

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

ð

I N S I D E M A C I N T O S H

QuickDraw GXEnvironment and Utilities

ð

Apple Computer, Inc.
© 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
QuickDraw is a trademark of Apple
Computer, Inc.
Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
AGFA is a trademark of Agfa-Gevaert.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Optrotech is a trademark of Orbotech
Corporation.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT
ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.
Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.
THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.
Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40676-4
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, June 1994

7

The paper used in this book meets the
EPA standards for recycled fiber.

iii

Contents

Figures, Tables, and Listings xiii

Preface

About This Book

xix

What to Read xx
Chapter Organization xxi
Conventions Used in This Book xxii

Special Fonts xxii
Types of Notes xxii
Numerical Formats xxiii
Type Definitions for Enumerations xxiii

Development Environment xxiii
Developer Products and Support xxiv

Chapter 1

QuickDraw GX and the Macintosh Environment

1-1

About QuickDraw GX and the Macintosh Environment 1-3
The Macintosh Interface 1-3
The QuickDraw–to–QuickDraw GX Translator 1-4

Using QuickDraw GX in the Macintosh Environment 1-4
Testing for the Presence and Version of QuickDraw GX 1-4
Using the Macintosh Interface Functions 1-6

Creating and Using View Ports with Macintosh Windows 1-6
Using View Devices With Graphics Devices 1-7
Converting From QuickDraw to QuickDraw GX Coordinates 1-7
Intercepting Drawing Calls to a View Port 1-9

Using the QuickDraw–to–QuickDraw GX Translator 1-10
Factors in Translation 1-10

Graphics Port and View Port 1-10
Scaling During Translation 1-11
Translation Options 1-11
How Option Settings Affect Translation of Lines 1-14
Translation of Fill Patterns 1-16
Translation of QuickDraw Picture Comments 1-17
Translation Statistics 1-20

Using the Translator With QuickDraw Pictures 1-20
Installing and Removing the Translator 1-21

QuickDraw GX and the Macintosh Environment Reference 1-22
Constants and Data Types 1-22

Gestalt Selectors and Attributes 1-22
Translator Options and Statistics 1-23

iv

Macintosh Interface Functions 1-24
Associating View Ports With Macintosh Windows 1-24
Associating View Devices With Macintosh Graphics Devices 1-27
Converting From QuickDraw to QuickDraw GX Coordinates 1-28
Installing a View Port Filter 1-31

QuickDraw–to–QuickDraw GX Translator Functions 1-33
Converting a GrafPort Font and Face Specification1-33
Converting QuickDraw Pictures 1-34
Installing and Removing the Translator 1-36

Application-Defined Functions 1-40
Filtering Drawing Calls to a View Port 1-40
Handling Translated QuickDraw Data 1-41

Summary of QuickDraw GX and the Macintosh Environment 1-43
Constants and Data Types 1-43
Macintosh Interface Functions 1-44
QuickDraw–to–QuickDraw GX Translator Functions 1-44
Application-Defined Functions 1-45

Chapter 2

QuickDraw GX Memory Management

2-1

About QuickDraw GX Memory Management 2-3
Memory Heaps 2-3
Graphics Clients and Graphics Client Heaps2-4
Additional Topics 2-5

Using Graphics Clients and Graphics Client Heaps2-5
Creating a Graphics Client and Its Graphics Client Heap2-5

Implicit Creation 2-5
Explicit Creation 2-6

Determining Memory Requirements for a Graphics Client Heap 2-8
Disposing of a Graphics Client and Graphics Client Heap2-9

Additional Memory Management Topics 2-10
Low-Memory Conditions 2-10

Freeing Up Already Allocated Memory 2-11
Allocating New Memory and Unloading Objects 2-11
Functions That Create Additional Memory Demands 2-12

Loading and Unloading Objects 2-12
Functions That Do Not Require a Graphics Client or Heap 2-14
Specifying the Starting Location of a Graphics Client2-14
Working With Multiple Graphics Clients 2-16

QuickDraw GX Memory Management Reference 2-17
Constants and Data Types 2-18

Graphics Client Object 2-18
Graphics Client Attributes 2-18

Functions 2-18
Creating and Disposing of a Graphics Client 2-19
Allocating and Disposing of a Graphics Client Heap2-22

v

Working With Multiple Graphics Clients 2-24
Loading and Unloading Objects 2-26

Summary of QuickDraw GX Memory Management 2-38
Constants and Data Types 2-38
Functions 2-38

Chapter 3

Errors, Warnings, and Notices

3-1

About QuickDraw GX Errors, Warnings, and Notices 3-3
Non-Debugging Version 3-5

Errors 3-6
Warnings 3-10

Debugging Version 3-13
Errors 3-14
Warnings 3-25
Notices 3-27

Using Errors, Warnings, and Notices 3-30
Obtaining Errors, Warnings, and Notices 3-30
Changing the Error, Warning, or Notice Posted 3-35
Ignoring Warnings and Notices 3-37
Installing an Error, Warning, or Notice Handler 3-40

Errors, Warnings, and Notices Reference 3-42
Constants and Data Types 3-42

Errors 3-42
Warnings 3-50
Notices 3-53
Error, Warning, and Notice Number Ranges 3-55

Functions 3-56
Error Posting and Handling 3-56
Warning Posting and Handling 3-60
Notice Posting and Handling 3-66

Application-Defined Functions 3-72
Summary of Errors, Warnings, and Notices 3-75

Constants and Data Types 3-75
Functions 3-75
Application-Defined Functions 3-76

Chapter 4

QuickDraw GX Debugging

4-1

About QuickDraw GX Debugging 4-3
Debugging Version of QuickDraw GX 4-5
QuickDraw GX Errors, Warnings, and Notices 4-5
Application-Defined Error, Warning, and Notice Handlers 4-5
The Drawing Error Function 4-6

vi

Validation Functions 4-6
MacsBug and GraphicsBug 4-7

Using QuickDraw GX Debugging 4-8
Analyzing Drawing Problems 4-8
Using Validation Functions 4-15

Controlling Validation 4-15
Validating Objects 4-20
Analyzing the Cause of Validation Errors 4-21
Distinguishing Between Application Bugs and QuickDraw GX

Bugs 4-22
Detecting Corrupted Objects 4-22

Debugging With GraphicsBug 4-23
Analyzing a Picture Shape 4-25

QuickDraw GX Debugging Reference 4-28
Constants and Data Types 4-28

Drawing Errors 4-29
Validation Levels 4-31

Functions 4-33
Obtaining Drawing Errors 4-33
Setting and Getting Validation Options and Errors 4-34
Validating Objects 4-36

Summary of QuickDraw GX Debugging 4-44
Constants and Data Types 4-44
Functions 4-47

Chapter 5

Collection Manager

5-1

About the Collection Manager 5-5
Collection Objects 5-5
Collection Items 5-8
Collection Attributes 5-9
Methods of Identifying Collection Items 5-11

Using the Collection Manager 5-12
Determining Whether the Collection Manager Is Available 5-13
Creating or Disposing of a Collection 5-14
Cloning or Copying a Collection 5-14
Changing the Default Attributes of a Collection 5-15
Adding Items to a Collection 5-17
Determining the Collection Index of an Item 5-19
Determining the Tag and ID of an Item 5-21
Determining the Size of an Item’s Variable-Length Data 5-22
Getting and Setting the Attributes of an Item 5-24
Replacing Items in a Collection 5-28
Removing Items From a Collection 5-30
Retrieving the Variable-Length Data From an Item 5-33
Examining the Collection Tags of a Collection 5-35

vii

Flattening and Unflattening a Collection 5-37
Reading Collections From and Writing Collections to Disk 5-41
Reading a Collection From a Collection Resource 5-44
Installing an Exception Procedure 5-45

Collection Manager Reference 5-48
Data Types 5-48

Collection Objects 5-48
Collection Tags 5-49
Optional Return Value Constants 5-49
Attributes Masks 5-49
Attribute Bit Numbers 5-50
Attribute Bit Masks 5-52

Functions 5-53
Creating and Disposing of Collection Objects 5-53
Cloning and Copying Collection Objects 5-55
Getting and Setting the Exception Procedure for a Collection 5-58
Getting and Setting the Default Attributes for a Collection 5-60
Adding and Replacing Items in a Collection 5-62
Removing Items From a Collection 5-65
Counting Items in a Collection 5-69
Retrieving the Variable-Length Data From an Item 5-70
Getting Information About a Collection Item 5-76
Editing Item Attributes 5-82
Getting Information About Collection Tags 5-85
Flattening and Unflattening a Collection 5-88
Working With Macintosh Memory Manager Handles 5-92
Reading Collections From Resource Files 5-98

Application-Defined Functions 5-100
Resources 5-102

The Collection Resource 5-102
Summary of the Collection Manager 5-104

Data Types 5-104
Functions 5-106
Application-Defined Functions 5-110
Resources 5-110

Chapter 6

Message Manager

6-1

About the Message Manager 6-4
Message Terminology 6-6
Global Data Storage for Printing Extensions and Printer Drivers6-7
Message Sending and Forwarding 6-7

Using the Message Manager 6-8
Determining the Version of the Message Manager 6-8
Allocating Memory for and Disposing of Global Data 6-8
Setting and Getting Global Data for a Single Handler Instance6-10

viii

Setting and Getting Global Data for Multiple Handler Instances6-12
Sending and Forwarding Messages 6-15

Message Manager Reference 6-16
Constants and Data Types 6-16

Message Manager Gestalt Selector6-16
Message Globals Initiatialization Procedure 6-16

Functions 6-17
Allocating Memory for and Disposing of Global Data 6-17
Setting and Getting Global Data for a Single Handler Instance6-19
Setting and Getting Global Data for Multiple Handler Instances6-21
Sending and Forwarding Messages 6-22

Driver- or Extension-Defined Functions 6-26
Summary of the Message Manager 6-27

Constants and Data Types 6-27
Functions 6-27
Application-DefinedFunctions 6-28

Chapter 7

QuickDraw GX Stream Format

7-1

About QuickDraw GX Stream Format 7-5
Characteristics 7-6
Stream Design 7-7
Operation Opcode Byte 7-10

Operation Opcode 7-10
Record Size 7-11

Data Type Opcode Byte 7-13
Compression Type Opcode 7-13
Data Type Opcode 7-15

Data 7-22
Omit Byte Masks and Omit Byte Shifts 7-22
Header Data 7-27
New Shape Object Data 7-28
Modified Shape Object Data 7-34
New Style Object Data 7-35
Modified Style Object Data 7-36
New Ink Object Data 7-43
Modified Ink Object Data 7-43
New Object Transform Data 7-45
Modified Transform Object Data 7-45
New Color Profile Object Data 7-47
Modified Color Profile Object Data 7-47
New Color Set Object Data 7-48
Modified Color Set Object Data 7-48
New Tag Object Data 7-49
New Bit Image Object Data 7-49

ix

New Font Name Data 7-50
New Trailer Object Data 7-51

About Print Files and Portable Digital Documents7-51
Print Files 7-51
Portable Digital Documents 7-53

Using QuickDraw GX Stream Format 7-53
Flattening Shapes With GraphicsBug 7-54
Analyzing the Data Streams of Flattened Shapes 7-56

Creating a Picture With Seven Shapes 7-56
Analyzing a Flattened Line Shape 7-60
Analyzing a Flattened Rectangle Shape7-64
Analyzing a Flattened Curve Shape 7-67
Analyzing a Flattened Path Shape 7-69
Analyzing a Flattened Text Shape 7-72
Analyzing a Flattened Polygon Shape 7-79
Analyzing a Flattened Bitmap Shape 7-81

Obtaining Data From a Print File 7-89
QuickDraw GX Stream Format Reference 7-91

Opcode Constants and Data Types 7-91
Operation Opcode Byte 7-91
Data Type Opcode Byte 7-92
Generic Data Opcode 7-92
Bit Image Compression Opcode Byte 7-93
Modified Shape Data Opcodes 7-93
Modified Style Data Opcodes 7-94
Modified Ink Data Opcodes 7-96
Modified Color Set Data Opcodes 7-96
Modified Color Profile Data Opcodes 7-97
Modified Transform Data Opcodes 7-97
Bit Image Compression Opcodes 7-98
Flatten Header Bytes 7-98

Style Object Omit Byte Constants and Data Types 7-99
Dash Style Omit Byte Masks and Shifts 7-99
Pattern Style Omit Byte Masks and Shifts 7-101
Join Style Omit Byte Masks and Shifts 7-103
Cap Style Omit Byte Masks and Shifts 7-104
Text Face Style Omit Byte Masks and Shifts7-105
Face Layer Omit Byte Masks and Shifts 7-106

Ink Object Omit Byte Constants and Data Types 7-108
Colors Omit Byte Masks and Shifts 7-108
Transfer Omit Byte Masks and Shifts 7-110
Transfer Component Omit Byte Masks and Shifts7-112

Shape Object Omit Byte Constants and Data Types 7-115
Path Shape Omit Byte Masks and Shifts7-115
Bitmap Shape Omit Byte Masks and Shifts 7-116
Bit Image Omit Byte Masks and Shifts 7-120
Text Shape Omit Byte Masks and Shifts 7-121

x

Glyph Shape Omit Byte Masks and Shifts 7-122
Layout Shape Omit Byte Masks and Shifts 7-125
Picture Shape Omit Byte Masks and Shifts 7-129

QuickDraw GX Stream Format Summary 7-131
Opcode Constants and Data Types 7-131
Style Object Omit Byte Constants and Data Types 7-134
Ink Object Omit Byte Constants and Data Types 7-137
Shape Object Omit Byte Constants and Data Types 7-139

Chapter 8

QuickDraw GX Mathematics

8-1

About QuickDraw GX Mathematics 8-5
Number Formats 8-5

Integer Formats 8-6
Floating-Point Formats 8-6
Fixed-Point Formats 8-6
Working With Bias in Fixed-Point Operations 8-7

Number-Conversion Macros 8-8
Mathematical Functions 8-9

Operations on Fixed, long, and fract Numbers8-9
Operations on wide Numbers 8-10
Vector Operations 8-10
Cartesian and Polar Coordinate Conversion 8-10
Random Number Generation 8-11
Roots of Linear and Quadratic Equations8-12
Bit Analysis 8-12

Transformation Operations With Mappings 8-12
Characteristics of a Mapping 8-15
Translation by a Relative Amount 8-17
Translation to a Specified Point 8-18
Scaling 8-20
Rotation 8-22
Skewing 8-24
Perspective 8-26

Using QuickDraw GX Mathematics 8-26
Converting Number Formats 8-26
Performing Fixed-Point Operations 8-27
Converting Between Cartesian and Polar Coordinates 8-29
Performing Vector Operations 8-29
Shifting the Bits of a wide Number 8-31
Determining the Highest Order Bit of a wide Number 8-32
Generating Random Numbers 8-33
Analyzing the Bits in a Number 8-33
Resetting a Mapping 8-34

xi

QuickDraw GX Mathematics Reference 8-35
Constants and Data Types 8-35

Number Formats and Constants 8-35
The Mapping Structure 8-36

Number-Conversion Macros 8-36
Format Conversions 8-36
Rounding, Truncating, and Square Root Operations 8-41

Mathematical Functions 8-42
Fixed-Point Operations 8-42
Operations on wide Numbers 8-49
Vector Operations 8-54
Cartesian and Polar Coordinate Point Conversions 8-56
Random Number Generation 8-58
Linear and Quadratic Roots 8-60
Bit Analysis 8-62

Mapping Functions 8-62
Manipulating and Applying Mappings 8-63
Modifying Mappings 8-67

Summary of QuickDraw GX Mathematics 8-73
Constants and Data Types 8-73
Number-Conversion Macros 8-74
Mathematical Functions 8-74
Mapping Functions 8-76

Glossary

GL-1

Index

IN-1

xiii

Figures, Tables, and Listings

Preface

About This Book

xix

Figure P-1

Roadmap to the QuickDraw GX suite of books xx

Chapter 1

QuickDraw GX and the Macintosh Environment

1-1

Listing 1-1

Determining the presence and features of QuickDraw GX 1-5

Figure 1-1

Converting from QuickDraw global to QuickDraw GX local and
global coordinates 1-8

Table 1-1

Translation scaling factors 1-11

Table 1-2

Translation options settings 1-12

Listing 1-2

QuickDraw commands to draw a simple line 1-14

Figure 1-2

A QuickDraw line 1-14

Figure 1-3

Translation of the QuickDraw line using

gxDefaultOptionsTranslation 1-15

Figure 1-4

Translation of the QuickDraw line using

gxSimpleGeometryTranslation 1-15

Figure 1-5

Translation of the QuickDraw line using

gxReplaceLineWidthTranslation 1-16

Figure 1-6

Conversion of standard QuickDraw fill patterns to QuickDraw GX
shape fills 1-17

Listing 1-3

QuickDraw picture data that includes a

picComment 1-18

Figure 1-7

Translating QuickDraw data containing a rotation

picComment 1-19

Listing 1-4

Translating QuickDraw picture data with

GXConvertPICTToShape 1-20

Table 1-3

Translation statistics options 1-20

Listing 1-5

Installing and removing the translator 1-21

Listing 1-6

Sample application-defined shape-spooling function 1-22

Chapter 2

QuickDraw GX Memory Management

2-1

Listing 2-1

Creating a

'gasz'

 resource 2-6

Listing 2-2

Explicitly creating a graphics client and its heap 2-7

Listing 2-3

Disposing of graphics clients and graphics client heaps 2-10

Table 2-1

QuickDraw GX functions that do not require a graphics client or
heap 2-14

Listing 2-4

Specifying the starting location and size for a graphics client and its
heap 2-15

Figure 2-1

Creating a graphics client by specifying the memory starting
location 2-16

xiv

Chapter 3

Errors, Warnings, and Notices

3-1

Figure 3-1

QuickDraw GX and application-defined error, warning, and notice
management 3-4

Table 3-1

Non-debugging error number ranges 3-6

Table 3-2

Fatal errors 3-7

Table 3-3

Internal errors 3-7

Table 3-4

Recoverable errors 3-7

Table 3-5

Font management errors 3-8

Table 3-6

Font scaler errors 3-8

Table 3-7

Bad parameter errors 3-9

Table 3-8

Implementation limit errors 3-10

Table 3-9

Non-debugging warning number ranges 3-10

Table 3-10

Stack, heap, and object warnings 3-11

Table 3-11

Result out of range warnings 3-11

Table 3-12

Parameter out of range warnings 3-12

Table 3-13

Font scaler warnings 3-12

Table 3-14

Unexpected result warnings 3-13

Table 3-15

Storage warnings 3-13

Table 3-16

Debugging error number range 3-14

Table 3-17

Internal debugging errors 3-14

Table 3-18

Font parameter debugging errors 3-14

Table 3-19

Bad parameter debugging errors 3-15

Table 3-20

Restricted access debugging errors 3-16

Table 3-21

Wrong type and bad reference debugging errors 3-17

Table 3-22

Type validation debugging errors 3-18

Table 3-23

Cache validation debugging errors 3-18

Table 3-24

Shape cache validation shape debugging errors 3-19

Table 3-25

Memory block validation debugging errors 3-19

Table 3-26

Object validation debugging errors 3-20

Table 3-27

Path and polygon validation debugging errors 3-20

Table 3-28

Bitmap validation debugging errors 3-20

Table 3-29

Bitmap image validation debugging errors 3-21

Table 3-30

Text validation debugging errors 3-21

Table 3-31

Glyph validation debugging errors 3-21

Table 3-32

Layout validation debugging errors 3-22

Table 3-33

Picture validation debugging errors 3-22

Table 3-34

Text face validation debugging errors 3-22

Table 3-35

Transform validation debugging errors 3-23

Table 3-36

Font cache validation debugging errors 3-23

Table 3-37

View device validation debugging errors 3-24

Table 3-38

Color set validation debugging errors 3-24

Table 3-39

Color profile validation debugging errors 3-24

Table 3-40

Internal backing store validation debugging errors 3-25

Table 3-41

Debugging warning number range 3-25

Table 3-42

Invalid data debugging warnings 3-26

Table 3-43

Can’t find debugging warnings 3-26

Table 3-44

Other debugging warnings 3-27

Table 3-45

Debugging version notice number summary 3-27

Table 3-46

Debugging notices 3-27

Figure 3-2

Polling for errors, warnings, and notices 3-31

xv

Figure 3-3

Obtaining the first and last posted QuickDraw GX error 3-32

Listing 3-1

Obtaining the first posted error 3-33

Listing 3-2

Obtaining the first and last QuickDraw GX warning 3-34

Listing 3-3

Obtaining the first and last posted notices 3-34

Listing 3-4

Changing the error posted 3-36

Figure 3-4

Adding and removing warnings and notices from the ignore
warning and ignore notice stacks 3-39

Figure 3-5

Enabling and disabling an error handler 3-41

Chapter 4

QuickDraw GX Debugging

4-1

Figure 4-1

The QuickDraw GX debugging environment 4-4

Table 4-1

QuickDraw GX drawing process sequence 4-9

Table 4-2

Shape type drawing errors 4-10

Table 4-3

Style drawing errors 4-11

Table 4-4

Ink drawing errors 4-12

Table 4-5

Transform drawing errors 4-13

Table 4-6

View port drawing errors 4-14

Table 4-7

View device drawing errors 4-15

Table 4-8

Validation modes 4-16

Table 4-9

Validation levels 4-16

Table 4-10

Memory validation options 4-19

Listing 4-1

Determining the function and parameter that caused the last
validation error 4-22

Table 4-11

GraphicsBug commands and responses 4-23

Listing 4-2

Totaling the graphics client and its heap 4-25

Listing 4-3

Determining the memory locations of the shapes in the
picture 4-26

Listing 4-4

Analyzing the rectangle shape in the picture 4-27

Listing 4-5

Analyzing the ink in the rectangle shape 4-28

Chapter 5

Collection Manager

5-1

Figure 5-1

The collection object 5-7

Figure 5-2

The collection item 5-8

Figure 5-3

Editing attributes in a collection item 5-10

Figure 5-4

Items in a collection 5-12

Listing 5-1

Determining whether the Collection Manager is available 5-13

Listing 5-2

Changing the default attributes of a collection 5-16

Listing 5-3

Adding items to a collection 5-17

Listing 5-4 Adding items with variable-length data to a collection 5-18
Listing 5-5 Determining the index of an item 5-20
Listing 5-6 Determining the tag and ID of an item given the item’s

index 5-21
Listing 5-7 Determining the size of an item’s variable-length data 5-23
Listing 5-8 Examining the attributes of an item 5-25
Listing 5-9 Setting the lock and persistence bit attribute of an item 5-26
Listing 5-10 Replacing an item in a collection 5-28
Listing 5-11 Replacing an item using the item’s index 5-29
Listing 5-12 Removing an item in a collection 5-30

xvi

Listing 5-13 Removing an item using the item’s index 5-31
Listing 5-14 Removing multiple items with specific attributes 5-31
Listing 5-15 Retrieving the variable-length data from an item 5-33
Listing 5-16 Retrieving the variable-length data from an item using the item’s

index 5-34
Listing 5-17 Retrieving the variable-length data from an item using the tag and

tag list position 5-35
Listing 5-18 Counting tags in a collection 5-36
Listing 5-19 Flattening procedure 5-38
Listing 5-20 The FlattenCollectionToHdl function 5-39
Listing 5-21 A possible implementation of the

UnflattenCollectionFromHdl function 5-40
Listing 5-22 Flattening a collection to a disk file as a resource 5-42
Listing 5-23 Flattening a collection to a data fork of a disk file 5-42
Listing 5-24 Unflattening a collection from a disk file as a resource 5-43
Listing 5-25 Unflattening a collection from the data fork of a disk file 5-43
Listing 5-26 Reading a collection from a collection resource 5-44
Listing 5-27 A sample exception procedure 5-46
Listing 5-28 A Rez template for a 'cltn' resource 5-102

Chapter 6 Message Manager 6-1

Figure 6-1 Printing with the Macintosh Printing Manager 6-4
Figure 6-2 Printing with QuickDraw GX 6-5
Listing 6-1 Creating an A5 world for global data 6-9
Listing 6-2 Disposing of global data and deallocating memory 6-10
Listing 6-3 Storing global data for a single message handler instance 6-11
Listing 6-4 Getting and disposing of global data 6-12
Listing 6-5 Storing global data for multiple handler instances 6-13
Listing 6-6 Retrieving a message handler’s class context 6-14

Chapter 7 QuickDraw GX Stream Format 7-1

Figure 7-1 A typical flattened shape data stream sequence 7-8
Figure 7-2 Basic components of a stream header or object 7-9
Figure 7-3 The format of the operation opcode byte 7-10
Table 7-1 Operation opcodes 7-10
Figure 7-4 Data format of the record size 7-12
Figure 7-5 The format of the data type opcode byte 7-13
Table 7-2 Compression values 7-13
Figure 7-6 Relationship of stream format components 7-14
Table 7-3 Data type opcodes for a new object 7-15
Table 7-4 Data type opcodes to modify a shape object 7-17
Table 7-5 Data type opcodes to modify a style object 7-18
Table 7-6 Data type opcodes to modify an ink object 7-20
Table 7-7 Data type opcodes to modify a color set object 7-20
Table 7-8 Data type opcodes to modify a color profile object 7-21
Table 7-9 Data type opcodes to modify a transform object 7-21
Figure 7-7 Omit byte relationship with the data that follows 7-23
Figure 7-8 Select the bits from the omit byte 7-24

xvii

Table 7-10 Constants from the gxOmitTextMask and the
gxOmitTextShift enumerations 7-24

Figure 7-9 Compare the bits selected and shifted with the compression
enumeration 7-25

Table 7-11 Correlation between gxOmitTextMask and the GXNewText
function 7-26

Listing 7-1 Determining if position(x) is byte compressed 7-27
Figure 7-10 Mapping matrix elements 7-40
Table 7-12 Color space and words read 7-44
Table 7-13 Bit image compression opcodes 7-50
Figure 7-11 Print file format 7-52
Listing 7-2 A GraphicsBug annotation of the data stream of a flattened

shape 7-55
Listing 7-3 A picture with seven shapes 7-56
Figure 7-12 A picture with seven shapes 7-59
Figure 7-13 The line shape drawn 7-60
Listing 7-4 GraphicsBug analysis of a flattened line 7-60
Table 7-14 Analysis of the data stream of a flattened line shape 7-61
Figure 7-14 The rectangle shape drawn 7-64
Listing 7-5 GraphicsBug analysis of a flattened rectangle shape 7-64
Table 7-15 Analysis of the data stream of a flattened rectangle shape 7-65
Figure 7-15 The curve shape drawn 7-67
Listing 7-6 GraphicsBug analysis of a flattened curve shape 7-67
Table 7-16 Analysis of the data stream of a flattened curve shape 7-68
Figure 7-16 The path shape drawn 7-69
Listing 7-7 GraphicsBug analysis of a flattened path shape 7-69
Table 7-17 Analysis of the data stream of a flattened path shape 7-70
Figure 7-17 The text shape drawn 7-72
Listing 7-8 GraphicsBug analysis of a flattened text shape 7-73
Table 7-18 Analysis of the data stream of a flattened text shape 7-74
Figure 7-18 The polygon shape drawn 7-79
Listing 7-9 GraphicsBug analysis of a flattened polygon shape 7-79
Table 7-19 Analysis of the data stream of a flattened polygon shape 7-80
Figure 7-19 The bitmap shape drawn 7-81
Listing 7-10 GraphicsBug analysis of a flattened bitmap shape 7-82
Table 7-20 Analysis of the data stream of a bitmap shape 7-83
Listing 7-11 Obtaining the page count from a portable digital document print

file 7-89

Chapter 8 QuickDraw GX Mathematics 8-1

Table 8-1 Macro number-format conversions 8-8
Figure 8-1 Cartesian and polar coordinates 8-11
Figure 8-2 Transformation operations with a mapping matrix 8-14
Figure 8-3 Mapping matrix elements 8-15
Figure 8-4 Applying a mapping matrix to a point 8-15
Figure 8-5 The point (x, y) as transformed by the mapping matrix 8-16
Figure 8-6 The identity matrix 8-17
Figure 8-7 Changing the translation specified by a mapping 8-17
Figure 8-8 Translation by a relative amount with MoveMapping 8-18

Figure 8-9 Setting the origin specified by a mapping 8-19

xviii

Figure 8-10 Translation to a specific origin location 8-19
Figure 8-11 Changing the amount of scaling specified by a mapping 8-20
Figure 8-12 Scaling horizontally and vertically 8-21
Figure 8-13 Changing the degree of rotation specified by a mapping 8-22
Figure 8-14 Rotating about different center points 8-23
Figure 8-15 Changing the amount of skew specified by a mapping 8-24
Figure 8-16 Skewing a shape both horizontally and vertically 8-25
Figure 8-17 Changing the perspective specified by a mapping 8-26
Table 8-2 QuickDraw GX and Macintosh Toolbox fixed-point

functions 8-27
Figure 8-18 Determining the length of a line with the Magnitude

function 8-28
Figure 8-19 Converting between Cartesian and polar coordinates 8-29
Listing 8-1 Calculating a cross-product with VectorMultiply 8-30

Listing 8-2 Applying a mapping to one point 8-30
Listing 8-3 Using the WideShift function to create a fixed-point

VectorMultiply function 8-31
Listing 8-4 Using the WideShift function in a fixed-point multiplication

function 8-31
Listing 8-5 Using the WideShift function to create a fixed-point division

function 8-31
Listing 8-6 Using the WideShift function to create a second fixed-point

division function 8-32
Listing 8-7 Using the WideScale function to create a pseudo-floating-point

function 8-32
Listing 8-8 A random number generator 8-33
Listing 8-9 Determining the lowest bit of a number 8-34
Table 8-3 FixedMultiply product bias 8-43
Table 8-4 FixedDivide quotient bias 8-44
Table 8-5 FractMultiply result bias 8-48
Table 8-6 FractDivide result bias 8-49

xix

P R E F A C E

About This Book

QuickDraw GX is an integrated, object-based approach to graphics
programming on Macintosh computers. This book,

Inside Macintosh:
QuickDraw GX Environment and Utilities,

 describes a wide variety
of QuickDraw GX application-development topics.

For application programming purposes, QuickDraw GX augments or replaces
the capabilities of some of the Macintosh system software managers
documented in other parts of

Inside Macintosh.

 In particular, The Memory
Management capabilities, as described in the chapter “QuickDraw GX
Memory Management,” augment the Macintosh Memory Manager described
in

Inside Macintosh: Memory

. In addition, some of the mathematical functions
described in the chapter “QuickDraw GX Mathematics” replace
functions described in the “Mathematical Utilities” chapter of

 Inside
Macintosh:Operating System Utilities.

However, QuickDraw GX and other parts
of Macintosh system software coexist without conflict and you can use both in
the same program. Furthermore, the functions described in the chapter
“QuickDraw GX and the Macintosh Environment” provide you with an
interface to certain Macintosh system software capabilities outside the scope
of QuickDraw GX.

Before you read this book, you should already be familiar with

Inside
Macintosh: QuickDraw GX Objects.

 Figure P-1 shows the suggested reading
order for the QuickDraw GX books. A pictorial overview of

Inside Macintosh,

including the QuickDraw GX suite of books, appears on the inside back cover.

xx

P R E F A C E

Figure P-1

Roadmap to the QuickDraw GX suite of books

What to Read 0

Each chapter in this book describes a separate topic that does not rely on any
other chapter for its understanding. As a result, the chapters of this book may
be read in any order.

■

QuickDraw GX and the Macintosh Environment.

This chapter describes
those aspects of QuickDraw GX that relate specifically to the Macintosh
Toolbox, Macintosh programming environment, and Macintosh image data
format.

■

QuickDraw GX Memory Management.

 This chapter describes the aspects
of QuickDraw GX memory management that your application can control.
Read this chapter if you want to understand how QuickDraw GX memory
works or to supplement QuickDraw GX memory management operations.

(Optional)

QuickDraw GX
Graphics

QuickDraw GX
Printing

QuickDraw GX
Printing

Extensions
and

Drivers

QuickDraw GX
Objects

QuickDraw GX
Environment

and
Utilities

QuickDraw GX
Programmer’s

Overview

QuickDraw GX
Typography

xxi

P R E F A C E

■

Errors, Warnings, and Notices.

 This chapter describes the errors, warnings,
and notices that can be posted by QuickDraw GX functions and how you
can manipulate them. In addition, this chapter describes how you can use
application-defined handllers to provide alternative or complementary
processing of errors, warnings, and notices.

■

QuickDraw GX Debugging.

 This chapter describes QuickDraw GX
debugging functions and the GraphicsBug debugging utility that you
should use when you are writing and debugging applications.

■

Collection Manager.

 This chapter describes the Collection Manager, which
provides an abstract data type you can use to store collections of
information. Read this chapter if you need to work with some advanced
features of QuickDraw GX printing, including print dialog boxes, or if you
want to create collections for purposes specific to your application.

■

Message Manager.

 This chapter describes the Message Manager, which is a
part of the message-passing printing architecture of QuickDraw GX. Read
this chapter if you want to use the Message Manager to develop printing
extensions or printer drivers.

■

QuickDraw GX Stream Format.

 This chapter describes the format of the
compressed data stream that results when the QuickDraw GX

GXFlattenShape

 function is used. It also describes the use of such data
streams by print files and portable digital documents (PDDs). Read this
chapter if you need to uncompress QuickDraw GX stream format data and
cannot use the QuickDraw GX

GXUnflattenShape

 function.

■

QuickDraw GX Mathematics.

 This chapter describes QuickDraw GX
number formats, number-format conversions, mathematical functions, and
functions that operation on mappings (transformation matrices). Read this
chapter if your application requires the explicit use of any of the
mathematical capabilities of QuickDraw GX.

Chapter Organization 0

Most chapters in this book follow a standard general structure. For example,
the chapter “QuickDraw GX and the Macintosh Environment” contains these
major sections:

■

“About QuickDraw GX and the Macintosh Environment.” This section
provides an overview of the Macintosh interface and describes the
QuickDraw–to–QuickDraw GX translator.

■

“Using QuickDraw GX in the Macintosh Environment.” This section
describes how you can test for the presence and version of QuickDraw GX
and use the Macintosh interface functions. It describes how to use the most
common functions, gives related user interface information, provides code
samples, and supplies additional information.

xxii

P R E F A C E

■

“QuickDraw GX and the Macintosh Environment Reference.” This section
provides a complete reference for the topics described in this chapter
by describing their related constants, data types, and functions. Each
function description follows a standard format, which gives the function
declaration; a description of every parameter; the function result, if any;
and a list of errors, warnings, and notices. Most function descriptions give
additional information about using the function and include
cross-references to related information elsewhere.

■

“Summary of QuickDraw GX and the Macintosh Environment Reference.”
This shows the C interface for the constants, data types, and functions
associated with the Macintosh interface and the
QuickDraw–to–QuickDraw GX translator.

Conventions Used in This Book 0

This book uses various conventions to present certain types of information.

Special Fonts 0

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in Courier

(this is Courier)

.

When new terms are introduced, they are in

 boldface.

 These terms are also
defined in the glossary.

Types of Notes 0

There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the title may say something more descriptive than just “Note”; for
example, “Terminology Note.”

◆

▲ W A R N I N G

Warnings like this indicate potentially serious problems that you should
be aware of as you design your application. Failure to heed these
warnings could result in system crashes and loss of data.

▲

xxiii

P R E F A C E

Numerical Formats 0

Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be summed, in which case they are shown
in hexadecimal.

Type Definitions for Enumerations 0

Enumeration declarations in this book are commonly followed by a type
definition that is not strictly part of the enumeration. You can use the type to
specify one of the enumerated values for a parameter or field. The type name
is usually the singular of the enumeration name, as in the following example:

enum gxDashAttributes {

gxBendDash = 0x0001,

gxBreakDash = 0x0002,

gxClipDash = 0x0004,

gxLevelDash = 0x0008,

gxAutoAdvanceDash = 0x0010

};

typedef long gxDashAttribute;

Development Environment 0

The QuickDraw GX functions described in this book are available using C
interfaces. How you access these functions depends on the development
environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of
using various functions and illustrate techniques for accomplishing particular
tasks. Although most code listings have been compiled and tested, Apple
Computer, Inc., does not intend for you to use these code samples in your
applications.

xxiv

P R E F A C E

Developer Products and Support 0

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents

1-1

C H A P T E R 1

1

Figure 1-0
Listing 1-0
Table 1-0

1 QuickDraw GX and the

Contents

Macintosh Environment

About QuickDraw GX and the Macintosh Environment 1-3
The Macintosh Interface 1-3
The QuickDraw–to–QuickDraw GX Translator 1-4

Using QuickDraw GX in the Macintosh Environment 1-4
Testing for the Presence and Version of QuickDraw GX 1-4
Using the Macintosh Interface Functions 1-6

Creating and Using View Ports with Macintosh Windows 1-6
Using View Devices With Graphics Devices 1-7
Converting From QuickDraw to QuickDraw GX Coordinates 1-7
Intercepting Drawing Calls to a View Port 1-9

Using the QuickDraw–to–QuickDraw GX Translator 1-10
Factors in Translation 1-10

Graphics Port and View Port 1-10
Scaling During Translation 1-11
Translation Options 1-11
How Option Settings Affect Translation of Lines 1-14
Translation of Fill Patterns 1-16
Translation of QuickDraw Picture Comments 1-17
Translation Statistics 1-20

Using the Translator With QuickDraw Pictures 1-20
Installing and Removing the Translator 1-21

QuickDraw GX and the Macintosh Environment Reference 1-22
Constants and Data Types 1-22

Gestalt Selectors and Attributes 1-22
Translator Options and Statistics 1-23

Macintosh Interface Functions 1-24
Associating View Ports With Macintosh Windows 1-24

C H A P T E R 1

1-2

Contents

GXNewWindowViewPort

1-24

GXGetViewPortWindow

1-25

GXGetWindowViewPort

1-26
Associating View Devices With Macintosh Graphics Devices 1-27

GXGetViewDeviceGDevice

1-27

GXGetGDeviceViewDevice

1-28
Converting From QuickDraw to QuickDraw GX Coordinates 1-28

GXConvertQDPoint

1-29

GXGetGlobalMouse

1-30

GXGetViewPortMouse

1-30
Installing a View Port Filter 1-31

GXSetViewPortFilter

1-31

GXGetViewPortFilter

1-32
QuickDraw–to–QuickDraw GX Translator Functions 1-33

Converting a GrafPort Font and Face Specification1-33

GXConvertQDFont

1-33
Converting QuickDraw Pictures 1-34

GXConvertPICTToShape

1-34
Installing and Removing the Translator 1-36

GXInstallQDTranslator

1-36

GXRemoveQDTranslator

1-39
Application-Defined Functions 1-40

Filtering Drawing Calls to a View Port 1-40

MyViewPortFilter

1-40
Handling Translated QuickDraw Data 1-41

MyShapeSpooler

1-41
Summary of QuickDraw GX and the Macintosh Environment 1-43

Constants and Data Types 1-43
Macintosh Interface Functions 1-44
QuickDraw–to–QuickDraw GX Translator Functions 1-44
Application-Defined Functions 1-45

C H A P T E R 1

About QuickDraw GX and the Macintosh Environment

1-3

1

Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

QuickDraw GX and the Macintosh Environment 1

This chapter describes those aspects of QuickDraw GX that relate specifically to the
Macintosh Toolbox, Macintosh programming environment, and Macintosh image data
format. The chapter addresses the following topics:

■

the Macintosh interface to QuickDraw GX

■

the QuickDraw–to–QuickDraw GX translator

Before reading this chapter, you should be generally familiar with QuickDraw GX and
QuickDraw GX objects, as described in the chapter “Introduction to QuickDraw GX” in

Inside Macintosh: QuickDraw GX Objects

. Additional specific information related to view
ports and view devices is in the “View-Related Objects” chapter in

Inside Macintosh:
QuickDraw GX Objects

.

Because this chapter describes the interface between QuickDraw GX and the rest of the
Macintosh Toolbox, it uses many terms defined elsewhere. For a general picture of
the Macintosh Toolbox, see

Inside Macintosh: Overview

 or the introductory chapter of

Inside Macintosh: Macintosh Toolbox Essentials

. For information on Macintosh windows,
see the chapter “Window Manager” in

Inside Macintosh: Macintosh Toolbox Essentials

.
Mouse location and mouse handling is described in the chapter “Event Manager” in

Inside Macintosh: Macintosh Toolbox Essentials

. QuickDraw, QuickDraw coordinates, the
QuickDraw picture format, picture comments, graphics ports, and Macintosh graphics
devices are all described in

Inside Macintosh: Imaging With QuickDraw.

About QuickDraw GX and the Macintosh Environment 1

QuickDraw GX provides a number of useful functions that assist your application
development on the Macintosh computer. The Macintosh interface provides functions
specific to the Macintosh platform that allow you to use information provided by other
parts of Macintosh system software. The QuickDraw–to–QuickDraw GX translator
allows you to convert from QuickDraw pictures to QuickDraw GX objects.

The Macintosh Interface 1

Most QuickDraw GX functions are designed for implementation on any platform.
However, there are specific functions that are wrappers for Macintosh system software
functions or have meaning only in the Macintosh environment. QuickDraw GX contains

Macintosh interface

functions

 to convert between QuickDraw and QuickDraw GX
coordinate systems, find the mouse position in QuickDraw GX coordinates, associate
view ports with Macintosh windows, map between view devices and Macintosh

GDevice

 records, and intercept drawing commands to a view port.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-4

Using QuickDraw GX in the Macintosh Environment

The QuickDraw–to–QuickDraw GX Translator 1

The

QuickDraw–to–QuickDraw GX translator

 can be used to convert QuickDraw
drawing commands into QuickDraw GX objects. It allows you to create a set
of QuickDraw GX

objects

 that have a similar appearance to that intended by the original
QuickDraw picture. This capability is useful, for example, for importing QuickDraw
data from the Clipboard into a QuickDraw GX–based application.

It is important to note that the translator does not provide a completely faithful,
pixel-by-pixel mapping of the image defined by the QuickDraw commands. However, it
does closely approximate the original image, and you can even control the closeness of
the approximation. In most cases the differences are subtle and not apparent to the eye.

Using QuickDraw GX in the Macintosh Environment 1

This section describes how you can

■

determine QuickDraw GX versions

■

use the Macintosh interface functions

■

use the QuickDraw–to–QuickDraw GX translator

Testing for the Presence and Version of QuickDraw GX 1

You can use the

Gestalt

 function in your application to determine which parts of
QuickDraw GX are installed and their version numbers. The

Gestalt

 function returns a
32-bit value that indicates the version of QuickDraw GX that is installed. The graphics
and typography part of QuickDraw GX has one version number, the printing part of
QuickDraw GX has another, and there is an overall version number that applies to all of
QuickDraw GX. In addition, you can determine if the debugging version or the
non-debugging version of QuickDraw GX is installed, and if the installed version is
native to PowerPC system software.

To determine the current version of QuickDraw GX in general, you call the

Gestalt

function with the

gestaltGXVersion

 selector. The function returns a value indicating
the version of QuickDraw GX printing currently installed. For version 1.0, the value
returned is 0x00010000.

To determine the current version of the graphics and typography parts of QuickDraw
GX, you call the

Gestalt

 function with the

gestaltGraphicsVersion

 selector. The
function returns a value indicating the version of QuickDraw GX graphics and
typography currently installed. For version 1.0, the value returned is 0x00010000.

To determine the current version of the printing part of QuickDraw GX, you call the

Gestalt

 function with the

gestaltPrintingMgrVersion

 selector. The function
returns a value indicating the version of QuickDraw GX printing currently installed. For
version 1.0, the value returned is 0x00010000.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using QuickDraw GX in the Macintosh Environment

1-5

1

Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

To determine if the debugging or non-debugging version of QuickDraw GX is currently
installed, or if the installed version is native to PowerPC system software, you call the

Gestalt

 function with the

gestaltGraphicsAttr

 selector. The

gestaltGraphicsisDebugging

 attribute value is returned if the debugging version
of QuickDraw GX is installed. The

gestaltGraphicsisLoaded

 attribute value is
returned if the non-debugging version of QuickDraw GX is installed. The

gestaltGraphicsIsPowerPC

 attribute value is returned if the installed version of
QuickDraw GX is PowerPC-native. The return value can be any combination of those
attributes.

Listing 1-1 uses the

gestaltGraphicsVersion

 and

gestaltPrintingMgrVersion

selectors to determine whether QuickDraw GX graphics and typography as well as
QuickDraw GX printing are installed. This listing also uses the

gestaltGraphicsAttr

selector to determine whether the installed version of QuickDraw GX is the debugging
or non-debugging version.

Listing 1-1

Determining the presence and features of QuickDraw GX

Boolean QuickDrawGXAvailable(Boolean *pIsDebugging)

{

Boolean returnValue = false;

long theFeature, flags;

if(Gestalt(gestaltGraphicsVersion, &theFeature) == noErr)

{

returnValue = true;

if (Gestalt(gestaltPrintingMgrVersion, &theFeature) ==

noErr)

gQDGXPrintingInstalled = true;

}

else

returnValue = false;

if (Gestalt(gestaltGraphicsAttr, &theFeature) == noErr)

{

if (flags & gestaltGraphicsisDebugging)

pIsDebugging = true;

else

pIsDebugging = false;

}

return returnValue;

}

For additional details concerning the use of the

Gestalt

 function to determine features
of the QuickDraw GX environment, see the chapter “Gestalt Manager” in

Inside
Macintosh: Operating System

Utilities

.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-6

Using QuickDraw GX in the Macintosh Environment

Using the Macintosh Interface Functions 1

The QuickDraw GX Macintosh interface functions allow you to integrate QuickDraw GX
with the Macintosh Toolbox. These functions allow you to

■

create and use view ports associated with Macintosh windows

■

retrieve a QuickDraw graphics device associated with a QuickDraw GX view device.

■

convert between QuickDraw and QuickDraw GX coordinate systems

■

intercept QuickDraw GX drawing functions for a view port

Creating and Using View Ports with Macintosh Windows 1

QuickDraw GX drawing takes place in

view ports.

 You can associate a view port with a
window in order to clip drawing to the window’s visible region. Once you’ve created
a window, you can create a view port that is associated with that window by the use of
the

GXNewWindowViewPort

 function. When you attach a view port to a window, you
guarantee that all the shapes that you draw to the view port will be drawn in the correct
location within the window, even when the window is moved. You also guarantee that if
the window is underneath others that the QuickDraw GX drawing will be clipped to the
QuickDraw GX window’s visible region. You can attach a view port to your window
with the call

windowParentViewPort = GXNewWindowViewPort(theWindow);

The resulting

windowParentViewPort

 contains the view port attached to the window.
You cannot change either the mapping or the

clip

 of the window view port. If you need
to do either—for example, if you need to control position within the view port (as when
scrolling) or clip drawing within the window (so you don’t draw over scroll bars), you
need to create a

child view port

 of your window view port and draw only to it. Child
view ports,

view port hierarchies,

 and how to use them are described in detail in the
chapter “View-Related Objects” in

Inside Macintosh: QuickDraw GX Objects

.

Once you’ve created a view port, you can determine the view port that is associated with
a specific window by using the

GXGetWindowViewPort

 function. If you haven’t
associated a view port to that window, the function returns

nil

.

You can find out which window is associated with a view port by using the

GXGetViewPortWindow

 function. The function returns

nil

 if the view port is not
associated with any window.

The

GXNewWindowViewPort

 function is described on page 1-24. The

GXGetWindowViewPort

 function is described on page 1-26.
The

GXGetViewPortWindow

 function is described on page 1-25.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using QuickDraw GX in the Macintosh Environment

1-7

1

Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Using View Devices With Graphics Devices 1

On the Macintosh, every monitor gets a

graphics device,

 described by a

GDevice

record. So when QuickDraw GX creates a screen

view device

 for each monitor, there is
already a graphics device for it. The

GXGetViewDeviceGDevice

 and

GXGetGDeviceViewDevice

 functions link the two worlds together, so that you can
work with either description of a display device.

These functions work only with Macintosh system graphics devices. If you have a screen
view device, you can call the

GXGetViewDeviceGDevice

 function to get the graphics
device that corresponds to that view device. If you create your own offscreen
view device, it will not have an associated graphics device. Likewise, there is no view
device associated with an offscreen

GDevice

record.

The

GXGetViewDeviceGDevice

 function is described on page 1-27; the

GXGetGDeviceViewDevice

 function is described on page 1-28.

Converting From QuickDraw to QuickDraw GX Coordinates 1

QuickDraw GX provides several functions that involve conversion of locations on
the QuickDraw coordinate plane into locations expressed in QuickDraw GX

local

 or

global

coordinates.

Conver ting fr om Quic kDraw Global to Quic kDraw GX Local or Global Coor dinates 1

You can use the

GXConvertQDPoint

 function to convert a point having QuickDraw
global coordinates to either QuickDraw GX global or QuickDraw GX local coordinates. If
a view port is specified in the function’s parameters, the QuickDraw point coordinates
are converted to the corresponding QuickDraw GX local coordinates. If the view port
parameter is

nil

, the QuickDraw point coordinates are converted to corresponding
QuickDraw GX global coordinates. Figure 1-1 shows how the

GXConvertQDPoint

function converts a point having QuickDraw global coordinates of (50, 150) pixels on a
monitor to QuickDraw GX coordinates in points (in which 1 point equals 1/72 inch).

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-8 Using QuickDraw GX in the Macintosh Environment

Figure 1-1 Converting from QuickDraw global to QuickDraw GX local and global coordinates

When the view port parameter is nil , the QuickDraw global coordinates are converted
to QuickDraw GX global coordinates (50.0, 150.0). When the view port is specified, the
QuickDraw global coordinates are converted to QuickDraw local coordinates (10.0, 10.0)
when the view port is located at QuickDraw GX global coordinates (40.0, 140.0). The
local coordinates are local relative to the specified view port.

The GXConvertQDPoint function is described on page 1-29. For additional information
about QuickDraw GX local, global, and device space, see the chapter “View-Related
Objects” in Inside Macintosh: QuickDraw GX Objects.

Obtaining Mouse Location in Global Coor dinates 1

The GXGetGlobalMouse function returns the location of the Macintosh cursor (mouse)
in QuickDraw GX global coordinates. If a QuickDraw GX view device has a resolution of
72 dpi and a cursor is located at point (500, 150) pixels in QuickDraw coordinates,
the GXGetGlobalMouse function would return the QuickDraw GX coordinates
(500.0, 150.0) in points. If the resolution of the QuickDraw GX view device is 144 dpi and
the cursor were at (1000, 300) pixels, the GXGetGlobalMouse function would again
return coordinates (500.0, 150.0). No matter what the resolution of the device, the
QuickDraw GX global coordinates are the same for a cursor located at a given absolute
position.

View port

0.0,0.0

40.0, 140.0 global

QuickDraw GX local coordinates

50.0, 150.0 global

QuickDraw GX global coordinates

0.0,0.0

10.0, 10.0 local

View port
nil

View port
specified

GXConvertQDPoint

0.0,0.0

50, 150 pixels

QuickDraw global coordinates

View device: 72 dpi

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using QuickDraw GX in the Macintosh Environment 1-9

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

The GXGetGlobalMouse function is described on page 1-30. For additional information
about local, global, and device spaces, see the chapter “View-Related Objects” in Inside
Macintosh: QuickDraw GX Objects.

Obtaining Mouse Location in Local Coor dinates 1

For a given view port, you can use the GXGetViewPortMouse function to obtain the
mouse position in the coordinate system (local coordinates) of that view port. This
function takes any scaling of local space into account; if, for example, you have a
zoomed-in view, the coordinates would be relative to the zoomed coordinate system.

If you obtain the mouse point in QuickDraw global coordinates, you can take the result
of the GXGetViewPortMouse function and immediately turn it into a shape. You can
use the GXNewShape function with the returned point as the shape origin, and
QuickDraw GX will draw the shape at the point where the mouse is located with the
correct scale. If the scale factor is 10, the shape is drawn enlarged by a factor of 10.

The GXGetViewPortMouse function is described on page 1-30. For additional
information about local, global, and device spaces, see the chapter “View-Related
Objects” in Inside Macintosh: QuickDraw GX Objects.

Intercepting Drawing Calls to a View Port 1

The GXSetViewPortFilter function causes QuickDraw GX to intercept all drawing
function calls to a specified view port and pass them instead to an application-defined
callback function that you supply. You can use the filter function to perform actions other
than screen drawing, or perhaps to collect information about them.

QuickDraw GX uses this function to install a view port filter for printing. When a page is
open and a call is made to draw a shape, instead of actually drawing it to the screen, the
printing view port filter records (spools) it to the print file. You can use this kind of
function if you want to achieve a similar result or if you otherwise want to manipulate
shapes that would be drawn to a view port.

When you use the GXGetViewPortFilter function, you get back what you set with
the GXSetViewPortFilter function. If you want to get rid of your view port filter,
use the GXSetViewPortFilter function and specify a nil filter function.

The GXSetViewPortFilter function is described on page 1-31. The
GXGetViewPortFilter function is described on page 1-32. The application-defined
callback filter function is described on page 1-40.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-10 Using the QuickDraw–to–QuickDraw GX Translator

Using the QuickDraw–to–QuickDraw GX Translator 1

The QuickDraw–to–QuickDraw GX translator converts QuickDraw drawing commands
into QuickDraw GX shapes. There are two ways to use the translator:

■ The first way is to pass the translator a handle to a QuickDraw picture. The translator
returns a QuickDraw GX picture shape that approximates the original QuickDraw
picture. The section “Using the Translator With QuickDraw Pictures” beginning on
page 1-20 describes how to use the translator in this way.

■ The second way is to use a pair of functions to install and remove the translator. After
you install the translator in a given graphics port, it intercepts all subsequent
QuickDraw drawing commands sent to that port and converts them to QuickDraw
GX shapes. After you are finished converting, you remove the translator. The section
“Installing and Removing the Translator” beginning on page 1-21 describes how to
use the translator in this way.

The next section, “Factors in Translation,” describes how translation works and how you
can influence it by setting various translation parameters.

IMPORTANT

In order to use the QuickDraw-to-QuickDraw GX translator, you first
must have called the GXInitPrinting function. The
GXInitPrinting function is described in the core printing features
chapter of Inside Macintosh: QuickDraw GX Printing.▲

Factors in Translation 1
This section describes some of the factors that influence the translation process, and how
you can manipulate them.

Graphics Port and View Port 1

The translation from QuickDraw to QuickDraw GX takes into account the current
QuickDraw grafPort origin. Therefore, each resulting QuickDraw GX shape
incorporates, either in its shape geometry or in its transform mapping, the origin of the
graphics port that was active at the time of translation.

The QuickDraw GX shape that results from the translation must be associated with a
view port. This can be accomplished by

■ setting the view port for each shape

■ setting the view port for the parent picture shape of the individual shapes contained
in a picture

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-11

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Scaling During Translation 1

The translator allows you to scale the QuickDraw data as it is converted. For example,
you can use scaling to convert from a screen resolution of 72 dpi to a printer resolution of
300 dpi. You specify the scaling factor in the form of source and destination rectangles.

Also, in order to allow the translator to properly scale dash picture comments and other
items, you can supply a pair of integer scale factors, which may be different in the x and
y directions. The scale factors for both the source and destination rectangles and the
pattern-stretch parameters are usually the destination resolution divided by the screen
resolution (72 dpi), rounded to the nearest integer. Typical examples are shown in
Table 1-1.

Translation Options 1

When you translate QuickDraw data to QuickDraw GX shapes, you specify one or more
translation options. You can use either the default translation option provided by
QuickDraw GX or a combination of the other available options. Some translation options
provide simpler and faster translations, but with a resulting loss of pixel-for-pixel
matching. Table 1-2 lists and describes the available translation options; the constants are
defined in the gxTranslationOptions enumeration.

Table 1-1 Translation scaling factors

Sour ce Destination Scale Factor

72 × 72 72 × 72 1 × 1

72 × 72 72 × 80 1 × 1

72 × 72 144 × 144 2 × 2

72 × 72 150 × 150 2 × 2

72 × 72 300 × 300 4 × 4

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-12 Using the QuickDraw–to–QuickDraw GX Translator

Table 1-2 Translation options settings

Constant Value Explanation

gxDefaultOptionsTranslation 0x0000 This is the default setting used for
translation. This option generates the most
accurate representation of the QuickDraw
data that the translator is capable of
producing.

gxOptimizedTranslation 0x0001 This option allows for optimizations to be
applied during translation. For example, a
sequence of QuickDraw lines can be combined
into one polygon. In most cases, this results in
the generation of a smaller number of
QuickDraw GX shapes.

gxReplaceLineWidthTranslation 0x0002 The width of a resulting QuickDraw GX line is
the average of the original pen’s width and
height. This option also affects the way in
which the SetLineWidth PicComment is
interpreted. The LaserWriter driver scales the
current line width with the newly specified
picture comment. The translator normally
uses the LaserWriter mechanism. When you
specify this option, the translator uses a
mechanism in which the line is replaced with
the newly specified width; this mimics the
behavior of the LaserWriter SC driver.

gxSimpleScalingTranslation 0x0004 This option causes the translator to scale data
from source resolution to destination
resolution by using a simple multiplication,
which is incorporated into the shape’s
transform. The translator makes no attempt to
compensate for this increase in resolution. The
resulting scaled image will not render the
original QuickDraw data accurately, but will
be similar to what QuickDraw would have
produced when it attempted to scale the data.

gxSimpleGeometryTranslation 0x0008 This option results in a translation of
QuickDraw data without taking into account
the QuickDraw hanging pen. Normally the
translator reproduces a QuickDraw triangle,
for example, as a 6-sided or 7-sided polygon.
This option sacrifices accuracy in order to
produce an image that draws faster with
QuickDraw GX and can be more useful for
pen-based output devices. For example,
QuickDraw lines become QuickDraw GX lines
with flat endcaps. This option also turns on
the simple lines translation and the simple
scaling translation.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-13

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

gxSimpleLinesTranslation 0x000C This option results in simple geometry and
scaling. The translator maintains the width of
lines that are at an angle. Because QuickDraw
uses a hanging pen, a diagonal line appears to
be thicker than a horizontal or vertical line
with the same pen size. Using this option
causes the line width to be the same as the pen
width, at the expense of the accuracy of the
original QuickDraw data. This option also
turns on the simple scaling translation and the
simple geometry translation.

gxLayoutTextTranslation 0x0010 Normally the translator turns off
layout-shape-specific capabilities when
translating QuickDraw text into layout
shapes. This option restores layout features
such as default glyph substitutions. This
results in a more attractive text; however it can
be different from the original QuickDraw data.

gxRasterTargetTranslation 0x0020 This option causes PostScript picture
comments to be discarded. The bitmap proxies
sent along with such comments are preserved.

gxPostScriptTargetTranslation 0x0040 This option causes PostScript picture
comments to be incorporated as tags attached
to picture shapes. The bitmap proxies sent
along with such comments are discarded.

gxVectorTargetTranslation 0x0080 This option causes PostScript picture
comments to be discarded. The bitmap proxies
sent along with such comments are preserved.
Also, when this option is combined with the
option gxOptimizedTranslation , lines are
preserved and not combined in thick framed
polygons.

Table 1-2 Translation options settings (continued)

Constant Value Explanation

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-14 Using the QuickDraw–to–QuickDraw GX Translator

How Option Settings Affect Translation of Lines 1

The translation of QuickDraw lines is affected by the translation options setting you
choose. Consider the simple line generated by the QuickDraw commands given in
Listing 1-2.

Listing 1-2 QuickDraw commands to draw a simple line

PenSize(5, 3);

MoveTo(100, 40);

LineTo(120, 70);

The QuickDraw commands in Listing 1-2 produce the line shown in Figure 1-2.

Figure 1-2 A QuickDraw line

The gxDefaultOptionsTranslation setting produces the best replication of the
original QuickDraw picture. However, it is also the slowest translation. If you use the
gxDefaultOptionsTranslation setting for the translation of the original
QuickDraw line shown in Figure 1-2, the resulting QuickDraw GX polygon shape
mimics the QuickDraw hanging pen. Furthermore, any scaling between the source and
destination rectangles is incorporated into the translated shape’s geometry. The original
QuickDraw line would be translated to the QuickDraw GX shape shown in Figure 1-3.

Line as drawn
by QuickDraw

Pen
shape

Pen
path

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-15

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Figure 1-3 Translation of the QuickDraw line using gxDefaultOptionsTranslation

If you use the gxSimpleGeometryTranslation option setting, the resulting
QuickDraw GX line shape runs along the center of the original QuickDraw line and
covers all the pixels of the QuickDraw line and more; it is a superset. The resulting
QuickDraw GX shape looks like the line shape shown in Figure 1-4.

Figure 1-4 Translation of the QuickDraw line using gxSimpleGeometryTranslation

QuickDraw line Translation QuickDraw GX shape

Shape geometry As drawn

QuickDraw line Translation

Pen
width

QuickDraw GX shape

Shape geometry As drawn

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-16 Using the QuickDraw–to–QuickDraw GX Translator

If you use the gxReplaceLineWidthTranslation option setting, the resulting
QuickDraw GX line shape has a width that is the average of the QuickDraw pen width
and height. The line runs along the center of the original QuickDraw line between the
extreme pixels at each end of the original QuickDraw line. The translation results in the
QuickDraw GX shape shown in Figure 1-5.

Figure 1-5 Translation of the QuickDraw line using gxReplaceLineWidthTranslation

Translation of Fill Patterns 1

The QuickDraw–to–QuickDraw GX translator converts those 8-bit × 8-bit QuickDraw fill
patterns that are commonly used to represent gray patterns to colors that are blends of
the foreground and background colors. In the case of QuickDraw black-and-white
patterns, a uniform grayscale shade that ranges from 0 to 100 percent black is produced,
depending on the overall apparent density of the original pattern, as shown in Figure 1-6.

 QuickDraw line Translation

Pen
width

QuickDraw GX shape

Shape geometry As drawn

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-17

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Figure 1-6 Conversion of standard QuickDraw fill patterns to QuickDraw GX shape fills

Translation of QuickDraw Picture Comments 1

The capabilities of QuickDraw GX exceed those of QuickDraw. This means that a picture
comment (picComment) can be incorporated into the translated shapes as part of the
conversion process. With QuickDraw alone, picture comments can only be seen when
the picture is printed, because the comments are interpreted at the printer level.

It is common practice for developers to include QuickDraw drawing commands (usually
one or more bitmaps) within a picture comment as a proxy that provides an alternate
representation of the picture comment. That way, if the picComment is not supported by
a printer, some output—although at a lower resolution— is produced.

When processing a picture comment, the QuickDraw–to–QuickDraw GX translator
typically discards the QuickDraw proxy and applies the picComment to the object—for
example, by rotating the shape’s transform or setting a dash in the shape’s style. When
processing PostScript picture comments, however, the translator creates a picture shape
that contains QuickDraw GX shape objects (based on the QuickDraw proxies) as well as
tag objects (containing the PostScript data). In this way, QuickDraw GX can render the
picture both on a raster device (by drawing the items in the picture shape) and on a
PostScript device (by applying the information in the tag objects).

QuickDraw
pattern

Translation QuickDraw GX
shape fill

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-18 Using the QuickDraw–to–QuickDraw GX Translator

Sample code for applying a picComment for rotation is shown in Listing 1-3.

Listing 1-3 QuickDraw picture data that includes a picComment

RotComHandle rInfo = NewHandle(sizeof(RotComRecord));

(*rInfo)->rFlip = 0

(*rInfo)->rAngle = 90;

MoveTo(100,100);

PicComment(RotateBegin, sizeof(RotComRecord), (Handle)rInfo);

LineTo(100, 200);

PicComment(RotateEnd, 0, nil);

The output of the sample code in Listing 1-3 is shown in Figure 1-7. Notice that the
QuickDraw screen output is not rotated. This is because QuickDraw picture comments
are interpreted by the printer. In contrast, the printed QuickDraw output and the
translated QuickDraw GX shape (both printed and displayed onscreen) correctly
represent the intent of the original QuickDraw data.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-19

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Figure 1-7 Translating QuickDraw data containing a rotation picComment

TranslationQuickDraw QuickDraw GX

As printed

As viewed
on screen

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-20 Using the QuickDraw–to–QuickDraw GX Translator

Translation Statistics 1

The translator keeps various statistics about the QuickDraw picture data that it
translates. You can examine these statistics after the translation if you are interested in
this information. The statistics information is returned in the form of bit flags, as shown
in Table 1-3.

Using the Translator With QuickDraw Pictures 1
If you have a handle to QuickDraw picture data, such as from a file or on the Clipboard,
you can convert that data into a QuickDraw GX picture shape with a single call to the
QuickDraw–to–QuickDraw GX translator.

You use the GXConvertPICTToShape function to translate an entire QuickDraw
picture into a QuickDraw GX shape. You pass the picture handle of the
QuickDraw picture you wish to translate and a reference to a shape into which the
translated data is to be placed. Listing 1-4 is a sample that uses the
GXConvertPICTToShape function to perform the translation, and then draws the
resultant picture shape to the view port specified in the view port array thePort s.

Listing 1-4 Translating QuickDraw picture data with GXConvertPICTToShape

aPicShape = GXNewShape(gxPictureType);

GXConvertPICTToShape(thePicHdl, gxDefaultOptionsTranslation,

&theRect, &theRect, styleStretch,

aPicShape, nil);

GXSetShapeViewPorts(aPicShape,1,thePorts);

GXDrawShape(aPicShape);

GXDisposeShape(aPicShape);

Table 1-3 Translation statistics options

Constant Value Explanation

gxContainsFormsBegin 0x0001 The data that was translated contained
“ formsBegin ” picture comments.

gxContainsFormsEnd 0x0002 The data that was translated contained “formsEnd ”
picture comments.

gxContainsPostScript 0x0004 The data that was translated contained PostScript
picture comments.

gxContainsEmptyPostScript 0x0008 The data that was translated contained PostScript
picture comments in which there was no actual
PostScript data.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Using the QuickDraw–to–QuickDraw GX Translator 1-21

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Installing and Removing the Translator 1
If you want to capture QuickDraw commands as they are executed, convert them, and
either draw them immediately or save them, you need to install the
QuickDraw–to–QuickDraw GX translator in the graphics port to which the QuickDraw
drawing commands will be sent.

You install the translator with the GXInstallQDTranslator function. Once installed,
the translator intercepts all QuickDraw drawing commands to that port, converts them
to QuickDraw GX shapes, and sends them to a callback function (that you supply) for
drawing or saving. When you are finished capturing QuickDraw commands, you
remove the translator with the GXRemoveQDTranslator function.

Note
There is not necessarily a one-to-one match between a QuickDraw
function call and the generation of a QuickDraw GX shape.◆

Listing 1-5 is a sample that uses the functions GXInstallQDTranslator and
GXRemoveQDTranslator to convert the bounded QuickDraw commands. The
application-defined callback function, aShapeProc , sets the view port and draws each
translated shape. The aShapeProc function is shown in Listing 1-6 on page 1-22.

Listing 1-5 Installing and removing the translator

/* first, install the translator */

GXInstallQDTranslator(window, gxDefaultOptionsTranslation,

&theRect, &theRect, theStyleStretch,

aShapeProc, (void *) &theWindViewPort);

/* now, make QuickDraw calls */

PenSize(20, 10);

MoveTo(100, 100);

LineTo(200, 100);

MoveTo(100, 150);

LineTo(200, 250);

/* when finished drawing, remove the translator */

GXRemoveQDTranslator(window, nil);

When using the GXInstallQDTranslator function, you must supply an
application-defined function that gives you control over what is to be done with the
QuickDraw GX shapes resulting from the translation. For example, you may want to
draw each shape as it is translated, or you may want to spool multiple shapes and draw
after you have completed the picture.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-22 QuickDraw GX and the Macintosh Environment Reference

Listing 1-6 is the sample shape-spooling function used by the code in Listing 1-5. This
function sets the view port, which is passed to it in the reference parameter, and then
draws the shape passed to it in the parameter theShape .

Listing 1-6 Sample application-defined shape-spooling function

OSErr aShapeProc(gxShape theShape,

void *reference)

{

GXSetShapeViewPorts(theShape, 1, (gxViewPort *) &reference);

GXDrawShape(theShape);

GXDisposeShape(theShape);

return(GXGetGraphicsError(nil));

}

The prototype for the shape-spooling function, and how to use it, are described in the
section “Handling Translated QuickDraw Data” beginning on page 1-41.

QuickDraw GX and the Macintosh Environment Reference 1

This section contains constants, data types, and functions that are specific to the
QuickDraw GX environment.

Constants and Data Types 1

This section describes the constants that you can use with the Gestalt function and the
constants you can use to control translation with the QuickDraw–to–QuickDraw GX
translator.

Gestalt Selectors and Attributes 1

The selector 'grfx' can be used with the Gestalt function to determine whether the
graphics and typography portions of QuickDraw GX have been installed. The 'pmgr'
selector can be used to determine whether QuickDraw GX printing is installed. Gestalt
returns the version number in either case.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-23

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

If you call Gestalt with the gestaltGraphicsAttr selector, it returns an attribute
that specifies whether the debugging or nondebugging version of QuickDraw GX is
installed, and what platform it is installed on. You can use the 'qdgx' selector to
determine if QuickDraw GX is installed.

#define gestaltGXVersion 'qdgx'

#define gestaltGraphicsVersion 'grfx'

#define gestaltPrintingMgrVersion 'pmgr'

#define gestaltCurrentGraphicsVersion 0x00010000

#define gestaltGraphicsAttr 'gfxa'

#define gestaltGraphicsisDebugging 0x00000001

#define gestaltGraphicsisLoaded 0x00000002

#define gestaltGraphicsIsPowerPC 0x00000004

These selectors and attributes are described in the section “Testing for the Presence and
Version of QuickDraw GX” beginning on page 1-4. The Gestalt function is described in
the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Translator Options and Statistics 1

The gxTranslationOptions enumeration defines constants that control various
aspects of the translation from QuickDraw to QuickDraw GX:

enum gxTranslationOptions {

gxDefaultOptionsTranslation = 0x0000,

gxOptimizedTranslation = 0x0001,

gxReplaceLineWidthTranslation = 0x0002,

gxSimpleScalingTranslation = 0x0004,

gxSimpleGeometryTranslation = 0x0008,

gxSimpleLinesTranslation = 0x000C,

gxLayoutTextTranslation = 0x0010,

gxRasterTargetTranslation = 0x0020,

gxPostScriptTargetTranslation = 0x0040,

gxVectorTargetTranslation = 0x0080

};

typedef long gxTranslationOption;

The individual constants for the enumeration are described in Table 1-2 on page 1-12.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-24 QuickDraw GX and the Macintosh Environment Reference

The gxTranslationStatistics enumeration defines constants that are used as
masks, any of which you can combine using an AND operation to interpret the statistics
gathered during translation:

enum gxTranslationStatistics {

gxContainsFormsBegin = 0x0001,

gxContainsFormsEnd = 0x0002,

gxContainsPostScript = 0x0004,

gxContainsEmptyPostScript = 0x0008

};

typedef long gxTranslationStatistic;

The individual constants for the enumeration are described in Table 1-3 on page 1-20.

Macintosh Interface Functions 1

This section describes the QuickDraw GX functions you can use to

■ associate view ports with Macintosh windows

■ associate view devices with Macintosh graphics devices (GDevice records)

■ convert QuickDraw coordinates and mouse locations to QuickDraw GX coordinates

■ install and remove view port filters that intercept QuickDraw GX drawing commands

Associating View Ports With Macintosh Windows 1

This section describes the function you use to

■ create a new view port object associated with a specific Macintosh window

■ retrieve the Macintosh window associated with a view port, or the view port
associated with a Macintosh window

GXNewWindowViewPort 1

You can use the GXNewWindowViewPort function to create a new view port for a
specified Macintosh window.

gxViewPort GXNewWindowViewPort(WindowPtr qdWindow);

qdWindow A pointer to the window for which the new view port is to be created.

function result A reference to the new view port.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-25

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

DESCRIPTION

The GXNewWindowViewPort function creates a new view port associated with the
specified window. All drawing in the window view port will be clipped to the visible
region of the window.

View ports associated with windows are clipped by the visible region (visRgn), but not
the clip region (clipRgn) of the window. The origin of the window doesn’t affect the
view port. The clip shape of the view port doesn’t affect drawing in the window.

SPECIAL CONSIDERATIONS

You cannot alter the mapping or clip properties of view ports created with this function.
Most typically, you use this function to create a view port attached to a window, and
then—if you support scrolling or otherwise need to change the clip or mapping—you
create one or more child view ports of the window view port and draw into them.

Do not attach more than one view port to a window through this function; unpredictable
behavior results.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

View ports, child view ports, and the limitations on access to window view ports are
discussed in the chapter “View-Related Objects” in Inside Macintosh: QuickDraw GX
Objects.

To obtain the window associated with a view port, use the GXGetViewPortWindow
function, described next. To obtain the view port associated with a window, use the
GXGetWindowViewPort function, described on page 1-26.

GXGetViewPortWindow 1

You can use the GXGetViewPortWindow function to return the Macintosh window of a
specified view port.

gxWindowPtr GXGetViewPortWindow(gxViewPort portOrder);

portOrder A reference to the specified view port.

function result A pointer to the window associated with the specified view port.

Errors
out_of_memory

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-26 QuickDraw GX and the Macintosh Environment Reference

DESCRIPTION

The function returns nil if the view port is not associated with a window.

This function returns nil if you pass it a reference to a child view port of a window
view port. To determine the window ultimately associated with a child view port, use
the GXGetViewPortParent function to find the parent view port at the top of the view
port hierarchy, and pass that view port reference to the GXGetViewPortWindow
function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To create a view port associated with a window, use the GXNewWindowViewPort
function, described in the previous section. To obtain the view port associated with a
window, use the GXGetWindowViewPort function, described next.

GXGetWindowViewPort 1

You can use the GXGetWindowViewPort function to return the view port of a specified
Macintosh window.

gxViewPort GXGetWindowViewPort(WindowPtr qdWindow);

qdWindow A pointer to the specified window.

function result A reference to the view port associated with the specified window.

DESCRIPTION

The function returns nil if the window has no associated view port.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
invalid_viewport_reference

Errors
out_of_memory

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-27

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

SEE ALSO

To create a view port associated with a window, use the GXNewWindowViewPort
function, described on page 1-24. To obtain the window associated with a view port, use
the GXGetViewPortWindow function, described in the previous section.

Associating View Devices With Macintosh Graphics Devices 1

This section describes the functions you use to retrieve the Macintosh graphics device
(GDevice record) associated with a QuickDraw GX view device object, or the view
device associated with a Macintosh graphics device.

GXGetViewDeviceGDevice 1

You can use the GXGetViewDeviceGDevice function to return the Macintosh graphics
device associated with a specified view device object.

GDHandle GXGetViewDeviceGDevice(gxViewDevice theDevice);

theDevice A reference to the view device whose graphics device is requested.

function result A handle to the GDevice record of the specified view device.

DESCRIPTION

The GXGetViewDeviceGDevice function returns a handle to the GDevice record
associated with a specified view device. The function returns nil if the view device has
no GDevice record.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Macintosh graphics devices and the GDevice record are described in Inside Macintosh:
Imaging With QuickDraw.

View devices are described in the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

To obtain the view device associated with a graphics device, use the
GXGetGDeviceViewDevice function, described next.

Errors
out_of_memory
invalid_viewdevice_reference

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-28 QuickDraw GX and the Macintosh Environment Reference

GXGetGDeviceViewDevice 1

You can use the GXGetGDeviceViewDevice function to return the view device object
associated with a specified Macintosh graphics device.

gxViewDevice GXGetGDeviceViewDevice(GDHandle qdGDevice);

qdGDevice A handle to the GDevice record of the graphics device whose view
device is requested.

function result A reference to the view device object associated with the specified
graphics device.

DESCRIPTION

The GXGetGDeviceViewDevice function returns a reference to the view device object
associated with a specified graphics device. The function returns nil if the graphics
device has no view device.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Macintosh graphics devices and the GDevice record are described in Inside Macintosh:
Imaging With QuickDraw.

View devices are described in the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

To obtain the graphics device associated with a view device, use the
GXGetViewDeviceGDevice function, described in the previous section.

Converting From QuickDraw to QuickDraw GX Coordinates 1

This section describes the functions you use to

■ convert from QuickDraw coordinates to QuickDraw GX coordinates

■ retrieve mouse locations in terms of QuickDraw GX coordinates

Errors
out_of_memory

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-29

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

GXConvertQDPoint 1

You can use the GXConvertQDPoint function to convert from QuickDraw global
coordinates to QuickDraw GX coordinates.

void GXConvertQDPoint(const Point *shortPt, gxViewPort portOrder,

gxPoint *fixedPt);

shortPt A pointer to a point in QuickDraw global coordinates that is to be
converted to QuickDraw GX coordinate space.

portOrder A reference to a view port. If this parameter is nil , the conversion is to
QuickDraw GX global coordinates; if it is other than nil , the conversion
is to the local coordinates of that view port.

fixedPt A pointer to a gxPoint structure. On return, the structure contains the
result of the coordinate conversion.

DESCRIPTION

The GXConvertQDPoint function converts a point with QuickDraw global coordinates
to a point with QuickDraw GX coordinates. If the portOrder parameter is nil , the
QuickDraw global coordinates are converted to QuickDraw GX global coordinates. If the
portOrder parameter is specified, the QuickDraw global coordinates are converted to
QuickDraw GX local coordinates. The local coordinates are local within the specified
view port.

The QuickDraw global coordinates are specified in pixels. The QuickDraw GX global
and local coordinates are specified in a coordinate space in which 1.0 = 1/72 inch.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For more information about converting from QuickDraw to QuickDraw GX coordinate
space, see the section “Converting From QuickDraw to QuickDraw GX Coordinates”
beginning on page 1-7. For more information about the QuickDraw GX coordinate
system and drawing, see the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

Errors
out_of_memory
invalid_viewPort_reference

Warnings
point_does_not_intersect_port (debugging version)

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-30 QuickDraw GX and the Macintosh Environment Reference

GXGetGlobalMouse 1

You can use the GXGetGlobalMouse function to obtain the current cursor position in
QuickDraw GX global coordinates.

void GXGetGlobalMouse(gxPoint *globalPt);

globalPt A pointer to a gxPoint structure. On return, the structure contains the
fixed-point global coordinates of the current cursor position.

ERRORS, WARNINGS, AND NOTICES

GXGetViewPortMouse 1

You can use the GXGetViewPortMouse function to obtain the cursor position expressed
in the QuickDraw GX local coordinates of the specified view port.

void GXGetViewPortMouse(gxViewPort portOrder, gxPoint *localPt);

portOrder A reference to the view port for which the cursor position is requested.

localPt A pointer to a gxPoint structure. On return, the structure contains the
fixed-point local coordinates of the current cursor position.

SPECIAL CONSIDERATIONS

If the portOrder parameter is nil , this function posts an
invalid_viewPort_reference error.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory

Errors
out_of_memory
invalid_viewPort_reference

Warnings
point_does_not_intersect_port

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-31

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Installing a View Port Filter 1

This section describes the functions you use to install and remove view port filters,
which allow you to intercept drawing commands.

GXSetViewPortFilter 1

You can use the GXSetViewPortFilter function to intercept a shape being sent to a
specified view port. Instead of drawing the shape, you can use an application-defined
filter function to manipulate the shape.

void GXSetViewPortFilter(gxViewPort portOrder,

gxUserViewPortFilter filter,long refCon);

portOrder A reference to the view port to be filtered.

filter A pointer to an application-defined callback function that acts on the
filtered shape. If you pass nil for this parameter, any installed filter
function is removed.

refCon A long value to be passed to the callback filter function. Your filter
function can use the value in any manner.

DESCRIPTION

The GXSetViewPortFilter function allows you to install a filter function that
intercepts shapes sent to a specified view port and manipulates them in any manner you
wish. You must specify a valid view port reference in the portOrder parameter.

The filter parameter is a pointer to an application-defined callback function of type
gxUserViewPortFilter :

typedef void (*gxUserViewPortFilterProcPtr)(gxShape toFilter,

gxViewPort portOrder, long refCon);

typedef gxUserViewPortFilterProcPtr gxUserViewPortFilter;

You must provide the callback filter function; its prototype is described in the section
“Filtering Drawing Calls to a View Port” beginning on page 1-40.

When you call GXSetViewPortFilter , you can pass it any useful long value in the
refCon parameter. That value will be passed to the filter function each time it is called.

To remove a filter function from a view port, call GXSetViewPortFilter with a nil
value for the filter parameter.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-32 QuickDraw GX and the Macintosh Environment Reference

SPECIAL CONSIDERATIONS

If you assign a filter function to a view port, it affects drawing to that specific view port
only. Drawing to its child view ports or its parent view port (or any other view ports
within its hierarchy) is unaffected.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

To obtain a pointer to the filter function currently installed in a given view port, use the
GXGetViewPortFilter function, described next.

For a description of the application-defined view port filter function, see page 1-40.

GXGetViewPortFilter 1

You can use the GXGetViewPortFilter function to return the view device of a
specified graphics device.

gxUserViewPortFilter GXGetViewPortFilter(gxViewPort portOrder,

long *refCon);

portOrder A reference to the view port whose currently installed view port filter you
need.

refCon A pointer to a long value. On return, the value is the reference constant
that was passed to the GXSetViewPortFilter function when the filter
function was installed.

function result A pointer to the view port filter function that is installed in the specified
view port.

DESCRIPTION

The GXGetViewPortFilter function returns a pointer to the view port filter that is
currently installed in the specified view port. The function also returns, in the refCon
parameter, the reference constant that was passed to GXSetViewPortFilter when the
filter function was installed.

Errors
out_of_memory
invalid_viewPort_reference

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-33

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXSetViewPortFilter function is described in the previous section.

For a description of the prototype of the view port filter function, see page 1-40.

QuickDraw–to–QuickDraw GX Translator Functions 1

This section describes the functions you can use to

■ Convert the specification for a font and face in the GrafPort into a gxStyle

■ Convert QuickDraw picture data into QuickDraw GX shapes

■ Convert QuickDraw commands to QuickDraw GX shapes

Converting a GrafPort Font and Face Specification 1

You use the function described in this section to convert the specification for a font and
face in the GrafPort into a gxStyle.

GXConvertQDFont 1

You use the GXConvertQDfont function to translate the specification for a font and face
in the GrafPort into a gxStyle.

long GXConvertQDfont(gxStyle theStyle, long txFont, long txFace);

theStyle A gxStyle.

txFont A long specifying a text font; same as in the GrafPort.

txFace A long specifying a text style; same as in the GrafPort.

DESCRIPTION

The GXConvertQDfont function picks the gxFont that is the closest match for the
txFont and txFace parameters. If it does not find an exact match, GXConvertQDfont
might also set the style’s font variation.

Errors
out_of_memory
invalid_viewPort_reference

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-34 QuickDraw GX and the Macintosh Environment Reference

The GXConvertQDfont function also sets the style’s encoding. It returns any style bits
from txFace that were not accounted for in the gxFont and variation. This permits the
caller to construct a gxTextFace based on the returned style bits. Potentially all of the
style bits can be matched. Currently only bold, italic, condense, and extended bits are
matched. However, in the future more might be matched. You should not make any
assumptions about what will or will not be matched.

SPECIAL CONSIDERATIONS

If the translator calls GXConvertQDFont , it will already have mapped txFont==0 to
the correct font by calling the Script Manager.

Converting QuickDraw Pictures 1

You use the function described in this section to convert QuickDraw picture data to a
QuickDraw GX picture shape.

GXConvertPICTToShape 1

You can use the GXConvertPICTToShape function to convert a QuickDraw picture to a
QuickDraw GX shape.

gxShape GXConvertPICTToShape(const PicHandle pict,

gxTranslationOptions options,

const Rect *srcRect,

const Rect *dstRect,

Point styleStretch,

gxShape destination,

gxTranslationStatistic *statistics);

pict A handle to the QuickDraw picture image to be converted to
QuickDraw GX.

options The translation options to use for the translation.

srcRect A pointer to the source rectangle (normally the QuickDraw picture frame)
of the QuickDraw image, in QuickDraw coordinates.

dstRect A pointer to the destination rectangle of the QuickDraw image, in
QuickDraw coordinates.

styleStretch
The scale factor (both horizontal and vertical) to apply to certain items,
such as dashes, in QuickDraw picture comments.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-35

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

destination
A reference to the destination shape—the shape in which to store the
translated picture.

statistics
A pointer to the location in which to store the translation statistics.

function result A reference to the destination shape. This is the same shape referenced in
the destination parameter, or a newly created picture shape if the
destination parameter was nil .

DESCRIPTION

The GXConvertPICTToShape function provides a conversion of a QuickDraw GX
picture image within the boundaries of the source rectangle srcRect to a QuickDraw
GX shape within the boundaries of the destination rectangle dstRect . You pass
QuickDraw picture to the translator and it returns a QuickDraw GX picture shape that
approximates the original QuickDraw picture.

The srcRect and dstRect parameters represent the source and destination space of
the image, expressed in QuickDraw coordinates. The relation between the source and
destination rectangles specifies the amount of scaling to be applied during translation.
You can use this scaling capability to ensure that the resulting QuickDraw GX shape is a
good representation of the original QuickDraw object. The srcRect parameter is
normally the QuickDraw picture frame of the original picture data. If scaling is not
required, you can pass in the source rectangle of the original data for both parameters.

If the destination parameter is nil , a QuickDraw GX picture shape is created and
returned by the function. If the destination parameter is not nil , the function returns the
same shape reference that it was passed. The QuickDraw GX shapes resulting from the
translation are contained in that picture shape.

The translator keeps various statistics about the QuickDraw picture data it is translating.
You can examine the mask that describes these statistics after the translation if you are
interested in this information. The flags in the translation statistics masks are defined in
the gxTranslationStatistics enumeration. If you are not interested in this
information, you should pass nil for the stats parameter.

SPECIAL CONSIDERATIONS

If you pass nil for the destination parameter and if no error occurs, this function
creates a QuickDraw GX shape object. You are responsible for disposing of that object
when you no longer need it.

Before using the translator, you must first call the GXInitPrinting function.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-36 QuickDraw GX and the Macintosh Environment Reference

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 1-4 on page 1-20.

To translate individual QuickDraw drawing commands as they are executed, use the
GXInstallQDTranslator function, described next.

Translation options from the gxTranslationOptions enumeration are described in
Table 1-2 on page 1-12.

Translation statistics flags from the gxTranslationStatistics enumeration are
described in Table 1-3 on page 1-20.

For a general description of the QuickDraw–to–QuickDraw GX translator, see the section
“Using the QuickDraw–to–QuickDraw GX Translator” beginning on page 1-10.

The GXInitPrinting function is described in the chapter “Core Printing Features” in
Inside Macintosh: QuickDraw GX Printing.

Installing and Removing the Translator 1

This section describes the functions you use to install the QuickDraw–to–QuickDraw GX
translator in order to intercept QuickDraw drawing commands as they are executed. To
use the translator in this way, you also need to supply a callback shape-spooling
function, described on page 1-41.

