e d W o r d In teger

55CA2 5.36185 690 1680

5AE41 5.68068 632 1586

604BB
66059

6.01848
6.37636

5D9
585

1497
1413

6C169 6.75551 536 1334

7283F 7.15721 4EB 1259

79533
808A1
882EC

7.58281
8.03371
8.51141

4A4
462
423

1188
1122.
1059

9047D
98DC2

9.01753
9.55374

3E7
3AF

999
943

A1F30 10.12183 37A 890

AB945 10.72371 348 840

B5C83 11.36137 319 793

C0976
CC0B1

12.03696
12.75270

2ED
2C3

749
707

D82D2 13.51102 29B 667

E507E 14.31442 275 629

F2A65
101141
1105D8

15.16560
16.06740
17.02283

252
231
211

594
561
529

1208F9
131B83

18.03505
19.10747

1F4
1D8

500
472

143E61 20.24367 1BD 445

15728A 21.44742 1A4 420

16B906 22.72275 18D 397

Sound Driver 111-169

Inside Macintosh

N o t e L o n g F ixed W o r d In teger L o n g F i x e d W o r d In teger

3 octaves above middle C

C 184ADA 24.29239 173 371 1812EB 24.07390 176 374
C# 199EF2 25.62088 160 352 198163 25.50542 161 353
Db 19E971 25.91188 15C 348
D 1B5436 27.32895 14A 330 1B05A5 27.02205 14D 333
Ebb 1BA3AC 27.63934 146 326

333

D# 1C77B8 28.46765 13D 317 1CA0FD 28.62886 13B 315
Eb 1D26A0 29.15088 135 309
E 1E5D91 30.36549 129 297 1E54CB 30.33122 129 297
F 2063CE 32.38986 116 278 202283 32.13481 118 280
F# 222943 34.16118 108 264 220BAF 34.04564 109 265
Gb 228C97 34.54918 105 261
G 247047 36.43858 F7 247 2411F2 36.07010 FA 250
G# 25F4F5 37.95686 ED 237 263706 38.21494 EC 236
Ab 26DE2A 38.86783 E8 232
A 287CC1 40.48732 DF 223 287CC1 40.48732 DF 223
Bbb 28F27A 40.94717 DC 220
A# 2A82FE 42.51169 D4 212 2AE513 42.89482 D2 210
Bb 2B2FBD 43.18648 Dl 209
B 2D8C59 45.54823 C6 198 2D720B 45.44548 C6 198

The following table gives the ratios used in calculating the above values. It shows the
relationship between the notes making up the just-tempered scale in the key of C; should you
need to implement a just-tempered scale in some other key, you can do so as follows: First get
the value of the root note in the proper octave in the equal-tempered scale (from the above table).
Then use the following table to determine the values of the intervals for the other notes in the key
by multiplying the ratio by the root note.

C h r o m a t i c J u s t - t e m p e r e d E q u a l - t e m p e r e d
in t e rva l N o t e f requency ra t io f requency ra t io In t e rva l type

0 C 1.00000 1.00000 Unison
1 c # 1.05469 1.05946" Minor second as chromatic

semitone
Db 1.06667 Minor second as diatonic

semitone
2 D 1.11111 1.12246 Major second as minor tone

D 1.12500 Major second as major tone
Ebb 1.13778 Diminished third

3 D# 1.17188 1.18921 Augmented second
Eb 1.20000 Minor third

4 E 1.25000 1.25992 Major third
5 F 1.33333 1.33484 Fourth
6 F# 1.40625 1.41421 Tritone as augmented fourth

Gb 1.42222 Tritone as diminished fifth
7 G 1.50000 1.49831 Fifth

III-170 Sound Driver

Summary

Chromatic Just-tempered
interval Note frequency ratio

8 G# 1.56250
Ab 1.60000

9 A 1.66667

Bbb 1.68560

10 A# 1.75000

Bb 1.77778

11 B 1.87500

12 C 2.00000

Equal-tempered
frequency ratio Interval type

1.58740 Augmented fifth
Minor sixth

1.68179 Major sixth
Diminished seventh

1.78180 Augmented sixth
Minor seventh

1.88775 Major seventh
2.00000 Octave

Sound Driver III-171

Inside Macintosh

STANDARD FILE PACKAGE

Constants

CONST { SFPutFile dialog template ID }

putDlgID = -3999;

{ Item numbers of enabled items in SFPutFile dialog }

putSave
putCancel
putEject
putDrive
putName

{Save button}
{Cancel button}
{Eject button}
{Drive button}
{editText item for file name}

{ SFGetFile dialog template ID }

getDlgID = -4000;

{ Item numbers of enabled items in SFGetFile dialog }

getOpen =
getCancel =
getEject =
getDrive =
getNmList =
getScroll =

{Open button}
{Cancel button}
{Eject button}
{Drive button}
{userltem for file name list}
{userltem for scroll bar}

Data Types

TYPE SFReply = RECORD
good:
copy:
fType:
vRefNum:
version:
fName:

END;

BOOLEAN; {FALSE if ignore command}
BOOLEAN; {not used}
OSType; {file type or not used}
INTEGER; {volume reference number}
INTEGER; {file's version number}
STRING[63] {file name}

SFTypeList = ARRAY[0..3] OF OSType;

III-172 Standard File Package

Summary

Routines

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply);

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply; dlglD:
INTEGER; filterProc: ProcPtr);

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter: ProcPtr;
numTypes: INTEGER; typeList: SFTypeList; dlgHook:
ProcPtr; VAR reply: SFReply);

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter: ProcPtr;
numTypes: INTEGER; typeList: SFTypeList; dlgHook:
ProcPtr; VAR reply: SFReply; dlglD: INTEGER;
filterProc: ProcPtr);

DlgHook Function

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER;

FileFilter Function

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) : BOOLEAN;

Standard SFPutFile Items

I t em n u m b e r I t em S t a n d a r d display rec tangle

1 Save button (12,74)(82,92)

2 Cancel button (114,74X184,92)

3 Prompt string (statText) (12,12)(184,28)

4 Userltem for disk name (209,16)(295,34)

5 Eject button (217,43)(287,61)

6 Drive button (217,74)(287,92)

7 EditText item for file name (14,34)(182,50)

8 Userltem for dotted line (200,16)(201,88)

Standard File Package III-l 73

Inside Macintosh

Resource IDs of SFPutFile Alerts

Alert Resource ID
Disk not found -3994

System error -3995

Existing file -3996

Locked disk -3997

Standard SFGetFile Items

Item number Item Standard display rectangle
1 Open button (152,28)(232,46)

2 Invisible button (1152,59)(1232,77)

3 Cancel button (152,90)(232,108)

4 Userltem for disk name (248,28)(344,46)

5 Eject button (256,59)(336,77)

6 Drive button (256,90)(336,108)

7 Userltem for file name list (12,11)(125,125)

8 Userltem for scroll bar (124,11)(140,125)

9 Userltem for dotted line (244,20)(245,116)

10 Invisible text (statText) (1044,20)(1145,116)

Assembly-Language Information

Constants

; SFPutFile dialog template ID

putDlgID .EQU -3999

; Item numbers of enabled items in SFPutFile dialog

putSave .EQU 1 ;Save button
putCancel .EQU 2 ;Cancel button
putEject .EQU 5 /Eject button
putDrive .EQU 6 /Drive button
putName .EQU 7 /editText item for file name

/ SFGetFile dialog template ID

getDlgID .EQU -4000

III-174 Standard File Package

Summary

; Item numbers of enabled items in SFGetFile dialog

getOpen .EQU 1 ;Cpen button
getCancel .EQU 3 ;Cancel button
getEject .EQU 5 ;Eject button
getDrive .EQU 6 ;Drive button
getNmList .EQU 7 ;userItem for file name list
getScroll • EQU 8 ;userltem for scroll bar

; Routine ; selectors

sfPutFile • EQU 1
sfGetFile .EQU 2
sfPPutFile .EQU 3
sfPGetFile .EQU 4

Reply Record Data Structure

rGood 0 if ignore command (byte)
rType File type (long)
rVolume Volume reference number (word)
rVersion File's version number (word)
rName File name (length byte followed by up to 63 characters)

Trap Macro Name

Pack3

Variables
SFSaveDisk Negative of volume reference number used by Standard File Package (word)

Standard File Package III-l 75

Inside Macintosh

SYSTEM ERROR HANDLER

Routines

PROCEDURE SysError (errorCode: INTEGER);

User Alerts

I D Exp lana t ion

1 Bus error: Invalid memory reference; happens only on a Macintosh XL

2 Address error: Word or long-word reference made to an odd address

3 Illegal instruction: The MC68000 received an instruction it didn't recognize.

4 Zero divide: Signed Divide (DIYS) or Unsigned Divide (DIVU) instruction with a
divisor of 0 was executed.

5 Check exception: Check Register Against Bounds (CHK) instruction was executed
and failed. Pascal "value out of range" errors are usually reported in this way.

6 TrapV exception: Trap On Overflow (TRAPV) instruction was executed and failed.

7 Privilege violation: Macintosh always runs in supervisor mode; perhaps an erroneous
Return From Execution (RTE) instruction was executed.

8 Trace exception: The trace bit in the status register is set.

9 Line 1010 exception: The 1010 trap dispatcher has failed.

10 Line 1111 exception: Unimplemented instruction

11 Miscellaneous exception: All other MC68000 exceptions

12 Unimplemented core routine: An unimplemented trap number was encountered.

13 Spurious interrupt: The interrupt vector table entry for a particular level of interrupt is
NIL; usually occurs with level 4, 5, 6, or 7 interrupts.

14 I/O system error: The File Manager is attempting to dequeue an entry from an I/O
request queue that has a bad queue type field; perhaps the queue entry is unlocked. Or,
the dCtlQHead field was NIL during a Fetch or Stash call. Or, a needed device control
entry has been purged.

15 Segment Loader error: A GetResource call to read a segment into memory failed.

16 Floating point error: The halt bit in the floating-point environment word was set.

17-24 Can't load package: A GetResource call to read a package into memory failed.

25 Can't allocate requested memory block in the heap

26 Segment Loader error: A GetResource call to read 'CODE' resource 0 into memory
failed; usually indicates a nonexecutable file.

III-l 76 System Error Handler

Summary

27 File map destroyed: A logical block number was found that's greater than the number
of the last logical block on the volume or less than the logical block number of the first
allocation block on the volume.

28 Stack overflow error: The stack has expanded into the heap.

30 "Please insert the disk:" File Manager alert

41 The file named "Finder" can't be found on the disk.

100 Can't mount system startup volume. The system couldn't read the system resource file
into memory.

32767 "Sorry, a system error occurred": Default alert message

System Startup Alerts

"Welcome to Macintosh"
"Disassembler installed"
"MacsBug installed"
"Warning—this startup disk is not usable"

Assembly-Language Information

Constants

; System error IDs

dsBusError • EQU 1 bus error
dsAddres sErr .EQU 2 address error
dsIHInstErr • EQU 3 illegal instruction
dsZeroDivErr .EQU 4 zero divide
dsChkErr .EQU 5 check exception
dsOvflowErr .EQU 6 trapV exception
dsPrivErr • EQU 7 privilege violation
dsTraceErr .EQU 8 trace exception
dsLineAErr .EQU 9 line 1010 exception
dsLineFErr • EQU 10 •line 1111 exception
dsMiscErr • EQU 11 •miscellaneous exception
dsCoreErr • EQU 12 •unimplemented core routine
dsIrqErr .EQU 13 •spurious interrupt
dsIOCoreErr • EQU 14 •I/O system error
dsLoadErr .EQU 15 •Segment Loader error
dsFPErr .EQU 16 •floating point error
dsNoPackErr .EQU 17 •can't load package 0
dsNoPkl .EQU 18 •can't load package 1
dsNoPk2 .EQU 19 •can't load package 2
dsNoPk3 • EQU 20 •can't load package 3
dsNoPk4 • EQU 21 •can't load package 4
dsNoPk5 .EQU 22 •can't load package 5
dsNoPk6 .EQU 23 ;can't load package 6

System Error Handler III-177

Inside Macintosh

dsNoPk7 .EQU 24
dsMemFullErr .EQU 25
dsBadLaunch .EQU 26
dsFSErr .EQU 27
dsStkNHeap .EQU 28
dsReinsert .EQU 30
dsSysErr .EQU 32767

/can't load package 7
/can't allocate requested block
/Segment Loader error
/file map destroyed
/stack overflow error
/"Please insert the disk:"
/undifferentiated system error

Routines

Trap macro On entry On exit
SysError DO: errorCode (word) All registers changed

Variables

DSErrCode Current system error ID (word)
DSAlertTab Pointer to system error alert table in use
DSAlertRect Rectangle enclosing system error alert (8 bytes)

III-l 78 System Error Handler

TEXTEDIT

Constants

CONST { Text justification }

teJustLeft = 0;
teJustCenter = 1;
teJustRight = -1;

Data Types

TYPE TEHandle = "TEPtr;
TEPtr = '"TERec;
TERec = RECORD

destRect: Rect ;
viewRect: Rect ;
selRect: Rect ;
lineHeight INTEGER;
fontAscent: INTEGER;
selPoint: Point;
selStart: INTEGER;
selEnd: INTEGER;
active: INTEGER;
wordBreak: ProcPtr;
clikLoop: ProcPtr;
clickTime: LONGINT;
clickLoc: INTEGER;
caretTime: LONGINT;
caretState: INTEGER;
just: INTEGER;
teLength: INTEGER;
hText: Handle;
recalBack: INTEGER;
recalLines: INTEGER;
clikStuff: INTEGER;
crOnly: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;
txSize: INTEGER;
inPort: GrafPtr;
highHook: ProcPtr;
caretHook: ProcPtr,
nLines: INTEGER,
lineStarts: ARRAY[0

END;

{destination rectangle}
{view rectangle}
{used from assembly language}
{for line spacing
{caret/highlighting position}
{used from assembly language}
{start of selection range}
{end of selection range
{used internally}
{for word break routine}
{for click loop routine}
{used internally}
{used internally}
{used internally}
{used internally}
{justification of text}
{length of text}
{text to be edited}
{used internally}
{used internally}
{used internally}
{if <0, new line at Return only}
{text font}
{character style}
{pen mode}
{font size}
{grafPort}
{used from assembly language}
{used from assembly language}
{number of lines}
16000] OF INTEGER
{positions of line starts}

TextEdit 111-179

Inside Macintosh

CharsHandle = ACharsPtr;
CharsPtr = AChars;
Chars = PACKED ARRAY [0. .32000] OF CHAR;

Routines

Initialization and Allocation

PROCEDURE TEInit;
FUNCTION TENew (destRect,viewRect: Rect) : TEHandle;
PROCEDURE TEDispose (hTE: TEHandle);

Accessing the Text of an Edit Record

PROCEDURE TESetText (text: Ptr; length: LONGINT; hTE: TEHandle);
FUNCTION TEGetText (hTE: TEHandle) : CharsHandle;

Insertion Point and Selection Range

PROCEDURE TEIdle (hTE: TEHandle);
PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEHandle);
PROCEDURE TESetSelect (selStart,selEnd: LONGINT; hTE: TEHandle);
PROCEDURE TEActivate (hTE: TEHandle);
PROCEDURE TEDeactivate (hTE: TEHandle);

Editing

PROCEDURE TEKey
PROCEDURE TECut
PROCEDURE TECopy
PROCEDURE TEPaste
PROCEDURE TEDelete
PROCEDURE TEInsert

(key: CHAR; hTE: TEHandle);
(hTE: TEHandle)
(hTE: TEHandle)
(hTE: TEHandle)
(hTE: TEHandle)
(text: Ptr; length: LONGINT; hTE: TEHandle);

Text Display and Scrolling

PROCEDURE TESetJust (just: INTEGER; hTE: TEHandle);
PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle);
PROCEDURE TextBox (text: Ptr; length: LONGINT; box: Rect; just:

INTEGER);
PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle);

III-180 TextEdit

Summary

Scrap Handling [Not in ROM]

FUNCTION TEFromScrap : OSErr;
FUNCTION TEToScrap : OSErr;
FUNCTION TEScrapHandle : Handle;
FUNCTION TEGetScrapLen : LONGINT;
PROCEDURE TESetScrapLen : (length: LONGINT);

Advanced Routines

PROCEDURE SetWordBreak (wBrkProc: ProcPtr; hTE: TEHandle) ; [No t inROM]
PROCEDURE SetClikLoop (clikProc: ProcPtr; hTE: TEHandle); [Not inROM]
PROCEDURE TECalText (hTE: TEHandle);

Word Break Routine

FUNCTION MyWordBreak (text: Ptr; charPos: INTEGER) : BOOLEAN;

Click Loop Routine

FUNCTION MyClikLoop : BOOLEAN;

Assembly-Language Information

Constants

; Text justification

teJustLeft .EQU 0
teJustCenter .EQU 1
teJustRight .EQU -1

Edit Record Data Structure

teDestRect Destination rectangle (8 bytes)
teViewRect View rectangle (8 bytes)
teSelRect Selection rectangle (8 bytes)
teLineHite For line spacing (word)
teAscent Caret/highlighting position (word)
teSelPoint Point selected with mouse (long)
teSelStart Start of selection range (word)
teSelEnd End of selection range (word)
teWordBreak Address of word break routine (see below)
teClikProc Address of click loop routine (see below)
teJust Justification of text (word)

TextEdit III-181

Inside Macintosh

teLength Length of text (word)
teTextH Handle to text
teCROnly If <0, new line at Return only (byte)
teFont Text font (word)
teFace Character style (word)
teMode Pen mode (word)
teSize Font size (word)
teGrafPort Pointer to grafPort
teffiHook Address of text highhghting routine (see below)
teCarHook Address of routine to draw caret (see below)
teNLines Number of lines (word)
teLines Positions of line starts (teNLines*2 bytes)
teRecSize Size in bytes of edit record except teLines field

Word break routine

On entry AO: pointer to text
DO: character position (word)

On exit Z condition code: 0 to break at specified character
1 not to break there

Click loop routine

On exit DO: 1
D2: must be preserved

Text Mghhghting routine

On entry A3: pointer to locked edit record

Caret drawing routine

On entry A3: pointer to locked edit record

Variables

TEScrpHandle
TEScrpLength
TERecal
TEDoText

TERecal routine

Handle to TextEdit scrap
Size in bytes of TextEdit scrap (word)
Address of routine to recalculate line starts (see below)
Address of multi-purpose routine (see below)

On entry

On exit

A3
D7:

D2:
D3
D4:

pointer to locked edit record
change in length of edit record (word)

line start of line containing first character to be redrawn (word)
position of first character to be redrawn (word)
position of last character to be redrawn (word)

III-182 TextEdit

Summary

TEDoText routine

On entry A3: pointer to locked edit record
D3: position of first character to be redrawn (word)
D4: position of last character to be redrawn (word)
D7: (word) 0 to hit-test a character

1 to highlight selection range
- 1 to display text
- 2 to position pen to draw caret

On exit AO: pointer to current grafPort
DO: if hit-testing, character position or - 1 for none (word)

TextEdit III-183

Inside Macintosh

UTILITIES, OPERATING SYSTEM

Constants

CONST { Values returned by Environs procedure }

macXLMachine = 0;
macMachine = 1;

{ Result codes }

clkRdErr = -85;
clkWrErr = -86;
memFullErr = -108
memWZErr = -111
nilHandleErr = -109
noErr = 0 ;
prlnitErr = -88;
prWrErr = -87;
qErr = -1;

{Macintosh XL}
{Macintosh 128K or 512K}

{unable to read clock}
{time written did not verify}
{not enough room in heap zone}
{attempt to operate on a free block}
{NIL master pointer}
{no error}
{validity status is not $A8}
{parameter RAM written did not verify}
{entry not in specified queue}

Data Types

TYPE OSType = PACKED ARRAY[1..4] OF CHAR;

OSErr = INTEGER;

SysPPtr "SysParmType;
SysParmType =

RECORD
valid: Byte; {validity status}
aTalkA: Byte; {AppIeTalk node ID hint for modem port}
aTalkB: Byte; {AppIeTalk node ID hint for printer port}
config: Byte; {use types for serial ports}
port A: INTEGER {modem port configuration}
portB: INTEGER • {printer port configuration}
alarm: LONGINT {alarm setting}
font: INTEGER {application font number minus 1}
kbdPrint: INTEGER, {auto-key settings, printer connection}
volClik: INTEGER, {speaker volume, double-click, caret blink}
misc: INTEGER {mouse scaling, startup disk, menu blink}

END;

QHdrPtr
QHdr

"QHdr;
RECORD

qFlags: INTEGER;
qHead: QElemPtr;
qTail: QElemPtr

END;

{queue flags}
{first queue entry}
{last queue entry}

III-184 Utilities, Operating System

Summary

QTypes = (dummyType,
vType,
ioQType,
drvQType,
evType,
fsQType);

QElemPtr ••
QElem

{vertical retrace queue type}
{file I/O or driver I/O queue type}
{drive queue type}
{event queue type}
{volume-control-block queue type}

AQElem;
RECORD
CASE QTypes OF

vType:
ioQType:
drvQType
evType:
fsQType:

END;

(vblQElem:
(ioQElem:
(drvQElem:
(evQElem:
(vcbQElem:

VBLTask);
ParamBlockRec);
DrvQEl);
EvQEl);
VCB)

DateTimeRec
RECORD

year:
month:
day:
hour:
minute:
second:

INTEGER,
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

dayOfWeek:INTEGER
END;

{1904 to 2040}
{1 to 12 for January to December}
{1 to 31}
{0 to 23}
{0 to 59}
{0 to 59}
{1 to 7 for Sunday to Saturday}

Routines

Pointer and Handle Manipulation

FUNCTION HandToHand (VAR theHndl: Handle) : OSErr;
FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle; size: LONGINT) :

OSErr;
FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LONGINT) :

OSErr;
FUNCTION HandAndHand (aHndl,bHndl: Handle) : OSErr;
FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LONGINT) : OSErr;

String Comparison

FUNCTION EqualString (aStr,bStr: Str255; caseSens,diacSens: BOOLEAN) :
BOOLEAN;

PROCEDURE UprString (VAR theString: Str255; diacSens: BOOLEAN);

Utilities, Operating System ffl-185

Inside Macintosh

Date and Time Operations

FUNCTION
PROCEDURE
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

ReadDateTime
GetDateTime
SetDateTime
Date2Secs
Secs2Date
Get Time
SetTime

(VAR sees: LONGINT) : OSErr;
(VAR sees: LONGINT); [Not in ROM]
(sees: LONGINT) : OSErr;
(date: DateTimeRec; VAR sees: LONGINT);
(sees: LONGINT; VAR date: DateTimeRec);
(VAR date: DateTimeRec); [Not in ROM]
(date: DateTimeRec); [Not in ROM]

Parameter RAM Operations

FUNCTION InitUtil : OSErr;
FUNCTION GetSysPPtr : SysPPtr; [Not in ROM]
FUNCTION WriteParam : OSErr;

Queue Manipulation

PROCEDURE Enqueue (qEntry: QElemPtr; theQueue: QHdrPtr);
FUNCTION Dequeue (qEntry: QElemPtr; theQueue: QHdrPtr) : OSErr;

Trap Dispatch Table Utilities

PROCEDURE SetTrapAddress (trapAddr: LONGINT; trapNum: INTEGER);
FUNCTION GetTrapAddress (trapNum: INTEGER) : LONGINT;

Miscellaneous Utilities

PROCEDURE Delay (numTicks: LONGINT; VAR finalTicks: LONGINT);
PROCEDURE SysBeep (duration: INTEGER);
PROCEDURE Environs (VAR rom,machine: INTEGER); [Not in ROM]
PROCEDURE Restart; [Not in ROM]
PROCEDURE SetUpA5; [Not in ROM]
PROCEDURE RestoreA5; [Not in ROM]

Default Parameter RAM Values

Parameter Default value

Validity status $A8

Node ID hint for modem port 0

Node ID hint for printer port 0

Use types for serial ports 0 (both ports)

Modem port configuration 9600 baud, 8 data bits, 2 stop bits, no parity

III-186 Utilities, Operating System

Summary

Parame te r
Printer port configuration

Alarm setting

Application font number minus 1

Auto-key threshold

Auto-key rate

Printer connection

Speaker volume

Double-click time

Caret-blink time

Mouse scaling

Preferred system startup disk

Menu blink

Default value
Same as for modem port

0 (midnight, January 1, 1904)

2 (Geneva)

6 (24 ticks)

3 (6 ticks)

0 (printer port)

3 (medium)

8 (32 ticks)

8 (32 ticks)

l (o n)

0 (internal drive)

3

Assembly-Language Information

Constants

; Result codes

clkRdErr .EQU -85 ;unable to read clock
clkWrErr .EQU -86 ;time written did not verify
memFullErr .EQU -108 ;not enough room in heap zone
memWZErr .EQU -111 ;attempt to operate on a free block
nilHandleErr .EQU -109 ;NIL master pointer
noErr .EQU 0 ;no error
prlnitErr .EQU -88 ;validity status is not $A8
prWrErr -EQU -87 ,-parameter RAM written did not verify
qErr • EQU -1 ;entry not in specified queue

; Queue types

vType .EQU 1 ;vertical retrace queue type
ioQType .EQU 2 ;file I/O or driver I/O queue type
drvQType • EQU 3 ;drive queue type
evType .EQU 4 ;event queue type
fsQType • EQU 5 ;volume-control-block queue type

Queue Data Structure
qFlags Queue flags (word)
qHead Pointer to first queue entry
qTail Pointer to last queue entry

Utilities, Operating System 111-187

Inside Macintosh

Date/Time Record Data Structure

dtYear 1904 to 2040 (word)
dtMonth 1 to 12 for January to December (word)
dtDay 1 to 31 (word)
dtHour 0 to 23 (word)
dtMinute 0 to 59 (word)
dtSecond 0 to 59 (word)
dtDayOfWeek 1 to 7 for Sunday to Saturday (word)