GXInstallQDTranslator 1

You can use the GXInstallQDTranslator function to initiate translation of the
QuickDraw drawing commands to QuickDraw GX shapes. Subsequent QuickDraw
drawing commands are translated into equivalent QuickDraw GX shapes.

void GXInstallQDTranslator(GrafPtr port,

gxTranslationOptions options,

const Rect *srcRect,

const Rect *dstRect,

Point styleStretch,

gxShapeSpoolFunction userFunction,

void *reference);

port A pointer to the QuickDraw graphics port into which to install the
translator.

options The translation options to use for the translation.

Errors
out_of_memory

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-37

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

srcRect A pointer to a rectangle defining the QuickDraw source dimensions for
drawing, in QuickDraw coordinates.

dstRect A pointer to a rectangle defining the QuickDraw destination dimensions
for drawing, in QuickDraw coordinates.

styleStretch
The amount of scaling that certain picture-comment items, such as
dashes, will be given in the x and y directions.

userFunction
A pointer to an application-defined callback function to which the
translator passes each translated shape.

reference A pointer to a reference constant that can be used for any purpose.
QuickDraw GX passes the reference constant to the application-defined
callback function each time it calls the function.

DESCRIPTION

You can use the GXInstallQDTranslator function to install the
QuickDraw–to–QuickDraw GX translator into a QuickDraw graphics port. QuickDraw
commands that draw into that port are translated to equivalent QuickDraw GX shapes.

All QuickDraw drawing commands executed after you call this function and before you
call GXRemoveQDTranslator are converted into QuickDraw GX shapes and passed to
an application-defined function. There is not necessarily a one-to-one match between a
QuickDraw function call and the generation of a QuickDraw GX shape; the translation
algorithm can combine several QuickDraw items into one QuickDraw GX shape.

The srcRect and dstRect parameters represent the source and destination space of
the image, expressed in QuickDraw coordinates. The relation between the source and
destination rectangles specifies the amount of scaling to be applied during translation. If
scaling is not required, you can pass identical rectangles for both parameters.

The styleStretch parameter represents the amount of scaling that QuickDraw bitmap
patterns are given by the translator in the x and y directions in order to scale them up to
the destination space. The x scale factor is stored in styleStretch.h and the y scale
factor is stored in styleStretch.v . These values are usually the destination resolution
divided by the screen resolution (72 dpi), rounded to the nearest integer.

The userFunction parameter is a pointer to an application-defined callback function
of type gxShapeSpoolFunction :

typedef OSErr (*gxShapeSpoolProcPtr)(gxShape toSpool,

void *refCon);

typedef gxShapeSpoolProcPtr gxShapeSpoolFunction;

The translator calls the function every time that it generates a translated QuickDraw GX
shape. You must provide the function; its prototype is described in the section “Handling
Translated QuickDraw Data” beginning on page 1-41.

The reference parameter of the GXInstallQDTranslator function can be used by
your application in any manner you desire, within the constraints of a long data field.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-38 QuickDraw GX and the Macintosh Environment Reference

The translator passes the parameter to the application-defined callback function. For
example, you can use reference to specify where the translated picture is to be
displayed, by passing a view port reference in the reference parameter.

SPECIAL CONSIDERATIONS

If you call the GXInstallQDTranslator function to install the translator, you must
subsequently call the GXRemoveQDTranslator function to remove it when you are
finished.

The port parameter to this function must be an old-style graphics-port pointer
(GrafPtr); however, the translator depends on the existence of a color graphics port.
Therefore, you should always create a color graphics port (using NewCWindow,
NewGWorld or OpenCPort), and coerce the CGrafPtr to a GrafPtr when you call this
function.

Before installing the translator, you must first call the GXInitPrinting function.

Installation of the translator cannot cause an out_of_memory error, but the process of
translation can result in an out-of-memory condition. Your application should be
prepared to handle that condition.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 1-5 on page 1-21.

Translation options from the gxTranslationOptions enumeration are described in
Table 1-2 on page 1-12.

The application-defined shape-spooling function called by the translator is described on
page 1-41.

To translate an entire QuickDraw picture, use the GXConvertPICTToShape function,
described in the previous section.

For a general description of the QuickDraw–to–QuickDraw GX translator, see the section
“Using the QuickDraw–to–QuickDraw GX Translator” beginning on page 1-10.

The GXInitPrinting function is described in the chapter “Core Printing Features” in
Inside Macintosh: QuickDraw GX Printing.

For descriptions of color graphics ports and the functions you use to create them, see
Inside Macintosh: Imaging With QuickDraw.

Notices (deb ugging ver sion)
translator_already_installed_on_this_grafport

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-39

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

GXRemoveQDTranslator 1

You can use the GXRemoveQDTranslator function to terminate the translation of
QuickDraw drawing commands.

translationStatistics GXRemoveQDTranslator(GrafPtr port,

gxTranslationStatistic *statistic);

port A pointer to the QuickDraw graphics port in which the translator is
currently installed.

statistic A pointer to the location in which to return the translation statistics.

function result The translation statistics.

DESCRIPTION

The GXRemoveQDTranslator function removes the translator from the QuickDraw
graphics port in which it was installed, and flushes the internal translation buffer.

The translator keeps various statistics about the QuickDraw picture data it is translating.
After removing the translator, you can examine the mask that describes these statistics if
you are interested in this information. The flags in the translation statistics masks are
defined in the gxTranslationStatistics enumeration. If you are not interested in
this information, you should pass nil for the statistic parameter.

SPECIAL CONSIDERATIONS

Always be sure to call the GXRemoveQDTranslator function when you are finished
translating.

EERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of the use of this function, see Listing 1-5 on page 1-21.

Translation statistics flags from the gxTranslationStatistics enumeration are
described in Table 1-3 on page 1-20.

To translate an entire QuickDraw picture, use the GXConvertPICTToShape function,
described on page 1-34.

For a general description of the QuickDraw–to–QuickDraw GX translator, see the section
“Using the QuickDraw–to–QuickDraw GX Translator” beginning on page 1-10.

Warnings
translator_not_installed_on_this_grafport (debugging version)

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-40 QuickDraw GX and the Macintosh Environment Reference

Application-Defined Functions 1

This section describes callback functions that your application must provide for
QuickDraw GX to call, in two situations:

■ If you intercept shape-drawing calls to a view port

■ If you install the QuickDraw–to–QuickDraw GX translator in a graphics port

Filtering Drawing Calls to a View Port 1

The callback function described in this section is a view port filter, which handles
shape-drawing calls that have been intercepted in a given view port.

MyViewPortFilter 1

You can create a filter function that handles intercepted QuickDraw GX drawing calls.
The filter function must have a prototype of this form:

void MyViewPortFilter(gxShape toFilter, gxViewPort portOrder,

long refCon);

toFilter A reference to the shape to be filtered—that is, the shape that would have
been drawn to the view port specified in the portOrder parameter.

portOrder A reference to the view port in which this filter function has been
installed.

refCon A reference constant that your filter function can use in any manner.

DESCRIPTION

Once this filter function is installed, QuickDraw GX calls it any time a function is
executed that draws a shape in the view port referenced by the portOrder parameter.
Instead of drawing the shape, QuickDraw GX passes the shape to this function. Your
filter function can perform actions other than drawing (such as spooling), or it can
otherwise modify or process the shape.

Your application installs this filter function by providing a pointer to it when calling
the GXSetViewPortFilter function. When your application calls the function
GXSetViewPortFilter , it also provides the refCon value that will be passed to this
filter function.

The value passed to you in the refCon parameter can be used for any purpose; for
example, it might contain a reference to a different view port for drawing to, a pointer to
a buffer for collecting spooled data, or anything else useful to the filter function. The
portOrder parameter allows you to identify the view port being intercepted, in case
the filter function is installed on more than one view port.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

QuickDraw GX and the Macintosh Environment Reference 1-41

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Your application can get a pointer to this installed filter function at any time by calling
the GXGetViewPortFilter function. After you are finished intercepting drawing calls,
your application can remove the filter function by calling the GXSetViewPortFilter
function with a nil filter-function pointer.

SEE ALSO

The GXSetViewPortFilter function is described on page 1-31. The to
GXGetViewPortFilter function is described on page 1-32.

Handling Translated QuickDraw Data 1

The callback function described in this section is a shape-spooling function, which
handles QuickDraw GX shapes that have been translated from QuickDraw drawing
commands.

MyShapeSpooler 1

You can create a shape-spooling function that handles QuickDraw drawing commands
that have been translated into QuickDraw GX shapes. The shape-spooling function must
have a prototype of this form:

OSErr MyShapeSpooler(gxShape toSpool, void *refCon);

toSpool A reference to the shape just translated by the translator.

refCon A pointer to a reference constant, passed to your spool function by the
translator, that you can use for any purpose.

function result An result code of type OSErr . You should pass 0 if no error occurs.

DESCRIPTION

When you install the QuickDraw–to–QuickDraw GX translator with the
GXInstallQDTranslator function, the translator intercepts all subsequent
QuickDraw drawing commands, converts them to QuickDraw GX shapes, and passes
those shapes to this shape-spooling function. Your shape-spooling function can draw
each shape, add it to a picture, or perform any other action you wish.

You install this function by providing a pointer to it when you call the
GXInstallQDTranslator function. When you call GXInstallQDTranslator , you
also provide the refCon value that will be passed to this filter function. The refCon
value can be used for any purpose; for example, it might contain a view port reference
for drawing, a pointer to a buffer for collecting spooled data, or anything else useful to
the shape-spooling function.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-42 QuickDraw GX and the Macintosh Environment Reference

After your application has finished intercepting and converting QuickDraw calls and
passing them to this shape-spooling function, your application must remove the
translator by calling the GXRemoveQDTranslator function.

If your shape-spooling function encounters an error during processing, it should return a
nonzero value (usually the error code). If the shape-spooling function returns a nonzero
value, the translator ceases translating QuickDraw commands. If an error occurs, your
application must still call the GXRemoveQDTranslator function to remove the
translator.

SEE ALSO

The GXInstallQDTranslator function is described on page 1-36. The
GXRemoveQDTranslator function is described on page 1-39.

For a general description of the QuickDraw–to–QuickDraw GX translator, see the section
“Using the QuickDraw–to–QuickDraw GX Translator” beginning on page 1-10.

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Summary of QuickDraw GX and the Macintosh Environment 1-43

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Summary of QuickDraw GX and the Macintosh Environment1

Constants and Data Types 1

Gestalt Selectors and Attributes

#define gestaltGXVersion 'qdgx' /* Overall GX vers. selector */

#define gestaltGraphicsVersion 'grfx' /* GX graphics vers. selector */

#define gestaltPrintingMgrVersion 'pmgr' /* GX printing vers. selector */

#define gestaltCurrentGraphicsVersion 0x00010000 /* version 1.0 */

#define gestaltGraphicsAttr 'gfxa' /* GX attributes selector */

#define gestaltGraphicsisDebugging 0x00000001

#define gestaltGraphicsisLoaded 0x00000002

#define gestaltGraphicsIsPowerPC 0x00000004

Translator Options and Statistics

enum gxTranslationOptions {

gxDefaultOptionsTranslation = 0x0000,

gxOptimizedTranslation = 0x0001,

gxReplaceLineWidthTranslation = 0x0002,

gxSimpleScalingTranslation = 0x0004,

gxSimpleGeometryTranslation = 0x0008,

gxSimpleLinesTranslation = 0x000C,

gxLayoutTextTranslation = 0x0010,

gxRasterTargetTranslation = 0x0020,

gxPostScriptTargetTranslation = 0x0040,

gxVectorTargetTranslation = 0x0080

};

typedef long gxTranslationOption;

enum gxTranslationStatistics {

gxContainsFormsBegin = 0x0001,

gxContainsFormsEnd = 0x0002,

gxContainsPostScript = 0x0004,

gxContainsEmptyPostScript = 0x0008

};

typedef long gxTranslationStatistic;

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

1-44 Summary of QuickDraw GX and the Macintosh Environment

Macintosh Interface Functions 1

Associating View Ports With Macintosh Windows

gxViewPort GXNewWindowViewPort
(WindowPtr qdWindow);

gxWindowPtr GXGetViewPortWindow
(gxViewPort portOrder);

gxViewPort GXGetWindowViewPort
(WindowPtr qdWindow);

Associating View Devices With Macintosh Graphics Devices

GDHandle GXGetViewDeviceGDevice
(gxViewDevice theDevice);

gxViewDevice GXGetGDeviceViewDevice
(GDHandle qdGDevice);

Converting From QuickDraw to QuickDraw GX Coordinates

void GXConvertQDPoint (const Point *shortPt, gxViewPort portOrder,
gxPoint *fixedPt);

void GXGetGlobalMouse (gxPoint *globalPt);

void GXGetViewPortMouse (gxViewPort portOrder, gxPoint *localPt);

Installing a View Port Filter

void GXSetViewPortFilter (gxViewPort portOrder,
gxUserViewPortFilter filter, long refCon)

gxUserViewPortFilter GXGetViewPortFilter
(gxViewPort portOrder, long *refCon)

QuickDraw–to–QuickDraw GX Translator Functions 1

Converting QuickDraw Font and Style

long GXConvertQDFont (gxStyle theStyle, long txFont, long txFace);

C H A P T E R 1

QuickDraw GX and the Macintosh Environment

Summary of QuickDraw GX and the Macintosh Environment 1-45

1
Q

uickD
raw

 G
X

 and the M
acintosh E

nvironm
ent

Converting QuickDraw Pictures

gxShape GXConvertPICTToShape
(const PicHandle pict,

gxTranslationOptions options,
const Rect *srcRect,
const Rect *dstRect,
Point styleStretch,
gxShape destination,
gxTranslationStatistics *stats);

Installing and Removing the Translator

void GXInstallQDTranslator (GrafPtr port, gxTranslationOptions options,
const Rect *srcRect, const Rect *dstRect,
Point styleStretch,
gxShapeSpoolFunction userFunction,
long refCon);

translationStatistics *GXRemoveQDTranslator
(GrafPtr port,

translationStatistic *statistics);

Application-Defined Functions 1

Filtering Drawing Calls to a View Port

void MyViewPortFilter (gxShape toFilter, gxViewPort portOrder,
long refCon);

Handling Translated QuickDraw Data

OSErr MyShapeSpooler (gxShape toSpool, void *refCon);

Contents

2-1

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0

2 QuickDraw GX Memory

Contents

Management

About QuickDraw GX Memory Management 2-3
Memory Heaps 2-3
Graphics Clients and Graphics Client Heaps2-4
Additional Topics 2-5

Using Graphics Clients and Graphics Client Heaps2-5
Creating a Graphics Client and Its Graphics Client Heap2-5

Implicit Creation 2-5
Explicit Creation 2-6

Determining Memory Requirements for a Graphics Client Heap 2-8
Disposing of a Graphics Client and Graphics Client Heap2-9

Additional Memory Management Topics 2-10
Low-Memory Conditions 2-10

Freeing Up Already Allocated Memory 2-11
Allocating New Memory and Unloading Objects 2-11
Functions That Create Additional Memory Demands 2-12

Loading and Unloading Objects 2-12
Functions That Do Not Require a Graphics Client or Heap 2-14
Specifying the Starting Location of a Graphics Client2-14
Working With Multiple Graphics Clients 2-16

QuickDraw GX Memory Management Reference 2-17
Constants and Data Types 2-18

Graphics Client Object 2-18
Graphics Client Attributes 2-18

Functions 2-18
Creating and Disposing of a Graphics Client 2-19

GXNewGraphicsClient

2-19

GXDisposeGraphicsClient

2-21

C H A P T E R 2

2-2

Contents

Allocating and Disposing of a Graphics Client Heap2-22

GXEnterGraphics

2-22

GXExitGraphics

2-23
Working With Multiple Graphics Clients 2-24

GXGetGraphicsClient

2-24

GXGetGraphicsClients

2-25

GXSetGraphicsClient

2-26
Loading and Unloading Objects 2-26

GXLoadShape

2-26

GXUnloadShape

2-27

GXLoadStyle

2-28

GXUnloadStyle

2-29

GXLoadInk

2-29

GXUnloadInk

2-30

GXLoadTransform

2-31

GXUnloadTransform

2-32

GXLoadColorSet

2-32

GXUnloadColorSet

2-33

GXLoadColorProfile

2-34

GXUnloadColorProfile

2-35

GXLoadTag

2-35

GXUnloadTag

2-36
Summary of QuickDraw GX Memory Management 2-38

Constants and Data Types 2-38
Functions 2-38

C H A P T E R 2

About QuickDraw GX Memory Management

2-3

2

Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

QuickDraw GX Memory Management 2

This chapter describes the aspects of QuickDraw GX memory management that your
application can control. QuickDraw GX manages the memory blocks used by
your application automatically. Read this chapter if you want to understand how
QuickDraw GX memory works or to supplement QuickDraw GX memory management
operations.

Before reading this chapter, you should be familiar with QuickDraw GX objects. For
more information on objects, see

Inside Macintosh: QuickDraw GX Objects

.

For more information regarding Macintosh memory, see

Inside Macintosh: Memory

.

This chapter starts by providing an overview of the QuickDraw GX memory
management system. It then tells how to:

■

create and dispose of a graphics client and its heap

■

determine memory requirements for a graphics client heap

Additional memory management topics of concern to few developers are also addressed,
such as how to:

■

respond to low-memory conditions

■

load and unload objects

■

work with multiple graphics clients

This chapter also contains reference information for the constants, data types, and
functions associated with QuickDraw GX memory management.

About QuickDraw GX Memory Management 2

QuickDraw GX works with the Macintosh Memory Manager to manage the memory
used by your application for creating and manipulating objects. QuickDraw GX memory
management is automatic. Memory blocks are allocated and deallocated as your
application needs them.

Nevertheless, the more memory that QuickDraw GX has available, the faster your
application can run. As a result, you may be able to improve the performance of
your application by using some of the QuickDraw GX memory management operations.

Memory Heaps 2

QuickDraw GX applications use an

application heap

 and one or more graphics client
heaps. The application heap memory holds your code and data structures. This is the
part of memory where you allocate variables and your application executes. You can
access any data structure in the application heap. Your application manages its own
structures in the application heap and makes function calls to obtain or modify the
contents of the graphics client heap.

C H A P T E R 2

QuickDraw GX Memory Management

2-4

About QuickDraw GX Memory Management

The QuickDraw GX

graphics client heap

 memory holds the QuickDraw GX objects you
create. The graphics client heap consists of one or more blocks of

discontiguous memory

that QuickDraw GX uses to allocate its objects, structures, and variables. QuickDraw GX
memory is private so, in general, you cannot directly access the contents of a graphics
client heap.

The graphics client heap and the application heap work independently. For
example, QuickDraw GX can execute from the memory on an accelerator card. As
a result, QuickDraw GX never moves application memory. In addition, Macintosh
Memory Manager functions cannot modify QuickDraw GX objects. QuickDraw GX has
its own internal memory manager and memory management functions for interacting
with its objects.

Graphics Clients and Graphics Client Heaps 2

At system startup, QuickDraw GX does not have any memory available in which to do
work.

To allocate memory, it needs a special QuickDraw GX object called a

graphics
client.

 This object is associated with a graphics client heap.

Because a graphics client stores bookkeeping data for its heap, including the memory
starting address and the size of all of the heap’s memory blocks, a graphics client can be
associated with only one QuickDraw GX graphics client heap. A graphics client also
stores the error, warning, and notice state.

An application heap is allocated by the Macintosh Memory Manager when an
application is launched. This is the memory region used by your application for its own
code and data structures. Graphics clients and their heaps are never allocated from
memory blocks that have been allocated to the application heap.

QuickDraw GX provides functions to create a new graphics client and its graphics client
heap. If you don’t use these functions in your application, QuickDraw GX will call them
for you to create a graphics client having a default memory size and location.

When you no longer need a graphics client and its heap, you dispose of them to release
memory blocks. QuickDraw GX provides functions so that your application can dispose
of a graphics client and its graphics client heap, but if you don’t use these functions in
your application, QuickDraw GX calls them for you at the appropriate time. Whenever
an application requires

memory allocation,

 QuickDraw GX automatically deallocates as
many graphics client heap memory blocks as it needs to in order to satisfy the
application’s memory requirements. QuickDraw GX never deallocates graphics client
heaps while they are in use. If QuickDraw GX cannot find sufficient memory blocks, it
may automatically unload objects from memory to storage disk. QuickDraw GX
automatically reloads these objects from storage disk to memory as it needs them.

C H A P T E R 2

QuickDraw GX Memory Management

Using Graphics Clients and Graphics Client Heaps

2-5

2

Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Additional Topics 2

The latter part of this chapter discusses some issues that are relevant in only a few very
specific and uncommon situations: handling low-memory problems, manual loading
and unloading of objects, using functions that do not require a graphics client or its heap,
specifying a memory starting location for a graphics client and its heap, and working
with multiple graphics clients.

Under normal circumstances, QuickDraw GX resolves low-memory conditions and
handles the loading of objects as needed, performing these tasks automatically and in a
way that is transparent to your application. However, you can affect some of its
processing in these areas. You can also set an attribute that prevents QuickDraw GX from
allocating additional memory blocks to your graphics client heap and you can manually

load

 and

unload

 objects. These topics are described in the section “Additional Memory
Management Topics” beginning on page 2-10.

Using Graphics Clients and Graphics Client Heaps 2

QuickDraw GX provides most memory management services automatically. This section
describes how your application can override this automatic control to

■

create a graphics client and its heap

■

determine memory requirements for a graphics client heap

■

dispose of a graphics client and its heap

Creating a Graphics Client and Its Graphics Client Heap 2

Either QuickDraw GX or you can create a new graphics client and its heap. This section
discusses how you can control these tasks.

Implicit Creation 2

If your application does not explicitly create a graphics client or a graphics client heap,
QuickDraw GX creates them for you when needed. QuickDraw GX calls the

GXNewGraphicsClient

 and the

GXEnterGraphics

 functions when the first function
call is made in your application that requires a graphics client heap. Almost all
QuickDraw GX functions require a graphics client heap. The few exceptions are listed in
the section “Functions That Do Not Require a Graphics Client or Heap” beginning on
page 2-14.

When QuickDraw GX calls the

GXNewGraphicsClient

 function, it selects the starting
memory location for the heap and creates a graphics client to provide the bookkeeping
for the heap. When QuickDraw GX calls the

GXEnterGraphics

 function, it uses the
memory location and heap size stored in the graphics client to create the new heap.

C H A P T E R 2

QuickDraw GX Memory Management

2-6

Using Graphics Clients and Graphics Client Heaps

QuickDraw GX looks for a resource of type

'gasz'

 with an ID of 0 and uses the first
long word of that resource as the number of bytes to be allocated to the graphics client
heap. If your application does not provide this resource, QuickDraw GX version 1.0 uses
a

default memory size

 value of 600 KB. For additional information, see the description
of the

GXNewGraphicsClient

 routine beginning on page 2-19.

A

'gasz'

 resource can only provide one graphics client heap size in a single
application. QuickDraw GX uses this size for every graphics client with a

memoryLength

 parameter of zero. Listing 2-1 shows how to create a type '

gasz

'
resource for a 512 KB graphics client heap.

Listing 2-1

Creating a

'gasz'

 resource

resource 'gasz' (0) {

 0x00080000 /* 512KB graphics client heap */

};

The

GXNewGraphicsClient

 function is described on page 2-19

.

 The

GXEnterGraphics

 function is described on page 2-22.

Explicit Creation 2

If you want to specify the characteristics of the graphics client heap, you can use the

GXNewGraphicsClient

 function explicitly to create a graphics client.

The

GXNewGraphicsClient

 function has parameters that specify the heap’s starting
memory location,

memory size

 in bytes, and whether or not QuickDraw GX is permitted
to later increase the heap’s size by allocating additional memory blocks. The graphics
client stores the data passed by the

GXNewGraphicsClient

 function, but does not
allocate memory to the heap. This requires the

GXEnterGraphics

 function call.

Most applications should allow QuickDraw GX to select the memory starting location by
passing

nil

 for the

memoryStart

 parameter. If you need to specify the memory
starting location, see the section “Specifying the Starting Location of a Graphics Client”
beginning on page 2-14.

If you pass zero for the

memoryLength

 parameter, QuickDraw GX looks for a resource
of type

'gasz'

 with an ID of 0 and uses the first long word of that resource as the heap
size (the number of bytes to allocate). If your application does not provide this resource,
QuickDraw GX version 1.0 uses a default size of 600 KB. Alternatively, you can specify
the requested heap size in bytes. To determine how many bytes to specify for your
graphics client heap, see the next section. The '

gasz

' resource is described in the
previous section.

C H A P T E R 2

QuickDraw GX Memory Management

Using Graphics Clients and Graphics Client Heaps

2-7

2

Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

If you pass zero for the attribute parameter, QuickDraw GX can later add additional
memory blocks to the heap when more memory is required. If the

attribute

parameter has value 1, indicating the

gxStaticHeapConstant

 constant, QuickDraw
GX cannot add more memory blocks to the graphics client heap allocated.

Once a graphics client is created, you use the

GXEnterGraphics

 function to allocate
memory for its heap. If you don’t explicitly make the call, QuickDraw GX implicitly calls
the

GXEnterGraphics

 function for you when it executes the next function that requires
a graphics client heap. Almost all QuickDraw GX functions require a graphics client
heap. The exceptions are given in the section “Functions That Do Not Require a Graphics
Client or Heap” beginning on page 2-14.

Listing 2-2 shows how to explicitly create a graphics client and allocate 10 KB of memory
for its heap. Since the

attribute

 parameter is 0, QuickDraw GX performs its default
behavior to add

memory blocks

 to the graphics client heap created, as required. For
example, additional memory may be required as your application creates new objects.
You should allocate your graphics client at the beginning of your application and poll for
errors to ensure that the graphics client is allocated.

Listing 2-2

Explicitly creating a graphics client and its heap

gxGraphicsClient newClient;

long graphicsHeapSizeRequested = 50K; // 50K GX heap

newClient = GXNewGraphicsClient(nil, graphicsHeapSizeRequested

* 1024,OL);

// After we attempted to create the graphics client, we need to

// determine if the call succeeded. If the call did not (as in

// the case for all GX functions), “newClient” will be nil. If

// it is, we alert the user to the problem, Otherwise, we will

// attempt to allocate the GX heap.

if (newClient) {

GXEnterGraphiccs();

// Calling GXEnterGraphics allocates the memory within the GX

// heap. The call would fail only if there is not enough

// memory. In this case, the graphics error posted is -27999

// (out of memory). At this point, we have not installed an

// error handler, so we check for the error number

// corresponding to the out-of-memory error.

C H A P T E R 2

QuickDraw GX Memory Management

2-8

Using Graphics Clients and Graphics Client Heaps

if (GXGetGraphicsError(nil) == -27999) {

// Because we cannot allocate the requested size for our GX

// heap, we need to throw away the client we created and alert

// the user that there is not enough memory to continue.

GXDisposeGraphicsClient(newClient);

>> application code to alert user and shut down app

} else {

// Application error code to tell the user there is not enough

// memory to create the graphics client. No error is

// posted from GX because a graphics client does not

// exist. The only reason you would not be able to create

// a graphics client is if there is not enough memory.

>> application code to alert user and shut down app

Determining Memory Requirements for a Graphics Client Heap 2

Using the optimal heap size increases the performance of your application. If your
application does not allocate sufficient memory, QuickDraw GX will need to add
additional memory blocks to the initial graphics client heap. If your heap is sized too
large, you are wasting memory space.

You can use the QuickDraw GX GraphicsBug utility to check the actual size of your
graphics client heap to ensure that your application has allocated sufficient, but not
excessive, memory. Once you determine the optimal graphics client heap size for your
application, you can specify this size at the beginning of your application by using the

GXNewGraphicsClient

 function.

You can use the following procedure to determine the memory requirements of your
graphics client heap:

1. Start your application with the

GXNewGraphicsClient

 function and specify a
memory size, such as 1 MB.

2. Run your application and create a document. QuickDraw GX allocates or deallocates
memory blocks to a size that it deems necessary and sufficient to accommodate the
number and complexity of the objects you have created.

C H A P T E R 2

QuickDraw GX Memory Management

Using Graphics Clients and Graphics Client Heaps

2-9

2

Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

3. Use the Heap Total (

HT

) GraphicsBug command to determine the memory size that
QuickDraw GX is currently using. This is the size of the graphics client heap.

4. Use the

GXNewGraphicsClient

 function to specify the size of the QuickDraw GX
graphics client heap to accommodate the actual memory required.

Repeat these steps varying the size of the document used in step 2.

By running your application with what you would consider to be a document of average
size and then with a document of large size, you can arrive at an optimum graphics
client heap size that is probably somewhere between these two heap sizes. One
important consideration is to ensure that your largest objects have sufficient memory
allocated for the graphics client heap that they reside in. This is because an object cannot
be split into multiple memory blocks in the heap.

Because QuickDraw GX can grow the heap to accommodate the needs of your
application, you don’t need to allocate sufficient space for your largest document.
Assuming you have not passed the

gxStaticHeapClient

 attribute to

GXNewGraphicsClient

. This procedure provides only a preliminary evaluation of the
memory requirements for your application.

For additional information on how to use the GraphicsBug utility, see the section
“Debugging With GraphicsBug” in the chapter “QuickDraw GX Debugging,” in this
book.

Disposing of a Graphics Client and Graphics Client Heap 2

When your application no longer needs a graphics client and its heap, you should

dispose

 of them to free memory blocks. You can use the

GXExitGraphics

 and

GXDisposeGraphicsClient

 functions to do this.

While you are writing and debugging your application, it is a good idea to be meticulous
about disposing of all graphics clients and graphics client heaps at the end of your
application. As a result, you should use the

GXExitGraphics

 function to dispose of the
currently active graphics client heap and the

GXDisposeGraphicsClient

 function to
dispose of each active graphics client. If your application does not make these calls,
QuickDraw GX automatically disposes of all graphics clients and heaps that belong to
the exiting application. However, in this case, the graphics clients and heaps are
considered aborted instead of being disposed of normally, and therefore QuickDraw GX
does not report any errors that occur during the process of disposing of these graphics
clients and heaps. Listing 2-3 shows how to properly dispose of a graphics client and its
heap.

C H A P T E R 2

QuickDraw GX Memory Management

2-10

Additional Memory Management Topics

Listing 2-3 Disposing of graphics clients and graphics client heaps

.

. /* QuickDraw GX application code */

.

GXExitGraphics(void);

GXDisposeGraphicsClient(client);

}

Once your application is ready to ship, be sure to remove the terminating
GXExitGraphics and GXDisposeGraphicsClient function calls and rely on
QuickDraw GX to automatically dispose of all of your graphics clients and their heaps
for your exiting application. When your application quits, it is much faster for
QuickDraw GX to throw away all of the graphics clients and their graphics client heaps,
rather than to dispose of each of them sequentially. This approach is analogous to
quitting an application rather than taking the extra time to close multiple application
windows.

The GXExitGraphics function is described on page 2-23. The GXDisposeGraphics
function is described on page 2-21.

Additional Memory Management Topics 2

This section describes some additional memory management topics. Your application
can supplement QuickDraw GX automatic memory management operations to

■ respond to low-memory conditions

■ load and unload objects

■ work with graphics clients and graphics client heaps

Low-Memory Conditions 2
QuickDraw GX may post memory-related errors, warnings, and notices while trying to
allocate additional memory. These notifications indicate the status of QuickDraw GX
memory management operations and, in some cases, provide the opportunity for your
application to respond accordingly.

C H A P T E R 2

QuickDraw GX Memory Management

Additional Memory Management Topics 2-11

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Freeing Up Already Allocated Memory 2

When QuickDraw GX needs one or more additional memory blocks for a graphics client
heap, it responds to the situation by performing one or more of the following sequential
steps. If insufficient memory is freed in one step, QuickDraw GX proceeds to the next
step in the sequence. When sufficient memory blocks are freed, QuickDraw GX allocates
the memory blocks and processing continues. QuickDraw GX memory management
steps 1 through 4 affect memory blocks that have already been allocated.

1. QuickDraw GX disposes of dead caches: A QuickDraw GX cache is temporary
memory used by QuickDraw GX. A cache that contains out of date, and therefore
invalid, information is called a dead cache. If it disposes of dead caches, QuickDraw
GX posts a disposed_dead_caches notice in the debugging init when the
operation is complete. This notice is posted once per graphics client. This notice is a
one-time-only alert indicating that your graphics client heap is low on memory.

2. QuickDraw GX unloads objects in pictures that have the gxDiskShape shape
attribute: All of the objects within the picture are unloaded before any other objects
are unloaded. The picture object is not unloaded. The gxDiskShape shape attribute
is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

3. QuickDraw GX disposes of live caches: A QuickDraw GX cache that contains current
valid drawing information is called a live cache. After live caches are disposed of,
they need to be rebuilt before the next time you draw the object. QuickDraw GX posts
a disposed_live_caches notice in the debugging init when the operation is
complete. This notice is only posted once per graphics client. This notice is a
one-time-only alert indicating that your graphics client heap is low on memory.

4. QuickDraw GX relocates bit images: Bit images are moved in memory in order to free
memory space adjacent to them. No memory error, warning, or notice is posted to
notify you of this step.

Allocating New Memory and Unloading Objects 2

If QuickDraw GX has not released sufficient memory after step 4, it attempts to add
additional memory blocks to the graphics client heap. If sufficient memory is not
available after step 5, QuickDraw GX begins to unload objects to disk storage.

5. QuickDraw GX adds additional memory blocks: QuickDraw GX adds additional
memory blocks to the graphics client heap. Prior to adding memory blocks,
QuickDraw GX posts an about_to_grow_heap warning. If the
gxStaticHeapClient attribute is set for the graphics client heap, QuickDraw GX
does not perform this step.

6. QuickDraw GX unloads objects: Prior to unloading objects, QuickDraw GX posts an
about_to_unload_objects warning. First, shapes with the gxDiskShape shape
attribute are unloaded. Then, objects without either the gxDiskShape or the
gxMemoryShape attributes are unloaded. Finally, shapes with the gxMemoryShape
attribute are unloaded. Unlike disposing of caches, unloading occurs without
information loss, but it does take time and disk space. For additional information
about object loading and unloading, see the section “Loading and Unloading Objects”
beginning on page 2-12. If an object cannot be unloaded, QuickDraw GX posts a
could_not_create_backing_store error or the appropriate system error.

C H A P T E R 2

QuickDraw GX Memory Management

2-12 Additional Memory Management Topics

When your application has received the about_to_grow_heap warning or the
could_not_create_backing_store error, you can decide to free up some memory
before GX does. However, you must be very careful if you decide to dispose of a GX
object. You cannot dispose of anything that is currently in use. The only way to
determine if something is in use would be by carefully tracking the GX objects used
within your application. Most likely, you would only want to dispose of off-screen
worlds used by your application and let GX free up memory by releasing other blocks.
GX knows what is and is not busy.

If steps 1 through 6 fail to release sufficient memory to accommodate the allocation of
the required additional blocks of memory, QuickDraw GX posts an out_of_memory
error.

Functions That Create Additional Memory Demands 2

Individual QuickDraw GX functions have different memory-allocation consequences:

■ Many QuickDraw GX functions explicitly allocate memory. For example, the
GXNewShape, GXCopyToShape, and GetShapeParts functions allocate memory.
An out_of_memory error may be posted when a memory allocation fails.

■ Most QuickDraw GX functions can implicitly allocate memory to load a required
object. For example, the GXGetShapeAttributes function may need to load a
shape into memory to retrieve its attributes. QuickDraw GX loads objects
automatically and does not post an error, warning, or notice. The exception is when
QuickDraw GX posts an out_of_memory error when a memory allocation fails or a
disk error occurs.

■ Some functions do not allocate memory explicitly or implicitly. These functions might
require a graphics client heap and do not post an out_of_memory error. These
include math routines, error routines, and the GXCloneObject, GXDispose Object,
GXUnload Object, GXValidate Object function sets and all of the functions listed in
the second part of Table 2-1 on page 2-14.

The GraphicsBug utility is useful in debugging memory problems. This utility is
described in the chapter “QuickDraw GX Debugging” in this book.

QuickDraw GX errors, warnings, and notices are described in the chapter “Errors,
Warnings, and Notices” in this book.

Loading and Unloading Objects 2
If your application needs more memory during execution, QuickDraw GX automatically
unloads objects to disk storage to free memory. QuickDraw GX automatically reloads
previously unloaded objects when it needs them.

C H A P T E R 2

QuickDraw GX Memory Management

Additional Memory Management Topics 2-13

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

QuickDraw GX only begins to unload objects after it has failed to free sufficient memory
by disposing of dead caches, unloading picture shape objects, disposing of live caches,
relocating bit images, and adding additional memory blocks to the graphics client heap.
Unless you choose to control loading and unloading of objects to memory, QuickDraw
GX performs these tasks for you automatically. Your application never needs to load or
unload an object.

The order in which QuickDraw GX automatically loads and unloads objects depends
upon the objects’ shape attributes. QuickDraw GX first unloads shape objects with the
gxDiskShape attribute. QuickDraw GX then unloads shapes without special attributes,
style, ink, transform, color set, color profile, and tag objects. Finally, after all other objects
are unloaded, QuickDraw GX unloads objects with the gxMemoryShape attribute.

You can use the GXSetShapeAttribute function to set or clear an object’s shape
attribute and the GXGetShapeAttribute function to determine which attributes of a
shape object are set. Shape attributes are described in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

Objects are unloaded to a temporary file created on the startup disk in the invisible
temporary items folder. When an object is unloaded, a 4-byte stub remains in memory to
describe the location of each object on disk so that it can be reloaded when required.
Sufficient disk storage space must be available to accommodate all of the objects that are
unloaded or a file system error is posted.

You can supplement QuickDraw GX automatic loading and unloading operations by
using function calls. These functions may be useful in increasing application
performance. For example, a multimedia application with time-critical processing may
need to control specific objects to ensure that they are resident in memory when they are
to be displayed and removed from memory when they are no longer required.

You can use the GXUnloadShape function to move a shape from memory to disk
storage and the GXLoadShape function to move a shape from disk storage to memory.
QuickDraw GX provides loading and unloading functions for shape, style, ink,
transform, color set, color profile, and tag objects.

When you unload an object, QuickDraw GX always first disposes of all of the live and
dead caches for the object.

A recommended approach is to initially write your application without the use of object
loading and unloading functions. Then, experiment with loading and unloading
functions to improve performance.

The QuickDraw GX loading and unloading functions are described in the section
“Loading and Unloading Objects” beginning on page 2-26.

When objects are loaded and unloaded by QuickDraw GX is discussed in the section
“Low-Memory Conditions” beginning on page 2-10.

C H A P T E R 2

QuickDraw GX Memory Management

2-14 Additional Memory Management Topics

Functions That Do Not Require a Graphics Client or Heap 2
Almost all QuickDraw GX functions require both a graphics client and a graphics client
heap to execute. Table 2-1 lists the functions that either do not require a graphics client or
require a graphics client but not its heap to execute.

Specifying the Starting Location of a Graphics Client 2
If you use the GXNewGraphicsClient function to specify the starting location of a new
graphics client, you must also specify the requested size of the graphics client heap. In
this case, the size in bytes of the graphics client heap requested is used for a contiguous
block of memory for both the graphics client and heap. In all other cases, the graphics
client heap is allocated as a discontiguous memory block and the entire memory
allocation requested by specifying a memoryLength parameter for the
GXNewGraphicsClient function is assigned to the new graphics client heap.

Use the GXNewGraphicsClient function if you need to create a graphics client without
allocating any memory. This allows you to draw at interrupt time. For example, you may
want to report out_of_memory errors in a dialog box.

Table 2-1 QuickDraw GX functions that do not require a graphics client or heap

Memor y requirements Function

graphics client not required GXValidateGraphicsClient
GXGetUserGraphicsDebug
GXSetUserGraphicsDebug
GXNewGraphicsClient
GXGetGraphicsClient
GXSetGraphicsClient
GXDisposeGraphicsClient
GXGetGraphicsClients
GXGetConvertQDFont
GXSetConvertQDFont

graphics client required;
graphics client heap not required

All of the functions described in the chapter
“Errors, Warnings, and Notices” (excluding the
application-defined functions)

All of the functions described in the chapter
“QuickDraw GX Mathematics”

GXSetValidation
GXGetValidation
GXSetValidationError
GXGetGraphicsPollingHandler
GXSetGraphicsPollingHandler
GXEnterGraphics

C H A P T E R 2

QuickDraw GX Memory Management

Additional Memory Management Topics 2-15

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Listing 2-4 demonstrates how to specify a memory size and a memory starting location
for a graphics client and its heap.

Listing 2-4 Specifying the starting location and size for a graphics client and its heap

gxGraphicsClient newClient;

char memoryBuffer[10000]

newClient = GXNewGraphicsClient(&memoryBuffer[0],

sizeof (memoryBuffer),

gxNoAttributes);

// After we attempted to create the graphics client, we need

// to determine if the call succeeded.If it did not (as in the

// case for all GX functions), “newClient” will be nil. If it

// is, we alert the user to the problem. Otherwise, we attempt

// to allocate the GX heap.

if (newClient)

GXEnterGraphics();

// Calling GXEnterGraphics allocates the memory within the GX

// heap. The only reason the call would not succeed is if

// there is not enough memory. In this case, the graphics

// error which is posted is -27999 (out of memory). At this

// point, we have not installed an error handler, so we check

// for the error number corresponding to the out-of-memory

// error.

if (GXGetGraphicsError(nil) == -27999) {

// Because we canot allocate the requested size for our GX

// heap, we need to throw away the client we created and alert

// the user that there is not enough memory to continue..

//

GXDisposeGraphicsClient(newClient);

>>application code to alert user and shut down app

} else {

>>application code to alert user and shut down app

}}

C H A P T E R 2

QuickDraw GX Memory Management

2-16 Additional Memory Management Topics

The myClient variable holds the new graphics client. You can use this variable to access
the graphics client any time you need it. The combined size of the graphics client and the
graphics client heap is 10 KB and its starting location in memory is at the starting
location of the buffer. Since the memory starting location is specified, the new graphics
client and its heap use contiguous memory, as shown in Figure 2-1.

Figure 2-1 Creating a graphics client by specifying the memory starting location

Working With Multiple Graphics Clients 2
The exceptional QuickDraw GX application may need multiple graphics clients to
provide special features. For example, an application may want to create multiple
graphics clients to provide a QuickDraw GX environment with

■ segmented memory to allow some sets of objects to have more memory than others

■ different error states so that one state would have an error condition and the other
would have a normal condition.

Starting
location

Allocated
memory size

0xFFFF

0x0000

Graphics client

Graphics client heap

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-17

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Another example is a QuickDraw GX application that needs to display a dialog box to
convey status information while continuing to perform other tasks. By using separate
graphics clients for the dialog box and the other task-oriented part of the application,
you can guarantee that QuickDraw GX will not affect the memory being used for the
dialog box.

Two disadvantages of having multiple graphics clients are that

■ objects cannot be shared between graphics clients

■ memory may become fragmented as the memory size grows

Without object sharing, if an object is to be used by more than one graphics client, the
object must be duplicated and this requires additional memory overhead. Fragmented
memory results from QuickDraw GX objects being initially allocated to a large block
of memory and subsequent addition of multiple discontiguous memory blocks.

If you are going to have multiple graphics clients, you must explicitly create them using
the GXNewGraphicsClient and GXEnterGraphics functions. This assures that a
reference is returned for each new graphics client. If you allow QuickDraw GX to
implicitly create a graphics client, QuickDraw GX has no way of returning a reference.

The GXGetGraphicsClient , GXGetGraphicsClient s, and
GXSetGraphicsClient functions allow you to work with the graphics clients that you
create.

You can use the GXGetGraphicsClient s function to return some or all of the graphics
client references that have been allocated by QuickDraw GX. The
GXGetGraphicsClient s function is described on page 2-25.

You can use the GXSetGraphicsClient function to change the active graphics client
for your application and the GXGetGraphicsClient function to return the active
graphics client for your application. These functions may be used prior to calling
GXEnterGraphics and GXExitGraphics to specify the active graphics client.
The GXSetGraphicsClient function is described on page 2-26 and the
GXGetGraphicsClient s function is described on page 2-25.

Creating graphics clients and graphics client heaps explicitly is described in the section
“Explicit Creation” beginning on page 2-6.

QuickDraw GX Memory Management Reference 2

This section describes the constants, data types, and functions related to QuickDraw GX
memory management. The section “Constants and Data Types” gives the type definition
of the graphics client and the graphics client attributes enumeration. The section
“Functions” describes the functions used for creating and disposing of a graphics client,
working with multiple graphics clients, and loading and unloading objects.

C H A P T E R 2

QuickDraw GX Memory Management

2-18 QuickDraw GX Memory Management Reference

Constants and Data Types 2

This section describes the constants and data types that are used for memory
management.

Graphics Client Object 2

QuickDraw GX provides you with access to the graphics client object through a graphics
client reference:

typedef struct gxPrivateGraphicsClientRecord *gxGraphicsClient;

In this type definition, gxGraphicsClient is a type-checked reference, not an actual
pointer to any defined structure. The contents of the graphics client object are private.

Graphics Client Attributes 2

The options for the attribute parameter of the GXNewGraphicsClient function are
defined in the gxClientAttributes enumeration:

enum gxClientAttributes {

gxStaticHeapClient= 0x0001

};

typedef long gxClientAttribute;

Constant descriptions

gxStaticHeapClient
QuickDraw GX will never add additional memory blocks to the
graphics client heap.

A graphics client having a gxClientAttributes value of 0 may add additional
memory blocks to its heap, as required. This is the standard default behavior.

For additional information, see the section “Creating a Graphics Client and Its Graphics
Client Heap” beginning on page 2-5. The GXNewGraphicsClient function is described
on page 2-19.

Functions 2

This section describes the Quickdraw GX functions you can use to

■ create and dispose of graphics clients

■ allocate and dispose of graphics client heaps

■ load and unload objects

■ work with multiple graphics clients

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-19

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Creating and Disposing of a Graphics Client 2

This section describes the QuickDraw GX functions you can use to

■ create a new graphics client

■ dispose of a graphics client

GXNewGraphicsClient 2

You can use the GXNewGraphicsClient function to create a new graphics client.

gxGraphicsClient GXNewGraphicsClient(void *memoryStart,

long memoryLength, gxClientAttribute attribute);

memoryStart
A pointer to the memory location where the new graphics client will
begin.

memoryLength
The requested size in bytes of the QuickDraw GX graphics client heap.

attribute The attributes flag set for the new graphics client.

function result A reference to the new graphics client object.

DESCRIPTION

The GXNewGraphicsClient function creates a new graphics client and makes it the
active graphics client for this application. The graphics client specifies the memory
location, the size in bytes, and the attributes of its graphics client heap. When additional
memory blocks are allocated to the graphics client heap, their locations and sizes are also
stored in the graphics client. The GXNewGraphicsClient function does not allocate
memory for the graphics client heap. Calling the GXEnterGraphics functionallocates
the heap.

If you are going to make a GXNewGraphicsClient call, it must be the first QuickDraw
GX call in your application. Otherwise, a Quickdraw GX call may implicitly create the
first graphics client and any subsequent GXNewGraphicsClient call creates another
graphics client. If you want to create multiple graphics client objects, you can call this
routine several times.

The memoryStart parameter specifies the starting location in memory for the graphics
client and its graphics client heap. If you specify nil , QuickDraw GX selects the location
for you. This is the most common selection. Since QuickDraw GX is managing memory,
it selects what it believes is the optimum location in memory for the new graphics client.
However, in the rare case in which you need to specify the memory location, you can use

C H A P T E R 2

QuickDraw GX Memory Management

2-20 QuickDraw GX Memory Management Reference

the memoryStart parameter to specify the exact location of the graphics client. If you
specify the memoryStart parameter, you must also specify the memoryLength
parameter.

The memoryLength parameter specifies the size of the heap in bytes. If you pass 0 and
there is no 'gasz ' resource, QuickDraw GX version 1.0 creates a graphics client with a
default heap size of 600 KB. If there is a 'gasz' resource, QuickDraw GX uses its size
value instead.

The attributes parameter is a flag from the gxClientAttributes enumeration that
defines whether QuickDraw GX will or will not add additional memory blocks to the
newly defined, but not allocated, graphics client heap. A flag of default value 0 indicates
that QuickDraw GX may add memory blocks to the graphics client heap, as required. A
flag of value 1 is the gxStaticHeapClient constant and indicates that QuickDraw GX
will never add memory blocks to the initially allocated graphics client heap.

If QuickDraw GX is unable to create a graphics client, there probably is not sufficient
memory. As a result, the function returns nil . Note that QuickDraw GX does not post
an error since there is no graphics client to post the error to.

SPECIAL CONSIDERATIONS

If no error results, the GXNewGraphicsClient function creates a graphics client object;
you are responsible for disposing of that object when you no longer need it.

SEE ALSO

The use of the GXNewGraphicsClient function to create a new graphics client is
described in the section “Creating a Graphics Client and Its Graphics Client Heap”
beginning on page 2-5.

To determine the correct size of the memory for your graphics client, see the section
“Determining Memory Requirements for a Graphics Client Heap” beginning on page 2-8.

The gxClientAttribute enumeration is described in the section “Graphics Client
Attributes” beginning on page 2-18.

QuickDraw GX functions that do not require a graphics client or a graphics client heap
are described in the section “Functions That Do Not Require a Graphics Client or Heap”
beginning on page 2-14.

If you need to specify the memory starting location of the graphics client and its graphics
client heap, see the section “Specifying the Starting Location of a Graphics Client”
beginning on page 2-14.

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-21

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

GXDisposeGraphicsClient 2

You can use the GXDisposeGraphicsClient function to dispose of a specific graphics
client.

void GXDisposeGraphicsClient(gxGraphicsClient client);

client A reference to the graphics client to be disposed of.

DESCRIPTION

The GXDisposeGraphicsClient function is the last QuickDraw GX call that an
application being debugged should make. It disposes of all the data structures associated
with the passed graphics client, including its heap. If the application does not make this
call, QuickDraw GX automatically disposes of all graphics clients that belong to the
exiting application. However, in this case the graphics clients are considered aborted
instead of being disposed of normally, and therefore QuickDraw GX does not report any
errors that occur during the process of disposing of these graphics clients.

SPECIAL CONSIDERATIONS

If your GXNewGraphicsClient call failed to create a graphics client and returned nil ,
this function accepts nil as a valid graphics client and disposes of the referenced
graphics client.

When your application is ready to ship, you should remove the terminating
GXDisposeGraphicsClient function and rely on QuickDraw GX to automatically
dispose of your graphics clients.

SEE ALSO

The role of the GXDisposeGraphicsClient function in disposing of a graphics client
is described in the section “Disposing of a Graphics Client and Graphics Client Heap”
beginning on page 2-9.

The GXNewGraphicsClient function is used to create a new graphics client from
memory and is described on page 2-19.

C H A P T E R 2

QuickDraw GX Memory Management

2-22 QuickDraw GX Memory Management Reference

Allocating and Disposing of a Graphics Client Heap 2

This section describes the QuickDraw GX functions you can use to

■ allocate a graphics client heap

■ obtain a list of all of the allocated graphics clients

■ dispose of a graphics client heap

GXEnterGraphics 2

You can use the GXEnterGraphics function to allocate memory for a QuickDraw GX
graphics client heap.

void GXEnterGraphics(void);

DESCRIPTION

The GXEnterGraphics function allocates memory for a graphics client heap and
initializes the default data structures. QuickDraw GX obtains the memory starting
location, memory length, and attributes for the new graphics client heap from the active
graphics client.

Normally, you never need to call GXEnterGraphics . You should call this function only
in the specific instance that you want to isolate the QuickDraw GX call to a specific part
of the application. You then usethe GXExitGraphics function to remove all memory
used by QuickDraw GX and then use the GXEnterGraphics function to begin using
QuickDraw GX memory again.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the GXEnterGraphics function to allocate memory to a graphics client is
described in the section “Creating a Graphics Client and Its Graphics Client Heap”
beginning on page 2-5.

The GXExitGraphics function deallocates memory for the QuickDraw GX graphics
client heap and removes the default data structures. This function is described in the
next section.

QuickDraw GX functions that do not require a graphics client or a graphics client heap
are described in the section “Functions That Do Not Require a Graphics Client or Heap”
beginning on page 2-14.

Errors
out_of_memory

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-23

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

GXExitGraphics 2

You can use the GXExitGraphics function to dispose of the default structures and the
active QuickDraw GX graphics client heap.

void GXExitGraphics(void);

DESCRIPTION

The GXExitGraphics function disposes of all of the default data structures that you
have created in your QuickDraw GX application and disposes of the active graphics
client heap. If a notice handler routine has been installed, it is called to report any objects
allocated by the application that have not been disposed of.

Normally, you never need to call the GXExitGraphics function if you use the
GXDisposeGraphicsClient function.

SPECIAL CONSIDERATIONS

In the debugging version of QuickDraw GX, you can call the GXExitGraphics
function if you want to confirm that all QuickDraw GX objects that you allocated have
been disposed of.

When your application is ready to ship, you should remove the terminating
GXExitGraphics function and rely on QuickDraw GX to automatically dispose of your
graphics client heaps.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The role of the GXExitGraphicsClient function in disposing of a graphics client heap
is described in the section “Disposing of a Graphics Client and Graphics Client Heap”
beginning on page 2-9.

The GXDisposeGraphicsClient function is described on page 2-21.

The GXEnterGraphics function allocates memory for the QuickDraw GX graphics
client heap and initializes the default data structures. This function is described on
page 2-22.

Notices (deb ugging onl y)
shape_not_disposed
font_not_disposed
style_not_disposed
ink_not_disposed
transform_not_disposed
colorSet_not_disposed
colorProfile_not_disposed

C H A P T E R 2

QuickDraw GX Memory Management

2-24 QuickDraw GX Memory Management Reference

Working With Multiple Graphics Clients 2

This section describes the QuickDraw GX functions you can use to

■ return the active graphics client

■ change the active graphics client

GXGetGraphicsClient 2

You can use the GXGetGraphicsClient function to return the active graphics client to
your application.

gxGraphicsClient GXGetGraphicsClient(void);

function result The active graphics client.

DESCRIPTION

The GXGetGraphicsClient function returns the active graphics client. Each
application has its own active graphics client. The only way that the active graphics
client is changed within an application is when the application calls the
GXSetGraphicsClient function or when a new graphics client is created by
the GXNewGraphicsClient call.

SEE ALSO

For additional information about graphics clients, see the section “About QuickDraw GX
Memory Management” beginning on page 2-3.

Multiple graphics clients are discussed in the section“Working With Multiple Graphics
Clients” beginning on page 2-16.

The GXGetGraphicsClients function returns all or some of the graphics clients that
have been allocated by QuickDraw GX. This function is described in the next section.

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-25

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

GXGetGraphicsClients 2

You can use the GXGetGraphicsClients function to list all of the graphics clients that
have been allocated by QuickDraw GX.

long GXGetGraphicsClients(long index, long count,

gxGraphicsClient clients[]);

index The one-based index into the list of all graphics clients that indicates the
first client to return.

count The number of graphics clients to be returned.

clients An array of graphics client references. On return, the array contains
references to the allocated graphics clients.

function result The number of graphics clients returned.

DESCRIPTION

The GXGetGraphicsClients function copies the graphics client references specified
by the index and count parameters into the array. It will return the graphics clients
that are owned by other applications in addition to the ones owned by the calling
application. Specifying the value 1 for the index parameter returns the first client.
Specifying the gxSelectToEnd constant for the count parameter returns all remaining
graphics clients, starting with the indexed graphics client. If nil is passed for the
clients parameter, no graphics clients are returned.

SEE ALSO

For additional information about graphics clients, see the section “About QuickDraw GX
Memory Management” beginning on page 2-3.

Multiple graphics clients are discussed in the section“Working With Multiple Graphics
Clients” beginning on page 2-16.

C H A P T E R 2

QuickDraw GX Memory Management

2-26 QuickDraw GX Memory Management Reference

GXSetGraphicsClient 2

You can use the GXSetGraphicsClient function to change the active graphics client
for your application.

void GXSetGraphicsClient(gxGraphicsClient client);

client A reference to the graphics client that is to become active.

DESCRIPTION

The GXSetGraphicsClient function can be used to switch to any of the graphics
clients that your application owns; it may not switch to graphics clients that other
applications own.

The active graphics client determines which QuickDraw GX graphics client heap to use
for subsequent QuickDraw GX calls. Note that if you create a QuickDraw GX object with
one graphics client active and switch to another one, you may not make calls that use the
object. This is because an object cannot be shared by graphics clients. The object must be
duplicated.

SEE ALSO

See the section“Working With Multiple Graphics Clients” beginning on page 2-16 for
more information about multiple graphics clients.

Loading and Unloading Objects 2

This section describes the functions you use to load objects from disk storage to memory
and to unload objects from memory to disk storage.

GXLoadShape 2

You can use the GXLoadShape function to load a shape into memory.

void GXLoadShape(gxShape target);

target A reference to the shape object to be loaded into memory.

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-27

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

DESCRIPTION

The GXLoadShape function moves a shape object from disk storage to the active
graphics client heap. When you or QuickDraw GX unload a shape object from memory
to disk storage using the GXUnloadShape function, QuickDraw GX creates a 4-byte
stub that remains in the active graphics client heap. When you use the GXLoadShape
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
shape object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the sections “Loading and
Unloading Objects” beginning on page 2-12.

The GXUnloadShape function is described in the next section.

GXUnloadShape 2

You can use the GXUnloadShape function to unload a shape from memory.

void GXUnloadShape(gxShape target);

target A reference to the shape object to be unloaded from memory.

DESCRIPTION

The GXUnloadShape function moves a shape object from the active graphics client heap
to disk storage. When you or QuickDraw GX use the GXUnloadShape function to
unload a shape object from memory to disk storage, QuickDraw GX stores its location in
a 4-byte stub in the active graphics client heap. When you use the GXLoadShape
function to reload the object from disk storage to memory, QuickDraw GX uses the stub
to find the stored shape object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

Errors
out_of_memory
shape_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-28 QuickDraw GX Memory Management Reference

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadShape function is described in the previous section.

GXLoadStyle 2

You can use the GXLoadStyle function to load a style into memory.

void GXLoadStyle(gxStyle target);

target A reference to the style object to be loaded into memory.

DESCRIPTION

The GXLoadStyle function moves a style object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload a style object from
memory to disk storage using the GXUnloadStyle function, QuickDraw GX creates a
4-byte stub that remains in the graphics client heap. When you use the GXLoadStyle
function to retrieve the stored style, QuickDraw GX obtains the location of the stored
style object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadStyle function is described in the next section.

Errors
out_of_memory
style_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-29

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

GXUnloadStyle 2

You can use the GXUnloadStyle function to unload a style from memory.

void GXUnloadStyle(gxStyle target);

target A reference to the style object to be unloaded from memory.

DESCRIPTION

The GXUnloadStyle function moves a style object from the active graphics client heap
to disk storage. When you or QuickDraw GX use the GXUnloadStyle function to
unload a style object from memory to disk storage, QuickDraw GX stores its location in a
4-byte stub in the active graphics client heap. When you use the GXLoadStyle function
to reload the object from disk storage to memory, QuickDraw GX uses the stub to find
the stored style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadStyle function is described in the previous section.

GXLoadInk 2

You can use the GXLoadInk function to load an ink into memory.

void GXLoadInk(gxInk target);

target A reference to the ink object to be loaded into memory.

DESCRIPTION

The GXLoadInk function moves an ink object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload an ink object from
memory to disk storage using the GXUnloadInk function, QuickDraw GX creates a

Errors
out_of_memory
style_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-30 QuickDraw GX Memory Management Reference

4-byte stub that remains in the graphics client heap. When you use the GXLoadInk
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
ink object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadInk function is described in the next section.

GXUnloadInk 2

You can use the GXUnloadInk function to unload an ink from memory.

void GXUnloadInk(gxInk target);

target A reference to the ink object to be unloaded from memory.

DESCRIPTION

The GXUnloadInk function moves an ink object from the active graphics client heap to
disk storage. When you or QuickDraw GX use the GXUnloadInk function to unload an
ink object from memory to disk storage, QuickDraw GX stores its location in a 4-byte
stub in the active graphics client heap. When you use the GXLoadInk function to reload
the object from disk storage to memory, QuickDraw GX uses the stub to find the stored
ink object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
ink_is_nil

Errors
out_of_memory
ink_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-31

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadInk function is described in the previous section.

GXLoadTransform 2

You can use the GXLoadTransform function to load a transform into memory.

void GXLoadTransform(gxTransform target);

target A reference to the transform object to be loaded into memory.

DESCRIPTION

The GXLoadTransform function moves a transform object from disk storage to the
active graphics client heap of your application. When you or QuickDraw GX unload a
transform object from memory to disk storage using the GXUnloadTransform function,
QuickDraw GX creates a 4-byte stub that remains in the graphics client heap. When you
use the GXLoadTransform function to retrieve the stored object, QuickDraw GX
obtains the location of the stored transform object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadTransform function is described in the next section.

Errors
out_of_memory
transform_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-32 QuickDraw GX Memory Management Reference

GXUnloadTransform 2

You can use the GXUnloadTransform function to unload a transform from memory.

void GXUnloadTransform(gxTransform target);

target A reference to the transform object to be unloaded from memory.

DESCRIPTION

The GXUnloadTransform function moves a transform object from the active graphics
client heap to disk storage. When you or QuickDraw GX use the GXUnloadTransform
function to unload a transform object from memory to disk storage, QuickDraw GX
stores its location in a 4-byte stub in the active graphics client heap. When you use the
GXLoadTransform function to reload the object from disk storage to memory,
QuickDraw GX uses the stub to find the stored transform object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadTransform function is described in the previous section.

GXLoadColorSet 2

You can use the GXLoadColorSet function to load a color set into memory.

void GXLoadColorSet(gxColorSet target);

target A reference to the color set object to be loaded into memory.

Errors
out_of_memory
transform_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-33

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

DESCRIPTION

The GXLoadColorSet function moves a color set object from disk storage to the active
graphics client heap of your application. When you or QuickDraw GX unload a color set
object from memory to disk storage using the GXUnloadColorSet function,
QuickDraw GX creates a 4-byte stub that remains in the graphics client heap. When you
use the GXLoadColorSet function to retrieve the stored object, QuickDraw GX obtains
the location of the stored color set object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadColorSet function is described in the next section.

GXUnloadColorSet 2

You can use the GXUnloadColorSet function to unload a color set from memory.

void GXUnloadColorSet(gxColorSet target);

target A reference to the color set object to be unloaded from memory.

DESCRIPTION

The GXUnloadColorSet function moves a color set object from the active graphics
client heap to disk storage. When you or QuickDraw GX use the GXUnloadColorSet
function to unload a color set object from memory to disk storage, QuickDraw GX stores
its location in a 4-byte stub in the active graphics client heap. When you use the
GXLoadColorSet function to reload the object from disk storage to memory,
QuickDraw GX uses the stub to find the stored color set object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
color_set_is_nil

Errors
out_of_memory
color_set_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-34 QuickDraw GX Memory Management Reference

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadColorSet function is described in the previous section.

GXLoadColorProfile 2

You can use the GXLoadColorProfile function to load a color profile into memory.

void GXLoadColorProfile(gxColorProfile target);

target A reference to the color profile object to be loaded into memory.

DESCRIPTION

The GXLoadColorProfile function moves a color profile object from disk storage to
the active graphics client heap of your application. When you or QuickDraw GX unload
a color profile object from memory to disk storage using the GXUnloadColorProfile
function, QuickDraw GX creates a 4-byte stub that remains in the graphics client heap.
When you use the GXLoadColorProfile function to retrieve the stored object,
QuickDraw GX obtains the location of the stored color profile object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadColorProfile function is described in the next section.

Errors
out_of_memory
color_profile_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-35

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

GXUnloadColorProfile 2

You can use the GXUnloadColorProfile function to unload a color profile from
memory.

void GXUnloadColorProfile(gxColorProfile target);

target A reference to the color profile object to be unloaded from memory.

DESCRIPTION

The GXUnloadColorProfile function moves a color profile object from the active
graphics client heap to disk storage. When you or QuickDraw GX use the
GXUnloadColorProfile function to unload a color profile object from memory to disk
storage, QuickDraw GX stores its location in a 4-byte stub in the active graphics client
heap. When you use the GXLoadColorProfile function to reload the object from disk
storage to memory, QuickDraw GX uses the stub to find the stored color profile object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadColorProfile function is described in the previous section.

GXLoadTag 2

You can use the GXLoadTag function to load a tag into memory.

void GXLoadTag(gxTag target);

target A reference to the tag object to be loaded into memory.

Errors
out_of_memory
color_profile_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-36 QuickDraw GX Memory Management Reference

DESCRIPTION

The GXLoadTag function moves a tag object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload a tag object from
memory to disk storage using the GXUnloadTag function, QuickDraw GX creates a
4-byte stub that remains in the graphics client heap. When you use the GXLoadTag
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
tag object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadTag function is described in the next section.

GXUnloadTag 2

You can use the GXUnloadTag function to unload a tag from memory.

void GXUnloadTag(gxTag target);

target A reference to the tag object to be unloaded from memory.

DESCRIPTION

The GXUnloadTag function moves a tag object from the active graphics client heap to
disk storage. When you or QuickDraw GX use the GXUnloadTag function to unload a
tag object from memory to disk storage, QuickDraw GX stores its location in a 4-byte
stub in the active graphics client heap. When you use the GXLoadTag function to reload
the object from disk storage to memory, QuickDraw GX uses the stub to find the stored
tag object.

Errors
out_of_memory
tag_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX Memory Management Reference 2-37

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadTag function is described in the previous section.

Errors
out_of_memory
tag_is_nil

C H A P T E R 2

QuickDraw GX Memory Management

2-38 Summary of QuickDraw GX Memory Management

Summary of QuickDraw GX Memory Management 2

Constants and Data Types 2

Graphics Client Object

typedef struct gxPrivateGraphicsClientRecord *gxGraphicsClient;

Graphics Client Attributes

enum gxClientAttributes {

gxStaticHeapClient = 0x0001

};

typedef long gxClientAttribute;

Functions 2

Creating and Disposing of a Graphics Client

gxGraphicsClient GXNewGraphicsClient
(void *memoryStart, long memoryLength,

gxClientAttribute attribute);

void GXDisposeGraphicsClient (gxGraphicsClient client);

Allocating and Disposing of a Graphics Client Heap

void GXEnterGraphics (void);

void GXExitGraphics (void);

Working With Multiple Graphics Clients

gxGraphicsClient GXGetGraphicsClient
(void);

long GXGetGraphicsClients (long index, long count,
gxGraphicsClient clients[]);

void GXSetGraphicsClient (gxGraphicsClient client);

C H A P T E R 2

QuickDraw GX Memory Management

Summary of QuickDraw GX Memory Management 2-39

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent

Loading and Unloading Objects

void GXLoadShape (gxShape target);

void GXUnloadShape (gxShape target);

void GXLoadStyle (gxStyle target);

void GXUnloadStyle (gxStyle target);

void GXLoadInk (gxInk target);

void GXUnloadInk (gxInk target);

void GXLoadTransform (gxTransform target);

void GXUnloadTransform (gxTransform target);

void GXLoadColorSet (gxColorSet target);

void GXUnloadColorSet (gxColorSet target);

void GXLoadColorProfile (gxColorProfile target);

void GXUnloadColorProfile (gxColorProfile target);

void GXLoadTag (gxTag target);

void GXUnloadTag (gxTag target);

Contents

3-1

C H A P T E R 3

3

Figure 3-0
Listing 3-0
Table 3-0

3 Errors, Warnings, and

Contents

Notices

About QuickDraw GX Errors, Warnings, and Notices 3-3
Non-Debugging Version 3-5

Errors 3-6
Warnings 3-10

Debugging Version 3-13
Errors 3-14
Warnings 3-25
Notices 3-27

Using Errors, Warnings, and Notices 3-30
Obtaining Errors, Warnings, and Notices 3-30
Changing the Error, Warning, or Notice Posted 3-35
Ignoring Warnings and Notices 3-37
Installing an Error, Warning, or Notice Handler 3-40

Errors, Warnings, and Notices Reference 3-42
Constants and Data Types 3-42

Errors 3-42
Warnings 3-50
Notices 3-53
Error, Warning, and Notice Number Ranges 3-55

Functions 3-56
Error Posting and Handling 3-56

GXGetGraphicsError

3-56

GXPostGraphicsError

3-57

GXSetUserGraphicsError

3-58

GXGetUserGraphicsError

3-59
Warning Posting and Handling 3-60

GXGetGraphicsWarning

3-60

C H A P T E R 3

3-2

Contents

GXPostGraphicsWarning

3-61

GXSetUserGraphicsWarning

3-62

GXGetUserGraphicsWarning

3-63

GXIgnoreGraphicsWarning

3-64

GXPopGraphicsWarning

3-65
Notice Posting and Handling 3-66

GXGetGraphicsNotice

3-66

GXPostGraphicsNotice

3-67

GXSetUserGraphicsNotice

3-68

GXGetUserGraphicsNotice

3-69

GXIgnoreGraphicsNotice

3-70

GXPopGraphicsNotice

3-71
Application-Defined Functions 3-72

MyUserGraphicsError

3-72

MyUserGraphicsWarning

3-73

MyUserGraphicsNotice

3-74
Summary of Errors, Warnings, and Notices 3-75

Constants and Data Types 3-75
Functions 3-75
Application-Defined Functions 3-76

C H A P T E R 3

About QuickDraw GX Errors, Warnings, and Notices

3-3

3

E

rrors, W
arnings, and N

otices

Errors, Warnings, and Notices 3

This chapter describes the errors, warnings, and notices that can be posted by
QuickDraw GX functions, and how you can manipulate them. In addition, this chapter
describes how you can use application-defined handlers to provide alternative or
complementary processing of errors, warnings, and notices. The reference sections of the

Inside Macintosh: QuickDraw GX

 books list the errors, warnings, and notices for each
function that they describe.

Before reading this chapter, you should be familiar with the information in the chapter
“Introduction to QuickDraw GX” in

Inside Macintosh: QuickDraw GX Objects

.

The errors, warnings, and notices and their related functions that are discussed in this
chapter pertain to the graphic and typography parts of QuickDraw GX and do not, in
general, apply to printing. For more information on printing errors, see

Inside Macintosh:
QuickDraw GX Printing

and

 Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

This chapter starts by introducing you to the errors, warnings, and notices provided in
the debugging and non-debugging versions of QuickDraw GX. It then shows you how
to use their related functions to

■

obtain the QuickDraw GX errors, warnings, and notices posted

■

change the QuickDraw GX errors, warnings, and notices posted

■

ignore QuickDraw GX warnings and notices

■

install application-defined error, warning, and notice handlers

This chapter also contains reference information for all data types, application-defined
handlers, and functions associated with QuickDraw GX errors, warnings, and notices.

About QuickDraw GX Errors, Warnings, and Notices 3

QuickDraw GX posts

errors

,

warnings

, or

notices

, depending upon the severity of the
problem that was detected when your application was running. The three types of
QuickDraw GX execution problems are

■

Errors.

 QuickDraw GX posts errors whenever a function in your application is unable
to execute. An error indicates that an operation cannot continue. Execution terminates
at the nonexecutable function. When an error is posted inside a QuickDraw GX
function, the function returns immediately with a function result (if any) of 0 or

nil

.

■

Warnings.

 QuickDraw GX posts warnings whenever your application executes a
function that doesn’t provide the result that you expect. Execution continues
internally, as if the warning had not been posted.

■

Notices.

 QuickDraw GX posts notices to alert you to the fact that it has performed an
unnecessary or redundant function. Execution continues as if the notice had not been
posted. Graphics notices are posted only in the debugging version of QuickDraw GX.

C H A P T E R 3

Errors, Warnings, and Notices

3-4

About QuickDraw GX Errors, Warnings, and Notices

In addition to the

posting

 of errors, warnings, and notices, QuickDraw GX supports
application-defined error, warning, and notice

handlers.

 You can use your own handlers
or QuickDraw GX’s errors, warnings, and notices either separately or together.

To obtain errors, warnings, and notices, either check for QuickDraw GX errors,
warnings, and notices or install your application’s error, warning, and notice handlers.
The use of error, warning, and notice handlers is a simple and efficient method of
managing errors, warnings, and notices. Error handlers are described in the section
“Installing an Error, Warning, or Notice Handler” beginning on page 3-40.

Figure 3-1 shows the relationship of the two problem-management approaches.

Figure 3-1

QuickDraw GX and application-defined error, warning, and notice management

There are two versions of QuickDraw GX.

■

Non-debugging version.

 This version of QuickDraw GX is intended for debugged
applications used by the end user. The number of QuickDraw GX errors and warnings
is limited. Notices are not posted. This version of QuickDraw GX is smaller and faster
than the debugging version.

■

Debugging version.

 This version of QuickDraw GX is intended for developers that
are writing and debugging new applications. This version provides an extensive set of
QuickDraw GX errors, warnings, and notices to assist in debugging and optimizing
the performance of your application. Special functions are provided to assist in the
posting, utilization, and control of debugging errors.

To determine if the debugging or non-debugging version is installed, use the

Gestalt

function described in the chapter “QuickDraw GX and the Macintosh Environment” in
this book.

QuickDraw GX
application

QuickDraw GX–defined
errors, warnings,

and notices

Application–defined
error, warning,

 and notice handlers

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices

3-5

3

E

rrors, W
arnings, and N

otices

QuickDraw GX posts most errors and warnings only in the debugging version.
The non-debugging version posts errors and warnings if the error could not be
anticipated at compile time—for example, running out of memory or disk space. You
should correct application problems that result in errors and warnings while developing
your application. The non-debugging version does not include most of the errors and
warnings that the debugging version provides.

QuickDraw GX non-debugging and debugging errors are defined by the

gxGraphicErrors

 enumeration given in the section “Errors” beginning on page 3-42.
QuickDraw GX non-debugging and debugging warnings are defined by the

gxGraphicWarnings

 enumeration given in the section “Warnings” beginning on
page 3-50. QuickDraw GX debugging notices are defined by the

gxGraphicNotices

enumeration given in the section “Notices” beginning on page 3-53.

Non-Debugging Version 3

When you install the non-debugging version, QuickDraw GX provides a reduced set of
errors and warnings. Since the amount of testing is less, the non-debugging version of
QuickDraw GX runs significantly faster than the debugging version. Use the
non-debugging version for debugged applications that you have extensively tested
using the debugging version of QuickDraw GX.

When the non-debugging version is installed and corrupt data is used, drawings may
execute with undesirable results, including crashes, without the posting of errors and
warnings. With other execution problems, the application may not crash, but the
drawing may not yield the expected result.

In the non-debugging version, typical problem messages indicate that there is
insufficient memory, insufficient storage space, or that the required fonts are
not installed. If problems persist, you can always install the debugging version to assist
in the analysis of the errors that are occurring.

For a complete list of errors, please see the graphics

errors.h

 interface file. The many
notices, warnings, and errors defined between

#ifdef debugging

 and

#endif

 in that
file are available only with the debugging version.

A debugged application should encounter only errors like

out_of_memory

not_enough_memory_for_graphics_client_heap

graphics_client_too_small

could_not_create_backing_store

A debugged application should encounter warnings like

character_substitution_occurred

map_shape_out_of_range

move_shape_out_of_range

scale_shape_out_of_range

C H A P T E R 3

Errors, Warnings, and Notices

3-6

About QuickDraw GX Errors, Warnings, and Notices

rotate_shape_out_of_range

skew_shape_out_of_range

map_transform_out_of_range

move_transform_out_of_range

scale_transform_out_of_range

rotate_transform_out_of_range

skew_transform_out_of_range

Both the debugging and non-debugging versions of QuickDraw GX provide a
debugging utility called GraphicsBug. This versatile utility allows you to examine the
details of each graphics object. GraphicsBug is described in the chapter “QuickDraw GX
Debugging” in this book.

Errors 3

This section describes the errors that may be posted by both the debugging and
non-debugging versions of QuickDraw GX. These errors can be grouped into the
following categories:

■

fatal errors

■

internal errors

■

recoverable errors

■

font management errors

■

bad parameter errors

■

implementation limit errors

■

font scaler errors

Each QuickDraw GX error has an error number and an error name. Table 3-1 gives the
non-debugging error number ranges.

Table 3-1

Non-debugging error number ranges

Number Name

–27999

gxFirstSystemError

–27999

gxFirstFatalError

–27951

gxLastFatalError

–27950

gxFirstNonFatalError

–27900

gxFirstFontScalerError

–27851

gxLastFontScalerError

–27850

gxFirstParameterError

–27800

gxFirstImplementationLimitError

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices

3-7

3

E

rrors, W
arnings, and N

otices

QuickDraw GX

fatal errors

 terminate operation and automatically call the

GXExitGraphics

 function. Control returns to the calling application after the error is
posted. If the function that caused the error returns a function result, its value is either 0
or

nil

. Table 3-2 lists fatal errors. They are included in both the debugging and
non-debugging versions of QuickDraw GX.

QuickDraw GX nonfatal

internal errors

 indicate damaged files, memory problems, or
incorrect implementation of QuickDraw GX. Table 3-3 lists the internal errors.

Table 3-4 lists the QuickDraw GX recoverable errors.

Table 3-2

Fatal errors

Number Name

–27999

out_of_memory

–27998

internal_fatal_error

–27997

no_outline_font_found

–27996

not_enough_memory_for_graphics_client_heap

–27995

could_not_create_backing_store

Table 3-3

Internal errors

Number Name

–27950

internal_error

–27949

internal_font_error

–27948

internal_layout_error

Table 3-4

Recoverable errors

Number Name

–27946

could_not_dispose_backing_store

–27945

unflattening_interrupted_by_client

C H A P T E R 3

Errors, Warnings, and Notices

3-8

About QuickDraw GX Errors, Warnings, and Notices

Table 3-5 lists the QuickDraw GX

font management errors.

Table 3-6 lists the QuickDraw GX

font scaler errors.

Table 3-5

Font management errors

Number Name

–27944

font_cannot_be_changed

–27943

illegal_font_parameter

Table 3-6

Font scaler errors

Number Name

–27900

null_font_scaler_context

–27899

null_font_scaler_input

–27988

invalid_font_scaler_context

–27897

invalid_font_scaler_input

–27896 invalid_font_scaler_font_data

–27895 font_scaler_newblock_failed

–27894 font_scaler_getfonttable_failed

–27893 font_scaler_bitmap_allocation_failed

–27892 font_scaler_outline_allocation_failed

–27891 required_font_scaler_table_missing

–27890 unsupported_font_scaler_outline_format

–27889 unsupported_font_scaler_stream_format

–27888 unsupported_font_scaler_font_format

–27887 font_scaler_hinting_error

–27886 font_scaler_rasterizer_error

–27885 font_scaler_internal_error

–27884 font_scaler_invalid_matrix

–27883 font_scaler_fixed_overflow

–27882 font_scaler_api_version_mismatch

–27881 font_scaler_streaming_aborted

–27880 unknown_font_scaler_error

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-9

3
E

rrors, W
arnings, and N

otices

QuickDraw GX posts bad parameter errors when a required parameter is out of range,
invalid, or is passed with the value of nil . Table 3-7 lists bad parameter errors.

Table 3-7 Bad parameter errors

Number Name

–27850 parameter_is_nil

–27849 shape_is_nil

–27848 style_is_nil

–27847 transform_is_nil

–27846 ink_is_nil

–27845 transferMode_is_nil

–27844 color_is_nil

–27843 colorProfile_is_nil

–27842 colorSet_is_nil

–27841 spoolProcedure_is_nil

–27840 tag_is_nil

–27839 type_is_nil

–27838 mapping_is_nil

–27837 invalid_viewDevice_reference

–27836 invalid_viewGroup_reference

–27835 invalid_viewPort_reference

C H A P T E R 3

Errors, Warnings, and Notices

3-10 About QuickDraw GX Errors, Warnings, and Notices

QuickDraw GX posts implementation limit errors to indicate that the size or number
exceeds the size or number supported by the current version of QuickDraw GX.
Table 3-8 lists the implementation limit errors.

Warnings 3

This section describes the warnings that the debugging and non-debugging versions of
QuickDraw GX may post. These errors can be grouped into the following categories:

■ stack, heap, and object warnings

■ result is out of range warnings

■ parameter is out of range warnings

■ font scaler warnings

■ unexpected result warnings

■ storage warnings

Each QuickDraw GX warning has a unique warning number and warning name.
Table 3-9 gives the non-debugging warning number ranges.

Table 3-8 Implementation limit errors

Number Name

–27800 number_of_contours_exceeds_implementation_limit

–27799 number_of_points_exceeds_implementation_limit

–27798 size_of_polygon_exceeds_implementation_limit

–27797 size_of_path_exceeds_implementation_limit

–27796 size_of_text_exceeds_implementation_limit

–27795 size_of_bitmap_exceeds_implementation_limit

–27794 number_of_colors_exceeds_implementation_limit

–27793 procedure_not_reentrant

Table 3-9 Non-debugging warning number ranges

Number Description

–26999 gxFirstSystemWarning

–26950 gxFirstResultOutOfRangeWarning

–26900 gxFirstParameterOutOfRangeWarning

–26850 gxFirstFontScalerWarning

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-11

3
E

rrors, W
arnings, and N

otices

QuickDraw GX overflow warnings occur when the number of warnings that have been
added to the warning or notice stack exceeds the current implementation limit. An
underflow warning occurs when the GXPopGraphicsNotice or
GXPopGraphicsWarning function attempts to remove an error or warning on its
ignore stack and there is no error or warning to remove. This topic is discussed in the
section “Ignoring Warnings and Notices” beginning on page 3-37.

Table 3-10 lists QuickDraw GX stack, heap, and object warnings.

QuickDraw GX result out of range warnings occur when a function result is out of the
usable or defined QuickDraw boundaries. Table 3-11 lists result out of range warnings.

Table 3-10 Stack, heap, and object warnings

Number Name

–26999 warning_stack_underflow

–26998 warning_stack_overflow

–26997 notice_stack_underflow

–26996 notice_stack_overflow

–26995 about_to_grow_heap

–26994 about_to_unload_objects

Table 3-11 Result out of range warnings

Number Name

–26950 map_shape_out_of_range

–26949 move_shape_out_of_range

–26948 scale_shape_out_of_range

–26947 rotate_shape_out_of_range

–26946 skew_shape_out_of_range

–26945 map_transform_out_of_range

–26944 move_transform_out_of_range

–26943 scale_transform_out_of_range

–26942 rotate_transform_out_of_range

–26941 skew_transform_out_of_range

–26940 map_points_out_of_range

C H A P T E R 3

Errors, Warnings, and Notices

3-12 About QuickDraw GX Errors, Warnings, and Notices

QuickDraw GX parameter out of range warnings occur when a function parameter is
out of the usable range. Table 3-12 lists parameter out of range warnings.

Table 3-13 lists QuickDraw GX font scaler warnings.

Table 3-12 Parameter out of range warnings

Number Name

–26900 contour_out_of_range

–26899 index_out_of_range_in_contour

–26898 picture_index_out_of_range

–26897 color_index_requested_not_found

–26896 colorSet_index_out_of_range

–26895 index_out_of_range

–26894 count_out_of_range

–26893 length_out_of_range

–26892 font_table_index_out_of_range

–26891 font_glyph_index_out_of_range

–26890 point_out_of_range

–26889 profile_response_out_of_range

Table 3-13 Font scaler warnings

Number Name

–26850 font_scaler_no_output

–26849 font_scaler_fake_metrics

–26848 font_scaler_fake_linespacing

–26847 font_scaler_glyph_substitution

–26846 font_scaler_no_kerning_applied

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-13

3
E

rrors, W
arnings, and N

otices

Table 3-14 lists QuickDraw GX unexpected result warnings.

Table 3-15 lists QuickDraw GX data stream storage warnings.

Debugging Version 3
When you install the debugging version, QuickDraw GX posts errors, warnings, and
notices in addition to those posted by the non-debugging version. The debugging
analysis and resulting number of errors, warnings, and notices posted is far more
extensive than can be provided by the non-debugging version of QuickDraw GX. As a
result, the debugging version executes significantly slower than the non-debugging
version.

The errors and warnings posted by both the debugging and non-debugging versions of
QuickDraw GX are listed in the sections “Errors” beginning on page 3-6 and “Warnings”
beginning on page 3-10. The errors, warnings, and notices described in the following
sections are posted only in the debugging version of QuickDraw GX.

The debugging version also provides a number of useful functions that you can use to
analyze your code and that assist in determining the cause of a wide variety of problems.
These are described in the section “Using Errors, Warnings, and Notices” beginning on
page 3-30.

The debugging version of QuickDraw GX also provides validation functions and
GraphicsBug so that you can examine the details of each graphics object. These are
described in the chapter “QuickDraw GX Debugging” in this book.

Table 3-14 Unexpected result warnings

Warning
number Warning name

–26845 character_substitution_took_place

–26844 unable_to_bounds_on_multiple_devices

–26843 font_language_not_found

–26842 font_not_found_during_unflattening

Table 3-15 Storage warnings

Number Name

–26841 unrecognized_stream_version

–26840 bad_data_in_stream

C H A P T E R 3

Errors, Warnings, and Notices

3-14 About QuickDraw GX Errors, Warnings, and Notices

Errors 3

This section describes the errors that the debugging version of QuickDraw GX may post.
QuickDraw GX debugging errors can be grouped into the following categories:

■ internal errors

■ font parameter errors

■ bad parameter errors

■ restricted access errors

■ wrong type or bad reference errors

■ validation errors

Table 3-16 gives the debugging error number range.

Table 3-17 lists the internal debugging errors.

Table 3-18 lists the font parameter debugging errors.

Table 3-16 Debugging error number range

Number Name

–27700 gxFirstSystemDebuggingError

–27000 gxLastSystemError

Table 3-17 Internal debugging errors

Number Name

–27700 functionality_unimplemented

–27699 clip_to_frame_shape_unimplemented

Table 3-18 Font parameter debugging errors

Number Name

–27698 illegal_font_storage_type

–27697 illegal_font_storage_reference

–27696 illegal_font_attributes

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-15

3
E

rrors, W
arnings, and N

otices

QuickDraw GX bad parameter errors are posted when a required parameter is out of
range, invalid, or is passed with the value of nil . Table 3-19 lists the bad parameter
debugging errors.

Table 3-19 Bad parameter debugging errors

Number Name

–27695 parameter_out_of_range

–27694 inconsistent_parameters

–27693 index_is_less_than_zero

–27692 index_is_less_than_one

–27691 count_is_less_than_zero

–27690 count_is_less_than_one

–27689 contour_is_less_than_zero

–27688 length_is_less_than_zero

–27687 invalid_client_reference

–27686 invalid_graphics_heap_start_pointer

–27685 invalid_nongraphic_globals_pointer

–27684 colorSpace_out_of_range

–27683 pattern_lattice_out_of_range

–27682 frequency_parameter_out_of_range

–27681 tinting_parameter_out_of_range

–27680 method_parameter_out_of_range

–27679 space_may_not_be_indexed

–27678 glyph_index_too_small

–27677 no_glyphs_added_to_font

–27676 glyph_not_added_to_font

–27675 point_does_not_intersect_bitmap

–27674 required_font_table_not_present

–27673 unknown_font_table_format

–27672 shapeFill_not_allowed

–27671 inverseFill_face_must_set_clipLayer_flag

–27670 invalid_transferMode_colorSpace

–27669 colorProfile_must_be_nil

continued

C H A P T E R 3

Errors, Warnings, and Notices

3-16 About QuickDraw GX Errors, Warnings, and Notices

Table 3-20 lists the QuickDraw GX restricted access debugging errors.