Routines

Trap macro On entry On exit
JHandToHand AO: theHndl (handle) AO: theHndl (handle)

DO: result code(word)

PtrToHand AO: srcPtr(ptr)
DO: size (long)

AO: dstHndl (handle)
DO: result code (word)

PtrToXHand AO: srcPtr(ptr)
A l : dstHndl (handle)
DO: size (long)

AO: dstHndl (handle)
DO: result code (word)

HandAndHand AO: aHndl (handle)
A l : bHndl (handle)

AO: bHndl (handle)
DO: result code (word)

PtrAndHand AO: pntr(ptr)
A l : hndl (handle)
DO: size (long)

AO: hndl (handle)
DO: result code (word)

_CmpString

UprString

ReadDateTime

SetDateTime

_Date2Secs

_Secs2Date

InitUtil

WriteParam

_CmpString .MARKS sets bit 9, for diacSens=FALSE
_CmpString .CASE sets bit 10, for caseSens=TRUE
_CmpString ,MARKS,CASE sets bits 9 and 10
AO: ptr to first string DO: 0 if equal, 1 if
A l : ptr to second string not equal (long)
DO: high word: length of

first string
low word: length of
second string

JJprStr ing ,MARKS sets bit 9, for diacSens=FALSE
AO: ptr to string
DO: length of string (word)

AO: ptr to long word sees

DO: sees (long)

AO: ptr to date/time record

DO: sees (long)

AO: SysParam (ptr)
DO: MinusOne (long)

AO: ptr to string

AO: ptr to long word sees
DO: result code (word)

DO: result code (word)

DO: sees (long)

AO: ptr to date/time record

DO: result code (word)

DO: result code (word)

III-188 Utilities, Operating System

Summary

Trap macro
_Enqueue

Dequeue

_GetTrapAddress

SetTrapAddress

_Delay

_SysBeep

On entry
AO: qEntry (ptr)
A l : theQueue (ptr)

AO: qEntry (ptr)
A l : theQueue (ptr)

DO: trapNum (word)

AO: trapAddr (address)
DO: trapNum (word)

AO: numTicks (long)

stack: duration (word)

On exit
A l : theQueue (ptr)

A l : theQueue (ptr)
DO: result code (word)

AO: address of routine

DO: finalTicks (long)

Variables

SysParam
SPValid
SPATalkA
SPATalkB
SPConfig
SPPortA
SPPortB
SP Alarm
SPFont
SPKbd
SPPrint
SPVolCd
SPClikCaret
SPMisc2
CrsrThresh
Time

Low-memory copy of parameter RAM (20 bytes)
Validity status (byte)
AppleTalk node ID hint for modem port (byte)
AppleTalk node ID hint for printer port (byte)
Use types for serial ports (byte)
Modem port configuration (word)
Printer port configuration (word)
Alarm setting (long)
Application font number minus 1 (word)
Auto-key threshold and rate (byte)
Printer connection (byte)
Speaker volume (byte)
Double-click and caret-blink times (byte)
Mouse scaling, system startup disk, menu blink (byte)
Mouse-scaling threshold (word)
Seconds since midnight, January 1, 1904 (long)

Utilities, Operating System III-189

Inside Macintosh

UTILITIES, TOOLBOX

Constants

CONST { Resource ID of standard pattern list }

sysPatListlD = 0;

{ Resource IDs of standard cursors }

iBeamCursor = 1
crossCursor = 2
plusCursor = 3
watchCursor = 4

{to select text}
{to draw graphics}
{to select cells in structured documents}
{to indicate a long wait}

Data Types

TYPE Int64Bit = RECORD
hiLong: LONGINT;
loLong: LONGINT

END;

CursPtr = "Cursor;
CursHandle = "CursPtr;

PatPtr = "Pattern;
PatHandle = "PatPtr;

Routines

Fixed-Point Arithmetic

FUNCTION FixRatio (numer,denom: INTEGER) : Fixed;
FUNCTION FixMul (a,b: Fixed) : Fixed;
FUNCTION FixRound (x: Fixed) : INTEGER;

String Manipulation

(theString: Str255) : StringHandle;
(h: StringHandle; theString: Str255);
(stringID: INTEGER) : StringHandle;

PROCEDURE GetlndString (VAR theString: Str255; strListID: INTEGER;
index: INTEGER); [NotinROM]

FUNCTION NewString
PROCEDURE SetString
FUNCTION GetString

III-190 Utilities, Toolbox

Summary

Byte Manipulation

FUNCTION Munger (h: Handle; offset: LONGINT; ptrl: Ptr; lenl:
LONGINT; ptr2: Ptr; len2: LONGINT) : LONGINT;

PROCEDURE PackBits (VAR srcPtr,dstPtr: Ptr; srcBytes: INTEGER);
PROCEDURE UnpackBits (VAR srcPtr,dstPtr: Ptr; dstBytes: INTEGER);

Bit Manipulation

FUNCTION BitTst (bytePtr: Ptr; bitNum: LONGINT) : BOOLEAN-
PROCEDURE BitSet (bytePtr: Ptr; bitNum: LONGINT);
PROCEDURE BitClr (bytePtr: Ptr; bitNum: LONGINT);

Logical Operations

(valuel,value2: LONGINT)
(valuel,value2: LONGINT)
(valuel,value2: LONGINT)
(value: LONGINT) : LONGINT;

FUNCTION BitAnd
FUNCTION BitOr
FUNCTION BitXor
FUNCTION BitNot
FUNCTION BitShift (value: LONGINT; count: INTEGER) : LONGINT;

LONGINT
LONGINT
LONGINT

Other Operations on Long Integers

FUNCTION HiWord (x: LONGINT) : INTEGER;
FUNCTION LoWord (x: LONGINT) : INTEGER;
PROCEDURE LongMul (a,b: LONGINT; VAR dest: Int64Bit);

Graphics Utilities

PROCEDURE ScreenRes (VAR scrnHRes, scrnVRes : INTEGER); [Not in ROM]
FUNCTION Getlcon (iconID: INTEGER) : Handle;
PROCEDURE Plotlcon (theRect: Rect; thelcon: Handle);
FUNCTION GetPattern (patID: INTEGER) : PatHandle;
PROCEDURE GetlndPattern (VAR thePattern: Pattern; patListID: INTEGER;

index: INTEGER); [Not in ROM]
FUNCTION GetCursor (cursorlD: INTEGER) : CursHandle;
PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point);
FUNCTION GetPicture (picID: INTEGER) : PicHandle;

Miscellaneous Utilities

FUNCTION DeltaPoint (ptA,ptB: Point) : LONGINT;
FUNCTION SlopeFromAngle (angle: INTEGER) : Fixed;
FUNCTION AngleFromSlope (slope: Fixed) : INTEGER;

Utilities, Toolbox 111-191

Inside Macintosh

Assembly-Language Information

Constants

; Resource ID of standard pattern list

sysPatListID .EQU 0

; Resource IDs of standard cursors

iBeamCursor .EQU 1 ;to
crossCursor .EQU 2 ;to
plusCursor .EQU 3 ;to
watchCursor .EQU 4 ;to

select text
draw graphics
select cells in structured documents
indicate a long wait

Variables

ScrVRes Pixels per inch vertically (word)
ScrHRes Pixels per inch horizontally (word)

III-192 Utilities, Toolbox

Summary

VERTICAL RETRACE MANAGER

Constants

CONST { Result codes }

noErr
qErr
vTypErr

= 0
= -1
= -2

{no error}
{task entry isn't in the queue}
{qType field isn't ORD(vType)}

Data Types

TYPE VBLTask = RECORD
qLink: QElemPtr;
qType: INTEGER;
vblAddr: P rocPt r;
vblCount: INTEGER;
vblPhase: INTEGER

END;

{next queue entry}
{queue type}
{pointer to task}
{task frequency}
{task phase}

Routines

FUNCTION VInstall (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION VRemove (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION GetVBLQHdr : QHdrPtr; [Not in ROM]

Assembly-Language Information

Constants

inVBL .EQU 6 ;set if Vertical Retrace Manager is executing a task

; Result codes

noErr .EQU 0 ;no error
qErr .EQU -1 ;task entry isn't in the queue
vTypErr .EQU -2 ;qType field isn't vType

Structure of Vertical Retrace Queue Entry
qLink Pointer to next queue entry
qType Queue type (word)
vblAddr Address of task
vblCount Task frequency (word)
vblPhase Task phase (word)

Vertical Retrace Manager 111-193

Inside Macintosh

Routines

Trap macro
VInstall

VRemove

On ent ry
AO: vblTaskPtr (ptr)

AO: vblTaskPtr (ptr)

On exit
DO: result code (word)

DO: result code (word)

Variables

VBLQueue Vertical retrace queue header (10 bytes)

III -194 Vertical Retrace Manager

Summary

WINDOW MANAGER

Constants

CONST { Window definition IDs }

documentProc = 0
dBoxProc = 1
plainDBox = 2
altDBoxProc = 3
noGrowDocProc = 4
rDocProc

{standard document window}
{alert box or modal dialog box}
{plain box}
{plain box with shadow}
{document window without size box}

= 16; {rounded-corner window}

{ Window class, in windowKind field of window record }

dialogKind = 2 ; {dialog or alert window}

userKind = 8; {window created directly by the application}

{ Values returned by FindWindow }
inDesk
inMenuBar
inSysWindow
inContent
inDrag
inGrow
inGoAway

{none of the following}
{in menu bar}
{in system window}
{in content region (except grow, if active)}
{in drag region}
{in grow region (active window only)}
{in go-away region (active window only)}

{ Axis constraints for DragGrayRgn }

noConstraint = 0
hAxisOnly = 1
vAxisOnly = 2

{no constraint}
{horizontal axis only}
{vertical axis only}

{ Messages to window definition function }

wDraw
wHit
wCalcRgns
wNew
wDispose
wGrow
wDrawGIcon

= 0
= 1
= 2
= 3
= 4
= 5

{draw window frame}
{tell what region mouse button was pressed in}
{calculate strucRgn and contRgn}
{do any additional window initialization}
{take any additional disposal actions}
{draw window's grow image}
{draw size box in content region}

{ Values returned by window definition function's hit routine }

wNoHit
wlnContent
wlnDrag
wlnGrow
wlnGoAway

= 0
= 1
= 2
= 3
= 4

{none of the following}
{in content region (except grow, if active)}
{in drag region}
{in grow region (active window only)}
{in go-away region (active window only)}

Window Manager III-195

Inside Macintosh

{ Resource ID of desktop pattern }

deskPatID = 16;

Data Types

TYPE WindowPtr = GrafPtr;
WindowPeek = """WindowRecord;

WindowRecord =
RECORD

port: GrafPort; {window's grafPort}
windowKind: INTEGER; {window class}
visible: BOOLEAN- {TRUE if visible}
hilited: BOOLEAN; {TRUE if highlighted}
goAwayFlag: BOOLEAN- {TRUE if has go-away region}
spareFlag: BOOLEAN; {reserved for future use}
strucRgn: RgnHandle; {structure region}
contRgn: RgnHandle; {content region}
updateRgn: RgnHandle; {update region}
windowDefProc: Handle- {window definition function}
dataHandle: Handle; {data used by windowDefProc}
titleHandle: StringHandle; {window's title}
titleWidth: INTEGER; {width of title in pixels}
controlList: ControlHandle; {window's control list}
nextWindow: WindowPeek; {next window in window list}
windowPic: PicHandle; {picture for drawing window}
refCon: LONGINT {window's reference value}

END;

Routines

Initialization and Allocation

PROCEDURE InitWindows;
PROCEDURE GetWMgrPort
FUNCTION NewWindow

FUNCTION GetNewWindow

PROCEDURE CloseWindow
PROCEDURE DisposeWindow

(VAR wPort: GrafPtr);
(wStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; procID: INTEGER; behind:
WindowPtr; goAwayFlag: BOOLEAN; refCon:
LONGINT) : WindowPtr;
(windowID: INTEGER; wStorage: Ptr; behind:
WindowPtr) : WindowPtr;
(theWindow: WindowPtr);
(theWindow: WindowPtr);

III-196 Window Manager

Summary

Window Display

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION
PROCEDURE

SetWTitle
GetWTitle
SelectWindow
HideWindow
ShowWindow
ShowHide
HiliteWindow
BringToFront
SendBehind
FrontWindow :
DrawGrowIcon

(theWindow: WindowPtr; title: Str255);
(theWindow: WindowPtr; VAR title: Str255);
(theWindow: WindowPtr);
(theWindow: WindowPtr);
(theWindow: WindowPtr);
(theWindow: WindowPtr; showFlag: BOOLEAN);
(theWindow: WindowPtr; fHilite: BOOLEAN);
(theWindow: WindowPtr);
(theWindow,behindWindow: WindowPtr);
WindowPtr;
(theWindow: WindowPtr);

Mouse Location

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) :
INTEGER;

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN;

Window Movement and Sizing

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER;
front: BOOLEAN);

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point; boundsRect:
Rect);

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; sizeRect:
Rect) : LONGINT;

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; fUpdate:
BOOLEAN);

Update Region Maintenance

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

InvalRect
InvalRgn
ValidRect
ValidRgn
BeginUpdate
EndUpdate

(badRect: Rect);
(badRgn: RgnHandle);
(goodRect: Rect);
(goodRgn: RgnHandle);
(theWindow: WindowPtr);
(theWindow: WindowPtr);

Miscellaneous Routines

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LONGINT);
FUNCTION GetWRefCon (theWindow: WindowPtr) : LONGINT;
PROCEDURE SetWindowPic (theWindow: WindowPtr; pic: PicHandle);
FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle;
FUNCTION PinRect (theRect: Rect; thePt: Point) : LONGINT;

Window Manager III-197

Inside Macintosh

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point; limitRect,
slopRect: Rect; axis: INTEGER; actionProc:
ProcPtr) : LONGINT;

Low-Level Routines

FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

CheckUpdate
ClipAbove
SaveOld
DrawNew
PaintOne
PaintBehind

PROCEDURE CalcVis
PROCEDURE CalcVisBehind

(VAR theEvent: EventRecord) : BOOLEAN;
(window: WindowPeek);
(window: WindowPeek);
(window: WindowPeek; update: BOOLEAN);
(window: WindowPeek; clobberedRgn: RgnHandle);
(startWindow: WindowPeek; clobberedRgn:
RgnHandle);
(window: WindowPeek);
(startWindow: WindowPeek; clobberedRgn:
RgnHandle);

Diameters of Curvature for Rounded-Corner Windows

W i n d o w definit ion ID
rDocProc

rDocProc + 1

rDocProc + 2

rDocProc + 3

rDocProc + 4

rDocProc + 5

rDocProc + 6

rDocProc + 7

Diameters of cu rva tu r e
16, 16

4 , 4

6 ,6

8 ,8

10, 10

12, 12

20, 20

24 ,24

Window Definition Function

FUNCTION MyWindow (varCode: INTEGER; theWindow: WindowPtr; message:
INTEGER; param: LONGINT) : LONGINT;

Assembly-Language Information

Constants

; Window definition IDs

documentProc .EQU 0
dBoxProc .EQU 1
plainDBox .EQU 2

; standard document window
;alert box or modal dialog box
;plain box

III-198 Window Manager

Summary

altDBoxProc
noGrowDocProc
rDocProc

.EQU 3 ;plain box with shadow

.EQU 4 ,-document window without size box

.EQU 16 ;rounded-corner window

; Window class, in windowKind field of window record

dialogKind
userKind

.EQU 2 ;dialog or alert window

.EQU 8 ;window created directly by the application

; Values returned by FindWindow

inDesk -EQU 0 ;none of the following
inMenuBar .EQU 1 ;in menu bar
inSysWindow .EQU 2 ;in system window
inContent .EQU 3 ;in content region (except grow, if active)
inDrag .EQU 4 ;in drag region
inGrow .EQU 5 ;in grow region (active window only)
inGoAway .EQU 6 ;in go-away region (active window only)

; Axis constraints for DragGrayRgn

noConstraint • EQU 0 ;no constraint
hAxisOnly .EQU 1 ;horizontal axis only
vAxisOnly .EQU 2 /vertical axis only

; Messages to window definition function

wDrawMsg .EQU 0 ;draw window frame
wHitMsg .EQU 1 ;tell what region mouse button was pressed in
wCalcRgnMsg .EQU 2 ;calculate strucRgn and contRgn
wlnitMsg .EQU 3 ;do any additional window initialization
wDisposeMsg .EQU 4 ;take any additional disposal actions
wGrowMsg .EQU 5 ;draw window's grow image
wGIconMsg .EQU 6 ;draw size box in content region

; Value returned by window definition function's hit routine

wNoHit
wlnContent
wlnDrag
wlnGrow
wlnGoAway

.EQU 0 ;none of the following

.EQU 1 ;in content region (except grow, if active)

.EQU 2 ;in drag region

.EQU 3 ;in grow region (active window only)

.EQU 4 ;in go-away region (active window only)

; Resource ID of desktop pattern

deskPatID .EQU 16

Window Record Data Structure

windowPort Window's grafPort (portRec bytes)
windowKind Window class (word)
wVisible Nonzero if window is visible (byte)
wHilited Nonzero if window is highlighted (byte)

Window Manager III-199

Inside Macintosh

wGoAway Nonzero if window has go-away region (byte)
structRgn Handle to structure region of window
contRgn Handle to content region of window
updateRgn Handle to update region of window
windowDef Handle to window definition function
wDataHandle Handle to data used by window definition function
wTitleHandle Handle to window's title (preceded by length byte)
wTitleWidth Width of title in pixels (word)
wControlList Handle to window's control list
nextWindow Pointer to next window in window list
windowPic Picture handle for drawing window
wRefCon Window's reference value (long)
windowSize Size in bytes of window record

Special Macro Names

Pascal name
CalcVisBehind

DisposeWindow

DragGrayRgn

Macro name
CalcVBehind

Dispos Window

_DragGrayRgn or, after setting the global variable DragPattern,
_DragTheRgn

Variables

WindowList
SaveUpdate
PaintWhite
CurActivate
CurDeactive
GrayRgn
DeskPattern
DeskHook
WMgrPort
GhostWindow
DragHook

DragPattern
OldStructure
OldContent
SaveVisRgn

Pointer to first window in window list
Flag for whether to generate update events (word)
Flag for whether to paint window white before update event (word)
Pointer to window to receive activate event
Pointer to window to receive deactivate event
Handle to region drawn as desktop
Pattern with which desktop is painted (8 bytes)
Address of procedure for painting desktop or responding to clicks on desktop
Pointer to Window Manager port
Pointer to window never to be considered frontmost
Address of procedure to execute during TrackGoAway, Drag Window,
GrowWindow, and DragGrayRgn
Pattern of dragged region's outline (8 bytes)
Handle to saved structure region
Handle to saved content region
Handle to saved visRgn

III-200 Window Manager

Summary

ASSEMBLY LANGUAGE

Variables

OneOne $00010001
MinusOne $FFFFFFFF
Lo3Bytes $00FFFFFF
Scratch20 20-byte scratch area
Scratch8 8-byte scratch area
ToolScratch 8-byte scratch area
ApplScratch 12-byte scratch area reserved for use by applications
ROMBase Base address of ROM
RAMBase Trap dispatch table's base address for routines in RAM
CurrentAS Address of boundary between application globals and application parameters

Hardware

Warning : This information applies only to the Macintosh 128K and 512K, not to the
Macintosh XL.

Constants
; VIA base addresses

vBase .EQU $EFE1FE ;main base for VIA chip (in variable VIA)
aVBufB .EQU vBase /register B base
aVBufA .EQU $EFFFFE /register A base
aVBufM .EQU aVBufB /register containing mouse signals
aVIFR • EQU $EFFBFE /interrupt flag register
aVIER • EQU $EFFDFE /interrupt enable register

/ Offsets from vBase

vBufB • EQU 512*0 /register B (zero offset)
vDirB .EQU 512*2 /register B direction register
vDirA .EQU 512*3 /register A direction register
vTIC • EQU 512*4 /timer 1 counter (low-order byte)
vTlCH -EQU 512*5 /timer 1 counter (high-order byte)
vTIL .EQU 512*6 /timer 1 latch (low-order byte)
vTlLH .EQU 512*7 /timer 1 latch (high-order byte)
vT2C .EQU 512*8 /timer 2 counter (low-order byte)
VT2CH .EQU 512*9 /timer 2 counter (high-order byte)
vSR .EQU 512*10 /shift register (keyboard)
vACR .EQU 512*11 /auxiliary control register
vPCR .EQU 512*12 /peripheral control register
vIFR .EQU 512*13 /interrupt flag register

Assembly Language 111-201

Inside Macintosh

vIER
vBufA

.EQU

.EQU
512*14
512*15

; interrupt enable register
; register A

VIA register A constants

vAOut .EQU $7F ;direction register A: 1 bits = outputs
vAInit .EQU $7B /initial value for vBufA (medium volume)
vSound .EQU 7 /sound volume bits

; VIA register A bit numbers

vSndPg2 .EQU 3 ;0 = alternate sound buffer
vOverlay .EQU 4 ;1 = ROM overlay (system startup only)
vHeadSel .EQU 5 /disk SEL control line
vPage2 .EQU 6 ;0 = alternate screen buffer
vSCCWReq • EQU 7 /SCC wait/request line

; VIA register B constants

vBOut • EQU $87 /direction register B: 1 bits = outputs
vBInit .EQU $07 /initial value for vBufB

; VIA register B bit numbers

rTCData • EQU 0 /real-time clock serial data line
rTCClk .EQU 1 /real-time clock data-clock line
rTCEnb .EQU 2 /real-time clock serial enable
vSW • EQU 3 ;0 = mouse button is down
vX2 .EQU 4 /mouse X quadrature level
vY2 .EQU 5 /mouse Y quadrature level
vH4 .EQU 6 ;1 = horizontal blanking
vSndEnb .EQU 7 ;0 = sound enabled, 1 = disabled

/ SCC base addresses

sccRBase -EQU $9FFFF8 /SCC base read address (in variable SCCRd)
sccWBase .EQU $BFFFF9 /SCC base write address (in variable SCCWr)

/ Offsets from SCC base addresses

aData .EQU 6 /channel A data in or out
aCtl .EQU 2 ;channel A control
bData •EQU 4 /channel B data in or out
bCtl .EQU 0 /channel B control

/ Bit numbers for control register RRO

rxBF
txBE

.EQU

.EQU
0
2

;1 = SCC receive buffer full
;1 = SCC send buffer empty

III-202 Assembly Language

Summary

; IWM base address

dBase .EQU $DFE1FF ;IWM base address (in variable IWM)

; Offsets from dBase

phOL .EQU 512*0 CAO off (0)
phOH .EQU 512*1 CAO on (1)
phlL • EQU 512*2 CA1 off (0)
phlH • EQU 512*3 CA1 on (1)
ph2L .EQU 512*4 CA2 off (0)
ph2H .EQU 512*5 CA2 on (1)
ph3L .EQU 512*6 LSTRB off (low)
ph3H .EQU 512*7 LSTRB on (high)
mtrOff .EQU 512*8 disk enable off
mtrOn • EQU 512*9 •disk enable on
intDrive • EQU 512*10 •select internal drive
extDrive • EQU 512*11 •select external drive
q6L • EQU 512*12 •Q6 off
q6H .EQU 512*13 •Q6 on
q7L .EQU 512*14 •Q7 off
q7H • EQU 512*15 •Q7 on

; Screen and sound addresses for 512K Macintosh (will also work for
; 128K, since addresses wrap)

screenLow .EQU $7A700 ;tdp left corner of main screen buffer
soundLow .EQU $7FD00 ;main sound buffer (in variable SoundBase)
pwmBuffer .EQU $7FD01 ;main disk speed buffer
ovlyRAM .EQU $600000 ;RAM start address when overlay is set
ovlyScreen .EQU $67A700 ;screen start with overlay set
romStart .EQU $400000 ;ROM start address (in variable ROMBase)

Variables

ROMBase Base address of ROM
SoundBase Address of main sound buffer
SCCRd SCC read base address
SCCWr SCC write base address
IWM IWM base address
VIA VIA base address

Exception Vectors

Locat ion Purpose

$00 Reset: initial stack pointer (not a vector)

$04 Reset: initial vector

$08 Bus error

Assembly Language III-203

Inside Macintosh

Locat ion Purpose
$0C Address error

$10 Illegal instruction

$14 Divide by zero

$18 CHK instruction

$1C TRAPV instruction

$20 Privilege violation

$24 Trace interrupt

$28 Line 1010 emulator

$2C Line 1111 emulator

$30-$3B Unassigned (reserved)

$3C Uninitialized interrupt

$40-$5F Unassigned (reserved)

$60 Spurious interrupt

$64 VIA interrupt

$68 SCC interrupt

$6C VIA+SCC vector (temporary)

$70 Interrupt switch

$74 Interrupt switch + VIA

$78 Interrupt switch + SCC

$7C Interrupt switch + VIA + SCC

$80-$BF TRAP instructions

$C0-$FF Unassigned (reserved)

III-204 Assembly Language

APPENDIX A: RESULT CODES

This appendix lists all the result codes returned by the Macintosh system software. They're
ordered by value, for convenience when debugging; the names you should actually use in your
program are also listed.
The result codes are grouped roughly according to the lowest level at which the error may occur.
This doesn't mean that only routines at that level may cause those errors; higher-level software
may yield the same result codes. For example, an Operating System Utility routine that calls the
Memory Manager may return one of the Memory Manager result codes. Where a different or
more specific meaning is appropriate in a different context, that meaning is also listed.