–27668 bitmap_pixel_size_must_be_1

–27667 empty_shape_not_allowed

–27666 ignorePlatformShape_not_allowed

–27665 nil_style_in_glyph_not_allowed

–27664 complex_glyph_style_not_allowed

–27663 invalid_mapping

–27662 cannot_set_item_shapes_to_nil

–27661 cannot_use_original_item_shapes_when_growing_picture

–27660 cannot_add_unspecified_new_glyphs

–27659 cannot_dispose_locked_tag

–27658 cannot_dispose_locked_shape

Table 3-20 Restricted access debugging errors

Number Name

–27657 shape_access_not_allowed

–27656 colorSet_access_restricted

–27655 colorProfile_access_restricted

–27654 tag_access_restricted

–27653 viewDevice_access_restricted

–27652 graphic_type_does_not_have_a_structure

–27651 style_run_array_does_not_match_number_of_characters

–27650 rectangles_cannot_be_inserted_into

–27649 unknown_graphics_heap

–27648 graphics_routine_selector_is_obsolete

–27647 cannot_set_graphics_client_memory_without_setting_size

–27646 graphics_client_memory_too_small

–27645 graphics_client_memory_is_already_allocated

–27644 viewPort_is_a_window

Table 3-19 Bad parameter debugging errors (continued)

Number Name

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-17

3
E

rrors, W
arnings, and N

otices

Table 3-21 lists the QuickDraw GX wrong type and bad reference debugging errors.

Table 3-21 Wrong type and bad reference debugging errors

Number Name

–27643 illegal_type_for_shape

–27642 shape_does_not_contain_a_bitmap

–27641 shape_does_not_contain_text

–27640 picture_expected

–27639 bitmap_is_not_resizable

–27638 shape_may_not_be_a_bitmap

–27637 shape__may_not_be_a_picture

–27636 graphic_type_does_not_contain_points

–27635 graphic_type_does_not_have_multiple_contours

–27634 graphic_type_cannot_be_mapped

–27633 graphic_type_cannot_be_moved

–27632 graphic_type_cannot_be_scaled

–27631 graphic_type_cannot_be_rotated

–27630 graphic_type_cannot_be_skewed

–27629 graphic_type_cannot_be_reset

–27628 graphic_type_cannot_be_dashed

–27627 graphic_type_cannot_be_reduced

–27626 graphic_type_cannot_be_inset

–27625 shape_cannot_be_inverted

–27624 shape_does_not_have_area

–27623 shape_does not_have_length

–27622 first_glyph_advance_must_be_absolute

–27621 picture_cannot_contain_itself

–27620 viewPort_cannot_contain_itself

–27619 cannot_set_unique_items_attribute_when_picture_contains_items

–27618 layer_style_cannot_contain_a_face

–27617 layer_glyph_shape_cannot_contain_nil_styles

C H A P T E R 3

Errors, Warnings, and Notices

3-18 About QuickDraw GX Errors, Warnings, and Notices

QuickDraw GX posts validation errors only when QuickDraw GX validation error
functions activate validation error checking. Validation error checking is discussed the
chapter “QuickDraw GX Debugging” in this book. Table 3-22 lists the type validation
debugging errors.

Table 3-23 lists the QuickDraw GX cache validation debugging errors.

Table 3-22 Type validation debugging errors

Number Name

–27616 object_wrong_type

–27615 shape_wrong_type

–27614 style_wrong_type

–27613 ink_wrong_type

–27612 transform_wrong_type

–27611 device_wrong_type

–27610 port_wrong_type

Table 3-23 Cache validation debugging errors

Number Name

–27609 shape_cache_wrong_type

–27608 style_cache_wrong_type

–27607 ink_cache_wrong_type

–27606 transform_cache_wrong_type

–27605 port_cache_wrong_type

–27604 shape_cache_parent_mismatch

–27603 style_cache_parent_mismatch

–27602 ink_cache_parent_mismatch

–27601 transform_cache_parent_mismatch

–27600 port_cache_parent_mismatch

–27599 invalid_shape_cache_port

–27598 invalid_shape_cache_device

–27597 invalid_ink_cache_port

–27596 invalid_ink_cache_device

–27595 invalid_style_cache_port

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-19

3
E

rrors, W
arnings, and N

otices

Table 3-24 lists the QuickDraw GX shape cache validation debugging errors.

Table 3-25 lists the QuickDraw GX memory block validation debugging errors.

–27594 invalid_style_cache_device

–27593 invalid_transform_cache_port

–27592 invalid_transform_cache_device

–27591 recursive_caches

Table 3-24 Shape cache validation shape debugging errors

Number Name

–27590 invalid_fillShape_ownerCount

–27589 recursive_fillShapes

Table 3-25 Memory block validation debugging errors

Number Name

–27588 indirect_memory_block_too_small

–27587 indirect_memory_block_too_large

–27586 unexpected_nil_pointer

–27585 bad_address

Table 3-23 Cache validation debugging errors (continued)

Number Name

C H A P T E R 3

Errors, Warnings, and Notices

3-20 About QuickDraw GX Errors, Warnings, and Notices

Table 3-26 lists the QuickDraw GX object validation debugging errors.

Table 3-27 lists the QuickDraw GX path and polygon validation debugging errors.

Table 3-28 lists the QuickDraw GX bitmap validation debugging errors.

Table 3-26 Object validation debugging errors

Number Name

–27584 no_owners

–27583 invalid_pointer

–27582 invalid_seed

–27581 invalid_frame_seed

–27580 invalid_text_seed

–27579 invalid_draw_seed

–27578 bad_printer_flags

Table 3-27 Path and polygon validation debugging errors

Number Name

–27577 invalid_vector_count

–27576 invalid_contour_count

Table 3-28 Bitmap validation debugging errors

Number Name

–27575 bitmap_ptr_too_small

–27574 bitmap_ptr_not_aligned

–27573 bitmap_rowBytes_negative

–27572 bitmap_width_negative

–27571 bitmap_height_negative

–27570 invalid_pixelSize

–27569 bitmap_rowBytes_too_small

–27568 bitmap_rowBytes_not_aligned

–27567 bitmap_rowBytes_must_be_specified_for_user_image_buffer

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-21

3
E

rrors, W
arnings, and N

otices

Table 3-29 lists the QuickDraw GX bitmap image validation debugging errors.

Table 3-30 lists the QuickDraw GX text validation debugging errors.

Table 3-31 lists the QuickDraw GX glyph validation debugging errors.

Table 3-29 Bitmap image validation debugging errors

Number Name

–27566 invalid_bitImage_fileOffset

–27565 invalid_bitImage_owners

–27564 invalid_bitImage_rowBytes

–27563 invalid_bitImage_internal_flag

Table 3-30 Text validation debugging errors

Number Name

–27562 text_bounds_cache_wrong_size

–27561 text_metrics_cache_wrong_size

–27560 text_index_cache_wrong_size

Table 3-31 Glyph validation debugging errors

Number Name

–27559 glyph_run_count_negative

–27558 glyph_run_count_zero

–27557 glyph_run_counts_do_not_sum_to_character_count

–27556 glyph_first_advance_bit_set_not_allowed

–27555 glyph_tangent_vectors_both_zero

C H A P T E R 3

Errors, Warnings, and Notices

3-22 About QuickDraw GX Errors, Warnings, and Notices

Table 3-32 lists the QuickDraw GX layout validation debugging errors.

Table 3-33 lists the QuickDraw GX picture validation debugging errors.

Table 3-34 lists the QuickDraw GX text face validation debugging errors.

Table 3-32 Layout validation debugging errors

Number Name

–27554 layout_run_length_negative

–27553 layout_run_length_zero

–27552 layout_run_level_negative

–27551 layout_run_lengths_do_not_sum_to_text_length

Table 3-33 Picture validation debugging errors

Number Name

–27550 bad_shape_in_picture

–27549 bad_style_in_picture

–27548 bad_ink_in_picture

–27547 bad_transform_in_picture

–27546 bad_shape_cache_in_picture

–27545 bad_seed_in_picture

–27544 invalid_picture_count

Table 3-34 Text face validation debugging errors

Number Name

–27543 bad_textLayer_count

–27542 bad_fillType_in_textFace

–27541 bad_style_in_textFace

–27540 bad_transform_in_textFace

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-23

3
E

rrors, W
arnings, and N

otices

Table 3-35 lists the QuickDraw GX transform validation debugging errors.

Table 3-36 lists the QuickDraw GX font cache validation debugging errors.

Table 3-35 Transform validation debugging errors

Number Name

–27539 invalid_matrix_flag

–27538 transform_clip_missing

Table 3-36 Font cache validation debugging errors

Number Name

–27537 metrics_wrong_type

–27536 metrics_point_size_probably_bad

–27535 scalar_block_wrong_type

–27534 scalar_block_parent_mismatch

–27533 scalar_block_too_small

–27532 scalar_block_too_large

–27531 invalid_metrics_range

–27530 invalid_metrics_flags

–27529 metrics_maxWidth_probably_bad

–27528 font_wrong_type

–27527 font_wrong_size

–27526 invalid_font_platform

–27525 invalid_lookup_range

–27524 invalid_lookup_platform

–27523 font_not_in_font_list

–27522 metrics_not_in_metrics_list

C H A P T E R 3

Errors, Warnings, and Notices

3-24 About QuickDraw GX Errors, Warnings, and Notices

Table 3-37 lists the QuickDraw GX view device validation debugging errors.

Table 3-38 lists the QuickDraw GX color set validation debugging errors.

Table 3-39 lists the QuickDraw GX color profile validation debugging errors.

Table 3-37 View device validation debugging errors

Number Name

–27521 bad_device_private_flags

–27520 bad_device_attributes

–27519 invalid_device_number

–27518 invalid_device_viewGroup

–27517 invalid_device_bounds

–27516 invalid_bitmap_in_device

Table 3-38 Color set validation debugging errors

Number Name

–27515 colorSet_wrong_type

–27514 invalid_colorSet_viewDevice_owners

–27513 invalid_colorSet_colorSpace

–27512 invalid_colorSet_count

Table 3-39 Color profile validation debugging errors

Number Name

–27511 colorProfile_wrong_type

–27510 invalid_colorProfile_flags

–27509 invalid_colorProfile_response_count

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-25

3
E

rrors, W
arnings, and N

otices

Table 3-40 lists the QuickDraw GX internal backing store validation debugging errors.

Warnings 3

This section describes the warnings that the debugging version of QuickDraw GX may
post. QuickDraw GX debugging warnings can be grouped into the following categories:

■ invalid data warnings

■ can’t find warnings

■ other warnings

Table 3-41 gives the range of debugging warning numbers.

Table 3-40 Internal backing store validation debugging errors

Number Name

–27508 backing_free_parent_mismatch

–27507 backing_store_parent_mismatch

Table 3-41 Debugging warning number range

Number Description

–26700 gxFirstSystemDebuggingWarning

–26000 gxLastSystemWarning

C H A P T E R 3

Errors, Warnings, and Notices

3-26 About QuickDraw GX Errors, Warnings, and Notices

Table 3-42 lists the QuickDraw GX invalid data debugging warnings.

Table 3-43 lists the QuickDraw GX can’t find debugging warnings.

Table 3-42 Invalid data debugging warnings

Number Name

–26700 new_shape_contains_invalid_data

–26699 new_tag_contains_invalid_data

–26698 extra_data_passed_was_ignored

–26697 font_table_not_found

–26696 font_name_not_found

–26695 unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

–26694 unable_to_draw_open_contour_that_starts_or_ends_off_the_curve

–26693 cannot_dispose_default_shape

–26692 cannot_dispose_default_style

–26691 cannot_dispose_default_ink

–26690 cannot_dispose_default_transform

–26689 cannot_dispose_default_colorProfile

–26688 cannot_dispose_default_colorSet

–26687 shape_direct_attribute_not_set

Table 3-43 Can’t find debugging warnings

Number Name

–26686 point_does_not_intersect_port

–26685 cannot_dispose_non_font

–26684 face_override_style_font_must_match_style

–26683 union_of_area_and_and_length_returns_area_only

–26682 insufficient_coordinate_space_for_new_device

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-27

3
E

rrors, W
arnings, and N

otices

Table 3-44 lists the QuickDraw GX other debugging warnings.

Notices 3

QuickDraw GX provides notices only in the debugging version. This section describes
the notices that the debugging version of QuickDraw GX may post. Each QuickDraw
notice has a unique notice number and a notice name. Table 3-45 gives the debugging
notice number range.

Table 3-46 lists the QuickDraw GX debugging notices.

Table 3-44 Other debugging warnings

Number Name

–26681 shape_passed_has_no_bounds

–26680 tags_of_type_flst_removed

–26679 translator_not_installed_on_this_grafport

Table 3-45 Debugging version notice number summary

Number Description

–25999 gxFirstSystemNotice

–25500 gxLastSystemNotice

Table 3-46 Debugging notices

Number Name

–25999 parameters_have_no_effect

–25998 attributes_already_set

–25997 caps_already_set

–25996 clip_already_set

–25995 color_already_set

–25994 curve_error_already_set

–25993 dash_already_set

–25992 default_colorProfile_already_set

–25991 default_ink_already_set

–25990 default_transform_already_set

continued

C H A P T E R 3

Errors, Warnings, and Notices

3-28 About QuickDraw GX Errors, Warnings, and Notices

–25989 default_shape_already_set

–25988 default_style_already_set

–25987 dither_already_set

–25986 encoding_already_set

–25985 face_already_set

–25984 fill_already_set

–25983 font_already_set

–25982 font_variations_already_set

–25981 glyph_positions_are_already_set

–25980 glyph_tangents_are_already_set

–25979 halftone_already_set

–25978 hit_test_already_set

–25977 ink_already_set

–25976 join_already_set

–25975 justification_already_set

–25974 mapping_already_set

–25973 pattern_already_set

–25972 pen_already_set

–25971 style_already_set

–25970 tag_already_set

–25969 text_attributes_already_set

–25968 text_size_already_set

–25967 transfer_already_set

–25966 translator_already_installed_on_this_grafport

–25965 transform_already_set

–25964 type_already_set

–25963 validation_level_already_set

–25962 viewPorts_already_set

–25961 viewPorts_already_in_viewGroup

–25960 viewDevice_already_in_viewGroup

–25959 geometry_unaffected

–25958 mapping_unaffected

Table 3-46 Debugging notices (continued)

Number Name

C H A P T E R 3

Errors, Warnings, and Notices

About QuickDraw GX Errors, Warnings, and Notices 3-29

3
E

rrors, W
arnings, and N

otices

–25957 tags_in_shape_ignored

–25956 shape_already_in_primitive_form

–25955 shape_already_in_simple_form

–25954 shape_already_broken

–25953 shape_already_joined

–25952 cache_already_cleared

–25951 shape_not_disposed

–25950 style_not_disposed

–25949 ink_not_disposed

–25948 transform_not_disposed

–25947 colorSet_not_disposed

–25946 colorProfile_not_disposed

–25945 font_not_disposed

–25944 glyph_tangents_have_no_effect

–25943 glyph_positions_determined_by_advance

–25942 transform_viewPorts_already_set

–25941 directShape_attribute_set_as_side_effect

–25940 lockShape_called_as_side_effect

–25939 lockTag_called_as_side_effect

–25938 shapes_unlocked_as_side_effect

–25937 shape_not_locked

–25936 tag_not_locked

–25935 disposed_dead_caches

–25934 disposed_live_caches

–25933 low_on_memory

–25932 very_low_on_memory

–25931 transform_references_disposed_viewPort

Table 3-46 Debugging notices (continued)

Number Name

C H A P T E R 3

Errors, Warnings, and Notices

3-30 Using Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3

This section describes how to control and utilize QuickDraw GX errors, warnings, and
notices and how to include an application-defined function to provide complementary
or alternative error, warning, and notice processing. This section describes how you can

■ obtain the QuickDraw GX errors, warnings, and notices posted

■ change the QuickDraw GX errors, warnings, and notices posted

■ ignore QuickDraw GX warnings and notices

■ install application-defined error, warning, and notice handlers

Obtaining Errors, Warnings, and Notices 3
You can use the GXGetGraphicsError , GXGetGraphicsWarning , and
GXGetGraphicsNotice functions to obtain QuickDraw GX error, warning, and notice
messages describing problems that occur during the execution of your application. These
three functions return the last problem encountered during execution. If no problem has
been posted, the function returns 0 until a problem message is posted.

The stickyError , stickyWarning , or stickyNotice parameters of the respective
function, if not nil , are pointers to the first execution problem that QuickDraw GX
encountered after the last time that the GXGetGraphicsError ,
GXGetGraphicsWarning , or GXGetGraphicsNotice function was called. These
functions thereby allow you to determine both the original problem and the final
problem that was detected by QuickDraw GX during execution of your application.

Note
Notices are posted only in the debugging version of QuickDraw GX.◆

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-31

3
E

rrors, W
arnings, and N

otices

Figure 3-2 shows the use of these polling functions to obtain the errors, warnings, and
notices of selected blocks of your code.

Figure 3-2 Polling for errors, warnings, and notices

Code block

Error check

Code block

Error check

C H A P T E R 3

Errors, Warnings, and Notices

3-32 Using Errors, Warnings, and Notices

Figure 3-3 shows the use of the GXGetGraphicsError function to obtain the first and
last errors posted when you test your QuickDraw GX application.

Figure 3-3 Obtaining the first and last posted QuickDraw GX error

QuickDraw GX application

GXGetGraphicsError()

Posted errors

First error

Error

Error

Error

Error

Last error

Errors obtained by
GXGetGraphicsError()

First error

Last error

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-33

3
E

rrors, W
arnings, and N

otices

Listing 3-1 shows the use of the GXGetGraphicsError function to obtain the first error
posted after the execution of a block of code.

Listing 3-1 Obtaining the first posted error

static void ObtainOriginalError(void)

{

/* block of application code */

/*

If an error occurred, then see if the orginal error was

out_of_memory. Note that you need to look at the original error,

not the last error returned, since if the NewLine fails, then the

next two functions (DrawShape and DisposeShape) will generate a

shape_is_nil error.

*/

{ graphicsError myError, originalError;

if(myError = GetGraphicsError(&originalError)) {

if(originalError == out_of_memory) {

/* post out of memory dialog box */

} else {

/* post generic error dialog box */

}

}

}

}

C H A P T E R 3

Errors, Warnings, and Notices

3-34 Using Errors, Warnings, and Notices

Listing 3-2 shows the use of the GXGetGraphicsWarning function to obtain the first
and last warning posted after the execution of a block of code.

Listing 3-2 Obtaining the first and last QuickDraw GX warning

static void ObtainFirstLastWarning(void)

{

/* block of application code */

/*

It might be valuable to look at both myWarning (last warning

posted) and originalWarning (first warning posted), although the

last warning is usually the most important warning posted.

*/

{ graphicsWarning myWarning, originalWarning;

if(myWarning = GXGetGraphicsWarning(&originalWarning)) {

DebugStr("\pa warning occurred");

}

}

}

Listing 3-3 shows the use of the GXGetGraphicsNotice function to obtain the first and
last notices posted after the execution of a block of code.

Listing 3-3 Obtaining the first and last posted notices

static void ObtainFirstLastNotice(void)

{

/* block of application code */

/*

It might be useful to look at both myNotice (last notice

posted)and originalNotice (first notice posted), although the

last notice is usually the most important notice posted.

*/

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-35

3
E

rrors, W
arnings, and N

otices

{ graphicsNotice myNotice, originalNotice;

if(myNotice = GXGetGraphicsNotice(&originalNotice)) {

DebugStr("\pa notice occurred");

}

}

}

The GXGetGraphicsError function is described on page 3-56. The QuickDraw GX
errors that may be posted are listed in the section “Errors” beginning on page 3-6.
QuickDraw GX allows you to ignore warnings and notices, but does not provide a
function that will ignore errors.

The GXGetGraphicsWarning function is described on page 3-60. The QuickDraw GX
warnings that may be posted are listed in the section “Warnings” beginning on
page 3-10. QuickDraw GX allows you to ignore warnings that would otherwise be
posted. How to ignore warnings is discussed in the section “Ignoring Warnings and
Notices” beginning on page 3-37. The GXIgnoreGraphicsWarning function is
discussed on page 3-64.

The GXGetGraphicsNotice function is described on page 3-66. The QuickDraw GX
notices that may be posted are listed in the section “Notices” beginning on page 3-27.
QuickDraw GX allows you to ignore notices that would otherwise be posted. How to
ignore notices is discussed in the section “Ignoring Warnings and Notices” beginning on
page 3-37. The GXIgnoreGraphicsNotice function is discussed on page 3-70.

Note
An alternative or complementary approach to the use of
the GXGetGraphicsError , GXGetGraphicsWarning , and
GXGetGraphicsNotice functions is to include an application-defined
error, warning, or notice handler. This topic is discussed in the section
“Installing an Error, Warning, or Notice Handler” beginning on
page 3-40.◆

Changing the Error, Warning, or Notice Posted 3
You can use the GXPostGraphicsError , GXPostGraphicsWarning , and
GXPostGraphicsNotice functions to post your own errors, warnings, and notices
from inside your application.

Note
Notices are posted only in the debugging version of QuickDraw GX.◆

The GXPostGraphicsError function replaces the current QuickDraw GX error with
any error message you provide as the error parameter. The error you substitute may be
one of the QuickDraw GX errors or your own error message. This function stores the
new error message so that subsequent calls to GXGetGraphicsError return the error
substituted by this function.

C H A P T E R 3

Errors, Warnings, and Notices

3-36 Using Errors, Warnings, and Notices

Listing 3-4 shows the use of the GXPostGraphicsError function to change the posted
error to an error having the name special_user_error and the error number
2097152. This is the gxFirstAppError constant.

Listing 3-4 Changing the error posted

static long SampleCode4(void)

{

#define special_user_error 2097152L

#define end_of_file -1L

long myFilePosition = 0;

/* block of application code */

if(myFilePosition == end_of_file) {

/* indicate that an error occurred */

PostGraphicsError(special_user_error);

}

/* block of application code */

/*

You need to check for errors only once; this will catch errors

generated by QuickDraw GX and any user-defined errors that were

posted.

*/

{ graphicsError myError;

if(myError = GXGetGraphicsError(nil))

return myError;

}

/* block of application code */

}

The GXPostGraphicsError function is described on page 3-57. The QuickDraw GX
errors are listed in the section “Errors” beginning on page 3-6.

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-37

3
E

rrors, W
arnings, and N

otices

The GXPostGraphicsWarning function replaces the current QuickDraw GX warning
with any warning message you provide as the warning parameter. The warning you
substitute may be one of the QuickDraw GX warnings or your own warning message.
This function stores the new warning message so that subsequent calls to
GXGetGraphicsWarning return the warning substituted by this function.

The GXPostGraphicsWarning function is described on page 3-61. The QuickDraw GX
warnings are listed in the section “Warnings” beginning on page 3-10.

The GXPostGraphicsNotice function replaces the current QuickDraw GX notice with
any notice message you provide as the notice parameter. The notice you substitute
may be one of the QuickDraw GX notices or your own notice message. This function
stores the new notice message so that subsequent calls to GXGetGraphicsNotice
return the notice substituted by this function.

The GXPostGraphicsNotice function is described on page 3-67. The QuickDraw GX
notices are listed in the section “Notices” beginning on page 3-27.

Ignoring Warnings and Notices 3
You can use the GXIgnoreGraphicsWarning and GXIgnoreGraphicsNotice
functions to selectively ignore, and thereby suppress, the posting of specific QuickDraw
GX warnings and notices in parts of your application. There is no analogous function to
ignore errors.

Note
Notices are posted only in the debugging version of QuickDraw GX.◆

The GXIgnoreGraphicsWarning function places the warning to be ignored on the
ignore warning stack. The posting of all QuickDraw GX warnings that are on the ignore
warning stack is suppressed, just as if the problem that resulted in the warning message
never occurred.

When a QuickDraw GX warning is about to be posted, QuickDraw GX determines if the
specific warning is on the ignore warning stack. If the warning to be posted is on the
stack, QuickDraw GX does not post this warning. If the warning to be posted is not on
the ignore warning stack, QuickDraw GX does post the warning. QuickDraw GX does
not change the stack when it checks for the presence or absence of a warning.

The GXPopGraphicsWarning function removes warnings from the ignore warning
stack in the reverse order that they are placed on the stack by the
GXIgnoreGraphicsWarning function. You don’t need to specify which warning to
remove. You remove one ignored warning code from the top of the ignore warning stack
each time that you call the GXPopGraphicsWarning function.

C H A P T E R 3

Errors, Warnings, and Notices

3-38 Using Errors, Warnings, and Notices

Note
There is an implementation limit on the number of times that you can
use the GXIgnoreGraphicsWarning and GXPopGraphicsWarning
functions. When the implementation limit is exceeded, QuickDraw GX
posts a warning_stack_overflow warning message. If there are no
warnings on the ignore warning stack and the
GXPopGraphicsWarning function is called, QuickDraw GX posts a
warning_stack_underflow warning message.◆

Since there is an implementation limit on the number of warnings and notices that you
can ignore, you should use the GXIgnoreGraphicsWarning and
GXPopGraphicsWarning functions only when you need to debug specific parts of
your application code.

The GXIgnoreGraphicsNotice function provides the same feature for notices that the
GXIgnoreGraphicsWarning function provides for warnings.

The GXIgnoreGraphicsNotice function places the notice to be ignored on the ignore
notice stack. The posting of all QuickDraw GX notices on the ignore notice stack is
suppressed, just as if the problem that resulted in the notice message never occurred.

When a QuickDraw GX notice is about to be posted, QuickDraw GX determines if the
specific notice is on the ignore notice stack. If the notice to be posted is on the stack,
QuickDraw GX does not post this notice. If the notice to be posted is not on the ignore
notice stack, QuickDraw GX does post it. QuickDraw GX does not change the stack
when it checks for the presence or absence of a notice.

The GXPopGraphicsNotice function removes notices from the ignore notice stack in
the reverse order that they are placed on the stack by the GXIgnoreGraphicsNotice
function. You don’t need to specify which notice to remove. You remove one ignored
notice code from the top of the ignore notice stack each time you call the
GXPopGraphicsNotice function.

Note
There is an implementation limit on the number of times that you can
use the GXIgnoreGraphicsNotice and GXPopGraphicsNotice
functions. When the implementation limit is exceeded, QuickDraw GX
will post a notice_stack_overflow warning message. If there are no
notices on the notice warning stack and the GXPopGraphicsNotice
function is called, QuickDraw GX posts a notice_stack_underflow
warning message.◆

For example, if you wanted to suppress the attributes_already_set notice posted
by QuickDraw GX, you could use the GXIgnoreGraphicsNotice function to push its
notice number, –25998, onto the ignore notice stack. When QuickDraw GX is about to
post a notice, it looks on the ignore notice stack to determine if its notice number is on
the ignore notice stack. If the notice to be posted is attributes_already_set , then
the notice is not posted. QuickDraw GX posts any notice that is not on the ignore notice
stack.

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-39

3
E

rrors, W
arnings, and N

otices

If you also wanted to ignore the color_already_set notice, then you could use the
GXIgnoreGraphicsNotice function to push its notice number, –25995, onto the ignore
notice stack. QuickDraw GX would then ignore, and therefore not post, the
attributes_already_set and color_already_set notices. Since you added the
notices to the ignore notice stack in the order attributes_already_set and then
color_already_set , the color_already_set notice would be on top of the ignore
notice stack. When you use the GXPopGraphicsNotice function to remove a notice
from the stack, the first notice to be removed is color_already_set , the one on top of
the ignore notice stack. To remove the attributes_already_set notice, you need to
call the GXPopGraphicsNotice function a second time. After the second call to the
GXPopGraphicsNotice function, no notices are on the ignore notice stack. As a result,
QuickDraw GX resumes posting all notices.

Figure 3-4 illustrates how warnings and notices are added to and removed from the
ignore warning stack and the ignore notice stack.

Figure 3-4 Adding and removing warnings and notices from the ignore warning and ignore
notice stacks

You should ignore warnings and notices only if you are confident that you understand
why they are being issued and the consequences of ignoring these warnings and notices.

For example, if your program asks for 100 points in a polygon and there are fewer points
available, QuickDraw GX posts a warning and returns all of the points that are available.
You can add the GXIgnoreGraphicsNotice function to your code to suppress this
warning, but your application needs to be smart enough to accommodate the fact that
less than the requested number of points may be returned.

Ignore warning stack

GXIgnoreWarning(Warning 1)

Ignore notice stack

No warnings

Warning 1

Warning 2

GXIgnoreWarning(Warning 2)

Warning 1

GXPopGraphicsWarning

Warning 1

GXPopGraphicsWarning

No warnings

GXIgnoreNotice(Notice 1)

No notices

Notice 1

Notice 2

GXIgnoreNotice(Notice 2)

Notice 1

GXPopGraphicsNotice

Notice 1

GXPopGraphicsNotice

No notices

C H A P T E R 3

Errors, Warnings, and Notices

3-40 Using Errors, Warnings, and Notices

The GXIgnoreGraphicsWarning function is discussed on page 3-64. The
GXPopGraphicsWarning function is discussed on page 3-65. The QuickDraw warning
names and numbers that may be ignored are listed in the section “Warnings” beginning
on page 3-10.

The GXIgnoreGraphicsNotice function is discussed on page 3-70. The
GXPopGraphicsNotice function is discussed on page 3-71. The QuickDraw GX
warning names and numbers that can be ignored are listed in the section “Notices”
beginning on page 3-27.

Installing an Error, Warning, or Notice Handler 3
You can use the GXSetUserGraphicsError , GXSetUserGraphicsWarning , and
GXSetUserGraphicsNotice functions to install an application-defined function that
you want to call whenever an error, warning, or notice occurs. QuickDraw GX will pass
this function the error, warning, or notice when it is generated. Your function can then
respond accordingly. You may use the reference argument to pass an associated long
value parameter to your function. If you want to disable your handler, you just pass nil .

Your application can then take advantage of these errors. For example, QuickDraw GX
may post an error indicating that your application has run out of memory or has tried to
use a font that is not installed. As a result, your application may be able to recommend
corrective action via the application-defined error handling function and the
application’s human interface.

You can use the GXGetUserGraphicsError , GXGetUserGraphicsWarning , and
GXGetUserGraphicsNotice functions to obtain the application-defined handler
functions that have been previously installed by GXSetUserGraphicsError ,
GXSetUserGraphicsWarning , and SetUserGraphicsNotices . These functions
return nil if no function has been installed.

You usually install handlers at the beginning of your application code. You can install
error, warning, and notice handlers before any graphics operations have occurred and
before the GXEnterGraphics function has been called. If you do, QuickDraw GX will
call the GXEnterGraphics function for you. In contrast, you can’t install error,
warning, and notice handlers before calling the GXNewGraphicsClient function.

Alternatively, you may selectively enable and disable error, warning, and notice handlers
at different sections of the application code. Figure 3-5 shows how an error handler can
be enabled and disabled within the application. This is an effective method for ignoring
errors, warnings, and notices, analogous to the use of the GXIgnoreGraphicsError ,
GXIgnoreGraphicsWarning , and GXIgnoreGraphicsNotice functions.

C H A P T E R 3

Errors, Warnings, and Notices

Using Errors, Warnings, and Notices 3-41

3
E

rrors, W
arnings, and N

otices

Figure 3-5 Enabling and disabling an error handler

The handler should respond to the problems that occur during typical application
scenarios. A friendly application should let the user know when it is taking action in
response to errors and warnings that have occurred. For example, if an application runs
out of memory, it may let the user know that it is out of memory and that it is
responding in a particular manner to alleviate the problem. If it cannot solve the
problem, it may need to notify the user that it needs to abort processing. Such an
application would need to install an error handler that looks for out_of_memory errors.

In general, in the non-debugging version of your application, the handler might be
relatively simple. If the handler doesn’t have a response to an error or warning, it should
just return and continue execution.

In contrast, the debugging version of the handler may be relatively complex to
accommodate special error, warning, and notice conditions. In general, you should stop
and print the errors, warnings, and notices whenever a problem occurs.

An application can have more than one error handler. A simple application might have
just one error handler to handle specific problems. However, a more complicated
application may have multiple error handlers. For example, an application might have
one error handler that takes care of memory problems and another error handler for
other types of errors. The special error handler may be installed only when a particular
type of processing is to occur, like animation or QuickTime movies.

Install
error handler

Code block

Code block

Remove
error handler

Error handler

C H A P T E R 3

Errors, Warnings, and Notices

3-42 Errors, Warnings, and Notices Reference

Errors, Warnings, and Notices Reference 3

This section provides reference information related to the data types and functions that
allow you to control the generation of errors, warnings, and notices.

Constants and Data Types 3

This section describes the error, warning, and notice data types that you may use in your
application.

Errors 3

QuickDraw GX provides you with an extended set of errors in the debugging version
and a reduced set of errors in the non-debugging version. Each QuickDraw GX error
constant has an error number described by the gxGraphicsError type definition and
the gxGraphicErrors enumeration:

typedef long gxGraphicsError;

enum gxGraphicErrors {

/* truly fatal errors */

out_of_memory = -27999,

internal_fatal_error,

no_outline_font_found,

not_enough_memory_for_graphics_client_heap,

could_not_create_backing_store,

/* internal errors */

internal_error = -27950,

internal_font_error,

internal_layout_error,

/* recoverable errors */

could_not_dispose_backing_store = internal_layout_error + 2,

unflattening_interrupted_by_client,

/* font manager errors */

font_cannot_be_changed,

illegal_font_parameter,

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-43

3
E

rrors, W
arnings, and N

otices

/* gxFont scaler errors */

null_font_scaler_context = -27900,

null_font_scaler_input,

invalid_font_scaler_context,

invalid_font_scaler_input,

invalid_font_scaler_font_data,

font_scaler_newblock_failed,

font_scaler_getfonttable_failed,

font_scaler_bitmap_allocation_failed,

font_scaler_outline_allocation_failed,

required_font_scaler_table_missing,

unsupported_font_scaler_outline_format,

unsupported_font_scaler_stream_format,

unsupported_font_scaler_font_format,

font_scaler_hinting_error,

font_scaler_rasterizer_error,

font_scaler_internal_error,

font_scaler_invalid_matrix,

font_scaler_fixed_overflow,

font_scaler_api_version_mismatch,

font_scaler_streaming_aborted,

unknown_font_scaler_error,

/* bad parameters */

parameter_is_nil = -27850,

shape_is_nil,

style_is_nil,

transform_is_nil,

ink_is_nil,

transferMode_is_nil,

color_is_nil,

colorProfile_is_nil,

colorSet_is_nil,

spoolProcedure_is_nil,

tag_is_nil,

type_is_nil,

mapping_is_nil,

invalid_viewDevice_reference,

invalid_viewGroup_reference,

invalid_viewPort_reference,

/* implementation limits */

number_of_contours_exceeds_implementation_limit = -27800,

C H A P T E R 3

Errors, Warnings, and Notices

3-44 Errors, Warnings, and Notices Reference

number_of_points_exceeds_implementation_limit,

size_of_polygon_exceeds_implementation_limit,

size_of_path_exceeds_implementation_limit,

size_of_text_exceeds_implementation_limit,

size_of_bitmap_exceeds_implementation_limit,

number_of_colors_exceeds_implementation_limit,

procedure_not_reentrant

#ifdef debugging

,

/* internal debugging errors: following available only in */

/* the debugging init */

functionality_unimplemented = -27700,

clip_to_frame_shape_unimplemented,

/* font parameter debugging errors */

illegal_font_storage_type,

illegal_font_storage_reference,

illegal_font_attributes,

/* parameter debugging errors */

parameter_out_of_range,

inconsistent_parameters,

index_is_less_than_zero,

index_is_less_than_one,

count_is_less_than_zero,

count_is_less_than_one,

contour_is_less_than_zero,

length_is_less_than_zero,

invalid_client_reference,

invalid_graphics_heap_start_pointer,

invalid_nongraphic_globals_pointer,

colorSpace_out_of_range,

pattern_lattice_out_of_range,

frequency_parameter_out_of_range,

tinting_parameter_out_of_range,

method_parameter_out_of_range,

space_may_not_be_indexed,

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-45

3
E

rrors, W
arnings, and N

otices

glyph_index_too_small,

no_glyphs_added_to_font,

glyph_not_added_to_font,

point_does_not_intersect_bitmap,

required_font_table_not_present,

unknown_font_table_format,

/* the styles encoding is not present in the font */

shapeFill_not_allowed,

inverseFill_face_must_set_clipLayer_flag,

invalid_transferMode_colorSpace,

colorProfile_must_be_nil,

bitmap_pixel_size_must_be_1,

empty_shape_not_allowed,

ignorePlatformShape_not_allowed,

nil_style_in_glyph_not_allowed,

complex_glyph_style_not_allowed,

invalid_mapping,

cannot_set_item_shapes_to_nil,

cannot_use_original_item_shapes_when_growing_picture,

cannot_add_unspecified_new_glyphs,

cannot_dispose_locked_tag,

cannot_dispose_locked_shape,

/* restricted access */

shape_access_not_allowed,

colorSet_access_restricted,

colorProfile_access_restricted,

tag_access_restricted,

viewDevice_access_restricted,

graphic_type_does_not_have_a_structure,

style_run_array_does_not_match_number_of_characters,

rectangles_cannot_be_inserted_into,

unknown_graphics_heap,

graphics_routine_selector_is_obsolete,

cannot_set_graphics_client_memory_without_setting_size,

graphics_client_memory_too_small,

graphics_client_memory_is_already_allocated,

C H A P T E R 3

Errors, Warnings, and Notices

3-46 Errors, Warnings, and Notices Reference

viewPort_is_a_window,

/* wrong type/bad reference */

illegal_type_for_shape,

shape_does_not_contain_a_bitmap,

shape_does_not_contain_text,

picture_expected,

bitmap_is_not_resizable,

shape_may_not_be_a_bitmap,

shape_may_not_be_a_picture,

graphic_type_does_not_contain_points,

graphic_type_does_not_have_multiple_contours,

graphic_type_cannot_be_mapped,

graphic_type_cannot_be_moved,

graphic_type_cannot_be_scaled,

graphic_type_cannot_be_rotated,

graphic_type_cannot_be_skewed,

graphic_type_cannot_be_reset,

graphic_type_cannot_be_dashed,

graphic_type_cannot_be_reduced,

graphic_type_cannot_be_inset,

shape_cannot_be_inverted,

shape_does_not_have_area,

shape_does_not_have_length,

first_glyph_advance_must_be_absolute,

picture_cannot_contain_itself,

viewPort_cannot_contain_itself,

cannot_set_unique_items_attribute_when_picture_

contains_items,

layer_style_cannot_contain_a_face,

layer_glyph_shape_cannot_contain_nil_styles,

/* validation errors */

object_wrong_type,

shape_wrong_type,

style_wrong_type,

ink_wrong_type,

transform_wrong_type,

device_wrong_type,

port_wrong_type,

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-47

3
E

rrors, W
arnings, and N

otices

/*cache validation errors */

shape_cache_wrong_type,

style_cache_wrong_type,

ink_cache_wrong_type,

transform_cache_wrong_type,

port_cache_wrong_type,

shape_cache_parent_mismatch,

style_cache_parent_mismatch,

ink_cache_parent_mismatch,

transform_cache_parent_mismatch,

port_cache_parent_mismatch,

invalid_shape_cache_port,

invalid_shape_cache_device,

invalid_ink_cache_port,

invalid_ink_cache_device,

invalid_style_cache_port,

invalid_style_cache_device,

invalid_transform_cache_port,

invalid_transform_cache_device,

recursive_caches,

/*shape cache validation errors */

invalid_fillShape_ownerCount,

recursive_fillShapes,

/*memory block validation errors */

indirect_memory_block_too_small,

indirect_memory_block_too_large,

unexpected_nil_pointer,

bad_address,

/* object validation errors */

no_owners,

invalid_pointer,

invalid_seed,

invalid_frame_seed,

invalid_text_seed,

invalid_draw_seed,

bad_private_flags,

/* path and polygon validation errors */

invalid_vector_count,

invalid_contour_count,

C H A P T E R 3

Errors, Warnings, and Notices

3-48 Errors, Warnings, and Notices Reference

/* validation bitmap errors */

bitmap_ptr_too_small,

bitmap_ptr_not_aligned,

bitmap_rowBytes_negative,

bitmap_width_negative,

bitmap_height_negative,

invalid_pixelSize,

bitmap_rowBytes_too_small,

bitmap_rowBytes_not_aligned,

bitmap_rowBytes_must_be_specified_for_user_image_buffer,

/* bitmap validation image errors */

invalid_bitImage_fileOffset,

invalid_bitImage_owners,

invalid_bitImage_rowBytes,

invalid_bitImage_internal_flag,

/* text validation errors */

text_bounds_cache_wrong_size,

text_metrics_cache_wrong_size,

text_index_cache_wrong_size,

/* glyph validation errors */

glyph_run_count_negative,

glyph_run_count_zero,

glyph_run_counts_do_not_sum_to_character_count,

glyph_first_advance_bit_set_not_allowed,

glyph_tangent_vectors_both_zero,

/* layout validation errors */

layout_run_length_negative,

layout_run_length_zero,

layout_run_level_negative,

layout_run_lengths_do_not_sum_to_text_length,

/* picture validation errors */

bad_shape_in_picture,

bad_style_in_picture,

bad_ink_in_picture,

bad_transform_in_picture,

bad_shape_cache_in_picture,

bad_seed_in_picture,

invalid_picture_count,

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-49

3
E

rrors, W
arnings, and N

otices

/* text face validation errors */

bad_textLayer_count,

bad_fillType_in_textFace,

bad_style_in_textFace,

bad_transform_in_textFace,

/* transform validation errors */

invalid_matrix_flag,

transform_clip_missing,

/* font cache validation errors */

metrics_wrong_type,

metrics_point_size_probably_bad,

scalar_block_wrong_type,

scalar_block_parent_mismatch,

scalar_block_too_small,

scalar_block_too_large,

invalid_metrics_range,

invalid_metrics_flags,

metrics_maxWidth_probably_bad,

font_wrong_type,

font_wrong_size,

invalid_font_platform,

invalid_lookup_range,

invalid_lookup_platform,

font_not_in_font_list,

metrics_not_in_metrics_list,

/* view device validation errors */

bad_device_private_flags,

bad_device_attributes,

invalid_device_number,

invalid_device_viewGroup,

invalid_device_bounds,

invalid_bitmap_in_device,

/* color set validation errors */

colorSet_wrong_type,

invalid_colorSet_viewDevice_owners,

invalid_colorSet_colorSpace,

invalid_colorSet_count,

C H A P T E R 3

Errors, Warnings, and Notices

3-50 Errors, Warnings, and Notices Reference

/* color profile validation errors */

colorProfile_wrong_type,

invalid_colorProfile_flags,

invalid_colorProfile_response_count,

/* internal backing store validation errors */

backing_free_parent_mismatch,

backing_store_parent_mismatch

#endif

};

QuickDraw GX non-debugging errors are listed in the section “Errors” beginning on
page 3-6. Debugging errors are listed in the section “Errors” beginning on page 3-6.

Warnings 3

QuickDraw GX provides you with an extended set of warnings in the debugging version
and a reduced set of warnings in the non-debugging version. Each QuickDraw GX
warning has a warning number described by the gxGraphicsWarning type definition
and the gxGraphicWarnings enumeration:

typedef long gxGraphicsWarning;

enum gxGraphicWarnings {

/* warnings about warnings */

warning_stack_underflow = -26999,

warning_stack_overflow,

notice_stack_underflow,

notice_stack_overflow,

about_to_grow_heap,

about_to_unload_objects,

/* result went out of range */

map_shape_out_of_range = -26950,

move_shape_out_of_range,

scale_shape_out_of_range,

rotate_shape_out_of_range,

skew_shape_out_of_range,

map_transform_out_of_range,

move_transform_out_of_range,

scale_transform_out_of_range,

rotate_transform_out_of_range,

skew_transform_out_of_range,

map_points_out_of_range,

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-51

3
E

rrors, W
arnings, and N

otices

/* gave a parameter out of range */

contour_out_of_range = -26900,

index_out_of_range_in_contour,

picture_index_out_of_range,

color_index_requested_not_found,

colorSet_index_out_of_range,

index_out_of_range,

count_out_of_range,

length_out_of_range,

font_table_index_out_of_range,

font_glyph_index_out_of_range,

point_out_of_range,

profile_response_out_of_range,

/* gxFont scaler warnings */

font_scaler_no_output = -26850,

font_scaler_fake_metrics,

font_scaler_fake_linespacing,

font_scaler_glyph_substitution,

font_scaler_no_kerning_applied,

/* might not be what you expected */

character_substitution_took_place,

unable_to_get_bounds_on_multiple_devices,

font_language_not_found,

font_not_found_during_unflattening,

/*storage */

unrecognized_stream_version,

bad_data_in_stream

#ifdef debugging

/*available only in debugging init */

,

/* nonsense data */

new_shape_contains_invalid_data = -26700,

new_tag_contains_invalid_data,

extra_data_passed_was_ignored,

font_table_not_found,

font_name_not_found,

C H A P T E R 3

Errors, Warnings, and Notices

3-52 Errors, Warnings, and Notices Reference

/* doesn't make sense to do */

unable_to_traverse_open_contour_that_starts_or_

ends_off_the_curve,

unable_to_draw_open_contour_that_starts_or_ends_

off_the_curve,

cannot_dispose_default_shape,

cannot_dispose_default_style,

cannot_dispose_default_ink,

cannot_dispose_default_transform,

cannot_dispose_default_colorProfile,

cannot_dispose_default_colorSet,

shape_direct_attribute_not_set,

/* couldn't find what you were looking for */

point_does_not_intersect_port,

cannot_dispose_non_font,

face_override_style_font_must_match_style,

union_of_area_and_length_returns_area_only,

insufficient_coordinate_space_for_new_device,

/* other */

shape_passed_has_no_bounds,

tags_of_type_flst_removed,

translator_not_installed_on_this_grafport

#endif

};

Non-debugging warnings are listed in the section “Warnings” beginning on page 3-10.
Debugging warnings are listed in the section “Warnings” beginning on page 3-10.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-53

3
E

rrors, W
arnings, and N

otices

Notices 3

QuickDraw GX provides you with a set of notices in the debugging version, but no
notices in the non-debugging version. Each QuickDraw GX notice has a notice number
described by the gxGraphicsNotice type definition and the gxGraphicNotice s
enumeration:

typedef long gxGraphicsNotice;

#ifdef debugging

enum gxGraphicNotices {

parameters_have_no_effect = -25999,

attributes_already_set,

caps_already_set,

clip_already_set,

color_already_set,

curve_error_already_set,

dash_already_set,

default_colorProfile_already_set,

default_ink_already_set,

default_transform_already_set,

default_shape_already_set,

default_style_already_set,

dither_already_set,

encoding_already_set,

face_already_set,

fill_already_set,

font_already_set,

font_variations_already_set,

glyph_positions_are_already_set,

glyph_tangents_are_already_set,

halftone_already_set,

hit_test_already_set,

ink_already_set,

join_already_set,

justification_already_set,

mapping_already_set,

pattern_already_set,

pen_already_set,

style_already_set,

tag_already_set,

text_attributes_already_set,

text_size_already_set,

transfer_already_set,

C H A P T E R 3

Errors, Warnings, and Notices

3-54 Errors, Warnings, and Notices Reference

translator_already_installed_on_this_grafport,

transform_already_set,

type_already_set,

validation_level_already_set,

viewPorts_already_set,

viewPort_already_in_viewGroup,

viewDevice_already_in_viewGroup,

geometry_unaffected,

mapping_unaffected,

tags_in_shape_ignored,

shape_already_in_primitive_form,

shape_already_in_simple_form,

shape_already_broken,

shape_already_joined,

cache_already_cleared,

shape_not_disposed,

style_not_disposed,

ink_not_disposed,

transform_not_disposed,

colorSet_not_disposed,

colorProfile_not_disposed,

font_not_disposed,

glyph_tangents_have_no_effect,

glyph_positions_determined_by_advance,

transform_viewPorts_already_set,

directShape_attribute_set_as_side_effect,

lockShape_called_as_side_effect,

lockTag_called_as_side_effect,

shapes_unlocked_as_side_effect,

shape_not_locked,

tag_not_locked,

disposed_dead_caches,

disposed_live_caches,

low_on_memory,

very_low_on_memory

transform_references_disposed_viewPort

};

Debugging notices are listed in the section “Notices” beginning on page 3-27.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-55

3
E

rrors, W
arnings, and N

otices

Error, Warning, and Notice Number Ranges 3

QuickDraw GX specifies the defined ranges of error, warning, and notice numbers. The
gxFirstAppError , gxLastAppError , gxFirstAppWarning , gxLastAppWarning ,
gxFirstAppNotice , and gxLastAppNotice types define the allowable ranges for
application-defined errors, warnings, and notices.

#define gxFirstSystemError –27999

#define gxFirstFatalError –27999

#define gxLastFatalError –27951

#define gxFirstNonfatalError –27950

#define gxFirstFontScalerError –27900

#define gxLastFontScalerError –27851

#define gxFirstParameterError –27850

#define gxFirstImplementationLimitError –27800

#define gxFirstSystemDebuggingError –27700

#define gxLastSystemError –27000

#define gxFirstAppError 2097152

#define gxLastAppError 4194303

#define gxFirstSystemWarning –26999

#define gxFirstResultOutOfRangeWarning –26950

#define gxFirstParameterOutOfRangeWarning –26900

#define gxFirstFontScalerWarning –26850

#define gxFirstSystemDebuggingWarning –26700

#define gxLastSystemWarning –26000

#define gxFirstAppWarning 5242880

#define gxLastAppWarning 7340031

#define gxFirstSystemNotice –25999

#define gxLastSystemNotice –25500

#define gxFirstAppNotice 7602146

#define gxLastAppNotice 8388607

C H A P T E R 3

Errors, Warnings, and Notices

3-56 Errors, Warnings, and Notices Reference

Functions 3

This section describes the QuickDrawGX functions you can use to control the generation
of errors, warnings, and notices.

Error Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last QuickDraw GX errors posted

■ replace the current error name with another error name

■ install the application-defined error handler function

■ obtain the installed application-defined error handler function

GXGetGraphicsError 3

You can use the GXGetGraphicsError function to obtain the first and last QuickDraw
GX errors posted.

gxGraphicsError GXGetGraphicsError(gxGraphicsError *stickyError);

stickyError
On return, a pointer to the first error posted.

function result The last error posted.

DESCRIPTION

The GXGetGraphicsError function returns the last error posted, or 0 if no error has
been posted. This function clears the last error so that all calls to this function return 0
until an error is posted.

The stickyError parameter, if not nil , is a pointer to the first error posted since the
last call to the GXGetGraphicsError function. QuickDraw GX clears the
stickyError parameter at the end of every call to the GXGetGraphicsError
function.

SEE ALSO

The use of this function is described in the section “Obtaining Errors, Warnings, and
Notices” beginning on page 3-30. Non-debugging errors that may be posted are listed in
the section “Errors” beginning on page 3-6. Debugging errors that may be posted are
listed in the section “Errors” beginning on page 3-6.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-57

3
E

rrors, W
arnings, and N

otices

An alternative method of posting errors is to include an application-defined error
handler. This topic is described in the section “Installing an Error, Warning, or Notice
Handler” beginning on page 3-40.

The GXSetUserGraphicsError function is used to install the error handler and is
described on page 3-58.

GXPostGraphicsError 3

You can use the GXPostGraphicsError function to replace the current QuickDraw GX
error with another error.

void GXPostGraphicsError(gxGraphicsError error);

error The error to be posted.

DESCRIPTION

The GXPostGraphicsError function replaces the QuickDraw GX error about to be
posted with an error message defined by the error parameter. You may use the
QuickDraw GX errors or define your own error number and error name. This function
stores the error posted so that subsequent calls to the GXGetGraphicsError function
return the error substituted by this function.

The GXPostGraphicsError function is available only when the debugging version is
installed.

SPECIAL CONSIDERATIONS

The error number must be within the range defined by QuickDraw GX. This range is
bounded by error numbers –27999 through –27000, or is in the application range.

SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

Non-debugging errors that can be replaced are listed in the section “Errors” beginning
on page 3-6. Non-debugging errors that can be replaced are listed in the section “Errors”
beginning on page 3-6.

C H A P T E R 3

Errors, Warnings, and Notices

3-58 Errors, Warnings, and Notices Reference

GXSetUserGraphicsError 3

You can use the GXSetUserGraphicsError function to install an error handling
function.

void GXSetUserGraphicsError(gxUserErrorFunction userFunction,

long reference);

userFunction
The application’s error handling function that is to be passed the error
code.

reference A long value that is passed each time an error occurs. This value can be
used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsError function installs an application-defined error
handling function. This function installs a function pointer that is called whenever an
error is posted. Setting the userFunction parameter to nil removes the error
handling function.

The userFunction parameter points to an application-defined error handler defined
by the following type:

typedef void (*gxUserErrorProcPtr)(gxGraphicsError status,

long reference);

typedef gxUserErrorProcPtr gxUserErrorFunction;

The second parameter is the long reference number. Whenever the application posts an
error, the installed error handling function is called with the error number. The reference
number is passed to the GXSetUserGraphicsError function.

You can install an error handler before calling the GXEnterGraphics function, but you
should call the GXNewGraphicsClient function first. If you don’t,
GXNewGraphicsClient will be called for you.

SPECIAL CONSIDERATIONS

If the error number posted by the application is within the QuickDraw GX range of fatal
errors, execution continues with undefined results. The fatal error range is bounded
by error numbers –27999 and –27951.

If the error number posted by the application is within the QuickDraw GX range
of nonfatal errors, execution continues, but results may be other than that expected. The
nonfatal error range is bounded by error numbers –27950 and –27000.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-59

3
E

rrors, W
arnings, and N

otices

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsError function used to return a pointer to the
application-defined error-handling function is described in the next section.

An alternative method of posting errors is to use the QuickDraw GX error messages.
This topic is discussed in the section “Obtaining Errors, Warnings, and Notices”
beginning on page 3-30.

The GXGetGraphicsError function described on page 3-56 is used to obtain the first
and last QuickDraw GX errors posted.

The application-defined error handler is described on page 3-72.

GXGetUserGraphicsError 3

You can use the GXGetUserGraphicsError function to obtain the currently installed
application-defined error handler.

gxUserErrorFunction GXGetUserGraphicsError(long *reference);

reference A pointer to a long value that gets called each time an error occurs. This
value can be used by the application for any purpose.

function result A pointer to the installed application-defined error handler function.

DESCRIPTION

The GXGetUserGraphicsError function returns a pointer to the function that the
application uses to handle errors. The function returns nil if no application-defined
error handler is provided.

If an error-handling function is installed and the reference parameter is not nil , then
the reference parameter passed to the GXSetUserGraphicsError function is
returned.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsError function used to install the error handler is described
in the previous section.

An alternative method to the use of an application-defined error handler is the use of the
QuickDraw GX error set.

C H A P T E R 3

Errors, Warnings, and Notices

3-60 Errors, Warnings, and Notices Reference

The GXGetGraphicsError function, described in the section “Obtaining Errors,
Warnings, and Notices” beginning on page 3-30, returns the first and last QuickDraw GX
errors that have been posted.

Warning Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last QuickDraw GX warnings posted

■ replace the current error name with another error name

■ install the application-defined warning handler function

■ obtain the installed application-defined warning handler function

■ add a warning to the ignore warning stack

■ remove the last warning to be added to the warning stack

GXGetGraphicsWarning 3

You can use the GXGetGraphicsWarning function to obtain the first and last warning
posted.

gxGraphicsWarning GXGetGraphicsWarning

(gxGraphicsWarning *stickyWarning);

stickyWarning
On return, a pointer to the first warning posted.

function result The last warning posted.

DESCRIPTION

The GXGetGraphicsWarning function returns the last warning posted, or 0 if none.

The stickyWarning parameter, if not nil , receives the first warning posted since the
last call to the GXGetGraphicsWarning function. QuickDraw GX clears the
stickyWarning parameter at the end of every call to the GXGetGraphicsWarning
function.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-61

3
E

rrors, W
arnings, and N

otices

SEE ALSO

The use of this function is described in the section“Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.

QuickDraw GX non-debugging warnings that may be posted are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

An alternative method of posting warnings is to include an application-defined warning
handler. This topic is described in the section “Changing the Error, Warning, or Notice
Posted” beginning on page 3-35.

The GXSetUserGraphicsWarning function is used to install the warning handler and
is described on page 3-62.

GXPostGraphicsWarning 3

You can use the GXPostGraphicsWarning function to post your own warnings from
your application.

void GXPostGraphicsWarning(gxGraphicsWarning warning);

warning The warning to be posted.

DESCRIPTION

The GXPostGraphicsWarning function replaces the QuickDraw GX warning about to
be posted with a warning message defined by the warning parameter.

You may use the QuickDraw GX warnings or define your own warning number and
warning name. This function stores the warning posted so that subsequent calls to the
GXGetGraphicsWarning function return the warning substituted by this function.

If the warning to be posted is in the ignore warning stack, the warning is not posted and
execution continues.

If an application-defined warning handler is provided, the warning is passed to the
warning handler.

SPECIAL CONSIDERATIONS

The warning number must be within the range defined by QuickDraw GX. This range is
bounded by warning numbers –26999 through –26000 or is in an application range.

C H A P T E R 3

Errors, Warnings, and Notices

3-62 Errors, Warnings, and Notices Reference

SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

QuickDraw GX non-debugging warnings that may be replaced are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

Ignoring warnings is discussed in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

GXSetUserGraphicsWarning 3

You can use the GXSetUserGraphicsWarning function to install an
application-defined warning handler.

void GXSetUserGraphicsWarning(gxUserWarningFunction userFunction,

 long reference);

userFunction
The application’s warning function that is to be passed the warning code.

reference A long value that gets called each time a warning occurs. This value can
be used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsWarning function installs an application-defined warning
handler. This function installs a function pointer that is called whenever a warning is
posted. Setting the userFunction parameter to nil removes the error function.

The userFunction parameter points to an application-defined warning handler
defined by the following type:

typedef void (*gxUserWarningProcPtr)(gxGraphicsWarning status,

long refcon)

typedef gxUserWarningProcPtr gxUserWarningFunction;

The second parameter is the long reference parameter. Whenever a warning is posted
by the application, the installed warning handler is called with the warning number. The
reference number is passed to the GXSetUserGraphicsError function.

You can install a warning handler before calling the GXEnterGraphics function ,
but you should call the GXNewGraphicsClient function first. If you don’t,
GXNewGraphicsClient will be called for you.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-63

3
E

rrors, W
arnings, and N

otices

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsWarning function described in the next section is used to
return a pointer to the application-defined warning handler.

An alternative method of posting warnings is to use the QuickDraw GX warning
messages. This topic is discussed in the section “Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.

The GXGetGraphicsError function described on page 3-56 is used to obtain the first
and last QuickDraw GX errors posted.

The application-defined warning handler is described on page 3-73.

GXGetUserGraphicsWarning 3

You can use the GXGetUserGraphicsWarning function to obtain the currently
installed application-defined warning handler.

gxUserWarningFunction GXGetUserGraphicsWarning(long *reference);

reference A long value that gets called each time a warning occurs. This value can
be used by your application for any purpose.

function result A pointer to the installed application-defined warning handler.

DESCRIPTION

The GXGetUserGraphicsWarning function returns a pointer to the function that the
application uses to handle warnings. The function returns nil if no application-defined
warning handler is provided.

If a warning handler is installed and the reference parameter is not nil , then the
reference parameter passed to the GXSetUserGraphicsWarning function is
returned.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsWarning function used to install the warning handler is
described in the previous section.

An alternative method to the use of an application-defined warning handler is the use of
the QuickDraw GX warnings.

C H A P T E R 3

Errors, Warnings, and Notices

3-64 Errors, Warnings, and Notices Reference

The GXGetGraphicsWarning function, described in the section “Obtaining Errors,
Warnings, and Notices” beginning on page 3-30, returns the first and last QuickDraw
GX warnings that have been posted.

GXIgnoreGraphicsWarning 3

You can use the GXIgnoreGraphicsWarning function to ignore warnings.

void GXIgnoreGraphicsWarning(gxGraphicsWarning warning);

warning The warning number or warning name to ignore.

DESCRIPTION

The GXIgnoreGraphicsWarning function adds the warning to be ignored to the
ignore warning stack. The posting of warnings is suppressed for all warnings on
the ignore warning stack. Warnings may be removed from the ignore warnings stack
by the use of the GXPopGraphicsWarning function.

You may use any Quickdraw GX warning numbers and warning names or, if you have
installed an application-defined warning handler, you may use your own warning
numbers and warning names, as long as they use a numbering system different than that
provided by QuickDraw GX.

SPECIAL CONSIDERATIONS

The GXIgnoreGraphicsWarning function saves warning numbers in a warning stack
of limited size, so that a limited number of warnings can be ignored at one time. If the
GXIgnoreGraphicsWarning function has been called too many times with no
matching calls to the GXPopGraphicsWarning function, subsequent calls to the
GXIgnoreGraphicsWarning function do not cause the warning to be ignored and a
warning_stack_overflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

Warnings
warning_stack_overflow

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-65

3
E

rrors, W
arnings, and N

otices

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX non-debugging warnings that may be posted are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

The GXPopGraphicsWarning function is described in the next section.

GXPopGraphicsWarning 3

You can use the GXPopGraphicsWarning function to remove ignore warnings from the
ignore warning stack.

void GXPopGraphicsWarning(void);

DESCRIPTION

The GXPopGraphicsWarning function removes the last warning placed on the ignore
warning stack by the GXIgnoreGraphicsWarning function. The
GXPopGraphicsWarning function removes warnings from the stack in the opposite
order that they were added to the stack (last in, first out). Calls to the
GXIgnoreGraphicsWarning and GXPopGraphicsWarning functions can be nested.

SPECIAL CONSIDERATIONS

If no warning is on the warning stack when you call this function, a
warning_stack_underflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX non-debugging warnings that may be added to and removed from the
ignore warning stack are listed in the section “Warnings” beginning on page 3-10.
Debugging warnings are listed in the section “Warnings” beginning on page 3-10.

The GXIgnoreGraphicsWarning function is described in the previous section.

Warnings
warning_stack_underflow

C H A P T E R 3

Errors, Warnings, and Notices

3-66 Errors, Warnings, and Notices Reference

Notice Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last notice posted

■ install the current notice

■ install an application-defined function for posted notices

■ obtain an application-defined notice handler function for posted notices

■ add a notice to the ignore notice stack

■ remove the last notice to be added to the notice stack

GXGetGraphicsNotice 3

You can use the GXGetGraphicsNotice function to obtain the first and last notices
posted.

gxGraphicsNotice GXGetGraphicsNotice

(gxGraphicsNotice *stickyNotice);

stickyNotice
On return, a pointer to the first notice posted.

function result The last notice posted.

DESCRIPTION

The GXGetGraphicsNotice function returns the last notice posted, or 0 if none. The
stickyNotice parameter, if not nil , receives the first notice posted since the last call
to the GXGetGraphicsNotice function.

SPECIAL CONSIDERATIONS

QuickDraw GX clears the stickyNotice argument at the end of every call to the
GXGetGraphicsNotice function. It always returns 0 on non-debugging versions.

SEE ALSO

The use of this function is described in the section“Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-67

3
E

rrors, W
arnings, and N

otices

An alternative method of posting notices is to include an application-defined notice
handler. This topic is described in the section “Changing the Error, Warning, or Notice
Posted” beginning on page 3-35.

The GXSetUserGraphicsNotice function that is used to install the notice handler is
described on page 3-68.

GXPostGraphicsNotice 3

You can use the GXPostGraphicsNotice function to post your own notices from
inside your application.

void GXPostGraphicsNotice(gxGraphicsNotice notice);

notice The notice to be posted.

DESCRIPTION

The GXPostGraphicsNotice function replaces the QuickDraw GX notice about to be
posted with a notice message defined by the notice parameter.

You may use the QuickDraw GX notices or define your own notice number and notice
name. This function stores the posted notice so that subsequent calls to the
GXGetGraphicsNotice function return the notice substituted by this function.

If the notice to be posted is in the ignore notice stack, the notice is not posted and
execution continues. Ignoring notices is discussed in the section “Ignoring Warnings and
Notices” beginning on page 3-37.

If an application-defined notice handler is provided, the notice is passed to the handler.

The GXIgnoreGraphicsNotice function has no effect in the non-debugging version.

SPECIAL CONSIDERATIONS

The notice number must be within the range defined by QuickDraw GX. This range is
bounded by notice numbers –25999 through –25500 or is in an application range.

SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

Notice handlers are discussed in the section “Installing an Error, Warning, or Notice
Handler” beginning on page 3-40.

C H A P T E R 3

Errors, Warnings, and Notices

3-68 Errors, Warnings, and Notices Reference

GXSetUserGraphicsNotice 3

You can use the GXSetUserGraphicsNotice function to install a notice handler.

void GXSetUserGraphicsNotice(gxUserNoticeFunction userFunction,

long reference);

userFunction
The application function that is to be passed the notice result code.

reference A long value that is called each time a notice occurs. This value can be
used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsNotice function installs an application-defined notice-
handling function. This function installs a function pointer that is called whenever a
notice is posted. Setting the userFunction parameter to nil removes the notice
function.

The userFunction parameter points to an application-defined notice handler defined
by the following type:

typedef void (*gxUserNoticeProcPtr)(gxGraphicsNotice status,

long reference)

typedef gxUserNoticeProcPtr gxUserNoticeFunction;

The second parameter is the long reference. Whenever a notice is posted by the
application, the installed notice handler is called with the notice number. The reference
number is passed to the GXSetUserGraphicsNotice function.

You can install a notice handler before calling the GXEnterGraphics function, but you
should call the GXNewGraphicsClient function first. If you don’t, it will be called for
you.

The GXSetUserGraphicsNotice function has no effect in the non-debugging version.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsNotice function used to return a pointer to the
application-defined notice handler is described in the next section.

The application-defined notice handler is described on page 3-74.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-69

3
E

rrors, W
arnings, and N

otices

GXGetUserGraphicsNotice 3

You can use the GXGetUserGraphicsNotice function to obtain the currently installed
application-defined notice handler.

gxUserNoticeFunction GXGetUserGraphicsNotice(long *reference);

reference A long value that is called each time a notice occurs. This value can be
used by the application for any purpose.

function result A pointer to the installed application-defined notice handler.

DESCRIPTION

The GXGetUserGraphicsNotice function returns a pointer to the function that the
application uses to handle notices. The function returns nil if no application-defined
notice handler is installed.

If a notice handler function is installed and the reference parameter is not nil , then
the reference parameter passed to the GXSetUserGraphicsNotice function is
returned.

The GXGetUserGraphicsNotice function has no effect in the non-debugging version.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsNotice function used to install the notice handler is
described in the previous section.

An alternative method to the use of an application-defined notice handler is the use of
QuickDraw GX notices. The GXGetGraphicsNotice function, described in the section
“Obtaining Errors, Warnings, and Notices” beginning on page 3-30, returns the first and
last QuickDraw GX notices that have been posted.

C H A P T E R 3

Errors, Warnings, and Notices

3-70 Errors, Warnings, and Notices Reference

GXIgnoreGraphicsNotice 3

You can use the GXIgnoreGraphicsNotice function to ignore QuickDraw GX notices
that may occur when specific parts of your application execute.

void GXIgnoreGraphicsNotice(gxGraphicsNotice notice);

notice The graphics notice number or name to ignore.

DESCRIPTION

The GXIgnoreGraphicsNotice function adds the notice to be ignored to the ignore
notice stack. The posting of notices is suppressed for all notices on the ignore notice
stack. Notices may be removed from the ignore notice stack by the use of the
GXPopGraphicsNotice function.

You may use any QuickDraw GX notice numbers and notice names or, if you have
installed an application-defined notice handler, you may use your own notice numbers
and notice names, as long as they use a numbering system different than that provided
by QuickDraw GX.

This function has no effect in non-debugging versions

SPECIAL CONSIDERATIONS

The GXIgnoreGraphicsNotice function saves notice numbers in a warning stack of
limited size. If the GXIgnoreGraphicsNotice function has been called too many
times with no matching calls to the GXPopGraphicsNotice function, subsequent calls
to the GXIgnoreGraphicsNotice function do not cause the notice to be ignored and a
notice_stack_overflow warning is be posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX notices that may be posted are listed in the section “Notices” beginning
on page 3-27.

The GXPopGraphicsNotice function is described in the next section.

Warnings
notice_stack_overflow

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-71

3
E

rrors, W
arnings, and N

otices

GXPopGraphicsNotice 3

You can use the GXPopGraphicsNotice function to remove notices from the ignore
notice stack.

void GXPopGraphicsNotice(void);

DESCRIPTION

The GXPopGraphicsNotice function removes the last notice added to the ignore
notice stack by the GXIgnoreGraphicsNotice function. The
GXPopGraphicsNotice function removes notices from the stack in the opposite order
that they were added to the stack (last in, first out). Calls to the
GXIgnoreGraphicsNotice function and the GXPopGraphicsNotice function can
be nested.

The GXPopGraphicsNotice function has no effect in the non-debugging version.

SPECIAL CONSIDERATIONS

If no notice is on the ignore notice stack when you call this function, a
notice_stack_underflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX notices that may be added and removed from the ignore notice stack are
listed in the section “Notices” beginning on page 3-27.

The GXIgnoreGraphicsNotice function is described in the previous section.

Warnings
notice_stack_underflow

C H A P T E R 3

Errors, Warnings, and Notices

3-72 Errors, Warnings, and Notices Reference

Application-Defined Functions 3

QuickDraw GX supports application-defined error, warning, and notice handlers. These
handlers are installed by the use of the GXSetUserGraphicsError ,
GXSetUserGraphicsWarning , and GXSetUserGraphicsNotice functions.

MyUserGraphicsError 3

You can use the MyUserGraphicsError function to provide an application-defined
error handler for your application.

void MyUserGraphicsError(gxGraphicsError error, long reference);

error The QuickDraw GX error being passed to the handler.

reference A long value passed each time that an error occurs. This value can be
used by the error handler for any purpose.

DESCRIPTION

The MyUserGraphicsError function is called with the error number posted by the
failed function. The MyUserGraphicsError function can evaluate the error and
respond in any appropriate manner.

The error handler is enabled and disabled by the use of the
GXSetUserGraphicsError function. If its parameter is set to nil , the error handler is
disabled. If its parameter is not nil , the error handler is enabled and all errors detected
by QuickDraw GX are passed to the error handler for processing and possible response.

The GXGetUserGraphicsError function returns the currently installed
application-defined error handler.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

QuickDraw GX non-debugging errors that may be sent to the error handler are listed in
section “Errors” beginning on page 3-6. Debugging errors are listed in the section
“Errors” beginning on page 3-6.

The GXSetUserGraphicsError function is described on page 3-58.

The GXGetUserGraphicsError function is described on page 3-59.

C H A P T E R 3

Errors, Warnings, and Notices

Errors, Warnings, and Notices Reference 3-73

3
E

rrors, W
arnings, and N

otices

MyUserGraphicsWarning 3

You can use the MyUserGraphicsWarning function to provide an application-defined
warning handler for your application.

void MyUserGraphicsWarning(gxGraphicsWarning warning,

long reference);

warning The QuickDraw GX warning being passed to the handler.

reference A long value passed each time that a warning occurs. This value can be
used by the warning handler for any purpose.

DESCRIPTION

The MyUserGraphicsWarning function is called with the warning number posted by
the defective function. The MyUserGraphicsWarning function can evaluate the
warning and respond in any appropriate manner.

The warning handler is enabled and disabled by the use of the
GXSetUserGraphicsWarning function. If its parameter is set to nil , the warning
handler is disabled. If its parameter is not nil , the warning handler is enabled and all
warnings detected by QuickDraw GX are passed to the warning handler for processing
and possible response.

The GXGetUserGraphicsWarning function returns the currently installed
application-defined warning handler.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

Warnings that may be sent to the warning handler are listed in the section “Warnings”
beginning on page 3-10.

The GXSetUserGraphicsWarning function is described on page 3-62.

The GXGetUserGraphicsWarning function is described on page 3-63.

C H A P T E R 3

Errors, Warnings, and Notices

3-74 Errors, Warnings, and Notices Reference

MyUserGraphicsNotice 3

You can use the MyUserGraphicsNotice function to provide an application-defined
notice handler for your application.

void MyUserGraphicsNotice(gxGraphicsNotice notice,

long reference);

notice The QuickDraw GX notice being passed to the handler.

reference A long value passed each time that a notice occurs. This value can be
used by the notice handler for any purpose.

DESCRIPTION

The MyUserGraphicsNotice function is called with the notice number posted by the
defective function. The MyUserGraphicsNotice function can evaluate the notice and
respond in any appropriate manner.

The notice handler is enabled and disabled by the use of the
GXSetUserGraphicsNotice function. If its parameter is set to nil , the notice handler
is disabled. If its parameter is not nil , the notice handler is enabled and all notices
detected by QuickDraw GX are passed to the notice handler for processing and possible
response.

The GXGetUserGraphicsNotice function returns the currently installed
application-defined notice handler. This function will never be called in the
non-debugging version of QuickDraw GX.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

Notices that may be sent to the notice handler are listed in the section “Notices”
beginning on page 3-27.

The GXSetUserGraphicsNotice function is described on page 3-68.

The GXGetUserGraphicsNotice function is described on page 3-69.

C H A P T E R 3

Errors, Warnings, and Notices

Summary of Errors, Warnings, and Notices 3-75

3
E

rrors, W
arnings, and N

otices

Summary of Errors, Warnings, and Notices 3

Constants and Data Types 3

QuickDraw GX Errors

typedef long gxGraphicsError

QuickDraw GX Warnings

typedef long gxGraphicsWarning

QuickDraw GX Notices

typedef long gxGraphicsNotice

Application-Defined Handlers

typedef void (*gxUserErrorProcPtr)(gxGraphicsError status,
long refcon)

typedef gxUserErrorProcPtr gxUserErrorFunction;

typedef void (*gxUserWarningProcPtr)(gxGraphicsWarning
status,long refcon)

typedef gxUserWarningProcPtr gxUserWarningFunction;

typedef void (*gxUserNoticeProcPtr)(gxGraphicsNotice status,
long refcon)

typedef gxUserNoticeProcPtr gxUserNoticeFunction;

Functions 3

Error Posting and Handling

gxGraphicsError GXGetGraphicsError
(gxGraphicsError *stickyError);

void GXPostGraphicsError (gxGraphicsError error);

void GXSetUserGraphicsError (gxUserErrorFunction userFunction,
long reference);

gxUserErrorFunction GXGetUserGraphicsError
(long *reference);

C H A P T E R 3

Errors, Warnings, and Notices

3-76 Summary of Errors, Warnings, and Notices

Warning Posting and Handling

gxGraphicsWarning GXGetGraphicsWarning
(gxGraphicsWarning *stickyWarning);

void GXPostGraphicsWarning (gxGraphicsWarning warning);

void GXSetUserGraphicsWarning
(gxUserWarningFunction userFunction,

long reference);

gxUserWarningFunction GXGetUserGraphicsWarning
(long *reference);

void GXIgnoreGraphicsWarning
(gxGraphicsWarning warning);

void GXPopGraphicsWarning (void);

Notice Posting and Handling

gxGraphicsNotice GXGetGraphicsNotice
(gxGraphicsNotice *stickyNotice);

void GXPostGraphicsNotice (gxGraphicsNotice notice);

void GXSetUserGraphicsNotice
(gxUserNoticeFunction userFunction,

long reference);

gxUserNoticeFunction GXGetUserGraphicsNotice
(long *reference);

void GXIgnoreGraphicsNotice
(gxGraphicsNotice notice);

void GXPopGraphicsNotice (void);

Application-Defined Functions 3

void MyUserGraphicsError (gxGraphicsError error, long reference);

void MyUserGraphicsWarning (gxGraphicsWarning warning, long reference);

void MyUserGraphicsNotice (gxGraphicsNotice notice, long reference);

Contents

4-1

C H A P T E R 4

4

Figure 4-0
Listing 4-0
Table 4-0

Contents

4 QuickDraw GX Debugging

About QuickDraw GX Debugging 4-3
Debugging Version of QuickDraw GX 4-5
QuickDraw GX Errors, Warnings, and Notices 4-5
Application-Defined Error, Warning, and Notice Handlers 4-5
The Drawing Error Function 4-6
Validation Functions 4-6
MacsBug and GraphicsBug 4-7

Using QuickDraw GX Debugging 4-8
Analyzing Drawing Problems 4-8
Using Validation Functions 4-15

Controlling Validation 4-15
Validating Objects 4-20
Analyzing the Cause of Validation Errors 4-21
Distinguishing Between Application Bugs and QuickDraw GX
Bugs 4-22
Detecting Corrupted Objects 4-22

Debugging With GraphicsBug 4-23
Analyzing a Picture Shape 4-25

QuickDraw GX Debugging Reference 4-28
Constants and Data Types 4-28

Drawing Errors 4-29
Validation Levels 4-31

Functions 4-33
Obtaining Drawing Errors 4-33

GXGetShapeDrawError

4-33
Setting and Getting Validation Options and Errors 4-34

GXSetValidation

4-34

GXGetValidation

4-35

GXGetValidationError

4-35
Validating Objects 4-36

C H A P T E R 4

4-2

Contents

GXValidateShape

4-36

GXValidateStyle

4-36

GXValidateInk

4-37

GXValidateTransform

4-38

GXValidateColorSet

4-38

GXValidateColorProfile

4-39

GXValidateTag

4-39

GXValidateViewDevice

4-40

GXValidateViewPort

4-40

GXValidateViewGroup

4-41

GXValidateGraphicsClient

4-42

GXValidateAll

4-43
Summary of QuickDraw GX Debugging 4-44

Constants and Data Types 4-44
Functions 4-47

C H A P T E R 4

About QuickDraw GX Debugging

4-3

4

Q

uickD
raw

 G
X

 D
ebugging

QuickDraw GX Debugging 4

This chapter describes the QuickDraw GX application debugging environment and the
functions and utilities that you can use to debug your application. Read this chapter if
you are developing a QuickDraw GX application and want to use these features.

Before reading this chapter, you should be familiar with the debugging and
non-debugging versions of QuickDraw GX described in the chapter “Errors, Warnings,
and Notices” in this book. You should also read the chapter “Introduction to QuickDraw
GX” in

Inside Macintosh: QuickDraw GX Objects

.

For more information on debugging printing applications, see

Inside Macintosh:
QuickDraw GX Printing

and

 Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers

.

This chapter introduces the QuickDraw GX debugging environment. It then describes
how to use this environment during application development to

■

analyze drawing problems

■

validate public and internal function parameters for all allocated objects

■

validate public and internal function parameters for specific objects

■

distinguish between application and QuickDraw GX bugs

■

detect corrupted objects

■

install a debugging function

■

use the GraphicsBug utility

This chapter also contains reference information for all data types and functions
associated with QuickDraw GX debugging.

About QuickDraw GX Debugging 4

QuickDraw GX provides both a

debugging environment

 and a

non-debugging
environment.

 The non-debugging environment is present whenever you install the
non-debugging version of QuickDraw GX. You install the non-debugging version after
completely debugging your application. Users of your application will use the
non-debugging version of QuickDraw GX.

You can develop applications that use QuickDraw GX graphics and typography
functions using the QuickDraw GX debugging environment. The debugging
environment consists of

■

the QuickDraw GX debugging version

■

QuickDraw GX errors, warnings, and notices

■

application-defined error, warning, and notice handlers

■

a QuickDraw GX drawing error function

■

QuickDraw GX validation functions

■

the QuickDraw GX GraphicsBug utility

C H A P T E R 4

QuickDraw GX Debugging

4-4

About QuickDraw GX Debugging

Figure 4-1 shows the QuickDraw GX application development environment.

Figure 4-1

The QuickDraw GX debugging environment

As a direct result of the extensive error, warning, and notice checking the debugging
environment performs, the debugging version of QuickDraw GX is significantly slower
than that of the non-debugging environment. Invoking additional optional error
checking using the validation functions further affects performance.

QuickDraw GX
errors, warnings,

and notices

Application–defined
error,

warning, and
notice

handlers

QuickDraw GX
drawing error

function

QuickDraw GX
validation
functions

QuickDraw GX
GraphicsBug

utility

QuickDraw GX debugging version

QuickDraw GX
application

C H A P T E R 4

QuickDraw GX Debugging

About QuickDraw GX Debugging

4-5

4

Q

uickD
raw

 G
X

 D
ebugging

Debugging Version of QuickDraw GX 4

You should use the debugging version of QuickDraw GX when you are writing and
debugging applications. This version provides an extensive set of errors, warnings, and
notices to help you understand the problems you may encounter during the execution of
your application. In addition, this version provides special functions that allow you to
manage errors, warnings, and notices and to provide public and private error validation.

The debugging version runs slower than the non-debugging version. The reasons for this
are that the debugging version:

■

performs additional error checking

■

posts additional errors, warnings, and notices

■

does not provide speed optimization, such as in-line functions

■

generates MacsBug messages

■

provides additional debugging functions, such as validation

To determine if the debugging or non-debugging version of QuickDraw GX is installed,
see the chapter “QuickDraw GX and the Macintosh Environment.”

QuickDraw GX Errors, Warnings, and Notices 4

QuickDraw GX posts errors, warnings, and notices whenever an execution problem
occurs while an application is running. You can obtain errors, warnings, and notices by
polling or by the use of application-defined error, warning, and notice handlers.

The debugging and non-debugging versions of QuickDraw GX and the errors, warnings,
and notices that may be posted from each version are described in the chapter “Errors,
Warnings, and Notices.”

Application-Defined Error, Warning, and Notice Handlers 4

You can use error, warning, and notice handlers to manage problems that occur when
your application is running. When QuickDraw GX detects an error, warning, or notice it
will call your handler. Your function can then respond accordingly. You can also use
error and warning handlers with the non-debugging version of QuickDraw GX to
provide part of your user interface.

Application-defined error, warning, and notice handlers are described in the section
“Installing an Error, Warning, or Notice Handler” beginning on page 3-40.

C H A P T E R 4

QuickDraw GX Debugging

4-6

About QuickDraw GX Debugging

The Drawing Error Function 4

The debugging version of QuickDraw GX provides a drawing error function that you
can use if you have run your application and get an unexpected result. This function
reparses the entire QuickDraw GX operation, analyzes your application’s draw
procedure, and posts a single error that will assist you in determining what went wrong
with your application. The drawing error function is described in the section “Analyzing
Drawing Problems” beginning on page 4-8.

Validation Functions 4

The debugging version of QuickDraw GX provides validation for applications using
graphics and typographic functions, but does not provide validation for QuickDraw GX
printing functions.

The validation functions check function parameters of allocated objects to see if they are
valid. If QuickDraw GX finds one or more parameters of a function to be invalid, it posts
a validation error. All of the validation errors that may be posted are listed in the chapter
“Errors, Warnings, and Notices.”

There are two modes of validation that control when validation occurs:

■

public validation

■

internal validation

Public validation

 occurs whenever the public validation flag is set and your application
uses a public function. A public function is any function that you use in your application.
This is the mode of validation developers use most.

Internal validation

 occurs whenever the internal validation flag is set and your
application uses a public function and whenever QuickDraw GX uses one of its internal
(private) functions. Application developers do not usually use internal validation.
Internal validation performs checking on functions that you have no control over. As a
result, you will rarely need to perform this type of validation. However, QuickDraw GX
provides internal validation to allow you to distinguish between bugs that appear in
public functions and bugs that are present in the QuickDraw GX internal functions, as
discussed in the section “Distinguishing Between Application Bugs and QuickDraw GX
Bugs” beginning on page 4-22.

There are three levels of validation that control what is checked during validation:

■

type validation

■

structure validation

■

all object validation

The validation these three levels provide is cumulative and progressively more complex.
For example, all object validation includes type validation and structure validation.

C H A P T E R 4

QuickDraw GX Debugging

About QuickDraw GX Debugging

4-7

4

Q

uickD
raw

 G
X

 D
ebugging

In addition to these three levels, there are separate object validation functions.

Type validation

 confirms the validity of references to object types. For example, when
you call the

GXDrawShape

 function, type validation confirms that a shape type is passed.

Structure validation

 confirms the validity of references to object types and the properties
of the function, and also checks internal caches. For example, when you call the

GXDrawShape

 function, structure validation confirms not only that the function passes a
shape, but also confirms the validity of the properties specified in the shape’s style, ink,
and transform objects.

All object validation

 confirms the validity of references to a specific object type, the
validity of the properties of all objects, and all internal caches.

Specific object validation

 functions are used to confirm that all references to a specific
object type are valid, that the properties of all objects are valid, and that all internal
caches built for the specific object type are valid. Specific object validation functions are
provided for shapes, styles, inks, transforms, color sets, color profiles, tags, view devices,
view ports, view groups, and graphics clients.

It is important to note that not all parameters of all functions are checked by validation.
Validation does not check scalars and structures, such as bitmaps and dash records.

For example, the second parameter of the

GXSetShapePen

 function is the pen size. If
you pass a negative value to the second parameter, QuickDraw GX will not post a
validation error. Fortunately, QuickDraw GX often provides an overlap in its debugging
capabilities, and in this case, the

GXSetShapePen

 function would post an error
indicating that the size is invalid.

Validation does check

■

objects that are indicated by pointer values, such as shapes

■

objects that are indicated by references, such as view devices

Note

You should not make an application dependent on whether an object is
referred to by pointer or reference. This is subject to change in future
versions of QuickDraw GX.

◆

You can enable validation selectively over the selected problem area of code. Rather than
turning validation on at the beginning of your application, you may find it is more
useful to concentrate on an area where a problem is suspected and to turn validation on
and off selectively in that area or selectively use the specific object validation functions.

MacsBug and GraphicsBug 4

Both the debugging and non-debugging versions of QuickDraw GX support MacsBug
and GraphicsBug.

MacsBug

 is Apple Computer, Inc.’s, assembly-language debugger
that was developed for Macintosh programmers. MacsBug is not very useful for
debugging QuickDraw GX applications because GX data structures are private. For
additional information about MacsBug, see

MacsBug Reference and Debugging Guide.

C H A P T E R 4

QuickDraw GX Debugging

4-8

Using QuickDraw GX Debugging

GraphicsBug

 is Apple Computer Inc.’s symbolic debugger for QuickDraw GX
applications. This utility assists in finding bugs by allowing you to display and check
QuickDraw GX objects. GraphicsBug is modeled after MacsBug. In fact, many of the
commands are similar.