Va lue N a m e Mean ing
0 noErr No error

Operating System Event Manager Error

1 evtNotEnb Event type not designated in system event mask

Printing Manager Errors

128 iPrAbort Application or user requested abort

- 1 iPrSavPFil Saving spool fde

Queuing Errors

- 1 qErr Entry not in queue

- 2 vTypErr QType field of entry in vertical retrace queue isn't vType
(in Pascal, ORD(vType))

Device Manager Errors

-17 controlErr Driver can't respond to this Control call

Unimplemented control instruction (Printing Manager)

-18 statusErr Driver can't respond to this Status call

-19 readErr Driver can't respond to Read calls

-20 writErr Driver can't respond to Write calls

-21 badUnitErr Driver reference number doesn't match unit table

-22 unitEmptyErr Driver reference number specifies NIL handle in unit table

-23 openErr Requested read/write permission doesn't match driver's
open permission

Attempt to open RAM Serial Driver failed

-25 dRemovErr Attempt to remove an open driver

-26 dlnstErr Couldn't find driver in resource file

Result Codes 111-205

Inside Macintosh

-27 abortErr
ilOAbort

-28 notOpenErr

File Manager Errors

-33 dirFulErr

-34 dskFulErr

-35 nsvErr

-36 ioErr

-37 bdNamErr

-38 fnOpnErr

-39 eofErr

-40 posErr

-42 tmfoErr

-43 fnffirr

-44 wPrErr

-45 fLckdErr

-46 vLckdErr

-47 fBsyErr

-48 dupFNErr

-49 opWrErr

-50 paramErr

-51 rfNumErr

-52 gfpErr

-53 volOffLinErr

-54 permErr

-55 volOnLinErr

-56 nsDrvErr

-57 noMacDskErr

-58 extFSErr

I/O request aborted by KilllO
I/O abort error (Printing Manager)

Driver isn't open

File directory full

All allocation blocks on the volume are full

Specified volume doesn't exist

I/O error

Bad file name or volume name (perhaps zero-length)

File not open

Logical end-of-file reached during read operation

Attempt to position before start of file

Too many files open

File not found

Volume is locked by a hardware setting

File is locked

Volume is locked by a software flag

File is busy; one or more files are open

File with specified name and version number already exists
The read/write permission of only one access path to a file
can allow writing
Error in parameter list
Parameters don't specify an existing volume, and there's
no default volume (File Manager)
Bad positioning information (Disk Driver)
Bad drive number (Disk Initialization Package)
Path reference number specifies nonexistent access path

Error during GetFPos

Volume not on-line

Attempt to open locked file for writing

Specified volume is already mounted and on-line
No such drive; specified drive number doesn't match any
number in the drive queue
Not a Macintosh disk; volume lacks Macintosh-format
directory

External file system; file-system identifier is nonzero, or
path reference number is greater than 1024

III-206 Result Codes

Result Codes

-59 fsRnErr Problem during rename

-60 badMDBErr Bad master directory block; must reinitialize volume

-61 wrPermErr Read/write permission doesn't allow writing

Low-Level Disk Errors

-64 noDriveErr Drive isn't connected

-65 offLinErr No disk in drive

-66 noNybErr Disk is probably blank

-67 noAdrMkErr Can't find an address mark

-68 dataVerErr Read-verify failed

-69 badCksmErr Bad address mark

-70 badBtSlpErr Bad address mark

-71 noDtaMkErr Can't find a data mark

-72 badDCksum Bad data mark

-73 badDBtSlp Bad data mark

-74 wrUnderrun Write underran occurred

-75 cantStepErr Drive error

-76 tkOBadErr Can't find track 0

-77 initlWMErr Can't initialize disk controller chip

-78 twoSideErr Tried to read side 2 of a disk in a single-sided drive

-79 spdAdjErr Can't correcdy adjust disk speed

-80 seekErr Drive error

-81 sectNFErr Can't find sector

Also, to check for any low-level disk error:

-84 firstDskErr First of the range of low-level disk errors

-64 lastDskErr Last of the range of low-level disk errors

Clock Chip Errors

-85 clkRdErr Unable to read clock

-86 clkWrErr Time written did not verify

-87 prWrErr Parameter RAM written did not verify

-88 prlnitErr Validity status is not $A8

Result Codes III-207

Inside Macintosh

AppleTalk Manager Errors

-91 ddpSktErr

-92 ddpLenErr

-93 noBridgeErr

-94 lapProtErr

-95 excessCollsns

-97 portlnUse

-98 portNotCf

Scrap Manager Errors

-100 noScrapErr

-102 noTypeErr

Memory Manager Errors

-108 memFullErr
iMemFullErr

-109 nilHandleErr

-111 memWZErr

-112 memPurErr

-117 memLockedErr

Resource Manager Errors

-192 resNotFound

-193 resFNotPound

-194 addResFailed

-196 rmvResFailed

Additional AppleTalk Manager Errors

-1024 nbpBuffOvr

-1025 nbpNoConfirm

-1026 nbpConfDiff

-1027 nbpDuplicate

-1028 nbpNotFound

DDP socket error: socket already active; not a well-known
socket; socket table full; all dynamic socket numbers in use

DDP datagram or ALAP data length too big

No bridge found

ALAP error attaching/detaching ALAP protocol type:
attach error when ALAP protocol type is negative, not in
range, or already in table, or when table is full; detach
error when ALAP protocol type isn't in table

ALAP no CTS received after 32 RTS's, or line sensed in
use 32 times (not necessarily caused by collisions)

Driver Open error, port already in use

Driver Open error, port not configured for this connection

Desk scrap isn't initialized

No data of the requested type

Not enough room in heap zone
Not enough room in heap zone (Printing Manager)

NIL master pointer

Attempt to operate on a free block

Attempt to purge a locked block

Block is locked

Resource not found

Resource file not found

AddResource failed

RmveResource failed

NBP buffer overflow

NBP name not confirmed

NBP name confirmed for different socket

NBP duplicate name already exists

NBP name not found

III-208 Result Codes

Result Codes

-1029 nbpNISErr NBP names information socket error

-1096 reqFailed ATPSndRequest failed: retry count exceeded

-1097 tooManyReqs ATP too many concurrent requests

-1098 tooManySkts ATP too many responding sockets

-1099 badATPSkt ATP bad responding socket

-1100 badBuffNum ATP bad sequence number

-1101 noRelErr ATP no release received

-1102 cbNotFound ATP control block not found

-1103 noSendResp ATPAddRsp issued before ATPSndRsp

-1104 noDataArea Too many outstanding ATP calls

-1105 reqAborted Request aborted

-3101 buf2SmallErr ALAP frame too large for buffer

DDP datagram too large for buffer

-3102 noMPPError MPP driver not installed

-3103 cksumErr DDP bad checksum

-3104 extractErr NBP can't find tuple in buffer

-3105 readQErr Socket or protocol type invalid or not found in table

-3106 atpLenErr ATP response message too large

-3107 atpBadRsp Bad response from ATPRequest

-3108 recNotFnd ABRecord not found

-3109 sktClosedErr Asynchronous call aborted because socket was closed
before call was completed

Result Codes III-209

Inside Macintosh

III-210

APPENDIX B: ROUTINES THAT MAY MOVE OR PURGE
MEMORY

This appendix lists all the routines that may move or purge blocks in the heap. As described in
chapter 1 of Volume II, calling these routines may cause problems if a handle has been
dereferenced. None of these routines may be called from within an interrupt, such as in a
completion routine or a VBL task.

The Pascal name of each routine is shown, except for a few cases where there's no Pascal
interface corresponding to a particular trap; in those cases, the trap macro name is shown instead
(without its initial underscore character).

AddResMenu
Alert
AppendMenu
ATPAddRsp
ATPCloseSocket
ATPGetRequest
ATPLoad
ATPOpenSocket
ATPReqCancel
ATPRequest
ATPResponse
ATPRspCancel
ATPSndRequest
ATPSndRsp
ATPUnload
BeginUpdate
BringToFront
Button
CalcMenuSize
CalcVis
CalcVisBehind
CautionAlert
Chain
ChangedResource
CharWidth
Checkltem
CheckUpdate
ClipAbove
ClipRect
CloseDialog
ClosePicture
ClosePoly
ClosePort
CloseResFile
CloseRgn
CloseWindow
CompactMem
Control

CopyBits
CopyRgn
CouldAlert
CouldDialog
CreateResFile
DDPCloseSocket
DDPOpenSocket
DDPRdCancel
DDPRead
DDPWrite
DialogSelect
DIBadMount
DiffRgn
DIFormat
DBLoad
DiskEject
DiSposDialog
DisposeControl
DisposeMenu
DisposeRgn
DisposeWindow
DisposHandle
DisposPtr
DIUnload
DIVerify
DLZero
DlgCopy
DlgCut
DlgDelete
DlgPaste
DragControl
DragGrayRgn
DragWindow
DrawChar
DrawDialog
DrawGrowIcon
DrawMenuBar
DrawNew

DrawPicture
DrawString
DrawText
DriveStatus
Drvrlnstall
DrvrRemove
Eject
EmptyHandle
EndUpdate
EraseArc
EraseOval
ErasePoly
EraseRect
EraseRgn
EraseRoundRect
EventAvail
ExitToShell
FillArc
FillOval
FillPoly
FillRect
FillRgn
FillRoundRect
FindControl
FlashMenuBar
FlushVol
FMSwapFont
FrameArc
FrameOval
FramePoly
FrameRect
FrameRgn
FrameRoundRect
FreeAlert
FreeDialog
FreeMem
GetClip
GetCursor

Routines That May Move or Purge Memory III-211

Inside Macintosh

GetDCtlEntry
GetDItem
GetFNum
GetFontlnfo
GetFontName
Getlcon
GetlndPattern
GetlndResource
GetlndString
GetKeys
GetMenu
GetMenuBar
GetMouse
GetNamedResource
GetNewControl
GetNewDialog
GetNewMBar
GetNew Window
GetNextEvent
GetPattern
GetPicture
GetResource
GetScrap
GetString
GrowWindow
HandAndHand
HandToHand
HideControl
HideWindow
HiliteControl
HiliteMenu
HiliteWindow
InitAllPacks
InitApplZone
InitFonts
InitMenus
InitPack
InitPort
InitResources
InitWindows
InitZone
InsertMenu
InsertResMenu
InsetRgn
InvalRect
InvalRgn
InvertArc
InvertOval
InvertPoly
InvertRect
InvertRgn
InvertRoundRect

IUCompString
IUDatePString
rUDateString
IUEqualString
IUGetlntl
IUMagEDString
IUMagString
IUMetric
IUSetlnd
rUTimePString
IUTimeString
KillControls
KillPicture
KillPoly
LAPCloseProtocol
LAPOpenProtocol
LAPRdCancel
LAPRead
LAPWrite
Launch
Line
LineTo
LoadResource
LoadScrap
LoadSeg
MapRgn
MenuKey
MenuSelect
ModalDialog
MoreMasters
MoveControl
MoveHHi
MoveWindow
MPPClose
MPPOpen
Munger
NBPConfirm
NBPExtract
NBPLoad
NBPLookup
NBPRegister
NBPRemove
NBPUnload
NewControl
NewDialog
NewHandle
NewMenu
NewPtr
NewRgn
NewString
NewWindow
Note Alert

NumToString
OpenDeskAcc
OpenPicture
OpenPoly
OpenPort
OpenResFile
OpenRgn
PaintArc
PaintBehind
PaintOne
PaintOval
PaintPoly
PaintRect
PaintRgn
PaintRoundRect
ParamText
PBControl
PBEject
PBFlushVol
PBMountVol
PBOffLine
PBOpen
PBOpenRF
PBStatus
PicComtnent
Plotlcon
PrClose
PrCloseDoc
PrClosePage
PrCdCall
PrDrvrDCE
PrDrvrVers
PrintDefault
PrJobDialog
PrJobMerge
PrOpen
PrOpenDoc
PrOpenPage
PrPicFile
PrStlDialog
PrValidate
PtrAndHand
PtrToHand
PtrToXHand
PurgeMem
PutScrap
RAMSDClose
RAMSDOpen
RealFont
ReallocHandle
RecoverHandle
RectRgn

III-212 Routines That May Move or Purge Memory

Routines That May Move or Purge Memory

ReleaseResource SetString TEActivate
ResrvMem SetTagBuffer TECalText
Restart SetWTide TEClick
RmveResource SFGetFile TECopy
RsrcZonelnit SFPGetFile TECut
SaveOld SFPPutFile TEDeactivate
ScrollRect SFPutFile TEDelete
SectRgn ShowControl TEDispose
SelectWindow ShowHide TEFromScrap
SellText ShowWindow TEGetText
SendBehind SizeControl TEIdle
SerClrBrk SizeWindow TEInit
SerGetBrk StartSound TEInsert
SerHShake Status TEKey
SerReset StdArc TENew
SerSetBrk StdBits TEPaste
SerSetBuf StdComment TEScroll
SerStatus StdLine TESetJust
SetApplBase StdOval TESetSelect
SetClip StdPoly TESetText
SetCTide StdPutPic TestControl
SetCdMax StdRect TEToScrap
SetCdMin StdRgn TEUpdate
SetCtlValue StdRRect TextBox
SetDItem StdText TextWidth
SetEmptyRgn StdTxMeas TickCount
SetFontLock StillDown TrackControl
SetHandleSize StopAlert TrackGoAway
Sedtem StopSound UnionRgn
Setltemlcon StringToNum UnloadScrap
SedtemMark StringWidth UnloadSeg
SetltemStyle SysBeep ValidRect
SedText SysError ValidRgn
SetPtrSize SystemClick WaitMouseUp
SetRectRgn SysternEdit XorRgn
SetResInfo SystemMenu ZeroScrap

Routines That May Move or Purge Memory 111-213

Inside Macintosh

III-214

APPENDIX C: SYSTEM TRAPS

This appendix lists the trap macros for the Toolbox and Operating System routines and their
corresponding trap word values in hexadecimal. The "Name" column gives the trap macro name
(without its initial underscore character). In those cases where the name of the equivalent Pascal
call is different, the Pascal name appears indented under the main entry. The routines in
Macintosh packages are listed under the macros they invoke after pushing a routine selector onto
the stack; the routine selector follows the Pascal routine name in parentheses.

There are two tables: The first is ordered alphabetically by name; the second is ordered
numerically by trap number, for use when debugging. (The trap number is the last two digits of
the trap word unless the trap word begins with A9, in which case the trap number is 1 followed
by the last two digits of the trap word.)

Note: The Operating System Utility routines GetTrapAddress and SetTrapAddress take a trap
number as a parameter, not a trap word.

Warn ing : Traps that aren't currently used by the system are reserved for future use.

N a m e T r a p w o r d N a m e T r a p w o r d
AddDrive A04E ChangedResource A9AA

(internal use only) CharWidth A88D
AddPt A87E Checkltem A945
AddResMenu A94D CheckUpdate A911
AddResource A9AB ClearMenuBar A934
Alert A985 ClipAbove A90B
Allocate AO 10 ClipRect A87B

PB Allocate Close A001
AngleFromSlope A8C4 PBClose
AppendMenu A933 CloseDeskAcc A9B7
BackColor A863 CloseDialog A982
BackPat A87C ClosePgon A8CC
BeginUpdate A922 ClosePoly
BitAnd A858 ClosePicture A8F4
BitClr A85F ClosePort A87D
BitNot A85A CloseResFile A99A
BitOr A85B CloseRgn A8DB
BitSet A85E CloseWindow A92D
BitShift A85C CmpString A03C
BitTst A85D EqualString
BitXor A859 ColorBit A864
BlockMove A02E CompactMem A04C
BringToFront A920 Control A004
Button A974 PBControl
CalcMenuSize A948 CopyBits A8EC
CalcVBehind A90A CopyRgn A8DC

CalcVisBehind CouldAlert A989
CalcVis A909 CouldDialog A979
CautionAlert A988 CountMItems A950
Chain A9F3 CountResources A99C

System Traps III-215

Inside Macintosh

N a m e T r a p word
CountTypes A99E
Create A008

PBCreate
CreateResFile A9B1
CurResFile A994
Date2Secs A9C7
Delay A03B
Delete A009

PBDelete
DeleteMenu A936
DeltaPoint A94F
Dequeue A96E
DetachResource A992
DialogSelect A980
DiffRgn A8E6
Disableltem A93A
DisposControl A955

DisposeControl
DisposDialog A983
DisposHandle A023
DisposMenu A932

DisposeMenu
DisposPtr A01F
DisposRgn A8D9

DisposeRgn
Dispos Window A914

DisposeWindow
DragControl A967
DragGrayRgn A905
DragTheRgn A926
DragWindow A925
DrawChar A883
DrawControls A969
DrawDialog A981
DrawGrowIcon A904
DrawMenuBar A937
DrawNew A90F
DrawPicture A8F6
DrawString A884
DrawText A885
Drvrlnstall A03D

(internal use only)
DrvrRemove A03E

(internal use only)
Eject AO 17

PBEject
Elems68K A9EC
EmptyHandle A02B
EmptyRect A8AE
EmptyRgn A8E2
Enableltem A939

N a m e T r a p w o r d
EndUpdate A923
Enqueue A96F
EqualPt A881
EqualRect A8A6
EqualRgn A8E3
EraseArc A8C0
EraseOval A8B9
ErasePoly A8C8
EraseRect A8A3
EraseRgn A8D4
EraseRoundRect A8B2
ErrorSound A98C
EventAvail A971
ExitToShell A9F4
FillArc A8C2
FillOval A8BB
FillPoly A8CA
FillRect A8A5
FillRgn A8D6
FillRoundRect A8B4
FindControl A96C
FindWindow A92C
FixMul A868
FixRatio A869
FixRound A86C
FlashMenuBar A94C
FlushEvents A032
FlushFile A045

PBFlushFile
FlushVol AO 13

PBFlushVol
FMSwapFont A901
ForeColor A862
FP68K A9EB
FrameArc A8BE
FrameOval A8B7
FramePoly A8C6
FrameRect A8A1
FrameRgn A8D2
FrameRoundRect A8B0
Free Alert A98A
FreeDialog A97A
FreeMem A01C
FrontWindow A924
GetAppParms A9F5
GetClip A87A
GetCRefCon A95A
GetCTide A95E
GetCdAction A96A
GetCdValue A960
GetCursor A9B9

III-216 System Traps

System Traps

N a m e T r a p word
GetDItem A98D
GetEOF A011

PBGetEOF
GetFilelnfo AOOC

PBGetFInfo
GetFName A8FF

GetFontName
GetFNum A900
GetFontlnfo A88B
GetFPos AO 18

PBGetFPos
GetHandleSize A025
Getlcon A9BB
GetlndResource A99D
GetlndType A99F
Getltem A946
GetlText A990
Getltmlcon A93F

Getltemlcon
GetltrnMark A943

GetltemMark
GetltmStyle A941

GetltemStyle
GetKeys A976
GetMaxCd A962

GetCdMax
GetMenuBar A93B
GetMHandle A949
GetMinCd A961

GetCdMin
GetMouse A972
GetNamedResource A9A1
GetNewControl A9BE
GetNewDialog A97C
GetNewMBar A9C0
GetNewWindow A9BD
GetNextEvent A970
GetOSEvent A031
GetPattern A9B8
GetPen A89A
GetPenState A898
GetPicture A9BC
GetPixel A865
GetPort A874
GetPtrSize A021
GetResAttrs A9A6
GetResFileAttrs A9F6
GetResInfo A9A8
GetResource A9A0
GetRMenu A9BF

GetMenu

N a m e T r a p word
GetScrap A9FD
GetString A9BA
GetTrapAddress A146
GetVol AO 14

PBGetVol
GetVolInfo A007

PBGetVInfo
GetWindowPic A92F
GetWMgrPort A910
GetWRefCon A917
GetWTide A919
GefZone A H A
GlobalToLocal A871
GrafDevice A872
GrowWindow A92B
HandAndHand A9E4
HandleZone A126
HandToHand A9E1
HideControl A958
HideCursor A852
HidePen AS96
HideWindow A916
HiliteControl A95D
HiliteMenu A938
HiliteWindow A91C
HiWord A86A
HLock A029
HNoPurge A04A
HomeResFile A9A4
HPurge A049
HUnlock A02A
InfoScrap A9F9
InitAllPacks A9E6
InitApplZone A02C
InitCursor A850
InitDialogs A97B
InitFonts AgFE
InitGraf A86E
InitMenus A930
InitPack A9E5
InitPort A86D
InitQueue A016

FInitQueue
InitResources A995
InitUtil A03F
InitWindows A912
InitZone AO 19
InsertMenu A935
InsertResMenu A951
InsetRect A8A9
InsetRgn A8E1

System Traps III-217

Inside Macintosh

N a m e T r a p word
InvalRect A928
InvalRgn A927
InverRect A8A4

InvertRect
InverRgn A8D5

InvertRgn
InverRoundRect A8B3

InvertRoundRect
InvertArc A8C1
InvertOval A8BA
InvertPoly A8C9
IsDialogEvent A97F
KillControls A956
KilllO A006

PBKilllO
KiliPicture A8F5
KiUPoly A8CD
Launch A9F2
Line A892
LineTo A891
LoadResource A9A2
LoadSeg A9F0
LocalToGlobal A870
LodeScrap A9FB

LoadScrap
LongMul A867
LoWord A86B
MapPoly A8FC
MapPt A8F9
MapRect A8FA
MapRgn A8FB
MaxMem A11D
MenuKey A93E
MenuSelect A93D
ModalDialog A991
MoreMasters A036
MountVol AOOF

PBMountVol
Move A894
MoveControl A959
MovePortTo A877
MoveTo A893
MoveWindow A91B
Munger A9E0
NewControl A954
NewDialog A97D
NewHandle A122
NewMenu A931
NewPtr A11E
NewRgn A8D8
NewString A906

N a m e T r a p w o r d
NewWindow A913
NoteAlert A987
ObscureCursor A856
Offline A035

PBOffline
OffsetPoly A8CE
OffsetRect A8A8
OfsetRgn A8E0

OffsetRgn
Open A000

PBOpen
OpenDeskAcc A9B6
OpenPicture A8F3
OpenPoly A8CB
OpenPort A86F
OpenResFile A997
OpenRF A00A

PBOpenRF
OpenRgn A8DA
OSEvenrAvail A030
PackO A9E7

(reserved for future use)
Packl A9E8

(reserved for future use)
Pack2 A9E9

DIBadMount (0)
DIFormat (6)
DILoad (2)
DIUnload (4)
DlVerify (8)
DIZero (10)

Pack3 A9EA
SFGetFile (2)
SFPGetFile (4)
SFPPutFile (3)
SFPutFile (1)

Pack4 A9EB
Pack5 A9EC
Pack6 A9ED

rUDatePString (14)
IUDateString (0)
IUGednd (6)
IUMaglDString (12)
IUMagString (10)
IUMetric (4)
IUSednd (8)
IUTimePString (16)
IUTimeString (2)

Pack7 A9EE
NumToString (0)
StringToNum (1)

III-218 System Traps

N a m e T r a p word
PackBits A8CF
PaintArc A8BF
PaintBehind A90D
PaintOne A90C
PaintOval A8B8
PaintPoly A8C7
PaintRect A8A2
PaintRgn A8D3
PaintRoundRect A8B1
ParamText A98B
PenMode A89C
PenNormal A89E
PenPat A89D
PenSize A89B
PicComment A8F2
PinRect A94E
Plotlcon A94B
PortSize A876
PostEvent A02F
Pt2Rect A8AC
PtlnRect A8AD
PtlnRgn A8E8
PtrAndHand A9EF
PtrToHand A9E3
PtrToXHand A9E2
PtrZone A148
PtToAngle A8C3
PurgeMem A04D
PutScrap A9FE
Random A861
RDrvrlnstall A04F

(internal use only)
Read A002

PBRead
ReadDateTime A039
RealFont A902
ReallocHandle A027
RecoverHandle A128
RectlnRgn A8E9
RectRgn A8DF
ReleaseResource A9A3
Rename AOOB

PBRename
ResError A9AF
ResrvMem A040
RmveResource A9AD
RsrcZonelnit A996
RstFilLock A042

PBRstFLock
SaveOld A90E
ScalePt A8F8

System Traps

N a m e T r a p word
ScrollRect A8EF
Secs2Date A9C6
SectRect A8AA
SectRgn A8E4
SelectWindow A91F
SellText A97E
SendBehind A921
SetAppBase A057

SetApplBase
SetApplLimit A02D
SetClip A879
SetCRefCon A95B
SetCTide A95F
SetCdAction A96B
SetCdValue A963
SetCursor A851
SetDateTime A03A
SetDItem A98E
SetEmptyRgn A8DD
SetEOF AO 12

PBSetEOF
SetFilelnfo AOOD

PBSetFInfo
SetFilLock A041

PBSetFLock
SetFilType A043

PBSetFVers
SetFontLock A903
SetFPos A044

PBSetFPos
SetGrowZone A04B
SetHandleSize A024
Setltem A947
SetJText A98F
Setltmlcon A940

Setltemlcon
SetitmMark A944

SetltemMark
SetltmStyle A942

SetltemStyle
SetMaxCd A965

SetCtlMax
SetMenuBar A93C
SetMFlash A94A

SetMenuFlash
SetMinCd A964

SetCtlMin
SetOrigin A878
SetPBits A875

SetPortBits
SetPenState A899

System Traps 111-219

Inside Macintosh

Nairie T r a p word
SetPort A873
SetPt A880
SetPtrSize A020
SetRecRgn A8DE

SetRectRgn
SetRect A8A7
SetResAttrs A9A7
SetResFileAttrs A9F7
SetResInfo A9A9
SetResLoad A99B
SetResPurge A993
SetStdProcs A8EA
SetString A907
SetTrapAddress A047
SetVol AO 15

PBSetVol
SetWindowPic A92E
SetWRefCon A918
SetWTide A91A
SetZone AO IB
ShieldCursor A855
ShowControl A957
ShowCursor A853
ShowHide A908
ShowPen A897
ShowWindow A915
SizeControl A95C
SizeRsrc A9A5