The use of GraphicsBug to analyze a QuickDraw GX graphics client heap is described in
the section “Debugging With GraphicsBug” beginning on page 4-23.

Using QuickDraw GX Debugging 4

You can use the QuickDraw GX debugging environment to help you debug your
application. This section shows how you can

■

determine why a shape didn’t draw

■

validate using public, internal, or object modes of validation

■

validate types, structures, and all objects

■

validate memory

■

distinguish between QuickDraw GX bugs and application bugs

■

validate public objects

■

analyze the QuickDraw GX graphics heap with the GraphicsBug utility

Analyzing Drawing Problems 4

If you have run your application and a shape didn’t draw as you anticipated, you can
use the

GXGetShapeDrawError

 function to have QuickDraw GX analyze why the
shape didn’t draw correctly. This function checks the content of a shape and all of the
objects referenced by the shape for a condition that explains why the shape has no
visible effect when drawn. As a result,

GXGetShapeDrawError

 returns a single

drawing error

 from the

gxDrawErrors

 enumeration that may describe why the shape
failed to draw correctly. The

gxDrawErrors

 enumeration is listed in the section
“Drawing Errors” beginning on page 4-29. The

GXGetShapeDrawError

 function is
described on page 4-33.These errors should not be confused with

gxGraphicsErrors

.

If the drawing was completed successfully, QuickDraw GX posts the

NoDrawError

drawing error. If you don’t see the drawing, remember that it may have been drawn to a
different view device or may have just redrawn over the previous shape that was drawn.
The posting of a

NoDrawError

 drawing error does not mean that the shape drawn is
the one you expected or the correct shape. It just means that QuickDraw GX detected no
drawing problems during the processing of the shape drawn.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging

4-9

4

Q

uickD
raw

 G
X

 D
ebugging

The drawing error QuickDraw GX posts is selected from a special subset of the
QuickDraw GX error codes. This set of drawing error codes is structured with respect to
the stage in the

drawing process sequence

 that the drawing failed. The earliest stage of
failure will be described in the posted drawing error. The single error code posted
attempts to indicate the reason that you do not see the drawing that you anticipated.

Drawing errors are grouped into categories that correspond to the approximate sequence
of QuickDraw GX processing, as shown in Table 4-1.

The processing sequence is also the sequence of drawing errors posted. QuickDraw GX
posts the first drawing error that is detected. It does not post subsequent drawing errors
until the error posted earlier in the process sequence is corrected. For example, if an
application attempts to draw a defective shape with a defective view port, QuickDraw
GX posts a single shape type drawing error and does not post a view port drawing error.
This is because QuickDraw GX analyzes the integrity of the shape earlier in the drawing
process. It analyzes the integrity of the view port toward the end of the process. Once
you correct the defective shape, QuickDraw GX can detect the defective view port in
subsequent analysis with the

GXGetShapeDrawError

 function.

Table 4-1

QuickDraw GX drawing process sequence

Drawing pr ocess
sequence Object pr ocessed

1 Shape type

2 Style

3 Ink

4 Transform

5 View port

6 View device

C H A P T E R 4

QuickDraw GX Debugging

4-10

Using QuickDraw GX Debugging

Table 4-2 shows the

GXGetShapeDrawError

 function

shape type

 drawing errors that
QuickDraw GX may post.

Table 4-2

Shape type drawing errors

Error Description

shape_emptyType

An empty type doesn’t have an area to draw.

shape_inverse_fullType

An inverse full type doesn’t have an area to draw.

rectangle_zero_width

The rectangle doesn’t have an area to draw.

rectangle_zero_height

The rectangle doesn’t have an area to draw.

polygon_empty

There is no contour to draw.

path_empty

There is no contour to draw.

bitmap_zero_width

The bitmap doesn’t have an area to draw.

bitmap_zero_height

The bitmap doesn’t have an area to draw.

text_empty There is no character to draw.

glyph_empty There is no glyph to draw.

layout_empty There is no layout to draw.

picture_empty There is no shape in the picture.

shape_no_fill The shape fill is set to gxNoFill , which will not
draw.

shape_no_enclosed_area There is no enclosed area to draw.

shape_no_enclosed_pixels There is an enclosed area, but it is so small that it
does not cross any pixel centers.

shape_very_small There is a shape to draw, but it is extremely small
(on the order of the size of a pixel).

shape_very_large Part of the shape may be drawn outside the
bounds of the coordinate system (±32,768).

shape_contours_cancel The shapes contours overlap and cancel each
other out.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-11

4
Q

uickD
raw

 G
X

 D
ebugging

Table 4-3 shows the GXGetShapeDrawError function style drawing errors.

Table 4-3 Style drawing errors

Error Description

pen_too_small The pen width is so small that it doesn’t enclose
any pixels and therefore doesn’t draw.

text_size_too_small The text size is so small that it doesn’t enclose
any pixels and therefore doesn’t draw.

dash_empty The dash shape was specified as an empty type
shape.

start_cap_empty The start cap shape was specified as an empty
type shape.

pattern_empty The pattern shape was specified as an empty
type shape.

textFace_Empty Each layer of the text face has a shape fill equal
to gxNoFill .

shape_primitive_empty The original shape enclosed an area. There is no
stylized shape to draw. An example is a pattern
shape that contains overlapping patterns that
cancel.

shape_primitive_very_small There is a shape to draw, but it is extremely
small (on the order of the size of a pixel). An
example is a scaled transform that shrinks the
shape.

C H A P T E R 4

QuickDraw GX Debugging

4-12 Using QuickDraw GX Debugging

Table 4-4 shows the GXGetShapeDrawError function ink drawing errors.

Table 4-4 Ink drawing errors

Error Description

transfer_equals_noMode The transfer mode gxNoMode suppresses
drawing.

transfer_matrix_ignores_source The transfer mode’s mapping scales all
values greater than 1 or less than 0 and
the overComponent flag is not set.

transfer_matrix_ignores_device The transfer mode’s mapping scales all
values greater than 1 or less than 0 and
the overComponent flag is not set.

transfer_source_reject The color is not within the source
minimum and the source maximum.

transfer_mode_ineffective The transfer mode has no effect on the
device. An example is a blend with an
operand of 0.

colorSet_no_entries There are no colors in the color set so
there is nothing to draw.

bitmap_colorSet_one_entry The bitmap drew, but it is probably not
the desired result, since all colors map to
the one color of the entry. An example is
when the colors are off the end of the
color set.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-13

4
Q

uickD
raw

 G
X

 D
ebugging

Table 4-5 shows the GXGetShapeDrawError function transform drawing errors.

Table 4-5 Transform drawing errors

Error Description

transform_scale_too_small The transform has reduced the shape to
less than 1/72 inch. You may see a few
pixels drawn, depending on the
resolution of your view port.

transform_map_too_large
transform_move_too_large
transform_scale_too_large
transform_rotate_too_large
transform_perspective_too_large
transform_skew_too_large

The transform has moved all or part of
the shape outside the bounds of the
coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.

transform_clip_no_intersection The clip shape does not intersect any
view port.

transform_clip_empty The transform clip is an empty type
shape.

transform_no_viewPorts The number of entries in the view port
list is zero.

C H A P T E R 4

QuickDraw GX Debugging

4-14 Using QuickDraw GX Debugging

Table 4-6 shows the GXGetShapeDrawError function view port drawing errors.

Table 4-6 View port drawing errors

Error Description

viewPort_disposed The view port that was to be drawn to has
already been disposed of. There is no
view port to draw to.

viewPort_clip_empty The view port clip is an empty type shape.

viewPort_clip_no_intersection The view port clip does not intersect the
view device.

viewPort_scale_too_small The map to global space has been
completed. The object is less than 1/72
inch. You may see a few pixels drawn,
depending on the resolution of your view
port.

viewPort_map_too_large
viewPort_move_too_large
viewPort_scale_too_large
viewPort_rotate_too_large
viewPort_perspective_too_large
viewPort_skew_too_large,

The view port mapping has moved all or
part of the shape outside the bounds of
the coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.

viewPort_viewGroup_offscreen The shape is drawn to an off-screen view
device. This may be normal. This error is
returned to alert you in the event that the
drawing result was unexpected.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-15

4
Q

uickD
raw

 G
X

 D
ebugging

Table 4-7 shows the GXGetShapeDrawError function view device drawing errors.

Using Validation Functions 4
QuickDraw GX provides validation functions that check the function parameters of all
allocated objects. You can validate the public functions that you use in your application
or choose to validate the internal QuickDraw GX functions.

Type validation is the simplest level of validation. QuickDraw GX provides successively
more complicated levels of validation when you also check structures and internal
caches. The various validation modes and validation levels are described in the section
“Validation Functions” beginning on page 4-6.

Controlling Validation 4

You can use the GXSetValidation function to control the validation of public and
private functions used by your application. You control validation by using the
GXSetValidation function to set validation level flags for the gxValidationLevel
parameter.

void GXSetValidation(gxValidationLevel, level);

You set one flag from the modes in Table 4-8, one flag from the options in Table 4-9, and
one or more flags from Table 4-10. The validation modes and levels are defined in the
gxValidationLevel enumeration that appears in the section “Drawing Errors”
beginning on page 4-29. The GXSetValidation function is described on page 4-34

Once you set the gxValidationLevel parameter, you can use the GXGetValidation
function to return the current gxValidationLevel parameter.

Table 4-7 View device drawing errors

Error Description

viewDevice_clip_no_intersection The view device clip does not intersect
the bounds described by the view
device bitmap shape.

viewDevice_scale_too_small The mapping to global space has been
completed. The object is less than 1/72
inch. You may see a few pixels drawn,
depending on the resolution of your
draw view port.

viewDevice_map_too_large
viewDevice_move_too_large
viewDevice_scale_too_large
viewDevice_rotate_too_large
viewDevice_perspective_too_large
viewDevice_skew_too_large

The view port mapping has moved the
shape outside the bounds of the
coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.

C H A P T E R 4

QuickDraw GX Debugging

4-16 Using QuickDraw GX Debugging

The three validation mode options are validation off, public validation, and internal
validation. You may choose only one of these validation options. Table 4-8 summarizes
the public and internal validation mode options.

The validation mode flags allow you to selectively turn validation options on and off.
You should experience reduction in performance only when validation is on. In the
non-debugging version, validation is not operational. However, it is best just to turn
validation off by setting the parameter of the GXSetValidation function to
gxNoValidation .

If you activate either public validation or internal validation mode, then you must also
specify either type validation, structure validation, or all object validation. You may
choose only one option. Table 4-9 summarizes the type, structure, and object validation
level options.

Table 4-8 Validation modes

Constant Value Explanation

gxNoValidation 0x00 Turns off QuickDraw GX validation.

gxPublicValidation 0x01 Performs validation whenever your
application uses a public function.

gxInternalValidation 0x02 Performs validation whenever your
application uses a public function or an
internal function.

Table 4-9 Validation levels

Constant Value Explanation

gxTypeValidation 0x00 Validates object types of function
parameters.

gxStructureValidation 0x10 Validates object structures, caches and
function parameters.

gxAllObjectValidation 0x20 Validates object types, structures, and all
internal caches built for all objects.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-17

4
Q

uickD
raw

 G
X

 D
ebugging

Type Validation 4

You can select the gxTypeValidation level to check the type passed to all objects. The
type validation errors are listed in the section “Debugging Version” in the chapter
“Errors, Warnings, and Notices.”

The simplest and most commonly used gxValidationLevel parameter value
combination is of the gxPublicValidation and gxTypeValidation options:

GXSetValidation(gxPublicValidation | gxTypeValidation);

This combination of options causes QuickDraw GX to verify that the objects used by all
public functions your application calls are the correct type. For example, if you call the
GXDrawShape function and pass it a style, the GXSetValidation function posts a
shape_wrong_type error.

If you want to check the type of all objects that your application passes to both public
and internal functions, you can use the gxInternalValidation option plus the
gxTypeValidation option for the gxValidationLevel parameter:

GXSetValidation(gxInternalValidation | gxTypeValidation);

This is useful only for detecting GX internal errors.

Structure V alidation 4

You can set the gxStructureValidation validation parameter to check the type and
structure for all objects. The structure validation errors are listed in the section
“Debugging Version” in the chapter “Errors, Warnings, and Notices.”

If you want to check the type of all objects and structure your application passes to
public functions, you can use the gxPublicValidation and
gxStructureValidation options for the gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxStructureValidation);

If you want to check the type of all objects and the structure your application passes to
public and internal functions, you can use the gxInternalValidation and
gxStructureValidation options for the gxValidationLevel parameter:

GXSetValidation(gxInternalValidation | gxStructureValidation);

This is useful only for detecting internal GX errors.

C H A P T E R 4

QuickDraw GX Debugging

4-18 Using QuickDraw GX Debugging

The gxStructureValidation option might generate validation errors that are not
part of the public interface. For example, these options may post a
shape_cache_wrong_type error. This suggests only that the application erroneously
changed the internal information that identifies a specific shape cache or an internal GX
error occured. The correct shape and the correct value for a shape cache are private. The
bad_private_flags error means that the application corrupted the flags internal to
some structure. This is a private structure and QuickDraw GX provides no additional
information for these posted errors. However it is useful for a developer to report the
circumstances that produced these errors so that Apple Computer, Inc. can investigate
them.

All Object Validation 4

You can use the gxAllObjectValidation validation level to check the type, structure,
and internal caches built for all objects. In addition, it checks objects written to disk and
the file structure itself to see if they are corrupt. The all object validation errors are listed
in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

If an application has an error that randomly writes to some portion of memory, the error
can corrupt one object as easily as another. As a result, it is necessary to check all objects
to detect this type of error. If a random write occurs in a free memory block or the value
is already in the shape type, QuickDraw GX doesn’t detect it. Again, this validation
allows the developer to discriminate between QuickDraw GX and application problems.

If you want to check the type of all objects, the structure, and the internal caches for all
objects each time public functions are called by your application, you can use the
gxPublicValidation and gxAllObjectValidation options for the
gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxAllObjectValidation);

As an alternative to using the gxAllObjectValidation options for the
gxValidationLevel parameter of the GXSetValidation function, you can use the
GXValidateAll function, described in the section “Validating Objects” beginning on
page 4-20. The GXValidateAll function is described on page 4-43.

Memor y Validation 4

Once you pick a validation mode and a validation level, you can then also choose to
include or not include memory validation options. Memory validation does not post
validation errors. If QuickDraw GX detects a memory validation problem, it drops you
into Macsbug or the debugging utility that is installed on your system.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-19

4
Q

uickD
raw

 G
X

 D
ebugging

Table 4-10 summarizes the memory validation options, all of which are associated with
QuickDraw GX private data structures.

Table 4-10 Memory validation options

Constant Value Explanation

gxNoMemoryManagerValidation 0x0000 Turns off memory validation.

gxApBlockValidation 0x0100 Enables additional error checking
on application blocks passed as
parameters to internal memory
routines.

gxFontBlockValidation 0x0200 Enables additional error checking
on system blocks, often font
caches, passed as parameters to
internal memory routines.

gxApHeapValidation 0x0400 Checks all objects in a heap for
validity each time an internal
memory routine is called.

gxFontHeapValidation 0x0800 Checks all font objects in a heap
for validity each time an internal
memory routine is called.

gxCheckApHeapValidation 0x1000 When used with
gxInternalValidation , checks
the application heap on every
internal function call.

When used with
gxPublicValidation , checks
the application heap on every
public function call.

gxCheckFontHeapValidation 0x2000 When used with
gxInternalValidation , checks
the font heap on every internal
function call.

When used with
gxPublicValidation , checks
the font heap on every public
function call.

C H A P T E R 4

QuickDraw GX Debugging

4-20 Using QuickDraw GX Debugging

If you want to check the type of all objects that your application passes to public
functions and also check the application heap on every public call, you can use the
gxPublicValidation option plus the gxTypeValidation option plus the
gxCheckApHeapValidation option for the gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxTypeValidation |

 gxCheckApHeapValidation);

▲ W A R N I N G

If the gxApHeapValidation or gxFontHeapValidation flag is
enabled and the platform that it is running on locates the graphics
memory below the bottom 14 megabytes of memory, then the addresses
on the stack and master pointers that refer to QuickDraw GX objects will
be scrambled. This is a method of finding internal errors that may lead
to unexpected erroneous behavior. For example, if the application has a
path type shape and one long parameter of the path data happens to
exactly equal the address of a graphics object, then QuickDraw GX
might scramble the one long of path data and the path may draw one
point off of the screen. This is expected behavior. These functions can
scramble addresses without knowing that the addresses are really points
on a path. Since these two validation types produce these apparent bugs,
an application cannot use the gxApHeapValidation and
gxFontHeapValidation options to ensure that QuickDraw GX has no
internal bugs. These validation types are useful in tracking down bugs
related to QuickDraw GX memory management.▲

For additional information about using QuickDraw GX memory, see the chapter
“QuickDraw GX Memory Management.”

The GXSetValidation function is described on page 4-34. The GXGetValidation
function is described on page 4-35.

Validating Objects 4

QuickDraw GX also provides separate functions that validate the parameters passed to
specific objects, their structures, and any internal caches built for specific objects.

You can use the GXValidateAll function to check the type, structure, and internal
caches built for all objects. This is an alternative to using the GXSetValidation
function with the gxInternalValidation and gxAllObjectValidation options
selected, as described in the section “Using Validation Functions” beginning on
page 4-15.

The following functions validate specific objects:

■ The GXValidateColorSet function checks parameters for the color space,
color-value array, owner count, and tag list properties for the specified color set object.
The GXValidateColorSet function is described on page 4-38.

■ The GXValidateColorProfile function checks the specified color profile
object. The GXValidateColorProfile function is described on page 4-39.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-21

4
Q

uickD
raw

 G
X

 D
ebugging

■ The GXValidateGraphicsClient function checks all properties of a specified
graphics client object. The GXValidateGraphicsClient function is described on
page 4-42.

■ The GXValidateInk function checks parameters for the color, transfer mode,
attributes, owner count, and tag list properties for a specified ink object. The
GXValidateInk function is described on page 4-37.

■ The GXValidateShape function checks parameters for the type, geometry, fill, style,
ink, transform, attributes, owner count, and tag list properties for a specified shape
object. The GXValidateShape function is described on page 4-36.

■ The GXValidateStyle function checks parameters for the pen size, cap, join, dash,
pattern, curve error, attributes, text face, text size, justification, font variations,
platform, text attributes properties, run controls, run features array, glyph
substitutions array, kerning adjustments, priority justification override, and glyph
justification overrides array properties for the specified style object. The
GXValidateStyle function is described on page 4-36.

■ The GXValidateTag function checks the parameters for the tag type, size, contents,
and owner count properties for a specified tag object. The GXValidateTag function
is described on page 4-39.

■ The GXValidateTransform function checks the parameters for the clip, mapping,
view port list, hit-test parameters, attributes, owner count, and tag list properties for a
specified transform object. The GXValidateTransform function is described on
page 4-38.

■ The GXValidateViewDevice function checks parameters for the clip, mapping,
bitmap, attributes, and tag list properties for a specified view device object. The
GXValidateViewDevice function is described on page 4-40.

■ The GXValidateViewPort function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count,
and tag list properties for all view port objects. The GXValidateViewPort function
is described on page 4-40.

■ The GXValidateViewGroup function checks parameters for the clip, mapping,
dither, halftone, parent view port, child view port list, view device, attributes, owner
count, and tag list properties of the view port object and the clip, mapping, bitmap,
attributes, and tag list properties of the view device object. The
GXValidateViewGroup function is described on page 4-41.

Analyzing the Cause of Validation Errors 4

You can use the GXGetValidationError function to determine the function and
parameter that caused the last validation error. This function works like other
QuickDraw GX functions that return variable-length data. There are three steps:

1. Call the function to determine the length of data that will be returned. If no validation
error is posted, a 0 is returned.

2. Allocate memory to store the data that will be returned.

3. Call the function a second time to obtain pointers to the function, parameter name,
and parameter number that caused the validation error.

C H A P T E R 4

QuickDraw GX Debugging

4-22 Using QuickDraw GX Debugging

Listing 4-1 gives an example of using the GXGetValidationError function to obtain
the function and parameter that caused the last validation error. The
GXGetValidationError function is described on page 4-35.

Listing 4-1 Determining the function and parameter that caused the last validation error

static void DisplayErrorMessage(gxGraphicsError errorID,

long context)

{

 char buffer[255];

 void * graphicsObject;

long argNum;

if (GXGetValidationError(buffer, &thing, &argNum)) {

GXValidationError(buffer, nil, nil);

printf(“gxValidationError: %ld (routine: %s) “,

errorID, buffer);

printf(“(argument[%ld]: 0x081x)\n”,argNum, graphicsObject);

} else

printf(“gxGraphicsError: 0x%081x\n”, errorID);

}

Distinguishing Between Application Bugs and QuickDraw GX Bugs 4

All QuickDraw GX functions have been extensively tested prior to shipment. However,
during your application debugging process, you may find anomalous behavior that you
attribute to QuickDraw GX private functions.

Validation checking allows you to distinguish between your application bugs and
QuickDraw GX bugs. If QuickDraw GX posts validation errors when internal validation
is set, but not when public validation is set, it is possible that you have found an error in
the QuickDraw GX internal private code. Please contact Apple Developer Technical
Support and provide a detailed report of the bug encountered. For more information
concerning public and internal validation modes, see the section “Controlling
Validation” beginning on page 4-15.

Detecting Corrupted Objects 4

Normally, there is no way for an application using the public interface to corrupt the
content of an object. If an error occurs with structure validation and not with type
validation, either the error is a QuickDraw GX error or the application has corrupted
memory. The most probable method of corrupting memory is by calling the
GXGetShapeStructure function and altering the content directly or by writing
randomly into memory. For more information concerning type and structure validation
levels, see the section “Controlling Validation” beginning on page 4-15.

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-23

4
Q

uickD
raw

 G
X

 D
ebugging

Debugging With GraphicsBug 4
GraphicsBug reads and verifies only graphics objects. It does not create objects, dispose
of objects, or modify objects in any manner. GraphicsBug never interferes with an
application and does not cause bugs to appear or disappear.

Table 4-11 summarizes the GraphicsBug commands. This list is available online by
typing “?”, “help”, or “HELP” when in the command line of GraphicsBug. You can copy
or save the brief explanations as a text file.

Table 4-11 GraphicsBug commands and responses

Command Response

DA
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy)
 u(n)l(oaded)]
[<type>[type>...]]

Display all blocks in the heap, or all that
match parameters. Example: DA bu
line layout polygon .

DM addr[n|t(ype)] Display memory from addr for n bytes
or as a type. Example: DM 1b2358 t .

DV Display version.

ER number Display error name that matches this
number.

F addr[number[start[end]]]
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy)
 u(n)l(oaded)]
[<type>[type>...]]

Find references to addr in the heap
blocks that match parameters. Example:
F 0x4456A 3 ul picture .

FL addr[filename] Display the stream produced by
flattening this shape. Example: FL
0x3321A “flat shapes” .

GG Display graphics globals

HC Check the heap.

HD
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy) u(n)l(oaded)]
HD [<type> [<type>...]]

Dump the heap or the heap parts that
match parameters. Example: HD bu
line layout polygon .

continued

C H A P T E R 4

QuickDraw GX Debugging

4-24 Using QuickDraw GX Debugging

In addition to the GraphicsBug commands above, you can Option-double-click (hold
down the Option key and double-click) on a memory address to display memory as a
type, use the up/down arrow keys to set the scrolling speed, use dot ‘.’ to represent the
last displayed address, and use shape as an argument to the DA, F, and HD commands to
display all graphics client-owned shapes.

HT Total the heap.

HX addr|<heapname> Switch to the heap containing addr , or
named <heapname> . Example: HX
System .

HZ List the known heaps.

IG Display initialization globals.

LC (process) List the known graphics clients.

LP List the known processes that have a
graphics client.

CG Display other (generic, nongraphic)
globals.

Q Quit.

UF filename[page number] Display the contents of the file by
flattening it. Use page number to specify
a page of a print file.

V [addr] Validate all (no parameters) or validate
specific block.

GG Graphics globals.

WH addr Display the block containing addr .
Operators: –, +, *, /, %, ^, |, &, [, @, *,],
~, (,)
Numbers: .0x$#3 “strings: “”

Table 4-11 GraphicsBug commands and responses (continued)

Command Response

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-25

4
Q

uickD
raw

 G
X

 D
ebugging

Analyzing a Picture Shape 4

The following sections demonstrate the use of GraphicsBug for the analysis of a picture
containing seven shapes. The code that creates the picture and the analysis of the data
stream for each flattened shape is given in the section “Analyzing the Data Streams of
Flattened Shapes” in the chapter “QuickDraw GX Stream Format.”

Determining the Heap Siz e for All Shapes in the Picture 4

You can use the GraphicsBug HT command to display the heap total in bytes for a
specified graphics client heap. First run the application, then select the graphics client
heap from the GraphicsBug heap menu, then apply the HT command. Listing 4-2 showsa
sample output of the HT command: the GraphicsBug heap size in bytes. Note that the
size of the graphics client and its heap is 86724 bytes. You can use this procedure to select
the initial size of your application’s graphics client heap or heaps. For additional
information about specifying the size of your graphics client heap, see the section
“Creating a Graphics Client and its Graphics Client Heap” in the chapter “QuickDraw
GX Memory Management.”

Listing 4-2 Totaling the graphics client and its heap

Totaling the heap at 00c07de8 (all shapes heap).

 Total Blocks Total of Block Sizes

Free 0000001b # 27 0000fff8 # 65528

Direct 00000044 # 68 00001dbc # 7612

Indirect 00000047 # 71 000031bc # 12732

Sub Heaps 00000000 # 0 00000000 # 0

Heap Size 000000a6 # 166 000152c4 # 86724

Anal yzing the Shapes in the Picture 4

You can use the GraphicsBug HD PIC command to display the memory locations of the
seven shapes in the picture. Listing 4-3 shows the GraphicsBug output for the picture
shape created by the application “all shapes.” User input is shown in boldface.

The GraphicsBug command lines shown in Listing 4-3 are used as follows:

■ hd pic command turns pic into picture.

■ dm 00c0886c t command displays default picture data.

■ dm 00c0a4a0 t displays the data for the picture with seven shapes. Note that there are
multiple text shapes displayed because the gxUniqueItemsShape attribute was set.

C H A P T E R 4

QuickDraw GX Debugging

4-26 Using QuickDraw GX Debugging

Listing 4-3 Determining the memory locations of the shapes in the picture

hx "all shapes"

heap set to 00c07de8 "all shapes"

hd pic

 Start Length ∆ Typ Busy Mstr Ptr Temp TBsy Disk Object

00c0886c 00000048+00 i 00c1d02c picture

00c0a4a0 00000108+00 i 00c1d010 picture

 Total Blocks Total of Block Sizes

Blocks 00000002 # 2 00000150 # 336

dm 00c0886c t

displaying picture gxShape from 00c0886c

 devShape nil

 owners 1

 seed 0

 flags isDefaultShape

 attributes gxMapTransformShape

 gxStyle 00c083b0

 gxInk 00c08460

 gxTransform 00c088b4

 tagList nil

 cacheList nil

 geo.flags 0

 fillType evenOddFill

 entries 0

 references 00000000

 gxShape (type) gxStyle gxInk gxTransform

dm 00c0a4a0 t

displaying picture gxShape from 00c0a4a0

 devShape 00c0a98c

 owners 1

 seed 0

 flags 0

 attributes

/*

There are multiple text shapes because the gxUniqueItemsShape attribute was

set.

*/

 gxStyle 00c083b0

 gxInk 00c08460

 gxTransform 00c088b4

 tagList nil

 cacheList nil

C H A P T E R 4

QuickDraw GX Debugging

Using QuickDraw GX Debugging 4-27

4
Q

uickD
raw

 G
X

 D
ebugging

 geo.flags 0

 fillType evenOddFill

 entries 12

 references 00c08d1c

 gxShape (type) gxStyle gxInk gxTransform

 00c08dd0 (line) 00000000 00000000 00000000

 00c0949c (rectangle) 00000000 00000000 00000000

 00c099e4 (curve) 00000000 00000000 00000000

 00c09bd0 (path) 00000000 00000000 00000000

 00c0a220 (text) 00000000 00000000 00000000

 00c0a220 (text) 00c0a268 00c08e1c 00c0997c

 00c0a220 (text) 00c0a268 00c09b98 00c0a350

 00c0a220 (text) 00c0a268 00c0a640 00c0bc30

 00c0a220 (text) 00c0a268 00c0a678 00c0a6b0

 00c0a220 (text) 00c0a268 00c0a750 00c0a788

 00c0a828 (polygon) 00000000 00000000 00000000

 00c0bc94 (bitmap) 00000000 00000000 00000000

Anal yzing the Rectangle in the Picture 4

You can use the dm command or Option-double-click command on the memory location
of one of the seven shapes from Listing 4-3 to display information about the shape.
Listing 4-4 shows the GraphicsBug output for the rectangle shape. The command line is
shown in boldface.

Listing 4-4 Analyzing the rectangle shape in the picture

dm 00c0949c t

Displaying rectangle gxShape from 00c0949c

 devShape nil

 owners 1

 seed 0

 flags 0

 attributes no attributes

 gxStyle 00c0984c

 gxInk 00c098fc

 gxTransform 00c0961c

 tagList nil

 cacheList nil

 geo.flags 0

 fillType closedFrameFill

{ 150.0000, 25.0000} { 200.0000, 75.0000}

C H A P T E R 4

QuickDraw GX Debugging

4-28 QuickDraw GX Debugging Reference

Anal yzing the Ink in the Rectangle 4

You can select a memory location of one of the objects in the rectangle from Listing 4-4
and use the dm command or GraphicsBug Option-double click command to display
information about the object. Listing 4-5 shows the GraphicsBug output for the ink in the
rectangle shape. The command line is shown in boldface.

Listing 4-5 Analyzing the ink in the rectangle shape

dm 00c098fc t

Displaying gxInk from 00c098fc

 devInk 00c094e8

 privateFlags 0

 attributes 0

 owners 1

 seed 0

 tagList nil

 space gxRGBSpace

 profile nil

 value(s) 1.0000 (ffff) 0.0000 0x0000 0.0000 0x0000

 mode gxCopyMode

QuickDraw GX Debugging Reference 4

This section describes the data structures and routines that are specific to the QuickDraw
GX debugging environment.

The “Constants and Data Types” section shows the enumerations and structures for
drawing errors and GraphicsBug parameters. A cross-reference is provided to the
enumerated validation levels.

Constants and Data Types 4

This section describes the constants and data structures that you use to provide
information to debugging functions.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-29

4
Q

uickD
raw

 G
X

 D
ebugging

Drawing Errors 4

QuickDraw GX posts drawing errors when you use the GXGetShapeDrawError
function after an unsuccessful drawing operation. The gxDrawError enumeration
defines the posted drawing errors.

enum gxDrawErrors {

no_draw_error,

/* gxShape type errors */

shape_emptyType,

shape_inverse_fullType,

rectangle_zero_width,

rectangle_zero_height,

polygon_empty,

path_empty,

bitmap_zero_width,

bitmap_zero_height,

text_empty,

glyph_empty,

layout_empty,

picture_empty,

/* general gxShape errors */

shape_no_fill,

shape_no_enclosed_area,

shape_no_enclosed_pixels,

shape_very_small,

shape_very_large,

shape_contours_cancel,

/* gxStyle errors */

pen_too_small,

text_size_too_small,

dash_empty,

start_cap_empty,

pattern_empty,

textFace_empty,

shape_primitive_empty,

shape_primitive_very_small,

C H A P T E R 4

QuickDraw GX Debugging

4-30 QuickDraw GX Debugging Reference

/* gxInk errors */

transfer_equals_noMode,

transfer_matrix_ignores_source,

transfer_matrix_ignores_device,

transfer_source_reject,

transfer_mode_ineffective,

colorSet_no_entries,

bitmap_colorSet_one_entry,

/* gxTransform errors */

transform_scale_too_small,

transform_map_too_large,

transform_move_too_large,

transform_scale_too_large,

transform_rotate_too_large,

transform_perspective_too_large,

transform_skew_too_large,

transform_clip_no_intersection,

transform_clip_empty,

transform_no_viewPorts,

/* gxViewPort errors */

viewPort_disposed,

viewPort_clip_empty,

viewPort_clip_no_intersection,

viewPort_scale_too_small,

viewPort_map_too_large,

viewPort_move_too_large,

viewPort_scale_too_large,

viewPort_rotate_too_large,

viewPort_perspective_too_large,

viewPort_skew_too_large,

viewPort_viewGroup_offscreen,

/* gxViewDevice errors */

viewDevice_clip_no_intersection,

viewDevice_scale_too_small,

viewDevice_map_too_large,

viewDevice_move_too_large,

viewDevice_scale_too_large,

viewDevice_rotate_too_large,

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-31

4
Q

uickD
raw

 G
X

 D
ebugging

viewDevice_perspective_too_large,

viewDevice_skew_too_large

};

typedef long gxDrawError;

Table 4-2 through Table 4-7 list the drawing errors and give a description of each error.

Validation Levels 4

The GXSetValidation function uses the gxValidationLevel enumeration to turn
off or to control the QuickDraw GX validation.

typedef long gxValidationLevel;

enum gxValidationLevels {

/*

These levels tell how to validate routines. Choose one.

*/

gxNoValidation = 0x00,

gxPublicValidation = 0x01,

gxInternalValidation = 0x02,

/*

These levels tell how to validate types. Choose one.

*/

gxTypeValidation = 0x00,

gxStructureValidation = 0x10,

gxAllObjectValidation = 0x20,

/*

These levels tell how to validate memory manager blocks. Choose

any combination.

*/

gxNoMemoryManagerValidation = 0x0000,

gxApBlockValidation = 0x0100,

gxFontBlockValidation = 0x0200

gxApHeapValidation = 0x0400,

gxFontHeapValidation = 0x0800,

gxCheckApHeapValidation = 0x1000,

gxCheckFontHeapValidation = 0x2000

} ;

C H A P T E R 4

QuickDraw GX Debugging

4-32 QuickDraw GX Debugging Reference

Field descriptions

gxNoValidation
If set, QuickDraw GX performs no validation checking.

gxPublicValidation
If set, QuickDraw GX checks parameters to public routines.

gxInternalValidation
If set, QuickDraw GX checks parameters to internal routines.

gxTypeValidation
If set, QuickDraw GX checks types of objects.

gxStructureValidation
If set, QuickDraw GX checks fields of private structures.

gxAllObjectValidation
If set, QuickDraw GX checks every object for each public routine
called.

gxNoMemoryManagerValidation
If set, QuickDraw GX does not check Memory Management calls.

gxApBlockValidation
If set, QuickDraw GX checks the relevant block structures before
each Memory Manager call.

gxFontBlockValidation
If set, QuickDraw GX also checks the system heap block structures..

gxApHeapValidation
If set, QuickDraw GX also checks all application heap blocks every
time the heap changes.

gxFontHeapValidation
If set, QuickDraw GX also checks all system heap blocks every time
the heap changes..

gxCheckApHeapValidation
If set, QuickDraw GX also checks all application heap blocks for
each public or internal routine called.

gxCheckFontHeapValidation
If set, QuickDraw GX also checks the system heap blocks for each
public or internal routine called.

For information on how to use QuickDraw GX validation, see the section “Using
Validation Functions” beginning on page 4-15. The GXSetValidation function is
described on page 4-34.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-33

4
Q

uickD
raw

 G
X

 D
ebugging

Functions 4

The functions described in this section allow you to detect drawing errors, perform
validation, and install debugging utility functions.

Obtaining Drawing Errors 4

This section describes the function that allows you to obtain a single error message that
describes why a shape did not draw correctly.

GXGetShapeDrawError 4

You can use the GXGetShapeDrawError function to determine why a shape failed to
draw.

gxDrawError GXGetShapeDrawError(gxShape source);

source A reference to the shape that didn’t draw.

function result An error result code indicating why a shape didn’t draw.

DESCRIPTION

The GXGetShapeDrawError function returns a single error code that indicates why a
shape didn’t draw. The error returneddepends on the step in the drawing process in
which the drawing error occurred. QuickDraw GX returns the first drawing error it
detects in the drawing process. A drawing error that may occur later in the drawing
process is not returned until all prior drawing errors detected are resolved.

If you run your application and it does not draw what you expect, you can add the
GXGetShapeDrawError function to the end of your application code and rerun your
application. QuickDraw GX returns a single error from the gxDrawErrors enumeration
that may assist in determining the drawing problem. If a drawing error is not detected,
QuickDraw GX returns a gxNoDrawError error.

SEE ALSO

The use of the GXGetShapeDrawError is discussed in the section “Analyzing Drawing
Problems” beginning on page 4-8.

The gxDrawError enumeration is described in the section “Drawing Errors” beginning
on page 4-29.

Table 4-2 through Table 4-7 provide a description of each drawing error.

Table 4-1 gives the object processing sequence that determines which drawing error is
posted.

C H A P T E R 4

QuickDraw GX Debugging

4-34 QuickDraw GX Debugging Reference

Setting and Getting Validation Options and Errors 4

This section describes the functions that control QuickDraw GX validation. QuickDraw
GX validation checks public and internal function parameters to ensure that they are
valid. You can use validation functions and flag options to check types, structures, all
objects, memory, and specific objects.

When validation error checking is on, QuickDraw GX may post the validation errors
listed in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

GXSetValidation 4

You can use the GXSetValidation function to control the type and level of validation
checking.

void GXSetValidation(gxValidationLevel);

gxValidationLevel
The validation flags.

DESCRIPTION

The GXSetValidation function allows you to set the validation mode, as well as the
validation levels, for type, structure, all object, and memory block validation options.
You may pick one mode, one level, and any combination of memory options. The
options are defined by the gxValidationLevel enumeration.

The GXSetValidation function turns validation on when you select any flags other
than 0x00. If you set the gxValidationLevel flag to gxNoAttributes , validation is
off.

This function has no effect in the non-debugging version of QuickDraw GX.

As an alternative to the use of the GXSetValidation function with the internal and all
object validation flags set, you can use the GXValidateAll function.

SEE ALSO

To get the current gxValidationLevel parameter, use the GXGetValidation
function, described on page 4-35.

The gxValidationLevel enumeration is described in the section “Validation Levels”
beginning on page 4-31.

Table 4-8 on page 4-16 lists the public and internal validation options.

Table 4-9 on page 4-16 lists the type, structure, and all object validation options.

Table 4-10 on page 4-19 lists the memory validation options.

The GXValidateAll function is described on page 4-43.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-35

4
Q

uickD
raw

 G
X

 D
ebugging

GXGetValidation 4

You can use the GXGetValidation function to obtain the current validation flags that
are set.

gxValidationLevel GXGetValidation(void);

function result The current flags set for validation error checking.

DESCRIPTION

The GXGetValidation function returns the gxValidationLevel parameter set by
the GXSetValidation function.

This function always returns 0 in the non-debugging version of QuickDraw GX.

SEE ALSO

The GXSetValidation function is described in the previous section.

GXGetValidationError 4

You can use the GXGetValidationError function to determine the application
function and parameter that caused the last validation error.

void GXGetValidationError(char *procedureName, void **argument,

long *argumentNumber);

procedureName
A pointer to the name of the function that produced the validation error.

argument A pointer to a list of the function’s arguments.

argumentNumber
A pointer to the number of the argument that produced the validation
error.

DESCRIPTION

The GXGetValidationError function provides the name of the function, a list of the
function’s parameters, and the number of the parameter that produced the last
validation error. The argumentNumber parameter for the nth parameter is n. For
example, the argumentNumber for the third parameter is 3. If you call the
GXGetValidationError function and no validation errors have been posted, the
function returns nil .

This function leaves its arguments unchanged in the non-debugging version of
QuickDraw GX.

C H A P T E R 4

QuickDraw GX Debugging

4-36 QuickDraw GX Debugging Reference

SEE ALSO

The use of the GXGetValidationError function is described in the section
“Analyzing the Cause of Validation Errors” beginning on page 4-21.

Validating Objects 4

This section describes the functions that allow you to validate the function parameters of
allocated QuickDraw GX objects. QuickDraw GX provides functions for specific object
validation and all object validation.

When validation error checking is on, QuickDraw GX may post the validation errors
listed in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

GXValidateShape 4

You can use the GXValidateShape function to check the parameters of a shape object.

void GXValidateShape(gxShape target);

target A reference to a shape object to be validated.

DESCRIPTION

The GXValidateShape function checks parameters for the type, geometry, fill, style,
ink, transform, attributes, owner count, and tag list properties for all shape objects. In
addition, this function checks any internal caches built for the shape. If one or more of
the parameters are not valid, a validation error is posted.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is discussed in the section “Controlling
Validation” beginning on page 4-15.

GXValidateStyle 4

You can use the GXValidateStyle function to check the parameters of a style object.

void GXValidateStyle(gxStyle target);

target A reference to a style object to be validated.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-37

4
Q

uickD
raw

 G
X

 D
ebugging

DESCRIPTION

The GXValidateStyle function checks parameters for the pen size, cap, join, dash,
pattern, curve error, and attributes properties for all graphics style objects. It also checks
parameters for the text face, text size, justification, font variations, platform, and text
attributes properties for all typographic style objects. In addition, it confirms parameters
for the run controls, run features array, glyph substitutions array, kerning adjustments,
priority justification override, and glyph justification overrides array typographic
properties for all layout shapes objects. In addition, this function checks any internal
caches built for the style. If one or more parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX. If a
discrepancy is found, QuickDraw GX posts an error.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateInk 4

You can use the GXValidateInk function to check the parameters of an ink object.

void GXValidateInk(gxInk target);

target A reference to an ink object to be validated.

DESCRIPTION

The GXValidateInk function checks parameters for the color, transfer mode, attributes,
owner count, and tag list properties for all ink objects. In addition, this function checks
any internal caches built for the ink. If one or more of the parameters are not valid,
QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

C H A P T E R 4

QuickDraw GX Debugging

4-38 QuickDraw GX Debugging Reference

GXValidateTransform 4

You can use the GXValidateTransform function to check the parameters of a
transform object.

void GXValidateTransform(gxTransform target);

target A reference to a transform object to be validated.

DESCRIPTION

The GXValidateTransform function checks the parameters for the clip, mapping,
view port list, hit-test parameters, attributes, owner count, and tag list properties for all
transform objects. In addition, this function checks any internal caches built for
the transform. If one or more of the parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateColorSet 4

You can use the GXValidateColorSet function to check the parameters of a color set
object.

void GXValidateColorSet(gxColorSet target);

target A reference to a color set object to be validated.

DESCRIPTION

The GXValidateColorSet function checks parameters for the color space, color-value
array, owner count, and tag list properties for all color set objects. In addition, this
function checks any internal caches built for the color set. If one or more of the
parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-39

4
Q

uickD
raw

 G
X

 D
ebugging

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateColorProfile 4

You can use the GXValidateColorProfile function to check the parameters of a
color profile object.

void GXValidateColorProfile(gxColorProfile target);

target A reference to a color profile object to be validated.

DESCRIPTION

The GXValidateColorProfile function checks the content of the target color profile
object. In addition, this function checks any internal caches built for the color profile. If
one or more of the parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateTag 4

You can use the GXValidateTag function to check the parameters of a tag object.

void GXValidateTag(gxTag target);

target A reference to a tag object to be validated.

DESCRIPTION

The GXValidateTag function checks the parameters for the tag type, size, contents, and
owner count properties for all tag objects. In addition, this function checks any internal
caches built for the tag. If one or more of the parameters are not valid, QuickDraw GX
posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

C H A P T E R 4

QuickDraw GX Debugging

4-40 QuickDraw GX Debugging Reference

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewDevice 4

You can use the GXValidateViewDevice function to check the parameters of a view
device object.

void GXValidateViewDevice(gxViewDevice target);

target A reference to a view device object to be validated.

DESCRIPTION

The GXValidateViewDevice function checks parameters for the clip, mapping,
bitmap, attributes, and tag list properties for all view device objects. In addition, this
function checks any internal caches built for the view device. If one or more of the
parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewPort 4

You can use the GXValidateViewPort function to check the parameters of a view port
object.

void GXValidateViewPort(gxViewPort target);

target A reference to a view port object to be validated.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-41

4
Q

uickD
raw

 G
X

 D
ebugging

DESCRIPTION

The GXValidateViewPort function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count, and
tag list properties for all view port objects. In addition, this function checks any internal
caches built for the view port. If one or more of the parameters are not valid, QuickDraw
GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewGroup 4

You can use the GXValidateViewGroup function to check the parameters of a view
group object.

void GXValidateViewGroup(gxViewGroup target);

target A reference to a view group object to be validated.

DESCRIPTION

The GXValidateViewGroup function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count, and
tag list properties of the view port object and the clip, mapping, bitmap, attributes,
and tag list properties of the view device object. In addition, this function checks any
internal caches built for the view group. If one or more of the parameters are not valid,
QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

C H A P T E R 4

QuickDraw GX Debugging

4-42 QuickDraw GX Debugging Reference

GXValidateGraphicsClient 4

You can use the GXValidateGraphicsClient function to check the parameters of a
graphics client object.

void GXValidateGraphicsClient(gxGraphicsClient target);

target A reference to a graphics client object to be validated.

DESCRIPTION

The GXValidateGraphicsClient checks all parameters for all properties of a
graphics client object. In addition, this function checks any internal caches built for
the graphics client. If one or more of the parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

C H A P T E R 4

QuickDraw GX Debugging

QuickDraw GX Debugging Reference 4-43

4
Q

uickD
raw

 G
X

 D
ebugging

GXValidateAll 4

You can use the GXValidateAll function to validate all objects that are allocated.

void GXValidateAll(void);

DESCRIPTION

The GXValidateAll function allows you to validate the parameters of all objects that
are allocated in the QuickDraw GX heap. It also checks additional structures in the
backing store. In addition, this function checks any internal caches built for the objects. If
one or more of the parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

An alternative method of validating all of the objects in the heap is to use the
GXSetValidation function with the gxValidationLevel parameter set to the
gxPublicValidation plus gxAllObjectValidation options.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

The GXSetValidation function is described on page 4-34.

C H A P T E R 4

QuickDraw GX Debugging

4-44 Summary of QuickDraw GX Debugging

Summary of QuickDraw GX Debugging 4

Constants and Data Types 4

Drawing Errors

typedef long gxDrawError;

enum gxDrawErrors {

no_draw_error,

/* gxShape type errors */

shape_emptyType,

shape_inverse_fullType,

rectangle_zero_width,

rectangle_zero_height,

polygon_empty,

path_empty,

bitmap_zero_width,

bitmap_zero_height,

text_empty,

glyph_empty,

layout_empty,

picture_empty,

/* general gxShape errors */

shape_no_fill,

shape_no_enclosed_area,

shape_no_enclosed_pixels,

shape_very_small,

shape_very_large,

shape_contours_cancel,

/* gxStyle errors */

pen_too_small,

text_size_too_small,

dash_empty,

start_cap_empty,

pattern_empty,

textFace_empty,

C H A P T E R 4

QuickDraw GX Debugging

Summary of QuickDraw GX Debugging 4-45

4
Q

uickD
raw

 G
X

 D
ebugging

shape_primitive_empty,

shape_primitive_very_small,

/* gxInk errors */

transfer_equals_noMode,

transfer_matrix_ignores_source,

transfer_matrix_ignores_device,

transfer_source_reject,

transfer_mode_ineffective,

colorSet_no_entries,

bitmap_colorSet_one_entry,

/* gxTransform errors */

transform_scale_too_small,

transform_map_too_large,

transform_move_too_large,

transform_scale_too_large,

transform_rotate_too_large,

transform_perspective_too_large,

transform_skew_too_large,

transform_clip_no_intersection,

transform_clip_empty,

transform_no_viewPorts,

/* gxViewPort errors */

viewPort_disposed,

viewPort_clip_empty,

viewPort_clip_no_intersection,

viewPort_scale_too_small,

viewPort_map_too_large,

viewPort_move_too_large,

viewPort_scale_too_large,

viewPort_rotate_too_large,

viewPort_perspective_too_large,

viewPort_skew_too_large,

viewPort_viewGroup_offscreen,

/* gxViewDevice errors */

viewDevice_clip_no_intersection,

viewDevice_scale_too_small,

viewDevice_map_too_large,

viewDevice_move_too_large,

viewDevice_scale_too_large,

C H A P T E R 4

QuickDraw GX Debugging

4-46 Summary of QuickDraw GX Debugging

viewDevice_rotate_too_large,

viewDevice_perspective_too_large,

viewDevice_skew_too_large

};

Validation Levels

typedef long gxValidationLevel;

enum gxValidationLevels {

/*

These levels tell how to validate routines. Choose one.

*/

gxNoValidation = 0x00, /* no validation */

gxPublicValidation = 0x01, /* check parameters to public routines */

gxInternalValidation = 0x02, /* check parameters to internal routines */

/*

These levels tell how to validate types. Choose one.

*/

gxTypeValidation = 0x00, /* check types of objects */

gxStructureValidation = 0x10, /* check fields of private structures */

gxAllObjectValidation = 0x20, /* check every object over every call */

/*

These levels tell how to validate memory manager blocks. Choose any

combination.

*/

gxNoMemoryManagerValidation = 0x0000,/* no memory validation */

gxApBlockValidation = 0x0100, /* check the relevant block

 structures after each Memory Manager

 call */

gxFontBlockValidation = 0x0200/* check the system gxHeap as well */

gxApHeapValidation = 0x0400, /* check the memory manager’s gxHeap after

every memory call */

gxFontHeapValidation= 0x0800, /* also check the system gxHeap */

gxCheckApHeapValidation = 0x1000,

/* check the memory manager’s

 gxHeap if checking routine

 parameters */

C H A P T E R 4

QuickDraw GX Debugging

Summary of QuickDraw GX Debugging 4-47

4
Q

uickD
raw

 G
X

 D
ebugging

gxCheckFontHeapValidation = 0x2000

/* check the system gxHeap as

 well */

} ;

Functions 4

Obtaining Drawing Errors

gxDrawError GXGetShapeDrawError
(gxShape source);

Setting and Getting Validation Options and Errors

void GXSetValidation (gxValidationLevel);

gxValidationLevel GXGetValidation
(void);

void GXGetValidationError (char *procedureName, void **argument,
long *argumentNumber);

Validating Objects

void GXValidateShape (gxShape target);

void GXValidateStyle (gxStyle target);

void GXValidateInk (gxInk target);

void GXValidateTransform (gxTransform target);

void GXValidateColorSet (gxColorSet target);

void GXValidateColorProfile
(gxColorProfile target);

void GXValidateTag (gxTag target);

void GXValidateViewDevice (gxViewDevice target);

void GXValidateViewPort (gxViewPort target);

void GXValidateViewGroup (gxViewGroup target);

void GXValidateGraphicsClient
(gxGraphicsClient target);

void GXValidateAll (void);

Contents

5-1

C H A P T E R 5

5

Figure 5-0
Listing 5-0
Table 5-0

Contents

5 Collection Manager

About the Collection Manager 5-5
Collection Objects 5-5
Collection Items 5-8
Collection Attributes 5-9
Methods of Identifying Collection Items 5-11

Using the Collection Manager 5-12
Determining Whether the Collection Manager Is Available 5-13
Creating or Disposing of a Collection 5-14
Cloning or Copying a Collection 5-14
Changing the Default Attributes of a Collection 5-15
Adding Items to a Collection 5-17
Determining the Collection Index of an Item 5-19
Determining the Tag and ID of an Item 5-21
Determining the Size of an Item’s Variable-Length Data 5-22
Getting and Setting the Attributes of an Item 5-24
Replacing Items in a Collection 5-28
Removing Items From a Collection 5-30
Retrieving the Variable-Length Data From an Item 5-33
Examining the Collection Tags of a Collection 5-35
Flattening and Unflattening a Collection 5-37
Reading Collections From and Writing Collections to Disk 5-41
Reading a Collection From a Collection Resource 5-44
Installing an Exception Procedure 5-45

Collection Manager Reference 5-48
Data Types 5-48

Collection Objects 5-48
Collection Tags 5-49
Optional Return Value Constants 5-49
Attributes Masks 5-49
Attribute Bit Numbers 5-50

C H A P T E R 5

5-2

Contents

Attribute Bit Masks 5-52
Functions 5-53

Creating and Disposing of Collection Objects 5-53

NewCollection

5-54

DisposeCollection

5-55
Cloning and Copying Collection Objects 5-55

CloneCollection

5-56

CountCollectionOwners

5-57

CopyCollection

5-57
Getting and Setting the Exception Procedure for a Collection 5-58

GetCollectionExceptionProc

5-58

SetCollectionExceptionProc

5-59
Getting and Setting the Default Attributes for a Collection 5-60

GetCollectionDefaultAttributes

5-60

SetCollectionDefaultAttributes

5-61
Adding and Replacing Items in a Collection 5-62

AddCollectionItem

5-62

ReplaceIndexedCollectionItem

5-63
Removing Items From a Collection 5-65

RemoveCollectionItem

5-65

RemoveIndexedCollectionItem

5-66

PurgeCollection

5-67

PurgeCollectionTag

5-68

EmptyCollection

5-68
Counting Items in a Collection 5-69

CountCollectionItems

5-69

CountTaggedCollectionItems

5-70
Retrieving the Variable-Length Data From an Item 5-70

GetCollectionItem

5-71

GetIndexedCollectionItem

5-72

GetTaggedCollectionItem

5-74
Getting Information About a Collection Item 5-76

GetCollectionItemInfo

5-76

GetIndexedCollectionItemInfo

5-78

GetTaggedCollectionItemInfo

5-80
Editing Item Attributes 5-82

SetCollectionItemInfo

5-82

SetIndexedCollectionItemInfo

5-84
Getting Information About Collection Tags 5-85

CollectionTagExists

5-85

CountCollectionTags

5-86

GetIndexedCollectionTag

5-87
Flattening and Unflattening a Collection 5-88

FlattenCollection

5-88

FlattenPartialCollection

5-89

UnflattenCollection

5-90
Working With Macintosh Memory Manager Handles 5-92

C H A P T E R 5

Contents

5-3

5

AddCollectionItemHdl

5-92

ReplaceIndexedCollectionItemHdl

5-93

GetCollectionItemHdl

5-94

GetIndexedCollectionItemHdl

5-96

FlattenCollectionToHdl

5-97

UnflattenCollectionFromHdl

5-98
Reading Collections From Resource Files 5-98

GetNewCollection

5-99
Application-Defined Functions 5-100

MyFlattenProc

5-100

MyExceptionProc

5-101
Resources 5-102

The Collection Resource 5-102
Summary of the Collection Manager 5-104

Data Types 5-104
Functions 5-106
Application-Defined Functions 5-110
Resources 5-110

C H A P T E R 5

About the Collection Manager

5-5

5

C

ollection M
anager

Collection Manager 5

This chapter describes the Collection Manager, which provides an abstract data type you
can use to store collections of information. Read this chapter if you need to work with
some advanced features of QuickDraw GX printing, including print dialog boxes, or if
you want to create collections for purposes specific to your application.

Before reading this chapter, you might want to familiarize yourself with the information
in the chapter “Resource Manager” in

Inside Macintosh: More Macintosh Toolbox

. For some
examples of how the Collection Manager is used by other parts of QuickDraw GX, you
should read the chapter “Page Formatting and Dialog Box Customization” in

Inside
Macintosh: QuickDraw GX Printing

.

This chapter introduces the collection object as an abstract data type and describes the
properties of this object. It then shows how to use the functions provided by the
Collection Manager to

■

create and manipulate collection objects

■

add information to a collection object

■

retrieve information from a collection object

■

store a collection object to disk and retrieve a collection object from disk

This chapter also contains reference information for all data types, functions, and
resources associated with the Collection Manager.

About the Collection Manager 5

The Collection Manager implements an abstract data type that allows you to store
multiple pieces of related information. This abstract data type is called a collection object.

Collection Objects 5

A

collection object,

 or simply a

collection,

 is an abstract data type that allows you to
store information. A collection is like an array in that it contains a number of
individually accessible items. However, a collection offers some advantanges over an
array:

■

A collection allows for a variable number of data items. You can add items to a
collection or remove items from a collection during run time, and the Collection
Manager automatically resizes the collection.

■

A collection allows for variable-size items. Each item in a collection can contain data
of any size.

C H A P T E R 5

Collection Manager

5-6

About the Collection Manager

There are some corresponding disadvantages to using a collection versus using an array:

■

You must store and retrieve information in a collection using Collection Manager
functions, which is not as efficient as accessing an item of an array.

■

The Collection Manager stores extra information about the collection and about each
item in the collection, so a collection requires more memory than a comparable array.

A collection is also similar to a database, in that you can store information and retrieve it
using a variety of search mechanisms. However, a collection has many more limitations
than a real database. For example, the Collection Manager provides only a few
mechanisms for searching a collection. Also, a collection is entirely memory-based. You
can use a collection only when the entire contents of the collection are in memory, which
makes a collection more like a powerful array than a database.

The internal structure of a collection object is private—you must store information in a
collection and retrieve information from it by providing a Collection Manager function
with a reference to the collection.

Figure 5-1 depicts the accessible properties of a collection object. Note that, because a
collection is an object and not a public data structure, the order of the properties as
shown is completely arbitrary.

C H A P T E R 5

Collection Manager

About the Collection Manager

5-7

5

C

ollection M
anager

Figure 5-1

The collection object

As Figure 5-1 shows, a collection object contains

■

an

owner count,

 which reflects the current number of references to the collection

■

an exception procedure, which you can use to handle errors that occur while
operating on the collection

■

default attributes, which are described in “Collection Attributes” beginning on
page 5-9.

■

a number of collection items, which are described in the next section

Owner count

Variable-length data

Exception procedure

Collection tag

Collection ID

Collection attributes

Variable-length data

Collection tag

Collection ID

Collection attributes

First collection item

Second collection item

Final collection item

Collection object

Default attributes

Variable-length data

Collection tag

Collection ID

Collection attributes

C H A P T E R 5

Collection Manager

5-8

About the Collection Manager

The Collection Manager maintains the owner count for you, although you can increment
or decrement it by cloning or disposing of the collection, as described in “Creating or
Disposing of a Collection” beginning on page 5-14 and “Cloning or Copying a
Collection” beginning on page 5-14.

The Collection Manager allows you to install an

exception procedure

 for each collection
object. When the Collection Manager is operating on a collection and an error
occurs, the Collection Manager calls the collection’s exception procedure (if you installed
one) and passes to it the result code associated with the error that occurred.
Your exception procedure can then respond to the error. For more information about
exception procedures, see “Getting and Setting the Exception Procedure for a Collection”
beginning on page 5-58 and the description of an application-defined exception
procedure on page 5-101.

Collection Items 5

A collection is composed of

collection items.

 Figure 5-2 shows the general structure of a
collection item and also shows a sample collection item. Note that, because a collection
item is always part of a collection object, you always access the information in a
collection item using Collection Manager functions. Therefore, the order of the
properties shown in Figure 5-2 is completely arbitrary.

Figure 5-2

The collection item

As Figure 5-2 shows, each collection item contains these properties:

■

Collection tag.

 A collection tag is a four-character identifier that, in conjunction with
the collection ID, uniquely identifies the collection item.

■

Collection ID.

 A collection ID is a

long

 value that, in conjunction with the collection
tag, uniquely identifies the collection item.

Variable-length data

Collection tag

Collection ID

Collection attibutes

an example of
variable-length

data...

tagA

10

...000010010...

Structure of a collection item Sample collection item

C H A P T E R 5

Collection Manager

About the Collection Manager

5-9

5

C

ollection M
anager

■

Collection attributes.

 The collection attributes are a set of 32 bit flags, each of which
represents an attribute of the collection item. The Collection Manager defines the
meaning of some of these attributes and leaves some of them for you to define. See the
next section for more information about collection attributes.

■

Variable-length data.

 The variable-length data contains the actual data of the item.
This data corresponds to the contents of an item in an array, except items in the same
collection can store data of different sizes, whereas items in a single array must all
store data of the same size.

The Collection Manager uses a collection item’s collection tag and collection ID to
uniquely identify the item. As an example, in any collection there can be exactly one item
with a collection tag of

'tagA'

 and a collection ID of 10.

When you want to retrieve the data stored in an item, you can specify the item by
providing a Collection Manager function with the item’s collection tag and collection ID.
You can also specify a collection item using one of the other methods provided by the
Collection Manager. See “Methods of Identifying Collection Items” beginning on
page 5-11 for more information.

Collection Attributes 5

Each collection item has 32

attributes.

 Each attribute is represented by one bit flag in the
item’s attributes property. Therefore each attribute is either set or clear. An item’s
attributes are stored in a 32-bit long word. The bits are numbered 0 through 31. Bit 31 is
the high bit.

The upper 16 bits of an item’s attributes property represent attributes that are reserved
for use by Apple Computer, Inc. Currently, two of these attributes are defined:

■

Bit 31 represents the

lock attribute.

 When an item has this attribute set, attempts to
replace the item result in an error. When this attribute is clear, you can replace the
item.

■

Bit 30 represents the

persistence attribute.

 When an item has this attribute set, the
Collection Manager includes this item when flattening the collection. When this
attribute is clear, the Collection Manager ignores the item when flattening the
collection. See “Flattening and Unflattening a Collection” beginning on page 5-37 for
more information about flattening collections.

The other 14 reserved attribute bits are called the

reserved attributes.

The lower 16 bits of an item’s attributes property represent attributes that you can define
for purposes suitable to your application. For example, you could use one of these
attributes to mark all of the items that you wanted to write to disk and remove from the
collection should you need more memory. These 16 attributes are called the

user
attributes.

Depending on your application, you can set and examine the user attributes
individually, or you can set and examine combinations of them. As an example, if your
application uses collections that contain four distinct types of items, you could combine
two user attributes to provide the four values (0–3) necessary to identify the four types
of items.

C H A P T E R 5

Collection Manager

5-10

About the Collection Manager

Every collection object contains

default attributes.

 A collection’s default attributes
determine the initial attribute values assigned to items added to that collection. For
example, you could set the lock and persistence default attributes for a collection. From
then on, when you added an item to the collection, the new item would have its lock and
persistence attributes set. Of course, you would still be free to edit the attributes for the
new item after adding it to the collection.

The Collection Manager provides a mechanism for editing attributes that allows you to
set (or clear) the values of some attributes while leaving the values of other attributes
alone. To edit attributes, you provide an

attribute mask,

 in which you specify the
attributes you want to edit, and new attribute values, in which you specify the new
values for the attributes.

Figure 5-3 depicts this editing mechanism.

Figure 5-3

Editing attributes in a collection item

Original attibutes 0 0 1 1 0 0 0 0

0 0 1 1 1 0 1

0 0 0 0

1

New attribute values

Attribute mask

Resulting attributes

1 0 1 1 1 0 1 1

1 1 1 1

C H A P T E R 5

Collection Manager

About the Collection Manager

5-11

5

C

ollection M
anager

When editing an item’s attributes, you provide an attribute mask and new attribute
values. For every attribute:

■

If you set the corresponding bit of the attribute mask to 0, the Collection Manager
leaves the attribute unchanged from the original. The new value for the attribute
(which you provide in the new attribute values) is ignored.

■

If you set the corresponding bit in the attribute mask to 1, the Collection Manager
copies the new attribute value you provide for this attribute. The original value of this
attribute is overwritten.

You use this mechanism when editing an item’s attributes, when editing a collection’s
default attributes, when searching for items whose attributes match a certain pattern,
when flattening parts of a collection, and when purging items from a collection. For an
example, see “Changing the Default Attributes of a Collection” beginning on page 5-15.

Methods of Identifying Collection Items 5

Many Collection Manager functions operate on an individual item within a collection.
For example, the Collection Manager provides functions that allow you to replace the
variable-length data for a particular item as well as functions that allow you to retrieve
an item’s variable-length data.

When calling these Collection Manager functions, you need to specify which collection
item you want to examine or edit. The Collection Manager provides three methods of
specifying a particular item in a collection:

■

The collection tag and the collection ID. Together, these two properties uniquely
identify an item in a collection. The collection IDs of collection items with the same
collection tag do not have to be sequential. For example, the collection shown in
Figure 5-4 has four items with the

'tagA'

 collection tag. These four items have
collection IDs 2, 6, 4, and 0.

■

The collection tag and the tag list position. Each item in a collection has a tag list
position as well as a collection ID. The

tag list position

 of an item is the position of
the item in the list of items with the same collection tag. Unlike a collection ID, the tag
list positions of items with the same tag are sequential. For example, in Figure 5-4 the
four items with the

'tagA'

 collection tag have tag list positions 1, 2, 3, and 4. Unlike
the collection ID, the tag list position of an item can change if another item with the
same collection tag is added to or removed from the collection.

■

The collection index. The Collection Manager assigns a

collection index

 to each item
in a collection. A collection index uniquely identifies its item within a collection.
Indexes across a collection do not have to be sequential. The collection index of any
item in a collection can change if another item is added to or removed from the
collection.

C H A P T E R 5

Collection Manager

5-12

Using the Collection Manager

Figure 5-4

Items in a collection

In Figure 5-4, the third item in the second row can be identified in three ways:

■

It has a collection tag of

'tagB'

 and a collection ID of 1.

■

It has a collection tag of

'tagB'

 and a tag list position of 3.

■

It has a unique collection index assigned to it by the Collection Manager.

For examples of identifying collection items, see “Adding Items to a Collection”
beginning on page 5-17, “Determining the Collection Index of an Item” beginning on
page 5-19, and “Determining the Tag and ID of an Item” beginning on page 5-21.

Using the Collection Manager 5

This section describes how your application can

■

create or dispose of a collection

■

clone or copy a collection

■

change the default attributes of a collection

tagA

2

List of tagA items tagA

6

tagA

4

tagA

0

tagB

5

tagB

8

tagB

1

tagC

10

Tag list position:

List of tagB items

List of tagC items

1 2 3 4

C H A P T E R 5

Collection Manager

Using the Collection Manager

5-13

5

C

ollection M
anager

■

add items to a collection

■

determine the collection index of an item

■

determine the collection tag and collection ID of an item

■

determine the size of an item’s variable-length data

■

get and set the attributes of a collection item

■

replace items in a collection

■

remove items from a collection

■

retrieve the variable-length data from a collection item

■

examine the collection tags of a collection

■

flatten and unflatten collections

■

read collections from and write collections to disk

Determining Whether the Collection Manager Is Available 5

The Collection Manager is not available in all system software versions. Therefore,
before calling any Collection Manager functions, you should use the

Gestalt

 function
to determine whether the Collection Manager is available. To get information about the
Collection Manager, you pass the

Gestalt

 function the

gestaltCollectionMgrVersion

 selector, as shown in Listing 5-1.

Listing 5-1

Determining whether the Collection Manager is available

Boolean CollectionMgrExists(long versionRequired) {

long collectionMgrVersion;

Boolean exists = (Gestalt(gestaltCollectionMgrVersion,

 &collectionMgrVersion) == noErr);

if (exists)

exists = (collectionMgrVersion >= versionRequired);

return(exists);

}

In Listing 5-1, the

CollectionMgrExists

 sample function uses the

Gestalt

 function
to determine whether the Collection Manager is available and, if so, which version is
available. If the Collection Manager is available, this sample function tests whether the
version number is sufficiently high by comparing it with a specified minimum.

You would call this sample function with a line of code such as

exists = CollectionMgrExists(0x01008000); /* version 1.0f0 */

C H A P T E R 5

Collection Manager

5-14

Using the Collection Manager

You can find out more about the

Gestalt function in the chapter “Gestalt Manager” of
Inside Macintosh: Operating System Utilities.

Creating or Disposing of a Collection 5
The Collection Manager provides a number of ways for you to create a collection object:

■ You can create a new collection object using the NewCollection function, as
described in this section.

■ You can make a copy of an existing collection object using the CopyCollection
function, as described in “Cloning or Copying a Collection” beginning on page 5-14.

■ You can create a collection from a resource using the GetNewCollection function,
as described in “Reading Collections From and Writing Collections to Disk”
beginning on page 5-41.

The NewCollection function creates a new collection object containing no collection
items. The section “Adding Items to a Collection” beginning on page 5-17 shows how
you can add items to a new collection.

The default attributes of the new, empty collection are described by the
defaultCollectionAttributes constant, in which only the persistence attribute is
set. This constant is defined in “Attributes Masks” beginning on page 5-49. The section
“Changing the Default Attributes of a Collection” beginning on page 5-15 shows how
you can change the default attributes of the new collection.

The owner count of the new collection is 1. You can increment the collection’s owner
count using the CloneCollection function, as shown in the section “Cloning or
Copying a Collection” beginning on page 5-14. You can decrement the collection’s owner
count using the DisposeCollection function. This function decrements the owner
count of a collection and frees the memory used by the collection if the owner count
becomes 0.

You can find more information about the NewCollection function on page 5-54. You
can find more information about the DisposeCollection function on page 5-55.

Cloning or Copying a Collection 5
You use the CloneCollection and CopyCollection functions to clone and copy
collection objects. You clone a collection object if you want to make a copy of the
reference to the collection object, and you copy a collection object if you want to make a
copy of the entire object, including all of its items.

For example, if you have a reference to a collection object stored in the variable
aCollection , you can create a new reference to this collection using

newCollection = CloneCollection(aCollection);

which increments the owner count of the collection object referenced by the
aCollection variable and returns a copy of the reference as the function result. After

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-15

5
C

ollection M
anager

this call to the CloneCollection function, the newCollection and aCollection
variables reference the same collection object, which has an incremented owner count.

You can create a copy of a collection object, including a copy of all its items, using

newCollection = CopyCollection(aCollection, nil);

The CopyCollection function does not increment the owner count of the
aCollection collection. Instead, it creates a new collection object with an owner count
of 1, copies all of the information from the aCollection collection into the new
collection, and returns a reference to the new collection. After this call to the
CopyCollection function, the newCollection and aCollection variables
reference two distinct collections—you can make changes to one without affecting the
other.

You can use the second parameter of the CopyCollection function to provide a
reference to an existing collection object, in which case the function copies the
information from the collection referenced by the first parameter into the collection
referenced by the second parameter. If the collection referenced by the second parameter
already has information in it, the function

■ removes all of the items in the second collection—including locked items—before
copying the items from the first collection into the second collection

■ copies the default attribute values from the first collection into the second collection

The CopyCollection function does not copy the owner count or the exception
procedure of the first collection; it leaves the owner count and the exception procedure of
the second collection unchanged.

You can find more information about the CloneCollection function on page 5-56. You
can find more information about the CopyCollection function on page 5-57.

Changing the Default Attributes of a Collection 5
Every collection object has default attributes. When you add a new item to a collection,
the Collection Manager sets the attributes of the new item to match the default attributes
of the collection. You can change the attributes of individual items in a collection using
the functions described in “Getting and Setting the Attributes of an Item” beginning on
page 5-24. You can change the default attributes for a collection using the
SetCollectionDefaultAttributes function. This function allows you to change
the value of a collection’s default attributes. With this function, you can change the value
of every default attribute or you can choose to change only some of the default attributes.

This function takes three parameters:

■ a reference to the collection object

■ a mask specifying which attributes you want to edit

■ the new values for the attributes

(See Figure 5-3 on page 5-10 for an overview of editing attributes.)

C H A P T E R 5

Collection Manager

5-16 Using the Collection Manager

As an example, Listing 5-2 changes the default attributes for a collection object so that

■ user attribute 0 and the lock attribute are set

■ all other attributes are clear

Listing 5-2 Changing the default attributes of a collection

long newAttributes;

.

.

.

newAttributes = collectionUser0Mask /* set user 0 bit */

 | collectionLockMask; /* set lock bit */

anErr = SetCollectionDefaultAttributes(anyCollection,

 allCollectionAttributes, /* mask */

 newAttributes); /* new values */

In this example, the allCollectionAttributes mask, which is defined in
“Attributes Masks” on page 5-49, specifies that you want to replace the value of every
attribute in the collection’s default attributes with the corresponding value in the
newAttributes parameter. The value of the newAttributes parameter specifies that
the user 0 attribute and the lock attribute are set while every other attribute is clear.

You can use different values for the second parameter of this function if you want to edit
some of the collection’s default attributes but leave other default attributes unchanged.
For example, you could set the second parameter of this function to the
userCollectionAttributes mask:

anErr = SetCollectionDefaultAttributes(anyCollection,

 userCollectionAttributes, /* mask */

 newAttributes); /* new values */

Using this mask specifies that you want to edit only the user attributes of the collection’s
default attributes. The function replaces the existing values for the collection’s default
user attributes with the values of the user attributes from the newAttributes
parameter. In this example, the user 0 attribute is set while all the other user attributes
are cleared. However, this call to the SetCollectionDefaultAttributes function
does not change the values of any of the reserved attributes. For example, the value of
the lock attribute in the collection’s default attributes remains the same as it was—the
value of the lock attribute in the newAttributes parameter makes no difference as it is
not copied into the collection’s default attributes.

You can find more information about the SetCollectionDefaultAttributes
function on page 5-61.

If you want to examine the default attributes of a particular collection object, you can use
the GetCollectionDefaultAttributes function, which is described on page 5-60.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-17

5
C

ollection M
anager

Adding Items to a Collection 5
Once you’ve created a collection object, you can add new items to the collection using
the AddCollectionItem function. With this function, you specify the collection tag
and collection ID that you want associated with the new item, the size of the new item’s
variable-length data, and a pointer to the data.

Note
The Collection Manager also provides a utility function,
AddCollectionItemHdl , which allows you to specify a handle, rather
than a pointer, to the data. See page 5-92 for more information about this
function. ◆

Listing 5-3 creates a new collection object and adds ten items to it. Each item has the
collection tag 'GXPT' , the items have collection IDs 0 through 9, and each item contains
two coordinates that make up a QuickDraw GX point.

Listing 5-3 Adding items to a collection

OSErr anErr;

Collection pointsAndQuotes;

gxPoint location;

long count;

.

.

.

pointsAndQuotes = NewCollection();

location.x = ff(10);

location.y = ff(10);

for (count = 0; count < 10; count++) {

anErr = AddCollectionItem(pointsAndQuotes,

 'GXPT', /* tag */

 count, /* id */

 sizeof(gxPoint), /* size */

 &location); /* data */

location.x += ff(1); /* change data for next item */

location.y += ff(1);

}

The collection resulting from the code in Listing 5-3 is very similar to an array: the items
are numbered sequentially starting with 0, and all items are of the same size. Unlike
arrays, however, collections are not limited to these properties. For example, you can add
items to a collection dynamically, increasing the total number of collection items during

C H A P T E R 5

Collection Manager

5-18 Using the Collection Manager

run time. That is, you do not have to specify the capacity of the collection at compile
time. Also, collection IDs do not have to be sequential. To demonstrate, the code

location.x = ff(100);

location.y = ff(100);

anErr = AddCollectionItem(pointsAndQuotes,

 'GXPT', 20, /* tag and id */

 sizeof(gxPoint), /* size */

 &location); /* data */

adds an eleventh item to the collection from Listing 5-3. The collection tag of the new
item is 'GXPT' , but the new item has a collection ID of 20.

When you add this item to the collection, the Collection Manager assigns it a tag list
position, reflecting its position in the list of items with the same collection tag. This tag
list position can change if you add a new item with the same collection tag. For example,
the call

anErr = AddCollectionItem(pointsAndQuotes,

 'GXPT', 15, /* tag and id */

 sizeof(gxPoint), /* size */

 &location); /* data */

adds a new item with the 'GXPT' collection tag and a collection ID of 15. Adding this
item can change the tag list position of any other item with the 'GXPT' collection tag.

So far, the example collection contains items of the same size. You can also use the
AddCollectionItem function to add items with variable-length data, as shown in
Listing 5-4.

Listing 5-4 Adding items with variable-length data to a collection

anErr = AddCollectionItem(pointsAndQuotes,

 'QUOT', 0, /* tag and id */

 17, /* size */

 "Le plus ca change"); /* data */

anErr = AddCollectionItem(pointsAndQuotes,

 'QUOT', 1,

 29, "Fourscore and seven years ago");

anErr = AddCollectionItem(pointsAndQuotes,

 'QUOT', 2,

 18, "It's not the heat.");

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-19

5
C

ollection M
anager

The sample code from Listing 5-4 adds three new items to the example collection. Each
of these items, which have collection tag 'QUOT' , contains a string of characters as its
variable-length data; however, each item contains a string of different length.

Note that the AddCollectionItem function copies the information from the block of
memory pointed to by its final parameter into the specified collection item. After adding
the item, you can change your copy of the information (the copy that the last parameter
points to) without affecting the value of the item’s variable-length data.

You can use the CountCollectionItems function to count the number of items in a
collection. For example, after the call

totalItems = CountCollectionItems(pointsAndQuotes);

the totalItems variable contains the value 15 (12 items with points and 3 items with
quotes).

You can use the CountTaggedCollectionItems function to count the number of
items in a collection that have a specified collection tag. For example, after the call

quotedItems = CountTaggedCollectionItems(pointsAndQuotes, 'QUOT');

the quotedItems variable contains the value 3.

For more information about the AddCollectionItem function, see page 5-62.

For more information about the CountCollectionItems and
CountTaggedCollectionItems functions, see “Counting Items in a Collection”
beginning on page 5-69.

Determining the Collection Index of an Item 5
Once you have added an item to a collection, you can identify that item in three ways:

■ You can specify its collection tag and ID.

■ You can specify its collection tag and its tag list position.

■ You can specify its collection index.

A collection index is a unique value that the Collection Manager assigns to each item in a
collection. You can use an item’s collection index to identify the item without specifying
the item’s collection tag or collection ID. In fact, once you’ve determined the collection
index of an item, specifying that item using its collection index results in faster
operations than specifying the item using its collection tag and collection ID.

C H A P T E R 5

Collection Manager

5-20 Using the Collection Manager

There are two ways to determine the collection index that the Collection Manager has
assigned to an item:

■ You can use the GetCollectionItemInfo function. With this function, you specify
the collection tag and collection ID of the item, and the function returns the item’s
collection index.

■ You can use the GetTaggedCollectionItemInfo function. With this function, you
specify the collection tag and the tag list position of the item, and the function returns
the item’s collection index.

Both of these functions optionally return other information about the specified item, as
shown in the next two sections.

Listing 5-5 shows how to use the the GetCollectionItemInfo function to determine
the collection index of an item from the sample collection created in “Adding Items to a
Collection” beginning on page 5-17. This listing uses the dontWantSize and
dontWantAttributes constants, which are equal to nil and specify that you don’t
want to determine certain information about the item. These constants are described in
“Optional Return Value Constants” on page 5-49.

Listing 5-5 Determining the index of an item

long index;

.

.

.

anErr = GetCollectionItemInfo(pointsAndQuotes, /* collection */

 'GXPT', 15, /* tag and id */

&index, /* returned index */

dontWantSize,

dontWantAttributes);

After this call to GetCollectionItemInfo function, the index variable contains
the collection index of the item in the pointsAndQuotes collection with the 'GXPT'
collection tag and a collection ID of 15. You can use this value to identify this item when
using certain Collection Manager functions, such as RemoveIndexedCollectionItem
and GetIndexedCollectionItem .

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-21

5
C

ollection M
anager

You can also use the GetTaggedCollectionItemInfo function to determine the
collection index of a collection item. This function allows you to specify the item using
the item’s collection tag and tag list position. For example, in Listing 5-5, the item is
specified using the 'GXPT' collection tag and collection ID 15. Assuming the Collection
Manager has assigned this item a tag list position of 11, you could also use the call

anErr = GetTaggedCollectionItemInfo(pointsAndQuotes,

'GXPT', /* collection tag */

11, /* tag list position */

dontWantId,

&index, /* returned index */

dontWantSize,

dontWantAttributes);

to determine the collection index for that item.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the GetCollectionItemInfo and
GetTaggedCollectionItemInfo functions, see “Getting Information About a
Collection Item” beginning on page 5-76.

Determining the Tag and ID of an Item 5
Just as you can determine the collection index of an item given its collection tag and ID,
you can also determine the collection tag and ID of an item given its collection index.
Listing 5-6 shows how to determine an item’s collection tag and collection ID using the
GetIndexedCollectionItemInfo function.

Listing 5-6 Determining the tag and ID of an item given the item’s index

long tag, id;

.

.

.

anErr = GetIndexedCollectionItemInfo(pointsAndQuotes,

 index, /* index of item */

 &tag, /* returned tag */

 &id, /* returned id */

 dontWantSize,

 dontWantAttributes);

C H A P T E R 5

Collection Manager

5-22 Using the Collection Manager

You need to set the value of the index variable to contain the collection index of the
desired item before making this call to the GetIndexedCollectionItemInfo
function. (See the previous section, “Determining the Collection Index of an Item” on
page 5-19, for in the GetCollectionItemInfo function shown in Listing 5-6, the tag
variable contains the collection tag and the id variable contains the collection ID of the
item in the pointsAndQuotes collection with the collection index specified by the
index variable.

If you know the collection tag of an item and you know its tag list position, you can use
the GetTaggedCollectionItemInfo function to determine its collection ID. For
example, you could also use the call

anErr = GetTaggedCollectionItemInfo(pointsAndQuotes,

'GXPT', 11,

&id,

dontWantIndex,

dontWantSize,

dontWantAttributes);

to determine the collection ID of the eleventh item in the pointsAndQuotes collection
with the tag 'GXPT' . With the pointsAndQuotes collection defined in “Adding Items
to a Collection” beginning on page 5-17, the collection ID of this item turns out to be 15.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the GetCollectionItemInfo and
GetTaggedCollectionItemInfo functions, see “Getting Information About a
Collection Item” beginning on page 5-76.

Determining the Size of an Item’s Variable-Length Data 5
The Collection Manager provides three functions that provide information about an item
in a collection. These three functions differ in how they allow you to specify which item
you want information about:

■ The GetCollectionItemInfo function requires that you specify the collection tag
and ID of the desired item.

■ The GetIndexedCollectionItemInfo function requires that you specify the
collection index of the desired item.

■ The GetTaggedCollectionItemInfo function requires that you specify the
collection tag and tag list position of the desired item.

These functions each return a variety of information about the specified item—for
example, the item’s attributes, the size of the item’s variable length data, and so on.
These functions return each piece of information in a separate parameter. You can specify
that you do not want certain pieces of information returned by providing nil for the
corresponding parameter. The Collection Manager provides the optional return value
constants, each of which is equal to nil , to make your code easier to read.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-23

5
C

ollection M
anager

Listing 5-7 shows how to use the GetCollectionItemInfo function to determine the
size of an item’s variable-length data, given that item’s collection tag and ID.

Listing 5-7 Determining the size of an item’s variable-length data

long theSize;

.

.

.

anErr = GetCollectionItemInfo(pointsAndQuotes, /* collection */

 'GXPT', 15, /* tag and id */

dontWantIndex,

&theSize, /* returned size */

dontWantAttributes);

(You can also use the GetCollectionItemInfo function to determine an item’s
collection index, as described in “Determining the Collection Index of an Item”
beginning on page 5-19, or to examine an item’s attributes, as described in “Getting and
Setting the Attributes of an Item” beginning on page 5-24.)

Similarly, you can use the GetIndexedCollectionItemInfo function to determine
the size of the item’s variable-length data given the item’s collection index:

anErr = GetIndexedCollectionItemInfo(pointsAndQuotes,

 index, /* index of item */

 dontWantTag,

 dontWantId,

 &theSize, /* returned size */

 dontWantAttibutes);

(You can also use the GetIndexedCollectionItemInfo function to determine an
item’s collection tag and collection ID, as described in “Determining the Tag and ID of an
Item” beginning on page 5-21, or to examine an item’s attributes, as described in the next
section, “Getting and Setting the Attributes of an Item.”.)

Finally, you can use the GetTaggedCollectionItemInfo function to determine the
size of the item’s variable-length data given its collection tag and tag list position.

anErr = GetTaggedCollectionItemInfo(pointsAndQuotes,

'GXPT', /* tag of item */

11, /* tag list position */

dontWantId,

dontWantIndex,

&theSize, /* returned size */

 dontWantAttributes);

C H A P T E R 5

Collection Manager

5-24 Using the Collection Manager

(You can also use the GetTaggedCollectionItemInfo function to determine an
item’s collection index, as described in “Determining the Collection Index of an Item”
beginning on page 5-19, to determine an item’s collection ID, as described in
“Determining the Tag and ID of an Item” beginning on page 5-21, or to examine an
item’s attributes, as described in the next section, “Getting and Setting the Attributes of
an Item.”)

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the GetCollectionItemInfo ,
GetIndexedCollectionItemInfo , and GetTaggedCollectionItemInfo
functions, see “Getting Information About a Collection Item” beginning on page 5-76.

Getting and Setting the Attributes of an Item 5
The Collection Manager provides three functions that allow you to examine the
attributes of a collection item:

■ The GetCollectionItemInfo function requires that you specify the collection tag
and ID of the desired item.

■ The GetIndexedCollectionItemInfo function requires that you specify the
collection index of the desired item.

■ The GetTaggedCollectionItemInfo function requires that you specify the
collection tag and tag list position of the desired item.

The Collection Manager provides two functions that allow you to edit the attributes of
an item:

■ The SetCollectionItemInfo function requires that you specify the collection tag
and ID of the desired item.

■ The SetIndexedCollectionItemInfo function requires that you specify the
collection index of the desired item.

(There is no SetTaggedCollectionItemInfo function to correspond to the
GetTaggedCollectionItemInfo function.)

The three information-retrieving functions allow you to determine a variety of
information about the item—not just its attributes. You can find more information
about the other values returned by these functions in “Determining the Collection Index
of an Item” beginning on page 5-19, “Determining the Tag and ID of an Item” beginning
on page 5-21, and “Determining the Size of an Item’s Variable-Length Data” beginning
on page 5-22.

The information-editing functions, however, allow you to edit the attributes of only the
specified item. (You cannot, for instance, use these functions to change the index of an
item, or the size of its variable-length data.)

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-25

5
C

ollection M
anager

Listing 5-8 shows how you can use the GetCollectionItemInfo function to examine
the attributes of an item given the item’s collection tag and collection ID. This listing uses
the collection defined in “Adding Items to a Collection” beginning on page 5-17.

Listing 5-8 Examining the attributes of an item

long attributes;

.

.

.

anErr = GetCollectionItemInfo(pointsAndQuotes, /* collection */

 'QUOT', 0, /* tag and id */

dontWantIndex,

dontWantSize,

&attributes); /* returned attr's */

After this call to the GetCollectionItemInfo function, the attributes variable
contains a copy of the attributes of item from the pointsAndQuotes collection with the
collection tag 'QUOT' and a collection ID of 0. You can examine specific attributes using
the attribute bit masks, which are described in “Attribute Bit Masks” beginning on
page 5-52. As an example, the expression

(attributes & collectionLockMask)

evaluates to false (0) if the lock attribute is not set and to true (not 0) if the lock
attribute is set.

You can also use the GetIndexedCollectionItemInfo function to examine the
attributes of an item, given its collection index rather than its collection tag and
collection ID:

anErr = GetIndexedCollectionItemInfo(pointsAndQuotes,

 index, /* index of item */

 dontWantTag,

 dontWantId,

 dontWantSize,

 &attributes); /* returned */

C H A P T E R 5

Collection Manager

5-26 Using the Collection Manager

Similarly, you can use the GetTaggedCollectionItemInfo function to examine the
attributes of an item, given its collection tag and tag list position:

anErr = GetTaggedCollectionItemInfo(pointsAndQuotes,

'QUOT', /* tag of item */

1, /* tag list position */

dontWantId,

dontWantIndex,

dontWantSize,

&attributes); /* returned */

You can edit the attributes of a collection item using the SetCollectionItemInfo and
SetIndexedCollectionItemInfo functions. These functions require you to specify
which attributes you want to edit and what the new values for those attributes should be.

You specify this information using two long parameters:

■ The first is a mask. Each bit in this mask represents one of the item’s attributes. A bit
value of 0 in this mask signifies that you do not want to edit the corresponding
attribute of the specified item. A bit value of 1 in this mask signifies that you do want
to edit the corresponding attribute of the item.

■ The second contains the new values. Each bit in this parameter represents the new
value for the corresponding attribute of the item. Only the bits in this parameter that
correspond to bits in the mask parameter that have a value of 1 are significant. The
Collection Manager ignores the other bit values in this parameter.

Listing 5-9 shows how you can use the SetCollectionItemInfo to set the lock and
persistence attributes of a collection item and clear all the other attributes.

Listing 5-9 Setting the lock and persistence bit attribute of an item

long newAttributes;

.

.

.

newAttributes = collectionLockMask

 | collectionPersistenceMask;

anErr = SetCollectionItemInfo(pointsAndQuotes,

 'QUOT', 0, /* tag and id */

 allCollectionAttributes, /* mask */

 newAttributes); /* new values */

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-27

5
C

ollection M
anager

This example uses the allCollectionAttributes constant (which is defined in
“Attributes Masks” beginning on page 5-49) to indicate that all the attributes of the
specified collection item should be edited. As a result, the code in the example replaces
the value of every attribute in the specified collection item with the corresponding value
from the newAttributes parameter.

If you want to set the lock and persistence attributes of this collection item without
affecting the values of the other attributes, you can use the newAttributes variable as
both the mask and the values parameters:

anErr = SetCollectionItemInfo(pointsAndQuotes,

 'QUOT', 0, /* tag and id */

 newAttributes, /* mask */

 newAttributes); /* new values */

In this case, the code uses the newAttributes parameter as the mask (which indicates
that only the lock attribute and the persistence attribute should be affected) as well as the
values (which indicate that both of these attributes should be set). The values of all the
other attributes of the specified item remain as they were before the call.

You can also use the SetIndexedCollectionItemInfo function to set the attributes
of an item, given the item’s collection index rather than its collection tag and
collection ID:

anErr = SetIndexedCollectionItemInfo(pointsAndQuotes,

 index,

 allCollectionAttributes,

 newAttributes);

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the GetCollectionItemInfo ,
GetIndexedCollectionItemInfo , and GetTaggedCollectionItemInfo
functions, see “Getting Information About a Collection Item” beginning on page 5-76.

For more information about the SetCollectionItemInfo and
SetIndexedCollectionItemInfo functions, see “Editing Item Attributes” beginning
on page 5-82.

C H A P T E R 5

Collection Manager

5-28 Using the Collection Manager

Replacing Items in a Collection 5
The Collection Manager provides two methods for replacing items in a collection:

■ You can use the AddCollectionItem function, specifying the collection tag and
collection ID of an existing item.

■ You can use the ReplaceIndexedCollectionItem function, specifying the
collection index of an existing item.

Note
The Collection Manager also provides the utility functions,
AddCollectionItemHdl and ReplaceCollectionItemHdl , which
allow you to specify a handle, rather than a pointer, to the item’s data.
See “Working With Macintosh Memory Manager Handles” beginning
on page 5-92 for more information about these functions.◆

The new item does not have to be the same size as the replaced item. For example,
Listing 5-10 shows how you can use the AddCollectionItem function to replace the
data in a collection item with a new data of a different length. (This example uses the
collection created in “Adding Items to a Collection” beginning on page 5-17, in which
the item identified by the collection tag 'QUOT' and the collection ID 1 contains the
29-character string “Fourscore and seven years ago”)

Listing 5-10 Replacing an item in a collection

anErr = AddCollectionItem(pointsAndQuotes,

 'QUOT', 1,

 22, "Eighty-seven years ago");

You cannot replace a collection item if its lock attribute is set. For example, the previous
section shows how to set the lock attribute of the item with the collection tag 'QUOT'
and the collection ID 0. If you try to replace this item using

anErr = AddCollectionItem(pointsAndQuotes,

 'QUOT', 0,

 24, "Plus c'est la meme chose");

the code sets the anErr variable to the collectionItemLockedErr value and the
Collection Manager does not replace the item.

If you know the collection index of an item, you can use the
ReplaceIndexedCollectionItem function to replace the item. This function finds
the specified item more efficiently than the AddCollectionItem function. Listing 5-11
shows an example of this function.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-29

5
C

ollection M
anager

Listing 5-11 Replacing an item using the item’s index

long index;

.

.

.

/* find the index. */

anErr = GetCollectionItemInfo(pointsAndQuotes,

'QUOT', 1,

&index,

dontWantSize,

dontWantAttributes);

.

.

.

/* replace the item. */

anErr = ReplaceIndexedCollectionItem(pointsAndQuotes,

 index,

 22,

 "Eighty-seven years ago");

The example in Listing 5-11 uses the GetCollectionItemInfo function to find the
collection index that the Collection Manager has assigned to the item with a collection
tag of 'QUOT' and a collection ID of 1. Finding this collection index requires some
processing time. However, once you’ve found the item’s collection index, you can use it
to find information about the item quickly, because functions that search for a collection
item using the item’s collection index operate more efficiently than functions that search
using the item’s collection tag and collection ID. Typically, if you want to search for an
item only once, you use the item’s collection tag and collection ID. If you know that you
have to search for the same item repeatedly, you find the item’s collection index and use
the collection index when examining or editing the item.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the AddCollectionItem function and the
ReplaceIndexedCollectionItem function, see “Adding and Replacing Items in a
Collection” beginning on page 5-62.

C H A P T E R 5

Collection Manager

5-30 Using the Collection Manager

Removing Items From a Collection 5
The Collection Manager provides two methods for removing individual items from a
collection:

■ You can use the RemoveCollectionItem function, specifying the collection tag and
collection ID of the item you want to remove.

■ You can use the RemoveIndexedCollectionItem function, specifying the
collection index of the item you want to remove.

The Collection Manager provides three methods for removing multiple items from a
collection:

■ You can use the PurgeCollection function to remove all the items in a collection
whose attributes match criteria you specify.

■ You can use the PurgeCollectionTag function to remove all the items in a
collection that have a specified collection tag.

■ You can use the EmptyCollection function to remove every item from a collection.

Listing 5-12 shows how you can use the RemoveCollectionItem function to remove
an item from a collection. (This example uses the collection created in “Adding Items to a
Collection” beginning on page 5-17.)

Listing 5-12 Removing an item in a collection

anErr = RemoveCollectionItem(pointsAndQuotes,

 'QUOT', 1); /* tag and id */

You can remove a collection item even if its lock attribute is set—the lock attribute only
affects replacing. For example, if you have set the lock attribute of the collection item
with the collection tag 'QUOT' and the collection ID 0, you can remove this item using

anErr = RemoveCollectionItem(pointsAndQuotes,

 'QUOT', 0); /* tag and id */

You can also remove the item using

anErr = RemoveCollectionItem(pointsAndQuotes,

 'QUOT', 0); /* tag and id */

If you know the index of an item, you can use the RemoveIndexedCollectionItem
function to remove the item. This function finds the specified item more efficiently than
the RemoveCollectionItem function. Listing 5-13 shows an example of this function.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-31

5
C

ollection M
anager

Listing 5-13 Removing an item using the item’s index

long index;

.

.

.

/* get the index */

anErr = GetCollectionItemInfo(pointsAndQuotes,

'QUOT', 1,

&index,

dontWantSize,

dontWantAttributes);

.

.

.

/* remove the item */

anErr = RemoveIndexedCollectionItem(pointsAndQuotes, index);

The example in Listing 5-13 uses the GetCollectionItemInfo function to find the
collection index that the Collection Manager has assigned to the item with a collection
tag of 'QUOT' and a collection ID of 1. Finding this collection index requires some
processing time. However, once you’ve found the item’s collection index, you can use it
to find information about the item quickly, because functions that search for a collection
item using the item’s collection index operate more efficiently than functions that search
using the item’s collection tag and collection ID.

The PurgeCollection function allows you to remove multiple items from a collection.
You provide this function with a collection and a set of attribute values, and it removes
any items in the collection whose attributes match these values. You specify which
attributes to examine in the second parameter of this function, and you specify the
values to compare those attributes against in the third parameter, as shown in
 Listing 5-14.

Listing 5-14 Removing multiple items with specific attributes

long whichAttributes, attributeValues;

.

.

.

/* specify which attributes to examine: user 0 and user 1 */

whichAttributes = collectionUser0Mask

 | collectionUser1Mask;

C H A P T E R 5

Collection Manager

5-32 Using the Collection Manager

/* specify the values to test for: user 0 set and user 1 clear */

attributeValues = collectionUser0Mask

& ~collectionUser1Mask;

/* purge all items with user 0 attribute set and user 1 clear */

PurgeCollection(pointsAndQuotes,

 whichAttributes,

 attributeValues);

This example sets two bits in the whichAttributes variable—the user 0 attribute and
the user 1 attribute—and clears every other bit in this variable, which signifies that the
function should test only the user 0 attribute and the user 1 attribute. The
attributeValues variable sets the user attribute 0 flag and clears the user attribute 1
flag. Therefore, this call to PurgeCollection removes every item in the collection that
has the user 0 attribute set and the user 1 attribute clear. It ignores the values of all the
other attributes.

You can use the PurgeCollectionTag function to remove all of the items in a
collection that share a collection tag—even the locked items. To remove all the items with
the collection tag 'GXPT' from the pointsAndQuotes collection (which is defined in
“Adding Items to a Collection” beginning on page 5-17), you could use this line of code:

PurgeCollectionTag(pointsAndQuotes, 'GXPT');

Finally, you can remove all of the items in a collection—even the locked items—using the
EmptyCollection function:

EmptyCollection(pointsAndQuotes);

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the RemoveCollectionItem,
RemoveIndexedCollectionItem , PurgeCollection , PurgeCollectionTag , and
EmptyCollection functions, see “Removing Items From a Collection” beginning on
page 5-65.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-33

5
C

ollection M
anager

Retrieving the Variable-Length Data From an Item 5
The Collection Manager provides three functions that return a copy of the information in
an item’s variable-length data. These three functions differ in how they allow you to
specify which item you want information about:

■ The GetCollectionItem function requires that you specify the collection tag and
collection ID of the desired item.

■ The GetIndexedCollectionItem function requires that you specify the collection
index of the desired item.

■ The GetTaggedCollectionItem function requires that you specify the collection
tag and tag list position of the desired item.

Note
The Collection Manager also provides the utility function
GetCollectionItemHdl , which returns a copy of the item’s data in a
block of memory referenced by a Macintosh Memory Manager handle,
rather than a pointer. See page 5-94 for more information about this
function. ◆

These functions each return two pieces of information about the specified item—the size
of its variable-length data and a copy of the data itself. You can specify that you want to
determine either the size or the data or both (or neither, actually, although that doesn’t
prove to be very useful).

Typically, you call these functions twice:

■ once to determine the size of the data (if you don’t already know the size)

■ once (after allocating enough memory) to obtain a copy of the data.

Listing 5-15 shows how to use the GetCollectionItem function to retrieve the
variable-length data from an item. This sample code uses the pointsAndQuotes
collection defined in “Adding Items to a Collection” beginning on page 5-17.

Listing 5-15 Retrieving the variable-length data from an item

long theSize;

char *theData;

.

.

.

anErr = GetCollectionItem(pointsAndQuotes,

 'QUOT', 0, /* tag and id */

 &theSize,

 dontWantData);

theData = (char *) NewPtr(theSize);

C H A P T E R 5

Collection Manager

5-34 Using the Collection Manager

anErr = GetCollectionItem(pointsAndQuotes,

 'QUOT', 0,

 dontWantSize,

 theData);

If you specify a non-NIL value for the size parameter, the GetCollectionItem
function returns in the size parameter the actual number of bytes of the item’s data.

If you specify non-NIL values for both the size and data parameters, the number of bytes
returned in the data parameter is either the value specified by the size parameter or the
actual number of bytes of the specified item’s data, whichever is lower.

You can also use the GetIndexedCollectionItem function to retrieve an item’s data,
given the item’s collection index rather than its collection tag and collection ID, as shown
in Listing 5-16.

Listing 5-16 Retrieving the variable-length data from an item using the item’s index

long index;

long theSize;

char *theData;

.

.

.

/* get the index and data size */

anErr = GetCollectionItemInfo(pointsAndQuotes,

'QUOT', 0, /* tag and id */

&index,

&theSize,

dontWantAttributes;

.

.

.

theData = (char *) NewPtr(theSize);

anErr = GetIndexedCollectionItem(pointsAndQuotes,

 index,

 dontWantSize,

 theData);

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-35

5
C

ollection M
anager

Similarly, you can use the GetTaggedCollectionItem function to retrieve an item’s
data, given the item’s collection tag and tag list position, as shown in Listing 5-17.

Listing 5-17 Retrieving the variable-length data from an item using the tag and tag list position

long index;

long theSize;

char *theData;

.

.

.

anErr = GetTaggedCollectionItem(pointsAndQuotes,

 'QUOT',

 1, /* first of the 'QUOT' items */

 &theSize,

 dontWantData);

theData = (char *) NewPtr(theSize);

anErr = GetTaggedCollectionItem(pointsAndQuotes,

 'QUOT',

 1, /* first of the 'QUOT' items */

 dontWantSize,

 (void *) theData);

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the GetCollectionItem,
GetIndexedCollectionItem , and GetTaggedCollectionItem functions, see
“Retrieving the Variable-Length Data From an Item” beginning on page 5-70.

Examining the Collection Tags of a Collection 5
The Collection Manager provides three functions that allow you to examine the
collection tags contained in a specific collection:

■ You can use the CollectionTagExists function to determine if any of the items in
a specific collection have a specified collection tag.

■ You can use the CountCollectionTags function to determine the total number of
distinct collection tags contained in the items of a collection.

■ You can use the GetIndexedCollectionTag function to examine the value of one
of the distinct collection tags contained in a collection.

C H A P T E R 5

Collection Manager

5-36 Using the Collection Manager

Every collection has a list of distinct collection tags contained in that collection. The
GetIndexedCollectionTag function allows you to step through this list of distinct
collection tags, as shown in Listing 5-18.

Listing 5-18 Counting tags in a collection

long numTags, numItems, eachTag, eachItem;

.

.

.

numTags = CountCollectionTags(pointsAndQuotes);

/* iterate through each tag */

for (eachTag = 1; eachTag <= numTags; ++eachTag) {

GetIndexedCollectionTag(pointsAndQuotes, eachTag, &theTag);

numItems = CountTaggedCollectionItems(pointsAndQuotes, theTag);

/* iterate through each item with that tag */

for (eachItem = 1; eachItem <= numItems; ++eachItem) {

/* find size of item data and obtain copy of data */

GetTaggedCollectionItem(pointsAndQuotes,

theTag, eachItem,

&theSize, dontWantData);

theData = (char *) NewPtr(theSize);

GetTaggedCollectionItem(pointsAndQuotes,

theTag, eachItem,

dontWantSize, theData);

.

.

.

/* manipulate item data . . .*/

.

.

.

DisposePtr(theData);

}

}

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-37

5
C

ollection M
anager

This sample code determines the total number of distinct tags in the pointsAndQuotes
collection using the CountCollectionTags function. Then, it uses the
GetIndexedCollectionTag function to step through each of the distinct collection
tags in the collection.

With each collection tag, the sample code uses the GetTaggedCollectionItem
function to retrieve the variable-length data from each item with the tag. In this manner,
this sample code retrieves the data from every item in the collection.

For more information about the CollectionTagExists , CountCollectionTags ,
and GetIndexedCollectionTag functions, see “Getting Information About
Collection Tags” beginning on page 5-85.

Flattening and Unflattening a Collection 5
The Collection Manager provides the FlattenCollection function for converting the
information in a collection object into a flattened stream of bytes. With the
FlattenCollection function, you provide a callback function that operates on the
stream of bytes—you can use this callback function to write the stream out to disk, store
the stream in a Macintosh Memory Manager handle, and so on.

The FlattenCollection function takes three parameters:

■ a reference to the collection to flatten

■ a pointer to the callback function that you provide to handle the returned stream of
bytes

■ a 32-bit reference constant that the Collection Manager passes back to your callback
function

When you call the FlattenCollection function, the Collection Manager begins
converting the collection into a stream of bytes. It repeatedly calls your callback function,
each time sending it more of the flattened collection, until it has converted the entire
collection.

Your callback function determines what happens to the flattened collection. This
function must take three parameters: a long value that represents the size of the current
block of data, a pointer to the current block of data, and a reference constant that you can
use as a pointer to other information.

C H A P T E R 5

Collection Manager

5-38 Using the Collection Manager

Listing 5-19 shows an example callback function. This function appends the block of data
provided by the Collection Manager in the theData parameter to the end of a block of
data referenced by a Macintosh Memory Manager handle. The handle and the current
size of the block of data referenced by the handle are stored in a TFlattenBlock
structure. (The sample code in Listing 5-20 passes a pointer to this structure as the
reference constant when calling the FlattenCollection function, which passes the
pointer back to your callback function.)

Listing 5-19 Flattening procedure

typedef struct {

long position;

Handle dataHandle;

} TFlattenBlock;

OSErr FlattenProc(long theSize, Ptr theData,

TFlattenBlock *flattenBlock) {

register OSErr anErr = noErr;

SetHandleSize(flattenBlock->dataHandle,

 flattenBlock->position + theSize);

anErr = MemError();

if (anErr == noErr) {

BlockMove(data,

 *flattenBlock->dataHandle +

 flattenBlock->position,

 theSize);

flattenBlock->position += theSize;

}

}

return anErr;

}

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-39

5
C

ollection M
anager

Listing 5-20 shows how you can use this callback function. The sample function
in Listing 5-20 uses the FlattenCollection function to flatten a collection into a block
of memory referenced by a Macintosh Memory Manager handle.

Listing 5-20 The FlattenCollectionToHdl function

/* possible implementation of FlattenCollectionToHdl */

OSErr FlattenCollectionToHdl(Collection anyCollection,

 Handle flattenedCollection)

{

register OSErr anErr;

TFlattenBlock flattenBlock;

flattenBlock.position = 0;

flattenBlock.dataHandle = flattenedCollection;

if (!(anErr = MemError())) {

anErr = FlattenCollection(anyCollection,

 FlattenProc,

 &flattenBlock);

if (anErr)

flattenBlock.dataHandle = nil;

}

return anErr;

}

This function creates a TFlattenBlock structure, initializes the position field to 0,
and initializes the dataHandle field to a newly allocated Macintosh Memory Manager
handle. The function then calls the FlattenCollection function, specifying the
collection to flatten, the callback function specified in Listing 5-19, and a pointer to the
TFlattenBlock structure. In response, the Collection Manager flattens the specified
collection one piece at a time, repeatedly calling the callback function with new blocks of
the flattened collection. The Collection Manager provides a pointer to the
TFlattenBlock structure when calling the callback function. The callback function
uses this information to copy each new block of flattened collection data onto the end of
the Macintosh Memory Manager handle.

C H A P T E R 5

Collection Manager

5-40 Using the Collection Manager

Listing 5-21 shows the reverse process—using the UnflattenCollection function to
convert a flattened collection from a Macintosh Memory Manager handle into a
collection object.

Listing 5-21 A possible implementation of the UnflattenCollectionFromHdl function

void UnflattenProc(long theSize, Ptr theData,

TFlattenBlock *flattenBlock) {

BlockMove(*flattenBlock->dataHandle +

 flattenBlock->position,

 theData, theSize)

flattenBlock->position += theSize;

}

OSErr UnflattenCollectionFromHdl(Collection anyCollection,

Handle flattenedCollection)

{

register OSErr anErr;

TFlattenBlock flattenBlock;

flattenBlock.position = 0;

flattenBlock.dataHandle = flattenedCollection;

anErr = UnflattenCollection(anyCollection,

 UnflattenProc,

 &flattenBlock);

return anErr;

}

Listing 5-21 shows a possible implementation of the UnflattenCollectionFromHdl
function. The Collection Manager provides both the FlattenCollectionToHdl and
UnflattenCollectionFromHdl functions for you—you do not have to define these
yourself. For more information about the flattening and unflattening functions, see
“Flattening and Unflattening a Collection” beginning on page 5-88.

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-41

5
C

ollection M
anager

Reading Collections From and Writing Collections to Disk 5
The Collection Manager provides a number of methods for storing collections on disk:

■ You can store the collection’s contents as a collection ('cltn') resource and read the
information into a collection object using the GetNewCollection function. For more
information about the 'cltn' resource, see “The Collection Resource” beginning on
page 5-102, and for more information about the GetNewCollection function, see
the description of that function on page 5-99. For an example of reading a collection
object from a collection resource, see the next section, “Reading a Collection From a
Collection Resource.”

■ You can flatten a collection using the FlattenCollection function and provide a
callback function that writes the blocks of flattened data to a file. You can unflatten
this collection using the UnflattenCollection function, providing a callback
function that reads blocks of data from the file. For more information about
these functions, see “Flattening and Unflattening a Collection” beginning on
page 5-37 and the description of the FlattenCollection function on page 5-88 and
the description of the UnflattenCollection function on page 5-90.

■ You can flatten a collection to a handle using the FlattenCollectionToHdl
function and write the contents of the handle to the resource fork of a file (using the
Macintosh function AddResource) or to the data fork of a file (using the Macintosh
function FSWrite). You can then read the contents of this file into a handle (using the
Macintosh functions GetResource or FSRead) and unflatten the result using the
UnflattenCollectionFromHdl function.

IMPORTANT

Although you may create a resource containing a flattened collection
using the FlattenCollectionToHdl and AddResource functions,
you cannot recreate the collection from this resource using the
GetNewCollection function. The resource format created by the
FlattenCollectionToHdl and AddResource functions is
incompatible with the resource format expected by the
GetNewCollection function. ▲

C H A P T E R 5

Collection Manager

5-42 Using the Collection Manager

Listing 5-22 shows how to flatten a collection to a handle and then write the contents of
the handle to the resource fork of a disk file.

Listing 5-22 Flattening a collection to a disk file as a resource

OSErr anErr;

Handle flattened;

/* write the collection out as a resource */

flattened = NewHandle(0);

anErr = FlattenCollectionToHdl(myCollection, flattened);

if (anErr == noErr) {

AddResource(flattened, myType, myID, myName);

anErr = ResError();

}

Listing 5-23 shows how to flatten a collection to a handle and then write the contents of
the handle to the data fork of a disk file.

Listing 5-23 Flattening a collection to a data fork of a disk file

OSErr anErr;

Handle flattened;

long theSize;

/* write the collection out to the data fork */

flattened = NewHandle(0);

anErr = FlattenCollectionToHdl(myCollection, flattened);

if (anErr == noErr) {

theSize = GetHandleSize(flattened);

anErr = FSWrite(refNum, theSize, *flattened);

}

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-43

5
C

ollection M
anager

Listing 5-24 shows how to read a flattened collection from the resource fork of a disk file
into a block of memory referenced by a Macintosh Memory Manager handle and then
unflatten the information in that block of memory into a collection object.

Listing 5-24 Unflattening a collection from a disk file as a resource

Handle flattened;

Collection myCollection;

if (myCollection = NewCollection()) {

/* read the collection in as a resource */

flattened = GetResource(myType, myID);

if ((anErr = ResError()) == noErr) {

anErr = UnflattenCollectionFromHdl(myCollection, flattened);

ReleaseResource(flattened);

if (anErr == noErr)

anErr = ResError();

}

}

Listing 5-25 shows how to read a flattened collection from the data fork of a disk file into
a block of memory referenced by a Macintosh Memory Manager handle and then
unflatten the information in that block of memory into a collection object.

Listing 5-25 Unflattening a collection from the data fork of a disk file

OSErr anErr;

Handle flattened;

Collection myCollection;

if (myCollection = NewCollection()) {

/* read the collection in from the data fork */

flattened = NewHandle(theSize);

if ((anErr = MemError()) == noErr) {

C H A P T E R 5

Collection Manager

5-44 Using the Collection Manager

if ((anErr = FSRead(refNum, theSize, *flattened)) == noErr)

anErr = UnflattenCollectionFromHdl(myCollection,

 flattened);

DisposHandle(flattened);

}

}

To unflatten a collection using Listing 5-25, you must know the size of the collection
before you can unflatten it. If you don’t know the size of the collection, you unflatten a
collection using the callback function mechanism described in “Flattening and
Unflattening a Collection” beginning on page 5-37.

For more information about the FlattenCollectionToHdl function and the
UnflattenCollectionFromHdl function, see “Flattening and Unflattening a
Collection” beginning on page 5-37 as well as the descriptions of these functions starting
on page 5-97.

For information about the Macintosh functions AddResource and GetResource , see
the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox. For
information about the Macintosh functions FSRead and FSWrite , see the chapter “File
Manager” in Inside Macintosh: Files.

Reading a Collection From a Collection Resource 5
To store a collection to disk, you can flatten a collection and write the flattened data to a
file, as described in the previous section, or you can create a collection ('cltn')
resource. The format of the collection resource is shown in the section “The Collection
Resource” beginning on page 5-102.

You can create a collection object from the information stored in a collection resource
using the GetNewCollection function. Listing 5-26 gives an example.

Listing 5-26 Reading a collection from a collection resource

OSErr ReadCollectionFromResource(short refNum, short resID,

Collection* pCollection)

{

OSErr anErr = noErr;

short saveResFile = CurResFile();

UseResFile(refNum);

*pCollection = GetNewCollection(resID);

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-45

5
C

ollection M
anager

if (!*pCollection) {

anErr = ResError();

if (!anErr) /* if ResErr returned noErr */

anErr = resNotFound; /* then the error was resNotFound */

}

UseResFile(saveResFile);

return anErr;

}

The ReadCollectionFromResource sample function requires three parameters:

■ the reference number of the file containing the desired collection resource

■ the resource ID of the desired collection resource

■ a pointer to a collection object reference

The sample function uses the CurResFile function to determine the current resource
file, saves the reference number of that resource file, and uses the UseResFile function
to indicate that the current resource file should be the resource file specified by the
reference number contained in the first parameter.

The sample function then uses the GetNewCollection function, which takes a
resource ID as its only parameter, to read the information from the designated
collection resource into the collection object referenced by the sample function’s third
parameter.

Finally, the sample function checks for errors and resets the current resource file.

For more information about resource files and the CurResFile , UseResFile , and
ResError functions, see the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

For more information about the collection resource, see “The Collection Resource”
beginning on page 5-102. For more information about the GetNewCollection function,
see the description of that function on page 5-99.

Installing an Exception Procedure 5
The Collection Manager allows you to specify an exception procedure for each collection
object. When you attempt to manipulate a collection object using a Collection Manager
function and the function results in an error, the Collection Manager calls the exception
procedure for the collection object and sends it two parameters: a reference to the
collection object that caused the error and the error code that was generated.

In an exception procedure, you can handle the error and then change the error code to
noErr , a process which indicates that the Collection Manager can return control to the
place in your application that generated the error as if no error had occurred. You can
also change the error from one error code to another. A third alternative is to use the

C H A P T E R 5

Collection Manager

5-46 Using the Collection Manager

ANSI C functions setjmp and longjmp to jump out of the exception handler and into
code to handle the error. Listing 5-27 shows a sample exception procedure.

Listing 5-27 A sample exception procedure

jmp_buf cpuState; /* global machine state */

pascal OSErr MyExceptionHandler(Collection errorCollection,

 OSErr status)

{

/* ignore collectionItemLockedErr errors */

if (status == collectionItemLockedErr)

return noErr;

/* all other errors must be handled by caller’s setjmp block */

/* jump back to callers setjmp block and return status */

longjmp(cpuState, status);

}

void ExceptionTest(Collection anyCollection)

{

OSErr result;

SetCollectionExceptionProc(anyCollection, MyExceptionHandler);

if (!(result = setjmp(cpuState))) {

AddCollectionItem(anyCollection, 'tag1', 1, 4, "data");

AddCollectionItem(anyCollection, 'tag1', 2, 9, "more data");

AddCollectionItem(anyCollection, 'tag1', 3, 9, "last data");

/* cause an error . . . */

RemoveCollectionItem(anyCollection, 'tag1', 4);

} else {

.

.

.

/* handle errors other than collectionItemLockedErr */

/* use result local variable to determine which error */

.

.

.

}

}

C H A P T E R 5

Collection Manager

Using the Collection Manager 5-47

5
C

ollection M
anager

In Listing 5-27, the ExceptionTest sample function takes a single parameter: a
reference to a collection object. The sample function first calls the
SetCollectionExceptionProc function to install an exception handler for this
collection object. In this example, the call to SetCollectionExceptionProc installs
the MyExceptionHandler function as the exception handler.

The next line of the ExceptionTest sample function calls the setjmp function. This
function stores the current machine state, including the current position in the sample
code, into the cpuState global variable. It also returns a value of 0 as its function result,
and this value is assigned to the local variable result . This value is negated (by the !
operator), an operation that produces a Boolean value of true . Therefore, the block of
code in the if clause begins to execute.

Imagine that the first call to the AddCollectionItem function completes successfully,
but that the second call to AddCollectionItem generates a
collectionItemLockedErr error. During the second call to AddCollectionItem ,
the Collection Manager responds to the error by calling the MyExceptionHandler
function. The first parameter passed to this function indicates the collection that
generated the error, and the second parameter passed to this function indicates the error
that was generated. This sample exception handler determines whether the error is the
collectionItemLockedErr error (which it is in this example) and then returns with
the noErr error as the function result. The Collection Manager notices this change in
error and returns control to the sample function as if no error had occurred. (Just as you
can use this mechanism to ignore certain errors, you can also use this mechanism to
change errors of one type into errors of another type.) Since effectively no error has now
occurred, the ExceptionTest sample function continues by executing the third call to
the AddCollectionItem function.

The subsequent line of the ExceptionTest sample function attempts to remove an
item that is not in the collection, resulting in a collectionItemNotFoundErr error.
Again, the Collection Manager responds by calling the exception handler. In this case,
however, the error is not the collectionItemLockedErr error, so the exception
handler executes this line of code:

longjmp(cpuState, status);

When you call the longjmp function,

■ control is passed to the location of the corresponding call to the setjmp function

■ the value passed as the second parameter to the longjmp function becomes the
function result of the setjmp function

Therefore, this call to the longjmp function passes control back to the location in the
ExceptionTest sample function where setjmp(cpuState) was called earlier. This
time, however, the function result returned by the setjmp function is not 0, as it was
before, but instead is the value of status , the second parameter in the call to the
longjmp function. Therefore, the function result of the setjmp function is set to be the
collectionItemNotFoundErr error.

C H A P T E R 5

Collection Manager

5-48 Collection Manager Reference

Once again, the ExceptionTest sample function assigns this function result to the
result local variable, and negates it with the ! operator. This time the negation
produces a Boolean value of false , and therefore the block of code in the else clause
begins to execute. In this block of code, you can handle errors not handled in the
exception handler, using the result local variable to determine which error occurred.

You can find more information about the SetCollectionExceptionProc function on
page 5-59. You can find more information about exception procedures on page 5-101.

Collection Manager Reference 5

This section provides reference information about the data types, functions, and
resources that allow you to create and manipulate collection objects. It includes

■ type definitions of the data types, including enumeration types, that are specific to the
Collection Manager

■ descriptions of the functions that operate on collection objects and their items

■ descriptions of the application-defined callback function used for flattening and
unflattening collections and the application-defined callback function used for
exception handling

■ the definition of the resource type used to store collection objects on disk

Data Types 5

This section describes the data types that you use to obtain information from and
provide information to the Collection Manager functions.

Collection Objects 5

The Collection Manager provides you with access to a collection object through a
Collection reference:

typedef struct PrivateCollectionRecord *Collection;

The Collection type defines a reference type that your compiler can type-check; it
does not define a pointer to a publicly defined data structure. The contents of the
collection object are private; you must use the Collection Manager functions to
manipulate collection objects.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-49

5
C

ollection M
anager

Collection Tags 5

Each item in a collection is uniquely identified by its collection tag and its collection ID.
The collection tag is a four-character identifier, similar to the indentifiers used for
resources:

typedef long CollectionTag; /* 4-byte identifier ('xxxx') */

For more information about collection tags, see “Collection Items” beginning on page 5-8.

Optional Return Value Constants 5

Many of the Collection Manager functions return multiple pieces of information. For
most of these functions, you can specify that you don’t want a specific piece of
information to be returned by specifying nil for the corresponding parameter when
calling the function.

The Collection Manager provides the optional return value constants to make your code
easier to read when specifying that you are not interested in obtaining certain types of
information:

enum {

dontWantTag = 0L,

dontWantId = 0L,

dontWantSize = 0L,

dontWantAttributes = 0L,

dontWantIndex = 0L,

dontWantData = 0L

};

You can use these enumeration constants in place of the more generic constant nil when
specifying that you don’t want to receive certain optional return values from a function.

Attributes Masks 5

The Collection Manager provides four convenient attributes masks that you can use
when specifying attributes for any of the attribute-related Collection Manager functions:

enum {

noCollectionAttributes = 0x00000000,

allCollectionAttributes = 0xFFFFFFFF,

userCollectionAttributes = 0x0000FFFF,

defaultCollectionAttributes = 0x40000000

};

C H A P T E R 5

Collection Manager

5-50 Collection Manager Reference

Constant descriptions

noCollectionAttributes
Specifies a mask in which all collection attributes are clear. You
might use this constant when clearing all the attributes of an item or
when testing whether all of an item’s attributes are clear.

allCollectionAttributes
Specifies a mask in which all collection attributes are set. You might
use this constant as a mask to indicate that you want to edit or test
every attribute of an item, or you might use it to set every attribute
of an item.

userCollectionAttributes
Specifies a mask in which the user attributes are set and the
reserved attributes are clear. You might use this constant as a mask
to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

defaultCollectionAttributes
Specifies a mask in which the persistent attribute is set and all other
attributes are clear. You might use this constant when testing to see
if an item’s attributes have been edited.

You can also use the attribute bit masks, described on page 5-52, as masks for individual
attributes.

For more information about collection item attributes, see “Collection Items” beginning
on page 5-8.-

Attribute Bit Numbers 5

The Collection Manager provides the attribute bit numbers enumeration to provide
constant names for each of the bits in a collection item’s attributes.

enum {

collectionUser0Bit = 0, /* for use by your application */

collectionUser1Bit = 1,

collectionUser2Bit = 2,

collectionUser3Bit = 3,

collectionUser4Bit = 4,

collectionUser5Bit = 5,

collectionUser6Bit = 6,

collectionUser7Bit = 7,

collectionUser8Bit = 8,

collectionUser9Bit = 9,

collectionUser10Bit = 10,

collectionUser11Bit = 11,

collectionUser12Bit = 12,

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-51

5
C

ollection M
anager

collectionUser13Bit = 13,

collectionUser14Bit = 14,

collectionUser15Bit = 15,

collectionReserved0Bit = 16, /* reserved for use by Apple */

collectionReserved1Bit = 17,

collectionReserved2Bit = 18,

collectionReserved3Bit = 19,

collectionReserved4Bit = 20,

collectionReserved5Bit = 21,

collectionReserved6Bit = 22,

collectionReserved7Bit = 23,

collectionReserved8Bit = 24,

collectionReserved9Bit = 25,

collectionReserved10Bit = 26,

collectionReserved11Bit = 27,

collectionReserved12Bit = 28,

collectionReserved13Bit = 29,

collectionPersistenceBit = 30, /* Currently defined */

collectionLockBit = 31

};

The lower 16 bits of the attributes property of a collection item represent the
user-defined attributes. You can use these attributes for any purpose suitable to your
application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits
are defined: bit 30 represents the persistence attribute and bit 31 represents the lock
attribute.

For more information about collection item attributes, see “Collection Items” beginning
on page 5-8.

C H A P T E R 5

Collection Manager

5-52 Collection Manager Reference

Attribute Bit Masks 5

Using the attribute bit numbers, the Collection Manager provides convenient attribute
masks for each of the attributes:

enum {

collectionUser0Mask = 1L << collectionUser0Bit,

collectionUser1Mask = 1L << collectionUser1Bit,

collectionUser2Mask = 1L << collectionUser2Bit,

collectionUser3Mask = 1L << collectionUser3Bit,

collectionUser4Mask = 1L << collectionUser4Bit,

collectionUser5Mask = 1L << collectionUser5Bit,

collectionUser6Mask = 1L << collectionUser6Bit,

collectionUser7Mask = 1L << collectionUser7Bit,

collectionUser8Mask = 1L << collectionUser8Bit,

collectionUser9Mask = 1L << collectionUser9Bit,

collectionUser10Mask = 1L << collectionUser10Bit,

collectionUser11Mask = 1L << collectionUser11Bit,

collectionUser12Mask = 1L << collectionUser12Bit,

collectionUser13Mask = 1L << collectionUser13Bit,

collectionUser14Mask = 1L << collectionUser14Bit,

collectionUser15Mask = 1L << collectionUser15Bit,

collectionReserved0Mask = 1L << collectionReserved0Bit,

collectionReserved1Mask = 1L << collectionReserved1Bit,

collectionReserved2Mask = 1L << collectionReserved2Bit,

collectionReserved3Mask = 1L << collectionReserved3Bit,

collectionReserved4Mask = 1L << collectionReserved4Bit,

collectionReserved5Mask = 1L << collectionReserved5Bit,

collectionReserved6Mask = 1L << collectionReserved6Bit,

collectionReserved7Mask = 1L << collectionReserved7Bit,

collectionReserved8Mask = 1L << collectionReserved8Bit,

collectionReserved9Mask = 1L << collectionReserved9Bit,

collectionReserved10Mask = 1L << collectionReserved10Bit,

collectionReserved11Mask = 1L << collectionReserved11Bit,

collectionReserved12Mask = 1L << collectionReserved12Bit,

collectionReserved13Mask = 1L << collectionReserved13Bit,

collectionPersistenceMask = 1L << collectionPersistenceBit,

collectionLockMask = 1L << collectionLockBit

};

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-53

5
C

ollection M
anager

You can use these attribute masks when testing or setting a particular collection item
attribute.

For more information about collection attributes, see “Collection Attributes” beginning
on page 5-9.

For an example using these attributes, see “Getting and Setting the Attributes of an
Item” beginning on page 5-24.

Functions 5

This section describes the Collection Manager functions you can use to

■ create and dispose of collection objects

■ clone and copy collection objects and determine their owner counts

■ get and set the default attributes for a collection object

■ add and replace items in a collection

■ remove items from a collection

■ count items in a collection

■ retrieve the variable-length data from a collection item

■ get information about an item in a collection (for example, the index of the item, the
size of the item’s data, or the item’s attribute flags)

■ set the attribute flags of a collection item

■ get information about the collection tags associated with the items of a collection

■ flatten and unflatten collections

■ use Macintosh Memory Manager handles to specify variable-length data

▲ W A R N I N G

Many of the functions in this section require a reference to a collection
object (that is, a reference of type Collection) as a parameter. When
calling any of these functions, you must always provide a valid
collection object reference. If you do not, the behavior of the function is
undefined.▲

Creating and Disposing of Collection Objects 5

The functions described in this section allow you to work with collections as objects in
memory. With the functions in this section, you can create new, empty collection objects
and dispose of existing collection objects.

You use the NewCollection function to create a new collection object and the
DisposeCollection function to dispose of a collection object.

C H A P T E R 5

Collection Manager

5-54 Collection Manager Reference

NewCollection 5

You can use the NewCollection function to create a new, empty collection object.

Collection NewCollection(void);

function result A reference to the newly created collection object.

DESCRIPTION

The NewCollection function allocates memory for a new collection object, initializes
it, and returns a reference to it as the function result. The new collection contains no
items and has an owner count of 1.

The NewCollection function does not return an error code; it returns nil if it cannot
create a new collection object.

SPECIAL CONSIDERATIONS

You are responsible for disposing of collection objects that you create with this function
when you no longer need them. See the next section, which describes the
DisposeCollection function, for information about disposing of collection objects.

SEE ALSO

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Creating or Disposing of a Collection” beginning
on page 5-14 and “Adding Items to a Collection” beginning on page 5-17.

To create a copy of an existing collection object, use the CopyCollection function,
which is described in the previous section.

To dispose of a collection object, use the DisposeCollection function, which is
described in the next section.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-55

5
C

ollection M
anager

DisposeCollection 5

You can use the DisposeCollection function to dispose of a collection object.

void DisposeCollection(Collection target);

target A reference to the collection object you want to dispose of.

DESCRIPTION

The DisposeCollection function decrements the owner count of the collection object
referenced by the target parameter. If the resulting owner count is 0, this function
releases the memory occupied by the collection object, and the collection object reference
contained in the target parameter becomes invalid.

The behavior of this function is undefined if you do not provide a reference to a valid
collection object in the target parameter.

SEE ALSO

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Creating or Disposing of a Collection” beginning
on page 5-14.

To create a new collection object, use the NewCollection function, which is described
on page 5-55.

To increment the owner count of a collection object, use the CloneCollection
function, which is described in the next section. To determine the owner count of an
existing collection object, use the CountCollectionOwners function, which is
described on page 5-57.

Cloning and Copying Collection Objects 5

The functions described in this section allow you to examine and manipulate the owner
count of a collection object or to make a complete copy of a collection object.

The CloneCollection function allows you to increment the owner count of a
collection object. Typically, you use this function to signify the creation of a new
reference to an existing collection object. The CountCollectionOwners function
allows you to determine the current owner count of a collection object.

The CopyCollection function allows you to create a complete copy of a collection
object. The new collection object contains a copy of every item in the original
collection object.

C H A P T E R 5

Collection Manager

5-56 Collection Manager Reference

CloneCollection 5

You can use the CloneCollection function to clone a collection object—that is, to
increment its owner count.

Collection CloneCollection (Collection target);

target A reference to the collection object you want to clone.

function result A reference to the cloned collection. (This result is effectively a copy of the
reference you provide in the target parameter.)

DESCRIPTION

The CloneCollection function increments the owner count of the collection object
referenced by the target parameter, and, as a programming convenience, returns
a reference to this collection as the function result.

Typically, you use this function to increment a collection object’s owner count to
represent a new reference to the collection object. For example, if you want two variables
in your application to reference a single collection object, you can use this code to
maintain the correct owner count:

firstReference = NewCollection();

secondReference = CloneCollection(firstReference);

Disposing of either reference (using the DisposeCollection function)
simply decrements the collection’s owner count. Disposing of the remaining reference
decrements the owner count again and frees the memory associated with the collection.

The CloneCollection function does not return an error code.

SEE ALSO

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples of this function, see “Cloning or Copying a Collection” beginning on
page 5-14.

To decrement the owner count of a collection object, use the DisposeCollection
function, which is described in the previous section. To determine the owner count of an
existing collection object, use the CountCollectionOwners function, which is
described in the next section.

To copy a collection object, use the CopyCollection function, which is described on
page 5-57.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-57

5
C

ollection M
anager

CountCollectionOwners 5

You can use the CountCollectionOwners function to determine the number of
existing references to a collection object.

long CountCollectionOwners(Collection source);

source The collection object whose owner count you want to determine.

function result The owner count of the collection object.

DESCRIPTION

The CountCollectionOwners function returns as its function result the owner count
of the collection object referenced by the source parameter.

SEE ALSO

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects.

For examples of this function, see “Cloning or Copying a Collection” on page 5-14.

To increment the owner count of a collection object, use the CloneCollection
function, which is described on page 5-56. To decrement the owner count of a collection
object, use the DisposeCollection function, which is described on page 5-55.

CopyCollection 5

You use the CopyCollection function to create a copy of an existing collection.

Collection CopyCollection(Collection source, Collection target);

source A reference to the collection object you want to copy.

target A reference to a collection object to contain the copied collection items.
You may provide nil for this parameter to request that the Collection
Manager create a new collection object to hold the copied information.

function result A reference to the collection object containing the copied information.

DESCRIPTION

The CopyCollection function copies all of the information (except the owner count
and exception procedure) from the collection object referenced by the source parameter
into the collection object referenced by the target parameter.

C H A P T E R 5

Collection Manager

5-58 Collection Manager Reference

If you specify nil for the target parameter, this function creates a new collection
object to copy the information into. (This function does not return an error code; it
returns nil if it cannot create a new collection object.)

In either case, this function returns a reference to the collection object containing the
copied information.

SEE ALSO

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Cloning or Copying a Collection” on page 5-14.

To clone a collection object, use the CloneCollection function, which is described on
page 5-56.

Getting and Setting the Exception Procedure for a Collection 5

The functions described in this section allow you to examine and alter a collection
object’s exception procedure. You are allowed to specify an exception procedure for any
collection object. When the Collection Manager encounters an error while operating on
a collection object, it calls that collection’s exception procedure, sending it the result code
associated with the error.

The GetCollectionExceptionProc function allows you to obtain a pointer to the
exception procedure intalled in a specified collection.

The SetCollectionExceptionProc function allows you to install a new exception
procedure into a collection.

You can find a description of exception procedures on page 5-101.

GetCollectionExceptionProc 5

You use the GetCollectionExceptionProc function to obtain a pointer to the
exception procedure installed in a specified collection.

CollectionExceptionProc GetCollectionExceptionProc

(Collection source);

source A reference to the collection object whose exception procedure you want
to determine.

function result A pointer to the exception procedure installed in the source collection
object.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-59

5
C

ollection M
anager

DESCRIPTION

The GetCollectionExceptionProc function returns as its function result a pointer
to the exception procedure installed in the collection object referenced by the source
parameter.

SEE ALSO

To install a new exception procedure in a collection object, use the
SetCollectionExceptionProc function, which is described in the next section.

For more information about exception procedures, see page 5-101.

SetCollectionExceptionProc 5

You use the SetCollectionExceptionProc function to install an exception
procedure in a collection object.

void SetCollectionExceptionProc(Collection target,

 CollectionExceptionProc newExceptionProc);

target A reference to the collection object whose exception procedure you want
to change.

newExceptionProc
A pointer to the new exception procedure.

DESCRIPTION

The SetCollectionExceptionProc function copies the function pointer from the
newExceptionProc parameter into the collection object referenced by the target
parameter.

SEE ALSO

For an example using this function, see “Installing an Exception Procedure” beginning
on page 5-45.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc function, which is described in the previous section.

For more information about exception procedures, see page 5-101.

C H A P T E R 5

Collection Manager

5-60 Collection Manager Reference

Getting and Setting the Default Attributes for a Collection 5

The functions described in this section allow you to examine and alter a collection
object’s default attributes. The default attributes of a collection specify the attributes that
the Collection Manager assigns to new items added to the collection.

The GetCollectionDefaultAttributes function allows you to determine a
collection’s current default attributes. The SetCollectionDefaultAttributes
function allows you to change a collection’s default attributes.

GetCollectionDefaultAttributes 5

You use the GetCollectionDefaultAttributes function to examine the default
attributes of a collection object.

long GetCollectionDefaultAttributes(Collection source);

source A reference to the collection object whose default attributes you want to
determine.

function result A long word containing the bit flags that make up the collection’s default
attributes.

DESCRIPTION

The GetCollectionDefaultAttributes function returns as its function result the
default attributes of the collection object referenced by the source parameter.

SEE ALSO

For information about default attributes for collection objects, see “Collection Attributes”
beginning on page 5-9.

For information about attribute-related data types and enumerations, see page 5-49
through page 5-53.

To change the attributes of a collection object, use the
SetCollectionDefaultAttributes function, which is described in the next section.

To examine the attributes of a specific item in a collection, use the functions described in
“Getting Information About a Collection Item” beginning on page 5-76.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-61

5
C

ollection M
anager

SetCollectionDefaultAttributes 5

You use the SetCollectionDefaultAttributes function to alter the default
attributes of a collection object.

void SetCollectionDefaultAttributes(Collection target,

long whichAttributes,

long newAttributes);

target A reference to the collection object whose default attributes you want to
alter.

whichAttributes
A mask indicating which bit flags in the target collection’s default
attributes you want to alter.

newAttributes
A long word containing the new values for the bit flags.

DESCRIPTION

The SetCollectionDefaultAttributes function copies the values of bit flags from
the newAttributes parameter into the default attributes of the target collection.

This function uses the whichAttributes parameter to determine which bits to copy.
For every bit in the whichAttributes parameter, this function takes one of two actions:

■ If the bit is set, this function copies the value of the corresponding bit from the
newAttributes parameter into the corresponding bit of the default attributes of the
target collection.

■ If the bit is not set, the corresponding bit of the target collection’s default attributes
remains unchanged.

SEE ALSO

For information about default attributes for collection objects, see “Collection Attributes”
beginning on page 5-9.

For information about attribute-related data types and enumerations, see page 5-49
through page 5-53.

For examples of this function, see “Changing the Default Attributes of a Collection”
beginning on page 5-15.

To examine the attributes of a collection object, use the
GetCollectionDefaultAttributes function, which is described in the previous
section.

To change the attributes of a specific item in a collection, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

C H A P T E R 5

Collection Manager

5-62 Collection Manager Reference

Adding and Replacing Items in a Collection 5

The functions described in this section allow you to add items to a collection and replace
items already in a collection.

The AddCollectionItem function allows you to add a new item to a collection. You
can also use this function to replace a collection item by specifying its collection tag and
collection ID.

The ReplaceIndexedCollectionItem function allows you to replace a collection
item by specifying its collection index.

AddCollectionItem 5

You use the AddCollectionItem function to add a new item to a collection or to
replace an existing item in a collection.

OSErr AddCollectionItem (Collection target,

 CollectionTag tag, long id,

 long itemSize, void *itemData);

target A reference to the collection you want to add the item to.

tag The collection tag you want to associate with the new item.

id The collection ID you want to associate with the new item.

itemSize The size in bytes of the item’s variable-length data.

itemData A pointer to the item’s variable-length data.

DESCRIPTION

The AddCollectionItem function adds an item to the collection referenced by the
target parameter. This new item contains

■ the collection tag specified by the tag parameter

■ the collection ID specified by the id parameter

■ the attributes specified by the default attributes of the target collection

■ the variable-length data specified by the itemSize and itemData parameters

This function copies the information pointed to by the itemData parameter into the
new item; after calling this function, you may alter this information or free the memory
pointed to by this parameter without affecting the collection.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-63

5
C

ollection M
anager

If the target collection already contains an item with the same collection tag and
collection ID as specified in the tag and id parameters, this function removes the
original item and replaces it with the new one, unless the existing item is locked. If it is
locked, this function returns a collectionItemLockedErr result code.

The itemSize parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide nil for the
itemData parameter, this function copies no information into the variable-length data
of the new item, or removes the variable-length data if the item already exists.

RESULT CODES

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

For examples using this function, see “Adding Items to a Collection” beginning on
page 5-17 and “Replacing Items in a Collection” beginning on page 5-28.

To replace a collection item using the item’s index (rather than the item’s tag and ID), use
the ReplaceIndexedCollectionItem function, described in the next section.

To remove an item from a collection, use the functions described in “Removing Items
From a Collection” beginning on page 5-65.

ReplaceIndexedCollectionItem 5

You use the ReplaceIndexedCollectionItem function to replace the variable-length
data of an item in a collection given the item’s index.

OSErr ReplaceIndexedCollectionItem(Collection target, long index,

 long itemSize, void *itemData);

target A reference to the collection containing the item you want to replace.

index The collection index associated with the item to replace.

itemSize The item’s size.

itemData A pointer to the item’s data.

memFullErr –108 Can’t allocate memory.
collectionItemLockedErr –5750 Can’t replace locked item.

C H A P T E R 5

Collection Manager

5-64 Collection Manager Reference

DESCRIPTION

The ReplaceIndexedCollectionItem function replaces the variable-length data
associated with an item in the target collection. You specify which item to replace using
the index parameter. If the target collection does not contain an item whose collection
index matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

If the target collection does contain an item with the specified index, this function
replaces that item with a new item (if the existing item is not locked—if it is, this
function returns a collectionItemLockedErr result code). The new item contains

■ the same collection tag as the original item

■ the same collection ID as the original item

■ the same attributes as the original item

■ the variable-length data specified by the itemSize and itemData parameters

This function copies the information pointed to by the itemData parameter into the
new item; after calling this function, you may alter this information or free the memory
pointed to by this parameter without affecting the collection.

The itemSize parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide nil for the
itemData parameter, this function copies no information into the variable-length data
of the new item, or removes the variable-length data if the item already exists.

RESULT CODES

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

To replace a collection item using the item’s tag and ID (rather than the item’s index), use
the ReplaceIndexedCollectionItem function, described on page 5-63.

To remove an item from a collection, use the functions described in the next section.

memFullErr –108 Can’t allocate memory.
collectionItemLockedErr –5750 Can’t replace locked item.
collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-65

5
C

ollection M
anager

Removing Items From a Collection 5

The functions described in this section allow you to remove items from a collection.

The RemoveCollectionItem and RemoveIndexedCollectionItem functions
allow you to remove a single item from a collection. You use the
RemoveCollectionItem function if you want to specify the item to remove using the
item’s tag and ID. You use the RemoveIndexedCollectionItem function if you want
to specify the item to remove using the item’s index.

The PurgeCollection function allows you to remove from a collection all the items
whose attributes match a specified pattern.

The PurgeCollectionTag function allows you to remove from a collection all the
items with a specified collection tag.

The EmptyCollection function allows you to remove every item from a collection.

RemoveCollectionItem 5

You can use the RemoveCollectionItem function to remove an item from a collection
given the item’s associated collection tag and collection ID.

OSErr RemoveCollectionItem (Collection target,

 CollectionTag tag, long id);

target A reference to the collection object from which you want to remove the
item.

tag The collection tag associated with the item you want to remove.

id The collection ID associated with the item you want to remove.

DESCRIPTION

The RemoveCollectionItem function removes the item specified by the tag and id
parameters from the collection referenced by the target parameter. This function
removes the specified item even if its lock attribute is set.

If the target collection does not contain an item whose collection tag and collection ID
match the values in the tag and id parameters, this function returns a
collectionItemNotFoundErr result code.

RESULT CODES

collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

5-66 Collection Manager Reference

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove a collection item using the item’s index (rather than the item’s tag and ID),
use the RemoveIndexedCollectionItem function, described in the next section.

To replace an item in a collection, use the functions described in “Adding and Replacing
Items in a Collection” beginning on page 5-62.

RemoveIndexedCollectionItem 5

You can use the RemoveIndexedCollectionItem function to remove an item from a
collection given the item’s index.

OSErr RemoveIndexedCollectionItem(Collection target, long index);

target A reference to the collection object from which you want to remove the
item.

index The collection index of the item you want to remove.

DESCRIPTION

The RemoveIndexedCollectionItem function removes the item specified by the
index parameter from the collection referenced by the target parameter. This function
removes the specified item even if its lock attribute is set.

If the target collection does not contain an item whose collection index matches the
values in the index parameter, this function returns a collectionIndexRangeErr
result code.

RESULT CODES

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove a collection item using the item’s tag and ID (rather than the item’s index),
use the RemoveCollectionItem function, described in the previous section.

To replace an item in a collection, use the functions described in “Adding and Replacing
Items in a Collection” beginning on page 5-62.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-67

5
C

ollection M
anager

PurgeCollection 5

You use the PurgeCollection function to remove all items in a collection whose
attributes match a specified pattern.

void PurgeCollection(Collection target,

long whichAttributes,

long matchingAttributes);

target A reference to the collection object containing the items you want to
remove.

whichAttributes
A mask indicating which attributes you want to test.

matchingAttributes
A long word containing the values of the attributes you want to match.

DESCRIPTION

The PurgeCollection function removes from the target collection any items whose
attributes match the criteria you specify in the whichAttributes and
matchingAttributes parameters.

The whichAttributes parameter allows you to specify which attributes this function
examines. You should set the bits of the whichAttributes parameter that correspond
to the attributes you want to test.

This function compares the specified attributes of each item in the target collection with
the corresponding attributes in the matchingAttributes parameter. If the values of
all the specified attributes match, the function removes the item. To avoid purging
locked items, you should clear the lock attribute in the whichAttributes and
matchingAttributes parameters.

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove all of the items in a collection with a specified collection tag, use the
PurgeCollectionTag function, described in the next section.

To remove every item in a collection, use the EmptyCollection function, described on
page 5-68.

C H A P T E R 5

Collection Manager

5-68 Collection Manager Reference

PurgeCollectionTag 5

You use the PurgeCollectionTag function to remove from a collection all items with
a specific collection tag.

void PurgeCollectionTag(Collection target,

CollectionTag tag);

target A reference to the collection object containing the items you want to
remove.

tag The collection tag associated with the items to remove.

DESCRIPTION

The PurgeCollectionTag function removes from the target collection all items whose
collection tag matches the value of the tag parameter. This function removes locked and
unlocked items.

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove all of the items in a collection whose attributes match a specified pattern, use
the PurgeCollection function, described in the previous section.

To remove every item in a collection, use the EmptyCollection function, described in
the next section.

EmptyCollection 5

You use the EmptyCollection function to remove every item in a collection.

void EmptyCollection (Collection target);

target A reference to the collection object you want to empty.

DESCRIPTION

This function removes every item in the collection referenced by the target
parameter. This function provides the fastest mechanism for emptying a collection.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-69

5
C

ollection M
anager

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

To remove all of the items in a collection whose attributes match a specified pattern, use
the PurgeCollection function, described on page 5-67.

To remove all of the items in a collection with a specified collection tag, use the
PurgeCollectionTag function, described in the previous section.

Counting Items in a Collection 5

The functions described in this section allow you to count items in a collection.

The CountCollectionItems function allows you to determine the total number of
items in a collection.

The CountTaggedCollectionItems function allows you to determine the total
number of items in a collection that have a specified collection tag.

CountCollectionItems 5

You can use the CountCollectionItems function to determine the total number of
items in a collection.

long CountCollectionItems(Collection source);

source A reference to the collection object whose items you want to count.

function result The total number of items in the source collection.

DESCRIPTION

The CountCollectionItems function returns as its function result the total number of
items in the collection referenced by the source parameter.

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Adding Items to a Collection” beginning on
page 5-17.

To count the items in a collection that have a specified collection tag, use the
CountTaggedCollectionItems function, described in the next section.

C H A P T E R 5

Collection Manager

5-70 Collection Manager Reference

CountTaggedCollectionItems 5

You can use the CountTaggedCollectionItems function to obtain the total number
of items in a collection that have a specified collection tag.

long CountTaggedCollectionItems(Collection source,

 CollectionTag tag);

source A reference to the collection object whose items you want to count.

tag The collection tag associated with the items you want to count.

function result The total number of items in the source collection whose collection tags
match the value specified in the tag parameter.

DESCRIPTION

The CountTaggedCollectionItems function returns as its function result the total
number of items in the source collection whose collection tags match the value you
specify in the tag parameter.

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples of this function, see “Adding Items to a Collection” beginning on page 5-17.

To count all of the items in a collection, use the CountCollectionItems function,
described in the previous section.

Retrieving the Variable-Length Data From an Item 5

The functions described in this section allow you to obtain a copy of the variable-length
data associated with a specified collection item.

The GetCollectionItem function allows you to retrieve data from an item given its
collection tag and collection ID. The GetIndexedCollectionItem function allows
you to retrieve data from an item given its collection index.

The GetTaggedCollectionItem function provides another way for you to specify the
item whose data you want to retrieve. With this function, you specify the item using
the item’s collection tag and the item’s tag list position. See “Methods of Identifying
Collection Items” beginning on page 5-11 for a discussion of collection tags and tag list
positions.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-71

5
C

ollection M
anager

GetCollectionItem 5

You can use the GetCollectionItem function to obtain a copy of the variable-length
data associated with a collection item given the item’s collection tag and collection ID.

OSErr GetCollectionItem(Collection source,

CollectionTag tag,

long id,

long *itemSize,

void *itemData);

source A reference to the collection object containing the item whose data you
want to retrieve.

tag The collection tag associated with the item whose data you want to
retrieve.

id The collection ID associated with the item whose data you want to
retrieve.

itemSize A pointer to a long value indicating the number of bytes of data you
want returned in the itemData parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dontWantSize for this
parameter to indicate that you want to copy all the specified item’s
variable-length data and you do not want to determine the size of this
data.

itemData A pointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dontWantData for this parameter if you
do not want a copy of the item’s data.

DESCRIPTION

The GetCollectionItem function allows you to obtain a copy of the variable-length
data associated with a specific collection item. You specify a collection object using the
source parameter and you specify an item in that collection using the tag and id
parameters.

You use the itemSize parameter to specify how many bytes of data to return in the
itemData parameter. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the variable-length data from the specified item
into the itemData parameter. You may specify a value for the itemSize parameter
that is greater than the actual number of bytes in the specified item’s variable-length
data; however, this function never returns in the itemData parameter more data than
contained in the specified item’s variable-length data.

C H A P T E R 5

Collection Manager

5-72 Collection Manager Reference

This function returns information in the itemSize and itemData parameters:

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the itemData parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the itemSize parameter to
determine the size of the specified item’s data and you specify dontWantData for the
itemData parameter. Then you allocate a memory block large enough to hold a copy of
the item’s data. Then you call the function a second time. This time you specify the
constant dontWantSize for the itemSize parameter and provide a pointer to the
allocated memory block for the itemData parameter. The function then copies the data
into the allocated block of memory.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item given its collection index (rather
than its collection tag and ID), use the GetIndexedCollectionItem function,
described in the next section.

GetIndexedCollectionItem 5

You can use the GetIndexedCollectionItem function to obtain a copy of the
variable-length data associated with a collection item given the item’s collection index.

OSErr GetIndexedCollectionItem(Collection source,

 long index,

 long *itemSize,

 void *itemData);

collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-73

5
C

ollection M
anager

source A reference to the collection object containing the item whose data you
want to retrieve.

index The collection index associated with the item whose data you want to
retrieve.

itemSize A pointer to a long value indicating the number of bytes of data you
want returned in the itemData parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dontWantSize for this
parameter to indicate that you want to copy all of the specified item’s
variable-length data and you do not want to determine the size of this
data.

itemData A pointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dontWantData for this parameter if you
do not want a copy of the item’s data.

DESCRIPTION

The GetIndexedCollectionItem function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the source parameter and you specify an item in that collection using the
index parameter.

You use the itemSize parameter to specify how many bytes of data to return in the
itemData parameter. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the variable-length data from the specified item
into the itemData parameter. You may specify a value for the itemSize parameter
that is greater than the actual number of bytes in the specified item’s variable-length
data; however, this function never returns in the itemData parameter more data than
contained in the specified item’s variable-length data.

This function returns information in the itemSize and itemData parameters:

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the itemData parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the itemSize parameter to
determine the size of the specified item’s data and you specify the constant
dontWantData for the itemData parameter. Then you allocate a memory block large
enough to hold a copy of the item’s data. Then you call the function a second time. This
time you specify the constant dontWantSize for the itemSize parameter and provide
a pointer to the allocated memory block for the itemData parameter. The function then
copies the data into the allocated block of memory.

C H A P T E R 5

Collection Manager

5-74 Collection Manager Reference

RESULT CODES

SEE ALSO

For information about collection items and their associated variable-length data, see
“Collection Items” beginning on page 5-8. For information about collection indexes, see
“Methods of Identifying Collection Items” beginning on page 5-11.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item given its collection tag and ID
(rather than its collection index), use the GetCollectionItem function, described in
the previous section.

GetTaggedCollectionItem 5

You can use the GetTaggedCollectionItem function to obtain a copy of the
variable-length data associated with a collection item given the item’s collection tag and
tag list position.

OSErr GetTaggedCollectionItem(Collection source,

CollectionTag tag,

long position,

long *itemSize,

void *itemData);

source A reference to the collection object containing the item whose data you
want to retrieve.

tag The collection tag associated with the item whose data you want to
retrieve.

position The tag list position associated with the specific item.

itemSize A pointer to a long value indicating the number of bytes of data you
want returned in the itemData parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dontWantSize for this
parameter to indicate that you want to copy all of the specified item’s
variable-length data and you do not want to determine the size of this
data.

itemData A pointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dontWantData for this parameter if you
do not want a copy of the item’s data.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-75

5
C

ollection M
anager

DESCRIPTION

The GetTaggedCollectionItem function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the source parameter; you specify the item in that collection using the tag
and position parameters. In the tag parameter you specify the collection tag of
the desired item and in the position parameter you specify the tag list position of the
desired item.

Remember that a tag list position is the sequential index that determines an item given a
specific collection tag. For example:

■ A tag list position of 1 indicates the first item with the specified tag.

■ A tag list position of 2 indicates the second item with the specified tag.

By sequentially incrementing the position parameter, you can use this function to step
through all of the items in a collection without knowing their collection IDs.

This function returns information in the itemSize and itemData parameters:

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the itemData parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the itemSize parameter to
determine the size of the specified item’s data and you specify the constant
dontWantData for the itemData parameter. Then you allocate a memory block large
enough to hold a copy of the item’s data. Then you call the function a second time. This
time you specify the constant dontWantSize for the itemSize parameter and provide
a pointer to the allocated memory block for the itemData parameter. The function then
copies the data into the allocated block of memory.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags and
variable-length data, see “Collection Items” beginning on page 5-8. For information
about tag list positions, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Retrieving the Variable-Length Data From an Item”
beginning on page 5-33.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

5-76 Collection Manager Reference

To retrieve the data associated with a collection item given its collection tag and ID, use
the GetCollectionItem function, described on page 5-71.

To retrieve the data associated with a collection item given its collection index, use the
GetIndexedCollectionItem function, described in the previous section.

Getting Information About a Collection Item 5

The functions described in this section allow you to determine information about a
collection item, such as the item’s collection index, the item’s size, and the item’s
attributes.

Each function in this section provides a different way for you to specify which collection
item you want to examine:

■ The GetCollectionItemInfo function requires you to specify the item’s collection
tag and collection ID.

■ The GetIndexedCollectionItemInfo function requires you to specify the item’s
collection index.

■ The GetTaggedCollectionItemInfo function requires you to specify the item’s
collection tag and tag list position.

GetCollectionItemInfo 5

You use the GetCollectionItemInfo function to obtain information about a specific
collection item given the item’s collection tag and collection ID.

OSErr GetCollectionItemInfo(Collection source,

 CollectionTag tag,

 long id,

 long *index,

 long *itemSize,

 long *attributes);

source A reference to the collection object containing the item you want to obtain
information about.

tag The collection tag associated with the item you want to obtain
information about.

id The collection ID associated with the item you want to obtain information
about.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-77

5
C

ollection M
anager

index A pointer to a long value. On return, this value represents the collection
index of the specified item. You may specify the constant
dontWantIndex for this parameter if you do not want to determine the
specified item’s collection index.

itemSize A pointer to a long value. On return, this value indicates the size in bytes
of the variable-length data associated with the specified item. You may
specify the constant dontWantSize for this parameter to indicate that
you do not want to determine the size of this data.

attributes
A pointer to a long value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dontWantAttributes for this parameter if you do not want a copy of
the item’s attributes.

DESCRIPTION

The GetCollectionItemInfo function allows you to obtain information about a
specific collection item in the collection referenced by the source parameter. You specify
the collection item by specifying the item’s collection tag and collection ID in the tag
and id parameters.

This function returns information in the index , itemSize , and attributes
parameters:

■ If you provide a pointer in the index parameter, the function uses this parameter to
return the collection index of the specified item. Once you have determined an item’s
collection index, you can use it to specify the item when calling Collection Manager
functions, rather than using the item’s collection tag and collection ID. Specifying
collection items using their collection index, rather than using the item’s collection tag
and collection ID, generally results in improved performance.

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the attributes parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

RESULT CODES

collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

5-78 Collection Manager Reference

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

To obtain information about a collection item using the collection index to specify the
item, use the GetIndexedCollectionItemInfo function, described in the next
section.

To obtain information about a collection item using the collection tag and tag list
position to specify the item, use the GetTaggedCollectionItemInfo function,
described on page 5-80.

GetIndexedCollectionItemInfo 5

You use the GetIndexedCollectionItemInfo function to obtain information about a
specific collection item given the item’s collection index.

OSErr GetIndexedCollectionItemInfo (Collection source,

long index,

CollectionTag *tag,

long *id,

long *itemSize,

long *attributes);

source A reference to the collection object containing the item you want to obtain
information about.

index The collection index associated with the item you want to obtain
information about.

tag A pointer to a collection tag. On return, the collection tag associated with
the specified item. You may specify the constant dontWantTag for this
parameter if you do not want to determine the specified item’s collection
tag.

id A pointer to a long value. On return, the collection ID associated
with the specified item. You may specify the constant dontWantId for
this parameter if you do not want to determine the specified item’s
collection ID.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-79

5
C

ollection M
anager

itemSize A pointer to a long value. On return, this value indicates the size in bytes
of the data associated with the specified item. You may specify the
constant dontWantSize for this parameter if you do not want to
determine the specified item’s data size.

attributes
A pointer to a long value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dontWantAttributes for this parameter if you do not want a copy of
the item’s attributes.

DESCRIPTION

The GetIndexedCollectionItemInfo function allows you to obtain information
about a specific collection item in the collection referenced by the source parameter.
You specify the collection item by specifying the item’s collection index in the index
parameter.

This function returns information in the tag , id , itemSize , and attributes
parameters:

■ If you provide a pointer in the tag parameter, the function uses this parameter to
return the collection tag of the specified item.

■ If you provide a pointer in the id parameter, the function uses this parameter to
return the collection ID of the specified item.

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the attributes parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8. For information
about collection indexes, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

5-80 Collection Manager Reference

To obtain information about a collection item using the collection tag and collection ID to
specify the item, use the GetCollectionItemInfo function, described in the previous
section.

To obtain information about a collection item using the collection tag and tag list
position to specify the item, use the GetTaggedCollectionItemInfo function,
described in the next section.

GetTaggedCollectionItemInfo 5

You use the GetTaggedCollectionItemInfo function to obtain information about a
specific collection item given the item’s collection tag and tag list position.

OSErr GetTaggedCollectionItemInfo(Collection source,

 CollectionTag tag,

 long position,

 long *id,

 long *index,

 long *itemSize,

 void *attributes);

source A reference to the collection object containing the item you want to obtain
information about.

tag The collection tag associated with the item you want to obtain
information about.

position The tag list position of the item you want to obtain information about.

id A pointer to a long value. On return, this value represents the collection
ID associated with the specified item. You may specify the constant
dontWantId for this parameter if you do not want to determine the
specified item’s collection ID.

index A pointer to a long value. On return, this value represents the collection
index of the specified item. You may specify the constant
dontWantIndex for this parameter if you do not want to determine the
specified item’s collection index.

itemSize A pointer to a long value. On return, this value indicates the size in bytes
of the data associated with the specified item. You may specify the
constant dontWantSize for this parameter if you do not want to
determine the specified item’s data size.

attributes
A pointer to a long value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dontWantAttributes for this parameter if you do not want a copy of
the item’s attributes.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-81

5
C

ollection M
anager

DESCRIPTION

The GetTaggedCollectionItemInfo function allows you to obtain information
about a specific collection item in the collection referenced by the source parameter. You
specify the item in the source collection using the tag and position parameters. In the
tag parameter you specify the collection tag of the desired item and in the position
parameter you specify the tag list position of the desired item.

Remember that a collection tag and a tag list position uniquely identify a collection item.
The tag list position indicates where the collection item would lie in a list made up of all
the collection items with the same collection tag. For example:

■ A tag list position of 1 indicates the first item with the specified tag.

■ A tag list position of 2 indicates the second item with the specified tag.

By sequentially incrementing the position parameter, you can use this function to step
through all of the items in a collection that share a collection tag without knowing their
collection IDs.

The GetTaggedCollectionItemInfo function returns information in the id , index ,
itemSize , and attributes parameters:

■ If you provide a pointer in the id parameter, the function uses this parameter to
return the collection ID of the specified item.

■ If you provide a pointer in the index parameter, the function uses this parameter to
return the collection index of the specified item.

■ If you provide a pointer in the itemSize parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

■ If you provide a pointer in the attributes parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8. For information
about tag list positions, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

5-82 Collection Manager Reference

To obtain information about a collection item using the collection tag and collection ID to
specify the item, use the GetCollectionItemInfo function, described on page 5-76.

To obtain information about a collection item using the collection index to specify the
item, use the GetIndexedCollectionItemInfo function, described in the previous
section.

Editing Item Attributes 5

The functions described in this section allow you to edit the attributes of a collection
item. Each function in this section provides a different way for you to specify the
collection item whose attributes you want to edit:

■ The SetCollectionItemInfo function requires you to specify the item’s collection
tag and collection ID.

■ The SetIndexedCollectionItemInfo function requires you to specify the item’s
collection index.

SetCollectionItemInfo 5

You use the SetCollectionItemInfo function to edit the attributes of a specific
collection item given the item’s collection tag and collection ID.

OSErr SetCollectionItemInfo(Collection target,

 CollectionTag tag,

 long id,

 long whichAttributes,

 long newAttributes);

target A reference to the collection object containing the item whose attributes
you want to edit.

tag The collection tag associated with the item whose attributes you want to
edit.

id The collection ID associated with the item whose attributes you want to
edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
A long word containing the new settings for the attributes.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-83

5
C

ollection M
anager

DESCRIPTION

The SetCollectionItemInfo function allows you to edit the attributes of a specific
collection item in the collection referenced by the target parameter. You specify
the collection item by specifying the item’s collection tag and collection ID in the tag
and id parameters.

This function copies bit values from the newAttributes parameter to the attributes
associated with the specified item.

This function uses the whichAttributes parameter to determine which bits to copy.
For every bit in the whichAttributes parameter, this function takes one of two actions:

■ If the bit is set, this function copies the value of the corresponding bit from the
newAttributes parameter into the corresponding bit of the attributes associated
with the specified item.

■ If the bit is not set, the corresponding bit of the specified item’s attributes remains
unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the
specified item’s attributes without affecting the values of other bits.

RESULT CODES

SEE ALSO

For information about collection attributes, see “Collection Attributes” beginning on
page 5-9.

For attribute-related data types and enumerations, see page 5-49 through page 5-53.

For examples of this function, see “Getting and Setting the Attributes of an Item”
beginning on page 5-24.

To obtain information about a collection item using the collection index to specify the
item, use the SetIndexedCollectionItemInfo function, described in the next
section.

collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

5-84 Collection Manager Reference

SetIndexedCollectionItemInfo 5

You use the SetIndexedCollectionItemInfo function to edit the attributes of a
specific collection item given the item’s collection index.

OSErr SetIndexedCollectionItemInfo(Collection target,

 long index,

 long whichAttributes,

 long newAttributes);

target A reference to the collection object containing the item whose attributes
you want to edit.

index The collection index of the item whose attributes you want to edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
A long word containing the new settings for the attributes.

DESCRIPTION

The SetIndexedCollectionItemInfo function allows you to edit the attributes of a
specific collection item in the collection referenced by the target parameter. You specify
the collection item by specifying the item’s collection index in the index parameter.

This function copies bit values from the newAttributes parameter to the attributes
associated with the specified item.

This function uses the whichAttributes parameter to determine which bits to copy.
For every bit in the whichAttributes parameter, this function takes one of two actions:

■ If the bit is set, this function copies the value of the corresponding bit from the
newAttributes parameter into the corresponding bit of the attributes associated
with the specified item.

■ If the bit is not set, the corresponding bit of the specified item’s attributes remains
unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the
specified item’s attributes without affecting the values of other bits.

RESULT CODES

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-85

5
C

ollection M
anager

SEE ALSO

For information about collection attributes, see “Collection Attributes” beginning on
page 5-9.

For attribute-related data types and enumerations, see page 5-49 through page 5-53.

For examples of this function, see “Getting and Setting the Attributes of an Item”
beginning on page 5-24.

To edit the attributes of collection item using the collection tag and collection ID (rather
than the collection index) to specify the item, use the SetCollectionItemInfo
function, described in the previous section.

To examine the attributes of a collection item, use the functions described in “Getting
Information About a Collection Item” beginning on page 5-76.

Getting Information About Collection Tags 5

You use the CollectionTagExists function to identify if a specific collection tag
exists within a collection. You use the CountCollectionTags function to obtain the
number of unique collection tags in a collection.

You use the GetIndexedCollectionTag function to obtain a specific collection tag
from a collection.

CollectionTagExists 5

You can use the CollectionTagExists function to identify if any of the items in a
specified collection contain a specified collection tag.

Boolean CollectionTagExists(Collection source,

 CollectionTag tag);

source A reference to the collection object you want to search for a specific
collection tag.

tag The collection tag to search for in the collection.

function result A Boolean value indicating whether the source collection contains any
items that contain the specified tag.

DESCRIPTION

The CollectionTagExists function returns as its function result a Boolean value
indicating whether any of the items in the collection referenced by the source
parameter contain the collection tag specified by the tag parameter.

C H A P T E R 5

Collection Manager

5-86 Collection Manager Reference

SEE ALSO

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
on page 5-49.

CountCollectionTags 5

You use the CountCollectionTags function to determine the number of distinct
collection tags contained by the items of a specified collection.

long CountCollectionTags(Collection source);

source A reference to the collection object whose collection tags you want to
count.

function result The number of distinct collection tags contained by the items of the
source collection.

DESCRIPTION

The CountCollectionTags function returns as its function result the number of
distinct collection tags contained by the items of the collection referenced by the source
parameter.

SEE ALSO

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
on page 5-49.

For an example of this function, see “Examining the Collection Tags of a Collection”
beginning on page 5-35.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-87

5
C

ollection M
anager

GetIndexedCollectionTag 5

Each collection object contains a number of distinct collection tags. You can use the
GetIndexedCollectionTag function to examine a specific collection tag contained in
a collection.

OSErr GetIndexedCollectionTag(Collection source,

long whichTag,

CollectionTag *tag);

source The collection from which to obtain a specific collection tag.

whichTag The position of the desired collection tag in the source collection’s list of
distinct collection tags.

tag A pointer to a collection tag. On return, the collection tag that lies at the
specified position in the list of distinct collection tags contained in the
source collection.

DESCRIPTION

The GetIndexedCollectionTag function returns in the tag parameter the collection
tag that lies at the position specified by the whichTag parameter in the list of distinct
collection tags contained in the collection referenced by the source parameter.

By sequentially incrementing the value of the whichTag parameter from 1 to the result
of the CountCollectionTags function, you can use this function to determine every
collection tag contained in a collection.

RESULT CODES

SEE ALSO

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
beginning on page 5-49.

For an example of this function, see “Examining the Collection Tags of a Collection”
beginning on page 5-35.

To determine the total number of distinct collection tags contained in a collection, use the
CountCollectionTags function, described in the previous section.

collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

5-88 Collection Manager Reference

Flattening and Unflattening a Collection 5

You use the FlattenCollection function to flatten a collection into a stream of
bytes. You use the UnflattenCollection function to unflatten a collection that was
flattened using the FlattenCollection function.

FlattenCollection 5

You can use the FlattenCollection function to convert a collection object into a
stream format suitable for storing and unflattening. For example, you could use this
function to copy a collection onto the Clipboard so that it could be pasted into another
application.

OSErr FlattenCollection(Collection source,

CollectionFlattenProc flattenProc,

void *refCon);

source A reference to the collection that you want to flatten.

flattenProc
A pointer to a callback function you provide to process the flattened
stream of bytes.

refCon A reference constant that you want the Collection Manager to pass
repeatedly to the callback function.

DESCRIPTION

The FlattenCollection function flattens into a stream of bytes the collection you
specify with the source parameter. As this function flattens the collection, it repeatedly
calls the callback function you specify using the flattenProc parameter. Each time
it calls this function, it provides the callback function with a pointer to a block of
memory containing flattened data. It continues to call this function until it has flattened
the entire collection. Your callback function can process the flattened data in a number of
ways: it could copy the flattened data into a handle-based block of memory, it could
write the flattened data to disk, and so on.

In the refCon parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs to process the blocks of flattened data.

When flattening the source collection, this function includes only the collection items
whose persistence attribute is set.

This function can return any error returned by the callback function.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-89

5
C

ollection M
anager

SEE ALSO

For information about the persistence attribute, see “Collection Items” beginning on
page 5-8.

For information about the callback function that you provide, see page 5-100.

For examples of this function, see “Flattening and Unflattening a Collection” beginning
on page 5-37 and “Reading Collections From and Writing Collections to Disk” beginning
on page 5-41.

To create a flattened collection that includes only those collection items whose attributes
match a specified pattern, use the FlattenPartialCollection function, described in
the next section.

To unflatten a flattened collection, use the UnflattenCollection function, described
on page 5-90.

FlattenPartialCollection 5

You can use the FlattenPartialCollection function to convert a collection object
into a stream format suitable for storage and unflattening. With this function, you can
include in the flattened collection only those items whose attributes match a specified
pattern.

OSErr FlattenPartialCollection(Collection source,

 CollectionFlattenProc flattenProc,

 void *refCon,

 long whichAttributes,

 long matchingAttributes)

source The collection that you want to flatten.

flattenProc
A pointer to a function to write data.

refCon A reference constant that you want the Collection Manager to pass
repeatedly to the flatten procedure.

whichAttributes
A mask indicating which attributes you want to test.

matchingAttributes
A long word containing the attribute values you want to match.

C H A P T E R 5

Collection Manager

5-90 Collection Manager Reference

DESCRIPTION

The FlattenPartialCollection function flattens into a stream of bytes the
collection you specify with the source parameter. It includes only the collection items
whose attributes specified by the whichAttributes parameter match the values
specified by the matchingAttributes parameter.

As this function flattens the collection, it repeatedly calls the callback function you
specify using the flattenProc parameter. Each time it calls this function, it provides
the callback function with a pointer to a block of memory containing flattened data. It
continues to call this function until it has flattened the entire collection. Your callback
function can process the flattened data in a number of ways: it could copy the flattened
data into a handle-based block of memory, it could write the flattened data to disk, and
so on.

In the refCon parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs to process the blocks of flattened data.

When flattening the source collection, this function includes only the collection items
whose persistence attribute is set, regardless of the values you provide in the
whichAttributes and matchingAttributes parameters.

This function can return any error returned by the callback function.

SEE ALSO

For information about matching collection item attributes, see “Collection Items”
beginning on page 5-8.

For information about the callback function that you provide, see page 5-100.

To create a flattened collection that includes every item in a collection, use the
FlattenCollection function, described in the previous section.

To unflatten a flattened collection, use the UnflattenCollection function, described
in the next section.

UnflattenCollection 5

You use the UnflattenCollection function to unflatten a collection that was
flattened using the FlattenCollection or FlattenPartialCollection function.

OSErr UnflattenCollection (Collection target,

CollectionFlattenProc flattenProc,

void *refCon);

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-91

5
C

ollection M
anager

target A reference to the collection object you want to create from the flattened
data.

flattenProc
A pointer to a function to read in flattened data.

refCon A reference constant that you want the Collection Manager to pass
repeatedly to the callback function.

DESCRIPTION

The UnflattenCollection function unflattens a stream of bytes into the collection
object you specify with the target parameter.

As this function unflattens the collection, it repeatedly calls the callback function you
specify using the flattenProc parameter. Each time it calls this function, it provides
the callback function with a pointer to a block of memory and a requested size. The
callback function is responsible for reading the next set of bytes from the flattened byte
stream and copying the data into the block of memory.

The Collection Manager continues to call your callback function, requesting more of the
flattened stream of bytes each time, until it has unflattened the entire collection. Your
callback function can read the flattened data from any source you choose: it could read
the flattened data from a handle-based block of memory, it could read the flattened data
from disk, and so on.

In the refCon parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs when reading the blocks of flattened data.

This function can return any error returned by the callback function.

RESULT CODES

SEE ALSO

For examples of this function, see “Flattening and Unflattening a Collection” beginning
on page 5-37 and “Reading Collections From and Writing Collections to Disk” beginning
on page 5-41.

For information about the callback function that you provide, see page 5-100.

To create a flattened collection that includes only those collection items whose attributes
match a specified pattern, use the FlattenPartialCollection function, described in
the previous section.

To create a flattened collection that includes every item in a collection, use the
FlattenCollection function, described on page 5-88.

memFullErr –108 Can’t allocate memory.
collectionVersionErr –5753 Unrecognized version/data may be corrupt.

C H A P T E R 5

Collection Manager

5-92 Collection Manager Reference

Working With Macintosh Memory Manager Handles 5

This section describes a set of utility functions provided by the Collection Manager that
allow you to specify a collection item’s variable-length data using a Macintosh Memory
Manager handle.

AddCollectionItemHdl 5

You use the AddCollectionItemHdl function to add a new item to a collection or to
replace an existing item in a collection, specifying the item’s variable-length data using a
handle rather than a pointer and a data size.

OSErr AddCollectionItemHdl (Collection target,

 CollectionTag tag, long id,

 Handle itemData);

target A reference to the collection you want to add the item to.

tag The collection tag you want to associate with the new item.

id The collection ID you want to associate with the new item.

itemData A Macintosh Memory Manager handle to the item’s variable-length data.

DESCRIPTION

The AddCollectionItemHdl function adds an item to the collection referenced by the
target parameter. This new item contains:

■ the collection tag specified by the tag parameter

■ the collection ID specified by the id parameter

■ the attributes specified by the default attributes of the target collection

■ the variable-length data specified by the itemData parameter

This function copies the information referenced by the itemData parameter into the
new item; after calling this function, you may alter this information or free the memory
referenced by this parameter without affecting the collection.

If the target collection already contains an item with the same collection tag and
collection ID as specified in the tag and id parameters, this function removes the
variable-length data from the original item and replaces it with the new data, unless the
existing item is locked. If it is locked, this function returns a
collectionItemLockedErr result code.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-93

5
C

ollection M
anager

RESULT CODES

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

To add or replace a collection item using a pointer (rather than a handle) to the item’s
variable-length data, use the AddCollectionItem function, described on page 5-62.

To replace a collection item using the item’s collection index (rather than the item’s
collection tag and collection ID), use the ReplaceIndexedCollectionItemHdl
function, described in the next section.

ReplaceIndexedCollectionItemHdl 5

You use the ReplaceIndexedCollectionItemHdl function to replace the
variable-length data of an item in a collection given the item’s collection index,
specifying the item’s new variable-length data using a handle rather than a pointer and a
data size.

OSErr ReplaceIndexedCollectionItemHdl(Collection target,

 long index,

 Handle itemData);

target A reference to the collection containing the item you want to replace.

index The collection index associated with the item you want to replace.

itemData A Macintosh Memory Manager handle to the new variable-length data.