SizeResource
SizeWindow A91D
SlopeFromAngle A8BC
SpaceExtra A88E
Status A005

PBStatus
StdArc A8BD
StdBits A8EB
StdComment A8F1
StdGetPic A8EE
StdLine A890
StdOval A8B6
StdPoly A8C5
StdPutPic A8F0
StdRect A8A0
StdRgn A8D1
StdRRect A8AF
StdText A882
StdTxMeas A8ED
StillDown A973
StopAlert A986
StringWidth A88C
StuffHex A866

N a m e T r a p word
SubPt A87F
SysBeep A9C8
SysEdit A9C2

SystemEdit
SysError A9C9
SystemClick A9B3
SystemEvent A9B2
SystemMenu A9B5
SystemTask A9B4
TEActivate A9D8
TECalText A9D0
TEClick A9D4
TECopy A9D5
TECut A9D6
TEDeactivate A9D9
TEDelete A9D7
TEDispose A9CD
TEGetText A9CB
TEIdle A9DA
TEInit A9CC
TEInsert A9DE
TEKey A9DC
TENew A9D2
TEPaste A9DB
TEScroll A9DD
TESetJust A9DF
TESetSelect A9D1
TESetText A9CF
TestControl A966
TEUpdate A9D3
TextBox A9CE
TextFace A888
TextFont A887
TextMode A889
TextSize A88A
TextWidth A886
TickCount A975
TrackControl A968
TrackGoAway A91E
UnionRect A8AB
UnionRgn A8E5
UniquelD A9C1
UnloadSeg A9F1
UnlodeScrap A9FA

UnloadScrap
UnmountVol AOOE

PBUnmountVol
UnpackBits A8D0
UpdateResFile A999
UprString A054
UseResFile A998

III-220 System Traps

System Traps

N a m e Trap w o r d N a m e T r a p word
ValidRect A92A Write A003
ValidRgn A929 PBWrite
VInstall A033 WriteParam A038
VRemove A034 WriteResource A9B0
WaitMouseUp A977 XorRgn A8E7

ZeroScrap A9FC

T r a p word N a m e T r a p word N a m e
A000 Open AO 14 GetVol

PBOpen PBGetVol
A001 Close AO 15 SetVol

PBClose PBSetVol
A002 Read AO 16 InitQueue

PBRead AO 17 Eject
A003 Write PBEject

PBWrite AO 18 GetFPos
A004 Control PBGetFPos

PBControl AO 19 InitZone
A005 Status A H A GetZone

PB Status AO IB SetZone
A006 KilllO A01C FreeMem

PBKilllO A11D MaxMem
A007 GetVolInfo A11E NewPtr

PBGetVInfo AO IF DisposPtr
A008 Create A020 SetPtrSize

PBCreate A021 GetPtrSize
A009 Delete A122 NewHandle

PBDelete A023 DisposHandle
AOOA OpenRF A024 SetHandleSize

PBOpenRF A025 GetHandleSize
AOOB Rename A126 HandleZone

PBRename A027 ReallocHandle
AOOC GetFilelnfo A128 RecoverHandle

PBGetlnfo A029 HLock
AOOD SetFilelnfo A02A HUnlock

PBSetFInfo A02B Empty Handle
AOOE UnmountVol A02C InitApplZone

PBUnmountVol A02D SetApplLimit
AOOF MountVol A02E BlockMove

PBMountVol A02F PostEvent
A010 Allocate A030 OSEventAvail

PB Allocate A031 GetOSEvent
AOll GetEOF A032 FlushEvents

PBGetEOF A033 VInstall
A012 SetEOF A034 VRemove

PBSetEOF A035 Offline
A013 FlushVol PBOffline

PBFlushVol A036 MoreMasters

System Traps 1-221

Inside Macintosh

T r a p word N a m e T r a p word N a m e
A038 WriteParam A861 Random
A039 ReadDateTime A862 ForeColor
A03A SetDateTime A863 BackColor
A03B Delay A864 ColorBit
A03C CmpString A865 GetPixel

EqualString A866 StuffHex
A03D Drvrlnstall A867 LongMul

(internal use only) A868 FixMul
A03E DrvrRemove A869 FixRatio

(internal use only) A86A HiWord
A03F InitUtil A86B LoWord
A040 ResrvMem A86C FixRound
A041 SetFilLock A86D InitPort

PBSetFLock A86E InitGraf
A042 RstFilLock A86F OpenPort

PBRstFLock A870 LocalToGlobal
A043 SetFilType A871 GlobalToLocal

PBSetFVers A872 GrafDevice
A044 SetFPos A873 SetPort

PBSetFPos A874 GetPort
A045 FlushFile A875 SetPBits

PBFlushFile SetPortBits
A146 GetTrapAddress A876 PortSize
A047 SetTrapAddress A877 MovePortTo
A148 PtrZone A878 SetOrigin
A049 HPurge A879 SetClip
A04A HNoPurge A87A GetClip
A04B SetGrowZone A87B ClipRect
A04C CompactMem A87C BackPat
A04D PurgeMem A87D ClosePort
A04E AddDrive A87E AddPt

(internal use only) A87F SubPt
A04F RDrvrlnstall A880 SetPt

(internal use only) A881 EqualPt
A850 InitCursor A882 StdText
A851 SetCursor A883 DrawChar
A852 HideCursor A884 DrawString
A853 ShowCursor A885 DrawText
A054 UprString A886 TextWidth
A855 ShieldCursor A887 TextFont
A856 ObscureCursor A888 TextFace
A057 SetAppBase A889 TextMode

SetApplBase A88A TextSize
A858 BitAnd A88B GetFontlnfo
A859 BitXor A88C StringWidth
A85A BitNot A88D CharWidth
A85B BitOr A88E SpaceExtra
A85C BitShift A890 StdLine
A85D BitTst A891 LineTo
A85E BitSet A892 Line
A85F BitClr A893 MoveTo

III-222 System Traps

System Traps

T r a p word N a m e T r a p word N a m e
A894 Move A8C8 ErasePoly
A896 HidePen A8C9 InvertPoly
A897 ShowPen A8CA FillPoly
A898 GetPenState A8CB OpenPoly
A899 SetPenState A8CC ClosePgon
A89A GetPen ClosePoly
A89B PenSize A8CD KillPoly
A89C PenMode A8CE OffsetPoly
A89D PenPat A8CF PackBits
A89E PenNormal A8D0 UnpackBits
A8A0 StdRect A8D1 StdRgn
A8A1 FrameRect A8D2 FrameRgn
A8A2 PaintRect A8D3 PaintRgn
A8A3 EraseRect A8D4 EraseRgn
A8A4 InverRect A8D5 InverRgn

InvertRect InvertRgn
A8A5 FillRect A8D6 FillRgn
A8A6 EqualRect A8D8 NewRgn
A8A7 SetRect A8D9 DisposRgn
A8A8 OffsetRect DisposeRgn
A8A9 InsetRect A8DA OpenRgn
A8AA SectRect A8DB CloseRgn
A8AB UnionRect A8DC CopyRgn
A8AC Pt2Rect A8DD SetEmptyRgn
A8AD PdnRect A8DE SetRecRgn
A8AE EmptyRect A8DF SetRectRgn
A8AF StdRRect RectRgn
A8B0 FrameRoundRect A8E0 OfsetRgn
A8B1 PaintRoundRect OffsetRgn
A8B2 EraseRoundRect A8E1 InsetRgn
A8B3 InverRoundRect A8E2 EmptyRgn

InvertRoundRect A8E3 EqualRgn
A8B4 FillRoundRect A8E4 SectRgn
A8B6 StdOval A8E5 UnionRgn
A8B7 FrameOval A8E6 DiffRgn
A8B8 PaintOval A8E7 XorRgn
A8B9 EraseOval A8E8 PtlnRgn
A8BA InvertOval A8E9 RectlnRgn
A8BB FillOval A8EA SetStdProcs
A8BC SlopeFromAngle A8EB StdBits
A8BD StdArc A8EC CopyBits
A8BE FrameArc A8ED StdTxMeas
A8BF PaintArc A8EE StdGetPic
A8C0 EraseArc A8EF ScrollRect
A8C1 InvertArc A8F0 StdPurPic
A8C2 FillArc A8F1 StdComment
A8C3 PtToAngle A8F2 PicComment
A8C4 AngleFromSlope A8F3 OpenPicture
A8C5 StdPoly A8F4 ClosePicture
A8C6 FramePoly A8F5 KillPicture
A8C7 PaintPoly A8F6 DrawPicture

System Traps 111-223

Inside Macintosh

T r a p word N a m e T r a p word N a m e
A8F8 ScalePt A929 ValidRgn
A8F9 MapPt A92A ValidRect
A8FA MapRect A92B GrowWindow
A8FB MapRgn A92C FindWindow
A8FC MapPoly A92D CloseWindow
A8FE InitFonts A92E SetWindowPic
A8FF GetFName A92F GetWindowPic

GetFontName A930 InitMenus
A900 GetFNum A931 NewMenu
A901 FMSwapFont A932 DisposMenu
A902 RealFont DisposeMenu
A903 SetFontLock A933 AppendMenu
A904 DrawGrowIcon A934 ClearMenuBar
A905 DragGrayRgn A935 InsertMenu
A906 NewString A936 DeleteMenu
A907 SetString A937 DrawMenuBar
A908 ShowHide A938 HiliteMenu
A909 CalcVis A939 Enableltem
A90A CalcVBehind A93A Disableltem

CalcVisBehind A93B GetMenuBar
A90B ClipAbove A93C SetMenuBar
A90C PaintOne A93D MenuSelect
A90D Paintfiehind A93E MenuKey
A90E SaveOld A93F Getltmlcon
A90F DrawNew Getltemlcon
A910 GetWMgrPort A940 Setltmlcon
A911 CheckUpdate Setltemlcon
A912 InitWindows A941 GetltmStyle
A913 NewWindow GetltemStyle
A914 DisposWindow A942 SetltmStyle

Dispose Window SetltemStyle
A915 ShowWindow A943 GetltmMark
A916 HideWindow GetltemMark
A917 GetWRefCon A944 SetltmMark
A918 SetWRefCon SetltemMark
A919 GetWTifle A945 Checkltem
A91A SetWTitie A946 Getltem
A91B MoveWindow A947 Setltem
A91C HiliteWindow A948 CalcMenuSize
A91D SizeWindow A949 GetMHandle
A91E TrackGoAway A94A SetMFlash
A91F SelectWindow SetMenuFlash
A920 BringToFront A94B Plotlcon
A921 SendBehind A94C FlashMenuBar
A922 BeginUpdate A94D AddResMenu
A923 EndUpdate A94E PinRect
A924 FrontWindow A94F DeltaPoint
A925 DragWindow A950 CountMItems
A926 DragTheRgn A951 InsertResMenu
A927 InvalRgn A954 NewControl
A928 InvalRect

III-224 System Traps

System Traps

T r a p word N a m e T r a p word N a m e
A955 DisposControl A986 StopAlert

DisposeControl A987 Note Alert
A956 KillControls A988 CautionAlert
A957 ShowControl A989 CouldAlert
A958 HideControl A98A FreeAlert
A959 MoveControl A98B ParamText
A95A GetCRefCon A98C ErrorSound
A95B SetCRefCon A98D GetDItem
A95C SizeControl A98E SetDItem
A95D HiliteControl A98F SedText
A95E GetCTide A990 GedText
A95F SetCTide A991 ModalDialog
A960 GetCdValue A992 DetachResource
A961 GetMinCd A993 SetResPurge

GetCdMin A994 CurResFile
A962 GetMaxCd A995 InitResources

GetCdMax A996 RsrcZonelnit
A963 SetCdValue A997 OpenResFile
A964 SetMinCd A998 UseResFile

SetCdMin A999 UpdateResFile
A965 SetMaxCd A99A CloseResFile

SetCdMax A99B SerResLoad
A966 TestControl A99C CountResources
A967 DragControl A99D GetlndResource
A968 TrackControl A99E CountTypes
A969 DrawControls A99F GetlndType
A96A GetCdAction A9A0 GetResource
A96B SetCdAction A9A1 GetNamedResource
A96C FindControl A9A2 LoadResource
A96E Dequeue A9A3 ReleaseResource
A96F Enqueue A9A4 HomeResFile
A970 GetNextEvent A9A5 SizeRsrc
A971 EventAvail SizeResource
A972 GetMouse A9A6 GetResAttrs
A973 StillDown A9A7 SetResAttrs
A974 Button A9A8 GetResInfo
A975 TickCount A9A9 SetResInfo
A976 GetKeys A9AA ChangedResource
A977 WaitMouseUp A9AB AddResource
A979 CouldDialog A9AD RmveResource
A97A FreeDialog A9AF ResError
A97B InitDialogs A9B0 WriteResource
A97C GetNewDialog A9B1 CreateResFile
A97D NewDialog A9B2 SystemEvent
A97E SelJText A9B3 SystemClick
A97F IsDialogEvent A9B4 SystemTask
A980 DialogSelect A9B5 SystemMenu
A981 DrawDialog A9B6 OpenDeskAcc
A982 CloseDialog A9B7 CloseDeskAcc
A983 DisposDialog A9B8 GetPattern
A985 Alert A9B9 GetCursor

System Traps 111-225

Inside Macintosh

T r a p word N a m e T r a p word N a m e
A9BA GetString A9E9 Pack2
A9BB Getlcon DIBadMount (0)
A9BC GetPicture DJLoad (2)
A9BD GetNew Window DlUnload (4)
A9BE GetNewControl DIFormat (6)
A9BF GetRMenu DIVerify (8)

GetMenu DEero (10)
A9C0 GetNewMBar A9EA Pack3
A9C1 UniquelD SFPutFile (1)
A9C2 SysEdit SFGetFile (2)

SystemEdit SFPPutFile (3)
A9C6 Secs2Date SFPGetFile (4)
A9C7 Date2Secs A9EB Pack4
A9C8 SysBeep (synonym: FP68K)
A9C9 SysError A9EC Pack5
A9CB TEGetText (synonym: Elems68K)
A9CC TEInit A9ED Pack6
A9CD TEDispose IUDateString (0)
A9CE TextBox IUTimeString (2)
A9CF TESetText IUMetric (4)
A9D0 TECalText IUDGetlntl (6)
A9D1 TESetSelect IUSetlntl (8)
A9D2 TENew IUMagString (10)
A9D3 TEUpdate IUMaglDString (12)
A9D4 TEClick IUDatePString (14)
A9D5 TECopy IUTimePString (16)
A9D6 TECut A9EE Pack7
A9D7 TEDelete NumToString (0)
A9D8 TEActivate StringToNum (1)
A9D9 TEDeactivate A9EF PtrAndHand
A9DA TEIdle A9F0 LoadSeg
A9DB TEPaste A9F1 UnloadSeg
A9DC TEKey A9F2 Launch
A9DD TEScroll A9F3 Chain
A9DE TEInsert A9F4 ExitToShell
A9DF TESetmst A9F5 GetAppParms
A9E0 Munger A9F6 GetResFileAttrs
A9E1 HandToHand A9F7 SetResFileAttrs
A9E2 PtrToXHand A9F9 InfoScrap
A9E3 PtrToHand A9FA UnlodeScrap
A9E4 HandAndHand UnloadScrap
A9E5 InitPack A9FB LodeScrap
A9E6 InitAHPacks LoadScrap
A9E7 PackO A9FC ZeroScrap

(reserved for future use) A9FD GetScrap
A9E8 Packl A9FE PutScrap

(reserved for future use)

III-226 System Traps

APPENDIX D: GLOBAL VARIABLES

This appendix gives an alphabetical list of all system global variables described in Inside
Macintosh, along with their locations in memory.

N a m e
ABusVars

ACount

ANumber

ApFontID

ApplLimit

ApplScratch

ApplZone

AppParmHandle

BufPtr

BufTgDate

BufTgFBkNum

BufTgFFlg

BufTgFNum

CaretTime

CrsrThresh

CurActivate

CurApName

CurApRefNum

CurDeactive

CurJTOffset

CurMap

CurPageOption

CurPitch

CurrentA5

CurStackBase

DABeeper

DAStrings

Loca t ion Con ten t s
$2D8 Pointer to AppleTalk variables

$A9A Stage number (0 through 3) of last alert (word)

$A98 Resource ID of last alert (word)

$984 Font number of application font (word)

$ 130 Application heap limit

$A78 12-byte scratch area reserved for use by applications

$2AA Address of application heap zone

$AEC Handle to Finder information

$ 10C Address of end of jump table

$304 File tags buffer: date and time of last modification (long)

$302 File tags buffer: logical block number (word)

$300 File tags buffer: flags (word: bit 1=1 if resource fork)

$2FC File tags buffer: file number (long)

$2F4 Caret-blink interval in ticks (long)

$8EC Mouse-scaling threshold (word)

$A64 Pointer to window to receive activate event

$910 Name of current application (length byte followed by up to 31
characters)

$900 Reference number of current application's resource file (word)

$A68 Pointer to window to receive deactivate event

$934 Offset to jump table from location pointed to by A5 (word)

$A5A Reference number of current resource file (word)

$936 Sound/screen buffer configuration passed to Chain or Launch
(word)

$280 Value of count in square-wave synthesizer buffer (word)

$904 Address of boundary between application globals and application
parameters

$908 Address of base of stack; start of application globals

$A9C Address of current sound procedure

$AA0 Handles to ParamText strings (16 bytes)

Global Variables III-227

Inside Macintosh

N a m e Locat ion Con ten t s
DefitStack $322 Default space allotment for stack (long)

DefVCBPtr $352 Pointer to default volume control block

DeskHook $A6C Address of procedure for painting desktop or responding to

clicks on desktop

DeskPattern $A3C Pattern with which desktop is painted (8 bytes)

DlgFont $AFA Font number for dialogs and alerts (word)

DoubleTime $2F0 Double-click interval in ticks (long)
DragHook $9F6 Address of procedure to execute during TrackGoAway,

DragWindow, GrowWindow, DragGrayRgn, TrackControl, and
DragControl

DragPattern $A34 Pattern of dragged region's oudine (8 bytes)

DrvQHdr $308 Drive queue header (10 bytes)

DSAlertRect $3F8 Rectangle enclosing system error alert (8 bytes)

DSAlertTab $2BA Pointer to system error alert table in use

DSErrCode $AF0 Current system error ID (word)

EventQueue $ 14A Event queue header (10 bytes)

ExtStsDT $2BE External/status interrupt vector table (16 bytes)

FCBSPtr $34E Pointer to file-control-block buffer

FinderName $2E0 Name of the Finder (length byte followed by up to 15 characters)

FScaleDisable $A63 Nonzero to disable font scaling (byte)

FSQHdr $360 File I/O queue header (10 bytes)

GhostWindow $A84 Pointer to window never to be considered frontmost

GrayRgn $9EE Handle to region drawn as desktop

GZRootHnd $328 Handle to relocatable block not to be moved by grow zone
function

HeapEnd $114 Address of end of application heap zone

JFetch $8F4 Jump vector for Fetch function

JIODone $8FC Jump vector for IODone function

JournalFlag $8DE Journaling mode (word)

JournalRef $8E8 Reference number of journaling device driver (word)

JStash $8F8 Jump vector for Stash function

KeyRepThresh $190 Auto-key rate (word)

KeyThresh $18E Auto-key threshold (word)

Lo3Bytes $31A $00FFFFFF

LvllDT $192 Level-1 secondary interrupt vector table (32 bytes)

III-228 Global Variables

Global Variables

N a m e Locat ion Con ten t s
Lvl2DT $1B2 Level-2 secondary interrupt vector table (32 bytes)

MBarEnable $A20 Unique menu ID for active desk accessory, when menu bar
belongs to the accessory (word)

MBarHook $A2C Address of routine called by MenuSelect before menu is drawn

MemTop $ 108 Address of end of RAM (on Macintosh XL, end of RAM

available to applications)

MenuFlash $A24 Count for duration of menu item blinking (word)

MenuHook $A30 Address of routine called during MenuSelect

MenuList $A1C Handle to current menu list

MinStack $3IE Minimum space allotment for stack (long)

MinusOne $A06 $FFFFFFFF

OldContent $9EA Handle to saved content region

OldStructure $9E6 Handle to saved structure region

OneOne $A02 $00010001

PaintWhite $9DC Flag for whether to paint window white before update event

(word)

PortBUse $291 Current availability of serial port B (byte)

PrintErr $944 Result code from last Printing Manager routine (word)

RAMBase $2B2 Trap dispatch table's base address for routines in RAM

ResErr $A60 Current value of ResError (word)

ResErrProc $AF2 Address of resource error procedure

ResLoad $A5E Current SetResLoad state (word)

ResumeProc $A8C Address of resume procedure

RndSeed $156 Random number seed (long)

ROMBase $2AE Base address of ROM

ROMFontO $980 Handle to font record for system font

SaveUpdate $9DA Flag for whether to generate update events (word)

SaveVisRgn $9F2 Handle to saved visRgn

SCCRd $1D8 SCC read base address

SCCWr $1DC SCC write base address

ScrapCount $968 Count changed by ZeroScrap (word)

ScrapHandle $964 Handle to desk scrap in memory

ScrapName $96C Pointer to scrap file name (preceded by length byte)
ScrapSize $960 Size in bytes of desk scrap (long)
ScrapState $96A Tells where desk scrap is (word)

Global Variables 111-229

Inside Macintosh

N a m e Loca t ion Con ten t s
Scratch.8 $9FA 8-byte scratch area

Scratch20 $1E4 20-byte scratch area

ScrDmpEnb $2F8 0 if GetNextEvent shouldn't process Command-Shift-number
combinations (byte)

ScrHRes $104 Pixels per inch horizontally (word)
ScrnBase $824 Address of main screen buffer
ScrVRes $102 Pixels per inch vertically (word)
SdVolume $260 Current speaker volume (byte: low-order three bits only)
SEvtEnb $15C 0 if SystemEvent should return FALSE (byte)
SFSaveDisk $214 Negative of volume reference number used by Standard File

Package (word)

SoundBase $266 Pointer to free-form synthesizer buffer
SoundLevel $27F Amplitude in 740-byte buffer (byte)
SoundPtr $262 Pointer to four-tone record
SP Alarm $200 Alarm setting (long)
SPATalkA $1F9 AppIeTalk node ID hint for modem port (byte)
SPATalkB $1FA AppIeTalk node ID hint for printer port (byte)
SPClikCaret $209 Double-click and caret-blink times (byte)
SPConfig $1FB Use types for serial ports (byte)
SPFont $204 Application font number minus 1 (word)
SPKbd $206 Auto-key threshold and rate (byte)
SPMisc2 $20B Mouse scaling, system startup disk, menu blink (byte)
SPPortA $1FC Modem port configuration (word)
SPPortB $1FE Printer port configuration (word)
SPPrint $207 Printer connection (byte)
SPValid $1F8 Validity status (byte)
SPVolCd $208 Speaker volume setting in parameter RAM (byte)
SysEvtMask $144 System event mask (word)
SysMap $A58 Reference number of system resource file (word)
SysMapHndl $A54 Handle to map of system resource file
SysParam $1F8 Low-memory copy of parameter RAM (20 bytes)
SysResName $AD8 Name of system resource file (length byte followed by up to 19

characters)

SysZone $2A6 Address of system heap zone
TEDoText $A70 Address of TextEdit multi-purpose routine

III-230 Global Variables

Global Variables

N a m e Locat ion Con ten t s
TERecal $A74 Address of routine to recalculate line starts for TextEdit

TEScrpHandle $AB4 Handle to TextEdit scrap

TEScrpLength $AB0 Size in bytes of TextEdit scrap (long)

TheMenu $A26 Menu ID of currently highlighted menu (word)

TheZone $118 Address of current heap zone

Ticks $16A Current number of ticks since system startup (long)

Time $20C Seconds since midnight, January 1, 1904 (long)

ToExtFS $3F2 Pointer to external file system

ToolScratch $9CE 8-byte scratch area

TopMapHndl $A50 Handle to resource map of most recently opened resource file

UTableBase $11C Base address of unit table

VBLQueue $160 Vertical retrace queue header (10 bytes)

VCBQHdr $356 Volume-control-block queue header (10 bytes)

VIA $1DA VIA base address

WindowList $9D6 Pointer to first window in window list; 0 if using events but not
windows

WMgrPort $9DE Pointer to Window Manager port

Global Variables 111-231

Inside Macintosh

III-232

GLOSSARY

access pa th : A description of the route that the File Manager follows to access a file; created
when a file is opened.

access path buffer: Memory used by the File Manager to transfer data between an application
and a file.

action procedure: A procedure, used by the Control Manager function TrackControl, that
defines an action to be performed repeatedly for as long as the mouse button is held down.

activate event: An event generated by the Window Manager when a window changes from
active to inactive or vice versa.

active control: A control that will respond to the user's actions with the mouse,

active window: The frontmost window on the desktop.

address mark : In a sector, information that's used internally by the Disk Driver, including
information it uses to determine the position of the sector on the disk.

A L A P : See AppleTalk Link Access Protocol .

ALAP frame: A packet of data transmitted and received by ALAP.

A L A P protocol type: An identifier used to match particular kinds of packets with a particular
protocol handler.

alert : A warning or report of an error, in the form of an alert box, sound from the Macintosh's
speaker, or both.

alert box: A box that appears on the screen to give a warning or report an error during a
Macintosh application.

alert template: A resource that contains information from which the Dialog Manager can create
an alert.

alert window: The window in which an alert box is displayed,

alias: A different name for the same entity,

allocate: To reserve an area of memory for use.

allocation block: Volume space composed of an integral number of logical blocks.

amplitude: The maximum vertical distance of a periodic wave from the horizontal line about
which the wave oscillates.

AppleTalk address : A socket's number and its node ID number.

Glossary 111-233

Inside Macintosh

AppIeTa lk L i n k Access Pro tocol (A L A P) : The lowest-level protocol in the AppIeTalk
architecture, managing node-to-node delivery of frames on a single AppIeTalk network.