DESCRIPTION

The ReplaceIndexedCollectionItemHdl function replaces the variable-length data
of an item in the target collection. You specify which item to replace using the index
parameter. If the target collection does not contain an item whose collection index
matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

memFullErr –108 Can’t allocate memory.
collectionItemLockedErr –5750 Can’t replace locked item.

C H A P T E R 5

Collection Manager

5-94 Collection Manager Reference

If the target collection does contain an item with the specified index, this function
replaces the data in that item with new data (if the existing item is not locked—if it is,
this function returns a collectionItemLockedErr result code). The resulting item
contains

■ the same collection tag as the original item

■ the same collection ID as the original item

■ the same attributes as the original item

■ the variable-length data specified by the itemData parameter

This function copies the information referenced by the itemData parameter into the
collection item; after calling this function, you may alter this information or free the
memory referenced by this parameter without affecting the collection.

RESULT CODES

SEE ALSO

For information about collection items, see “Collection Items” beginning on page 5-8.

To replace a collection item using a pointer (rather than a handle) to the item’s
variable-length data, use the ReplaceIndexedCollectionItem function, described
on page 5-63.

To replace a collection item using the item’s collection tag and collection ID (rather than
the item’s collection index), use the AddCollectionItemHdl function, described in the
previous section.

GetCollectionItemHdl 5

You can use the GetCollectionItemHdl function to obtain a copy of the
variable-length data associated with a collection item given the item’s collection tag and
collection ID. You must provide a valid Macintosh Memory Manager handle for this
function to copy the data into.

OSErr GetCollectionItemHdl(Collection source,

CollectionTag tag,

long id,

Handle itemData);

memFullErr –108 Can’t allocate memory.
collectionItemLockedErr –5750 Can’t replace locked item.
collectionIndexRangeErr –5752 Index is out of range.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-95

5
C

ollection M
anager

source A reference to the collection object containing the item whose data you
want to retrieve.

tag The collection tag associated with the item whose data you want to
retrieve.

id The collection ID associated with the item whose data you want to
retrieve.

itemData A handle to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dontWantData for this parameter if you
do not want a copy of the item’s data.

DESCRIPTION

The GetCollectionItemHdl function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the source parameter and you specify an item in that collection using the
tag and id parameters. If you provide a valid Macintosh Memory Manager handle in
the itemData parameter, the function uses this parameter to return a copy of the
variable-length data associated with the specified collection item.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item into a block of memory referenced
by a pointer (rather than a handle), use the GetCollectionItem function, described
on page 5-71.

memFullErr –108 Can’t allocate memory.
collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

5-96 Collection Manager Reference

GetIndexedCollectionItemHdl 5

You can use the GetIndexedCollectionItemHdl function to copy the
variable-length data associated with a collection item into a Macintosh Memory Manager
handle, given the item’s collection index.

OSErr GetIndexedCollectionItemHdl(Collection source,

 long index,

 Handle itemData);

source A reference to the collection object containing the item whose data you
want to retrieve.

index The collection index associated with the item whose data you want to
retrieve.

itemData A handle to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.

DESCRIPTION

The GetIndexedCollectionItemHdl function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the source parameter and you specify an item in that collection using the
index parameter. If you provide a valid Macintosh Memory Manager handle in the
itemData parameter, the function uses this parameter to return a copy of the
variable-length data associated with the specified collection item.

RESULT CODES

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item into a block of memory referenced
by a pointer (rather than a handle), use the GetCollectionItem function, described
on page 5-71.

memFullErr –108 Can’t allocate memory.
collectionItemNotFoundErr –5751 Can’t locate item.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-97

5
C

ollection M
anager

FlattenCollectionToHdl 5

You use the FlattenCollectionToHdl utility function to flatten a collection into a
Macintosh Memory Manager handle.

OSErr FlattenCollectionToHdl(Collection source

 Handle flattened);

source The collection that you want to flatten into a handle.

flattened A handle to contain the flattened data.

DESCRIPTION

This function flattens the collection referenced by the source parameter into a block of
memory referenced by the handle you provide in the flattened parameter.

You must provide a valid collection object reference in the source parameter and a
valid Macintosh Memory Manager handle in the flattened parameter. You may
specify a handle of size 0; this function resizes the handle as necessary to hold the
flattened data.

RESULT CODES

SEE ALSO

For examples of this function, see “Reading Collections From and Writing Collections to
Disk” beginning on page 5-41.

For an example that shows one possible implementation of this function, see “Flattening
and Unflattening a Collection” beginning on page 5-37.

To flatten a collection directly to disk, use the FlattenCollection function, described
on page 5-88.

To unflatten a collection from a block of memory referenced by a handle, use the
UnflattenCollectionFromHdl function, described in the next section.

memFullErr –108 Can’t allocate memory.

C H A P T E R 5

Collection Manager

5-98 Collection Manager Reference

UnflattenCollectionFromHdl 5

You use the UnflattenCollectionFromHdl utility function to unflatten a collection
that was flattened using the FlattenCollectionToHdl utility function.

OSErr UnflattenCollectionFromHdl(Collection target

Handle flattened);

target A reference to a collection object in which to store the unflattened
information.

flattened A handle to the data that was previously flattened.

DESCRIPTION

This function unflattens the information referenced by the handle you provide in the
flattened parameter and stores the unflattened collection in the collection object
referenced by the target parameter. You must provide a reference to a valid collection
object in the target parameter and a valid Macintosh Memory Manager handle in the
flattened parameter.

RESULT CODES

SEE ALSO

For examples of this function, see “Reading Collections From and Writing Collections to
Disk” beginning on page 5-41.

For an example that shows one possible implementation of this function, see “Flattening
and Unflattening a Collection” beginning on page 5-37.

To unflatten a collection directly from disk, use the UnflattenCollection function,
described on page 5-90.

To flatten a collection to a block of memory referenced by a handle, use the
FlattenCollectionToHdl function, described in the previous section.

Reading Collections From Resource Files 5

The function described in this section creates a collection object and initializes it with
information stored in a 'cltn' resource. You can find more information about 'cltn'
resources in “The Collection Resource” beginning on page 5-102.

You should be familiar with the information in the “Resource Manager” chapter of Inside
Macintosh: More Macintosh Toolbox before using this function.

memFullErr –108 Can’t allocate memory.
collectionVersionErr –5753 Unrecognized version/data may be corrupt.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-99

5
C

ollection M
anager

GetNewCollection 5

Use the GetNewCollection utility function to read a collection in from a collection
('cltn') resource.

Collection GetNewCollection(short collectionID);

collectionID
The resource ID associated with the collection resource from which you
want to create the new collection object.

function result A reference to the new collection object.

DESCRIPTION

This function searches the current resource file path for a collection ('cltn') resource
with the resource ID specified by the collectionID parameter. If it finds such a
resource, this function creates a new collection object, initializes it with the information
stored in the resource, and returns a reference to it as the function result.

If this function does not find a collection resource with the specified resource ID, it
returns nil as the function result.

You can use the MemError and ResError functions to check for other errors after
calling this function.

RESULT CODES

SEE ALSO

For an example using this function, see “Reading a Collection From a Collection
Resource” beginning on page 5-44.

For information about collection resources, see “The Collection Resource” beginning on
page 5-102.

For more information about resources in general, see the “Resource Manager” chapter of
Inside Macintosh: More Macintosh Toolbox.

memFullErr –108 Can’t allocate memory.
resNotFound –192 Resource not found.

C H A P T E R 5

Collection Manager

5-100 Collection Manager Reference

Application-Defined Functions 5

This section describes two types of functions that you can provide to the Collection
Manager:

■ the callback function that you provide to the FlattenCollection ,
FlattenPartialCollection , and UnflattenCollection functions

■ the exception procedure that you can provide for any collection object

MyFlattenProc 5

You provide the MyFlattenProc function to read or write flattened collection data.

OSErr MyFlattenProc(long size, void *data, void *refCon);

size The size of the block of flattened data to read or write.

data A pointer to the block of flattened data. When flattening, this pointer
points to the data your callback function should write. When
unflattening, your callback function should read flattened data into the
memory pointed to by this parameter.

refCon A value you provide to the FlattenCollection function or
UnflattenCollection function that the Collection Manager passes on
to your callback function.

DESCRIPTION

You create this function to pass to the FlattenCollection ,
FlattenPartialCollection , and UnflattenCollection functions when
flattening or unflattening a collection.

As the Collection Manager is flattening a collection, it repeatedly calls this callback
function to process sequential blocks of flattened data. Each time it calls this function, it
provides a pointer to the current block of flattened data in the data parameter and the
size of the current block in the size parameter. You can process this data in a number of
ways: appending it to a handle-based block of memory, writing it to disk, and so on.

When unflattening a collection, the Collection Manager repeatedly calls this function to
obtain blocks of flattened data. The Collection Manager specifies the size of the
requested block in the size parameter, and your function should read or copy
the requested number of bytes of flattened data into the block of memory pointed to
by the data parameter.

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-101

5
C

ollection M
anager

In either case, the Collection Manager passes in the refCon parameter the same value
you originally passed as the refCon parameter to the FlattenCollection ,
FlattenPartialCollection , or UnflattenCollection function. You can use this
parameter as a pointer to a structure containing relevant state information you need
when reading or writing the flattened data.

If the execution of this function results in any fatal error, you should return the error
code back to the Collection Manager as the function result. If the function executes
successfully, you should return the noErr error code as the function result.

SEE ALSO

For more information about the flattening and unflattening functions, see “Flattening
and Unflattening a Collection” beginning on page 5-88.

For examples of this function, see “Flattening and Unflattening a Collection” beginning
on page 5-37.

MyExceptionProc 5

You provide the MyExceptionProc function (an exception procedure) to handle errors
that occur when operating on a collection object.

OSErr MyExceptionProc(Collection target, OSErr whichErr);

target A reference to the collection object for which the error occurred.

whichErr The result code associated with the error that occurred.

DESCRIPTION

You create this function to install in a collection object using the
SetCollectionExceptionProc function. Subsequently, whenever the Collection
Manager is operating on that collection object and an error occurs, the
Collection Manager calls this function, sending it a reference to the collection for
which the error occurred and the result code associated with the error. You can use
this information to handle the error appropriately for your application.

You can use an exception procedure to respond to an error in a number of ways:

■ You can change the error from one result code to another by returning as the function
result the new result code.

■ You can handle the error and return the noErr error code, which indicates that the
Collection Manager should return control to the place in your application that
generated the error, as if no error had occurred.

■ You can use the ANSI C functions setjmp and longjmp to jump out of the exception
procedure into code to handle the error.

C H A P T E R 5

Collection Manager

5-102 Collection Manager Reference

SEE ALSO

For an example of an exception procedure see “Installing an Exception Procedure”
beginning on page 5-45.

To install an exception procedure in a collection object, use the
SetCollectionExceptionProc function, which is described on page 5-59.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc function, which is described on page 5-58.

Resources 5

This section describes the structure of the collection resource and the meaning of its
fields.

The Collection Resource 5

The Collection Manager provides the GetNewCollection function, described on
page 5-99, to create a new collection object and initialize it using information stored in a
collection ('cltn') resource. Listing 5-28 shows the structure of the collection resource
in Rez format.

Listing 5-28 A Rez template for a 'cltn' resource

type 'cltn' {

longint = $$CountOf(ItemArray);

array ItemArray

{

longint; /* tag */

longint; /* id */

boolean itemUnlocked = false, /* defined attributes */

itemLocked = true;

boolean itemNonPersistent = false,

itemPersistent = true;

unsigned bitstring[14] = 0; /* reserved attributes */

unsigned bitstring[16] userBits; /* user attributes */

wstring;

align word;

};

};

C H A P T E R 5

Collection Manager

Collection Manager Reference 5-103

5
C

ollection M
anager

The collection resource has two parts:

■ a count of the number of items in the resource

■ an array of items

Each item in the array specifies

■ the collection tag for that item

■ the collection ID for the item

■ a Boolean value representing the lock attribute for the item

■ a Boolean value representing the persistence attribute for the item

■ 14 bits representing the 14 reserved attributes for the item

■ 16 bits representing the 16 user-defined attributes for the item

■ a string containing the variable-length data for the item

C H A P T E R 5

Collection Manager

5-104 Summary of the Collection Manager

Summary of the Collection Manager 5

Data Types 5

Optional Return Value Constants

enum {

dontWantTag = 0L, /* don’t want collection tag returned */

dontWantId = 0L, /* don’t want collection ID returned */

dontWantSize = 0L, /* don’t want size of data returned */

dontWantAttributes = 0L, /* don’t want attributes returned */

dontWantIndex = 0L, /* don’t want collection index returned */

dontWantData = 0L /* don’t want variable-length data returned */

};

Attributes Masks

enum {

noCollectionAttributes = 0x00000000, /* no attributes bits set */

allCollectionAttributes = 0xFFFFFFFF, /* all attributes bits set */

userCollectionAttributes = 0x0000FFFF, /* user attributes bits set */

defaultCollectionAttributes = 0x40000000 /* unlocked, persistent */

};

Attribute Bit Numbers

enum {

collectionUser0Bit = 0, /* for use by application */

collectionUser1Bit = 1,

collectionUser2Bit = 2,

collectionUser3Bit = 3,

collectionUser4Bit = 4,

collectionUser5Bit = 5,

collectionUser6Bit = 6,

collectionUser7Bit = 7,

collectionUser8Bit = 8,

collectionUser9Bit = 9,

collectionUser10Bit = 10,

collectionUser11Bit = 11,

C H A P T E R 5

Collection Manager

Summary of the Collection Manager 5-105

5
C

ollection M
anager

collectionUser12Bit = 12,

collectionUser13Bit = 13,

collectionUser14Bit = 14,

collectionUser15Bit = 15,

collectionReserved0Bit = 16, /* reserved for use by Apple */

collectionReserved1Bit = 17,

collectionReserved2Bit = 18,

collectionReserved3Bit = 19,

collectionReserved4Bit = 20,

collectionReserved5Bit = 21,

collectionReserved6Bit = 22,

collectionReserved7Bit = 23,

collectionReserved8Bit = 24,

collectionReserved9Bit = 25,

collectionReserved10Bit = 26,

collectionReserved11Bit = 27,

collectionReserved12Bit = 28,

collectionReserved13Bit = 29,

collectionPersistenceBit = 30, /* currently defined by Apple */

collectionLockBit = 31

};

Attribute Bit Masks

enum {

collectionUser0Mask = 1L << collectionUser0Bit,

collectionUser1Mask = 1L << collectionUser1Bit,

collectionUser2Mask = 1L << collectionUser2Bit,

collectionUser3Mask = 1L << collectionUser3Bit,

collectionUser4Mask = 1L << collectionUser4Bit,

collectionUser5Mask = 1L << collectionUser5Bit,

collectionUser6Mask = 1L << collectionUser6Bit,

collectionUser7Mask = 1L << collectionUser7Bit,

collectionUser8Mask = 1L << collectionUser8Bit,

collectionUser9Mask = 1L << collectionUser9Bit,

collectionUser10Mask = 1L << collectionUser10Bit,

collectionUser11Mask = 1L << collectionUser11Bit,

collectionUser12Mask = 1L << collectionUser12Bit,

collectionUser13Mask = 1L << collectionUser13Bit,

collectionUser14Mask = 1L << collectionUser14Bit,

collectionUser15Mask = 1L << collectionUser15Bit,

C H A P T E R 5

Collection Manager

5-106 Summary of the Collection Manager

collectionReserved0Mask = 1L << collectionReserved0Bit,

collectionReserved1Mask = 1L << collectionReserved1Bit,

collectionReserved2Mask = 1L << collectionReserved2Bit,

collectionReserved3Mask = 1L << collectionReserved3Bit,

collectionReserved4Mask = 1L << collectionReserved4Bit,

collectionReserved5Mask = 1L << collectionReserved5Bit,

collectionReserved6Mask = 1L << collectionReserved6Bit,

collectionReserved7Mask = 1L << collectionReserved7Bit,

collectionReserved8Mask = 1L << collectionReserved8Bit,

collectionReserved9Mask = 1L << collectionReserved9Bit,

collectionReserved10Mask = 1L << collectionReserved10Bit,

collectionReserved11Mask = 1L << collectionReserved11Bit,

collectionReserved12Mask = 1L << collectionReserved12Bit,

collectionReserved13Mask = 1L << collectionReserved13Bit,

collectionPersistenceMask = 1L << collectionPersistenceBit,

collectionLockMask = 1L << collectionLockBit

};

Functions 5

Creating and Disposing of Collection Objects

Collection NewCollection (void);

void DisposeCollection (Collection target);

Cloning and Copying Collection Objects

Collection CloneCollection (Collection target);

long CountCollectionOwners (Collection source);

Collection CopyCollection (Collection source,
Collection target);

C H A P T E R 5

Collection Manager

Summary of the Collection Manager 5-107

5
C

ollection M
anager

Getting and Setting the Exception Procedure for a Collection

CollectionExceptionProc GetCollectionExceptionProc
(Collection source);

void SetCollectionExceptionProc
(Collection target,

CollectionExceptionProc newExceptionProc);

Getting and Setting the Default Attributes for a Collection

long GetCollectionDefaultAttributes
(Collection source);

void SetCollectionDefaultAttributes
(Collection target,

long whichAttributes,
long newAttributes);

Adding and Replacing Items in a Collection

OSErr AddCollectionItem (Collection target,
CollectionTag tag, long id,
long itemSize, void *itemData);

OSErr ReplaceIndexedCollectionItem
(Collection target, long index,

long itemSize, void *itemData);

Removing Items From a Collection

OSErr RemoveCollectionItem (Collection target,
CollectionTag tag, long id);

OSErr RemoveIndexedCollectionItem
(Collection target, long index);

void PurgeCollection (Collection target,
long whichAttributes,
long matchingAttributes);

void PurgeCollectionTag (Collection target, CollectionTag tag);

void EmptyCollection (Collection target);

C H A P T E R 5

Collection Manager

5-108 Summary of the Collection Manager

Counting Items in a Collection

long CountCollectionItems (Collection source);

long CountTaggedCollectionItems
(Collection source, CollectionTag tag);

Retrieving the Variable-Length Data From an Item

OSErr GetCollectionItem (Collection source,
CollectionTag tag, long id,
long *itemSize, void *itemData);

OSErr GetIndexedCollectionItem
(Collection source, long index,

long *itemSize, void *itemData);

OSErr GetTaggedCollectionItem
(Collection source,

CollectionTag tag, long position,
long *itemSize, void *itemData);

Getting Information About a Collection Item

OSErr GetCollectionItemInfo (Collection source,
CollectionTag tag, long id,
long *index, long *itemSize,
long *attributes);

OSErr GetIndexedCollectionItemInfo
(Collection source, long index,

CollectionTag *tag, long *id,
long *itemSize, long *attributes);

OSErr GetTaggedCollectionItemInfo
(Collection source,

CollectionTag tag, long position,
long *id, long *index,
long *itemSize, void *attributes);

Editing Item Attributes

OSErr SetCollectionItemInfo
(Collection target,

CollectionTag tag, long id,
long whichAttributes, long newAttributes);

OSErr SetIndexedCollectionItemInfo
(Collection target, long index,

long whichAttributes, long newAttributes);

C H A P T E R 5

Collection Manager

Summary of the Collection Manager 5-109

5
C

ollection M
anager

Getting Information About Collection Tags

Boolean CollectionTagExists
(Collection source, CollectionTag tag);

long CountCollectionTags (Collection source);

OSErr GetIndexedCollectionTag
(Collection source, long whichTag,

CollectionTag *tag);

Flattening and Unflattening a Collection

OSErr FlattenCollection (Collection source,
CollectionFlattenProc flattenProc,
void *refCon);

OSErr FlattenPartialCollection
(Collection source,

CollectionFlattenProc flattenProc,
void *refCon,
long whichAttributes,
long matchingAttributes);

OSErr UnflattenCollection (Collection target,
CollectionFlattenProc flattenProc,
void *refCon);

Working With Macintosh Memory Manager Handles

OSErr AddCollectionItemHdl (Collection target,
CollectionTag tag, long id,
Handle itemData);

OSErr ReplaceIndexedCollectionItemHdl
(Collection target, long index,

Handle itemData);

OSErr GetCollectionItemHdl (Collection source,
CollectionTag tag, long id,
Handle itemData);

OSErr GetIndexedCollectionItemHdl
(Collection source, long index,

Handle itemData);

OSErr FlattenCollectionToHdl
(Collection source, Handle flattened);

OSErr UnflattenCollectionFromHdl
(Collection target, Handle flattened);

C H A P T E R 5

Collection Manager

5-110 Summary of the Collection Manager

Reading Collections From Resource Files

Collection GetNewCollection (short collectionID);

Application-Defined Functions 5

OSErr MyFlattenProc (long size, void *data, void *refCon);

OSErr MyExceptionProc (Collection target, OSErr whichErr);

Resources 5

The Collection Resource

type 'cltn' {

longint = $$CountOf(ItemArray);

array ItemArray

{

longint; /* tag */

longint; /* id */

boolean itemUnlocked = false, /* defined attributes */

itemLocked = true;

boolean itemNonPersistent = false,

itemPersistent = true;

unsigned bitstring[14] = 0; /* reserved attributes */

unsigned bitstring[16] userBits; /* user attributes */

wstring;

align word;

};

};

Contents

6-1

C H A P T E R 6

6

Figure 6-0
Listing 6-0
Table 6-0

Contents

6 Message Manager

About the Message Manager 6-4
Message Terminology 6-6
Global Data Storage for Printing Extensions and Printer Drivers6-7
Message Sending and Forwarding 6-7

Using the Message Manager 6-8
Determining the Version of the Message Manager 6-8
Allocating Memory for and Disposing of Global Data 6-8
Setting and Getting Global Data for a Single Handler Instance6-10
Setting and Getting Global Data for Multiple Handler Instances6-12
Sending and Forwarding Messages 6-15

Message Manager Reference 6-16
Constants and Data Types 6-16

Message Manager Gestalt Selector6-16
Message Globals Initiatialization Procedure 6-16

Functions 6-17
Allocating Memory for and Disposing of Global Data 6-17

NewMessageGlobals

6-17

DisposeMessageGlobals

6-18
Setting and Getting Global Data for a Single Handler Instance6-19

SetMessageHandlerInstanceContext

6-19

GetMessageHandlerInstanceContext

6-20
Setting and Getting Global Data for Multiple Handler Instances6-21

SetMessageHandlerClassContext

6-21

GetMessageHandlerClassContext

6-22
Sending and Forwarding Messages 6-22

SendMessage

6-23

ForwardMessage

6-24

ForwardThisMessage

6-25
Driver- or Extension-Defined Functions 6-26

MessageGlobalsInitProc

6-26

C H A P T E R 6

6-2

Contents

Summary of the Message Manager 6-27
Constants and Data Types 6-27
Functions 6-27
Application-DefinedFunctions 6-28

C H A P T E R 6

6-3

6

M

essage M
anager

Message Manager 6

The QuickDraw GX Message Manager is a part of the message-passing printing
architecture of QuickDraw GX. Read this chapter if you want to use the Message
Manager to develop printing extensions or printer drivers.

Because QuickDraw GX uses the Message Manager for printing, you should be familiar
with the chapter “Introduction to QuickDraw GX Printing” in

Inside Macintosh:
QuickDraw GX Printing

 before reading this chapter.

If you want to use the Message Manager to create printing extensions and printer
drivers, you should also read

Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

This chapter introduces the Message Manager as it is used for printing with QuickDraw
GX. It then shows how to use Message Manager functions to

■

allocate memory for and dispose of global data

■

store global data for a single message handler instance

■

store global data for multiple message handler instances

■

send and forward messages

This chapter also contains reference information for constants, data types, and functions
associated with the Message Manager.

C H A P T E R 6

Message Manager

6-4

About the Message Manager

About the Message Manager 6

On Macintosh systems in which QuickDraw GX is not installed, the Macintosh Printing
Manager calls the printer driver by loading appropriate code resource for the printer
driver, as shown in Figure 6-1.

Figure 6-1

Printing with the Macintosh Printing Manager

In contrast, QuickDraw GX provides a low-level software manager called the

Message
Manager

 to transfer control to the printer driver. Whenever an application makes a
printing call, QuickDraw GX interacts with the printer driver by calling the Message
Manager to request that the appropriate message be sent to the printer driver.
QuickDraw GX printing extensions may be inserted between QuickDraw GX and the
printer driver to modify the behavior of printing without changing the printer driver.
This approach greatly increases the flexibility of printing and allows printing
enhancements to be developed quickly and easily. Figure 6-2 shows the relationship of
the QuickDraw GX printing software components.

Macintosh
Printing

Manager

Application

Printer driver

C H A P T E R 6

Message Manager

About the Message Manager

6-5

6

M

essage M
anager

Figure 6-2

Printing with QuickDraw GX

QuickDraw GX predefines over a hundred messages. An application starts the printing
process by calling the QuickDraw GX printing application programming interface (API).
QuickDraw GX may perform the task itself or call the Message Manager to send one or
more messages to the application to initiate one or more steps in the following sequential
message chain: application, printing extensions, printer driver, and the default message
handler.

Default message
handler

Application

Printing extension

Printer driver

Printing API

Printing
function calls

Printing
messages

Start

Forward

Forward

Forward

Send

Send

Send

Message
Manager

Send

C H A P T E R 6

Message Manager

6-6

About the Message Manager

The key to the QuickDraw GX extensible printing architecture is the sequential
relationship of the application, printing extensions, printer driver, and default message
handler for printing. Applications, printing extensions, and printer drivers are located in
the message stream so that they may override messages before the message gets to the
default message handler. This is the end of the line for any message that makes it to the
end of the chain. QuickDraw GX defines the normal printing characteristics that occur
unless modified by an application, printing extensions, or the printer driver. Printing
modification may occur when one or more messages are overridden. QuickDraw GX
sends a large number of printing messages during the printing process. Since many
messages are not normally overridden, QuickDraw GX provides a default printing
behavior for most messages via the default message handler.

A partial message override occurs when the application, printing extensions, or printer
driver perform one or more tasks in response to a message and then forward the
message to the next step in the message chain. A complete message override occurs
when the application, printing extensions, or printer driver perform one or more tasks in
response to a message and do not forward the message to the the next message handler
in the chain. Any message that is not explicitly overridden by a printing extension or
printer driver is implicitly forwarded to the next link in the sequential message chain. A
complete override of a message prevents the next extension, printer driver, or default
implementation in the chain from receiving the overridden message.

The Message Manager is not the only initiator of messages. Applications, printing
extensions, printer drivers, and QuickDraw GX not only make printing function calls,
but they can also initiate messages.

For additional information about printing with QuickDraw GX, see

Inside Macintosh:
QuickDraw GX Printing

. For additional information about how to use the QuickDraw GX
Message Manager and messages, see

Inside Macintosh: QuickDraw GX Printing

Extensions
and Drivers

.

Message Terminology 6

In working with the Message Manager there are a number of terms that are useful to
describe the software components and their interactions.

A

message objec

t is the loose equivalent of an object in a fully object-oriented system. It
is the recipient of messages. A message object may also send messages to itself or to
another message object.

A

message

 is a form of notification passed to a message object in order to have that
message object perform some operation.

A

message handler

 is a component of a message class. A message class may consist of
one or more handlers, each of which overrides zero or more messages. Each message
handler may override some portion of the functionality of the handler below it in the
message class. Message classes are built up from message handlers, in a manner similar
to that in which a class in an object-oriented language is derived from other classes. To

forward

 is to invoke the override of the next handler in the chain for the current message.

C H A P T E R 6

Message Manager

About the Message Manager

6-7

6

M

essage M
anager

A

 message

override

 is the loose equivalent of a method. It is the implementation, in
actual code, of a given message. The override performs the operation requested by
sending a message to a message object.

A

message class

 is the loose equivalent of a class in a fully object-oriented system. It
defines the set of messages that message objects instantiated from it understand and
encapsulates the message handlers that implement the overrides corresponding to those
messages. Message classes define the acceptable set of messages for all handlers that
they encapsulate.

An

instance

 is one copy of a message handler in memory.

Global Data Storage for Printing Extensions and Printer Drivers 6

Printing extensions and printer drivers are stand-alone code and do not enjoy the full
status of an application. When an application is launched, a memory block is
automatically allocated for the storage of globals. Unlike applications, stand-alone code
is never launched. It is simply loaded, and therefore no memory for globals is allocated.

As a result, if your printing extension or driver requires global data, it must allocate and
deallocate memory for this data. Global data can be stored as a constant, a handle, a
pointer, or in a so-called A5 world by the use of QuickDraw GX Message Manager
functions. QuickDraw GX will not dispose of your globals for you. You must explicitly
dispose of them yourself when you are done using them.

Each instance of a message handler can only see its data. If you want to limit access to
one instance of your message handler’s data, see the section “Setting and Getting Global
Data for a Single Handler Instance” beginning on page 6-10.

If you want to use common global data that is accessible to all instances of your
handlers, see the section “Setting and Getting Global Data for Multiple Handler
Instances” beginning on page 6-12.

To create an A5 world that limits the access of your global data to one copy of your
message handler, see the section “Allocating Memory for and Disposing of Global Data”
beginning on page 6-8.

For more information about the A5 world, see

Inside Macintosh: Memory.

Message Sending and Forwarding 6

QuickDraw GX provides functions that allow you to send a specific message to the top
of the message chain (your application), forward a specific message to the next message
handler, or forward the current message to the next message handler. For additional
information about message sending and forwarding, see the section “Sending and
Forwarding Messages” beginning on page 6-15.

C H A P T E R 6

Message Manager

6-8

Using the Message Manager

Using the Message Manager 6

This section describes how to

■

determine the version of the Message Manager

■

allocate and deallocate memory for globals

■

create and retrieve global data for a single instance of the message handler

■

create and retrieve global data for multiple instances of a message handler

■

send and forward messages

Determining the Version of the Message Manager 6

To determine the current version of the QuickDraw GX Message Manager, you can call
the

Gestalt

 function with the

gestaltMessageMgrVersion

 selector

'mess'

. The

gestaltMessageMgrVersion

 selector returns a 2-byte value indicating the version of
the QuickDraw GX Message Manager that is currently installed. The high-order byte is
the major version number and the low-order byte is the minor revision number.

The selector '

mess

' is defined in the section “Message Manager Gestalt Selector”
beginning on page 6-16.

For more information about the

Gestalt

 function, see the chapter “Gestalt Manager” in

Inside Macintosh: Operating System Utilities

.

Allocating Memory for and Disposing of Global Data 6

You can use the

NewMessageGlobals

 function to request and allocate memory for
globals. You should only call this function while your application is performing a
message override.

You should always initialize your global data from a function other than the one in
which you call the

NewMessageGlobals

 function. Otherwise, your development
environment may generate code with bad data references.

C H A P T E R 6

Message Manager

Using the Message Manager

6-9

6

M

essage M
anager

Listing 6-1 gives an example of using the

NewMessageGlobals

 function to create an A5
world from an MPW programming environment.

Listing 6-1

Creating an A5 world for global data

gxShape gMyShape;

Handle gMyHandle;

OSErr MyInitGlobalData()

{

OSErr err;

gMyShape = nil;

gMyHandle = TempNewHandle(1024, &err);

return err;

}

OSErr MyInitialize()

{

OSErr err;

/*

Create an A5 world, and initialize the

global data.

*/

err = NewMessageGlobals(A5Size(), A5Init);

if (!err) err = MyInitGlobalData();

return err;

}

The

MyInitalize

 function is the override for the

GXInitialize

 message. The

MyInitialize

 function first sets up an A5 world, as required if an extension is going to
use global data. In this case the global data is the

MyShape

 structure. Once you create
the A5 world by calling the

NewMessageGlobals

 function, your global data will be
valid whenever your printing extension or printer driver is called. Once the

NewMessageGlobals

 function has been called, the extension or driver can initialize its
global data. In this example, the code uses a function called

MyInitGlobalData

 to do
this.

C H A P T E R 6

Message Manager

6-10

Using the Message Manager

If you have allocated memory for your globals using the

NewMessageGlobals

function, you must use the

DisposeMessageGlobals

 function to dispose of the
globals and deallocate their memory blocks when they are no longer needed.

Note that

DisposeMessageGlobals

 does not dispose of data and handles. These must
be disposed of by your code. First, you deallocate any memory that you have allocated
and then let QuickDraw GX deallocate memory that it has allocated for your global data.

Listing 6-2 shows how to dispose of global data and deallocate the memory that was
allocated in Listing 6-1.

Listing 6-2

Disposing of global data and deallocating memory

OSErr MyShutDown()

{/* Dispose of our global data */

if (gMyHandle != nil)

DisposHandle(GMyHandle);

/* dispose of the A5 world that was created in MyInitialize */

DisposeMessageGlobals();

return noErr;

}

The

NewMessageGlobals

 function is described on page 6-17. The

DisposeMessageGlobals

 function is described on page 6-18.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Setting and Getting Global Data for a Single Handler Instance 6

You can use the

SetMessageHandlerInstanceContext

 function to store data that
can be used by a single instance of a message handler. A new instance of your message
handler is created each time a new printing job is created. For example, if four printing
jobs are created, four instances of the message handler are created. Each job has a unique
context called the instance context.

Listing 6-3 uses this function to store global data whenever a new printing job is
initiated. If there are multiple print jobs, this function will be called when each job is
started.

C H A P T E R 6

Message Manager

Using the Message Manager

6-11

6

M

essage M
anager

Listing 6-3

Storing global data for a single message handler instance

typedef struct MyDataRec {

long something;

long somethingElse;

} MyDataRec, **MyDataHdl;

OSErr MyInitialize()

{

OSErr err;

MyDataHdl dataHandle;

/*

Create a new temporary memory handle, initialize

it, and store it as the message handler's instance

context.

*/

dataHandle = (MyDataHdl) TempNewHandle(sizeof(MyDataRec),

 &err);

if (err == noErr)

{

MyInitDataHandle(dataHandle);

SetMessageHandlerInstanceContext(dataHandle);

}

return err;

}

In Listing 6-3, you begin by creating a handle to store global data for the

MyDataRec

structure. Each message handler instance has a unique copy with unique values for the
fields of the data structure. If there is insufficient memory to create the handle, an error
will be generated. If the handler is successfully created, the handler is initialized. The

SetMessageHandlerInstanceContext

 function is then used to store a reference to
the handle that can then be used by this message handler’s overrides. If you use this
code in an extension and four jobs were created for it, each job would have a handle to a
unique copy of a record for the structure.

You can use the

GetMessageHandlerInstanceContext

 function to retrieve the data
that you stored with the

SetMessageHandlerInstanceContext

 function. Listing 6-4
uses the

GetMessageHandlerInstanceContext

 function to return and dispose of
the handle containing the global data that was previously stored in Listing 6-3.

C H A P T E R 6

Message Manager

6-12

Using the Message Manager

Listing 6-4

Getting and disposing of global data

OSErr MyShutDown()

{

MyDataHdl dataHandle;

/*

Retrieve the message handler's instance context. If the

value returned isn't nil, it's a handle that we stored

earlier. Dispose of the handle and set the instance

context to nil to "clear" it.

*/

dataHandle = (MyDataHdl) GetMessageHandlerInstanceContext();

if (dataHandle != nil)

{

DisposHandle((Handle) dataHandle);

SetMessageHandlerInstanceContext(nil);

}

return noErr;

}

In Listing 6-4, the

GetMessageHandlerInstanceContext

 function is used to get the
previously stored handle containing the global data. If the handle isn’t

nil , it’s the
handle that was previously stored and it is disposed of. Finally, the
SetMessageHandlerInstanceContext function is used to set the context data to
nil . If the instance context is nil , the handle was previously disposed of.

The SetMessageHandlerInstanceContext function is described on page 6-19. The
GetMessageHandlerInstanceContext function is described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Setting and Getting Global Data for Multiple Handler Instances 6
You can use the SetMessageHandlerClassContext function to store data that can be
used by multiple copies of your message handler in memory. This common data can be
accessed by multiple print jobs and eliminates the need for storing redundant data.
Listing 6-5 shows how to use the SetMessageHandlerClassContext function to
store global data that can be used by multiple handler instances.

C H A P T E R 6

Message Manager

Using the Message Manager 6-13

6
M

essage M
anager

Listing 6-5 Storing global data for multiple handler instances

typedef struct MySharedDataRec {

unsigned long ownerCount;

long someData;

long someMoreData;

} MySharedDataRec, **MySharedDataHdl;

OSErr MyInitialize()

{

OSErr err = noErr;

MySharedDataHdl sharedDataHdl;

/*

Retrieve the message handler's class context. If the

value returned is nil, the class context isn’t set up. In

that case, create a new handle, initialize

it, set its owner count to 1, and store it in our class

context.

If the class context has been set up, retrieve the data

handle and increment its owner count. (We will use the

owner count in our gxShutDown message override.)

*/

sharedDataHdl = (MySharedDataHdl)

GetMessageHandlerClassContext();

if (sharedDataHdl == nil)

{

sharedDataHdl = (MySharedDataHdl)

TempNewHandle(sizeof(MySharedDataRec), &err);

if (!err)

{

MyInitSharedDataHandle(sharedDataHdl);

(*sharedDataHdl)->ownerCount = 1;

SetMessageHandlerClassContext(sharedDataHdl);

}

}

else

++(*sharedDataHdl)->ownerCount;

return err;

}

C H A P T E R 6

Message Manager

6-14 Using the Message Manager

In contrast to the instance context that is always nil as you enter into an initialize
routine, with the class context you can’t assume that the context is nil . For example,
you may be the third instance of this message handler. As a result, you need to test to see
if the class context is already set up. If it is, you increment the owner count. If it isn’t you
se tup the context. This ensures that the class context is only set up once Listing 6-5
shows how to use the owner count to set up the class context. If the class context is not
nil , then you increment the owner count. Otherwise, create the handle, set the owner
count to 1, and store the class context.

You can use the GetMessageHandlerClassContext function to retrieve data that has
been stored by the SetMessageHandlerClassContext function. Listing 6-6 shows
how to retrieve a message handler’s class context and use the information during
shutdown.

Listing 6-6 Retrieving a message handler’s class context

OSErr MyShutDown()

{

MySharedDataHdl sharedDataHdl;

/*

Retrieve the message handler's class context. If the

value returned is nil, the class context isn't set up.

Otherwise, decrement our data's owner count.

If the owner count falls below 1, dispose of the

actual data and set our class context to nil to

"clear" it.

*/

sharedDataHdl = (MySharedDataHdl)

GetMessageHandlerClassContext();

if (sharedDataHdl != nil)

{

if (--(*sharedDataHdl)->ownerCount < 1)

{

DisposHandle((Handle) sharedDataHdl);

SetMessageHandlerClassContext(nil);

}

}

return noErr;

}

C H A P T E R 6

Message Manager

Using the Message Manager 6-15

6
M

essage M
anager

In Listing 6-6, you use the GetMessageHandlerClassContext function to obtain and
use the class context during shutdown. If the class context is not nil , you decrement the
owner count. If the owner count is less than 1, there are no other owners and you may
then dispose of the data. Using the owner count during shutdown prevents disposing of
data more than once.

The SetMessageHandlerClassContext function is described on page 6-21. The
GetMessageHandlerClassContext function is described on page 6-22.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Sending and Forwarding Messages 6
Message objects can send a printing message to other clients in the message chain. When
a message is sent, QuickDraw GX receives it and sends it to the first message handler in
the chain. In Figure 6-2 this is the application.

QuickDraw GX provides two methods of sending messages. You can use a statement
with the format:

anErr = Send_GXMessageName(arguments);

A typical example is

anErr = Send_GXCompleteSpoolFile(theSpoolFile);

Alternatively, you can use the SendMessage function to send a specified message to the
top of the message chain.

You can use the ForwardMessage function to specify the message to be forwarded to
the next message handler. This function takes a selector that indicates the message to be
forwarded and has parameters that are message-specific.

For example, a four-up printing extension that maps four document pages onto one
physical page at print time may require that the GXCountPages message be forwarded.
The GXCountPages message has the following interface:

OSErr GXCountPages (gxSpoolFile thePrintFile, long* numPages);

You can use the ForwardThisMessage function to forward the current message to the
next message handler.

anErr = ForwardThisMessage(gxCountPages, thePrintFile, &numPages);

All the QuickDraw GX Forward_xxx functions, where xxx is the QuickDraw GX
printing message to forward, are in-line aliases to the ForwardThisMessage function
with the message-specific parameters added for type-checking purposes. An example of
the recommended format for forwarding a message is:

anErr = Forward_GXCountPages(thePrintFile, &numPages);

C H A P T E R 6

Message Manager

6-16 Message Manager Reference

The SendMessage function is described on page 6-23. The ForwardMessage function
is described on page 6-24. The ForwardThisMessage function is described on
page 6-25.

Printing messages are described in the “Printing Messages” chapter of Inside Macintosh:
QuickDraw GX Printing Extensions and Drivers.

Message Manager Reference 6

This section provides reference information for constants, data types, and functions that
allow you to work with the QuickDraw GX Message Manager.

Constants and Data Types 6

This section describes the constants and data types used by the Message Manager.

Message Manager Gestalt Selector 6

The Gestalt selector 'mess' can be used to determine which version, if any, of the
Message Manager is installed.

enum {

gestaltMessageMgrVersion = 'mess'

};

Message Globals Initiatialization Procedure 6

You may supply your own initialization procedure for your globals using this type
definition.

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

To install a message globals initialization procedure, use the NewMessageGlobals
function described on page 6-17.

For more about initializing your globals, see the section “Allocating Memory for and
Disposing of Global Data” beginning on page 6-8.

C H A P T E R 6

Message Manager

Message Manager Reference 6-17

6
M

essage M
anager

Functions 6

This section describes the Message Manager functions you can use to

■ allocate memory for and dispose of global data

■ define and retrieve global data for a single handler instance

■ define and retrieve global data for multiple handler instances

■ send and forward messages

Allocating Memory for and Disposing of Global Data 6

This section describes the functions the QuickDraw GX Message Manager provides for
allocating and deallocating memory for your global data.

NewMessageGlobals 6

You can use the NewMessageGlobals function to request and allocate memory for
globals.

OSErr NewMessageGlobals (long msgGlobalsSize,

MessageGlobalsInitProc aProc);

msgGlobalsSize
The size of the memory requested for global data.

aProc A pointer to an application-defined callback function that initializes and
allocates global data memory.

function result An error of type OSErr indicating that the requested memory allocation
could not be completed.

DESCRIPTION

The NewMessageGlobals function sets up a global world for your printing extension
or printer driver. This consists of allocating the specified amount of memory and
initializing it with the passed procedure. Once you have created a global world, you can
access your data just as you would if your printing extension or printer driver were an
application. Whenever your extension or driver is called, your data will be valid.

To establish an A5 world for your globals, the msgGlobalsSize parameter is
the A5Size function and the aProc parameter is the A5Init function. The A5Size and
A5Init functions are both Macintosh Programming Workshop (MPW) library routines.
The A5Size function determines how much memory is to be allocated for the A5
world. The A5Init function takes a pointer to the A5 globals and initializes them to the
appropriate values.

C H A P T E R 6

Message Manager

6-18 Message Manager Reference

When your extension or printing driver no longer needs the globals, you should release
the memory allocated by the NewMessageGlobals function by calling the
DisposeMessageGlobals function.

SEE ALSO

Global data and the A5 world are discussed in the sections “Global Data Storage for
Printing Extensions and Printer Drivers” beginning on page 6-7 and “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.

To dispose of printing extension and printer driver globals, use the
DisposeMessageGlobals function described in the next section.

The prototype for the application-defined callback function for global data initialization
is described on page 6-26.

DisposeMessageGlobals 6

You can use the DisposeMessageGlobals function to dispose of globals and
deallocate their memory blocks.

OSErr DisposeMessageGlobals (void);

function result An error of type OSErr indicating that the globals are not disposed of.

DESCRIPTION

The DisposeMessageGlobals function disposes of all globals and deallocates the
memory used by your printing extension or printer driver for globals. You should use
this function to free memory whenever your printing extension or printer driver no
longer requires globals.

SEE ALSO

Global data and the A5 world are discussed in the sections “Global Data Storage for
Printing Extensions and Printer Drivers” beginning on page 6-7 and “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.

To allocate memory for globals, use the NewMessageGlobals function described in the
previous section.

C H A P T E R 6

Message Manager

Message Manager Reference 6-19

6
M

essage M
anager

Setting and Getting Global Data for a Single Handler Instance 6

This section describes the functions the QuickDraw GX Message Manager provides for
defining and retrieving global data for a single handler instance.

SetMessageHandlerInstanceContext 6

You can use the SetMessageHandlerInstanceContext function to store data that
can be used by a single handler.

void *SetMessageHandlerInstanceContext (void *);

DESCRIPTION

The SetMessageHandlerInstanceContext function is used to store data that can be
used by only a single instance of a message handler. This data is specific to your
handler’s code and is unique to one copy in memory. The stored data can be in the form
of a long word constant, handle, or pointer to other data. The passed data can be
accessed only by the instance of the message handler that sets the data.

SEE ALSO

To retrieve the data that has been set by the SetMessageHandlerInstanceContext
function, use the GetMessageHandlerInstanceContext function described in the
next section.

To define common data that can be used by multiple instances of a handler, use the
SetMessageHandlerClassContext function described on page 6-21. To retrieve the
common data that has been set, use the GetMessageHandlerClassContext function
described on page 6-22.

The use of the SetMessageHandlerInstanceContext function is described in the
section “Setting and Getting Global Data for a Single Handler Instance” beginning on
page 6-10.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

C H A P T E R 6

Message Manager

6-20 Message Manager Reference

GetMessageHandlerInstanceContext 6

You can use the GetMessageHandlerInstanceContext function to retrieve data for
a single instance of a handler.

void *GetMessageHandlerInstanceContext (void);

DESCRIPTION

The GetMessageHandlerInstanceContext function returns the data that you stored
using the SetMessageHandlerInstanceContext function. This function returns the
data that was stored by the instance of a handler that is calling the
GetMessageHandlerInstanceContext function.

If the SetMessageHandlerInstanceContext function has not been previously
called, the GetMessageHandlerInstanceContext function will return nil . If a
constant, handle, or pointer to other data has been stored, the
GetMessageHandlerInstanceContext function returns the stored data.

SEE ALSO

The SetMessageHandlerInstanceContext function is described in the previous
section.

To define common data that can be used by multiple handlers, use the
SetMessageHandlerClassContext function described on page 6-21. To retrieve the
common data that has been set, use the GetMessageHandlerClassContext function
described on page 6-22.

The use of the GetMessageHandlerInstanceContext function is described in the
section “Setting and Getting Global Data for a Single Handler Instance” beginning on
page 6-10.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

C H A P T E R 6

Message Manager

Message Manager Reference 6-21

6
M

essage M
anager

Setting and Getting Global Data for Multiple Handler Instances 6

This section describes the functions the QuickDraw GX Message Manager provides for
defining and retrieving global data for multiple handler instances.

SetMessageHandlerClassContext 6

You can use the SetMessageHandlerClassContext function to store data that can be
used by multiple instances of a message handler.

void *SetMessageHandlerClassContext (void *);

DESCRIPTION

The SetMessageHandlerClassContext function is used to store data that can be
used by multiple instances of a message handler in one or more print jobs. The
parameter passed is a pointer to the long data. The stored data can be in the form of a
constant, handle, or pointer to additional data. This reference constant can be used by all
instances of a message handler.

SEE ALSO

To retrieve the data defined by the SetMessageHandlerClassContext function, use
the GetMessageHandlerClassContext function described in the next section.

The use of the SetMessageHandlerClassContext function is described in the
section “Setting and Getting Global Data for Multiple Handler Instances” beginning on
page 6-12.

To define data that can be used by only one handler, use the
SetMessageHandlerInstanceContext function described on page 6-19. To retrieve
the data that has been set, use the GetMessageHandlerInstanceContext function
described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

C H A P T E R 6

Message Manager

6-22 Message Manager Reference

GetMessageHandlerClassContext 6

You can use the GetMessageHandlerClassContext function to allow multiple
instances of your handler to retrieve common global data.

void *GetMessageHandlerClassContext (void);

DESCRIPTION

The GetMessageHandlerClassContext function returns common data that you
defined using the SetMessageHandlerClassContext function. This function can be
called by any instance of your handler.

If the SetMessageHandlerClassContext function has not been previously called,
the GetMessageHandlerClassContext function will return nil . If a constant,
handle, or pointer has been stored, the GetMessageHandlerClassContext function
returns the stored data. This function may be used by your handler to allow multiple
print jobs to share common global data.

SEE ALSO

To store the data that is retrieved by the GetMessageHandlerClassContext function,
use the SetMessageHandlerClassContext function described in the previous
section.

The use of the GetMessageHandlerClassContext function is described in the
section “Setting and Getting Global Data for Multiple Handler Instances” beginning on
page 6-12.

To store data that can be used by only one instance of a handler, use the
SetMessageHandlerInstanceContext function described on page 6-19. To retrieve
the data that has been set, use the GetMessageHandlerInstanceContext function
described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Sending and Forwarding Messages 6

This section describes the functions the QuickDraw GX Message Manager provides for
sending and forwarding messages.

C H A P T E R 6

Message Manager

Message Manager Reference 6-23

6
M

essage M
anager

SendMessage 6

You can use the SendMessage function to send a specified message to the current
message target.

OSErr SendMessage (long messageSelector,…);

messageSelector
The number of the message to be sent to the message handler.

additional parameters
Parameters associated with the message sent.

function result An error of type OSErr .

DESCRIPTION

The SendMessage function dispatches a message to the topmost handler in the message
class that is the parent of the current message target.

The messageSelector parameter indicates which message is to be sent.

The ellipsis character at the end of the parameter list indicates that the remaining
additional parameters are unspecified; the caller must pass whatever parameters are
expected by the recipient of the message identified by the messageSelector
parameter. By definition, all message overrides return a result of type OSErr . It is an
error to call the SendMessage function except from within a message handler. In any
other case, behavior is undefined.

The OSErr error returned may indicate that the message could not be sent. If no error
occurs, the function result is noErr . In addition, the receiving message handler may
return an error of type OSErr .

SEE ALSO

To forward a specified message to the next message handler, use the ForwardMessage
function described in the next section.

To forward the current message to the next message handler, use the
ForwardThisMessage function described on page 6-25.

The use of the SendMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.

C H A P T E R 6

Message Manager

6-24 Message Manager Reference

ForwardMessage 6

You can use the ForwardMessage function to specify the message to be forwarded to
the next message handler.

OSErr ForwardMessage (long messageSelector,…);

messageSelector
The number of the message to be forwarded.

additional parameters
Parameters associated with the message sent.

function result An error of type OSErr .

DESCRIPTION

The ForwardMessage function forwards the message specified by the
messageSelector parameter to the next message handler. This function is like the
ForwardThisMessage function, except that any message may be forwarded. The
messageSelector parameter indicates which message is to be forwarded, as in the
SendMessage function. By definition, all messages return a function result of type
OSErr .

The ellipsis character at the end of the parameter list indicates that the remaining
additional parameters are unspecified; the caller must pass whatever parameters are
expected by the recipient of the message identified by the messageSelector
parameter. By definition, all message overrides return a result of type OSErr . It is an
error to call the ForwardMessage function except from within a message handler. In
any other case, behavior is undefined.

The OSErr error returned may indicate that the message could not be forwarded. If no
error occurs, the function result is noErr . In addition, the receiving message handler
may return an error of type OSErr .

SEE ALSO

To send a specified message to the current message target, use the SendMessage
function described in the previous section.

To forward the current message to the next message handler, use the
ForwardThisMessage function described in the next section.

The use of the ForwardMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.

C H A P T E R 6

Message Manager

Message Manager Reference 6-25

6
M

essage M
anager

ForwardThisMessage 6

You can use the ForwardThisMessage function to forward the current message to the
next message handler.

OSErr ForwardThisMessage (…);

parameters Parameters associated with the message sent.

function result An error of type OSErr .

DESCRIPTION

The ForwardThisMessage function explicitly inherits the current message by
forwarding it to the next handler in the message class of the current message target. By
definition, all message overrides return a function result of type OSErr .

The OSErr error returned may indicate that the message could not be forwarded. If no
error occurs, the function result is noErr . In addition, the receiving message handler
may return a result of type OSErr .

The ellipsis character in the parameter list indicates that the parameters are unspecified;
the caller must pass whatever parameters are expected by the recipient of the message. It
is an error to call the ForwardThisMessage function except from within a message
handler. In any other case, behavior is undefined.

SEE ALSO

To send a specified message to the current message target, use the SendMessage
function described on page 6-23.

To forward a specified message to the next message handler, use the ForwardMessage
function described in the previous section.

The use of the ForwardThisMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.

C H A P T E R 6

Message Manager

6-26 Message Manager Reference

Driver- or Extension-Defined Functions 6

This section describes the callback function that you must provide for QuickDraw GX to
call when initializing global data.

MessageGlobalsInitProc 6

You can create an initialization function that requests and allocates memory for your
global data. The initialization function must have a prototype of this form:

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

messageGlobals
A pointer to the global data to be initialized.

DESCRIPTION

You must supply the MessageGlobalsInitProc function if you use the
NewMessageGlobals function to allocate memory for your global data. Once this
initialization function is installed, QuickDraw GX calls it whenever you use the
NewMessageGlobals function.

If your programming environment is MPW, you may use the A5Init function that
MPW provides to establish an A5 world for your global data:

void A5Init (void *globalPtr);

SEE ALSO

The NewMessageGlobals function is described on page 6-17.

For more information on initializing you global data, see the section “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.

C H A P T E R 6

Message Manager

Summary of the Message Manager 6-27

6
M

essage M
anager

Summary of the Message Manager 6

Constants and Data Types 6

Message Manager Gestalt Selector

#define gestaltMessageMgrVersion 'mess' /* gestalt version selector */

Message Globals Inititialization Procedure

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

Functions 6

Allocating Memory for and Disposing of Global Data

OSErr NewMessageGlobals (long msgGlobalsSize,
MessageGlobalsInitProc aProc);

OSErr DisposeMessageGlobals (void);

Setting and Getting Global Data for Multiple Handler Instances

void *SetMessageHandlerClassContext
(void *);

void *GetMessageHandlerClassContext
(void);

Setting and Getting Global Data for a Single Handler Instance

void *SetMessageHandlerInstanceContext
(void *);

void *GetMessageHandlerInstanceContext
(void);

Sending and Forwarding Messages

OSErr SendMessage (long messageSelector…);

OSErr ForwardMessage (long messageSelector, …);

OSErr ForwardThisMessage (…);

C H A P T E R 6

Message Manager

6-28 Summary of the Message Manager

Application-DefinedFunctions 6

Initializing Memory for Global Data

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

Contents

7-1

C H A P T E R 7

7

Figure 7-0
Listing 7-0
Table 7-0

7 QuickDraw GX Stream

Contents

Format

About QuickDraw GX Stream Format 7-5
Characteristics 7-6
Stream Design 7-7
Operation Opcode Byte 7-10

Operation Opcode 7-10
Record Size 7-11

Data Type Opcode Byte 7-13
Compression Type Opcode 7-13
Data Type Opcode 7-15

Data 7-22
Omit Byte Masks and Omit Byte Shifts 7-22
Header Data 7-27
New Shape Object Data 7-28
Modified Shape Object Data 7-34
New Style Object Data 7-35
Modified Style Object Data 7-36
New Ink Object Data 7-43
Modified Ink Object Data 7-43
New Object Transform Data 7-45
Modified Transform Object Data 7-45
New Color Profile Object Data 7-47
Modified Color Profile Object Data 7-47
New Color Set Object Data 7-48
Modified Color Set Object Data 7-48
New Tag Object Data 7-49
New Bit Image Object Data 7-49
New Font Name Data 7-50

C H A P T E R 7

7-2

Contents

New Trailer Object Data 7-51
About Print Files and Portable Digital Documents7-51

Print Files 7-51
Portable Digital Documents 7-53

Using QuickDraw GX Stream Format 7-53
Flattening Shapes With GraphicsBug 7-54
Analyzing the Data Streams of Flattened Shapes 7-56

Creating a Picture With Seven Shapes 7-56
Analyzing a Flattened Line Shape 7-60
Analyzing a Flattened Rectangle Shape7-64
Analyzing a Flattened Curve Shape 7-67
Analyzing a Flattened Path Shape 7-69
Analyzing a Flattened Text Shape 7-72
Analyzing a Flattened Polygon Shape 7-79
Analyzing a Flattened Bitmap Shape 7-81

Obtaining Data From a Print File 7-89
QuickDraw GX Stream Format Reference 7-91

Opcode Constants and Data Types 7-91
Operation Opcode Byte 7-91
Data Type Opcode Byte 7-92
Generic Data Opcode 7-92
Bit Image Compression Opcode Byte 7-93
Modified Shape Data Opcodes 7-93
Modified Style Data Opcodes 7-94
Modified Ink Data Opcodes 7-96
Modified Color Set Data Opcodes 7-96
Modified Color Profile Data Opcodes 7-97
Modified Transform Data Opcodes 7-97
Bit Image Compression Opcodes 7-98
Flatten Header Bytes 7-98

Style Object Omit Byte Constants and Data Types 7-99
Dash Style Omit Byte Masks and Shifts 7-99
Pattern Style Omit Byte Masks and Shifts 7-101
Join Style Omit Byte Masks and Shifts 7-103
Cap Style Omit Byte Masks and Shifts 7-104
Text Face Style Omit Byte Masks and Shifts7-105
Face Layer Omit Byte Masks and Shifts 7-106

Ink Object Omit Byte Constants and Data Types 7-108
Colors Omit Byte Masks and Shifts 7-108
Transfer Omit Byte Masks and Shifts 7-110
Transfer Component Omit Byte Masks and Shifts7-112

Shape Object Omit Byte Constants and Data Types 7-115
Path Shape Omit Byte Masks and Shifts7-115
Bitmap Shape Omit Byte Masks and Shifts 7-116
Bit Image Omit Byte Masks and Shifts 7-120
Text Shape Omit Byte Masks and Shifts 7-121
Glyph Shape Omit Byte Masks and Shifts 7-122

C H A P T E R 7

Contents

7-3

7

Layout Shape Omit Byte Masks and Shifts 7-125
Picture Shape Omit Byte Masks and Shifts 7-129

QuickDraw GX Stream Format Summary 7-131
Opcode Constants and Data Types 7-131
Style Object Omit Byte Constants and Data Types 7-134
Ink Object Omit Byte Constants and Data Types 7-137
Shape Object Omit Byte Constants and Data Types 7-139

C H A P T E R 7

About QuickDraw GX Stream Format

7-5

7

Q

uickD
raw

 G
X

 S
tream

 F
orm

at

QuickDraw GX Stream Format 7

This chapter describes the format of the compressed data stream that results when the
QuickDraw GX

GXFlattenShape

 function is used. It also describes the use of such data
streams by print files and portable digital documents (PDDs). Read this chapter if you
need to uncompress QuickDraw GX stream format data and cannot use the QuickDraw
GX

GXUnflattenShape

 function.

Before reading this chapter, you should be familiar with the information in the chapters
“Introduction to QuickDraw GX Objects” and “Shape Objects” in

Inside Macintosh:
QuickDraw GX Objects

.

The

GXFlattenShape

 and

GXUnflattenShape

 functions and additional information
about the objects contained in the data stream are described in

Inside Macintosh:
QuickDraw GX Objects

. For more information on graphic shapes, see the shape-specific
chapters in

Inside Macintosh: QuickDraw GX Graphics

. For more information on
typographic shapes, see the shape-specific chapters

in

Inside Macintosh: QuickDraw GX
Typography

. For more information on print files and portable digital documents, see the
chapter “Advanced Printing Features” of

Inside Macintosh: QuickDraw GX Printing

.

This chapter first describes the QuickDraw GX stream format, print file organization,
and portable digital documents. It then shows how you can

■

use the GraphicsBug utility to flatten QuickDraw GX shapes

■

analyze flattened shape data streams

■

obtain information from a print file

About QuickDraw GX Stream Format 7

A QuickDraw GX

data stream

 is a highly structured sequence of bytes that contains all
of the information required to store, print, or display QuickDraw GX objects.

QuickDraw GX provides a simple method for creating and interpreting a QuickDraw GX
data stream for shape objects. The

GXFlattenShape

 function creates the data stream
and the

GXUnflattenShape

 function reconstructs objects from the data stream that the

GXFlattenShape

 function previously created.

When the

GXFlattenShape

 function converts shape objects created by your
application from their original format to a QuickDraw GX stream format, the

shape

 is
said to be flattened. When the

GXUnFlattenShape

 function interprets the data stream
of a flattened shape, the shape is said to be unflattened

.

If QuickDraw GX is available and you need to

flatten

 and

unflatten

 QuickDraw GX
shapes, you just use the

GXFlattenShape

 and

GXUnflattenShape

 functions. If
QuickDraw GX is not available and you need to unflatten a flattened shape, then you
need to create an interpreter for the QuickDraw GX data stream that was created when
the shape was flattened. The interpreter must be compatible with your current working
environment.

C H A P T E R 7

QuickDraw GX Stream Format

7-6

About QuickDraw GX Stream Format

Your interpreter needs to parse the data of the QuickDraw GX data stream to extract the
original meaning. The format of the data stream is public. This section describes the data

stream format

 and its use in print files and portable digital documents.

In addition to the

GXFlattenShape

 and

GXUnflattenShape

 functions that create and
interpret the QuickDraw GX stream format for shapes, there are other flatten and
unflatten functions that perform flattening and unflattening operations on job objects,
job objects in a handle, collection objects, and fonts. These functions are not directly
related to the stream format.

The

GXFlattenJob

 and

GXUnFlattenJob

 functions provide your application with a
mechanism for flattening and unflattening all information associated with a job object by
specifying a pointer to a flattening function. For more information on these functions, see
the chapters “QuickDraw GX Printing” and “Core Printing Features” in

Inside Macintosh:
QuickDraw GX Printing

.

The

GXFlattenJobToHdl

 and

GXUnflattenCollectionFromHdl

 functions
provides your application with a means of flattening and unflattening all information
associated with a job object in a handle. For more information on these functions, see the
chapters “Introduction to Printing with QuickDraw GX” and “Core Printing Features” of

Inside Macintosh: QuickDraw GX Printing

.

The

GXFlattenCollection

 and

GXUnflattenCollection

 functions flatten and
unflatten information in a collection object. For more information on this function, see
the chapter “Collection Manager” in this book.

The

GXFlattenFont

 function flattens a font so that it can be included in a flattened
shape. The

GXFlattenFont

 function is described in the chapter “Font Objects” in

Inside
Macintosh: QuickDraw GX Typography

.

Characteristics 7

The QuickDraw GX data stream format is used whenever a QuickDraw GX shape is
stored to disk or printed. Likewise, the data stream must be interpreted whenever the
flattened shape is to be used. The QuickDraw GX stream format is

■

Extensible.

 The data stream includes type constants called opcodes that specify the
meaning of the data that follows in the data stream and record size values that
indicate the number of bytes in the record that follow. The opcode and size are always
in the same format. If a reader of a QuickDraw GX data stream doesn’t understand
the information contained in the stream, the reader can choose to skip to the next
opcode. Some opcode constants are reserved for future expansion.

■

Byte oriented.

 QuickDraw GX uses a byte-oriented stream format so that it is simple
for different processors to interpret the flattened shape information. Multiple
byte-oriented data streams, using words (2 bytes) or long words (4 bytes), are larger
and therefore are not as efficient for storing, retrieving, and printing shapes.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format

7-7

7

Q

uickD
raw

 G
X

 S
tream

 F
orm

at

■

Efficient.

 The QuickDraw GX data stream format contains a highly structured
optimized set of data that minimize the amount of irrelevant information. For
example, if your application creates a shape and then moves the shape to another
position, the flattened shape stream format describes only the final position of the
shape and does not include a description of the intermediate move.

■

Compressed.

 The

GXFlattenShape

 function always applies a compression
algorithm to the flattened shape. The degree of compression that is achieved depends
upon the shape and the objects that make up the shape. If applying the compression
algorithm results in a data stream that is larger than the original, the original data is
adopted as the default. When you call the

GXFlattenShape

 function, you are
thereby always assured of a data stream format that is equal to or smaller than the
original data format. Data in a QuickDraw GX stream format consists of single bits,
multiple bits, a byte, multiple bytes, a word, multiple words, a long word, or multiple
long words. The QuickDraw GX compression algorithm attempts to minimize the
number of bits that are required to represent the data required to describe each object
and its properties. For example, the long fixed-point number 125.0, 0x007D0000,
requiring 4 bytes may be compressed to the byte 125, 0x7D, requiring only 1 byte. This
substitution makes the data stream 3 bytes smaller, while maintaining the integrity of
the data value. When the shape is unflattened, the byte must be converted back to its
original long value. The QuickDraw GX stream format also compresses the data
stream bytes that contain opcodes. These opcode bytes consist of a 2-bit field and a
6-bit field that are packed into1 byte.

■

Shape oriented.

 Each QuickDraw GX shape is described by a style object, ink object,
transform object, and shape object. When a QuickDraw GX shape is flattened, a new
data format is created that contains all of the essential information required to define
the original shape. All of the objects and properties that are required to describe all
of the QuickDraw GX shapes are included in the data stream.

Stream Design 7

The data stream includes type constants called

opcodes

 that specify the meaning of the
data that follows in the data stream and record size values that indicate the number of
bytes in the record that follow.

Each QuickDraw GX data stream starts with a header. The header contains the version of
QuickDraw GX that produced the stream and flags that describe whether or not a list of
fonts and a list of glyphs used by the objects are provided for at the end of the stream.
This header is typically followed by the style object, ink object, transform object, and
shape object for the shape. This sequence is repeated for all subsequent shapes in the
data stream. The data stream is terminated after the last shape by the presence of a
termination object, as shown in Figure 7-1.

C H A P T E R 7

QuickDraw GX Stream Format

7-8

About QuickDraw GX Stream Format

Figure 7-1

A typical flattened shape data stream sequence

Each header and object type in the data stream is counted. This results in the assignment
of

reference

 numbers for headers and all object types, such as style, ink, and transform
objects. The reference number is the

n

th occurrence of a header or object type.

For example, each data stream always has a header (1), a typically a style object (1), ink
object (1), transform object (1), and shape object (1), where the references are given in
parentheses. Additional headers and object types in the data stream are assigned the
next incremental reference number. Figure 7-1 shows that shape 1 is defined by style
object (1), ink object (1), transform object (1), and shape object (1) and that shape 2 is
defined by style object (2), ink object (2), transform object (2), and shape object (2). shape
100 in this data stream (not shown) may use the ink object defined in shape 1 by
referencing ink object (1).

Besides the style, ink, transform, and shape objects, the data stream may also contain
additional objects. The following objects are flattened when referenced by shapes, inks,
and transforms:

■

tag

■

color set

■

color profile

■

other referenced objects

Header

Style object

Ink object

Transform object

Shape object

Termination object

Shape 1

Shape 2

Data
streamStyle object

Ink object

Transform object

Shape object

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format

7-9

7

Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Examples of other referenced objects are the shapes that represent clips, dashes, and the
styles and transforms in text faces.

The following objects are never flattened:

■

view ports

■

view devices

■

view groups

Another rule regarding data stream design requires that all objects and their attributes in
the data stream must be defined before they are referenced. QuickDraw GX data streams
never forward-reference objects.

For example, the style, ink, and transform objects for a shape must always precede the
shape object that they describe in the data stream. In addition, if a style object has a text
face property and the text face property has a dash property, then the shape object for the
dash property must precede the style object in the data stream.

The data stream design does not require that the order of objects to be style, ink, and
transform. Because these objects do not reference each other, they can appear in any
order in the data stream, as long as they are defined prior to being referenced.

Each header and object in the data stream consists of an operation opcode byte, a data
type opcode byte, and optional data bytes. Figure 7-2 shows these basic data stream
format building blocks. This sequence is repeated from the beginning of the stream to
the end of the stream. The next sections describe each of these building blocks.

Figure 7-2

Basic components of a stream header or object

Operation opcode byte

Data opcode byte

Data (optional)

Header or
object

Operation opcode byte

Data opcode byte

Data (optional)

Header or
object

C H A P T E R 7

QuickDraw GX Stream Format

7-10

About QuickDraw GX Stream Format

Operation Opcode Byte 7

The first byte of a header or object is always an operation opcode byte. The operation
opcode byte contains both an operation opcode and the size in bytes of the record that
follows for the current object. The operation opcode either defines a new object, adds
data to the current default object, or references a previous object. The record length in
bytes includes the data type opcode byte and any data that may follow for the current
object. Figure 7-3 shows the format of the operation opcode byte.

Figure 7-3

The format of the operation opcode byte

The operation opcode and record size are always in the same stream format. This enables
a reader of the data stream to skip over parts of the data stream that are not understood.

Operation Opcode 7

Bits 6 and 7 of the operation opcode byte are the operation opcode. Table 7-1 summarizes
the 2-bit operation opcodes from the

gxGraphicsOperationOpcode

 enumeration.

Table 7-1

Operation opcodes

Type Value Description

gxNewObjectOpcode

0x00 This opcode type defines a new object.

gxSetDataOpcode

0x40 This opcode type adds data to the current object.

gxSetDefaultOpcode

0x80 This opcode type replaces the current default
with a previously defined object by specifying
its reference number.

gxReservedOpcode

0xC0 This opcode type is not currently defined and is
reserved for future use.

Operation
opcode

Record size
in bytes

7 6 5 4 3 2 1 0

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format

7-11

7

Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Record Size 7

The record size defines the number of bytes required to define the header or object
record, not including the operation opcode byte. It is always 1 or larger. The record size
is given in either bits 0 through 5 of the operation opcode byte or within the bytes that
follow the operations opcode byte.

If the record size is larger than the value that can be represented in bits 0 through 5,
larger than 63, then a 0 appears in these 6 bits and the next byte in the data stream may
contain the record size.

If the record size is larger than the value that can be represented in the next byte, larger
than 255, then a 0 appears in this byte and the next word in the stream may contain the
record size.

If the record size is larger than the value that can be represented in the next word, larger
than 65,535, then a 0 appears in this word and the next long in the stream contains the
record size. A long can accommodate a record size up to 4,294,967,295 bytes.

Figure 7-4 shows the operation opcode byte on the left and the subsequent bytes in
which the record size is stored in 6-bits, a byte, a

word

, or a

long

. The data stream
continues proceeds from left to right.

C H A P T E R 7

QuickDraw GX Stream Format

7-12

About QuickDraw GX Stream Format

Figure 7-4

Data format of the record size

An example of a bit stream in which a long was required to accommodate a record size
of 404 bytes is described in the section “Analyzing a Flattened Bitmap Shape” beginning
on page 7-81.

7 6 5 4 3 2 1 0
Record size is 1 to 63 bytes

6 bits

7 6 5 4 3 2 1 0
Record size is 64 to 255 bytes

7 6 5 4 3 2 1 0

Byte

000000

7 6 5 4 3 2 1 0
Record size is 256 to 65,535 bytes

7 6 5 4 3 2 1 0

000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

000000

Word (2 bytes)

7 6 5 4 3 2 1 0
Record size is 65,536 to 4,294,967,295 bytes

7 6 5 4 3 2 1 0

000000 000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

000000 000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Long (4 bytes)

00

00 00

Most
significant bit

Least
significant bit

Most
significant bit

Least
significant bit

00

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-13

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Data Type Opcode Byte 7
A data type opcode byte always follows the record size. This byte contains both a
compression type opcode and a data type opcode. Figure 7-5 shows the format of the
data type opcode byte.

Figure 7-5 The format of the data type opcode byte

Compression Type Opcode 7

Bits 6 and 7 of the data type opcode byte contain the compression type opcode. This
opcode specifies the type of compression used for the data that follows. The 2-bit
compression opcode constants from the gxTwoBitCompressionValues enumeration
specifies whether the next data are longs, words, bytes, or that no data follows. Table 7-2
lists the compression type opcode values.

The gxTwoBitCompressionValues enumeration is also used to interpret the
compression in the omit byte. For additional information about the interpretation of omit
bytes, see the section “Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Table 7-2 Compression values

Value Description

0x00 No compression has been applied. The data that follows are long words.

0x40 Word compression has been applied. The data that follows are words.

0x80 Byte compression has been applied. The data that follows are bytes.

0xC0 Omit compression. No data follows.

Compression
type opcode

Data type
opcode

7 6 5 4 3 2 1 0

C H A P T E R 7

QuickDraw GX Stream Format

7-14 About QuickDraw GX Stream Format

The relationship of the operation opcode, record size, compression type opcode, data
type opcode, and optional data for a header or object is shown in Figure 7-6.

Figure 7-6 Relationship of stream format components

The appearance or absence of data after the data type opcode byte depends upon the
values that appear in the operation opcode byte and the data type opcode byte.

If the gxNewObjectOpcode constant appears in the operation opcode byte, a new
object follows. The new object copies the default values into the newly created object.
The default values may have been changed by the last object created of this type. If the
last object and the current object are equal, then the new object requires no additional
data for its definition. In this case, the stream following the new opcode byte contains
only the compression and data type opcode byte with compression set to no
compression.

If the gxSetDataOpcode constant appears in the operation opcode byte, the record
length is greater than 1 byte and object-specific data follows.

The gxSetDefaultOpcode constant appears only after the current object type has been
defined. If the gxSetDefaultOpcode constant appears in the operation opcode byte,
the data type opcode contains the gxStyleTypeOpcode , gxInkTypeOpcode , or
gxTransformTypeOpcode constant. The compression type opcode defines the
compression of the data of the object reference number that follows. This previously

Operation opcode

Record size

Compression type
Header or

object

Data type opcode

Data (optional)

Header or
object

Operation opcode

Record size

Compression type

Data type opcode

Data (optional)

Operation
opcode
byte

Data
opcode
byte Record

Operation
opcode
byte

Data
opcode
byte Record

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-15

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

defined object becomes the default styles, ink, or transform for the shapes created
subsequently.

The sequence of the object-specific data that follows the data type opcode byte is
described in the next section. Subsections are provided for the header, shape data, style,
ink, transform, color profile, color set, tag, bit image, font name, and trailer objects.

Data Type Opcode 7

Bits 0 through 5 of the data type opcode byte contain the data type opcode. This
opcode specifies the type of data that follows. The type of data that follows depends
upon the current value of the operation opcode. If the operation opcode is
gxNewObjectOpcode , the data type opcode describes a new object. These data
type opcodes are described in the next section. If the operation opcode is
gxSetDataOpcode , the data type opcode, specifies how the current object will
be modified. These data type opcodes are described in the sections “Data Type Opcodes
to Modify a Shape Object” beginning on page 7-17, “Data Type Opcodes to Modify a
Color Set Object” beginning on page 7-20, “Data Type Opcodes to Modify a Color Profile
Object” beginning on page 7-21, and “Data Type Opcodes to Modify a Transform Object”
beginning on page 7-21.

Data Type Opcodes f or a New Object 7

When the current operation opcode is the gxNewObjectOpcode constant, bits 0
through 5 of the data type opcode byte specify the data type opcode for the new object.
Data type opcode constants for header, style, ink, transform, color profile, color set, tag
type, bit image, font name, and trailer are defined in the gxGraphicsNewOpcode
enumeration. Data type opcode constants for empty, point, line, curve, rectangle,
polygon, path, bitmap, text, glyph, layout, full, and picture are defined in the
gxShapeTypes enumeration. Table 7-3 summarizes all of the data type opcodes for a
new object.

Table 7-3 Data type opcodes for a new object

Constant Value Description

gxHeaderTypeOpcode 0x00 The data that follows is the header.

gxEmptyType 0x01 The data that follows describes an empty
shape object. See the
GXNewShape(gxEmptyType) function.

gxPointType 0x02 The data that follows describes a point
object. See the GXNewPoint function.

gxLineType 0x03 The data that follows describes a line object.
See the GXNewLine function.

gxCurveType 0x04 The data that follows describes a curve
object. See the GXNewCurve function.

continued

C H A P T E R 7

QuickDraw GX Stream Format

7-16 About QuickDraw GX Stream Format

gxRectangleType 0x05 The data that follows describes a rectangle
object. See the GXNewRectangle function.

gxPolygonType 0x06 The data that follows describes a polygon
object. See the GXNewPolygons function.

gxPathType 0x07 The data that follows describes a path
object. See the GXNewPaths function.

gxBitmapType 0x08 The data that follows describes a bitmap
object. See the GXNewBitmap function.

gxTextType 0x09 The data that follows describes a text object.
See the GXNewText function.

gxGlyphType 0x10 The data that follows describes a glyph
object. See the GXNewGlyph function.

gxLayoutType 0x11 The data that follows describes a layout
object. See the GXNewLayout function.

gxFullType 0x12 The data that follows describes a full shape
object. See the GXNewShape(gxFullType)
function.

gxPictureType 0x13 The data that follows describes a picture
object. See the GXNewPicture function.

gxStyleTypeOpcode 0x28 The data that follows describes a style
object. See the GXNewStyle function.

gxInkTypeOpcode 0x29 The data that follows describes an ink
object. See the GXNewInk function.

gxTransformTypeOpcode 0x2A The data that follows describes a transform
object. See the GXNewTransform function.

gxColorProfileOpcode 0x2B The data that follows describes a color
profile object. See the
GXNewColorProfile function.

gxColorSetOpcode 0x2C The data that follows describes a color set
object. See the GXNewColorSet function.

gxTagTypeOpcode 0x2D The data that follows describes a tag object.
See the GXNewTag function.

gxBitImageOpcode 0x2E The data that follows describes a bit image,
the bits pointed to by a bitmap.

gxFontNameTypeOpcode 0x2F The data that follows describes a font name.
See the GXNewFont function.

gxTrailerTypeOpcode 0x3F This opcode indicates the end of a data
stream.

Table 7-3 Data type opcodes for a new object (continued)

Constant Value Description

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-17

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

The omitted numbers are reserved by Apple Computer, Inc. for future use. You should
extend the stream format by using tag objects to encapsulate custom data. Tags are
described in the “Tag Objects” in Inside Macintosh:QuickDraw GX Objects.

Data Type Opcodes to Modify a Shape Object 7

When the current object is a shape object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the shape object to be modified. Data type opcode constants for
attributes, tag, ink, and fill are defined in the gxShapeDataOpcode enumeration.
Table 7-4 summarizes all of the data type opcodes used to modify a shape object.

Data Type Opcodes to Modify a Style Object 7

When the current object is a style object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the style object to be modified. Data type opcode constants for
attributes, tag, curve error, pen, join, dash, caps, pattern, text attributes, text size, font,
text face, platform, font variations, run controls, run priority justification override, run
glyph justification overrides, run glyph substitutions, run features, run kerning
adjustments, and justification are defined in the gxStyleDataOpcode enumeration.
Table 7-5 summarizes all of the data type opcodes used to modify a style object.

Table 7-4 Data type opcodes to modify a shape object

Constant Value Description

gxShapeAttributesOpcode 0x00 The attributes data that follows is added
to the current shape object. See the
GXSetShapeAttributes function.

gxTagOpcode 0x01 The tag data that follows is added to the
current shape object. See the
GXSetShapeTags function.

gxFillOpcode 0x02 The fill data that follows is added to the
current shape object. See the
GXSetShapeFill function.

C H A P T E R 7

QuickDraw GX Stream Format

7-18 About QuickDraw GX Stream Format

Table 7-5 Data type opcodes to modify a style object

Constant Value Description

gxStyleAttributesOpcode 0x00 The attributes data that follows is
added to the current shape object. See
the GXSetStyleAttributes
function.

gxStyleTagOpcode 0x01 The tag data that follows is added to
the current shape object. See the
GXSetStyleTags function.

gxStyleCurveErrorOpcode 0x02 The curve error data that follows is
added to the current style object. See
the GXSetStyleCurveError
function.

gxStylePenOpcode 0x03 The pen data that follows is added to
the current style object. See the
GXSetStylePen function.

gxStyleJoinOpcode 0x04 The join data that follows is added to
the current style object. See the
GXSetStyleJoin function.

gxStyleDashOpcode 0x05 The dash data that follows is added to
the current style object. See the
GXSetStyleDash function.

gxStyleCapsOpcode 0x06 The caps data that follows is added to
the current style object. See the
GXSetStyleCaps function.

gxStylePatternOpcode 0x07 The pattern data that follows is added
to the current style object. See the
GXSetStylePattern function.

gxStyleTextAttributesOpcode 0x08 The text attributes data that follows is
added to the current style object. See
the GXSetStyleTextAttributes
function.

gxStyleTextSizeOpcode 0x09 The text size data that follows is added
to the current style object. See the
GXSetStyleTextSize function.

gxStyleFontOpcode 0x0A The font data that follows is added to
the current style object. See the
GXSetStyleFont function.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-19

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

gxStyleTextFaceOpcode 0x0B The text face data that follows is
added to the current style object. See
the GXSetStyleFace function.

gxStylePlatformOpcode 0x0C The platform data that follows is
added to the current style object. See
the GXSetStyleEncoding function.

gxStyleFontVariationsOpcode 0x0D The font variations data that follows is
added to the current style object. See
the GXSetStyleFontVariations
function.

gxStyleRunControlsOpcode 0x0E The run controls data that follows is
added to the current style object. See
the GXSetStyleRunControls
function.

gxStyleRunPriorityJustOverrideOpcode 0x1F The run priority justification override
data that follows is added to the
current style object. See the
GXSetStyleRunPriorityJust
Override function.

gxStyleRunGlyphJustOverridesOpcode 0x10 The run glyph justification overrides
data that follows is added to the
current style object. See the
GXStyleRunGlyphJust
Overrides function.

gxStyleRunGlyphSubstitutionsOpcode 0x11 The run glyph substitutions data that
follows is added to the current style
object. See the
GXStyleRunGlyphSubstitutions
function.

gxStyleRunFeaturesOpcode 0x12 The run features data that follows is
added to the current style object. See
the GXStyleRunFeatures function.

gxStyleRunKerningAdjustmentsOpcode 0x13 The run kerning adjustments data that
follows is added to the current style
object. See the GXStyleRunKerning
Adjustments function.

gxStyleJustificationOpcode 0x14 The justification data that follows is
added to the current style object. See
the GXStyleJustification
function.

Table 7-5 Data type opcodes to modify a style object (continued)

Constant Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-20 About QuickDraw GX Stream Format

Data Type Opcodes to Modify an Ink Object 7

When the current object is an ink object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the ink object to be modified. Data type opcode constants for
attributes, tag, color, and transfer mode are defined in the gxInkDataOpcode
enumeration. Table 7-6 summarizes all of the data type opcodes used to modify an ink
object.

Data Type Opcodes to Modify a Color Set Object 7

When the current object is a color set object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color set object to be modified. A data type opcode constant for
tag is defined in the gxColorSetDataOpcode enumeration. The constant 0 is reserved
for future use. Table 7-7 summarizes all of the data type opcodes used to modify a color
set object.

Table 7-6 Data type opcodes to modify an ink object

Constant Value Description

gxInkAttributesOpcode 0x00 The attributes data that follows is added
to the current ink object. See the
GXSetInkAttributes function.

gxInkTagOpcode 0x01 The tag data that follows is added to the
current ink object. See the
GXSetInkTags function.

gxInkColorOpcode 0x02 The ink color data that follows is added
to the current ink object. See the
GXSetInkColor function.

gxInkTransferModeOpcode 0x03 The ink transfer mode data that follows is
added to the current ink object. See the
GXSetInkTransfer function.

Table 7-7 Data type opcodes to modify a color set object

Constant Value Description

gxColorSetReservedOpcode 0x00 This constant is reserved for future
assignment.

gxColorSetTagOpcode 0x01 The tag data that follows is added to the
current color set object. See the
GXSetColorSetTags function.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-21

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Data Type Opcodes to Modify a Color Pr ofile Object 7

When the current object is a color profile object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color profile object to be modified. A data type opcode constant
for tag is defined in the gxProfileDataOpcode enumeration. The constant 0 is
reserved for future use. Table 7-8 summarizes the data type opcodes used to modify a
color profile object.

Data Type Opcodes to Modify a Transf orm Object 7

When the current object is a transform object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the transform object to be modified. A data type opcode constant
for tag is defined in the gxTransformDataOpcode enumeration. The constant 0 is
reserved for future use. Table 7-9 summarizes the data type opcodes used to modify a
transform object.

Table 7-8 Data type opcodes to modify a color profile object

Constant Value Description

gxColorProfileReservedOpcode 0x00 This constant is reserved for future
assignment.

gxColorProfileTagOpcode 0x01 The tag data that follows is added
to the current color profile object.
See the
GXSetColorProfileTags
function.

Table 7-9 Data type opcodes to modify a transform object

Constant Value Description

gxTransformReservedOpcode 0x00 This constant is reserved for future
assignment.

gxTransformTagOpcode 0x01 The tag data that follows is added to
the current transform object. See the
GXSetTransformTags function.

gxTransformClipOpcode 0x02 The tag data that follows is added to
the current transform object. See the
GXSetTransformClip function.

gxTransformMappingOpcode 0x03 The tag data that follows is added to
the current transform object. See the
GXSetTransformMapping function.

continued

C H A P T E R 7

QuickDraw GX Stream Format

7-22 About QuickDraw GX Stream Format

Data 7
The sequence of the optional object-specific data that follows a data type opcode byte is
predetermined and consists of type constants and data. Some data sequences are
preceded by an omit byte. An omit byte is included in the data stream format to describe
the presence or absence, meaning, order, and compression of data that corresponds to
the fields of a type or the properties of an object. If an omit byte is not present for an
object, then, with the exception of bitmaps and transforms, the compression type opcode
in the data type opcode byte defines the data compression.

Omit Byte Masks and Omit Byte Shifts 7

The omit byte provides an efficient method of assigning different data compressions to
type constants and object properties that immediately follow the omit byte. Figure 7-7
shows the relationship of the bits in an omit byte and the four constants or properties
that follow.

gxTransformPartMaskOpcode 0x04 The tag data that follows is added to
the current transform object. See the
description of the gxShapePart
mask parameter to the
GXSetTransformHitTest function.

gxTransformToleranceOpcode 0x05 The tag data that follows is added to
the current transform object. See the
description of the Fixed tolerance
parameter to the
GXSetTransformHitTest function.

Table 7-9 Data type opcodes to modify a transform object (continued)

Constant Value Description

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-23

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Figure 7-7 Omit byte relationship with the data that follows

The compression type constants used in the omit byte are defined in the
gxTwoBitCompressionValues enumeration listed in Table 7-2. Long, word, or byte
data compression is applied if the enumeration constants are 0x00, 0x40, 0x80,
respectively. If the constant is 0xC0, the compression is “omit compression,” then the
stream format does not include the field or property. For example, if the omit byte in
Figure 7-7 contained 0x0C for bits 3 and 2, Data 3 constant or property would not appear
in the stream and Data 4 would follow Data 2.

Some omit byte enumerations provide multiple bytes of mask constants and shift
constants to accommodate the description of all of the properties of an object or all of the
fields of a structure. For example, the description of a layout shape requires three omit
bytes to specify the compression of all of the properties. The data corresponding to each
omit byte mask follows the mask. For multiple masks, the sequence is omit mask1,
data, omit mask2, data, omit mask3, data, and so on.