AppIeTalk Manager : An interface to a pair of RAM device drivers that enable programs to
send and receive information via an AppIeTalk network.

AppIeTalk Transact ion Protocol (ATP): An AppIeTalk protocol that's a DDP client. It
allows one ATP client to request another ATP client to perform some activity and report the
activity's result as a response to the requesting socket with guaranteed delivery.

application font: The font your application will use unless you specify otherwise—Geneva,
by default.

application heap : The portion of the heap available to the running application program and the
Toolbox.

appl ica t ion h e a p l imi t : The boundary between the space available for the application heap and
the space available for the stack.

application heap zone: The heap zone initially provided by the Memory Manager for use by
the application program and the Toolbox; initially equivalent to the application heap, but may be
subdivided into two or more independent heap zones.

application parameters : Thirty-two bytes of memory, located above the application globals,
reserved for system use. The first application parameter is the address of the first QuickDraw
global variable.

application space: Memory that's available for dynamic allocation by applications.

application window: A window created as the result of something done by the application,
either direcdy or indirecdy (as through the Dialog Manager).

ascent: The vertical distance from a font's base line to its ascent line.

ascent line: A horizontal line that coincides with the tops of the tallest characters in a font.

asynchronous communicat ion: A method of data transmission where the receiving and
sending devices don't share a common timer, and no timing data is transmitted.

a s y n c h r o n o u s execu t ion : After calling a routine asynchronously, an application is free to
perform other tasks until the routine is completed.

a t - l ea s t -once transaction: An ATP transaction in which the requested operation is performed
at least once, and possibly several times.

A T P : See AppIeTalk Transac t ion Protocol .

auto-key event: An event generated repeatedly when the user presses and holds down a
character key on the keyboard or keypad.

auto-key r a t e : The rate at which a character key repeats after it's begun to do so.

III-234 Glossary

Glossary

auto-key threshold: The length of time a character key must be held down before it begins to
repeat.

background procedure: A procedure passed to the Printing Manager to be run during idle
times in the printing process.

base line: A horizontal line that coincides with the bottom of each character in a font, excluding
descenders (such as the tail of a "p").

baud ra te : The measure of the total number of bits sent over a transmission line per second.

Binary-Decimal Conversion Package: A Macintosh package for converting integers to
decimal strings and vice versa.

bit image: A collection of bits in memory that have a rectilinear representation. The screen is a
visible bit image.

bit m a p : A set of bits that represent the position and state of a corresponding set of items; in
QuickDraw, a pointer to a bit image, the row width of that image, and its boundary rectangle.

block: A group regarded as a unit; usually refers to data or memory in which data is stored. See
allocation block and m e m o r y block.

block contents: The area that's available for use in a memory block.

block device: A device that reads and writes blocks of bytes at a time. It can read or write any
accessible block on demand.

block header: The internal "housekeeping" information maintained by the Memory Manager at
the beginning of each block in a heap zone.

block m a p : Same as volume allocation block m a p .

boundary rectangle: A rectangle, defined as part of a QuickDraw bit map, that encloses the
active area of the bit image and imposes a coordinate system on it. Its top left corner is always
aligned around the first bit in the bit image.

break: The condition resulting when a device maintains its transmission line in the space state
for at least one frame.

bridge: An intelligent link between two or more AppleTalk networks.

broadcast service: An ALAP service in which a frame is sent to all nodes on an AppleTalk
network.

bundle: A resource that maps local IDs of resources to their actual resource IDs; used to provide
mappings for file references and icon lists needed by the Finder.

button: A standard Macintosh control that causes some immediate or continuous action when
clicked or pressed with the mouse. See also radio button.

Glossary 111-235

Inside Macintosh

caret: A generic term meaning a symbol that indicates where something should be inserted in
text. The specific symbol used is a vertical bar (|) .

caret-blink t ime: The interval between blinks of the caret that marks an insertion point.

character code: An integer representing the character that a key or combination of keys on the
keyboard or keypad stands for.

character device: A device that reads or writes a stream of characters, one at a time. It can
neither skip characters nor go back to a previous character.

character image: An arrangement of bits that defines a character in a font.

character key: A key that generates a keyboard event when pressed; any key except Shift, Caps
Lock, Command, or Option.

character offset: The horizontal separation between a character rectangle and a font rectangle.

character origin: The point on a base line used as a reference location for drawing a character.

character position: An index into an array containing text, starting at 0 for the first character.

character rectangle: A rectangle enclosing an entire character image. Its sides are defined by
the image width and the font height.

character style: A set of stylistic variations, such as bold, italic, and underline. The empty set
indicates plain text (no stylistic variations).

character width: The distance to move the pen from one character's origin to the next
character's origin.

check box: A standard Macintosh control that displays a setting, either checked (on) or
unchecked (off). Clicking inside a check box reverses its setting.

clipping: Limiting drawing to within the bounds of a particular area.

cl ipping region: Same as clipRgn.

clipRgn: The region to which an application limits drawing in a grafPort.

clock chip: A special chip in which are stored parameter RAM and the current setting for the
date and time. This chip is powered by a battery when the system is off, thus preserving the
information.

close rout ine: The part of a device driver's code that implements Device Manager Close calls.

closed driver: A device driver that cannot be read from or written to.

closed file: A file without an access path. Closed files cannot be read from or written to.

compaction: The process of moving allocated blocks within a heap zone in order to collect the
free space into a single block.

III-236 Glossary

Glossary

completion rout ine: Any application-defined code to be executed when an asynchronous call
to a routine is completed.

content region: The area of a window that the application draws in.

control: An object in a window on the Macintosh screen with which the user, using the mouse,
can cause instant action with visible results or change settings to modify a future action.

control definition function: A function called by the Control Manager when it needs to
perform type-dependent operations on a particular type of control, such as drawing the control.

control definition ID : A number passed to control-creation routines to indicate the type of
control. It consists of the control definition function's resource ID and a variation code.

control information: Information transmitted by an application to a device driver. It may
select modes of operation, start or stop processes, enable buffers, choose protocols, and so on.

control list: A list of all the controls associated with a given window.

Control Manager : The part of the Toolbox that provides routines for creating and manipulating
controls (such as buttons, check boxes, and scroll bars).

control record: The internal representation of a control, where the Control Manager stores all
the information it needs for its operations on that control.

control routine: The part of a device driver's code that implements Device Manager Control
and KilllO calls.

control template: A resource that contains information from which the Control Manager can
create a control.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid coordinates are integers
ranging from -32767 to 32767, and all grid lines are infinitely thin.

current heap zone: The heap zone currently under attention, to which most Memory Manager
operations implicidy apply.

cu r ren t resource file: The last resource file opened, unless you specify otherwise with a
Resource Manager routine.

cursor: A 16-by-16 bit image that appears on the screen and is controlled by the mouse; called
the "pointer" in Macintosh user manuals.

cursor level: A value, initialized by InitCursor, that keeps track of the number of times the
cursor has been hidden.

data bits: Data communications bits that encode transmitted characters.

data buffer: Heap space containing information to be written to a file or device driver from an
application, or read from a file or device driver to an application.

data fork: The part of a file that contains data accessed via the File Manager.

Glossary 111-237

Inside Macintosh

data mark : In a sector, information that primarily contains data from an application,

datagram: A packet of data transmitted by DDP.

Da tag ram Delivery Protocol (DDP): An AppleTalk protocol that's an ALAP client,
managing socket-to-socket delivery of datagrams over AppleTalk internets.

date/time record: An alternate representation of the date and time (which is stored on the clock
chip in seconds since midnight, January 1, 1904).

D D P : See D a t a g r a m Delivery P ro toco l .

default button: In an alert box or modal dialog, the button whose effect will occur if the user
presses Return or Enter. In an alert box, it's boldly outlined; in a modal dialog, it's boldly
oudined or the OK button.

default volume: A volume that will receive I/O during a File Manager routine call, whenever no
other volume is specified.

dereference: To refer to a block by its master pointer instead of its handle.

descent: The vertical distance from a font's base line to its descent line.

descent line: A horizontal line that coincides with the bottoms of the characters in a font that
extend furthest below the base line.

desk accessory: A "mini-application", implemented as a device driver, that can be run at the
same time as a Macintosh application.

Desk Manager : The part of the Toolbox that supports the use of desk accessories from an
application.

desk sc rap : The place where data is stored when it's cut (or copied) and pasted among
applications and desk accessories.

desktop: The screen as a surface for doing work on the Macintosh.

Desktop file: A resource file in which the Finder stores the version data, bundle, icons, and file
references for each application on the volume.

destination rectangle: In TextEdit, the rectangle in which the text is drawn.

device: A part of the Macintosh, or a piece of external equipment, that can transfer information
into or out of the Macintosh.

device control ent ry : A 40-byte relocatable block of heap space that tells the Device Manager
the location of a driver's routines, the location of a driver's I/O queue, and other information.

device driver: A program that controls the exchange of information between an application and
a device.

device driver event: An event generated by one of the Macintosh's device drivers.

III-238 Glossary

Glossary

Device Manager : The part of the Operating System that supports device I/O.

dial: A control with a moving indicator that displays a quantitative setting or value. Depending
on the type of dial, the user may be able to change the setting by dragging the indicator with the
mouse.

dialog: Same as dialog box.

dialog box: A box that a Macintosh application displays to request information it needs to
complete a command, or to report that it's waiting for a process to complete.

Dialog Manager : The part of the Toolbox that provides routines for implementing dialogs and
alerts.

dialog record: The internal representation of a dialog, where the Dialog Manager stores all the
information it needs for its operations on that dialog.

dialog template: A resource that contains information from which the Dialog Manager can
create a dialog.

dialog window: The window in which a dialog box is displayed,

d immed: Drawn in gray rather than black

disabled: A disabled menu item or menu is one that cannot be chosen; the menu item or menu
title appears dimmed. A disabled item in a dialog or alert box has no effect when clicked.

Disk Dr ive r : The device driver that controls data storage and retrieval on 3 1/2-inch disks.

Disk Initialization Package: A Macintosh package for initializing and naming new disks;
called by the Standard File Package.

disk-inserted event: An event generated when the user inserts a disk in a disk drive or takes
any other action that requires a volume to be mounted.

display rectangle: A rectangle that determines where an item is displayed within a dialog or
alert box.

document window: The standard Macintosh window for presenting a document.

double-click t ime: The greatest interval between a mouse-up and mouse-down event that
would qualify two mouse clicks as a double-click.

draft print ing: Printing a document immediately as it's drawn in the printing grafPort.

drag region: A region in a window frame. Dragging inside this region moves the window to a
new location and makes it the active window unless the Command key was down.

drive number : A number used to identify a disk drive. The internal drive is number 1, the
external drive is number 2, and any additional drives will have larger numbers.

drive queue: A list of disk drives connected to the Macintosh.

Glossary 111-239

Inside Macintosh

driver name: A sequence of up to 255 printing characters used to refer to an open device driver.
Driver names always begin with a period (.).

driver I/O queue: A queue containing the parameter blocks of all I/O requests for one device
driver.

driver reference number : A number from - 1 to -32 that uniquely identifies an individual
device driver.

edit record: A complete editing environment in TextEdit, which includes the text to be edited,
the grafPort and rectangle in which to display the text, the arrangement of the text within the
rectangle, and other editing and display information.

empty handle: A handle that points to a NIL master pointer, signifying that the underlying
relocatable block has been purged.

empty shape: A shape that contains no bits, such as one defined by only a single point.

end-of-f i le : See logical end-of-fi le or phys ica l end-of-fi le.

entity name: An identifier for an entity, of the form object:type@zone.

event: A notification to an application of some occurrence that the application may want to
respond to.

event code: An integer representing a particular type of event.

Event M a n a g e r : See Toolbox Event M a n a g e r or Opera t ing System Event Manage r .

event mask: A parameter passed to an Event Manager routine to specify which types of events
the routine should apply to.

event message: A field of an event record containing information specific to the particular type
of event.

event queue: The Operating System Event Manager's list of pending events.

event record: The internal representation of an event, through which your program learns all
pertinent information about that event.

exactly-once transact ion: An ATP transaction in which the requested operation is performed
only once.

exception: An error or abnormal condition detected by the processor in the course of program
execution; includes interrupts and traps.

exception vector: One of 64 vectors in low memory that point to the routines that are to get
control in the event of an exception.

external reference: A reference to a routine or variable defined in a separate compilation or
assembly.

III-240 Glossary

Glossary

Glossary 111-241

file: A named, ordered sequence of bytes; a principal means by which data is stored and
transmitted on the Macintosh.

file control block: A fixed-length data structure, contained in the file-control-block buffer,
where information about an access path is stored.

file-control-block buffer: A nonrelocatable block in the system heap that contains one file
control block for each access path.

file directory: The part of a volume that contains descriptions and locations of all the files on
the volume.

file I/O queue: A queue containing parameter blocks for all I/O requests to the File Manager.

File Manager : The part of the Operating System that supports file I/O.

file name: A sequence of up to 255 printing characters, excluding colons (:), that identifies a
file.

file number : A unique number assigned to a file, which the File Manager uses to distinguish it
from other files on the volume. A file number specifies the file's entry in a file directory.

file reference: A resource that provides the Finder with file and icon information about an
application.

file tags: Information associated with each logical block, designed to allow reconstruction of
files on a volume whose directory or other file-access information has been destroyed.

file tags buffer: A location in memory where file tags are read from and written to.

file type: A four-character sequence, specified when a file is created, that identifies the type of
file.

F i n d e r information: Information that the Finder provides to an application upon starting it up,
telling it which documents to open or print.

fixed-point number : A signed 32-bit quantity containing an integer part in the high-order
word and a fractional part in the low-order word.

fixed-width font: A font whose characters all have the same width.

Floating-Point Ari thmetic Package: A Macintosh package that supports extended-precision
arithmetic according to IEEE Standard 754.

font: The complete set of characters of one typeface.

font characterization table: A table of parameters in a device driver that specifies how best to
adapt fonts to that device.

font height: The vertical distance from a font's ascent line to its descent line.

Inside Macintosh

III-242 Glossary

Font Manager : The part of the Toolbox that supports the use of various character fonts for
QuickDraw when it draws text.

font number : The number by which you identify a font to QuickDraw or the Font Manager.

font record: A data structure that contains all the information describing a font.

font rectangle: The smallest rectangle enclosing all the character images in a font, if the images
were all superimposed over the same character origin.

font size: The size of a font in points; equivalent to the distance between the ascent line of one
line of text and the ascent line of the next line of single-spaced text.

fork: One of the two parts of a file; see data fork and resource fork.

four-tone record: A data structure describing the tones produced by a four-tone synthesizer.

four-tone synthesizer: The part of the Sound Driver used to make simple harmonic tones,
with up to four "voices" producing sound simultaneously.

frame: The time elapsed from the start bit to the last stop bit during serial communication.

f r ame check sequence: A 16-bit value generated by the AppIeTalk hardware, used by the
receiving node to detect transmission errors.

frame header : Information at the beginning of a packet.

frame pointer: A pointer to the end of the local variables within a routine's stack frame, held in
an address register and manipulated with the LINK and UNLK instructions.

frame trailer: Information at the end of an ALAP frame.

framed shape: A shape that's drawn oudined and hollow.

framing e r ro r : The condition resulting when a device doesn't receive a stop bit when expected.

free block: A memory block containing space available for allocation.

free-form synthesizer: The part of the Sound Driver used to make complex music and
speech.

frequency: The number of cycles per second (also called hertz) at which a wave oscillates.

full-duplex communicat ion: A method of data transmission where two devices transmit data
simultaneously.

global coordinate system: The coordinate system based on the top left corner of the bit image
being at (0,0).

go-away region: A region in a window frame. Clicking inside this region of the active
window makes the window close or disappear.

Glossary

Glossary III-243

grafPort: A complete drawing environment, including such elements as a bit map, a subset
of it in which to draw, a character font, patterns for drawing and erasing, and other pen
characteristics.

grow image: The image pulled around when the user drags inside the grow region; whatever is
appropriate to show that the window's size will change.

grow region: A window region, usually within the content region, where dragging changes the
size of an active window.

grow zone function: A function supplied by the application program to help the Memory
Manager create free space within a heap zone.

handle: A pointer to a master pointer, which designates a relocatable block in the heap by double
indirection.

ha rdware overrun e r ro r : The condition that occurs when the SCC's buffer becomes full.

heap: The area of memory in which space is dynamically allocated and released on demand,
using the Memory Manager.

heap zone: An area of memory initialized by the Memory Manager for heap allocation.

highlight: To display an object on the screen in a distinctive visual way, such as inverting it.

horizontal blanking interval: The time between the display of the rightmost pixel on one line
and the leftmost pixel on the next line.

hotSpot: The point in a cursor that's aligned with the mouse location.

icon: A 32-by-32 bit image that graphically represents an object, concept, or message.

icon list: A resource consisting of a list of icons.

icon number : A digit from 1 to 255 to which the Menu Manager adds 256 to get the resource
ID of an icon associated with a menu item.

image width: The width of a character image.

inactive control : A control that won't respond to the user's actions with the mouse. An
inactive control is highlighted in some special way, such as dimmed.

inactive window: Any window that isn't the frontmost window on the desktop.

indicator: The moving part of a dial that displays its current setting.

input driver: A device driver that receives serial data via a serial port and transfers it to an
application.

insertion point: An empty selection range; the character position where text will be inserted
(usually marked with a blinking caret).

Inside Macintosh

interface rout ine: A routine called from Pascal whose purpose is to trap to a certain Toolbox
or Operating System routine.

Internat ional Utilities Package: A Macintosh package that gives you access to country-
dependent information such as the formats for numbers, currency, dates, and times.

internet: An interconnected group of AppIeTalk networks.

in te rne t a d d r e s s : The AppIeTalk address and network number of a socket.

in ter rupt : An exception that's signaled to the processor by a device, to notify the processor of a
change in condition of the device, such as the completion of an 170 request.

in ter rupt handler : A routine that services interrupts.

in terrupt priori ty level: A number identifying the importance of the interrupt. It indicates
which device is interrupting, and which interrupt handler should be executed.

in ter rupt vector: A pointer to an interrupt handler.

invert: To highlight by changing white pixels to black and vice versa.

invisible control : A control that's not drawn in its window.

invisible window: A window that's not drawn in its plane on the desktop.

I /O queue: See driver I /O queue or file I /O queue.

I/O request: A request for input from or output to a file or device driver; caused by calling a
File Manager or Device Manager routine asynchronously.

i tem: In dialog and alert boxes, a control, icon, picture, or piece of text, each displayed inside its
own display rectangle. See also menu item.

item list: A list of information about all the items in a dialog or alert box.

item number : The index, starting from 1, of an item in an item list.

I W M : "Integrated Woz Machine"; the custom chip that controls the 3 1/2-inch disk drives.

j ob dialog: A dialog that sets information about one printing job; associated with the Print
command.

journa l code: A code passed by a Toolbox Event Manager routine in its Control call to the
journaling device driver, to designate which routine is making the Control call.

journal ing mechanism: A mechanism that allows you to feed the Toolbox Event Manager
events from some source other than the user.

j u m p table: A table that contains one entry for every routine in an application and is the means
by which the loading and unloading of segments is implemented.

III-244 Glossary

Glossary

justification: The horizontal placement of lines of text relative to the edges of the rectangle in
which the text is drawn.

kern: To draw part of a character so that it overlaps an adjacent character.

key code: An integer representing a key on the keyboard or keypad, without reference to the
character that the key stands for.

key-down event: An event generated when the user presses a character key on the keyboard or
keypad.

key-up event: An event generated when the user releases a character key on the keyboard or
keypad.

k e y b o a r d conf igura t ion : A resource that defines a particular keyboard layout by associating a
character code with each key or combination of keys on the keyboard or keypad.

keyboard equivalent: The combination of the Command key and another key, used to invoke
a menu item from the keyboard.

keyboard event: An event generated when the user presses, releases, or holds down a
character key on the keyboard or keypad; any key-down, key-up, or auto-key event.

leading: The amount of blank vertical space between the descent line of one line of text and the
ascent line of the next line of single-spaced text.

l igature: A character that combines two letters.

list separator: The character that separates numbers, as when a list of numbers is entered by the
user.

local coo rd ina t e system: The coordinate system local to a grafPort, imposed by the boundary
rectangle defined in its bit map.

local ID: A number that refers to an icon list or file reference in an application's resource fde and
is mapped to an actual resource ID by a bundle.

location table: An array of words (one for each character in a font) that specifies the location of
each character's image in the font's bit image.

lock: To temporarily prevent a relocatable block from being moved during heap compaction.

lock bit: A bit in the master pointer to a relocatable block that indicates whether the block is
currently locked.

locked file: A file whose data cannot be changed.

locked volume: A volume whose data cannot be changed. Volumes can be locked by either a
software flag or a hardware setting.

logical block: Volume space composed of 512 consecutive bytes of standard information and
an additional number of bytes of information specific to the Disk Driver.

Glossary 111-245

Inside Macintosh

logical end-of-file: The position of one byte past the last byte in a file; equal to the actual
number of bytes in the file.

logical size: The number of bytes in a memory block's contents.

magnitude: The vertical distance between any given point on a wave and the horizontal line
about which the wave oscillates.

main event loop: In a standard Macintosh application program, a loop that repeatedly calls the
Toolbox Event Manager to get events and then responds to them as appropriate.

main segment: The segment containing the main program.

mark : The position of the next byte in a file that will be read or written.

mark state: The state of a transmission line indicating a binary 1.

master directory block: Part of the data structure of a volume; contains the volume
information and the volume allocation block map.

master pointer: A single pointer to a relocatable block, maintained by the Memory Manager
and updated whenever the block is moved, purged, or reallocated. All handles to a relocatable
block refer to it by double indirection through the master pointer.

memory block: An area of contiguous memory within a heap zone.

Memory Manager : The part of the Operating System that dynamically allocates and releases
memory space in the heap.

menu: A list of menu items that appears when the user points to a menu tide in the menu bar and
presses the mouse button. Dragging through the menu and releasing over an enabled menu item
chooses that item.

menu ba r : The horizontal strip at the top of the Macintosh screen that contains the menu titles of
all menus in the menu list.

menu definition procedure : A procedure called by the Menu Manager when it needs to
perform type-dependent operations on a particular type of menu, such as drawing the menu.

menu ID : A number in the menu record that identifies the menu.

menu item: A choice in a menu, usually a command to the current application.

menu item number : The index, starting from 1, of a menu item in a menu.

menu list: A list containing menu handles for all menus in the menu bar, along with information
on the position of each menu.

Menu Manager : The part of the Toolbox that deals with setting up menus and letting the user
choose from them.

III-246 Glossary

Glossary

menu record : The internal representation of a menu, where the Menu Manager stores all the
information it needs for its operations on that menu.

menu title: A word or phrase in the menu bar that designates one menu.

missing symbol: A character to be drawn in case of a request to draw a character that's
missing from a particular font.

modal dialog: A dialog that requires the user to respond before doing any other work on the
desktop.

modeless dialog: A dialog that allows the user to work elsewhere on the desktop before
responding.

modifier key: A key (Shift, Caps Lock, Option, or Command) that generates no keyboard
events of its own, but changes the meaning of other keys or mouse actions.

mounted volume: A volume that previously was inserted into a disk drive and had descriptive
information read from it by the File Manager.

mouse-down event: An event generated when the user presses the mouse button.

mouse scaling: A feature that causes the cursor to move twice as far during a mouse stroke
than it would have otherwise, provided the change in the cursor's position exceeds the mouse-
scaling threshold within one tick after the mouse is moved.

mouse-scaling threshold: A number of pixels which, if exceeded by the sum of the
horizontal and vertical changes in the cursor position during one tick of mouse movement, causes
mouse scaling to occur (if that feature is turned on); normally six pixels.

mouse-up event: An event generated when the user releases the mouse button.

Name-Binding Protocol (NBP): An AppleTalk protocol that's a DDP client, used to convert
entity names to their internet socket addresses.

name lookup: An NBP operation that allows clients to obtain the internet addresses of entities
from their names.

names directory: The union of all name tables in an internet.

names information socket: The socket in a node used to implement NBP (always socket
number 2).

names table: A list of each entity's name and internet address in a node.

N B P : See N a m e - B i n d i n g Pro tocol .

NBP tuple: An entity name and an internet address.

network event: An event generated by the AppleTalk Manager.

network number : An identifier for an AppleTalk network.

Glossary 111-247

Inside Macintosh

network-visible enti ty: A named socket client on an internet.

newline character : Any character, but usually Return (ASCII code $0D), that indicates the end
of a sequence of bytes.

newline mode: A mode of reading data where the end of the data is indicated by a newline
character (and not by a specific byte count).

node: A device that's attached to and communicates via an AppleTalk network,

node I D : A number, dynamically assigned, that identifies a node.

nonbreaking space: The character with ASCII code $CA; drawn as a space the same width as
a digit, but interpreted as a nonblank character for the purposes of word wraparound and
selection.

nonrelocatable block: A block whose location in the heap is fixed and can't be moved during
heap compaction.

null event: An event reported when there are no other events to report.

off-line volume: A mounted volume with all but 94 bytes of its descriptive information
released.

offset/width table: An array of words that specifies the character offsets and character widths
of all characters in a font.

on-line volume: A mounted volume with its volume buffer and descriptive information
contained in memory.

open driver: A driver that can be read from and written to.

open file: A file with an access path. Open files can be read from and written to.

open permission: Information about a file that indicates whether the file can be read from,
written to, or both.

open rout ine: The part of a device driver's code that implements Device Manager Open calls.

Operat ing System: The lowest-level software in the Macintosh. It does basic tasks such as
I/O, memory management, and interrupt handling.

Opera t ing System Event Manager : The part of the Operating System that reports hardware-
related events such as mouse-button presses and keystrokes.

Operat ing System Utilities: Operating System routines that perform miscellaneous tasks such
as getting the date and time, finding out the user's preferred speaker volume and other
preferences, and doing simple string comparison.

output driver: A device driver that receives data via a serial port and transfers it to an
application.

III-248 Glossary

Glossary

Glossary 111-249

over run e r r o r : See h a r d w a r e over run e r ro r and software over run e r ror .

package: A set of routines and data types that's stored as a resource and brought into memory
only when needed.

Package Manager : The part of the Toolbox that lets you access Macintosh RAM-based
packages.

page rec tangle : The rectangle marking the boundaries of a printed page image. The boundary
rectangle, portRect, and clipRgn of the printing grafPort are set to this rectangle.

palette: A collection of small symbols, usually enclosed in rectangles, that represent operations
and can be selected by the user.

pane: An independendy scrollable area of a window, for showing a different part of the same
document.

panel: An area of a window that shows a different interpretation of the same part of a document.

paper rectangle: The rectangle marking the boundaries of the physical sheet of paper on which
a page is printed.

parameter block: A data structure used to transfer information between applications and certain
Operating System routines.

parameter RAM: In the clock chip, 20 bytes where settings such as those made with the
Control Panel desk accessory are preserved.

parity bit: A data communications bit used to verify that data bits received by a device match the
data bits transmitted by another device.

par i ty e r ro r : The condition resulting when the parity bit received by a device isn't what was
expected.

par t code: An integer between 1 and 253 that stands for a particular part of a control (possibly
the entire control).

path reference number : A number that uniquely identifies an individual access path; assigned
when the access path is created.

pat tern: An 8-by-8 bit image, used to define a repeating design (such as stripes) or tone (such
as gray).

pat tern transfer mode: One of eight transfer modes for drawing lines or shapes with a pattern.

period: The time elapsed during one complete cycle of a wave.

phase: Some fraction of a wave cycle (measured from a fixed point on the wave).

physical end-of-file: The position of one byte past the last allocation block of a file; equal to 1
more than the maximum number of bytes the file can contain.

Inside Macintosh

physical size: The actual number of bytes a memory block occupies within its heap zone.

picture: A saved sequence of QuickDraw drawing commands (and, optionally, picture
comments) that you can play back later with a single procedure call; also, the image resulting from
these commands.

p ic tu re c o m m e n t s : Data stored in the definition of a picture that doesn't affect the picture's
appearance but may be used to provide additional information about the picture when it's played
back.

picture frame: A rectangle, defined as part of a picture, that surrounds the picture and gives a
frame of reference for scaling when the picture is played back.

pixel: The visual representation of a bit on the screen (white if the bit is 0, black if it's 1).

p lane: The front-to-back position of a window on the desktop.

point: The intersection of a horizontal grid line and a vertical grid line on the coordinate plane,
defined by a horizontal and a vertical coordinate; also, a typographical term meaning
approximately 1/72 inch.

polygon: A sequence of connected lines, defined by QuickDraw line-drawing commands.

po r t : See grafPort .

portBits : The bit map of a grafPort.

portRect: A rectangle, defined as part of a grafPort, that encloses a subset of the bit map for use
by the grafPort.

post: To place an event in the event queue for later processing.

pr ime rout ine: The part of a device driver's code that implements Device Manager Read and
Write calls.

pr int record: A record containing all the information needed by the Printing Manager to
perform a particular printing job.

P r in t e r Driver: The device driver for the currently installed printer.

pr inter resource file: A file containing all the resources needed to run the Printing Manager
with a particular printer.

print ing grafPort: A special grafPort customized for printing instead of drawing on the screen.

Printing Manager : The routines and data types that enable applications to communicate with
the Printer Driver to print on any variety of printer via the same interface.

processor pr ior i ty : Bits 8-10 of the MC68000's status register, indicating which interrupts
will be processed and which will be ignored.

III-250 Glossary

Glossary

proportional font: A font whose characters all have character widths that are proportional to
their image width.

protocol: A well-defined set of communications rules.

p ro toco l handler : A software process in a node that recognizes different kinds of frames by
their ALAP type and services them.

p ro toco l handler table: A list of the protocol handlers for a node.

purge: To remove a relocatable block from the heap, leaving its master pointer allocated but set
to NIL.

purge bit: A bit in the master pointer to a relocatable block that indicates whether the block is
currendy purgeable.

purge warning procedure: A procedure associated with a particular heap zone that's called
whenever a block is purged from that zone.

purgeable block: A relocatable block that can be purged from the heap.

queue: A list of identically structured entries linked together by pointers.

QuickDraw: The part of the Toolbox that performs all graphic operations on the Macintosh
screen.

radio but ton: A standard Macintosh control that displays a setting, either on or off, and is part
of a group in which only one button can be on at a time.

R A M : The Macintosh's random access memory, which contains exception vectors, buffers used
by hardware devices, the system and application heaps, the stack, and other information used by
applications.

read/write permission: Information associated with an access path that indicates whether the
file can be read from, written to, both read from and written to, or whatever the file's open
permission allows.

reallocate: To allocate new space in the heap for a purged block, updating its master pointer to
point to its new location.

reference number : A number greater than 0, returned by the Resource Manager when a
resource file is opened, by which you can refer to that file. In Resource Manager routines that
expect a reference number, 0 represents the system resource file.

reference value: In a window record or control record, a 32-bit field that an application
program may store into and access for any purpose.

region: An arbitrary area or set of areas on the QuickDraw coordinate plane. The outline of a
region should be one or more closed loops.

register-based rout ine: A Toolbox or Operating System routine that receives its parameters
and returns its results, if any, in registers.

Glossary 111-251

Inside Macintosh

relative handle: A handle to a relocatable block expressed as the offset of its master pointer
within the heap zone, rather than as the absolute memory address of the master pointer.

release: To free an allocated area of memory, making it available for reuse.

release t imer: A timer for determining when an exacdy-once response buffer can be released.

relocatable block: A block that can be moved within the heap during compaction.

resource: Data or code stored in a resource file and managed by the Resource Manager.

r e s o u r c e at t r ibute: One of several characteristics, specified by bits in a resource reference, that
determine how the resource should be dealt with.

resource da ta : In a resource file, the data that comprises a resource.

resource file: The resource fork of a file.

resource fork: The part of a file that contains data used by an application (such as menus,
fonts, and icons). The resource fork of an application file also contains the application code
itself.

resource header : At the beginning of a resource file, data that gives the offsets to and lengths
of the resource data and resource map.

resource I D : A number that, together with the resource type, identifies a resource in a resource
file. Every resource has an ID number.

Resource Manager : The part of the Toolbox that reads and writes resources.

resource m a p : In a resource file, data that is read into memory when the file is opened and that,
given a resource specification, leads to the corresponding resource data.

resource name : A string that, together with the resource type, identifies a resource in a
resource file. A resource may or may not have a name.

resource reference: In a resource map, an entry that identifies a resource and contains either an
offset to its resource data in the resource file or a handle to the data if it's already been read into
memory.

resource specification: A resource type and either a resource ID or a resource name.

resource type: The type of a resource in a resource file, designated by a sequence of four
characters (such as 'MENU' for a menu).

response BDS: A data structure used to pass response information to the ATP module.

result code: An integer indicating whether a routine completed its task successfully or was
prevented by some error condition (or other special condition, such as reaching the end of a file).

resume procedure: A procedure within an application that allows the application to recover
from system errors.

III-252 Glossary

Glossary

re t ry count: The maximum number of retransmissions for an NBP or ATP packet.

re t ry interval: The time between retransmissions of a packet by NBP or ATP.

R O M : The Macintosh's permanent read-only memory, which contains the routines for the
Toolbox and Operating System, and the various system traps.

routine selector: An integer that's pushed onto the stack before the _PackN macro is invoked,
to identify which routine to execute. (N is the resource ED of a package; all macros for calling
routines in the package expand to invoke _PackN.)

routing table: A table in a bridge that contains routing information.

Rout ing Table Maintenance Protocol (RTMP) : An AppIeTalk protocol that's used
internally by AppIeTalk to maintain tables for routing datagrams through an internet.

row width: The number of bytes in each row of a bit image.

R T M P : See Rout ing Table Main tenance Protocol .

R T M P socket: The socket in a node used to implement RTMP.

R T M P stub: The RTMP code in a nonbridge node.

scaling factor: A value, given as a fraction, that specifies the amount a character should be
stretched or shrunk before it's drawn.

S C C : See Serial Commun ica t i ons Contro l ler .

scrap: A place where cut or copied data is stored.

scrap file: The file containing the desk scrap (usually named "Clipboard File").

Scrap Manager : The part of the Toolbox that enables cutting and pasting between applications,
desk accessories, or an application and a desk accessory.

screen buffer: A block of memory from which the video display reads the information to be
displayed.

sector: Disk space composed of 512 consecutive bytes of standard information and 12 bytes of
file tags.

segment: One of several parts into which the code of an application may be divided. Not all
segments need to be in memory at the same time.

Segment Loader: The part of the Operating System that loads the code of an application into
memory, either as a single unit or divided into dynamically loaded segments.

selection range: The series of characters (inversely highlighted), or the character position
(marked with a blinking caret), at which the next editing operation will occur.

Glossary 111-253

Inside Macintosh

sequence number : A number from 0 to 7, assigned to an ATP response datagram to indicate
its ordering within the response.

Serial Communicat ions Controller (SCC): The chip that handles serial I/O through the
modem and printer ports.

serial data : Data communicated over a single-path communication line, one bit at a time.

Serial Driver: A device driver that controls communication, via serial ports, between
applications and serial peripheral devices.

signature: A four-character sequence that uniquely identifies an application to the Finder.

socket: A logical entity within the node of a network.

socket client: A software process in a node that owns a socket.

socket listener: The portion of a socket client that receives and services datagrams addressed to
that socket.

socket number : An identifier for a socket.

socket table: A listing of all the socket listeners for each active socket in a node.

software overrun e r ro r : The condition that occurs when an input driver's buffer becomes
full.

solid shape: A shape that's filled in with any pattern.

sound buffer: A block of memory from which the sound generator reads the information to
create an audio waveform.

Sound Driver: The device driver that controls sound generation in an application.

sound p r o c e d u r e : A procedure associated with an alert that will emit one of up to four sounds
from the Macintosh's speaker. Its integer parameter ranges from 0 to 3 and specifies which
sound.

source transfer mode: One of eight transfer modes for drawing text or transferring any bit
image between two bit maps.

space state: The state of a transmission line indicating a binary 0.

spool pr int ing: Writing a representation of a document's printed image to disk or to memory,
and then printing it (as opposed to immediate draft printing).

square-wave synthesizer: The part of the Sound Driver used to produce less harmonic
sounds than the four-tone synthesizer, such as beeps.

stack: The area of memory in which space is allocated and released in LIFO (last-in-first-out)
order.

III-254 Glossary

Glossary

Glossary III-255

stack-based rout ine: A Toolbox or Operating System routine that receives its parameters and
returns its results, if any, on the stack.

stack frame: The area of the stack used by a routine for its parameters, return address, local
variables, and temporary storage.

stage: Every alert has four stages, corresponding to consecutive occurrences of the alert, and a
different response may be specified for each stage.

S tandard File Package: A Macintosh package for presenting the standard user interface when
a file is to be saved or opened.

start bit: A serial data communications bit that signals that the next bits transmitted are data bits.

status information: Information transmitted to an application by a device driver. It may
indicate the current mode of operation, the readiness of the device, the occurrence of errors, and
so on.

status routine: The part of a device driver's code that implements Device Manager Status calls,

stop bit: A serial data communications bit that signals the end of data bits,

s t ructure region: An entire window; its complete "structure",

style: See cha rac t e r style.

style dialog: A dialog that sets options affecting the page dimensions; associated with the Page
Setup command.

synchronous execution: After calling a routine synchronously, an application cannot continue
execution until the routine is completed.

synthes izer : See free-form, four- tone , or squa re -wave syn thes ize r .

synthesizer buffer: A description of the sound to be generated by a synthesizer.

system er ror alert : An alert box displayed by the System Error Handler.

system e r ro r alert table: A resource that determines the appearance and function of system
error alerts.

System Er ro r Handler : The part of the Operating System that assumes control when a fatal
system error occurs.

system er ror ID : An ID number that appears in a system error alert to identify the error.

system event mask: A global event mask that controls which types of events get posted into
the event queue.

system font: The font that the system uses (in menus, for example). Its name is Chicago,

system font size: The size of text drawn by the system in the system font; 12 points.

Inside Macintosh

system heap : The portion of the heap reserved for use by the Operating System.

system heap zone: The heap zone provided by the Memory Manager for use by the Operating
System; equivalent to the system heap.

system resource: A resource in the system resource file.

system resource file: A resource file containing standard resources, accessed if a requested
resource wasn't found in any of the other resource files that were searched.

system s tar tup information: Certain configurable system parameters that are stored in the first
two logical blocks of a volume and read in at system startup.

system window: A window in which a desk accessory is displayed.

TextEdit: The part of the Toolbox that supports the basic text entry and editing capabilities of a
standard Macintosh application.

TextEdit scrap: The place where certain TextEdit routines store the characters most recently cut
or copied from text.

thousands separator: The character that separates every three digits to the left of the decimal
point.

t humb: The Control Manager's term for the scroll box (the indicator of a scroll bar).

tick: A sixtieth of a second.

Toolbox: Same as User In te r face Toolbox.

Toolbox Event Manager : The part of the Toolbox that allows your application program to
monitor the user's actions with the mouse, keyboard, and keypad.

Toolbox Utilities: The part of the Toolbox that performs generally useful operations such as
fixed-point arithmetic, string manipulation, and logical operations on bits.

t rack: Disk space composed of 8 to 12 consecutive sectors. A track corresponds to one ring of
constant radius around the disk.

t ransact ion: A request-response communication between two ATP clients. See transaction
r eques t and t r ansac t ion response .

transaction ID : An identifier assigned to a transaction.

transaction request: The initial part of a transaction in which one socket client asks another to
perform an operation and return a response.

transaction response: The concluding part of a transaction in which one socket client returns
requested information or simply confirms that a requested operation was performed.

Transcendental Functions Package: A Macintosh package that contains trigonometric,
logarithmic, exponential, and financial functions, as well as a random number generator.

III-256 Glossary

Glossary

transfer mode: A specification of which Boolean operation QuickDraw should perform when
drawing or when transferring a bit image from one bit map to another.

t r ap dispatch table: A table in RAM containing the addresses of all Toolbox and Operating
System routines in encoded form.

t r ap dispatcher: The part of the Operating System that examines a trap word to determine what
operation it stands for, looks up the address of the corresponding routine in the trap dispatch
table, and jumps to the routine.

t r ap macro: A macro that assembles into a trap word, used for calling a Toolbox or Operating
System routine from assembly language.

t r ap number : The identifying number of a Toolbox or Operating System routine; an index into
the trap dispatch table.

t rap word: An unimplemented instruction representing a call to a Toolbox or Operating System
routine.

unimplemented instruction: An instruction word that doesn't correspond to any valid
machine-language instruction but instead causes a trap.

unit number : The number of each device driver's entry in the unit table.

unit table: A 128-byte nonrelocatable block containing a handle to the device control entry for
each device driver.

unlock: To allow a relocatable block to be moved during heap compaction.

u n m o u n t e d volume: A volume that hasn't been inserted into a disk drive and had descriptive
information read from it, or a volume that previously was mounted and has since had the memory
used by it released.

unpurgeable block: A relocatable block that can't be purged from the heap.

update event: An event generated by the Window Manager when a window's contents need to
be redrawn.

update region: A window region consisting of all areas of the content region that have to be
redrawn.

user bytes: Four bytes in an ATP header provided for use by ATP's clients.

User Interface Toolbox: The software in the Macintosh ROM that helps you implement the
standard Macintosh user interface in your application.

validity status: A number stored in parameter RAM designating whether the last attempt to
write there was successful. (The number is $A8 if so.)

variation code: The part of a window or control definition ID that distinguishes closely related
types of windows or controls.

Glossary 111-257

Inside Macintosh

VBL task: A task performed during the vertical retrace interrupt,

vector table: A table of interrupt vectors in low memory.

version data : In an application's resource file, a resource that has the application's signature as
its resource type; typically a string that gives the name, version number, and date of the
application.

version n u m b e r : A number from 0 to 255 used to distinguish between files with the same
name.

Versatile Interface Adapter (VIA): The chip that handles most of the Macintosh's I/O and
interrupts.

vertical b lanking in t e r rup t : See vertical r e t race in ter rupt .

vertical blanking interval: The time between the display of the last pixel on the bottom line of
the screen and the first one on the top line.

vertical retrace in terrupt : An internipt generated 60 times a second by the Macintosh video
circuitry while the beam of the display tube returns from the bottom of the screen to the top; also
known as vertical blanking interrupt.

Vertical Retrace Manager : The part of the Operating System that schedules and executes tasks
during the vertical retrace interrupt.

vertical re trace queue: A list of the tasks to be executed during the vertical retrace interrupt.

VIA: See Versatile Interface Adapter .

view rectangle: In TextEdit, the rectangle in which the text is visible.

visible c o n t r o l : A control that's drawn in its window (but may be completely overlapped by
another window or other object on the screen).

v i s ib le window: A window that's drawn in its plane on the desktop (but may be completely
overlapped by another window or object on the screen).

visRgn: The region of a grafPort, manipulated by the Window Manager, that's actually visible
on the screen.

v o l u m e : A piece of storage medium formatted to contain files; usually a disk or part of a disk.
A 400K-byte 3 1/2-inch Macintosh disk is one volume.

volume allocation block m a p : A list of 12-bit entries, one for each allocation block, that
indicate whether the block is currently allocated to a file, whether it's free for use, or which block
is next in the file. Block maps exist both on volumes and in memory.

volume at t r ibutes : Information contained on volumes and in memory indicating whether the
volume is locked, whether it's busy (in memory only), and whether the volume control block
matches the volume information (in memory only).

III-258 Glossary

Glossary

volume buffer: Memory used initially to load the master directory block, and used thereafter
for reading from files that are opened without an access path buffer.

volume control block: A nonrelocatable block that contains volume-specific information,
including the volume information from the master directory block.

volume-control-block queue: A list of the volume control blocks for all mounted volumes.

volume index: A number identifying a mounted volume listed in the volume-control-block
queue. The first volume in the queue has an index of 1, and so on.

volume information: Volume-specific information contained on a volume, including the
volume name and the number of files on the volume.

volume name: A sequence of up to 27 printing characters that identifies a volume; followed by
a colon (:) in File Manager routine calls, to distinguish it from a file name.

volume reference n u m b e r : A unique number assigned to a volume as it's mounted, used to
refer to the volume.

waveform: The physical shape of a wave.

waveform description: A sequence of bytes describing a waveform,

wavelength: The horizontal extent of one complete cycle of a wave.

window: An object on the desktop that presents information, such as a document or a message.

window class: In a window record, an indication of whether a window is a system window, a
dialog or alert window, or a window created direcdy by the application.

window definition function: A function called by the Window Manager when it needs to
perform certain type-dependent operations on a particular type of window, such as drawing the
window frame.

window definition I D : A number passed to window-creation routines to indicate the type of
window. It consists of the window definition function's resource ID and a variation code.

window frame: The structure region of a window minus its content region.

window list: A list of all windows ordered according to their front-to-back positions on the
desktop.

Window Manager : The part of the Toolbox that provides routines for creating and
manipulating windows.

Window Manager por t : A grafPort that has the entire screen as its portRect and is used by the
Window Manager to draw window frames.

window record: The internal representation of a window, where the Window Manager stores
all the information it needs for its operations on that window.

Glossary 111-259

Inside Macintosh

III-260 Glossary

window template: A resource that contains information from which the Window Manager can
create a window.

word: In TextEdit, any series of printing characters, excluding spaces (ASCII code $20) but
including nonbreaking spaces (ASCII code $CA).

word wrapa round : Keeping words from being split between lines when text is drawn.

write da ta s t ructure: A data structure used to pass information to the ALAP or DDP modules.

zone: An arbitrary subset of AppleTalk networks in an internet. See also heap zone.

zone header: The internal "housekeeping" information maintained by the Memory Manager at
the beginning of each heap zone.

zone pointer : A pointer to a zone record.

zone record: A data structure representing a heap zone.

zone trailer: A minimum-size free block marking the end of a heap zone.

INDEX

A

ABByte data type 11-276
ABCallType data type 11-274
ABProtoType data type 11-274
ABRecHandle data type 11-274
ABRecPtr data type 11-274
ABusRecord data type 11-274

ALAP parameters 11-276
ATP parameters 11-287
DDP parameters 11-281
NBP parameters 11-298

ABusVars global variable 11-328
access path 11-83
access path buffer 11-84
ACount global variable 1-423
action procedure 1-316, 324, 328

in control definition function 1-332
activate event 1-244, 279

event message 1-252
active

control 1-313
window 1-46,270,284

AddPt procedure 1-193
AddrBlock data type 11-281
AddResMenu procedure 1-353
AddResource procedure 1-124
AddResponse function 11-318
address mark 11-211
ALAP See AppIeTalk Link Access Protocol
ALAP frame 11-264
ALAP protocol type 11-264
alert 1-401,409

guidelines 1-68
alert box 1-401
Alert function 1-418
alert stages 1-409
alert template 1-403,424

resource format 1-426
alert window 1-402
AlertTemplate data type 1-424
AlertTHndl data type 1-425
AlertTPtr data type 1-425
alias 11-266
Allocate function

high-level 11-94
low-level 11-113

allocated block 11-10
allocation block 11-79

amplitude of a wave 11-223
AngleFromSlope function 1-476
ANumber global variable 1-423
ApFontID global variable 1-219
AppendMenu procedure 1-352
AppFile data type 11-58
Apple menu 1-54
AppIeTalk address 11-265
AppIeTalk Link Access Protocol 11-263

assembly language 11-306
data reception 11-325
Pascal 11-276

AppIeTalk Manager 1-13; 11-261, 271
assembly language 11-304
Pascal 11-273

AppIeTalk Transaction Protocol 11-266, 267
assembly language 11-312
Pascal 11-287

application font 1-219
application heap 1-74; II-9

limit 11-17,29
application parameters 11-20
application space 11-20
application window 1-270
ApplicZone function 11-32
ApplLimit global variable II-19, 21, 29
ApplScratch global variable 1-85
ApplZone global variable 11-19, 21, 32
AppParmHandle global variable 11-57
arrow cursor 1-163,167
arrow global variable 1-147, 163
ascent of a font 1-228

in TextEdit 1-378
ASCII codes 1-247
assembly language 1-83
asynchronous communication 11-245
asynchronous execution

AppIeTalk Manager 11-273
Device Manager 11-180
File Manager 11-97

at-least-once transaction 11-266
ATP See AppIeTalk Transaction Protocol
ATPAddRsp function 11-295
ATPCloseSocket function 11-291
ATPGetRequest function 11-293
ATPLoad function 11-290
ATPOpenSocket function 11-290
ATPReqCancel function 11-293
ATPRequest function 11-292

Inside Macintosh

ATPResponse function 11-296
ATPRspCancel function 11-296
ATPSndRequest function 11-291
ATPSndRsp function 11-294
ATPUnload function 11-290
AttachPH function 11-308
auto-key event 1-244, 246
auto-key rate 1-246; 11-371
auto-key threshold 1-246; 11-371
auto-pop bit 1-89
automatic scrolling 1-48

in TextEdit 1-380

B

BackColor procedure 1-174
background procedure 11-153
B ackPat procedure 1-167
baseline 1-227
baud rate 11-246,251,254
BDSElement data type 11-288
BDSPtr data type 11-288
BDSType data type 11-288
BeginUpdate procedure 1-292
Binary-Decimal Conversion Package 1-12,

487
bit image 1-143
bit manipulation 1-470
bit map

AppleTalk Manager 11-268
printing 11-164
QuickDraw 1-144

BitAnd function 1-471
BitClr procedure 1-471
BitMap data type 1-144
BitMapType data type 11-287
BitNot function 1-471
BitOr function 1-471
Bits 16 datatype 1-146
BitSet procedure 1-471
BitShift function 1-472
BitTst function 1-471
BitXor function 1-471
black global variable I-162
block (file) See allocation block
block (memory) 1-73; 11-10
block contents II-10
block device 11-175
block header 11-10

structure 11-24
block map 11-122

BlockMove procedure 11-44
boot blocks See system startup information
boundary rectangle 1-144
break 11-246
bridge 11-265
BringToFront procedure 1-286
broadcast service 11-264
BufPtr global variable II-19, 21
BufTgDate global variable 11-212
BufTgFBkNum global variable 11-212
BufTgFFlag global variable 11-212
BufTgFNum global variable 11-212
bundle 11-85; III-11

resource format HI-12
Button function 1-259
button type of control 1-311, 404
Byte data type 1-78

C

CalcMenuSize procedure 1-361
CalcVBehind procedure 1-297
CalcVis procedure 1-297
CalcVisBehind procedure 1-297
caret 1-376,379
caret-blink time 1-260; 11-371
CaretTime global variable 1-260
CautionAlert function 1-420
Chain procedure 11-59
ChangedResource procedure 1-123
character codes 1-246
character device 11-175
character image 1-227
character keys 1-33, 246
character offset 1-228
character origin 1-228
character position 1-375
character rectangle 1-228
character set 1-247
character style 1-151

of menu items 1-348, 360
character width 1-173,228
Chars data type 1-384
CharsHandle data type 1-384
CharsPtr data type 1-384
CharWidth function 1-173
checkbox 1-312,404
check mark in a menu 1-347, 358
Checkltem procedure 1-358
CheckUpdate function 1-296
ClearMenuBar procedure 1-354

III-262

Index

click See mouse-down event
click loop routine 1-380
ClipAbove procedure 1-296
Clipboard 1-58 See also scrap
clipping region of a grafPort I-149
ClipRect procedure 1-167
clipRgn of a grafPort I-149
clock chip 11-369

hardware 111-36
close box See go-away region
Close command 1-56
Close function, high-level