You can use an omit byte mask and its corresponding omit byte shift to interpret the
meaning of each of the bits in the omit byte. Each entry in an omit mask enumeration has
a name and a value. The name describes the property. The hexadecimal value of the
mask is given in the enumeration. The binary equivalent is the mask.

Omit byte

7 6 5 4 3 2 1 0

Data 1 Data 2 Data 3 Data 4

Data stream

Bits 7 and 6 define the compression type for Data 1
Bits 5 and 4 define the compression type for Data 2
Bits 3 and 2 define the compression type for Data 3
Bits 1 and 0 define the compression type for Data 4

C H A P T E R 7

QuickDraw GX Stream Format

7-24 About QuickDraw GX Stream Format

Table 7-10 shows a typical omit byte mask enumeration and its corresponding omit byte
shift enumeration values. The example shows the gxOmitTextMask enumeration
binary mask values and the bit shift from the corresponding gxOmitTextShift
enumeration.

Figure 7-8 shows how you can use an omit mask and corresponding omit shift to analyze
an omit byte in the data stream.

Figure 7-8 Select the bits from the omit byte

Table 7-10 Constants from the gxOmitTextMask and the gxOmitTextShift enumerations

gxOmitT extMask en umeration
Enumeration
value

Binar y mask
value

Bit shift
constant

gxOmitTextCharacterMask 0xC0 11000000 6

gxOmitTextPositionXMask 0x30 00110000 4

gxOmitTextPositionYMask 0x0C 00001100 2

gxOmitTextDataMask 0x02 00000010 1

Omit byte in data stream

gxOmit_Mask = 0xC0:
gxOmit_Shift = 6

Omit byte bits selected

Omit byte
masked by
gxOmit_Mask

Omit byte bits
selected
are shifted by
gxOmit_Shift

Omit byte bits selected
are shifted to the right 6 bits

00000011

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-25

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

First, the bits in the omit byte are masked with the gxOmit_Mask enumeration with a
value of 0xC0 and a binary value 11000000. This mask selects the first two high-order bits
of the omit byte. In order to interpret the two bits selected, shift the bits to the right by
the number of bits indicated by the gxOmit_Shift enumeration value. Once the bits
are selected and shifted, determine the compression of the data that follows by
comparing these bits with the gxTwoBitCompressionValues enumeration, as shown
in Figure 7-9. The values of the gxTwoBitCompressionValues enumeration are given
in Table 7-2.

Figure 7-9 Compare the bits selected and shifted with the compression enumeration

Here is an example of how this works with an omit byte describing the shape object for a
text shape. First you need to correlate the names of the constants in the omit mask
enumeration with the structures, enumerations, or properties of the object that they
describe. For more information on correlating omit bytes, see the appropriate
object-specific heading in the section“Data” beginning on page 7-22.

0 0 gxNoCompression = 0

gxTwoBitCompressionValues
enumeration

Compression type
determined

by comparison

Omit byte bits
selected and shifted

0 1 gxWordCompression = 1

1 0 gxByteCompression = 2

1 1 gxOmitCompression = 3

7 6 5 4 3 2 1 0

C H A P T E R 7

QuickDraw GX Stream Format

7-26 About QuickDraw GX Stream Format

Table 7-11 shows the correlation between the gxOmitTextMask names and the
parameters of the GXNewTextFunction .

A summary of these constants is provided in Table 7-10. The gxOmitTextMask
enumeration constants correlate with the properties of the text shape. The text shape is
described in the text shape chapter of Inside Macintosh: QuickDraw GX Typography.

The order of the gxOmitTextMask enumeration tells us that the data to follow will be
in the sequence charCount , position .x , position .y , and text .

For instance, suppose the omit byte is 0xA4 or binary 10100100.

The binary mask value for the gxOmitTextCharacterMask , 11000000, selects the high
order 2 bits, 10. The gxTwoBitCompressionValues enumeration with value 2 is
gxByteCompression . The data for charCount is therefore byte compressed.

The binary mask value for the gxOmitPositionXMask , 00110000, selects the next 2 bits,
10. The gxTwoBitCompressionValues enumeration with value 2 is again
gxByteCompression . The data for position.x is therefore byte compressed.

The binary mask value for the gxOmitPositionYMask , 00001100, selects the next 2 bits,
01. The gxTwoBitCompressionValues enumeration with value 1 is
gxWordCompression . The data for position.y is therefore word compressed.

The binary mask value for the gxOmitTextDataMask , 10, selects the next bit, 0. The
gxTwoBitCompressionValues enumeration with value 0 is gxNoCompression . The
text data is therefore not compressed.

The above example is from the analysis of a data stream of a flattened text shape. For
additional information about this example see the section “Analyzing a Flattened Text
Shape” beginning on page 7-72.

One or more omit mask bytes are included in the data stream whenever specific
enumeration or structure data is required to describe a specific object.

Omit mask and omit shift enumerations can be used to analyze QuickDraw GX omit
bytes and compare the masked bits to other values.

An omit byte is first masked to obtain the bits desired. The bits are then shifted using the
omit shift enumeration that corresponds to the omit byte. The resulting bits can then be
compared to other data in your application to obtain information about the data stream.

Table 7-11 Correlation between gxOmitTextMask and the GXNewText function

Constants in the gxOmitTextMask enumeration Text shape pr oper ty

gxOmitTextCharacterMask charCount

gxOmitTextPositionXMask position .x

gxOmitTextPositionYMask position .y

gxOmitTextDataMask text

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-27

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Listing 7-1 shows how to determine if the x-coordinate of the position field in a flattened
shape data stream is compressed.

Listing 7-1 Determining if position(x) is byte compressed

unsigned char a = ReadByte();

if ((a & (gxOmitTextPositionXMask >> gxOmitTextPositionXShift)) ==

 gxByteCompression

{

/* perform an action */

}

The function reads the byte, masks it with gxOmitTextPositionXMask to obtain the
desired two bits, and then shifts it by the amount given by the
gxOmitTextPositionShift . The resulting 2 bits can now be compared to the 2 bits of
gxByteCompression.

Header Data 7

The header marks the beginning of a new flattened shape in the data stream. The
gxHeaderTypeOpcode constant indicates that the version of QuickDraw GX that
generated the data stream follows. As new versions become available, older software
may not be able to interpret the newer portions of a data stream. The interpreter can then
look at the version number and skip over versions that it doesn’t understand. For
example, if an interpreter that understands only QuickDraw GX version 1.0 encounters
version 2.0 or if the interpreter finds a version 1.0 opcode, but doesn’t recognize the data,
an error is posted.

The byte after the version byte contains the gxFontListFlatten and
gxFontGlyphsFlatten flags. These flags are functional only if the shape contains text.

The gxFontListFlatten flag instructs the GXFlattenShape function to attach a tag
object to the flattened shape containing a list of the fonts referenced in the shape. A list of
all of the fonts used in the data stream are included at the end of the data stream.

The gxFontGlyphsFlatten flag instructs the GXFlattenShape function to attach a
tag to the flattened shape containing a list of the specific glyphs used from each font
referenced by the shape. A list of all of the glyph codes used by all of the fonts referenced
in a data stream is then included at the end of that data stream.

For more information about the font and glyph list flags, see the chapter “Shape Objects”
in Inside Macintosh: QuickDraw GX Objects.

The font list and glyph list are combined to form a tag that is of type
gxFlatFontListItem and designated 'flst '. During printing, only the fonts and
glyphs used in the stream are loaded to the printing device.

C H A P T E R 7

QuickDraw GX Stream Format

7-28 About QuickDraw GX Stream Format

The gxFlatFontList structure includes the gxFlatFontListItem structure. The
gxFlatFontListItem contains two arrays. The first is the array of font names. The
second is the array of glyphs that are used. The array of glyphs is obtained by setting a
bit in an array for each glyph that is used. If you ask only for the font names, the glyph
array will be omitted. The glyphs array cannot be selected without the font array
selected. In other words, you may specify either a list of fonts or specify a list of fonts
and glyphs to be listed at the end of the data stream.

The fonts and glyphs included in the flattened list, 'flst ', are used in the print file for
the QuickDraw GX portable digital document. For more information on the QuickDraw
GX portable digital document see the section “Portable Digital Documents” beginning
on page 7-53.

For more information on the QuickDraw GX print file, see the section “About Print Files
and Portable Digital Documents” beginning on page 7-51. For more information about
how to use the print file data, see the section “Obtaining Data From a Print File”
beginning on page 7-89.

For more information on the gxFlatFontName , gxFlatFontListItemTag , and
gxFlatFontList structures see the chapter “Fonts” in Inside Macintosh: QuickDraw GX
Typography.

New Shape Object Data 7

A new shape object always follows the style, ink, transform, and any other objects that
have been built for the shape object in the data stream. New shape data follows an
operation opcode gxNewObjectOpcode constant and a data type opcode containing
one of the constants in the gxGraphicsNewOpcode enumeration. Values 1
(gxEmptyType) through 13 (gxPictureType) are the constants from the
gxShapeTypes enumeration.

This opcode creates a new shape object with all of the properties of the previous shape
object in the data stream. If the current shape object is the first shape object in the stream,
then it is created with default properties.

The values of the constants for all of the shape objects are summarized in Table 7-3.
Shape types are described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw
GX Objects.

Empty Shape Data 7

The data type opcode with a value 1 is the gxEmptyType constant. Empty shapes store
no information in their geometries. For the current shape object, the gxEmptyType
means that the current shape is an empty shape. No data follows.

The gxEmptyTypes constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-29

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Point Shape Data 7

The data type opcode with a value 2 is the gxPointType constant. The data for the
fields of a gxPoint structure follows. The data sequence is x (Fixed), y (Fixed).

Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxPoint structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Line Shape Data 7

The data type opcode with a value 3 is the gxLineType constant. The data for the fields
of the gxLine structure follows. The data sequence is first.x,first.y
last.x,last.y .

 Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxLine structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Curve Shape Data 7

The data type opcode with a value 4 is the gxCurveType constant. The data for the
fields of the gxCurve structure follows. The fields in the structure correspond to the
parameters in the GXNewCurve function. The data sequence is x (first point), y (first
point), x (control point), y (control point), x (last point), and y (last point).

Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxCurve structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Rectangle Shape Data 7

The data type opcode with a value 5 is the gxRectangleType constant. The data
for the fields of the gxRectangle structure follows. The data sequence is left, top, right,
bottom. Typically, the first corner is left-top and the second corner is right-bottom; but
this order is not required. They need only be opposite corners of a rectangle.

C H A P T E R 7

QuickDraw GX Stream Format

7-30 About QuickDraw GX Stream Format

Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxRectangle structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Polygon Shape Data 7

The data type opcode with a value 6 is the gxPolygonType constant. The data for the
fields of the gxPolygons structure follows. The gxPolygons structure includes the
gxPolygon structure.

The data sequence is contours , vectors , omit byte, x (first point), y (first point), x
(second point), y (second point), x (third point), y (third point), and so on. The numbers
are compressed as fixed-point numbers.

The point array for polygons and paths stream is stored as relative positions, not
absolute positions (as is the case for the point arrays in polygon and path shapes.)

The omit byte is interpreted by the gxOmitPathMask and gxOmitPathShift
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the polygon shape, which are absolute. The numbers are compressed as fixed-point
numbers: gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last points in the contour. The coordinates of these points are relative to the first
absolute points and appear in the stream as differences. The relative values are stored as
differences. Thus each x value in the stream is subtracted from the prior value to
reconstruct the original value. Conversely, each value in the shape is subtracted from the
prior value to compute the delta to be written to the stream. The x and y coordinate
values are considered separately. Each may be independently byte, word, or long
compressed, using the same fixed-point compression as the absolute values. Each
subsequent contour has its own omit byte to describe the absolute initial point values
and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoCompression - read 1
long for contour and each vector count; gxWordCompression - read 1 word for contour
count and each vector count; gxByteCompression - read 1 byte for contour count and
each vector count.

The gxPolygons structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-31

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Path Shape Data 7

The data type opcode with a value 7 is the gxPathType constant. The data for the fields
of the gxPaths structure follows. The gxPaths structure includes the gxPath structure.

The data sequence is contours (number of contours), vectors (number of points in
the contour), control bytes, omit byte, x (absolute coordinate of first point), y (absolute
coordinate of first point), x (relative coordinate of second point), y (relative coordinate of
second point), x (relative coordinate of third point), y (relative coordinate of third point),
and so on.

A control byte contains control bits for each point off or on the path. Each point is
assigned a bit. Bits with value 1 are off the path; bits with value 0 are on the path. If the
number of points exceeds 8, multiple control bytes are used. If the number of points is
not an even multiple of 8, the final unused bits are ignored.

The omit byte is interpreted by the gxOmitPathMask and gxOmitPathShift
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the path shape, which are absolute coordinates. The numbers are compressed as
fixed-point numbers: gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last relative points in the contour. The coordinates of these points are relative to the
first absolute points and appear in the stream as differences. Thus each x value in the
stream is subtracted from the prior value to reconstruct the original value. Conversely,
each value in the shape is subtracted from the prior value to compute the delta to be
written to the stream. The x and y coordinate values are considered separately. Each may
be independently byte, word, or long compressed, using the same fixed-point
compression as the absolute values. Each subsequent contour has its own omit byte to
describe the absolute initial point values and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoCompression - read 1
long for contour and each vector count; gxWordCompression - read 1 word for contour
count and each vector count; gxByteCompression - read 1 byte for contour count and
each vector count.

The gxPaths structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

C H A P T E R 7

QuickDraw GX Stream Format

7-32 About QuickDraw GX Stream Format

Bitmap Shape Data 7

The data type opcode with a value 8 is the gxBitmapType constant. The data for the
fields of the gxBitmap and gxPoint structures follow. The gxBitmap structure
includes the gxColorSpace enumeration and the references to the gxColorSet and
gxColorProfile structures.

The data sequence is omit byte 1, image reference, width , height , rowBytes , omit
byte 2, pixelSize , space (color space), set (color set), profile (color profile),
omit byte 3, x (position), y (position).

Omit byte 1 is interpreted by the gxOmitBitmapMask1 and gxOmitBitmapShift1
enumerations. Omit byte 2 is interpreted by the gxOmitBitmapMask2
and gxOmitBitmapShift2 enumerations. Omit byte 3 is interpreted by the
gxOmitBitmapMask3 and gxOmitBitmapShift3 enumerations.

Data compression: The value may be a byte, word, or long. The value references a
previous bit image: a value of 1 references the first bit image, a value of 2 references the
second bit image, etc. A value of 0 indicates that the bitmap references a bit image
through a file alias. The bitmap shape must reference a tag containing the file alias and
offset as described in the chapter “Tag Objects” in Inside Macintosh: QuickDraw GX
Objects. All bitmap values are compressed as integers (see polygon coutour compression
above) except for the x and y coordinate positions. These are compressed as Fixed (see
polygon first absolute position). Unlike prior shape types in this section, bitmaps and
shape types described below can also have fields with the gxOmitCompression bits
set. In this case, the value 0 or nil is used wherever the omit compression bits are set.

The gxBitmap structure is described in the chapter “Bitmap Shapes” in Inside Macintosh:
QuickDraw GX Graphics.

Text Shape Data 7

The data type opcode with a value 9 is the gxTextType constant. The data that follows
corresponds to the parameters of the GXNewText function.

The data sequence is omit byte, byte length (of text), x (position), y (position),
charCount (number of characters), data (character text).

The data is the character stream or glyph indexes for the text. For nonRoman scripts, the
actual byte length may be more than the number of characters.

The omit byte is interpreted by the gxOmitTextDataMask and
gxOmitTextDataShift enumerations.

Data compression: The byte length is compressed as a long. The x and y coordinates are
compressed as a fixed number. The data stream may contain bytes or shorts. If the
stream contains shorts and all values are less than 255, then the stream may be
compressed. It is an error to specify a character count of zero (omit compression) and to
set the text data omit bit.

The GXNewText function is described in the chapter “Text Shapes” in Inside Macintosh:
QuickDraw GX Typography.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-33

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Glyph Shape Data 7

The data type opcode with a value 10 is the gxGlyphType constant. The data
correspond to the parameters in the GXNewGlyphs function and include the gxPoint
and gxStyle structures.

The data sequence is omit byte 1, charCount (number of characters), byte length (of
text), runNumber (number of runs), data (glyph character), omit byte 2, positions ,
advance , tangents , styleRuns , glyphStyles .

Omit byte 1 is interpreted by the gxOmitGlyphDataMask1 and
gxOmitGlyphDataShift1 enumerations. Omit byte 2 is interpreted by
the gxOmitGlyphDataMask2 and gxOmitGlyphDataShift2 enumerations.

Data compression: charCount , byte length, and runNumber are compressed as longs. If
charCount is 0, the data, positions, advance, and tangents are not read. If the
gxOmitGlyphOnePosition bit is set in the first byte, then the glyph shape contains 1
absolute position or as many positions as there are in the stream. In either case, all are
compressed as fixed point values, as bytes, words, or longs. Unlike polygon positions,
the x and y values do not have separate compression bits, nor are the positions stored in
the relative manner of polygons or paths.

The advances in the glyph shape are read after the positions, if the
gxOmitGlyphAdvance bits are not gxOmitCompression constant. The character
count determines the number of bytes read, as is the case with the control bits in a path
shape.

If the gxOmitGlyphTangent bits in the second omit byte are not equal to the
gxOmitCompression constant, the tangents parameter follows. The tangent values
are stored and compressed identically to the positions. If the number of runs
(runNumber) is greater than zero, then 1 bit in the second omit byte interprets the runs
as shorts or shorts compressed to bytes (like the text character compression). If
runNumber is greater than 0, then the style array is compressed into an array of bytes,
words, or longs. The values are references to previous styles in the stream: a value of 1
references the 1st style in the stream, and so on.

The GXNewGlyphs function is described in the chapter “Glyph Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Layout Shape Data 7

The data type opcode with a value 11 is the gxGlyphType constant. The data
correspond to the parameters in the GXNewLayout function.

Layouts are compressed in a way that is similar to glyphs. Like all types that are greater
than or equal to bitmap type, all fields default to zero and omit compression is allowed.
If the length is greater than 0, the data is read as shorts compressed as bytes or as an
uncompressed stream (like text and glyphs). If the style run number is greater than 0, the
style run array and style array are present identically to the glyph format. If the
omitLayoutHasBaseline bit is set in omit byte 3, uncompressed data is read the size

C H A P T E R 7

QuickDraw GX Stream Format

7-34 About QuickDraw GX Stream Format

of the gxLineBaselineRecord . If the level run number is greater than zero, the 4th
omit byte (read regardless) specifies the compression of the levelRunLength and level
arrays as an optionally compressed array of shorts.

The data sequence is omit byte 1, length , x (position), y (position), data, omit byte 2,
width , flush , set , just , options , omit byte 3, style , run number, level run
number, hasBaseline , style runs, styles, omit byte 4, level runs, levels.

Omit byte 1 is interpreted by the gxOmitLayoutMask1 and gxOmitLayoutShift1
enumerations. Omit byte 2 is interpreted by the gxOmitLayoutMask2
and gxOmitLayoutShift2 enumerations. Omit byte 3 is interpreted by the
gxOmitLayoutMask3 and gxOmitLayoutShift3 enumerations. Omit byte 4 is
interpreted by the gxOmitLayoutMask4 and gxOmitLayoutShift4 enumerations.

The GXNewLayout function is described in the chapter “Layout Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Full Shape Data 7

The data type opcode with a value 12 is the gxFullType constant. Full shapes store no
information in their geometries. For the current shape object, the gxFullType constant
is a parameter in the GXNewShape function. No data follows.

The gxFullType constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Picture Shape Data 7

The data type opcode with a value 13 is the gxPictureType constant. The data
corresponds to the parameters in the GXNewPicture function. The data sequence is
omit byte 1, the number of items (compressed as long as specified by the data type
opcode), followed by an array of shapes and optional arrays of styles, inks, and
transforms. The shape array must exist and may not contain nil (zero) references. The
styles, inks and transform array references may be omitted entirely.

The gxPicture structure is described in the chapter “Picture Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Modified Shape Object Data 7

Once a shape object is defined, it can be modified. Modified shape data follow a
gxSetDataOpcode operation opcode and a data type opcode containing one of the
constants from the gxShapeDataOpcode enumeration. Table 7-4 summarizes the values
of the constants for all of the modified shape objects.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-35

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Attrib utes Data 7

An attribute is added to the current shape object if the data type opcode has value 0. This
is the gxShapeAttributesOpcode constant.

The data for the fields of the gxShapeAttributes structure follow and are compressed
as long. That data may be 1, 2, or 4 bytes depending on the compression bits.

The gxShapeAttributes enumeration is described in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

Tag Data 7

A tag is added to the current shape if the data type opcode has value 1. This is the
gxShapeTagOpcode constant. The data for the parameters of the GXSetShapeTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetShapeTags function is described in the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects.

Fill Data 7

A shape fill, compressed as long, is added to the current shape if the data type opcode
has value 2. This is the gxShapeFillOpcode . A constant from the gxShapeFill
enumeration follows.

The gxShapeFills enumeration is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Style Object Data 7

Data for a new style object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 28. This is the gxStyleTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new style object with all of the properties of the previous style
object in the data stream. If the current style object is the first style object in the stream,
then it is created with default properties. No data follows for the new style object.

The style object is described in the chapter “Style Objects” in Inside Macintosh: QuickDraw
GX Objects.

C H A P T E R 7

QuickDraw GX Stream Format

7-36 About QuickDraw GX Stream Format

Modified Style Object Data 7

Once a style object is defined, it can be modified by the addition of style data. Modified
style data follows a gxSetDataOpcode operation opcode and a data type opcode
containing one of the constants from the gxStyleDataOpcode enumeration. Table 7-5
summarizes the values of the constants for all of the modified style objects. For all style
data, the opcodes described in the following subsections change the default style.

Attrib utes Data 7

An attribute is added to the current style object if the data type opcode has value 0. This
is the gxStyleAttributesOpcode constant.

The data, compressed as long, for the fields of the gxStyleAttribute structure follow
and may be byte, short, or long.

The gxStyleAttribute s enumeration is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.

Tag Data 7

A tag is added to the current style if the data type opcode has value 1. This is the
gxStyleTagOpcode constant. The data for the parameters of the GXSetStyleTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array);

The GXSetStyleTags function is described in the chapter “Style Objects” in Inside
Macintosh: QuickDraw GX Objects.

Curve Err or Data 7

A curve error, compressed as fixed-point, is added to the current style if the data type
opcode has value 2. This is the gxStyleCurveErrorOpcode constant. The data for the
error (Fixed) parameter of the GXSetStyleCurveError function follows.

For fixed point compression gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0;
a word compression value can represent any integer fixed-point number.

The GXSetStyleCurveError function is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-37

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Pen Data 7

A pen, compressed as fixed point, is added to the current style object if the data type
opcode has value 3. This is the gxStylePenOpcode constant. The data for the pen
(Fixed) parameter of the GXSetStylePen function follows.

For fixed-point compression gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0;
a word compression value can represent any integer fixed-point number.

The GXSetStylePen function is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Objects.

Join Data 7

A join is added to the current style object if the data type opcode has value 4. This is the
gxStyleJoinOpcode . The data for the fields of the gxJoinRecord structure follows.
The gxJoinRecord structure includes the gxShape and gxJoinAttribute structures.

The data sequence is omit byte, attributes (modifier flags) compressed as long, join
(corner shape) compressed as long (reference), miter (size limit) compressed as fixed
point.

The omit byte is interpreted by the gxOmitJoinMask and gxOmitJoinShift
enumerations.

The gxJoinAttribute structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Dash Data 7

A dash is added to the current style object if the data type opcode has value 5. This is the
gxStyleDashOpcode constant. The data for the fields of the gxDashRecord structure
follows. The gxShape and gxDashAttribute enumerations are included in the
gxDashRecord structure.

The data sequence is omit byte 1, attributes (modifier flags) compressed as long,
dash (shape used for dash) compressed as long (reference), advance (distance between
dashes) compressed as long, phase (start offset) compressed as fract, omit byte 2, and
scale (height of dash) compressed as fixed.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

Omit byte 1 is interpreted by the gxOmitDashMask1 and gxOmitDashShift1
enumerations. Omit byte 2 is interpreted by the gxOmitDashMask2 and
gxOmitDashShift2 enumerations.

The gxDashRecord structure is described in the chapter “Geometric Styles” of Inside
Macintosh: QuickDraw GX Graphics.

C H A P T E R 7

QuickDraw GX Stream Format

7-38 About QuickDraw GX Stream Format

Caps Data 7

A cap is added to the current style object if the data type opcode has value 6. This is the
gxStyleCapsOpcode . The data for the fields of the gxCapRecord structure follows.
The gxShape and gxCapAttribute enumerations are included in the gxCapRecord
structure.

The data sequence is omit byte, attributes (modifier flags) compressed as long,
startCap (shape used at start of contours) compressed as long (reference), endCap
(shape used at end of contours) compressed as long (reference).

The omit byte is interpreted by the gxOmitCapMask and gxOmitCapShift
enumerations.

The gxCapRecord structure is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Graphics.

Pattern Data 7

A pattern is added to the current style object if the data type opcode has value 7. This is
the gxStylePatternOpcode constant. The data for the fields of the
gxPatternRecord structure follows. The gxShape , gxPatternAttribute , and
gxPoint enumerations are included in the gxPatternRecord structure.

The data sequence is omit byte 1, attributes (modifier flags) compressed as long,
pattern (shape to use as pattern) compressed as long (reference), x (x-coordinate of
vector u for pattern grid) compressed as fixed, y (y-coordinate of vector u for pattern
grid) compressed as fixed, omit byte 2, x (x coordinate of vector v for pattern grid)
compressed as fixed, and y (y-coordinate of vector v for pattern grid) compressed as
fixed. Note that for all of these, omit (zero) values are permitted.

Omit byte 1 is interpreted by the gxOmitPatternMask1 and gxOmitPatternShift1
enumerations. Omit byte 2 is interpreted by the gxOmitPatternMask2 and
gxOmitPatternShift2 enumerations.

The gxPatternRecord structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Text Attrib utes Data 7

A text attribute compressed as long is added to the current style object if the data type
opcode has value 8. This is the gxStyleTextAttributesOpcode constant. The data
may be byte, word, or long.

The gxTextAttribute enumeration is described in the chapter “Typographic Styles”
in Inside Macintosh: QuickDraw GX Typography.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-39

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Text Siz e Data 7

The text size, compressed as long, for the current style object is specified if the data type
opcode has value 9. This is the gxStyleTextSizeOpcode constant. The data for the
size (fixed point size of text) parameter of the GXSetStyleTextSize function follows.

The GXSetStyleTextSize function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Font Data 7

A font is added to the current style object if the data type opcode has value 10. This is the
gxStyleFontOpcode constant. The attribute data for the GXSetStyleFont function
follows. It is compressed as long (reference); the reference is to a font name defined
earlier in the stream

The GXSetStyleFont function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Text Face Data 7

A text face is added to the current style object if the data type opcode has value 11. This
is the gxStyleTextFaceOpcode constant. The data for the fields of the gxTextFace
structure follows.

The data sequence is omit byte, faceLayers compressed as long, mapping size and
advanceMapping.

The advanceMapping in text face and transform mapping is reordered so that common
mappings can be stored in fewer bytes. The omit byte and number of layers is followed
by an optional byte (whose compression is described by omitFaceMapping).

The value of the byte may be one of the following:

Byte Value

2 Mapping contains identity plus elements h and k.

4 Same as byte 2, plus elements a and d.

6 Same as byte 4, plus elements b and c.

9 Same as byte 6 plus elements u, v, and w.

C H A P T E R 7

QuickDraw GX Stream Format

7-40 About QuickDraw GX Stream Format

The meaning of the elements mentioned in the previous table are shown in Figure 7-10.

Figure 7-10 Mapping matrix elements

The byte value is multiplied by the compression level to specify the length of the
mapping data that follows. Byte compression multiplies by 1; word compression
multiplies by 2; long compression multiplies by 4. The values in the left and middle
columns are compressed as fixed values. The values in the right column are compressed
as fract values. All elements whether the stream contains 2, 4, 6, or 9 numbers, have the
same level of compression.

If the faceLayers value is greater than 0, then following the mapping data is an omit
byte as described by gxOmitFaceLayer Mask 1. The omit byte is followed by
the outlineFill compressed as a long, the flags comrpessed as a long, the
outlineStyle and reference compressed as a long, and the outlineTransform , also
comrpessed as a long. The second omit byte describes the bold x and bold y, compressed
as fixed values. This sequence is repeated for the second and all remaining layers.

The omit byte is interpreted by the gxOmitFaceMask and gxOmitFaceShift
enumerations.

The gxTextFace structure is described in the chapter “Typographic Styles” in Inside
Macintosh: QuickDraw GX Typography.

Platf orm Data 7

The platform, script, and language is defined for the current object if the data type
opcode has value 12. This is the gxStylePlatformOpcode constant. Data from the
gxFontPlatform , gxFontScript , and gxFontLanguage enumerations follow.

The platform, script, and language are combined into a long and then that value is
compressed as a long that is equal to

(platform << 16) | (script << 8) | language

The gxFontPlatform , gxFontScript , and gxFontLanguage enumerations are
described in the chapter “Font Objects” in Inside Macintosh: QuickDraw GX Typography.

a b u

c d v

wh k

Perspective
elements

fract1

Linear
elements

Translation
elements

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-41

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Font Variations Data 7

Font variations are added to the current style object if the data type opcode has value 13.
The data is uncompressed. This is the gxStyleFontVariationsOpcode constant. The
data for the fields of the gxFontVariation structure follows. The
gxFontVariationTag structure is included in the gxFontVariations structure.

The data sequence is an array [name (variation tag), value (Fixed)]. The opcode size
specifies the number of variations in the stream.

The gxFontVariation structure is described in the chapter “Fonts” in Inside Macintosh:
QuickDraw GX Typography.

Run Contr ols Data 7

Run controls are added to the current style object if the data type opcode has value 14.
The data is uncompressed. This is the gxStyleRunControlsOpcode constant. The
data for the fields of the gxRunControls structure follows. The opcode size specifies
the size in bytes of the run control stream.

The gxRunControls structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run Priority J ustification Override Data 7

A run priority justification override is added to the current style object if
the data type opcode has value 15. The data is uncompressed. This is the
gxStyleRunPriorityJustOverrideOpcode constant. The data for the fields
of the gxPriorityJustificationOverride structure follows. The opcode size
specifies the size in bytes of the run control stream.

The data sequence is an array of delta. The opcode specifies the byte size.

The gxPriorityJustificationOverride structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Gl yph J ustification Overrides Data 7

A run glyph justification override is added to the current style object if the
data type opcode has value 16. The data is uncompressed. This is the
gxStyleRunGlyphJustOverrideOpcode constant. The data for the fields
of the gxGlyphJustificationOverride structure follows. The
gxGlyphJustificationOverride structure includes the gxGlyphcode
and gxWidthDeltaRecord enumerations. The opcode specifies the byte size.

The data sequence is count , glyphJustificationOverrides.

The gxGlyphJustificationOverride structure is described in the chapter “Layout
Line Controls” in Inside Macintosh: QuickDraw GX Typography.

C H A P T E R 7

QuickDraw GX Stream Format

7-42 About QuickDraw GX Stream Format

Run Gl yph Substitutions Data 7

A run glyph substitution is added to the current style object if the data type
opcode has value 17. The data is uncompressed. This is the
gxStyleRunGlyphSubstitutionsOpcode constant. The data for the fields
of the gxGlyphSubstitution structure follows.

The data sequence is count , glyphsubstitutions[].

The GXSetStyleRunGlyphSubstitutions structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Features Data 7

A run feature is added to the current style object if the data type opcode has value 18.
The data is uncompressed. This is the gxStyleRunFeaturesOpcode constant. The
data for the fields of the gxRunFeature structure follows.

The data sequence is count , runFeatures[].

The gxRunFeature structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run K erning Adjustments Data 7

Run kerning adjustment is added to the current style object if the data type opcode has
value 19. The data is uncompressed. This is the
gxStyleRunKerningAdjustmentsOpcode constant. The data for the fields of the
gxKerningAdjustment structure follows.

The data sequence is count , kerningAdjustments[].

The gxKerningAdjustment structure is described in the chapter “Layout Line
Controls” in Inside Macintosh: QuickDraw GX Typography.

Style J ustification Data 7

Style justification is added to the current style object if the data type opcode has
value 20. The data is compressed as fract. This is the gxStyleJustificationOpcode
constant. The data for the justify parameter of the GXSetStyleJustification
function follows.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

The GXSetStyleJustification function is described in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-43

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

New Ink Object Data 7

Data for a new ink object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 29. This is the gxInkTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new ink object with all of the properties of the previous ink object
in the data stream. If the current ink object is the first ink object in the stream, then it is
created with default properties. No data follows for the new ink object.

The ink object is described in the chapter “Ink Objects” in Inside Macintosh: QuickDraw
GX Objects.

Modified Ink Object Data 7

Once an ink object is defined, it can be modified by the addition of ink data. Modified
style data follows a gxSetDataOpcode operation opcode and a data type opcode
containing one of the constants from the gxInkDataOpcode enumeration. Table 7-6
summarizes the values of the constants for all of the modified ink objects.

Attrib utes Data 7

An attribute, compressed as long, is added to the current ink object if the data type
opcode has value 0. This is the gxInkAttributes Opcode constant.

The data for the fields of the gxInkAttributes structure follow. The next two bytes
contain the ink attribute flags.

The gxInkAttributes enumeration is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

Tag Data 7

A tag is added to the current ink object if the data type opcode has value 1. This is the
gxInkTagOpcode constant. The data for the parameters of the GXSetInkTags function
follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The sequence is tagType , index , oldCount , newCount , items .

The GXSetInkTags function is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

C H A P T E R 7

QuickDraw GX Stream Format

7-44 About QuickDraw GX Stream Format

Color Data 7

A color is added to the current ink object if the data type opcode has value 2. This is the
gxInkColorOpcode constant. The data for the fields of the gxInkAttribute s
structure follow. The data for the fields of the gxColor structure follows.

The data sequence is omit byte, space (long), profile (long). The value of the omit
byte may be omit compression.

The omit byte is interpreted by the gxOmitColorsMask and gxOmitColorsShift
enumerations.

If space is indexed space, gxOmitColoursIndex is used to determine index
compression (compressed as long), which is read first, followed by color set (compressed
as long), with the compression determined by gxOmitColorsIndexSet .

If space is not indexed space, the color space determines the number of elements read
from the stream as shown in Table 7-12.

The bits in the omit byte determine whether a word is read from the stream for each
word in the component or whether the byte is repeated twice for each word. For
example, if the byte contains 0x3A, the word contains 0X3A3A. The
gxOmitColorsComponentsMask sets 1 bit for up to 4 components.

The gxColor enumeration is described in the chapter “Ink Objects” in Inside Macintosh:
QuickDraw GX Objects.

Transf er Mode Data 7

A transfer mode is added to the current ink object if the data type opcode has value 3.
This is the gxInkTransferModeOpcode constant. The data for the fields of the
gxTransferMode structure follow.

The data sequence is omit byte 1, space , compressed as long, set , compresssed as
long,profile , compressed as long; omits are allowed. Omit byte 2 follows and then
sourceMatrix , deviceMatrix, resultMatrix , flags , and component ; omits are
allowed.

Table 7-12 Color space and words read

16-bit 1

32-bit 2

gray, index 1

gray alpha 2

RGB, HSV, HLS, YXY, XYZ, LUV, LAB, YIQ 3

RGBA, CYMK 4

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-45

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

The sourceMatrix , deviceMatrix, and resultMatrix are compressed as arrays of
Fixed values. The color space determines the number of transfer components that follow,
as shown in Table 7-12.

Each transfer component is preceded by an omit byte
(gxomitTransferComponentMask1) that describes the first 4 fields of the structure.
Omit byte one is followed by gxOmitTransferComponentModeMask, compressed as
byte, gxOmitTransferComponentFlagsMask , compressed as byte,
gxOmitTransferComponentSourceMinimumShift , compressed as color,
gxOmitTransferComponentSourceMaximumMask , compressed as color, and
gxOmitTransferComponentDeviceMinimumMask , compressed as color. Omit byte 2
follows which describes gxOmitTransferComponentDeviceMaximumMask,
gxOmitTransferComponentClampMinimumMask,gxOmitTransferComponentCla
mpMaximumMask,and gxOmitTransferComponentOperandMask; all these are
compressed as color. The color compression specifies that the field may be omitted
(inherits value from default), or is represented by a repeated byte (for example, 0X7A
==0X7A7A), or is represented as a word.

Note that the mode and flags in the first omit byte have a single bit

The gxTransferMode structure is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Object Transform Data 7

Data for a new transform object follows a gxNewObjectOpcode operation opcode and
a data type opcode with a value 0x2A. This is the gxTransformTypeOpcode constant
from the gxGraphicsNewOpcode enumeration.

This opcode creates a new transform object with all of the properties of the previous
transform object in the data stream. If the current transform object is the first transform
object in the stream, then it is created with default properties. No data follows for the
new transform object.

The transform object is described in the chapter “Transform Objects” in Inside Macintosh:
QuickDraw GX Objects. For additional information about transform mapping, see
“Mapping Data” on page 7-46.

Modified Transform Object Data 7

Once a transform object is defined in the data stream, it can then be modified. Modified
transform object data follows a gxSetDataOpcode operation opcode and a data type
opcode containing one of the constants from the gxTransformDataOpcode
enumeration. Table 7-9 summarizes the values of the constants for all of the modified
transform objects.

C H A P T E R 7

QuickDraw GX Stream Format

7-46 About QuickDraw GX Stream Format

Reserved Opcode f or Modified Transf orm Data 7

The data type opcode with value 0 is reserved for future expansion.

Tag Data 7

A tag is added to the current transform object if the data type opcode has value 1. This is
the gxTransformTagOpcode constant. The data for the parameters of the
GXSetTransformTags function follows.

The data stream sequence is tagType , index , oldCount , newCount , items[] .

The GXSetTransformTags function is described in the chapter “Transform Objects” of
Inside Macintosh: QuickDraw GX Objects.

Clip Data 7

A clip, compressed as long (reference) is added to the current transform object if the data
type opcode has value 2. This is the gxTransformClipOpcode constant. The data for
the clip parameter of the GXSetTransformClip function follows.

The GXSetTransformClip function is described in the chapter “Transform Objects” in
Inside Macintosh: QuickDraw GX Objects.

Mapping Data 7

A mapping is added to the current transform object if the data type opcode has value 3.
This is the gxTransformMappingOpcode constant. The data for the map parameter of
the GXSetTransformMapping function follows.

A transform mapping is initiated by the sequential appearance of the
gxSetDataOpcode , and gxTransformDataOpcode constants in the data stream.

The bytes following the appearance in the data stream of the gxTransformMapping
constant from the gxTransformDataOpcode enumeration have a special format. The
interpretation of the bytes that follow require the determination of a size constant. The
size to be used for a specific transform depends upon the compression and the size of the
transform data specified by the byte containing the previous
gxGraphicsOperationOpcode constant. The size is the number of bytes, words, or
longs, depending upon the type of compression.

If the size obtained from the gxGraphicsOperationOpcode byte indicated that there
are 24 bytes of transform data and the byte containing the
gxTransformMappingOpcode constant indicated that there was no compression, then
the size of each transform attribute would be 4 bytes (longs) and the size constant for our
transformation bytes format would be size 24/4 = 6. The interpretation of the mapping
that occurs for each mapping size is summarized in the section “Text Face Data” on
page 7-39.

The GXSetTransformMapping function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-47

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Part Mask Data 7

A part mask, compressed as a long, is added to the current transform object if the data
type opcode has value 4. This is the gxTransformPartMaskOpcode constant. The data
for the mask parameter of the GXSetTransformHitTest function follows.

The GXSetTransformHitTest function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

Tolerance Data 7

Tolerance, compressed as long, is added to the current transform object if the data type
opcode has value 5. This is the gxTransformToleranceOpcode constant. The data for
the tolerance parameter of the GXSetTransformHitTest function follows.

The GXSetTransformHitTest function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

New Color Profile Object Data 7

Data for a new color profile object follows a gxNewObjectOpcode operation opcode
and a data type opcode with a value 0x2B. This is the gxColorProfileTypeOpcode
constant from the gxGraphicsNewOpcode enumeration.

This opcode creates a new color profile object with all of the properties of the previous
color profile object in the data stream. If the current color profile object is the first color
profile object in the stream, then it is created with default properties. The data that
follows is uncompressed; the opcode size specifies the size of the stream.

The color profile object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Profile Object Data 7

Once a color profile object is defined in the data stream, it can be modified. Modified
color set object data follows a gxSetDataOpcode operation opcode and a data type
opcode containing one of the constants from the gxColorProfileDataOpcode
enumeration. Table 7-8 summarizes the values of the constants for all of the modified
color profile objects.

Reserved Opcode f or Modified Color Pr ofile Data 7

The data type opcode with value 0 is reserved for future expansion.

Color Pr ofile Tag Data 7

A tag for the current color profile object is added if the data type opcode has value 1.
This is the gxColorProfileTagOpcode constant. The data for the parameters of the
GXSetColorProfileTags function follows.

C H A P T E R 7

QuickDraw GX Stream Format

7-48 About QuickDraw GX Stream Format

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetColorProfileTags function is described in the chapter “Color Objects” in
Inside Macintosh: QuickDraw GX Objects.

New Color Set Object Data 7

Data for a new color set object follows a gxNewObjectOpcode operation opcode and a
data type opcode with a value 0x2C. This is the gxColorSetTypeOpcode constant
from the gxGraphicsNewOpcode enumeration.

This opcode creates a new color set object with all of the properties of the previous color
set object in the data stream. If the current color set object is the first color set object in
the stream, then it is created with default properties.

The color set object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Set Object Data 7

Once a color set object is defined in the data stream, it can be modified. Modified color
set object data follows an operation opcode gxSetDataOpcode constant from the
gxGraphicsOperationOpcode enumeration and a data type opcode containing one
of the constants from the gxColorSetDataOpcode enumeration. Table 7-7 summarizes
the values of the constants for modified color set objects.

The first byte or two is space, space and specifies the number of components. The
remaining stream is colors. The compression for the color set can be byte or word. To
determine the number of colors in the stream use the following formula:

(size - colorSpaceByte * compression) / componentsInColorSpace *

compression

For instance, if the space is gxRGBSpace, the compression is gxByteCompression ,
and the size is 7, the number of colors would be (7 - 1 * 1)/3*1, which evaluates to 2. If
the stream continued with 0, 0, 0, 0XFF, 0XFF, 0XFF, then the color set would contain
black (0X0000, 0X0000,0X0000) and white 0XFFFF, 0XFFFF, 0XFFFF). As the example
shows, the color set entries are compressed as colors. See section “Transfer Mode Data”
on page 7-44 for information on color compression.

Reserved Opcode f or Modified Color Set Data 7

The data type opcode with value 0 is reserved for future expansion.

C H A P T E R 7

QuickDraw GX Stream Format

About QuickDraw GX Stream Format 7-49

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Color Set Tag Data 7

A tag is added to the current color set object if the data type opcode has value 1. This is
the gxColorSetTagOpcode constant. The data for the parameters of the
GXSetColorSetTags function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetColorSetTags function is described in the chapter “Color Objects” of Inside
Macintosh: QuickDraw GX Objects.

New Tag Object Data 7

Data for a new tag object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x2D. This is the gxTagTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new tag object with all of the properties of the previous tag object
in the data stream. If the current tag object is the first tag object in the stream, then it is
created with default properties. For tag data is uncompressed. The first parameter is tag
type (long), followed by data computed from opcode length - sizeof (long).

The GXNewtag function is described in the chapter “Tag Objects” in Inside Macintosh:
QuickDraw GX Objects.

New Bit Image Object Data 7

Data for a bit image object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x2E. This is the gxBitImageTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

The data sequence is omit byte (gxOmitBitImage), followed by the fields described by
omit byte: rowBytes , compressed as long, height , compressed as long, and data
compressed in the custom format described ahead. The bit image is compressed only if it
makes the data stream smaller.

The GXNewBitmap function is described in the chapter “Bitmap Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

The bit image compression byte appears only in data streams containing a bitmap shape.
This byte describes how each section of a bit image is compressed. The bit image
compression byte follows the bytes containing the bit image attributes described by the
gxOmitBitImageMask constant.

Bit images are described in the “Bitmap Shapes” chapter of Inside Macintosh: QuickDraw
GX Graphics.

The bit image compression byte has the format xx yyyyyy.

C H A P T E R 7

QuickDraw GX Stream Format

7-50 About QuickDraw GX Stream Format

The xx bits describe which of the bit image compression type opcodes is used for the
next part of the bit image. The bit image compression opcode values are either 0, 1, 2,
or 3.

The yyyyyy bits describe the number of times, z, that the action defined by the bit image
compression opcode is replicated. The number of replications, z, can vary range from 0
to 63. Table 7-13 summarizes the four compression opcodes.

The analysis of a bit image compression byte in a stream format is described in the
section “Analyzing a Flattened Bitmap Shape” beginning on page 7-81.

New Font Name Data 7

Data for a font name follows a gxNewObjectOpcode operation opcode and a data type
opcode with a value 0x2F. This is the gxFontNameTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

The fields in the gxFlatFontName structure follow. This structure includes
the gxFontName , gxFontPlatform , gxFontScr ipt, gxFontLanguage , and
gxFontName structures, the byte length of the name and the name itself.

The stream exactly mirrors the sequence and size of the fields in the gxFlatFontName
structure.

Table 7-13 Bit image compression opcodes

Bit ima ge
compression

opcode Bit ima ge compression description

0 Add the z bytes of bit image that follow to the current row. Z Bytes of
data follow.

1 Repeat 1 byte z times and add the bits to the current row. One byte of
data follows.

2 Copy z bytes of the previous row and add the bits to the current row.
No data follows.

3 Copy the previous row of bits z times and add the bits to the next z
rows. No data follows.

C H A P T E R 7

QuickDraw GX Stream Format

About Print Files and Portable Digital Documents 7-51

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

New Trailer Object Data 7

Data for a trailer object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x3F. This is the gxTrailerTypeOpcode constant from the
gxGraphicsNewOpcode enumeration. This is the termination (last) object in the stream.
No data follows.

The last two bytes of a stream are always 0x01 and 0x3F. The next to the last byte in a
data stream contains a gxNewObjectOpcode constant with a record size of 1 byte. The
last byte in a data stream contains a gxTrailerTypeOpcode constant with a
gxTwoBitCompression value of 0, indicating the gxNoCompression constant.

About Print Files and Portable Digital Documents 7

QuickDraw GX printing performs background printing to all devices, allowing users
continued access to the application. The printing process includes the creation of a
specialized print file called a portable digital document.

Print Files 7
When an application prints, QuickDraw GX collects the printing information sent by the
application and writes it to a file. This process is called spooling and the file that is created
is called a print file. QuickDraw GX then reads the print file and prints it to the
appropriate device. The read and interpretation process is called despooling and the
printing process is called imaging.

A print file can be duplicated, dragged onto desktop printers, manipulated by print
queues, and redirected to other printer devices without re-spooling. Print files also
provide a device-independent information interchange format.

The QuickDraw GX spooling process consists of creating a print file and writing a stream
of flattened shape data to that file. This data is unflattened during the unspooling
process. Additional information must be provided in the print files. This includes job,
formatting, and optimization information.

The job-related information includes the name of the job, the destination device, quality,
and the number of copies. The formatting information includes the page sizes and
orientations. The optimization information includes the font database.

C H A P T E R 7

QuickDraw GX Stream Format

7-52 About Print Files and Portable Digital Documents

The print file consists of two forks, a data fork and a resource fork. The data fork
contains all the core data necessary to print a document. This consists of the flattened job
data, the flattened shape data for each page, and the flattened format data for each page.

The print file begins with a 32-bit QuickDraw GX version followed by a 32-bit offset that
describes the number of bytes from the beginning of the file to the start of the page
directory located at the end of the file.

The page directory contains a 32-bit number indicating the number of pages in the
document, an array of page sizes, and offsets to the start of the flattened shape data for
each page. The format of a print file for a four-page document is shown in Figure 7-11.

Figure 7-11 Print file format

Offset to page directory

Private data

Private date

Flattened shape data
for page 1

Private data

Flattened shape data
for page 2

Flattened shape data
for page 3

Private data

Version Stamp

Flattened shape data
for page 4

Page directory

Number of page = 4
Size of page 1

Offset to page 1
Size of page 2

Offset to page 2
Size of page 3

Offset to page 3
Size of page 4

Offset to page 4

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-53

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

QuickDra w Picture Data in Print Files

When creating a print file from a document that contains QuickDraw
drawing commands, QuickDraw GX by default saves the QuickDraw
data for each page in a tag object of tag type 'pict' attached to a
rectangle shape. Therefore, if you are examining the data stream of a
print file, you should note that a rectangle shape with an attached tag
object of type 'pict' indicates the presence of QuickDraw data. For
more information about this tag object and QuickDraw data, see the
discussion of the 'pict' tag object in the advanced printing features
chapter of Inside Macintosh: QuickDraw GX Printing. ◆

Portable Digital Documents 7
QuickDraw GX provides document portability that is independent of fonts, applications,
and output devices. The users of your application can create and save their results in the
form of a portable digital document or PDD.

A portable digital document consists of the print file containing flattened shapes
described in the previous section. These files provide all of the information necessary to
view and print the document, including the fonts that are used and other information
necessary to render the text and graphics. A portable digital document can be sent to
other Macintosh users and viewed or printed simply by opening the documents with a
viewer that can interpret them.

For more information on print files and portable digital documents, see the chapters
“Introduction to QuickDraw GX Printing” and “Core Printing Features” of Inside
Macintosh: QuickDraw GX Printing.

Using QuickDraw GX Stream Format 7

This section describes the use of the GraphicsBug utility to analyze flattened data
streams. Sample code is provided that draws a QuickDraw GX picture containing seven
shapes. GraphicsBug is used to flatten each shape. The resulting data stream for each
flattened shape is then analyzed.

This section describes how you can

■ flatten shapes using GraphicsBug

■ interpret the GraphicsBug flattened shape output format

■ analyze flattened shape data streams

C H A P T E R 7

QuickDraw GX Stream Format

7-54 Using QuickDraw GX Stream Format

Flattening Shapes With GraphicsBug 7
GraphicsBug is not just a QuickDraw GX debugging tool. It also allows you to evaluate
the data at specific memory locations. You can use GraphicsBug to look at the data
describing a QuickDraw GX shape both before and after you invoke the
GXFlattenShape function. This allows you to compare the original data and the
stream format after the GXFlattenShape function has been called.

For more information concerning GraphicsBug, see the chapter “QuickDraw GX
Debugging ” in this book.

You can use GraphicsBug to analyze a data stream by using the following procedure:

1. Create a QuickDraw GX shape.

2. Use the GraphicsBug heap dump HD command to determine the memory location of
the QuickDraw GX shape to be flattened.

3. Copy the memory location of the shape to the clipboard.

4. Type FL and paste the memory address. The command line should look like this:

fl <memory address>

For example: fl 41d788

5. The command FL applies the GXFlattenShape function to the shape located at the
specified memory address. This results in a flattened shape. An annotated version of
the QuickDraw GX data stream appears in the GraphicsBug window. GraphicsBug
does not alter the graphics memory in any way.

To create a flattened file, you can use the command

fl <memory address> "filename"

To view the contents of a file, such as a print file generated by printing a document, you
can use the command

uf "filename"

To view the stream associated with a particular page of a document, you can use the
command

uf <page number> "filename"

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-55

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Here are some guidelines for using GraphicsBug to analyze data streams:

■ The data in parentheses in the GraphicsBug window are the compressed byte codes
that were generated when the original shape was flattened. The data not in
parenthesis is GraphicsBug’s brief annotation of the data stream. The annotation
usually describes the shape data in its original format. The data in parentheses always
relates to the immediately previous data that is not in parentheses.

■ Sometimes GraphicsBug will not give the name of the font. This is because
GraphicsBug reads only the information contained in memory. GraphicsBug cannot
make a call to get the information. If GraphicsBug is used to flatten shapes that were
generated by a client call, the required data will always already be in memory and
will therefore be available. In this case, the GraphicsBug annotation will always
provide the name of the font.

■ If part of an object is compressed and another part of the object is not compressed,
GraphicsBug reports that there is “no compression.”

■ Bracketed numbers are references. When gxSetData or gxSetReference opcodes
are encountered, they can’t generate pointers to other objects. They have to generate
references. The first object is given reference 1. Subsequent objects are given references
2, 3, and so on.

Listing 7-2 shows an example of the information provided by GraphicsBug for a
flattened line.

Listing 7-2 A GraphicsBug annotation of the data stream of a flattened shape

fl 0c79090

owners 1)

newObject; size: #2 (03)

headerType; byte compression (80)

version == 1.0; flags == fontListFlatten | fontGlyphsFlatten

(01 03)

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 00)

Listing 7-2 shows only the beginning of a data stream. For more examples of
GraphicsBug annotation of flattened shape data streams, see the next section.

C H A P T E R 7

QuickDraw GX Stream Format

7-56 Using QuickDraw GX Stream Format

Analyzing the Data Streams of Flattened Shapes 7
This section first uses sample code to generate a picture with seven shapes. Each of the
seven shapes is then flattened using the procedure described in the section “Flattening
Shapes With GraphicsBug” beginning on page 7-54. The section “Analyzing the Data
Streams of Flattened Shapes” beginning on page 7-56 describes how to use GraphicsBug
to interpret the data for each of the seven shapes. The GraphicsBug data stream output is
provided for each flattened shape in Listing 7-4 through Listing 7-10. The byte-by-byte
analysis of the data stream for each flattened shape is provided in Table 7-14 through
Table 7-20.

Creating a Picture With Seven Shapes 7

Listing 7-3 creates seven primitive shapes and adds them to a window’s page shape to
form the picture shown in Figure 7-12. This picture contains (from left to right and top to
bottom) a line, rectangle, curve, path, text, polygon and bitmap shape.

Listing 7-3 A picture with seven shapes

void CreateSampleImage(WindowPtr wind)

{

gxShape thePage;

gxShape theLine;

line lineData = {ff(25), ff(25), ff(125), ff(125)};

gxShape theRect;

gxRectangle rectData = {ff(25), ff(25), ff(75), ff(75)};

gxShape theCurve;

gxCurve curveData = {ff(25), ff(25), ff(275), ff(75), ff(125),

ff(125)};

gxShape thePath;

long tripleEightData[] = {1/* # of contours */, 6 /* # of points

*/, 0xff000000,

 0, 0,

 ff(75), 0,

 ff(5), ff(50),

 ff(75), ff(100),

 0, ff(100),

 ff(75), ff(50)};

gxShape theText;

gxRectangle theTextBounds;

gxColor textColor;

fixed x,y;

short loop;

gxShape thePolygon;

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-57

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

long starData[] = {1, /* number of contours */ 5, /* number of

points */

ff(60), 0, ff(90), ff(90), ff(0), ff(30), ff(120), ff(30),

ff(0), ff(90)}; /* the points */

gxShape theBitmap;

/* retrieve the page shape so we can add to it */

thePage = GetDocShape(wind);

/* Create a line shape*/

theLine = GXNewLine (&lineData);

GXSetShapePen(theLine, ff(9));

GXAddToShape(thePage, theLine);

GXDisposeShape(theLine);

/* create a rectangle; the color of the rectangle is red */

theRect = GXNewRectangle(&rectData);

{gxColor redColor =

{gxRGBSpace, nil,{

0xFFFF,0,0}};

GXSetShapeColor(theRect, &redColor);

}

GXSetShapeFill (theRect, closedFrameFill);

GXMoveShapeTo (theRect, ff(150), ff(25));

GXAddToShape(thePage, theRect);

GXDisposeShape(theRect);

/* create a curve shape; the shape has a pen thickness of 3.25 */

theCurve = GXNewCurve(&curveData);

GXSetShapePen(theCurve, fl(3.25));

GXMoveShapeTo (theCurve, ff(210), ff(25));

GXAddToShape(thePage, theCurve);

GXDisposeShape(theCurve);

/* create a path shape; the shape’s color is green and the pen

thickness is 2 */

thePath = GXNewPaths((paths *) tripleEightData);

GXSetShapeFill (thePath, closedFrameFill);

GXSetShapePen(thePath, ff(2));

GXSetShapeCommonColor (thePath, green);

C H A P T E R 7

QuickDraw GX Stream Format

7-58 Using QuickDraw GX Stream Format

GXMoveShapeTo (thePath, ff(390), ff(25));

GXAddToShape(thePage, thePath);

GXDisposeShape(thePath);

/* create a text shape; the shape is the characters GX colored in

hsv space and rotated 90 degrees */

/* create the text, set the font size, and set the font name */

theText = NewText(2,(unsigned char*)"GX", nil);

GXSetShapeCommonFont(theText, timesFont);

GXSetShapeTextSize(theText, ff(135));

GXMoveShapeTo (theText, ff(25), ff(230));

GXSetShapeAttributes (theText, gxMapTransformShape);

/* create an hsv color space and set up the initial colors */

textColor.space = hsvSpace;

textColor.profile = nil;

textColor.element.hsv.hue = 0x7400;

textColor.element.hsv.saturation = 0xFFFF;

textColor.element.hsv.value = 0xFFFF;

/* get the bounds of "theText" and determine the coordinates of

the bottom left corner */

GXGetShapeBounds(theText, 0L, &theTextBounds);

x = theTextBounds.left;

y = theTextBounds.bottom;

/* rotate "theText"; add each letter to the picture */

for (loop = 0; loop < 6; loop++) {

GXSetShapeColor(theText, &textColor);

GXRotateShape(theText, ff(90), x, y);

GXAddToShape(thePage, theText);

textColor.element.hsv.hue += 0x0940;

}

GXDisposeShape(theText);

/* create a polygon shape; the shape’s color is yellow, the pen

size is 3, and it is skewed in the vertical direction by a factor

of 0.5 */

thePolygon = GXNewPolygons((gxPolygons *) starData);

GXSetShapeFill(thePolygon, gxEvenOddFill);

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-59

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

GXSetShapePen (thePolygon, ff(3));

GXSetShapeCommonColor (thePolygon, yellow);

GXMoveShapeTo (thePolygon, ff(240), ff(110));

GXSkewShape(thePolygon, 0, fl(0.5), 0, 0);

GXAddToShape(thePage, thePolygon);

GXDisposeShape(thePolygon);

/* create a bitmap by retrieving a bitmap from the resource fork

and skewing it in the horizontal direction by a factor of .*/

theBitmap = GXGetPixMapShape(128);

GXValidateShape (theBitmap);

GXSkewShape(theBitmap, ff(2), 0, 0, 0);

GXMoveShapeTo (theBitmap, ff(290), ff(190));

GXAddToShape(thePage, theBitmap);

GXDisposeShape(theBitmap);

Figure 7-12 A picture with seven shapes

C H A P T E R 7

QuickDraw GX Stream Format

7-60 Using QuickDraw GX Stream Format

Analyzing a Flattened Line Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the line
shape shown in Figure 7-13.

The line shape is created with a pen size of 9 and a default color of black. The pen is
moved from the point (25.0, 25.0) to point (125.0, 125.0).

Figure 7-13 The line shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-4.
The first line of the output shows the use of the fl command on the memory address
that contained the line shape. The flattened line shape data stream is the sequential byte
data that appears in parentheses. For example, the first four bytes of the data stream in
Listing 7-4 are (06) (80) (01 03). All other annotation is provided by GraphicsBug.

Since the flattened line shape is the first shape in the data stream, this first part of the
GraphicsBug output shows the data stream header. The GraphicsBug output for the
other flattened shapes described in this section correspond to the data stream that
describes that specific shape. These shape-specific sections are presented in QuickDraw
GX drawing order.

Listing 7-4 GraphicsBug analysis of a flattened line

fl 0c79090

owners 1)

newObject; size: #2 (03)

headerType; byte compression (80)

version == 1.0; flags == fontListFlatten | fontGlyphsFlatten

(01 03)

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-61

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

(04 02 01 01 00 00)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #1 (42)

stylePen; byte compression (83)

(09)

newObject; size: #0 (01) [1]

inkType; no compression (29)

newObject; size: #0 (01) [1]

transformType; no compression (2a)

newObject; size: #4 (05)

lineType; byte compression (83)

(19 19 7d 7d)

newObject; size: #0 (01)

trailerType; no compression (3f)

Table 7-14 shows the data stream analysis of the flattened line shape. The stream data is
obtained from the GraphicsBug output in Listing 7-4. This table provides a description of
each byte of the data stream for this shape.

Table 7-14 Analysis of the data stream of a flattened line shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New header

0x03
(00
000011)

Operation opcode

Record size

0

3

New object

Record size is 3 bytes

0x80
(10
000000)

Compression type opcode

Data type opcode

2

0

Byte compression

Header

0x01
(00000001)

Data 1.0 QuickDraw GX Version 1.0

0x03
(00000011)

Data 3 gxFontListFlatten constant from the
gxFlattenFlags enumeration is 0x01

gxFontGlyphsFlatten constant from
the gxFlattenFlags enumeration is 0x02

continued

C H A P T E R 7

QuickDraw GX Stream Format

7-62 Using QuickDraw GX Stream Format

New font name for the style object

0x07
(00
000111)

Operation opcode

Record size

0

7

New object

Record size is 7 bytes

0x2F
(00
101111)

Compression type opcode

Data type opcode

2

0x2F

No compression

Font name

0x04 Data 4 The gxUniqueFontName constant of the
gxFontName enumeration

0x02 Data 2 The gxMacintoshPlatform constant of
the gxFontPlatform enumeration

0x01 Data 1 The gxMacintoshRomanScript constant
of the gxMacintoshScripts enumeration

0x01 Data 1 The gxEnglishLanguage constant of the
gxFontLanguage enumeration

0x0001A

0x41 70 70
6C 65 20 43
6F 6D 70 75
74 65 72 20
54 69 6D 65
73 20 52 6F
6D 61 6E

Data 26 The length field (short) of the
gxFontName is 26 bytes.

Data Each of the 26 bytes is one glyph code. The
font name is “Apple Computer Times
ROman.”

New style object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x28
(00
101000)

Compression type opcode

Data type opcode

2

0x28

No compression

New style

0x42
(01
000010)

Operation opcode

Record size

1

1

Set data

Record size is 1 byte

Table 7-14 Analysis of the data stream of a flattened line shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-63

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

0x83
(10
000011)

Compression type opcode

Data type opcode

2

3

No compression

gxStylePenOpcode constant of the
gxStyleDataOpcode enumeration

0x09 Data 9.0 The pen width parameter for the
GXSetShapePen function is 9.0

New ink object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x29
(00
101001)

Compression type opcode

Data type opcode

0

0x29

No compression

New ink

New transform

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x2A
(00
101001)

Compression type opcode

Data type opcode

0

0x2A

No compression

New transform

New shape object

0x05
(00
000101)

Operation opcode

Record size

0

5

New object

Record size is 5 bytes

0x83
(10
000011)

Compression type opcode

Data type opcode

2

3

Byte compression

gxLineType constant of the
gxShapeTypes enumeration

0x19 Data 25.0 x coordinate of the first point is 25.0

0x19 Data 25.0 y coordinate of the first point is 25.0

0x7D Data 125.0 x coordinate of the last point is 125.0

0x7D Data 125.0 y coordinate of the last point is 125.0

Table 7-14 Analysis of the data stream of a flattened line shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-64 Using QuickDraw GX Stream Format

Analyzing a Flattened Rectangle Shape 7

The function described in section “Creating a Picture With Seven Shapes” beginning on
page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
rectangle shape shown in Figure 7-14.

The red rectangle shape is created with its frame. The size and shape of the rectangle is
defined by its upper-left boundary point (25.0, 25.0) and its lower-right boundary point
(75.0, 75.0). The fill type is closed-frame. Once the rectangle is drawn, it is moved to the
point (150.0, 25.0) to position it in the picture.

Figure 7-14 The rectangle shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-5.
The flattened rectangle shape data stream is the sequential data that appears in
parentheses.

Listing 7-5 GraphicsBug analysis of a flattened rectangle shape

inkType; no compression (29)

 space gxRGBSpace

 profile nil

 value(s) 1.0000 (ffff) 0.0000 0x0000 0.0000 0x0000

setData; size: #4 (45)

inkColor; no compression (02)

(fe ff 00 00)

newObject; size: #8 (09)

rectangleType; word compression (45)

(00 96 00 19 00 c8 00 4b)

setData; size: #1 (42)

shapeFill; byte compression (82)

(02)

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-65

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Table 7-15 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-5. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown..

Table 7-15 Analysis of the data stream of a flattened rectangle shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New ink object

0x01
(00 000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte.

0x29
(00 101001)

Compression type opcode

Data type opcode

0

0x29

No compression

New ink

Set data for ink color

0x45
(01 000101)

Operation opcode

Record size

1

5

Set data

Record size is 5 bytes.

0x02
(00 000010)

Compression type opcode

Data type opcode

0

2

No compression

gxInkColorOpcode constant of
the gxInkDataOpcode enumeration

0xFE
(11 11 1110)

Omit byte – The gxOmitColorsMask and
gxOmitColorsShift enumerations
are used to interpret this byte. Data1,
color space, is omitted so the default
RGB color space properties are applied
to the current object. Data2, color
profile, is omitted so the default color
profile is applied to the current object.
Data3, color components, uses only
bits 3, 2, and 1 for RGB. The
compression for each of the red, green,
and blue color components is byte
compression.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

continued

C H A P T E R 7

QuickDraw GX Stream Format

7-66 Using QuickDraw GX Stream Format

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0.

New rectangle object

0x09
(00 001001)

Operation opcode

Record size

0

5

New object

Record size is 9 bytes.

0x45
(01 000101)

Compression type opcode

Data type opcode

1

5

Word compression

gxRectangleType constant of
the gxShapeTypes enumeration

0x00 96 Data 150.0 x-coordinate of the left top corner
point is 150.0

0x00 19 Data 25.0 y-coordinate of the left top corner
point is 25.0

0x00 C8 Data 200.0 x-coordinate of the right bottom corner
point is 200.0

0x00 4B Data 125.0 y-coordinate of the right bottom
corner point is 75.0

Set data for shape fill

0x42
(01 000010)

Operation opcode

Record size

1

2

Set data

Record size is 2 bytes.

0x82
(10 000010)

Compression type opcode

Data type opcode

2

2

Byte compression

gxShapeFillOpcode constant of
the gxShapeDataOpcode
enumeration

0x02 Data 2 gxClosedFrameFill constant of the
gxShapeFills enumeration. The
shape fill constant is a long number so
the byte is expanded to a long.

Table 7-15 Analysis of the data stream of a flattened rectangle shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-67

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Analyzing a Flattened Curve Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
curve shape shown in Figure 7-15.

The curve has a pen thickness of 3.25. The size and shape of the curve are defined by its
first point (210.0), control point (460.0, 75.0), and last point (310.0, 125.0). Once the curve
is drawn, it is moved to the point (210.0, 25.0) to position it in the picture.

Figure 7-15 The curve shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-6.
The flattened curve shape data stream is the sequential data that appears in parentheses.

Listing 7-6 GraphicsBug analysis of a flattened curve shape

.

.

.

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 00)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #4 (45)

stylePen; no compression (03)

(00 03 40 00)

.

.

.

C H A P T E R 7

QuickDraw GX Stream Format

7-68 Using QuickDraw GX Stream Format

newObject; size: #12 (0d)

curveType; word compression (44)

(00 d2 00 19 01 cc 00 4b 01 36 00 7d)

newObject; size: #0 (01)

trailerType; no compression (3f)

Table 7-16 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-6. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-16 Analysis of the data stream of a flattened curve shape

Values in
data stream
(binar y) Type of inf ormation Value Description

0x45
(01
000101)

Operation opcode

Record size

1

5

Set data.

Record size is 5 bytes.

0x03
(00
000011)

Compression type opcode

Data type opcode

0

3

No compression

gxStylePenOpcode constant of
the gxStyleDataOpcode enumeration

0x00034000

.

.

.

Data 3.25 The pen width parameter for the
GXSetPen function is 3.25.

0x0D
(00 01101)

Operation opcode

Record size

0

13

New object

Record size is 13 bytes.

0x44
(01
000100)

Compression type opcode

Data type opcode

1

4

Word compression

gxCurveType constant of
the gxShapeTypes enumeration

0x00 D2 Data 210.0 x-coordinate of the first point is 210.0.

0x00 19 Data 25.0 y-coordinate of the first point is 25.0.

0x00 CC Data 460.0 x-coordinate of the control point is 460.0.

0x00 4B Data 75.0 y-coordinate of the control point is 75.0.

0x00 36 Data 310.0 x-coordinate of the last point is 310.0.

0x00 7D Data 125.0 x-coordinate of the last point is 125.0.

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-69

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Analyzing a Flattened Path Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-16.

A path is created with a pen thickness of 2.0 and a color of green. The size and shape of
the curve are defined by the points (0.0, 0.0), (75.0, 0.0), (5.0, 50.0), (75.0, 100.0), (0.0,
100.0), and (75.0, 50.0). Once the path is drawn, it is moved to the point (290.0, 25.0) to
position it in the picture. The line is not on any of the points.

Figure 7-16 The path shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-7.
The flattened path shape data stream is the sequential data that appears in parentheses.

Listing 7-7 GraphicsBug analysis of a flattened path shape

newObject; size: #0 (01) [1]

transformType; no compression (2a)

newObject; size: #19 (14)

pathType; byte compression (87)

(01 06 ff 2a 01 73 40 00 19 b5 00 46 ce ba ce 4b 00 b5 32)

setData; size: #1 (42)

shapeFill; byte compression (82)

(02)

C H A P T E R 7

QuickDraw GX Stream Format

7-70 Using QuickDraw GX Stream Format

Table 7-17 shows the data stream analysis of the flattened path shape. The stream data is
obtained from the GraphicsBug output in Listing 7-7. This table provides a description of
each byte of the data stream for this shape. Data format sequences that are identical to
previously described data sequences in the stream are not shown and are not analyzed
here.

Table 7-17 Analysis of the data stream of a flattened path shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New path object

0x14
(00
010100)

Operation opcode

Record size

0

14

New object

Record size is 14 bytes.

0x87
(10
000111)

Compression type opcode

Data type opcode

2

7

Byte compression

gxPathType constant of the
gxShapeTypes enumeration

0x01 Data 1 The number of contours is 1.

0x06 Data 6 The number of points in the contour is 6.

0xFF
(111111
11)

Control byte – Each of the 6 points is assigned a control bit
from the control byte. Points having a 0 bit
are on the line. Points having a 1 bit are off
the line. All 6 points are off the line. The
final 2 bits are unused.

0x2A
(00 10 10
10)

Omit byte – The gxOmitPathMask and
gxOmitPathShift enumerations are used
to interpret this byte. No compression is
used for data1, x coordinate of first point.
Byte compression is used for data2, y
coordinate of first point. Byte compression
is used for data3, all x relative coordinate
deltas. Byte compression is used for data4,
all y relative coordinate deltas.

0x01734000 Data1 371.25 Absolute x-coordinate of the first point is
371.25.

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-71

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

0x0x19 Data2 25.0 Absolute y-coordinate of the first point is
25.0.

0xB5 Data3 -75.0 Relative x-coordinate of the second point is
-75.0. Absolute x coordinate is 371.25 –
(–75.0) = 446.25.

0x00 Data4 0.0 Relative y-coordinate of the second point is
0. Absolute y coordinate is 25.0 – (0.0) =
25.0.

0x46 Data3 70.0 Relative x-coordinate of the third point is
70.0. Absolute x coordinate is 371.25 – (70.0)
= 301.25.

0xCE Data4 –50.0 Relative y-coordinate of the third point is
–50.0. Absolute y coordinate is 25.0 – (–50.0)
= 75.0.

0xBA Data3 –70.0 Relative x coordinate of the fourth point is
-70.0. Absolute x-coordinate is 371.25 –
(–70.0) = 441.25.

0xCE Data4 –50.0 Relative y coordinate of the fourth point
–50.0. Absolute y-coordinate is 25.0 –
(–50.0) = 75.0.

0x4B Data3 75.0 Relative x coordinate of the fifth point is
75.0. Absolute x-coordinate is 371.25 –
(75.0) = 296.25.

0x00 Data4 0.0 Relative y coordinate of the fifth point is
0.0. Absolute y-coordinate is 25.0 – (0.0) =
25.0.

0xB5 Data3 –75.0 Relative x coordinate of the sixth point is
–75.0. Absolute x-coordinate is 371.25 –
(–75.0) = 446.25.

0x32 Data4 50.0 Relative y coordinate of the sixth point is
50.0. Absolute y-coordinate is 25.0 – (50.0) =
–25.0.

Table 7-17 Analysis of the data stream of a flattened path shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-72 Using QuickDraw GX Stream Format

Analyzing a Flattened Text Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-17.

A text shape with glyphs G and X is colored in hsv space. The glyphs are rotated six
times by 90 degrees about the left bottom corner. Once the text is drawn, it is moved to
the point (25.0, 230.0) to position it in the picture.

Figure 7-17 The text shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-8.
The flattened text shape data stream is the sequential data that appears in parentheses.

GXXXXXX
GGGGG

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-73

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Listing 7-8 GraphicsBug analysis of a flattened text shape

newObject; size: #32 (21) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 1a)

Apple Computer Times Roman

(41 70 70 6c 65 20 43 6f 6d 70 75 74 65 72 20 54 69 6d 65 73 20

52 6f 6d 61 6e)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #1 (42)

styleFont; byte compression (8a)

(01)

setData; size: #2 (43)

styleTextSize; word compression (49)

(00 87)

newObject; size: #0 (01) [1]

inkType; no compression (29)

 space hsvSpace

 profile nil

 value(s) 0.4531 0x7400 1.0000 (ffff) 1.0000 (ffff)

setData; size: #6 (47)

inkColor; no compression (02)

(b6 03 74 00 ff ff)

newObject; size: #0 (01) [1]

transformType; no compression (2a)

setData; size: #24 (59)

transformMapping; no compression (03)

(00 3d 02 12 00 00 98 fe 00 00 f7 47 00 00 f7 47 00 00 42 42 ff

ff bd be)

newObject; size: #8 (09)

textType; no compression (09)

 byteLength 2

 position { 25.0000, 230.0000}

Displaying memory from 00c7a116

 00c7a116 4758 GX

(a4)

bytes (02)

position.x (19)

position.y (00 e6 02 47 58)

setData; size: #1 (42)

shapeAttributes; byte compression (80)

(20)

C H A P T E R 7

QuickDraw GX Stream Format

7-74 Using QuickDraw GX Stream Format

Table 7-18 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-8. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-18 Analysis of the data stream of a flattened text shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New font name for the style object

0x21
(00
100001)

Operation opcode

Record size

0

21

New object

Record size is 21 bytes

0x2F
(0010111)

Compression type opcode

Data type opcode

0

7

No compression

gxFontNameOpcode constant of
the gxGraphicsNewOpcode
enumeration

0x04 Data 4 The gxUniqueFontName constant
of the gxFontName enumeration

0x02 Data 2 The gxMacintoshPlatform constant
of the gxFontPlatform enumeration

0x01 Data 1 The gxMacintoshRomanScript
constant of the gxMacintoshScripts
enumeration

0x01 Data 1 The gxEnglishLanguage constant
of the gxFontLanguage enumeration

0x0001A Data 26 The length field (short) of the
gxFontName structure is 26 bytes.

0x41 70
70 6C 65
20 43 6F
6D 70 75
74 65 72
20 54 69
6D 65 73
20 52 6F
6D 61 6E

Data Each of the 26 bytes is one glyph code.
The font name is “Apple Computer
Times Roman.”

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-75

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

New style object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x28
(00
101000)

Compression type opcode

Data type opcode

0

0x28

No compression

gxStyleTypeOpcode constant of the
gxGraphicsNewOpcode enumeration

Set data for style object

0x42
(01
000010)

Operation opcode

Record size

1

2

Set data.

Record size is 2 bytes.

0x8A
(10
001010)

Compression type opcode

Data type opcode

2

10

Byte compression

gxStyleFontOpcode constant of
the gxStyleDataOpcode enumeration

0x01 Data 1 A reference to font name object 1.

Set data for the text size of the style object

0x43
(01
000011)

Operation opcode

Record size

1

3

Set data.

Record size is 3 bytes.

0x49
(01
001001)

Compression type opcode

Data type opcode

1

9

Word compression

gxStyleTextSizeOpcode constant of
the gxStyleDataOpcode enumeration

0x00 87 Data 135.0 The size parameter for the
GXSetShapeTextSize function is
135.0 points.

New ink object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte.

0x29
(00
101001)

Compression type opcode

Data type opcode

0

0x29

No compression

gxInkTypeOpcode constant of the
gxGraphicsNewOpcode enumeration

continued

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-76 Using QuickDraw GX Stream Format

Set data for ink color of the ink object

0x47
(01
000111)

Operation opcode

Record size

1

7

Set data.

Record size is 7 bytes.

0x02
(00
000010)

Compression type opcode

Data type opcode

0

2

No compression

gxInkColorOpcode constant of
the gxInkDataOpcode enumeration

0xB6
(10 11
0110)

Omit byte – The gxOmitColorsMask and
gxOmitColorsShift enumerations
are used to interpret this omit byte.
Data1, color space, is byte compressed.
Data2, color profile, is omitted so the
default color profile is applied to the
current object. Data3, color components,
uses bits 3, 2, 1, and 0 for color space.
The compression for each of the red,
green and blue color components is byte
compression.

0x03 Data1 3 gxHSVSpace constant of the
gxColorSpaces enumeration

0x74 00 Data2 0.453 The hue of the gxHSVColor structure is
0.453.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF. The saturation of the
gxHSVColor structure is 1.0000.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF. The value of the
gxHSVColor structure is 1.0000.

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-77

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Set data for mapping of the transform object

0x59
(01
011001)

Operation opcode

Record size

1

7

Set data.

Record size is 25 bytes. The transform
data size is 25 – 1 (data type opcode
byte) = 24 bytes. Since each mapping
requires 8 bytes, there are 24/8 = 3
mappings. This indicates that there is a
translate, scale, and skew mapping.

0x03
(00
000011)

Compression type opcode

Data type opcode

0

3

No compression

gxTransformMapping constant of
the gxTransformDataOpcode
enumeration

0x003D0212 Data 61.12 The delta Y parameter for the
GXSetTransformMapping function

0x000098FE Data 0.60 The deltaX parameter for the
GXSetTransformMapping function

0x0000F747 Data 0.97 The hScale parameter for the
GXSetTransformMapping function

0x0000F747 Data 0.97 The scale parameter for the
GXSetTransformMapping function

0x00004242 Data 0.26 The hSkew parameter for the
GXSetTransformMapping function

0xFFFFBDBE Data –0.4242 The vSkew parameter for the
GXSetTransformMapping function

New shape object

0x09
(00
001001)

Operation opcode

Record size

0

9

New object

Record size is 9 bytes.

0x09
(00
001001)

Compression type opcode

Data type opcode

0

9

No compression

gxTextType constant of the
gxShapeTypes enumeration

continued

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-78 Using QuickDraw GX Stream Format

0x2A
(00 10 10
10)

Omit byte – The gxOmitTextMask and
gxOmitTextShift enumerations are
used to interpret this omit byte. Byte
compression is used for data1, and byte
length. Byte compression is used for
data2, and the x coordinate of the
position. Word ?? compression is used
for data3, y coordinate of position point.
Byte compression is used for data4,
number of characters and text.

0x02 Data1 2 The byte length is 2.

0x19 Data2 25.0000 The x-coordinate of the text position is
25.0000.

0x00 E6 Data3 230.0000 The y-coordinate of the text position is
230.0000.

0x02 Data4 2 The number of characters is 2.

0x47 Data4 0x47 Roman capital G

0x58 Data4 0x58 Roman capital X

Set data for attributes of the text object

0x42
(01
000010)

Operation opcode

Record size

2

2

Set data

Record size is 2 bytes.

0x80
(10
000010)

Compression type opcode

Data type opcode

2

3

Byte compression

gxShapeAttributes constant of
the gxShapeDataOpcode enumeration

0x20 Data 32 gxMapTransformShape constant of
the gxShapeAttributes enumeration

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-79

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Analyzing a Flattened Polygon Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-18.

The yellow polygon shape is drawn with a pen thickness of 3.0 and skewed in the
vertical direction by 0.5. Its size and shape is controlled by the vectors defined by the
points (60.0, 0.0), (90.0, 90.0), (0.0, 30.0), (120.0, 30.0), (0.0, 90.0). The fill is even-odd. Once
the polygon is drawn, it is moved to the point (240.0, 110.0) to position it in the picture.

Figure 7-18 The polygon shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-9.
The flattened polygon shape data stream is the sequential data that appears in
parentheses.

Listing 7-9 GraphicsBug analysis of a flattened polygon shape

polygonType; byte compression (86)

(01 05 5a 01 2c 01 04 e2 97 5a 69 88 c4 78 00)

C H A P T E R 7

QuickDraw GX Stream Format

7-80 Using QuickDraw GX Stream Format

Table 7-19 shows the data stream analysis of the flattened polygon shape. The stream
data is obtained from the GraphicsBug output in Listing 7-9. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-19 Analysis of the data stream of a flattened polygon shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New shape object

0x10
(00
010000)

Operation opcode

Record size

0

10

New object

Record size is 10 bytes.

0x86
(10
000110)

Compression type opcode

Data type opcode

2

6

Byte compression

gxPolygonType constant of the
gxShapeTypes enumeration

0x01 Data 1 The number of contours is 1.

0x05 Data 5 The number of vectors in the contour is 5.

0x5A
(01 01 10
10)

Omit byte – The gxOmitPathMask and
gxOmitPathShift enumerations are used
to interpret this byte. Word compression is
used for data1, and x coordinate of first
point. Word compression is used for data2,
and y coordinate of first point. Byte
compression is used for data3, and all x
relative coordinate deltas. Byte compression
is used for data4, and all y relative
coordinate deltas.

0x01 2C Data1 290.0 Absolute x-coordinate of the first point is
290.0

0x01 04 Data2 260.0 Absolute y-coordinate of the first point is
260.0

0xE2 Data3 –30.0 The x-coordinate distance of the second
point from the first point is –75.0. Absolute
x coordinate of the second point is 290.0 –
(–30.0) = 320.0

0x97 Data4 –105.0 The y-coordinate distance of the second
point from the first point is –105.0. Absolute
y-coordinate of the second point is 260.0 –
(–105.0) = 365.0.

0x5A Data3 90.0 The x-coordinate distance of the third point
from the first point is 90.0. Absolute
x-coordinate of the third point is 290.0 –
(90.0) = 200.0.

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-81

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Analyzing a Flattened Bitmap Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-19.

The bitmap was retrieved from the resource fork and skewed in the horizontal direction
by a factor of 2.0. Once the bitmap is drawn, it is moved to the point (200.0, 190.0) to
position it in the picture.

Figure 7-19 The bitmap shape drawn

0x69 Data4 151.0 The y-coordinate distance of the third point
from the first point is 151.0. Absolute
y-coordinate of the third point is 260.0 –
(151.0) = 109.0.

0x88 Data3 136.0 The x-coordinate distance of the fourth
point from the first point is 70.0. Absolute
x-coordinate of the fourth point is 290.0 –
(70.0) = 220.0

0xC4 Data4 –60.0 The y-coordinate distance of the fourth
point from the first point is –60.0. Absolute
y-coordinate of the fourth point is 260.0 –
(–60.0) = 320.0.

0x78 Data3 120.0 The x-coordinate distance of the fifth point
from the first point is 70.0. Absolute
x-coordinate of the fifth point is 290.0 –
(120.0) = 170.0.

0x00 Data4 0.0 The y-coordinate distance of the fifth point
from the first point is –50.0. Absolute
y-coordinate of the fifth is 260.0 – (0.0) =
260.0.

Table 7-19 Analysis of the data stream of a flattened polygon shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-82 Using QuickDraw GX Stream Format

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-10.
The flattened bitmap shape data stream is the sequential data that appears in
parentheses.

Listing 7-10 GraphicsBug analysis of a flattened bitmap shape

newObject; size: #0 (01) [1]

transformType; no compression (2a)

setData; size: #12 (4d)

transformMapping; word compression (43)

(01 22 00 be 00 01 00 01 00 00 00 02)

newObject; size: #403 (00 00 01 94) [1]

bitImage; no compression (2e)

(a8 34 58 73 11 01 01 c2 81 70 22 01 21 82 ca ...)

newObject; size: #49 (32) [1]

colorSetType; byte compression (ac)

(01 ff ff ff ff 00 00 33 ff 00 33 cc 00 00 ...)

newObject; size: #10 (0b)

bitmapType; no compression (08)

(aa)

image (01)

width (66)

height (58)

rowBytes (34 ab)

pixelSize (04)

space (0b)

set (01 f0)

Table 7-20 shows the data stream analysis of the flattened bitmap shape. The stream data
is obtained from the GraphicsBug output in Listing 7-10. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-83

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Table 7-20 Analysis of the data stream of a bitmap shape

Values in
data stream
(binar y) Type of inf ormation Value Description

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

Set data for mapping of the transform object

0x4D
(01
001101)

Operation opcode

Record size

1

13

Set data

Record size is 13 bytes. The transform
data size is13 – 1 (data type opcode
byte) = 12 bytes. Since each mapping
requires 8 bytes, there are 12/2 =6
mappings. This indicates that there is
a translate, scale, and skew mapping.

0x43
(01
000011)

Compression type opcode

Data type opcode

1

3

Word compression

gxTransformMapping constant of
the gxTransformDataOpcode
enumeration

0x0122 Data 290.0 The deltaX parameter for the
GXSetTransformMapping function
is 290.0.

0x00BE Data 190.0 The delta Y parameter for the
GXSetTransformMapping function
is 190.0.

0x0001 Data 1.0 The hScale parameter for the
GXSetTransformMapping function
is 1.0.

0x0001 Data 1.0 The vScale parameter for the
GXSetTransformMapping function
is 1.0.

0x0000 Data 0.0 The hSkew parameter for the
GXSetTransformMapping function
is 0.0.

0x0002 Data 2.0 The vSkew parameter for the
GXSetTransformMapping function
is 2.0.

continued

C H A P T E R 7

QuickDraw GX Stream Format

7-84 Using QuickDraw GX Stream Format

New bitmap image

0x00
(00
000000)

Operation opcode

Record size

0

0

New object

Record size is > 64 bytes.

0x00 Record size (continued) 0 Record size is > 256 bytes.

0x01 94 Record size (continued) 404 Record size is 404 bytes. For
additional information about the
stream format for the record size, see
the section “Record Size” beginning
on page 7-11.