Device Manager 11-178
File Manager 11-94

Close function, low-level
Device Manager 11-184
File Manager 11-114

close routine
of a desk accessory 1-446
of a driver 11-187, 193

CloseATPSkt function II-316
closed device driver 11-176
closed file 11-83
CloseDeskAcc procedure 1-440
CloseDialog procedure 1-413
CloseDri ver function II-17 8
ClosePgon procedure 1-190
ClosePicture procedure 1-189
ClosePoly procedure 1-190
ClosePort procedure 1-164
CloseResFile procedure 1-115
CloseRgn procedure 1-182
CloseSkt function 11-312
CloseWindow procedure 1-283
ClrAppFiles procedure 11-58
CmpString function 11-377
color drawing 1-158,173
ColorBit procedure 1-174
Command-key equivalent See keyboard

equivalent
Command-period II-154
Command-Shift-number 1-258
commands 1-51, 341
compaction, heap 1-74; 11-12, 39
CompactMem function 11-39
completion routine

Device Manager 11-180,181
File Manager 11-97, 99
Sound Driver 11-231

ConfirrnName function 11-323
content region of a window 1-271

control 1-65,311
defining your own 1-328
in a dialog/alert 1-404

control definition function 1-314, 328
control definition ID 1-315, 328
Control function

high-level 11-179
low-level n-186

control information 11-176
control list 1-274,317
Control Manager I-11, 309

routines 1-319
control record 1-316
control routine

of a desk accessory 1-446
of a driver II-187, 194

control template 1-315
resource format 1-332

ControlHandle data type 1-317
ControlPtr data type 1-317
ControlRecord data type 1-317
coordinate plane 1-138
CopyBits procedure 1-188
Copy Rgn procedure 1-183
CouldAlert procedure 1-420
CouldDialog procedure 1-415
CountAppFiles procedure 11-57
CountMIterns function 1-3 61
CountResources function 1-118
CountTypes function 1-117
Create function

high-level 11-90
low-level n-107

CreateResFile procedure 1-114
creator of a file III-9
CrsrThresh global variable 11-372
CurActivate global variable 1-280
CurApName global variable 11-58
CurApRefNum global variable 11-58
CurDeactive global variable 1-280
CurJTOffset global variable 11-62
CurMap global variable 1-117
CurPageOption global variable 11-60
CurPitch global variable 11-226, 232
current heap zone II-10, 31
current resource file 1-105, 116
CurrentA5 global variable 1-95; 11-19, 21,

386
CurResFile function 1-116
CursHandle data type 1-474

III-263

Inside Macintosh

cursor 1-146
QuickDraw routines 1-167
standard cursors 1-147, 474
utility routines 1-474

Cursor data type I-146
cursor level 1-167
CursPtr data type 1-474
CurStackBase global variable 11-19, 21,
cut and paste 1-59

intelligent 1-63
in TextEdit 1-385

D

DABeeper global variable 1-411
DAStrings global array 1-421
data bits 11-245
data buffer 11-83, 176
data fork 1-105; 11-81
data mark 11-211
datagram 11-265

loss recovery 11-268
Datagram Delivery Protocol 11-265

assembly language 11-308
Pascal 11-281

date operations 11-377
Date2Secs procedure 11-379
DateForm data type 1-504
date/time record 11-377
DateTimeRec data type 11-378
DCtlEntry data type 11-190
DCtlHandle data type 11-190
DCtlPtr data type 11-190
DDP See Datagram Delivery Protocol
DDPCloseSocket function 11-282
DDPOpenSocket function 11-282
DDPRdCancel function 11-284
DDPRead function 11-283
DDPWrite function 11-283
default button

in an alert 1-69,401,424
in a dialog 1-67,400,407

default volume 11-80
getting See GetVol function
setting See SetVol function

DefltStack global variable 11-17
DefVCBPtr global variable 11-126
Delay procedure 11-384
Delete function

high-level 11-97
low-level 11-119

DeleteMenu procedure 1-354
DeltaPoint function 1-475
Dequeue function 11-383
dereferencing a handle II-14
descent of a font 1-228
desk accessory 1-437

writing your own 1-443
Desk Manager 1-12,435

routines 1-440
desk scrap 1-453

data types 1-454
format 1-462
routines 1-457

DeskHook global variable 1-282, 288
DeskPattern global variable 1-282
desktop 1-32, 269
Desktop file 111-10
destination rectangle 1-374
DetachPH function 11-308
DetachResource procedure 1-120
device 11-175
device control entry 11-189
device driver 1-13; 11-175

for a desk accessory 1-443
structure 11-187
writing your own U-193

device driver event 1-244
Device Manager 1-13; 11-173
Device Manager routines II-177

device control entry access 11-190
high-level 11-178
low-level 11-180
for writing drivers II-194

dial 1-312
dialog box 1-66,399
Dialog Manager 1-12,397

routines 1-411
dialog pointer 1-407
dialog record 1-403,407
dialog template 1-402, 403

resource format 1-425
dialog window 1-401
DialogPeek data type 1-408
DialogPtr data type 1-407
DialogRecord data type 1-408
DialogSelect function 1-417
DialogTemplate data type 1-423
DialogTHndl data type 1-424
DialogTPtr data type 1-424
DIBadMount function 11-396
DiffRgn procedure 1-184
DIFormat function 11-398

III-264

Index

DELoad procedure 11-396
dimmed

control 1-313
menu item 1-342, 343
menu tide 1-342

disabled
dialog/alert item 1-405
menu 1-342, 358
menu item 1-349,358

Disableltem procedure 1-358
discontinuous selection 1-40
Disk Driver 1-13; 11-209

Device Manager calls 13-213
routines 11-214

Disk Initialization Package 1-13; 11-393
routines 11-396

disk-inserted event 1-244
event message 1-252
responding to 1-257

disk interface 111-33
disk-switch dialog 11-80
DiskEject function 11-214
dispatch table See trap dispatch table
display rectangle 1-406
DisposControl procedure 1-321
DisposDialog procedure 1-415
DisposeControl procedure 1-321
DisposeMenu procedure 1-352
DisposeRgn procedure 1-182
DisposeWindow procedure 1-284
DisposHandle procedure 1-76, 80; 11-33
DisposMenu procedure 1-352
DisposPtr procedure 1-75, 79; 11-36
DisposRgn procedure 1-182
DisposWindow procedure 1-284
DIUnload procedure 11-396
DIVerify function 11-398
DIZero function 11-399
dkGray global variable 1-162
DlgCopy procedure 1-418
DlgCut procedure 1-418
DlgDelete procedure 1-418
DlgFont global variable 1-412
DlgHook function

SFGetFile 1-526
SFPutFile 1-522

DlgPaste procedure 1-418
document window 1-269
double-click 1-37,255
double-click time 1-260; 11-371
DoubleTime global variable 1-260
draft printing 11-151,153

drag region of a window 1-271,289
DragControl procedure 1-325
DragGrayRgn function 1-294
DragHook global variable

Control Manager 1-324, 326
Window Manager 1-288, 289, 290, 295

DragPattern global variable
Control Manager 1-324, 326
Window Manager 1-295

DragTheRgn function 1-295
DragWindow procedure 1-289
DrawChar procedure 1-172
DrawControls procedure 1-322
DrawDialog procedure 1-418
DrawGrowIcon procedure 1-287
drawing 1-155

color 1-158, 173
DrawMenuBar procedure 1-354
DrawNew procedure 1-296
DrawPicture procedure 1-190
DrawString procedure 1-172
DrawText procedure 1-172
drive number 11-80
drive queue II-127
driver See device driver
driver I/O queue II-180, 191
driver name 11-176
driver reference number 11-176
DriveStatus function 11-215
DrvQEl data type 11-127
DrvQHdr global variable II-128
DrvSts data type 11-215
DSAlertRect global variable 11-362
DSAlertTab global variable H-359, 362
DSErrCode global variable 11-362

E

Edit menu 1-58
and desk accessories 1-441, 447

edit record 1-374
Eject function

high-level 11-90
low-level 11-107

Elems68K See Transcendental Functions
Package

empty handle 1-76; 11-14, 40
EmptyHandle procedure 11-40
Empty Rect function 1-176
Empty Rgn function 1-186

III-265

Inside Macintosh

enabled
dialog/alert item 1-405
menu 1-358
menu item 1-358

Enableltem procedure 1-358
end-of-file 11-81
end-of-message flag 11-270
EndUpdate procedure 1-293
Enqueue procedure 11-382
entity name 11-265,298
EntityName data type 11-298
Environs procedure 11-385
EntityPtr data type 11-298
equal-tempered scale 11-237
EqualPt function 1-193
EqualRect function 1-176
EqualRgn function 1-185
EqualString function 11-377
Erase Arc procedure 1-180
EraseO val procedure 1-178
ErasePoly procedure 1-192
EraseRect procedure 1-177
EraseRgn procedure 1-186
EraseRoundRect procedure 1-179
error number See result code
ErrorSound procedure 1-411
event 1-243

priority 1-245
event code 1-249
Event Manager, Operating System I-13; II- 65

routines 11-68
Event Manager, Toolbox I-11, 241

routines 1-257
event mask 1-253
event message 1-249
event queue 1-243

structure 11-70
event record 1-249
event types 1-244
EventAvail function 1-259
EventQueue global variable 11-71
EventRecord data type 1-249
EvQEl data type 11-71
exactly-once transaction 11-266
example program 1-13
exception 11-195
exception vector 111-17
ExitToShell procedure 11-59
exponential functions 11-407
extended selection 1-39

in TextEdit 1-384
external file system 11-128

external reference 1-95
ExtStsDT global variable 11-199

F

FCBSPtr global variable II-127
Fetch function 11-194
FFSynthPtr data type 11-228
FFSynthRec data type 11-228
file 11-79, 81
file control block 11-126
file-control-block buffer II-126
file creator III-9
file directory 11-79, 122
file icon 11-85; 111-10
file I/O queue 11-97, 124
File Manager 1-13; 11-77
File Manager routines

high-level 11-88
low-level 11-97
for queue access 11-125,126,128

File menu 1-55
filename 11-81
file number 11-122
file reference III-10

resource format III-12
file tags 11-212
file tags buffer 11-212
file type IiI-9
fileFilter function 1-524
Fill Arc procedure 1-181
FillOval procedure 1-178
FillPoly procedure 1-192
FillRect procedure 1-177
FillRgn procedure I-187
FillRoundRect procedure 1-179
filterProc function 1-415
financial functions 11-407
FindControl function 1-323
Finder information 11-55
Finder interface 11-55, 84; 113-7
FinderName global variable 11-59
FindWindow function 1-287
FInfo data type 11-84
FInitQueue procedure II-103
Fixed data type 1-79
fixed-point

arithmetic 1-467
numbers 1-79

fixed-width font 1-228
FixMul function 1-467

III-266

Index

FixRatio function 1-467
FixRound function 1-467
FlashMenuB ar procedure 1-3 61
Floating-Point Arithmetic Package 1-13; 11-403
FlushEvents procedure 11-69
FlushFile function II-114
FlushVol function

high-level 11-89
low-level 11-105

FMInput data type 1-224
FMOutPtr data type 1-227
FMOutput data type 1-227
FMSwapFont function 1-223
folder 11-85
font 1-60, 151, 217

characters 1-220
format 1-227
resource format 1-234
resource ID 1-234

font characterization table 1-225
font height 1-228
Font Manager 1-11,215

communication with QuickDraw 1-224
routines 1-222

Font menu 1-60,353
font number 1-217, 219
font record 1-230
font rectangle 1-228
font scaling 1-220
font size 1-153,217
Fontlnfo data type 1-173
FontRec data type 1-231
FontSizemenu 1-61
ForeColor procedure 1-173
fork 1-105; 11-81
four-tone record 11-227
four-tone synthesizer 11-223, 226
FP68K See Floating-Point Arithmetic Package
frame

ALAP JJ-264
picture 1-158
serial communication 11-246
stack 1-96; H-17
window 1-271

frame check sequence 11-265
frame header II-264
frame pointer (stack) 1-96
frame trailer 11-264
FrameArc procedure 1-180
FrameOval procedure 1-177
FramePoly procedure 1-192
FrameRect procedure 1-176

FrameRgn procedure 1-186
FrameRoundRect procedure 1-178
framing error 11-246
free-form synthesizer 11-223, 228
free memory block U-10
FreeAlert procedure 1-420
FreeDialog procedure 1-415
FreeMem function 11-38
FreeWave data type H-228
frequency of a wave 11-223
FrontWindow function 1-286
FScaleDisable global variable 1-222
FSClose function 11-94
FSDelete function 11-97
FSOpen function 11-91
FSQHdr global variable II-125
FSRead function

Device Manager 11-178
File Manager 11-92

FSWrite function
Device Manager 11-179
File Manager 11-92

FTSndRecPtr data type 11-227
FTSoundRec data type 11-227
FTSynthPtr data type II-227
FTSynthRec data type 11-227
full-duplex communication 11-245

G

GetAlrtStage function 1-422
GetAppFiles procedure 11-58
GetAppILimit function 11-29
GetAppParms procedure 11-58
GetCaretTime function 1-260
GetClip procedure I-167
GetCRefCon function 1-327
GetCTitle procedure 1-321
GetCtlAction function 1-328
GetCtlMax function 1-327
GetCtiMin function 1-327
GetCtlValue function 1-326
GetCursor function 1-474
GetDateTime procedure 11-378
GetDblTime function 1-260
GetDCtlEntry function 11-190
GetDItem procedure 1-421
GetDrvQHdr function 11-128
GetEOF function

high-level 11-93
low-level 11-112

III-267

Inside Macintosh

GetEvQHdr function 11-71
GetFilelnfo function

high-level 11-95
low-level n-115

GetFInfo function 11-95
GetFName procedure 1-223
GetFNum procedure 1-223
GetFontlnfo procedure 1-173
GetFontName procedure 1-223
GetFPos function

high-level 11-92
low-level n-111

GetFSQHdr function 11-125
GetHandleSize function 11-33
Getlcon function 1-473
GetlndPattern procedure 1-473
GetlndResource function 1-118
GetlndString procedure 1-468
GetlndTy pe procedure 1-117
Getltem procedure 1-358
Getltemlcon procedure 1-360
GetltemMark procedure 1-359
GetltemStyle procedure 1-360
GetlText procedure 1-422
Getltmlcon procedure 1-360
GetltmMark procedure 1-359
GetltmStyle procedure 1-360
GetKeys procedure 1-259
GetMaxCtl function 1-327
GetMenu function 1-351
GetMenuBar function 1-355
GetMHandle function 1-361
GetMinCtl function 1-327
GetMouse procedure 1-259
GetN amedResource function 1-119
GetNewControl function 1-321
GetNewDialog function 1-413
GetNewMBar function 1-354
GetNewWindow function 1-283
GetNextEvent function 1-257
GetNodeAddress function 11-303
GetOSEvent function 11-69
GetPattern function 1-473
GetFen procedure 1-169
GetPenState procedure 1-169
GetPicture function 1-475
GetPixel function 1-195
GetPort procedure 1-165
GetPtrSize function 11-37
GetRequest function 11-317
GetResAttrs function 1-121

GetResFileAttrs function 1-127
GetResInfo procedure 1-121
GetResource function 1-119
GetRMenu function 1-351
GetScrap function 1-469
GetSoundVol procedure 11-232
GetString function 1-468
GetSysPPtr function 11-381
GetTime procedure 11-380
GetTrapAddress function 11-384
GetVBLQHdr function 11-352
GetVCBQHdr function 11-126
GetVInfo function 11-89
GetVol function

high-level 11-89
low-level n-104

GetVolInfo function
high-level 11-89
low-level n-104

GetVRefNum function 11-89
GetWindowPic function 1-293
GetWMgrPort procedure 1-282
GetWRefCon function 1-293
GetWTitle procedure 1-284
GetZone function II-31
GhostWindow global variable 1-287
global coordinates 1-155
global variables

list III-227
QuickDraw 1-138, 162

GlobalToLocal procedure 1-193
go-away region of a window 1-271, 288
GrafDevice procedure 1-165
grafPort 1-147

routines 1-162
GrafPort data type 1-148
GrafPtr data type 1-148
GrafVerb data type 1-198
gray global variable 1-162
GrayRgn global variable 1-282, 296
grow image of a window 1-289
grow region of a window 1-272, 289
grow zone function II-14, 42
GrowWindow function 1-289
GZRootHnd global variable 11-43
GZSaveHnd function 11-43

H

HandAndHand function 11-375

III-268

Index

handle 1-75, 78; 11-12
dereferencing 11-14
empty 11-40
manipulation 11-374

Handle data type 1-78
HandleZone function 11-34
HandToHand function IJ.-374
hardware III-15
hardware overrun error 11-246
heap 1-12, 23; II-9, 17

compaction 1-74; 11-12, 39
creating on the stack 11-45
zone II-9, 22

HeapEnd global variable 11-19, 21
HideControl procedure 1-322
HideCursor procedure 1-168
HidePen procedure 1-168
HideWindow procedure 1-283
highlighted 1-31

control 1-313
menu tide 1-357
window 1-270

HiliteControl procedure 1-322
HiliteMenu procedure 1-357
HiliteWindow procedure 1-286
HiWord function 1-472
HLock procedure 11-41
HNoPurge procedure 11-42
HomeResFile function 1-117
horizontal blanking interval III-18
hotSpot of a cursor 1-146
HPurge procedure 11-41
HUnlock procedure 11-41

I

icon 1-32
in a dialog/alert 1-404
forafde 11-85; 111-10
in a menu 1-347,359
utility routines 1-473

icon list 111-11
resource format 1-476; III-12

icon number 1-347
image width 1-228
inactive

control 1-313
window 1-46, 270

indicator of a dial 1-312
InfoScrap function 1-457
InitAUPacks procedure 1-484

InitApplZone procedure 11-28
InitCursor procedure I-167
InitDialogs procedure 1-411
InitFonts procedure 1-222
InitGraf procedure 1-162
InitMenus procedure 1-351
InitPack procedure 1-484
InitPort procedure 1-164
InitQueue procedure 11-103
InitResources function 1-114
InitUtil function 11-380
InitWindows procedure 1-281
InitZone procedure 11-29
input driver 11-246
insertion point 1-41,375
InsertMenu procedure 1-353
InsertResMenu procedure 1-353
InsetRect procedure 1-175
InsetRgn procedure 1-184
Int64Bit data type 1-472
interface routine 1-95
international resources 1-495
International Utilities Package I-12, 493

routines 1-504
internet 11-265
internet address 11-265, 314
interrupt 11-195

level-1 (VIA) 11-197; HI-38
level-2(SCC) 11-198
level-3 H-196
vertical retrace 11-349

interrupt handler II-195
writing your own 11-200

interrupt priority level 11-196
interrupt vector II-19 6
IntlOHndl data type 1-496
IntlOPtr data type 1-496
IndORec data type 1-497
Intll Hndl data type 1-500
IntllPtr data type 1-500
IndlRec data type 1-500
InvalRect procedure 1-291
InvalRgn procedure 1-291
InverRect procedure 1-177
InverRgn procedure 1-186
InverRoundRect procedure 1-179
Invert Arc procedure 1-181
InvertOval procedure 1-178
InvertPoIy procedure 1-192
InvertRect procedure 1-177
InvertRgn procedure 1-186
InvertRoundRect procedure 1-179

III-269

Inside Macintosh

invisible
control 1-316
dialog/alert item 1-406
file icon 11-85
window 1-274

IODone function 11-195
I/O queue See driver I/O queue or file I/O

queue
I/O request 11-97, 180
IsATPOpen function 11-304
IsDialogEvent function 1-416
IsMPPOpen function 11-304
item

dialog/alert 1-403
menu 1-341

item list 1-403
resource format 1-427

item number
dialog/alert 1-406
menu 1-350

item type 1-404
IUCompString function 1-506
IUDatePString procedure 1-505
IUDateString procedure 1-504
IUEqualString function 1-506
IUGetlntl function 1-505
IUMaglDString function 1-507
IUMagString function 1-506
IUMetric function 1-505
IUSetlntl procedure 1-506
IUTimePString procedure 1-505
IUTimeString procedure 1-505
IWM III-17
IWM global variable 111-34

J

JFetch global variable 11-194
JIODone global variable 11-195
job dialog 11-149
job subrecord 11-150
journal code 1-262
JournalFlag global variable 1-261
journaling mechanism 1-261
JournalRef global variable 1-261
JStash global variable 11-195
jump table 11-60
jump vector 11-194
just-tempered scale 11-237
justification 1-376

setting 1-387

K

kerning 1-152, 228
key codes 1-250
key-down event 1-244

responding to 1-256
key-up event 1-244, 254
keyboard 1-33

hardware 111-29
keyboard configuration 1-248
keyboard equivalent 1-343

meta-character 1-348
responding to 1-356
standard equivalents 1-53

keyboard event 1-244, 246
event message 1-250
responding to 1-256

keyboard touch See auto-key threshold
KeyMap data type 1-260
keypad 1-35

hardware 111-29
KeyRepThresh global variable 1-246
KeyThresh global variable 1-246
KillControls procedure 1-321
KilllO function

high-level 11-179
low-level 11-187

KillPicture procedure 1-190
KillPoly procedure 1-191

L

LAPAdrBlock data type 11-276
LAPCloseProtocol function 11-277
LAPOpenProtocol function 11-277
LAPRdCancel function 11-279
LAPRead function 11-278
LAPWrite function 11-277
Launch procedure 11-60
leading 1-228
ligatures 1-501
line height 1-378
Line procedure 1-171
LineTo procedure 1-170
list separator 1-497
Lo3Bytes global variable 1-85; 11-25
LoadNBP function 11-324
LoadResource procedure 1-119
LoadScrap function 1-458
LoadSeg procedure 11-60
local coordinates 1-153

III-270

Index

local ID III-10
LocalToGlobal procedure 1-193
location table 1-231
lock bit 11-25
locked block 1-76; 11-10
locked file 11-84
locked volume 11-80
locking a block 1-76; 11-41
LodeScrap function 1-458
logarithmic functions 11-407
logical block 11-119
logical end-of-file 11-81
logical operations 1-471
logical size of a block 11-22
LongMul procedure 1-472
LookupName function 11-323
LoWord function 1-472
ltGray global variable 1-162
LvIlDT global variable 11-197
Lvl2DT global variable 11-198

M

magnitude of a wave 11-223
main event loop 1-16
main segment 11-55
MapPoly procedure 1-197
MapPt procedure 1-196
MapRect procedure 1-196
MapRgn procedure 1-196
mark

in a file 11-82
in a menu 1-347, 359

mark state H-245
master directory block II-120
master pointer 1-75; II-12

allocation 11-22,31
structure 11-25

MaxApplZone procedure 11-30
MaxMem function 11-38
MBarEnable global variable 1-356, 446
MBarHook global variable 1-356
MemError function 11-44
memory block 1-73; 11-10
memory management II-7

introduction 1-71
Memory Manager 1-12; II-7

routines 11-27
memory organization 11-19
MemTop global variable 11-19, 21, 44

menu 1-341
defining your own 1-362
guidelines 1-51
resource format 1-364
standard menus 1-54, 342

menu bar 1-341
resource format 1-365

menu definition procedure 1-344, 362
menu ID 1-344
menu item 1-341

blinking 1-361; 11-371
menu item number 1-350
menu list 1-345
Menu Manager 1-12,339

routines 1-351
menu record 1-344
menu title 1-341
MenuFlash global variable 1-361
MenuHandle data type 1-345
MenuHook global variable 1-356
Menulnfo data type 1-345
MenuKey function 1-356
MenuList global variable 1-346
MenuRr data type 1-345
MenuSelect function 1-355
meta-characters

AppIeTalk Manager 11-266, 320
Menu Manager 1-346

MinStack global variable II-17
MinusOne global variable 1-85
missing symbol 1-152, 220, 230
modal dialog box 1-67, 400, 415
ModalDialog procedure 1-415
modeless dialog box 1-67, 400, 416
modes 1-28
modifier flags 1-252
modifier keys 1-34, 246

flags in event record 1-252
MoreMasters procedure 11-31
mounted volume 11-79
MountVol function 11-103
mouse 1-36

hardware III-25
mouse-down event 1-244

responding to 1-255
mouse scaling 11-372
mouse-scaling threshold 11-372
mouse-up event 1-244

responding to 1-255
Move procedure 1-170
MoveControI procedure 1-325

III-271

Inside Macintosh

MoveHHi procedure 11-44
MovePortTo procedure 1-166
MoveTo procedure 1-170
MoveWindow procedure 1-289
MPP 11-271
MPPClose function 11-275
MPPOpen function 11-275
Munger function 1-468

N

Name-Binding Protocol 11-266
assembly language II-319
Pascal 11-298

name lookup 11-266
names directory 11-266
names information socket 11-266
names table 11-266, 321
NBP See Name-Binding Protocol
NBP tuple n-266
NBPConfirm function 11-301
NBPExtract function 11-300
NBPLoad function JJ-301
NBPLookup function 11-300
NBPRegister function 11-299
NBPRemove function 11-301
NBPUnload function JJ-301
network event 1-244; 11-275
network number 11-265
network-visible entity 11-265
New command 1-56
NewControl function 1-319
NewDialog function 1-412
NewHandle function 1-76, 80; 11-32
newline character 11-84
newline mode 11-84
NewMenu function 1-351
NewPtr function 1-75, 79; 11-36
NewRgn function 1-181
NewString function 1-468
NewWindow function 1-282
node 11-263
node ID 11-263
nonbreaking space 1-246
nonrelocatable block 1-75; 11-10

allocating 11-36
releasing 11-36

NoteAlert function 1-420
null event 1-245
NumToString procedure 1-489

O

ObscureCursor procedure 1-168
off-line volume 11-80
Offline function 11-106
OffsetPoly procedure 1-191
OffsetRect procedure 1-174
OffsetRgn procedure 1-183
offset/width table 1-231
OfsetRgn procedure 1-183
OldContent global variable 1-296
OldStructure global variable 1-296
on-line volume 11-80
OneOne global variable 1-85
Open command 1-56
open device driver 11-176
open file 11-83
Open function, high-level

Device Manager 11-178
File Manager 11-91

Open function, low-level
Device Manager 11-184
File Manager 11-108

open permission 11-83
open routine

of a desk accessory 1-445
of a driver 11-187, 193

OpenATPSkt function 11-315
OpenDeskAcc function 1-440
OpenDriver function II-17 8
OpenPicture function 1-189
OpenPoly function 1-190
OpenPort procedure 1-163
OpenResFile function 1-115
OpenRF function

high-level 11-91
low-level 11-109

OpenRgn procedure 1-181
OpenSkt function 11-311
Operating System 1-9

queues 11-372
Operating System Event Manager 1-13; 11-65

routines 11-68
Operating System Utilities 1-13; 11-3 67

routines 11-374
OSErr data type 11-373
OSEventAvail function 11-70
OSType data type 11-373
output driver 11-246
overrun error See hardware overrun error or

software overrun error
owned resources 1-109

III-272

Index

P

Pack2 See Disk Initialization Package
Pack3 See Standard File Package
Pack4 See Floating-Point Arithmetic Package
Pack5 See Transcendental Functions Package
Pack6 See International Utilities Package
Pack7 See Binary-Decimal Conversion

Package
Package Manager 1-12,481
packages 1-12, 483
PackBits procedure 1-470
page rectangle 11-150
Page Setup command 1-57
PaintArc procedure 1-180
PaintBehind procedure 1-297
PaintOne procedure 1-296
PaintOval procedure 1-178
PaintPoly procedure 1-192
PaintRect procedure 1-177
PaintRgn procedure 1-186
PaintRoundRect procedure 1-179
PaintWhite global variable 1-297
palette 1-32
pane 1-49
panel 1-50
paper rectangle II-150
ParamBlkType data type 11-98, 181
ParamBlockRec data type 11-98,181

driver I/O queue entry II-191
file I/O queue entry II-124

parameter block 1-93; 11-97, 180
parameter RAM 11-369

default values 11-370
routines 11-380

ParamText procedure 1-421
parity bit 11-245
parity error 11-246
ParmBlkPtr data type 11-98,181
part code 1-315,330
path reference number 11-83
PatHandle data type 1-473
PatPtr data type 1-473
pattern 1-145, 473
Pattern data type 1-146
pattern list 1-473

resource format 1-476
pattern transfer mode 1-157
PB Allocate function 11-113
PBClose function

Device Manager 11-184
File Manager 11-114

PBControl function 11-186
PBCreate function 11-107
PBDelete function 11-119
PBEject function II-107
PBFlushFile function II-114
PBFlushVol function 11-105
PBGetEOF function 11-112
PBGetFInfo function 11-115
PBGetFPos function 11-111
PBGetVInfo function 11-104
PBGetVol function 11-104
PBKilllO function 11-187
PBMountVol function 11-103
PBOffLine function 11-106
PBOpen function

Device Manager 11-184
File Manager 11-108

PBOpenRF function 11-109
PBRead function

Device Manager II-185
File Manager 11-110

PB Rename function II-118
PBRstFLock function 11-117
PBSetEOF function 11-112
PBSetFInfo function 11-116
PBSetFLock function 11-116
PBSetFPos function 11-111
PBSetFVers function 11-117
PBSetVol function 11-105
PBStatus function 11-186
PBUnmountVol function 11-106
PBWrite function

Device Manager 11-185
File Manager II-110

pen characteristics 1-150
PenMode procedure 1-169
PenNormal procedure 1-170
PenPat procedure 1-170
PenSize procedure 1-169
PenState data type 1-169
period of a wave 11-223
phase of a wave cycle 11-223
physical end-of-file II-81
physical size of a block 11-23
PicComment procedure 1-189
PicHandle data type 1-159
PicPtr data type 1-159
picture 1-158

QuickDraw routines 1-189
utility routine 1-475

picture comments 1-159
Picture data type 1-159

III-273

Inside Macintosh

picture frame 1-158
PinRect function 1-293
pixel 1-139, 143
Plotlcon procedure 1-473
point (coordinate plane) 1-139

routines 1-193
point (font size) 1-61, 153, 217
Point data type 1-139
pointer (to memory) 1-75, 78; II-11

manipulation 11-374
type coercion 1-79

pointer (on screen) 1-36, 37 See also cursor
polygon 1-159

routines 1-190
Polygon data type 1-159
Poly Handle data type I-160
PolyPtr data type 1-160
portBits of a grafPort 1-148
PortBUse global variable H-305
portRect of a grafPort 1-149
PortSize procedure I-165
post an event 1-243
PostEvent function 11-68
PrClose procedure 11-157
PrCloseDoc procedure II-160
PrClosePage procedure 11-160
PrCtlCall procedure 11-163
PrDrvrClose procedure 11-163
PrDrvrDCE function 11-163
PrDrvrOpen procedure II-163
PrDrvrVers function 11-163
PrError function II-161
prime routine of a driver 11-187, 193
Print command 1-57
print dialogs II-148
print record 11-148
PrintDefault procedure 11-158
Printer Driver 1-13; 11-147, 162
printer information subrecord II-150
printer resource file II-147
PrintErr global variable II-161
printing grafPort II-147
Printing Manager I-13; II-145

routines 11-157
printing methods 11-153

low-level 11-164
private scraps 1-461
PrJobDialog function 11-158
PrJobMerge procedure II-159
processor priority 11-196
ProcPtr data type 1-78

PrOpen procedure 11-157
PrOpenDoc function 11-159
PrOpenPage procedure 11-159
proportional font 1-228
protocol 11-263
protocol handler 11-264

writing your own 11-324, 326
protocol handler table 11-264
PrPicFile procedure 11-160
PrSetError procedure II-161
PrStlDialog function H-158
PrValidate function 11-158
PScrapStuff data type 1-457
Pt2Rect procedure 1-175
PtlnRect function 1-175
PtlnRgn function 1-185
Ptr data type 1-78
PtrAndHand function 11-376
PtrToHand function 11-375
PtrToXHand function 11-375
PtrZone function 11-38
PtToAngle procedure 1-175
purge bit 11-25
purge warning procedure 11-23
purgeable block 1-76; 11-10, 41
PurgeMem procedure 11-40
purging a block 1-76; 11-14, 40
PutScrap function 1-459

Q

QDProcs data type 1-197
QDProcsPtr data type 1-197
QElem data type 11-373
QElemPtr data type 11-373
QHdr data type 11-372
QHdrPtr data type 11-373
QTypes data type 11-373
queue 11-373

drive 11-127
driver I/O 11-180, 191
file I/O 11-97, 124
manipulation 11-382
vertical retrace 11-350, 352
volume-control-block 11-125

QuickDraw 1-11,135
communication with Font Manager 1-224
routines 1-162

Quit command 1-57

III-274

Index

R

radio button 1-312,404
RAM IH-17
RAM Serial Driver 1-13; 11-246

advanced Control calls 11-254
Device Manager calls 11-248
routines 11-249

RAMBase global variable 1-87
RAMSDClose procedure 11-250
RAMSDOpen function H-249
Random function I-194
random number generator I-194; 11-407
randSeed global variable 1-163, 194
Read function, high-level

Device Manager 11-178
File Manager U-92

Read function, low-level
Device Manager 11-185
File Manager 11-110

ReadDateTime function 11-378
ReadPacket function 11-327
ReadRest function 11-327
read/write permission 11-83
RealFont function 1-223
reallocating a block 1-76; 11-14
ReallocHandle procedure 11-35
RecoverHandle function 11-35
Rect data type 1-141
rectangle 1-140

routines 1-174
RectlnRgn function 1-185
RectRgn procedure 1-183
reference number of a resource file I-105
reference value

control 1-316
window 1-274

region 1-141
routines 1-181

Region data type 1-142
register-based routines 1-90, 93
register-saving conventions 1-94
RegisterName function 11-322
relative handle 11-24
release timer 11-270
ReleaseResource procedure I-120
relocatable block 1-75; 11-10

allocating 11-32
releasing 11-33

RelRspCB function 11-319
RelTCB function 11-319
RemoveName function 11-324

Rename function
high-level 11-96
low-level H-118

ResErr global variable 1-116
ResError function 1-116
ResErrProc global variable 1-116
ResetAlrtStage procedure 1-423
ResLoad global variable 1-118
resource 1-103

within a resource I-127
resource attributes I-111

getting 1-121
setting 1-122

resource data 1-106
resource file 1-105

attributes 1-126
current 1-105, 116
format 1-128

resource fork 1-105; 11-81
resource header 1-128
resource ID 1-108

of fonts 1-234
of owned resources 1-109

Resource Manager 1-9,101
routines 1-113

resource map 1-106
resource name I-110
resource reference I-110

format 1-130
resource specification 1-103,107
resource type 1-103

list 1-107
response BDS U-288, 314
ResrvMem procedure 11-39
Restart procedure 11-385
RestoreA5 procedure 11-386
ResType data type 1-107
result code 1-116; 11-27, 374

assembly language 1-94
list HI-205

resume procedure 1-411; 11-358
ResumeProc global variable 1-411
RetransType data type 11-298
retry count 11-266
retry interval 11-266
Revert to Saved command 1-57
RgnHandle data type 1-142
RgnPtr data type 1-142
RmveResource procedure 1-124
RndSeed global variable 1-195
ROM in-18

/ / / -27J

Inside Macintosh

ROM Serial Driver 1-13; 11-246
Device Manager calls 11-248
routines 11-250

ROMBase global variable 1-87; 11-383; 111-18
ROMFontO global variable 1-233
routine selector 1-483
routing table 11-265
Routing Table Maintenance Protocol 11-265
row width 1-143
RsrcZonelnit procedure 1-114
RstFilLock function

high-level 11-96
low-level 11-117

RstFLock function 11-96
RTMP 11-265
RTMP socket 11-265
RTMP stub 11-265

S

sample program 1-13
SANE 11-405
Save As command 1-57
Save command 1-57
SaveOld procedure 1-296
SaveUpdate global variable 1-297
SaveVisRgn global variable 1-293
ScalePt procedure 1-195
scaling factors 1-218
SCC 111-22
SCC interrupts 11-198
SCCRd global variable H-199; IH-25
SCCWr global variable II-199; 111-25
scrap

between applications 1-453
in TextEdit 1-373,388

scrap file 1-453
Scrap Manager I-12, 451

routines 1-457
ScrapCount global variable 1-457
ScrapHandle global variable 1-457
ScrapName global variable 1-457
ScrapSize global variable 1-457
ScrapState global variable 1-457
ScrapStuff data type 1-457
Scratch8 global variable 1-85
Scratch20 global variable 1-85
ScrDmpEnb global variable 1-258
screen buffer III-18, 19
screenBits global variable 1-145, 163
ScreenRes procedure 1-473

ScrHRes global variable 1-473
ScrnBase global variable 11-19, 21
scrollbar 1-47,312

updating 1-291
ScrollRect procedure 1-187
ScrVRes global variable 1-473
SdVolume global variable 11-232
Secs2Date procedure 11-380
sector 11-211
SectRect function 1-175
SectRgn procedure 1-184
segment 11-55
Segment Loader 1-12; 11-53

routines 11-57
selection range 1-375
SelectWindow procedure 1-284
SellText procedure 1-422
SendBehind procedure 1-286
SendRequest function IJ-316
SendResponse function 11-317
sequence number of a datagram JJ-266
SerClrBrk function 11-253
SerGetBuf function 11-253
SerHShake function 11-251
serial communication 11-245

hardware 111-22
Serial Communications Controller 111-22
serial data 11-245
Serial Drivers 1-13; 11-243

advanced Control calls 11-254
Device Manager calls 11-248
routines 11-249

SerReset function 11-250
SerSetBrk function 11-252
SerSetBuf function 11-251
SerShk data type 11-252
SerStaRec data type 11-253
SerStatus function 11-253
SetAppBase procedure 11-28
SetApplBase procedure 11-28
SetApplLimit procedure 11-30
SetClikLoop procedure 1-390
SetClip procedure 1-166
SetCRefCon procedure 1-327
SetCTitle procedure 1-321
SetCtlAction procedure 1-328
SetCtlMax procedure 1-327
SetCtlMin procedure 1-326
SetCtlValue procedure 1-326
SetCursor procedure I-167
SetDAFont procedure 1-412
SetDateTime function 11-379

III-276

Index

SetDItem procedure 1-421
SetEmptyRgn procedure 1-183
SetEOF function

high-level 11-93
low-level 11-112

SetEventMask procedure 11-70
SetFilelnfo function

high-level 11-95
low-level 11-116

SetFilLock function
high-level 11-95
low-level 11-116

SetFilType function 11-117
SetFTnfo function 11-95
SetFLock function 11-95
SetFontLock procedure 1-223
SetFPos function

high-level 11-93
low-level n-111

SetGrowZone procedure 11-42
SetHandleSize procedure 11-34
Setltem procedure 1-357
Sedtemlcon procedure 1-359
SedtemMark procedure 1-359
SedtemStyle procedure 1-360
SetlText procedure 1-422
Setltmlcon procedure 1-359
SetltmMark procedure 1-359
SetltmStyle procedure 1-360
SetMaxCtl procedure 1-327
SetMenuBar procedure 1-355
SetMenuFlash procedure 1-361
SetMFlash procedure 1-361
SetMinCd procedure 1-326
SetOrigin procedure 1-166
SetPBits procedure I-165
SetPenState procedure 1-169
SetPort procedure I-165
SetPortBits procedure 1-165
SetPt procedure 1-193
SetPtrSize procedure 11-37
SetRecRgn procedure 1-183
SetRect procedure 1-174
SetRectRgn procedure 1-183
SetResAttrs procedure 1-122
SetResFileAttrs procedure 1-127
SetResInfo procedure 1-122
SetResLoad procedure 1-118
SetResPurge procedure 1-126
SetSoundVol procedure 11-233
SetStdProcs procedure 1-198
SetString procedure 1-468

SetTagBuffer function 11-214
SetTime procedure 11-380
SetTrapAddress procedure 11-384
SetUpA5 procedure 11-386
SetVol function

high-level 11-89
low-level 11-105

SetWindowPic procedure 1-293
SetWordBreak procedure 1-390
SetWRefCon procedure 1-293
SetWTitle procedure 1-284
SetZone procedure 11-31
SEvtEnb global variable 1-443
SFGetFile procedure 1-523
SFPGetFile procedure 1-526
SFPPutFile procedure 1-523
SFPutFile procedure 1-519
SFReply data type 1-519
SFSaveDisk global variable 1-519
SFTypeList data type 1-523
ShieldCursor procedure 1-474
ShowControl procedure 1-322
ShowCursor procedure 1-168
ShowHide procedure 1-285
ShowPen procedure 1-168
ShowWindow procedure 1-285
signature 111-9
SignedByte data type 1-78
size

of parameters 1-90
of variables 1-85

size box 1-287 See also grow region
size correction 11-24
Size data type 11-18
SizeControl procedure 1-326
SizeResource function 1-121
SizeRsrc function 1-121
Size Window procedure 1-290
SlopeFromAngle function 1-475
socket 11-265
socket client 11-265
socket listener H-265

writing your own 11-324, 329
socket number 11-265
socket table 11-265
software overrun error 11-246
sound buffer 11-233; 111-18, 21
Sound Driver 1-13; 11-221

hardware 11-233
routines 11-231

sound generator 11-223; 111-20
sound procedure 1-409, 411, 425

7/7-277

Inside Macintosh

SoundBase global variable IH-21
SoundDone function 11-232
SoundLevel global variable 11-234
SoundPtr global variable 11-227
source transfer mode 1-157
space state 11-246
SpaceExtra procedure 1-172
SPAlarm global variable See parameter RAM
SPATalkA global variable See parameter

RAM
SPATalkB global variable See parameter

RAM
SPClikCaret global variable See parameter

RAM
SPConfig global variable 11-305
speaker volume 11-232,371
SPFont global variable See parameter RAM
SPKbd global variable See parameter RAM
split bar 1-49
SPMisc2 global variable See parameter RAM
spool printing 11-151, 153
SPortSel data type 11-249
SPPortA global variable See parameter RAM
SPPortB global variable See parameter RAM
SPPrint global variable See parameter RAM
SPValid global variable See parameter RAM
SPVolCd global variable See parameter RAM
square-wave synthesizer 11-223, 225
stack 1-73; II-17
stack-based routines 1-90
stack frame 1-96; 11-17
StageList data type 1-424
stages of an alert 1-409
Standard File Package 1-12, 515

routines 1-519
start bit 11-245
StartSound procedure 11-231
Stash function II-195
Status function

high-level 11-179
low-level 11-186

status information 11-176
status routine of a driver 11-187, 194
StdArc procedure 1-199
StdBits procedure 1-199
StdComment procedure 1-199
StdGetPic procedure 1-200
StdLine procedure 1-198
StdOval procedure 1-199
StdPoly procedure 1-199
StdPutPic procedure 1-200
StdRect procedure 1-198

StdRgn procedure 1-199
StdRRect procedure 1-198
StdText procedure 1-198
StdTxMeas function 1-199
StillDown function 1-259
stop bit 11-245
Stop Alert function 1-419
StopSound procedure 11-232
Str32 data type 11-298
Str255 data type 1-78
string comparison 1-501, 506; 11-376
string list 1-468

resource format 1-476
string manipulation 1-468
StringHandle data type 1-78
StringPtr data type 1-78
StringToNum procedure 1-490
StringWidth function 1-173
structure region of a window 1-271
StuffHex procedure 1-195
style See character style
Style data type 1-152
style dialog 11-149
Style menu 1-61
Styleltem data type 1-152
SubPt procedure 1-193
SWSynthPtr data type 11-225
SWSynthRec data type H-225
synchronous execution

AppleTalk Manager 11-273
Device Manager 11-180
File Manager 11-97

synthesizer buffer 11-225
SysBeep procedure 11-385
SysEdit function 1-441
SysError procedure 11-362
SysEvtMask global variable 11-70
SysMap global variable 1-114
SysMapHndl global variable 1-114
SysParam global variable 11-369
SysParmType data type 11-370
SysPPtr data type 11-370
SysResName global variable 1-114
system error alert 11-357
system error alert table 11-357, 359
System Error Handler 1-13; 11-18, 355

routine 11-362
system error ID 11-357
system event mask 1-254; 11-70
system font 1-219
system font size 1-219
system heap 1-74; U-9

III-278

Index

system resource 1-103
system resource file 1-103
system startup information II-120
system traps III-215
system window 1-270, 438
SystemClick procedure 1-441
SystemEdit function 1-441
SystemEvent function 1-442
SystemMenu procedure 1-443
SystemTask procedure 1-442, 444; 11-189
SystemZone function 11-32
SysZone global variable 11-19, 21, 32

T

tag byte 11-24
TEActivate procedure 1-385
TECalText procedure 1-390
TEClick procedure 1-384
TECopy procedure 1-386
TECut procedure 1-385
TEDeactivate procedure 1-385
TEDelete procedure 1-387
TEDispose procedure 1-383
TEDoText global variable 1-391
TEFromScrap function 1-389
TEGetScrapLen function 1-389
TEGetText function 1-384
TEHandle data type 1-374
TEIdle procedure 1-384
TEInit procedure 1-383
TEInsert procedure 1-387
TEKey procedure 1-385
TENew function 1-383
TEPaste procedure 1-386
TEPtr data type 1-374
TERec data type 1-377
TERecal global variable 1-391
TEScrapHandle function 1-389
TEScroll procedure 1-388
TEScrpHandle global variable 1-389
TEScrpLength global variable 1-389
TESetJust procedure 1-387
TESetScrapLen procedure 1-390
TESetSelect procedure 1-385
TESetText procedure 1-383
TestControl function 1-325
TEToScrap function 1-389
TEUpdate procedure 1-387
text characteristics 1-151
text in a dialog/alert 1-404,408

text streaming 11-165
TextBox procedure 1-388
TextEdit 1-12,371

routines 1-383
scrap 1-373,388

TextFace procedure 1-171
TextFont procedure 1-171
TextMode procedure 1-171
TextSize procedure 1-171
TextWidth function 1-173
TheMenu global variable 1-357
thePort global variable 1-162,165
TheZone global variable II-31
thousands separator 1-497
THPrint data type 11-149
thumb 1-312
THz data type 11-22
tick 1-246
TickCount function 1-260
Ticks global variable 1-260; 11-198
Time global variable 11-198, 369, 378
time operations 11-377
ToExtFS global variable 11-128
toggled command 1-53, 357
Tone data type 11-225
Tones data type 11-225
Toolbox 1-9
Toolbox Event Manager I-11, 241

routines 1-257
Toolbox Utilities 1-12, 465

routines 1-467
ToolScratch global variable 1-85
TopMapHndl global variable 1-115
TopMem function 11-44
TPPrint data type 11-149
TPPrPort data type 11-147
TPrlnfo data type H-150
TPrint data type 11-149
TPrJob data type 11-151
TPrPort data type 11-147
TPrStatus data type 11-161
TPrStl data type 11-152
TPrXInfo data type 11-152
track on a disk 11-211
TrackControl function 1-323
TrackGoAway function 1-288
transaction 11-266
transaction ID 11-266
transaction release 11-270
transaction request 11-266
transaction response 11-266

III-279

Inside Macintosh

Transcendental Functions Package 1-13;
11-403, 407

transfer mode 1-156
trap dispatch table 1-87

routines 11-383
trap dispatcher 1-89
trap macro 1-88, 90

list III-215
trap number 1-89, 384
trap word 1-88
TRel See transaction release
TReq See transaction request
TResp See transaction response
trigonometric functions 11-407
type coercion 1-79
type size See font size

U

Undo command 1-59
unimplemented instruction 1-88
UnionRect procedure 1-175
UnionRgn procedure 1-184
UniquelD function 1-121
unit number 11-191
unit table 11-191
UnloadNBP function 11-324
UnloadScrap function 1-458
UnloadSeg procedure 11-59
unlocked block 1-76; 11-10
unlocking a block 1-76; 11-41
UnlodeScrap function 1-458
unmounted volume 11-79
UnmountVol function

high-level 11-90
low-level 11-106

UnpackBits procedure 1-470
unpurgeable block 1-76; 11-10, 42
update event 1-244, 278

event message 1-252
update region of a window 1-272

maintenance 1-291
UpdateResFile procedure 1-125
UprString procedure 11-377
use type 11-305
user bytes 11-266
user interface guidelines 1-23
User Interface Toolbox 1-9
UseResFile procedure 1-117
userltem in a dialog 1-404, 405

installing 1-421

UTableBase global variable 11-192
Utilities, Operating System 1-13; 11-307

routines 11-374
Utilities, Toolbox 1-12, 465

routines 1-467

V

validity status 11-370
ValidRect procedure 1-292
ValidRgn procedure 1-292
variation code

control 1-328
window 1-298

VBL interrupt See vertical blanking interrupt
VBLtask 11-350
VBLQueue global variable 11-352
VBLTask data type 11-350
VCB data type 11-125
VCBQHdr global variable 11-126
vector 11-196
vector table 11-196
Versatile Interface Adapter 111-39
version data III-10
version number of a file II-81
vertical blanking interrupt 11-349; III-18
vertical blanking interval III-18
vertical retrace interrupt 1-13; 11-349
Vertical Retrace Manager 1-13; 11-347

routines 11-351
vertical retrace queue 11-350, 352
VHSelect data type 1-139
VIA 111-39
VIA global variable 1-198; ffl-39
VIA interrupts 11-197; ffl-38, 41
video interface III-18
view rectangle 1-374
VInstall function 11-351
visible

control 1-316
window 1-274

visRgn of a grafPort I-149
volume (on a disk) 11-79
volume (speaker) 11-232,371
volume allocation block map II-122
volume attributes 11-121
volume buffer 11-79
volume control block II-125
volume-control-block queue 11-125
volume index 11-102
volume information 11-121

III-280

Index

volume name 11-79
volume reference number 11-79
VRemove function 11-351

W

WaitMouseUp function 1-259
Wave data type 11-227
waveform 11-223
waveform description 11-224
wavelength 11-223
WavePtr data type 11-227
white global variable 1-162
window 1-44, 269

closing 1-45,283
defining your own 1-297
moving 1-46, 289
opening 1-45, 282
resource format 1-302
sizing 1-47,289
splitting 1-49

window class 1-274, 276
window definition function 1-272, 298
window definition ID 1-273, 298
window frame 1-271
window list 1-274, 277
Window Manager I-11, 267

routines 1-281
Window Manager port 1-271,282
window pointer 1-275
window record 1-274, 276
window template 1-274

resource format 1-302
WindowList global variable 1-255, 277
WindowPeek data type 1-275
WindowPtr data type 1-275
WindowRecord data type 1-276
WMgrPort global variable 1-282
word 1-42

in TextEdit 1-373
word break routine 1-380
word wraparound 1-373
write data structure 11-306
Write function, high-level

Device Manager 11-179
File Manager 11-92

Write function, low-level
Device Manager 11-185
File Manager II-110

WriteDDP function 11-312
WriteLAP function 11-307

WriteParam function 11-382
WriteResource procedure 1-125

X

XorRgn procedure 1-185

Y

Z

ZeroScrap function 1-458
zone

AppIeTalk Manager 11-266
Memory Manager See heap zone

Zone data type 11-22
zone header 11-22
zone pointer 11-22
zone record 11-22
zone trailer 11-22

III-281

	Volume III
	Contents
	Preface
	1 The Finder Interface
	2 The Macintosh Hardware
	3 Summary
	Appendix A: Result Codes
	Appendix B: Routines That May Move or Purge Memory
	Appendix C: System Traps
	Appendix D: Global Variables
	Glossary
	Index