0x2E
(00
101110)

Compression type opcode

Data type opcode

0

0x2E

No compression

gxBitImageOpcode constant of the
gxGraphicsNewOpcode enumeration

0xA8
(10 10 1
000)

Omit byte – The gxOmitBitImageMask and
gxOmitBitImageShift
enumerations are used to interpret
this omit byte. Data1, width , is byte
compressed. Data2, height , is
byte compressed. Data3, indicates that
the bit image data is compressed. The
last3 bits are not used and are
reserved.

0x34 Data1 52 The bit image row width is 52 bytes.

0x58 Data2 88 The bit image column height is 88
bytes.

Row 1 of the bit image follows

0x73
(01
110011)

Bit image compression byte 1

51

Bits 6 and 7 are 1. This is the
gxRepeatBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration.

The bits that follow are to be repeated
51 times.

0x11 Data 11 The bits “11” are to be repeated 51
times

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-85

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

0x01
(00
000001)

Data 0

1

This is the
gxCopyBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. The bits in the next byte
are added to the first row x number of
times.

The value of x is 1.

0x01 Data “01” The bits “01” are added to row 1

Rows 2 through 11 of the bit image follow

0xC2
(11
000010)

Bit image compression byte

Previous row repeat number

3

2

This is the
gxRepeatBitImageScanOpcode
constant of the
gxBitImageCompression
enumeration. The previous scan line is
repeated x times.

The value of x is 2. The first row of bits
is repeated 2 times.

Row 12

0x81
(10
000001)

Bit image compression byte 2

1

This is the
gxLookupBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

0x70
01 110000

Bit image compression byte 1

48

Bits 6 and 7 are 1. This is the
gxRepeatBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration.

The bits in the byte that follow are to
be repeated 48 times.

0x22 Data “100010” The bits “100010” are to be repeated 48
times

continued

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-86 Using QuickDraw GX Stream Format

0x01
(00
000001)

Bit image compression byte 0

1

This is the
gxCopyBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

0x21 Data “100001” The bits “100001” are to be repeated 1
time on the second row.

0x82
(10
000010)

Bit image compression byte 2

2

This is the
gxLookupBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 2. Two bytes of data
is to be repeated from the previous
scan line.

0xCA
(11
001010)

Bit image compression byte 3

10

This is the
gxRepeatBitImageScanOpcode
constant of the
gxBitImageCompression
enumeration. The previous scan line is
repeated x times.

The value of x is 10. The first row of
bits is repeated 10 times.

The remaining bytes of the bit image are not shown here.

New color set object

0x32
(00
110010)

Operation opcode

Record size

0

50

New object

Record size is 50 bytes.

0xAC
(10
101100)

Compression type opcode

Data type opcode

2

3

Byte compression

gxColorSetTypeOpcode constant of
the gxGraphicsNewOpcode
enumeration

0x01 Data 1 gxRGBSpace constant of the
gxColorSpaces enumeration

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-87

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

White color for the bitmap object

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the green field of the
gxRgbColor structure is 65,535.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the blue field of the
gxRgbColor structure is 65,535.

Dark blue color for the bitmap object

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the red field of the gxRgbColor
structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x33 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x3333 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0x3333.

Cherry red color for the bitmap object

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

continued

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-88 Using QuickDraw GX Stream Format

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x33 Data 0x3333 Since color components are 2-byte
values, the byte is replicated to
the value 0x3333. The RGB value for
the blue field of the gxRgbColor
structure is 0x3333.

Dull red color for the bitmap object

0xCC Data 0xCCCC Since color components are 2-byte
values, the byte is replicated to
the value 0xCCCC or 52,428. The RGB
value for the red field of the
gxRgbColor structure is 52,428.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0x0000.

The remaining 35 bytes of the color set are not shown here.

New shape object

0x10
(00
010000)

Operation opcode

Record size

0

11

New object

Record size is 11 bytes.

0x08
(00
001000)

Compression type opcode

Data type opcode

0

8

Byte compression

gxBitmapType constant of the
gxShapeTypes enumeration

0xAA
(10 10
10 10)

Omit byte – The gxOmitBitmapMask1 and
gxOmitBitmapShift1
enumerations are used to interpret
this byte. Byte compression is used for
data1, data2, data3, and data4.

0x01 Data1 1 A pointer to the pixels located at 1.

0x66 Data2 102 The row width is 102 pixels.

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

Using QuickDraw GX Stream Format 7-89

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Obtaining Data From a Print File 7
Any suitably equipped Macintosh computer with QuickDraw GX installed can read and
print portable digital document print files created by your application. You may want to
use the public data in a QuickDraw GX print file for other purposes. Listing 7-11 reads a
portable digital document print file and returns the page count. For more information on
print files and portable digital documents, see the chapters “Introduction to QuickDraw
GX Printing” and “Core Printing Features” of Inside Macintosh: QuickDraw GX Printing.

Listing 7-11 Obtaining the page count from a portable digital document print file

#define nrequire(x, LABEL) if((x)) goto LABEL

/* Returns the page count from an open print file */

Parameters:-> short dataRefNum:reference to the spool file

 <- long *pageCount:returns page count

Returns: OSErr

Preconditions:dataRefNum != NULL

Postconditions:none */

0x58 Data3 88 The column height is 88 pixels.

0x34 Data4 52 The row width is 52 bytes.

0xAB
(10 10
10 11)

Omit byte – The gxOmitBitmapMask2 and
gxOmitBitmapShift2 enumerations
are used to interpret this byte. Byte
compression is used for data1, data2,
and data3. Data4 is omitted.

0x04 Data1 4 The number of bits per pixel is 1.

0x0B Data2 11 gxIndexedSpace constant of the
gxColorSpaces enumeration

0x01 Data3 1 The first set of bitmaps is used.

0xF0
(11 11 00
00)

Omit byte – The gxOmitBitmapMask3 and
gxOmitBitmapShift3 enumerations
are used to interpret this byte. Data1
and data2 are omitted. These are the
x and y positions of the bitmap. The
position is therefore at point (0, 0). The
other bits are reserved.

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binar y) Type of inf ormation Value Description

C H A P T E R 7

QuickDraw GX Stream Format

7-90 Using QuickDraw GX Stream Format

OSErr DespoolPageCount (short dataRefNum, long *pageCount);

OSErr DespoolPageCount (short dataRefNum, long *pageCount) {

register OSErr anErr;

long pageDirOffset, numPages;

long dataLen;

/* position to read offset to page directory */

anErr = SetFPos(dataRefNum, fsFromStart, (long) (kHeaderSize +

sizeof(long)));

nrequire (anErr, SetPageDirOffsetPos);

/* read offset to page directory */

dataLen = sizeof(pageDirOffset);

anErr = FSRead(dataRefNum, &dataLen, &pageDirOffset);

nrequire (anErr, ReadPageDirOffsetPos);

/* move to page directory */

anErr = SetFPos(dataRefNum, fsFromStart, (long) (pageDirOffset));

nrequire (anErr, SetPageDirPos);

/* read number of pages */

dataLen = sizeof(numPages);

anErr = FSRead(dataRefNum, &dataLen, &numPages);

nrequire (anErr, ReadNumPages);

pageCount = numPages;/ Return the result */

ncheck (anErr);

return anErr;

/* exception handling*/

ReadNumPages:

SetPageDirPos:

ReadPageDirOffsetPos:

SetPageDirOffsetPos:

return anErr;

}

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-91

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

QuickDraw GX Stream Format Reference 7

This section provides reference information to the data structures and enumerations that
are used in the stream format of a flattened shape.

Opcode Constants and Data Types 7

This section describes the constants and data types that describe the opcodes used in the
data streams of flattened shapes.

Operation Opcode Byte 7

Bits 6 and 7 of the operation opcode byte are the operation opcode. This opcode provides
a description of the data record that follows. Each operation opcode is defined in the
gxGraphicsOperationOpcode enumeration.

enum gxGraphicsOperationOpcode {

gxNewObjectOpcode = 0x00,

gxSetDataOpcode = 0x40,

gxSetDefaultOpcode= 0x80,

gxReservedOpcode = 0xC0,

gxNextOpcode = 0xFF,

};

Constant descriptions

gxNewObjectOpcode
Data for a new object follows.

gxSetDataOpcode
Attributes for the current object follow.

gxSetDefaultOpcode
Replace current default with the object that follows.

gxReservedOpcode
This opcode is reserved for future expansion.

gxNextOpcode This constant is used by the current operand field to indicate that an
opcode is coming.

Bits 0 through 5 of the operation opcode byte are the record size in bytes (1 to 63 bytes).
The gxObjectSizeMask constant, binary 111111, masks bits 0 through 5 to select the
record size. For additional information about the stream format for the record size, see
the section “Record Size” beginning on page 7-11.

C H A P T E R 7

QuickDraw GX Stream Format

7-92 QuickDraw GX Stream Format Reference

#define gxObjectSizeMask 0x3F

The gxOpcodeShift constant allows you to compare gxGraphicsOperationOpcode
constants with other values.

#define gxOpcodeShift 6

Data Type Opcode Byte 7

Bits 6 and 7 of the data type opcode byte are the compression type opcode. The
compression of the data to follow is given by the gxTwoBitCompressionValues
enumeration in Table 7-3. The gxCompressionMask constant, binary 11, masks the
constant defined by the gxTwoBitCompressionValue enumeration.

#define gxCompressionMask 0x03

The gxCompressionShift constant defines the number of bits to be shifted to the right
so that the masked value of the compression type opcode can be compared to other
values.

#define gxCompressionShift 6

Bits 0 through 5 of the data type opcode byte are the data type opcode. These opcodes
describe the data that follows in the stream. The gxObjectTypeMask constant, binary
111111, masks bits 0 through 5 of the data type opcode byte to select the data type
opcode. No shift is required to compare the data type opcode with other values.

#define gxObjectTypeMask 0x3F

Generic Data Opcode 7

The current operand uses a constant from the gxGenericDataOpcode enumeration
when the current operand is the gxNextOpcode constant.

enum gxGenericDataOpcode {

gxTypeOpcode,

gxSizeOpcode

};

Constant descriptions

gxTypeOpcode The next opcode is a type opcode.

gxSizeOpcode The next opcode is a size opcode.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-93

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Bit Image Compression Opcode Byte 7

Bits 6 and 7 of the bit image compression opcode byte contain the compression type
opcode that describes the data compression used for a region of a a bit image.The
gxBitimageOpcodeMask constant, binary 11000000, masks bits 6 and 7 of the bit image
compression opcode byte to select the bit image opcode.

#define gxBitimageOpcodeMask 0xC0

Once the gxBitimageOpcodeMask constant has been used to select the compression
type opcode, a bit shift given by the gxBitimageOpcodeShift constant can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the compression type opcode so that it can be compared to other values.

#define gxBitimageOpcodeShift 6

Bits 0 through 5 of the bit image compression opcode byte contain the bit image count.
This is the number of times that a binary sequence is repeated. The
gxBitimageCountMask constant, binary 111111, masks bits 0 through 5 of the bit image
compression opcode byte to select the bit image count. No shift is required to compare
the bit image count with other values.

#define gxBitimageCountMask0x3F

Table 7-13 gives the bit image compression opcode constants. For additional information
about the use of the bit image compression opcode byte, see the section “New Bit Image
Object Data” beginning on page 7-49.

Modified Shape Data Opcodes 7

A constant from the gxShapeDataOpcode enumeration follows a gxSetDataOpcode
operation opcode if shape data follows. The data stream bytes describe one of the fields
specified in this enumeration.

enum gxShapeDataOpcode {

gxShapeAttributesOpcode,

gxShapeTagOpcode,

gxShapeFillOpcode

};

Constant descriptions

gxShapeAttributesOpcod e
An attribute from the gxShapeAttributes enumeration is added
to the current shape object.

gxShapeTagOpcode
A tag is added to the current shape object.

gxShapeFillOpcode
A fill is added to the current shape object.

C H A P T E R 7

QuickDraw GX Stream Format

7-94 QuickDraw GX Stream Format Reference

Modified Style Data Opcodes 7

A constant from the gxStyleDataOpcode enumeration follows a gxSetDataOpcode
if style data follows. The data stream bytes that follow describe one of the attributes
specified in this enumeration.

enum gxStyleDataOpcode {

gxStyleAttributesOpcode,

gxStyleTagOpcode,

gxStyleCurveErrorOpcode,

gxStylePenOpcode,

gxStyleJoinOpcode,

gxStyleDashOpcode,

gxStyleCapsOpcode,

gxStylePatternOpcode,

gxStyleTextAttributesOpcode,

gxStyleTextSizeOpcode,

gxStyleFontOpcode,

gxStyleTextFaceOpcode,

gxStylePlatformOpcode,

gxStyleFontVariationsOpcode,

gxStyleRunControlsOpcode,

gxStyleRunPriorityJustOverrideOpcode,

gxStyleRunGlyphJustOverridesOpcode,

gxStyleRunGlyphSubstitutionsOpcode,

gxStyleRunFeaturesOpcode,

gxStyleRunKerningAdjustmentsOpcode,

gxStyleJustificationOpcode

};

Constant descriptions

gxStyleAttributesOpcode
The style attributes flags from the gxStyleAttributes
enumeration follow.

gxStyleTagOpcode
The parameters of the GXSetStyleTags function follow.

gxStyleCurveErrorOpcode
Data for the error parameter of the GXSetStyleCurveError
function follows.

gxStylePenOpcode
The data for the pen parameter of the GXSetStylePen function
follows.

gxStyleJoinOpcode
The data for the fields of the gxJoinRecord structure follows.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-95

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

gxStyleDashOpcode
The data for the fields of the gxDashRecord structure follows.

gxStyleCapsOpcode
The data for the fields of the gxCapRecord structure follows.

gxStylePatternOpcode
The data for the fields of the gxPatternRecord structure follows.

gxStyleTextAttributesOpcode
The data from the gxTextAttributes enumeration follows.

gxStyleTextSizeOpcode
The data for the size parameter of the GXSetStyleTextSize
function follows.

gxStyleFontOpcode
The data for the font parameter of the GXSetStyleFont function
follows.

gxStyleTextFaceOpcode
The data for the fields of the gxTextFace structure follows.

gxStylePlatformOpcode
The data for the parameters of the GXStyleEncoding function
follows.

gxStyleFontVariationsOpcode
The data for the fields of the gxFontVariations structure follows.

gxStyleRunControlsOpcode
The data for the fields of the gxRunControls structure follows.

gxStyleRunPriorityJustOverrideOpcode
The data for the fields of the
gxPriorityJustificationOverride structure follows.

gxStyleRunGlyphJustOverridesOpcode
The data for the fields of the gxGlyphJustificationOverride
structure follows.

gxStyleRunGlyphSubstitutionsOpcode
The data for the fields of the gxGlyphSubstitutionOverride
structure follows.

gxStyleRunFeaturesOpcode
The data for the fields of the gxRunFeature structure follows.

gxStyleRunKerningAdjustmentsOpcode
The data for the fields of the gxKerningAdjustment structure
follows.

gxStyleJustificationOpcode
The data for the justify parameter of the
GXSetStyleJustification function follows.

C H A P T E R 7

QuickDraw GX Stream Format

7-96 QuickDraw GX Stream Format Reference

Modified Ink Data Opcodes 7

A constant from the gxInkDataOpcode enumeration follows a gxSetDataOpcode
operation opcode if ink data follows. The data stream bytes that follow describe one of
the attributes specified in this enumeration.

enum gxInkDataOpcode {

gxInkAttributesOpcode,

gxInkTagOpcode,

gxInkColorOpcode,

gxInkTransferModeOpcode

};

Constant descriptions

gxInkAttributesOpcode
The parameters of the GXSetInkAttributes function follow.

gxInkTagOpcode
The parameters of the GXSetInkTags function follow.

gxInkColorOpcode
The parameters of the GXSetInkColor function follow.

gxInkTransferModeOpcode
The parameters of the GXSetInkTransfer function follow.

Modified Color Set Data Opcodes 7

A constant from the gxColorSetDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if color set data follows. The bytes that follow
describe one of the attributes specified in this enumeration.

enum gxColorSetDataOpcode {

gxColorSetReservedOpcode,

gxColorSetTagOpcode

};

Constant descriptions

gxColorSetReservedOpcode
This opcode is reserved for future expansion.

gxColorSetTagOpcode
The data parameters for the GXSetColorSetTags function
follows.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-97

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Modified Color Profile Data Opcodes 7

A constant from the gxProfileDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if profile data follows. The data stream bytes that
follow describe one of the attributes specified in this enumeration.

enum gxProfileDataOpcode {

gxColorProfileAttributesOpcode,

gxColorProfileTagOpcode

};

Constant descriptions

gxColorProfileAttributesOpcode
This opcode is reserved for future expansion.

gxColorProfileTagOpcode
The data parameters for the GXSetColorProfileTags function
follow.

Modified Transform Data Opcodes 7

A constant from the gxTransformDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if transform data follows. The data stream bytes
that follow describe one of the attributes specified in this enumeration.

enum gxTransformDataOpcode{

gxTransformReservedOpcode,

gxTransformTagOpcode,

gxTransformClipOpcode,

gxTransformMappingOpcode,

gxTransformPartMaskOpcode,

gxTransformToleranceOpcode

};

Constant descriptions

gxTransformReservedOpcode
This opcode is reserved for future expansion.

gxTransformTagOpcode
The data parameters for the GXSetTransformTags function
follow.

gxTransformClipOpcode
The data for the clip parameter of the GXSetTransformClip
function follows.

gxTransformMappingOpcode
The data for the map parameter of the GXSetTransformMapping
function follows.

C H A P T E R 7

QuickDraw GX Stream Format

7-98 QuickDraw GX Stream Format Reference

gxTransformPartMaskOpcode
The data for the mask parameter of the GXSetTransformHitTest
function follows.

gxTransformToleranceOpcode
The data for the gxProfileRecord structure and
gxProfileResponse enumeration follows.

Bit Image Compression Opcodes 7

Bits 6 and 7 of the bit image compression opcode byte contain the bit image compression
opcode. A constant from the gxBitImageCompression enumeration defines the
compression of the bit image data sequence to immediately follow.

enum gxBitImageCompression {

gxCopyBitImageBytesOpcode = 0x00,

gxRepeatBitImageBytesOpcode= 0x40,

gxLookupBitImageBytesOpcode= 0x80,

gxRepeatBitImageScanOpcode = 0xC0

};

Constant descriptions

gxCopyBitImageBytesOpcode
Bit image compression opcode 0.

gxRepeatBitImageBytesOpcode
Bit image compression opcode 1.

gxLookupBitImageBytesOpcode
Bit image compression opcode 2.

gxRepeatBitImageScanOpcode
Bit image compression opcode 3.

The bit image compression opcode is described in the section “New Bit Image Object
Data” beginning on page 7-49.

Flatten Header Bytes 7

The two bytes following the byte containing the gxHeaderTypeOpcode contain the
version of QuickDraw GX that generated the stream of data that follows and two flags
that are defined by the gxFlattenFlags enumeration.

struct gxFlattenHeader {

fixed version;

unsigned char flatFlags;

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-99

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Field descriptions

version The version of QuickDraw GX that was used to create the stream.

flatFlags The gxFontListFlatten and gxFontGlyphsFlatten flags.

The QuickDraw GX version and the flatten flags are described in the section “Header
Data” beginning on page 7-27.

Style Object Omit Byte Constants and Data Types 7

This section describes the constants and data types that are used to interpret omit bytes
that are used with style object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Dash Style Omit Byte Masks and Shifts 7

The gxOmitDashMask1 enumeration defines which bits in an omit byte correspond to
the a data compression opcode for the field descriptors in the gxDashRecord structure.
The sequence of data is also defined. The omit byte and its related data sequence are
given in the section “Dash Data” beginning on page 7-37.

enum gxOmitDashMask1 {

gxOmitDashAttributesMask = 0xC0,

gxOmitDashShapeMask = 0x30,

gxOmitDashAdvanceMask = 0x0C,

gxOmitDashPhaseMask = 0x03

};

Constant descriptions

gxOmitDashAttributesMask
The mask to select the data compression bits for the attributes
field descriptor.

gxOmitDashShapeMask
The mask to select the data compression bits for the dash field
descriptor.

gxOmitDashAdvanceMask
The mask to select the data compression bits for the advance field
descriptor.

gxOmitDashPhaseMask
The mask to select the data compression bits for the phase field
descriptor.

Once one of the gxOmitDashMask1 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecord structure, the
corresponding bit shift from the gxOmitDashShift1 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

7-100 QuickDraw GX Stream Format Reference

enum gxOmitDashShift1 {

gxOmitDashAttributesShift = 6,

gxOmitDashShapeShift = 4,

gxOmitDashAdvanceShift = 2,

gxOmitDashPhaseShift = 0

};

Constant descriptions

gxOmitDashAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitDashShapehift
The bit shift required to isolate the compression bits for the dash
field descriptor.

gxOmitDashAdvanceShift
The bit shift required to isolate the compression bits for the
advance field descriptor.

gxOmitDashPhaseShift
The bit shift required to isolate the compression bits for the phase
field descriptor.

The gxOmitDashMask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxDashRecord structure. The sequence of data is also continued. The use of this mask
and shift are described in the section “Dash Data” beginning on page 7-37.

enum gxOmitDashMask2 {

gxOmitDashScaleMask = 0xC0

};

Constant descriptions

gxOmitDashScaleMask
The mask for the data compression bits for the scale field
descriptor.

Once one of the gxOmitDashMask2 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecord structure, the
corresponding bit shift from the gxOmitDashShift2 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-101

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitDashShift2{

gxOmitDashScaleShift = 6

};

Constant descriptions

gxOmitDashScaleShift
The bit shift required to isolate the compression bits for the scale
field descriptor.

Pattern Style Omit Byte Masks and Shifts 7

The gxOmitPatternMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcodes for the field descriptors in the gxPatternRecord
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxOmitPatternMask1{

gxOmitPatternAttributesMask = 0xC0,

gxOmitPatternShapeMask = 0x30,

gxOmitPatternUXMask = 0x0C,

gxOmitPatternUYMask = 0x03

};

Constant descriptions

gxOmitPatternAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitPatternShapeMask
The mask used to select the data compression bits for the pattern
field descriptor.

gxOmitPatternUXMask
The mask used to select the data compression bits for the ux field
descriptor.

gxOmitPatternUYMask
The mask used to select the data compression bits for the uy field
descriptor.

Once one of the gxOmitPatternMask1 enumeration masks has been used to select
data compression bits for one of the field descriptors in the gxPatternRecord
structure, the corresponding bit shift from the gxOmitPatternShift1 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression bits so that they can be
compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

7-102 QuickDraw GX Stream Format Reference

enum gxOmitPatternShift1 {

gxOmitPatternAttributesShift = 6,

gxOmitPatternShapeShift = 4,

gxOmitPatternUXShift = 2,

gxOmitPatternUYShift = 0

};

Constant descriptions

gxOmitPatternAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitPatternShapeShift
The bit shift required to isolate the compression bits for the
pattern field descriptor.

gxOmitPatternUXShift
The bit shift required to isolate the compression bits for the ux field
descriptor.

gxOmitPatternUYShift
The bit shift required to isolate the compression bits for the uy field
descriptor.

The gxOmitPatternMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxPatternRecord structure. The sequence of data is also continued. The omit byte and
its related data sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxOmitPatternMask2 {

gxOmitPatternVXMask = 0xC0,

gxOmitPatternVYMask = 0x30

};

Constant descriptions

gxOmitPatternVXMask
The mask used to select the data compression bits for the u.x field
descriptor.

gxOmitPatternVYMask
The mask to select the data compression bits for the u.y field
descriptor.

Once one of the gxOmitPatternMask2 enumeration masks has been used to select a
data compression opcode for one of the field descriptors in the gxPatternRecord
structure, the corresponding bit shift from the gxOmitPatternShift2 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression opcode so that it can be
compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-103

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitPatternShift2 {

gxOmitPatternVXShift= 6,

gxOmitPatternVYShift= 4

};

Constant descriptions

gxOmitPatternVXShift
The bit shift required to isolate the compression bits for the u.x field
descriptor.

gxOmitPatternVYShift
The bit shift required to isolate the compression bits for the u.y field
descriptor.

Join Style Omit Byte Masks and Shifts 7

The gxOmitJoinMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxJoinRecord structure.
The sequence of data is also defined. The omit byte and its related data sequence is given
in the section “Join Data” beginning on page 7-37.

enum gxOmitJoinMask {

gxOmitJoinAttributesMask= 0xC0,

gxOmitJoinShapeMask = 0x30,

gxOmitJoinMiterMask = 0x0C

};

Constant descriptions

gxOmitJoinAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitJoinShapeMask
The mask used to select the data compression bits for the join field
descriptor.

gxOmitJoinMiterMask
The mask used to select the data compression bits for the miter
field descriptor.

Once one of the gxOmitJoinMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxJoinRecord structure, the
corresponding bit shift from the gxOmitJoinShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

7-104 QuickDraw GX Stream Format Reference

enum gxOmitJoinShift {

gxOmitJoinAttributesShift = 6,

gxOmitJoinShapeShift = 4,

gxOmitJoinMiterShift = 2

};

Constant descriptions

gxOmitJoinAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitJoinShapeShift
The bit shift required to isolate the compression bits for the join
field descriptor.

gxOmitJoinMiterShift
The bit shift required to isolate the compression bits for the miter
field descriptor.

Cap Style Omit Byte Masks and Shifts 7

The gxOmitCapMask enumeration defines which bits in an omit byte correspond to the
data compression opcode for the field descriptors in the gxCapRecord structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Caps Data” beginning on page 7-38.

enum gxOmitCapMask {

gxOmitCapAttributesMask = 0xC0,

gxOmitCapStartShapeMask = 0x30,

gxOmitCapEndShapeMask = 0x0C

};

Constant descriptions

gxOmitCapAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitCapStartShapeMask
The mask used to select the data compression bits for the
startCap field descriptor.

gxOmitCapEndShapeMask
The mask used to select the data compression bits for the endCap
field descriptor.

Once one of the gxOmitCapMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxCapRecord structure, the
corresponding bit shift from the gxOmitCapShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-105

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitCapShift {

gxOmitCapAttributesShift= 6,

gxOmitCapStartShapeShift= 4,

gxOmitCapEndShapeShift = 2

};

Constant descriptions

gxOmitCapAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitCapStartShapeShift
The bit shift required to isolate the compression bits for the
startCap field descriptor.

gxOmitCapEndShapeShift
The bit shift required to isolate the compression bits for the endCap
field descriptor.

Text Face Style Omit Byte Masks and Shifts 7

The gxOmitFaceMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxTextFace structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Text Face Data” beginning on page 7-39.

enum gxOmitFaceMask {

gxOmitFaceLayersMask = 0xC0,

gxOmitFaceMappingMask= 0x30

};

Constant descriptions

gxOmitFaceLayersMask
The mask used to select the data compression bits for the
faceLayers field descriptor.

gxOmitFaceMappingMask
The mask used to select the data compression bits for the
advanceMapping field descriptor.

Once one of the gxOmitFaceMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxTextFace structure, the
corresponding bit shift from the gxOmitFaceShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

7-106 QuickDraw GX Stream Format Reference

enum gxOmitFaceShift {

gxOmitFaceLayersShift = 6,

gxOmitFaceMappingShift= 4

};

Constant descriptions

gxOmitFaceLayersShift
The bit shift required to isolate the compression bits for the
faceLayers field descriptor.

gxOmitFaceMappingShift
The bit shift required to isolate the compression bits for the
advanceMapping field descriptor.

SEE ALSO

The section “Text Face Data” beginning on page 7-39 provides a full descrtiption of the
gxTextFace structure.

Face Layer Omit Byte Masks and Shifts 7

The gxOmitFaceLayerMask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the
gxFaceLayer structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Text Face Data” on page 7-39.

enum gxOmitFaceLayerMask1 {

gxOmitFaceLayerFillMask = 0xC0,

gxOmitFaceLayerFlagsMask = 0x30,

gxOmitFaceLayerStyleMask = 0x0C,

gxOmitFaceLayerTransformMask = 0x03

};

Constant descriptions

gxOmitFaceLayerFillMask
The mask used to select the data compression bits for the
outlineFill field descriptor.

gxOmitFaceLayerFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

gxOmitFaceLayerStyleMask
The mask used to select the data compression bits for the
outlineStyle field descriptor.

gxOmitFaceLayerTransformMask
The mask used to select the data compression bits for the
outlineTransform field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-107

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Once one of the gxOmitFaceLayerMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFaceLayer structure, the
corresponding bit shift from the gxOmitFaceLayerShift1 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxOmitFaceLayerShift1 {

gxOmitFaceLayerFillShift = 6,

gxOmitFaceLayerFlagsShift = 4,

gxOmitFaceLayerStyleShift = 2,

gxOmitFaceLayerTransformShift = 0

};

Constant descriptions

gxOmitFaceLayerFillShift
The bit shift required to isolate the compression bits for the
outlineFill field descriptor.

gxOmitFaceLayerFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

gxOmitFaceLayerStyleShift
The bit shift required to isolate the compression bits for the
outlineStyle field descriptor.

gxOmitFaceLayerTransformShift
The bit shift required to isolate the compression bits for the
outlineTransform field descriptor.

The gxOmitFaceLayerMask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxFaceLayer structure. The sequence of data is also defined. The use of this mask and
shift are described in the section “Text Face Data” on page 7-39.

enum gxOmitFaceLayerMask2 {

gxOmitFaceLayerBoldXMask = 0xC0,

gxOmitFaceLayerBoldYMask = 0x30

};

Constant descriptions

gxOmitFaceLayerBoldXMask
The mask used to select the data compression bits for the
boldOutset .X field descriptor.

gxOmitFaceLayerBoldYMask
The mask used to select the data compression bits for the
boldOutset .Y field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

7-108 QuickDraw GX Stream Format Reference

Once one of the gxOmitFaceLayerMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFaceLayer structure, the
corresponding bit shift from the gxOmitFaceLayerShift2 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxOmitFaceLayerShift2 {

gxOmitFaceLayerBoldXShift = 6,

gxOmitFaceLayerBoldYShift = 4

};

Constant descriptions

gxOmitFaceLayerBoldXShift
The bit shift required to isolate the compression bits for the
boldOutset .X field descriptor.

gxOmitFaceLayerBoldYShift
The bit shift required to isolate the compression bits for the
boldOutset .Y field descriptor.

Ink Object Omit Byte Constants and Data Types 7

This section describes the constants and data types that are used to interpret omit bytes
that are used with ink object data. The use of omit bytes is described in the section “Omit
Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Colors Omit Byte Masks and Shifts 7

The gxOmitColorsMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxColor structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Color Data” beginning on page 7-44.

enum gxOmitColorsMask {

gxOmitColorsSpaceMask = 0xC0,

gxOmitColorsProfileMask = 0x30,

gxOmitColorsComponentsMask = 0x0F,

gxOmitColorsIndexMask = 0x0C,

gxOmitColorsIndexSetMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-109

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Constant descriptions

gxOmitColorsSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitColorsProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

gxOmitColorsComponentsMask
The mask used to select the data compression bits for the
element.component[4] field descriptor.

gxOmitColorsIndexMask
The mask used to select the data compression bits for the
element.indexed.index field descriptor.

gxOmitColorsIndexSetMask
The mask used to select the data compression bits for the
element.index.Set field descriptor.

Once one of the gxOmitColorsMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxColor structure, the corresponding
bit shift from the gxOmitColorsShift enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitColorsShift {

gxOmitColorsSpaceShift = 6,

gxOmitColorsProfileShift = 4,

gxOmitColorsComponentsShift = 0,

gxOmitColorsIndexShift = 2,

gxOmitColorsIndexSetShift = 0

};

Constant descriptions

gxOmitColorsSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.

gxOmitColorsProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.

gxOmitColorsComponentsShift
The bit shift required to isolate the compression bits for the
element.component [4] field descriptor.

gxOmitColorsIndexShift
The bit shift required to isolate the compression bits for the
element.index ed.index field descriptor.

gxOmitColorsIndexSetShift
The bit shift required to isolate the compression bits for the
element.indexed.set field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

7-110 QuickDraw GX Stream Format Reference

Transfer Omit Byte Masks and Shifts 7

The gxOmitTransferMask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the
gxTransferMode structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferMask1 {

gxOmitTransferSpaceMask = 0xC0,

gxOmitTransferSetMask = 0x30,

gxOmitTransferProfileMask = 0x0C

};

Constant descriptions

gxOmitTransferSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitTransferSetMask
The mask used to select the data compression bits for the set field
descriptor.

gxOmitTransferProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

Once one of the gxOmitTransferMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTransferMode structure, the
corresponding bit shift from the gxOmitTransferShift1 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitTransferShift1 {

gxOmitTransferSpaceShift = 6,

gxOmitTransferSetShift = 4,

gxOmitTransferProfileShift = 2

};

Constant descriptions

gxOmitTransferSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.

gxOmitTransferSetShift
The bit shift required to isolate the compression bits for the set
field descriptor.

gxOmitTransferProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-111

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

The gxOmitTransferMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxTransferMode structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferMask2 {

gxOmitTransferSourceMatrixMask= 0xC0,

gxOmitTransferDeviceMatrixMask= 0x30,

gxOmitTransferResultMatrixMask= 0x0C,

gxOmitTransferFlagsMask = 0x03

};

Constant descriptions

gxOmitTransferSourceMatrixMask
The mask used to select the data compression bits for the
sourceMatrix field descriptor.

gxOmitTransferDeviceMatrixMask
The mask used to select the data compression bits for the
deviceMatrix field descriptor.

gxOmitTransferResultMatrixMask
The mask used to select the data compression bits for the
resultMatrix field descriptor.

gxOmitTransferFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

Once one of the gxOmitTransferMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTransferMode structure, the
corresponding bit shift from the gxOmitTransferShift2 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitTransferShift2 {

gxOmitTransferSourceMatrixShift = 6,

gxOmitTransferDeviceMatrixShift = 4,

gxOmitTransferResultMatrixShift = 2,

gxOmitTransferFlagsShift = 0

};

C H A P T E R 7

QuickDraw GX Stream Format

7-112 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitTransferSourceMatrixShift
The bit shift required to isolate the compression bits for the
sourceMatrix field descriptor.

gxOmitTransferDeviceMatrixShift
The bit shift required to isolate the compression bits for the
deviceMatrix field descriptor.

gxOmitTransferResultMatrixShift
The bit shift required to isolate the compression bits for the
resultMatrix field descriptor.

gxOmitTransferFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

Transfer Component Omit Byte Masks and Shifts 7

The gxOmitTransferComponentMask1 enumeration defines which bits in an omit
byte correspond to the data compression opcode for the field descriptors in the
gxTransferComponent structure. The sequence of data is also defined. The omit byte
and its related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferComponentMask1 {

gxOmitTransferComponentModeMask = 0x80,

gxOmitTransferComponentFlagsMask = 0x40,

gxOmitTransferComponentSourceMinimumMask = 0x30,

gxOmitTransferComponentSourceMaximumMask = 0x0C,

gxOmitTransferComponentDeviceMinimumMask = 0x03

};

Constant descriptions

gxOmitTransferComponentModeMask
The mask used to select the data compression bits for the mode field
descriptor.

gxOmitTransferComponentFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

gxOmitTransferComponentSourceMinimumMask
The mask used to select the data compression bits for the
sourceMinimum field descriptor.

gxOmitTransferComponentSourceMaximumMask
The mask used to select the data compression bits for the
sourceMaximum field descriptor.

gxOmitTransferComponentDeviceMinimumMask
The mask used to select the data compression bits for the
deviceMinimum field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-113

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Once one of the gxOmitTransferComponentMask1 enumeration masks has been
used to select a data compression opcode for a field descriptor in the
gxTransferComponent structure, the corresponding bit shift from the
gxOmitTransferComponentShift1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTransferComponentShift1 {

gxOmitTransferComponentModeShift = 7,

gxOmitTransferComponentFlagsShift = 6,

gxOmitTransferComponentSourceMinimumShift = 4,

gxOmitTransferComponentSourceMaximumShift = 2,

gxOmitTransferComponentDeviceMinimumShift = 0

};

Constant descriptions

gxOmitTransferComponentModeShift
The bit shift required to isolate the compression bits for the mode
field descriptor.

gxOmitTransferComponentFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

gxOmitTransferComponentSourceMinimumShift
The bit shift required to isolate the compression bits for the
sourceMinimum field descriptor.

gxOmitTransferComponentSourceMaximumShift
The bit shift required to isolate the compression bits for the
sourceMaximum field descriptor.

gxOmitTransferComponentDeviceMinimumShift
The bit shift required to isolate the compression bits for the
deviceMinimum field descriptor.

The gxOmitTransferComponentMask2 enumeration defines which bits in a second
omit byte correspond to the data compression opcode for additional field descriptors in
the gxTransferComponent structure. The sequence of data is also continued. The omit
byte and its related data sequence is given in the section “Transfer Mode Data”
beginning on page 7-44.

enum gxOmitTransferComponentMask2 {

gxOmitTransferComponentDeviceMaximumMask = 0xC0,

gxOmitTransferComponentClampMinimumMask = 0x30,

gxOmitTransferComponentClampMaximumMask = 0x0C,

gxOmitTransferComponentOperandMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

7-114 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitTransferComponentDeviceMaximumMask
The mask used to select the data compression bits for the
deviceMaximum field descriptor.

gxOmitTransferComponentClampMinimumMask
The mask used to select the data compression bits for the
clampMinimum field descriptor.

gxOmitTransferComponentClampMaximumMask
The mask used to select the data compression bits for the
clampMaximum field descriptor.

gxOmitTransferComponentOperandMask
The mask used to select the data compression bits for the operand
field descriptor.

Once one of the gxOmitTransferComponentMask2 enumeration masks has been
used to select a data compression opcode for a field descriptor in the
gxTransferComponent structure, the corresponding bit shift from the
gxOmitTransferComponentShift2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTransferComponentShift2 {

gxOmitTransferComponentDeviceMaximumShift = 6,

gxOmitTransferComponentClampMinimumShift = 4,

gxOmitTransferComponentClampMaximumShift = 2,

gxOmitTransferComponentOperandShift = 0

};

Constant descriptions

gxOmitTransferComponentDeviceMaximumShift
The bit shift required to isolate the compression bits for the
deviceMaximum field descriptor.

gxOmitTransferComponentClampMinimumShift
The bit shift required to isolate the compression bits for the
clampMinimum field descriptor.

gxOmitTransferComponentClampMaximumShift
The bit shift required to isolate the compression bits for the
clampMaximum field descriptor.

gxOmitTransferComponentOperandShift
The bit shift required to isolate the compression bits for the
operand field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-115

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Shape Object Omit Byte Constants and Data Types 7

This section describes the constants and data types that are used to interpret omit bytes
that are used with shape object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Path Shape Omit Byte Masks and Shifts 7

The gxOmitPathMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxPaths structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Path Shape Data” beginning on page 7-31.

enum gxOmitPathMask {

gxOmitPathPositionXMask = 0xC0,

gxOmitPathPositionYMask = 0x30,

gxOmitPathDeltaXMask = 0x0C,

gxOmitPathDeltaYMask = 0x03

};

Constant descriptions

gxOmitPathPositionXMask
The mask used to select the data compression bits for the
vector[0].x field descriptor.

gxOmitPathPositionYMask
The mask used to select the data compression bits for the
vector[0]. y field descriptor.

gxOmitPathDeltaXMask
The mask used to select the data compression bits for the
vector[n].x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxOmitPathDeltaYMask
The mask used to select the data compression bits for the
vector[n]. y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Once one of the gxOmitPathMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxPaths?? structure, the
corresponding bit shift from the gxOmitPathShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

C H A P T E R 7

QuickDraw GX Stream Format

7-116 QuickDraw GX Stream Format Reference

enum gxOmitPathShift {

gxOmitPathPositionXShift = 6,

gxOmitPathPositionYShift = 4,

gxOmitPathDeltaXShift = 2,

gxOmitPathDeltaYShift = 0

};

Constant descriptions

gxOmitPathPositionXShift
The bit shift required to isolate the compression bits for
thevector[0].x field descriptor.

gxOmitPathPositionYShift
The bit shift required to isolate the compression bits for
thevector[0]. y field descriptor.

gxOmitPathDeltaXShift
The bit shift required to isolate the compression bits for the
vector[n].x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxOmitPathDeltaYShift
The bit shift required to isolate the compression bits for the
vector[n]. y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Bitmap Shape Omit Byte Masks and Shifts 7

The gxOmitBitmapMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcode for the field descriptors in the gxBitmap structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Bitmap Shape Data” beginning on page 7-32.

enum gxOmitBitmapMask1 {

gxOmitBitmapImageMask = 0xC0,

gxOmitBitmapWidthMask = 0x30,

gxOmitBitmapHeightMask = 0x0C,

gxOmitBitmapRowBytesMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-117

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Constant descriptions

gxOmitBitmapImageMask
The mask used to select the data compression bits for the image
field descriptor.

gxOmitBitmapWidthMask
The mask used to select the data compression bits for the width
field descriptor.

gxOmitBitmapHeightMask
The mask used to select the data compression bits for the height
field descriptor.

gxOmitBitmapRowBytesMask
The mask used to select the data compression bits for the
rowBytes field descriptor.

Once one of the gxOmitBitmapMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift1 {

gxOmitBitmapImageShift = 6,

gxOmitBitmapWidthShift = 4,

gxOmitBitmapHeightShift = 2,

gxOmitBitmapRowBytesShift = 0

};

Constant descriptions

gxOmitBitmapImageShift
The bit shift required to isolate the compression bits for the image
field descriptor.

gxOmitBitmapWidthShift
The bit shift required to isolate the compression bits for the width
field descriptor.

gxOmitBitmapHeightShift
The bit shift required to isolate the compression bits for the height
field descriptor.

gxOmitBitmapRowBytesShift
The bit shift required to isolate the compression bits for the
rowBytes field descriptor.

The gxOmitBitmapMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxBitmap structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.

C H A P T E R 7

QuickDraw GX Stream Format

7-118 QuickDraw GX Stream Format Reference

enum gxOmitBitmapMask2 {

gxOmitBitmapPixelSizeMask = 0xC0,

gxOmitBitmapSpaceMask = 0x30,

gxOmitBitmapSetMask = 0x0C,

gxOmitBitmapProfileMask = 0x03

};

Constant descriptions

gxOmitBitmapPixelSizeMask
The mask used to select the data compression bits for the
pixelSize field descriptor.

gxOmitBitmapSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitBitmapSetMask
The mask used to select the data compression bits for the set field
descriptor.

gxOmitBitmapProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

Once one of the gxOmitBitmapMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift2 {

gxOmitBitmapPixelSizeShift = 6,

gxOmitBitmapSpaceShift = 4,

gxOmitBitmapSetShift = 2,

gxOmitBitmapProfileShift = 0

};

Constant descriptions

gxOmitBitmapPixelSizeShift
The bit shift required to isolate the compression bits for the
pixelSize field descriptor.

gxOmitBitmapSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-119

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

gxOmitBitmapSetShift
The bit shift required to isolate the compression bits for the set
field descriptor.

gxOmitBitmapProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.

The gxOmitBitmapMask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional field descriptors in the
gxBitmap structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.

enum gxOmitBitmapMask3 {

gxOmitBitmapPositionXMask = 0xC0,

gxOmitBitmapPositionYMask = 0x30

};

Constant descriptions

gxOmitBitmapPositionXMask
The mask used to select the data compression bits for the
positionX field descriptor.

gxOmitBitmapPositionYMask
The mask used to select the data compression bits for the
positionY field descriptor.

Once one of the gxOmitBitmapMask3 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift3 {

gxOmitBitmapPositionXShift = 6,

gxOmitBitmapPositionYShift = 4

};

Constant descriptions

gxOmitBitmapPositionXShift
The bit shift required to isolate the compression bits for the
positionX field descriptor.

gxOmitBitmapPositionYShift
The bit shift required to isolate the compression bits for the
positionY field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

7-120 QuickDraw GX Stream Format Reference

Bit Image Omit Byte Masks and Shifts 7

The gxOmitBitImageMask enumeration defines which bits in an omit byte correspond
to the data compression opcode for additional field descriptors. The sequence of data is
also defined. The omit byte and its related data sequence is given in the section “New Bit
Image Object Data” on page 7-49.

enum gxOmitBitImageMask {

gxOmitBitImageRowBytesMask = 0xC0,

gxOmitBitImageHeightMask = 0x30,

gxOmitBitImageDataMask = 0x08

};

Constant descriptions

gxOmitBitImageRowBytesMask
The mask used to select the data compression bits for the
rowBytes field descriptor.

gxOmitBitImageHeightMask
The mask used to select the data compression bits for the height.

gxOmitBitImageDataMask
The mask used to select the data compression bits for the image.

Once one of the gxOmitBitImageMask enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitImageShift enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitImageShift {

gxOmitBitImageRowBytesShift = 6,

gxOmitBitImageHeightShift = 4,

gxOmitBitImageDataShift = 3

};

Constant descriptions

gxOmitBitImageRowBytesShift
The bit shift required to isolate the compression bits for the
rowBytes field descriptor.

gxOmitBitImageHeightShift
The bit shift required to isolate the compression bits for the height.

gxOmitBitImageDataShift
The bit shift required to isolate the compression bits for the image.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-121

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Text Shape Omit Byte Masks and Shifts 7

The gxOmitTextMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for parameters of the GXNewText function. The sequence
of data is also defined. The omit byte and its related data sequence is given in the section
“Text Shape Data” beginning on page 7-32.

enum gxOmitTextMask {

gxOmitTextCharactersMask = 0xC0,

gxOmitTextPositionXMask = 0x30,

gxOmitTextPositionYMask = 0x0C,

gxOmitTextDataMask = 0x02

};

Constant descriptions

gxOmitTextCharactersMask
The mask used to select the data compression bits for the
charCount parameter.

gxOmitTextPositionXMask
The mask used to select the data compression bits for the
position.X parameter.

gxOmitTextPositionYMask
The mask used to select the data compression bits for the
position .Y parameter.

gxOmitTextDataMask
The mask used to select the data compression bits for the text
parameter.

Once one of the gxOmitText Mask enumeration masks has been used to select a data
compression opcode for the parameters of the GXNewText function, the corresponding
bit shift from the gxOmitTextShift enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTextShift {

gxOmitTextCharactersShift = 6,

gxOmitTextPositionXShift = 4,

gxOmitTextPositionYShift = 2,

gxOmitTextDataShift = 1

};

C H A P T E R 7

QuickDraw GX Stream Format

7-122 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitTextCharactersShift
The bit shift required to isolate the compression bits for the
charCount field descriptor.

gxOmitTextPositionXShift
The bit shift required to isolate the compression bits for the
position.X field descriptor.

gxOmitTextPositionYShift
The bit shift required to isolate the compression bits for the
position .Y field descriptor.

gxOmitTextDataShift
The bit shift required to isolate the compression bits for the text
field descriptor.

Glyph Shape Omit Byte Masks and Shifts 7

The gxOmitGlyphMask1 enumeration defines which bits in an omit byte correspond to
the data compression opcode for additional field descriptors in the gx NewGlyphs
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Glyph Shape Data” beginning on page 7-33.

enum gxOmitGlyphMask1 {

gxOmitGlyphCharactersMask = 0xC0,

gxOmitGlyphLengthMask = 0x30,

gxOmitGlyphRunNumberMask = 0x0C,

gxOmitGlyphOnePositionMask = 0x02,

gxOmitGlyphDataMask = 0x01

};

Constant descriptions

gxOmitGlyphCharactersMask
The mask used to select the data compression bits for the
charCount function parameter.

gxOmitGlyphLengthMask
The mask used to select the data compression bits for the length in
bytes of the data.

gxOmitGlyphRunNumberMask
The mask used to select the data compression bits for the number of
styleRuns .

gxOmitGlyphOnePositionMask
The mask used to specify that the position can be represented with
one point.

gxOmitGlyphDataMask
The mask used to select the data compression bits for the text
function parameter.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-123

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Once one of the gxOmitGlyphMask1 enumeration masks has been used to select a data
compression opcode for the parameters to GXNewGlyphs function, the corresponding
bit shift from the gxOmitGlyphShift1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitGlyphShift1 {

gxOmitGlyphCharactersShift = 6,

gxOmitGlyphLengthShift = 4,

gxOmitGlyphRunNumberShift = 2,

gxOmitGlyphOnePositionShift = 1,

gxOmitGlyphDataShift = 0

};

Constant descriptions

gxOmitGlyphCharactersShift
The bit shift required to isolate the compression bits for the
charCount function parameter.

gxOmitGlyphLengthShift
The bit shift required to isolate the compression bits for the length
in bytes of the data.

gxOmitGlyphRunNumberShift
The bit shift required to isolate the compression bits for the number
of styleRuns .

gxOmitGlyphOnePositionShift
The bit shift required to specify that the position can be represented
with 1 point.

gxOmitGlyphDataShift
The bit shift required to isolate the compression bits for the text
function parameter.

The gxOmitGlyphMask2 enumeration defines which bits in an omit byte correspond to
the data compression opcode for the parameters of the GXNewGlyphs function. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Glyph Shape Data” beginning on page 7-33.

enum gxOmitGlyphMask2 {

gxOmitGlyphPositionsMask = 0xC0,

gxOmitGlyphAdvancesMask = 0x20,

gxOmitGlyphTangentsMask = 0x18,

gxOmitGlyphRunsMask = 0x04,

gxOmitGlyphStylesMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

7-124 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitGlyphPositionsMask
The mask used to select the data compression bits for the
positions function parameter.

gxOmitGlyphAdvancesMask
The mask used to select the data compression bits for the advance
function parameter.

gxOmitGlyphTangentsMask
The mask used to select the data compression bits for the
tangents function parameter.

gxOmitGlyphRunsMask
The mask used to select the data compression bits for the
styleRuns function parameter.

gxOmitGlyphStylesMask
The mask used to select the data compression bits for the
glyphStyles function parameter.

Once one of the gxOmitGlyphMask2 enumeration masks has been used to select a data
compression opcode for the parameters to the GXNewGlyph function, the corresponding
bit shift from the gxOmitGlyphShift2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitGlyphShift2 {

gxOmitGlyphPositionsShift = 6,

gxOmitGlyphAdvancesShift = 5,

gxOmitGlyphTangentsShift = 3,

gxOmitGlyphRunsShift = 2,

gxOmitGlyphStylesShift = 0

};

Constant descriptions

gxOmitGlyphPositionsShift
The bit shift required to isolate the compression bits for the
positions function parameter.

gxOmitGlyphAdvancesShift
The bit shift required to isolate the compression bits for the
advance function parameter.

gxOmitGlyphTangentsShift
The bit shift required to isolate the compression bits for the
tangents function parameter.

gxOmitGlyphRunsShift
The bit shift required to isolate the compression bits for the
styleRuns function parameter.

gxOmitGlyphStylesShift
The bit shift required to isolate the compression bits for the
glyphStyles function parameter.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-125

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Layout Shape Omit Byte Masks and Shifts 7

The gxOmitLayoutMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcode for parameters for the GXNewLayout function. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Layout Shape Data” beginning on page 7-33.

enum gxOmitLayoutMask1 {

gxOmitLayoutLengthMask = 0xC0,

gxOmitLayoutPositionXMask = 0x30,

gxOmitLayoutPositionYMask = 0x0C,

gxOmitLayoutDataMask = 0x02

};

Constant descriptions

gxOmitLayoutLengthMask
The mask used to select the data compression bits for the
textRunLength parameter.

gxOmitLayoutPositionXMask
The mask used to select the data compression bits for the
position.X parameter.

gxOmitLayoutPositionYMask
The mask used to select the data compression bits for the
position.Y parameters.

gxOmitLayoutDataMask
The mask used to select the data compression bits for the text
parameter.

Once one of the gxOmitLayoutMask1 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift1 {

gxOmitLayoutLengthShift = 6,

gxOmitLayoutPositionXShift = 4,

gxOmitLayoutPositionYShift = 2,

gxOmitLayoutDataShift = 1

};

C H A P T E R 7

QuickDraw GX Stream Format

7-126 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitLayoutLengthShift
The bit shift required to isolate the compression bits for the
textRunLength parameter.

gxOmitLayoutPositionXShift
The bit shift required to isolate the compression bits for the
position.X parameter.

gxOmitLayoutPositionYShift
The bit shift required to isolate the compression bits for the
position.Y parameter.

gxOmitLayoutDataShift
The bit shift required to isolate the compression bits for the text
parameter descriptor.

The gxOmitLayoutMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask2 {

gxOmitLayoutWidthMask = 0xC0,

gxOmitLayoutFlushMask = 0x30,

gxOmitLayoutJustMask = 0x0C,

gxOmitLayoutOptionsMask = 0x03

};

Constant descriptions

gxOmitLayoutWidthMask
The mask used to select the data compression bits for the width
field descriptor.

gxOmitLayoutFlushMask
The mask used to select the data compression bits for the flush
field descriptor.

gxOmitLayoutJustMask
The mask used to select the data compression bits for the just field
descriptor.

gxOmitLayoutOptionsMask
The mask used to select the data compression bits for the flags
field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-127

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Once one of the gxOmitLayoutMask2 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift2 {

gxOmitLayoutWidthShift = 6,

gxOmitLayoutFlushShift = 4,

gxOmitLayoutJustShift = 2,

gxOmitLayoutOptionsShift = 0

};

Constant descriptions

gxOmitLayoutWidthShift
The bit shift required to isolate the compression bits for the width
field descriptor.

gxOmitLayoutFlushShift
The bit shift required to isolate the compression bits for the flush
field descriptor.

gxOmitLayoutJustShift
The bit shift required to isolate the compression bits for the just
field descriptor.

gxOmitLayoutOptionsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

The gxOmitLayoutMask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask3 {

gxOmitLayoutStyleRunNumberMask= 0xC0,

gxOmitLayoutLevelRunNumberMask= 0x30,

gxOmitLayoutHasBaselineMask = 0x08,

gxOmitLayoutStyleRunsMask = 0x04,

gxOmitLayoutStylesMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

7-128 QuickDraw GX Stream Format Reference

Constant descriptions

gxOmitLayoutStyleRunNumberMask
The mask used to select the data compression bits for the
styleRunCount field descriptor.

gxOmitLayoutLevelRunNumberMask
The mask used to select the data compression bits for the
levelRunCount field descriptor.

gxOmitLayoutHasBaselineMask
The mask used to select the data compression bits for the
hasBaseline field descriptor.

gxOmitLayoutStyleRunsMask
The mask used to select the data compression bits for the
styleRunLengths field descriptor.

gxOmitLayoutStylesMask
The mask used to select the data compression bits for the ??? field
descriptor.

Once one of the gxOmitLayoutMask3 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift3 {

gxOmitLayoutStyleRunNumberShift = 6,

gxOmitLayoutLevelRunNumberShift = 4,

gxOmitLayoutHasBaselineShift = 3,

gxOmitLayoutStyleRunsShift = 2,

gxOmitLayoutStylesShift = 0

};

Constant descriptions

gxOmitLayoutStyleRunNumberShift
The bit shift required to isolate the compression bits for the
styleRunCount field descriptor.

gxOmitLayoutLevelRunNumberShift
The bit shift required to isolate the compression bits for the
levelRunCount field descriptor.

gxOmitLayoutHasBaselineShift
The bit shift required to isolate the compression bits for the
hasBaseline field descriptor.

gxOmitLayoutStyleRunsShift
The bit shift required to isolate the compression bits for the
styleRunLengths field descriptor.

gxOmitLayoutStylesShift
The bit shift required to isolate the compression bits for the ???
field descriptor.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference 7-129

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

The gxOmitLayoutMask4 enumeration defines which bits in a fourth omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask4 {

gxOmitLayoutLevelRunsMask = 0x80,

gxOmitLayoutLevelsMask = 0x40

};

Constant descriptions

gxOmitLayoutLevelRunsMask
The mask used to select the data compression bits for the
levelRunLengths parameter.

gxOmitLayoutLevelsMask
The mask used to select the data compression bits for the levels
parameter.

Once one of the gxOmitLayoutMask4 enumeration masks has been used to a select
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift4 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift4 {

gxOmitLayoutLevelRunsShift = 7,

gxOmitLayoutLevelsShift = 6

};

Constant descriptions

gxOmitLayoutLevelRunsShift
The bit shift required to isolate the compression bits for the
levelRunLengths parameter.

gxOmitLayoutLevelsShift
The bit shift required to isolate the compression bits for the levels
parameter.

Picture Shape Omit Byte Masks and Shifts 7

The gxOmitPictureParametersMask enumeration defines which bits in an omit byte
correspond to the data compression opcode for parameters of the GXDrawPicture
function. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Picture Shape Data” beginning on page 7-34.

C H A P T E R 7

QuickDraw GX Stream Format

7-130 QuickDraw GX Stream Format Reference

enum gxOmitPictureParametersMask {

gxOmitPictureShapeMask = 0xC0,

gxOmitOverrideStyleMask = 0x30,

gxOmitOverrideInkMask = 0x0C,

gxOmitOverrideTransformMask = 0x03

};

Constant descriptions

gxOmitPictureShapeMask
The mask used to select the data compression bits for the shape s
parameter.

gxOmitOverrideStyleMask
The mask used to select the data compression bits for the styles
parameter.

gxOmitOverrideInkMask
The mask used to select the data compression bits for the inks
parameter.

gxOmitOverrideTransformMask
The mask used to select the data compression bits for the
transforms parameter.

enum gxOmitPictureParametersShift {

gxOmitPictureShapeShift = 0x6,

gxOmitOverrideStyleShift = 0x4,

gxOmitOverrideInkShift = 0x2,

gxOmitOverrideTransformShift = 0x0

};

Constant descriptions

gxOmitPictureShapeShift
The bit shift required to isolate the compression bits for the shape s
parameter.

gxOmitOverrideStyleShift
The bit shift required to isolate the compression bits for the styles
parameter.

gxOmitOverrideInkShift
The bit shift required to isolate the compression bits for the inks
parameter.

gxOmitOverrideTransformShift
The bit shift required to isolate the compression bits for the
transforms parameter.

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-131

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

QuickDraw GX Stream Format Summary 7

Opcode Constants and Data Types 7

Operation Opcode Byte

enum gxGraphicsOperationOpcode {

gxNewObjectOpcode = 0x00,

gxSetDataOpcode = 0x40,

gxSetDefaultOpcode= 0x80,

gxReservedOpcode = 0xC0,

gxNextOpcode = 0xFF,

};

Data Type Opcode Byte

enum gxGraphicsNewOpcode {

gxHeaderTypeOpcode = 0x00,

gxStyleTypeOpcode = 0x28,

gxInkTypeOpcode,

gxTransformTypeOpcode,

gxColorProfileTypeOpcode,

gxColorSetTypeOpcode,

gxTagTypeOpcode,

gxBitImageOpcode,

gxFontNameTypeOpcode,

gxTrailerTypeOpcode,

};

Generic Data Opcode

enum gxGenericDataOpcode {

gxTypeOpcode,

gxSizeOpcode

}; /* constants used by current operand when

 current operation is gxNextOpcode */

#define gxCompressionShift 6

#define gxObjectTypeMask 0x3F

C H A P T E R 7

QuickDraw GX Stream Format

7-132 QuickDraw GX Stream Format Summary

#define gxBitImageOpcodeMask 0xC0

#define gxBitImageCountMask 0x3F

#define gxBitImageOpcodeShift 6

Modified Shape Data Opcodes

enum gxShapeDataOpcode {

gxShapeAttributesOpcode,

gxShapeTagOpcode,

gxShapeFillOpcode

};

Modified Style Data Opcodes

enum gxStyleDataOpcode {

gxStyleAttributesOpcode,

gxStyleTagOpcode,

gxStyleCurveErrorOpcode,

gxStylePenOpcode,

gxStyleJoinOpcode,

gxStyleDashOpcode,

gxStyleCapsOpcode,

gxStylePatternOpcode,

gxStyleTextAttributesOpcode,

gxStyleTextSizeOpcode,

gxStyleFontOpcode,

gxStyleTextFaceOpcode,

gxStylePlatformOpcode,

gxStyleFontVariationsOpcode,

#ifdef gxLayoutStyleRuns

gxStyleRunControlsOpcode,

gxStyleRunPriorityJustOverrideOpcode,

gxStyleRunGlyphJustOverridesOpcode,

gxStyleRunGlyphSubstitutionsOpcode,

gxStyleRunFeaturesOpcode,

gxStyleRunKerningAdjustmentsOpcode,

gxStyleLayoutInfoOpcode,

gxStyleJustificationOpcode

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-133

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Modified Ink Data Opcodes

enum gxInkDataOpcode {

gxInkAttributesOpcode,

gxInkTagOpcode,

gxInkColorOpcode,

gxInkTransferModeOpcode

};

Modified Color Set Data Opcodes

enum gxColorSetDataOpcode {

gxColorSetReservedOpcode,

gxColorSetTagOpcode

};

Modified Color Profile Data Opcodes

enum gxProfileDataOpcode {

gxColorProfileAttributesOpcode,

gxColorProfileTagOpcode

};

Modified Transform Data Opcodes

enum gxTransformDataOpcode {

gxTransformReservedOpcode,

gxTransformTagOpcode,

gxTransformClipOpcode,

gxTransformMappingOpcode,

gxTransformPartMaskOpcode,

gxTransformToleranceOpcode

};

Bit Image Compression Opcodes

enum gxBitImageCompression {

gxCopyBitImageBytesOpcode = 0x00,

gxRepeatBitImageBytesOpcode= 0x40,

gxLookupBitImageBytesOpcode= 0x80,

gxRepeatBitImageScanOpcode = 0xC0

};

C H A P T E R 7

QuickDraw GX Stream Format

7-134 QuickDraw GX Stream Format Summary

Two Bit Compression Values

enum gxTwoBitCompressionValues {

gxNoCompression, = 0x00

gxWordCompression, = 0x40

gxByteCompression, = 0x80

gxOmitCompression = = 0x??

};

Flatten Header Bytes

struct gxFlattenHeader {

fixed version;

unsigned char flatFlags;

};

Style Object Omit Byte Constants and Data Types 7

Dash Style Omit Byte Masks and Shifts

enum gxOmitDashMask1 {

gxOmitDashAttributesMask = 0xC0,

gxOmitDashShapeMask = 0x30,

gxOmitDashAdvanceMask = 0x0C,

gxOmitDashPhaseMask = 0x03

};

enum gxOmitDashShift1 {

gxOmitDashAttributesShift = 6,

gxOmitDashShapeShift = 4,

gxOmitDashAdvanceShift = 2,

gxOmitDashPhaseShift = 0

};

enum gxOmitDashMask2 {

gxOmitDashScaleMask = 0xC0

};

enum gxOmitDashShift2 {

gxOmitDashScaleShift = 6

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-135

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Pattern Style Omit Byte Masks and Shifts

enum gxOmitPatternMask1 {

gxOmitPatternAttributesMask = 0xC0,

gxOmitPatternShapeMask = 0x30,

gxOmitPatternUXMask = 0x0C,

gxOmitPatternUYMask = 0x03

};

enum gxOmitPatternShift1 {

gxOmitPatternAttributesShift = 6,

gxOmitPatternShapeShift = 4,

gxOmitPatternUXShift = 2,

gxOmitPatternUYShift = 0

};

enum gxOmitPatternMask2 {

gxOmitPatternVXMask = 0xC0,

gxOmitPatternVYMask = 0x30

};

enum gxOmitPatternShift2 {

gxOmitPatternVXShift= 6,

gxOmitPatternVYShift= 4

};

Join Style Omit Byte Masks and Shifts

enum gxOmitJoinMask {

gxOmitJoinAttributesMask= 0xC0,

gxOmitJoinShapeMask = 0x30,

gxOmitJoinMiterMask = 0x0C

};

enum gxOmitJoinShift {

gxOmitJoinAttributesShift = 6,

gxOmitJoinShapeShift = 4,

gxOmitJoinMiterShift = 2

};

C H A P T E R 7

QuickDraw GX Stream Format

7-136 QuickDraw GX Stream Format Summary

Cap Style Omit Byte Masks and Shifts

enum gxOmitCapMask {

gxOmitCapAttributesMask = 0xC0,

gxOmitCapStartShapeMask = 0x30,

gxOmitCapEndShapeMask = 0x0C

};

enum gxOmitCapShift {

gxOmitCapAttributesShift= 6,

gxOmitCapStartShapeShift= 4,

gxOmitCapEndShapeShift = 2

};

Text Face Style Omit Byte Masks and Shifts

enum gxOmitFaceMask {

gxOmitFaceLayersMask = 0xC0,

gxOmitFaceMappingMask= 0x30

};

enum gxOmitFaceShift {

gxOmitFaceLayersShift = 6,

gxOmitFaceMappingShift= 4

};

Face Layer Omit Byte Masks and Shifts

enum gxOmitFaceLayerMask1 {

gxOmitFaceLayerFillMask = 0xC0,

gxOmitFaceLayerFlagsMask = 0x30,

gxOmitFaceLayerStyleMask = 0x0C,

gxOmitFaceLayerTransformMask = 0x03

};

enum gxOmitFaceLayerShift1 {

gxOmitFaceLayerFillShift = 6,

gxOmitFaceLayerFlagsShift = 4,

gxOmitFaceLayerStyleShift = 2,

gxOmitFaceLayerTransformShift = 0

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-137

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitFaceLayerMask2 {

gxOmitFaceLayerBoldXMask = 0xC0,

gxOmitFaceLayerBoldYMask = 0x30

};

enum gxOmitFaceLayerShift2 {

gxOmitFaceLayerBoldXShift = 6,

gxOmitFaceLayerBoldYShift = 4

};

Ink Object Omit Byte Constants and Data Types 7

Colors Omit Byte Masks and Shifts

enum gxOmitColorsMask {

gxOmitColorsSpaceMask = 0xC0,

gxOmitColorsProfileMask = 0x30,

gxOmitColorsComponentsMask = 0x0F,

gxOmitColorsIndexMask = 0x0C,

gxOmitColorsIndexSetMask = 0x03

};

enum gxOmitColorsShift {

gxOmitColorsSpaceShift = 6,

gxOmitColorsProfileShift = 4,

gxOmitColorsComponentsShift = 0,

gxOmitColorsIndexShift = 2,

gxOmitColorsIndexSetShift = 0

};

Transfer Omit Byte Masks and Shifts

enum gxOmitTransferMask1 {

gxOmitTransferSpaceMask = 0xC0,

gxOmitTransferSetMask = 0x30,

gxOmitTransferProfileMask = 0x0C

};

enum gxOmitTransferShift1 {

gxOmitTransferSpaceShift = 6,

gxOmitTransferSetShift = 4,

gxOmitTransferProfileShift = 2

};

C H A P T E R 7

QuickDraw GX Stream Format

7-138 QuickDraw GX Stream Format Summary

enum gxOmitTransferMask2 {

gxOmitTransferSourceMatrixMask= 0xC0,

gxOmitTransferDeviceMatrixMask= 0x30,

gxOmitTransferResultMatrixMask= 0x0C,

gxOmitTransferFlagsMask = 0x03

};

enum gxOmitTransferShift2 {

gxOmitTransferSourceMatrixShift = 6,

gxOmitTransferDeviceMatrixShift = 4,

gxOmitTransferResultMatrixShift = 2,

gxOmitTransferFlagsShift = 0

};

Transfer Component Omit Byte Masks and Shifts

enum gxOmitTransferComponentMask1{

gxOmitTransferComponentModeMask = 0x80,

gxOmitTransferComponentFlagsMask = 0x40,

gxOmitTransferComponentSourceMinimumMask = 0x30,

gxOmitTransferComponentSourceMaximumMask = 0x0C,

gxOmitTransferComponentDeviceMinimumMask = 0x03

} ;

enum gxOmitTransferComponentShift1 {

gxOmitTransferComponentModeShift = 7,

gxOmitTransferComponentFlagsShift = 6,

gxOmitTransferComponentSourceMinimumShift = 4,

gxOmitTransferComponentSourceMaximumShift = 2,

gxOmitTransferComponentDeviceMinimumShift = 0

};

enum gxOmitTransferComponentMask2 {

gxOmitTransferComponentDeviceMaximumMask = 0xC0,

gxOmitTransferComponentClampMinimumMask = 0x30,

gxOmitTransferComponentClampMaximumMask = 0x0C,

gxOmitTransferComponentOperandMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-139

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitTransferComponentShift2 {

gxOmitTransferComponentDeviceMaximumShift = 6,

gxOmitTransferComponentClampMinimumShift = 4,

gxOmitTransferComponentClampMaximumShift = 2,

gxOmitTransferComponentOperandShift = 0

};

Shape Object Omit Byte Constants and Data Types 7

Path Shape Omit Byte Masks and Shifts

enum gxOmitPathMask {

gxOmitPathPositionXMask = 0xC0,

gxOmitPathPositionYMask = 0x30,

gxOmitPathDeltaXMask = 0x0C,

gxOmitPathDeltaYMask = 0x03

};

enum gxOmitPathShift {

gxOmitPathPositionXShift = 6,

gxOmitPathPositionYShift = 4,

gxOmitPathDeltaXShift = 2,

gxOmitPathDeltaYShift = 0

};

Bitmap Shape Omit Byte Masks and Shifts

enum gxOmitBitmapMask1 {

gxOmitBitmapImageMask = 0xC0,

gxOmitBitmapWidthMask = 0x30,

gxOmitBitmapHeightMask = 0x0C,

gxOmitBitmapRowBytesMask = 0x03

};

enum gxOmitBitmapShift1 {

gxOmitBitmapImageShift = 6,

gxOmitBitmapWidthShift = 4,

gxOmitBitmapHeightShift = 2,

gxOmitBitmapRowBytesShift = 0

};

C H A P T E R 7

QuickDraw GX Stream Format

7-140 QuickDraw GX Stream Format Summary

enum gxOmitBitmapMask2 {

gxOmitBitmapPixelSizeMask = 0xC0,

gxOmitBitmapSpaceMask = 0x30,

gxOmitBitmapSetMask = 0x0C,

gxOmitBitmapProfileMask = 0x03

};

enum gxOmitBitmapShift2 {

gxOmitBitmapPixelSizeShift = 6,

gxOmitBitmapSpaceShift = 4,

gxOmitBitmapSetShift = 2,

gxOmitBitmapProfileShift = 0

};

enum gxOmitBitmapMask3 {

gxOmitBitmapPositionXMask = 0xC0,

gxOmitBitmapPositionYMask = 0x30

};

enum gxOmitBitmapShift3 {

gxOmitBitmapPositionXShift = 6,

gxOmitBitmapPositionYShift = 4

};

Bit Image Omit Byte Masks and Shifts

enum gxOmitBitImageMask {

gxOmitBitImageRowBytesMask = 0xC0,

gxOmitBitImageHeightMask = 0x30,

gxOmitBitImageDataMask = 0x08

};

enum gxOmitBitImageShift {

gxOmitBitImageRowBytesShift = 6,

gxOmitBitImageHeightShift = 4,

gxOmitBitImageDataShift = 3

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-141

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

Text Shape Omit Byte Masks and Shifts

enum gxOmitTextMask {

gxOmitTextCharactersMask = 0xC0,

gxOmitTextPositionXMask = 0x30,

gxOmitTextPositionYMask = 0x0C,

gxOmitTextDataMask = 0x02

};

enum gxOmitTextShift {

gxOmitTextCharactersShift = 6,

gxOmitTextPositionXShift = 4,

gxOmitTextPositionYShift = 2,

gxOmitTextDataShift = 1

};

Glyph Shape Omit Byte Masks and Shifts

enum gxOmitGlyphMask1 {

gxOmitGlyphCharactersMask = 0xC0,

gxOmitGlyphLengthMask = 0x30,

gxOmitGlyphRunNumberMask = 0x0C,

gxOmitGlyphOnePositionMask = 0x02,

gxOmitGlyphDataMask = 0x01

};

enum gxOmitGlyphShift1 {

gxOmitGlyphCharactersShift = 6,

gxOmitGlyphLengthShift = 4,

gxOmitGlyphRunNumberShift = 2,

gxOmitGlyphOnePositionShift = 1,

gxOmitGlyphDataShift = 0

};

enum gxOmitGlyphMask2 {

gxOmitGlyphPositionsMask = 0xC0,

gxOmitGlyphAdvancesMask = 0x20,

gxOmitGlyphTangentsMask = 0x18,

gxOmitGlyphRunsMask = 0x04,

gxOmitGlyphStylesMask = 0x03

};

C H A P T E R 7

QuickDraw GX Stream Format

7-142 QuickDraw GX Stream Format Summary

enum gxOmitGlyphShift2 {

gxOmitGlyphPositionsShift = 6,

gxOmitGlyphAdvancesShift = 5,

gxOmitGlyphTangentsShift = 3,

gxOmitGlyphRunsShift = 2,

gxOmitGlyphStylesShift = 0

};

Layout Shape Omit Byte Masks and Shifts

enum gxOmitLayoutMask1 {

gxOmitLayoutLengthMask = 0xC0,

gxOmitLayoutPositionXMask = 0x30,

gxOmitLayoutPositionYMask = 0x0C,

gxOmitLayoutDataMask = 0x02

};

enum gxOmitLayoutShift1 {

gxOmitLayoutLengthShift = 6,

gxOmitLayoutPositionXShift = 4,

gxOmitLayoutPositionYShift = 2,

gxOmitLayoutDataShift = 1

};

enum gxOmitLayoutMask2 {

gxOmitLayoutWidthMask = 0xC0,

gxOmitLayoutFlushMask = 0x30,

gxOmitLayoutJustMask = 0x0C,

gxOmitLayoutOptionsMask = 0x03

};

enum gxOmitLayoutShift2 {

gxOmitLayoutWidthShift = 6,

gxOmitLayoutFlushShift = 4,

gxOmitLayoutJustShift = 2,

gxOmitLayoutOptionsShift = 0

};

C H A P T E R 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary 7-143

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at

enum gxOmitLayoutMask3 {

gxOmitLayoutStyleRunNumberMask= 0xC0,

gxOmitLayoutLevelRunNumberMask= 0x30,

gxOmitLayoutHasBaselineMask = 0x08,

gxOmitLayoutStyleRunsMask = 0x04,

gxOmitLayoutStylesMask = 0x03

};

enum gxOmitLayoutShift3 {

gxOmitLayoutStyleRunNumberShift = 6,

gxOmitLayoutLevelRunNumberShift = 4,

gxOmitLayoutHasBaselineShift = 3,

gxOmitLayoutStyleRunsShift = 2,

gxOmitLayoutStylesShift = 0

};

enum gxOmitLayoutMask4 {

gxOmitLayoutLevelRunsMask = 0x80,

gxOmitLayoutLevelsMask = 0x40

};

enum gxOmitLayoutShift4 {

gxOmitLayoutLevelRunsShift = 7,

gxOmitLayoutLevelsShift = 6

};

Picture Shape Omit Byte Masks and Shifts

enum gxOmitPictureParametersMask {

gxOmitPictureShapeMask = 0xC0,

gxOmitOverrideStyleMask = 0x30,

gxOmitOverrideInkMask = 0x0C,

gxOmitOverrideTransformMask = 0x03

};

enum gxOmitPictureParametersShift {

gxOmitPictureShapeShift = 0x6,

gxOmitOverrideStyleShift = 0x4,

gxOmitOverrideInkShift = 0x2,

gxOmitOverrideTransformShift = 0x0

};

Contents

8-1

C H A P T E R 8

8

Figure 8-0
Listing 8-0
Table 8-0

Contents

8 QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-5
Number Formats 8-5

Integer Formats 8-6
Floating-Point Formats 8-6
Fixed-Point Formats 8-6
Working With Bias in Fixed-Point Operations 8-7

Number-Conversion Macros 8-8
Mathematical Functions 8-9

Operations on Fixed, long, and fract Numbers8-9
Operations on wide Numbers 8-10
Vector Operations 8-10
Cartesian and Polar Coordinate Conversion 8-10
Random Number Generation 8-11
Roots of Linear and Quadratic Equations8-12
Bit Analysis 8-12

Transformation Operations With Mappings 8-12
Characteristics of a Mapping 8-15
Translation by a Relative Amount 8-17
Translation to a Specified Point 8-18
Scaling 8-20
Rotation 8-22
Skewing 8-24
Perspective 8-26

Using QuickDraw GX Mathematics 8-26
Converting Number Formats 8-26
Performing Fixed-Point Operations 8-27
Converting Between Cartesian and Polar Coordinates 8-29
Performing Vector Operations 8-29
Shifting the Bits of a wide Number 8-31
Determining the Highest Order Bit of a wide Number 8-32

C H A P T E R 8

8-2

Contents

Generating Random Numbers 8-33
Analyzing the Bits in a Number 8-33
Resetting a Mapping 8-34

QuickDraw GX Mathematics Reference 8-35
Constants and Data Types 8-35

Number Formats and Constants 8-35
The Mapping Structure 8-36

Number-Conversion Macros 8-36
Format Conversions 8-36

FixedToFract

8-36

FractToFixed

8-37

FixedToInt

8-37

IntToFixed

8-37

ff

8-38

FixedToFloat

8-38

FloatToFixed

8-39

fl

8-39

FractToFloat

8-40

FloatToFract

8-40

ColorToFract

8-40

FractToColor

8-41
Rounding, Truncating, and Square Root Operations 8-41

FixedRound

8-41

FixedTruncate

8-41

FixedSquareRoot

8-42
Mathematical Functions 8-42

Fixed-Point Operations 8-42

FixedMultiply

8-42

FixedDivide

8-43

MultiplyDivide

8-44

Magnitude

8-45

FractSineCosine

8-46

FractSquareRoot

8-46

FractCubeRoot

8-47

FractMultiply

8-47

FractDivide

8-48
Operations on wide Numbers 8-49

WideAdd

8-49

WideSubtract

8-50

WideNegate

8-50

WideShift

8-51

WideMultiply

8-51

WideDivide

8-52

WideWideDivide

8-52

WideSquareRoot

8-53

WideScale

8-53

WideCompare

8-54

C H A P T E R 8

Contents

8-3

8

Vector Operations 8-54

VectorMultiply

8-54

VectorMultiplyDivide

8-55
Cartesian and Polar Coordinate Point Conversions 8-56

PolarToPoint

8-56

PointToPolar

8-57
Random Number Generation 8-58

RandomBits

8-58

SetRandomSeed

8-59

GetRandomSeed

8-60
Linear and Quadratic Roots 8-60

LinearRoot

8-60

QuadraticRoot

8-61
Bit Analysis 8-62

FirstBit

8-62
Mapping Functions 8-62

Manipulating and Applying Mappings 8-63

CopyToMapping

8-63

NormalizeMapping

8-64

ResetMapping

8-64

InvertMapping

8-65

MapMapping

8-65

MapPoints

8-66
Modifying Mappings 8-67

MoveMapping

8-67

MoveMappingTo

8-68

ScaleMapping

8-69

RotateMapping

8-70

SkewMapping

8-71
Summary of QuickDraw GX Mathematics 8-73

Constants and Data Types 8-73
Number-Conversion Macros 8-74
Mathematical Functions 8-74
Mapping Functions 8-76

C H A P T E R 8

About QuickDraw GX Mathematics

8-5

8

Q

uickD
raw

 G
X

 M
athem

atics

QuickDraw GX Mathematics 8

This chapter describes QuickDraw GX number formats, number-format conversions,
mathematical functions, and functions that operate on mappings (transformation
matrices). Read this chapter if your application requires the explicit use of any of the
mathematical capabilities of QuickDraw GX.

Related information on how QuickDraw GX uses mappings can be found in the chapter
“Transform Objects” and the chapter “View-Related Objects”

in

Inside Macintosh:
QuickDraw GX Objects

.

This chapter first describes the number formats used in QuickDraw GX. It then describes
the number-format conversion macros and mathematical functions that are provided by
QuickDraw GX. It then shows how to use QuickDraw GX macros and functions to
provide

■

fixed-point number conversions

■

fixed-point operations

■

operations on 64-bit numbers

■

vector operations

■

Cartesian and polar coordinate conversions

■

random number generation

■

roots of linear and quadratic equations

■

bit analysis

■

mapping operations

About QuickDraw GX Mathematics 8

QuickDraw GX supports 16-bit, 32-bit, and 64-bit fixed-point number formats. You can
use QuickDraw GX macros for efficient number-format conversions. QuickDraw GX
mathematical functions provide a full spectrum of operations. QuickDraw GX mapping
functions allow you to manipulate the matrices that transform shapes.

Number Formats 8

QuickDraw GX accepts standard integer and floating-point number formats, and defines
several fixed-point number formats.

C H A P T E R 8

QuickDraw GX Mathematics

8-6

About QuickDraw GX Mathematics

Integer Formats 8

Some Quickdraw GX functions and data structures may make use of the standard C
language integer formats

short

,

unsigned short

,

long

, and

unsigned long

. The

short number

 format is a 16-bit signed or unsigned integer; the

long number

 format is a
32-bit signed or unsigned integer. Numbers in these formats have the following ranges
of values:

Floating-Point Formats 8

QuickDraw GX supports conversion to and from the C language single precision
floating-point format

float

; double precision floating-point format

double

; and extra
precision floating-point format

extended

. QuickDraw GX macros that convert between
floating-point numbers and

Fixed

 or

fract

 numbers can handle all three floating-point
formats.

Fixed-Point Formats 8

QuickDraw GX defines 16-bit, 32-bit, and 64-bit

fixed-point number

 formats.
Fixed-point number formats are integers that are interpreted as real numbers. The
conversion between integer number format and a fixed-point number format is
described by bias. A

bias

 is a number (commonly expressed as a power of 2) by
which an integer is divided in order to obtain the real number it represents. For
example, the bias for the

Fixed

 number format is 16 bits, or 2

16

. In this case, the
integer must be divided by 2

16

 to obtain the real number represented. Therefore,

Fixed

 0x10000 = 65,536/2

16

, or 1.0.

There are one 16-bit, two 32-bit, and one 64-bit number formats:

■

The

gxColorValue

 format for fixed-point numbers is a 16-bit unsigned integer. The
values range from 0 to 65,535 to represent numbers from 0 to 1. This fixed-point
number is described by a bias of 65,535. The integer must be divided by 65,535 to
obtain the real number represented. (Its name derives from the fact that it is used to
describe color-component values in a Quickdraw GX color structure; see the chapter
“Colors and Color-Related Objects” in

Inside Macintosh: QuickDraw GX Objects

 for
more information.)

■

The

Fixed

 format for fixed-point numbers has 16 bits to the left and 16 bits to the
right of the binary point. This corresponds to a fixed-point bias of 16 bits.

Fixed

format numbers range from –32,768 to [32,767 + (65,535/65,536)], or approximately
32,768.

Format Range

short

–32, 768 to 32,767

unsigned short

0 to 65,535

long

–2,147,483,648 to 2,147,483,647

unsigned long

0 to 4,294,967,295

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics

8-7

8

Q

uickD
raw

 G
X

 M
athem

atics

■

The

fract

 format for fixed-point numbers has 2 bits to the left and 30 bits to the right
of the binary point. This corresponds to a fixed-point bias of 30 bits. Numbers in

fract

 format range from –2 to [2 – (2

-30

)] or –2 to [1 + (1,073,741,823/1,073,741,824)],
or approximately 2.0.

■

The

wide

 format is a signed integer data type that has 64 bits. It can be given a bias,
just as any other integer type can. With a bias of 0 bits, a

wide

 format number
represents an integer and can range from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. With a bias of 16 bits, a

wide

 format number represents an
extended version of the

Fixed

 format (that is, it has the same precision but a larger
range) and can range from –140,737,488,355,328 to [140,737,488,355,327 + (65,535/
65,536)].

All of the fixed-point number formats except for

gxColorValue

 are two’s complement
signed integers.

The

wide

 data type is defined as a structure that contains an unsigned long integer as its
low-order half and a signed long integer as its high-order half. You can convert a

long

into a

wide

 in either of two ways:

■

First, assign the

long

 to the low half of the

wide

. Then, if the

long

 is not negative,
assign 0 to the high half of the

wide

; if the

long

 is negative, assign –1 to the high half
of the

wide

.

■

Assign the

long

 to the high half of the

wide

. Use the

WideShift

 function to shift the
bits of the

wide

 rightward by 32 bits.

The WideShift function is described on page 8-51. The

wide

 structure is described on
page 8-35.

Working With Bias in Fixed-Point Operations 8

Fixed

 numbers have a bias of 16;

fract

 numbers have a bias of 30; and

long

 and

wide

numbers have a bias of 0. Unless stated otherwise, all biases will be powers of 2. For
brevity, we use the convention of describing a bias by the exponent of 2; for example, we
say “a bias of 16” instead of “a bias of 16 bits.”Operations that are designed to work on a
specific number format (such as

FixedMultiply

 or

FractDivide

 or

WideMultiply

)
apply a bias to the result of their operations that reflects the number format they expect.
If you understand how the bias is applied, you can use (and even mix) any of several
different fixed-point number formats in these functions, and know what bias to use
when interpreting the result:

■

Operations on

Fixed

 numbers (such as

FixedMultiply

 and

FixedDivide

) use a
bias of 16; operations on fract numbers (such as FractMultiply and
FractDivide) use a bias of 30; operations on long and wide numbers (such as
MultiplyDivide and WideDivide) use a bias of 0.

■ When multiplying two fixed-point numbers, the bias of the result is the sum of the
biases of the input numbers, minus the bias of the operation. Thus, the result of using
FixedMultiply to multiply two Fixed numbers is a Fixed (= (16 + 16) – 16), as
expected. On the other hand, the result of using FixedMultiply to multiply a
fract and a Fixed is a fract (= (30 + 16) – 16), and the result of FractMultiply
on a fract and a Fixed is a Fixed (= (30 + 16) – 30).

C H A P T E R 8

QuickDraw GX Mathematics

8-8 About QuickDraw GX Mathematics

■ When dividing two fixed-point numbers, the bias of the result is the operation bias
plus the difference between the biases of the input numbers. Thus, as expected, the
result of using FixedDivide to divide one Fixed number by another is a Fixed
(= 16 + (16 – 16)). The result of FixedDivide on a fract divided by a Fixed is a
Fract (= 16 + (30 – 16)), and the result of FractDivide on a Fixed divided by
a Fract is a Fixed (= 30 + (16 – 30)).

■ For operations that have no bias, the result is simply the sum or difference of the input
biases. For example, if you use MultiplyDivide to multiply a Fixed by a fract
and divide the result by a Fixed , the result will be a fract (= 16 + 30 – 16). If you
use WideMultiply to multiply two Fixed numbers, the result will have a bias of 32
bits (= 16 + 16).

Remember also that using the standard C operators + and – to add or subtract
fixed-point numbers is meaningful only if the numbers have the same bias. Thus, if you
wish to add together a long integer and a Fixed , for example, you must first convert one
format to the other, or convert both to a common format.

The functions referred to in this section are described in the section “Fixed-Point
Operations” beginning on page 8-42, and “Operations on wide Numbers” beginning on
page 8-49.

Number-Conversion Macros 8
QuickDraw GX provides a set of predefined macros for the conversion between different
fixed-point number formats. This allows you the convenience of accessing the
number-conversion formulas as if they were function calls.

Table 8-1 summarizes the number-format conversions that are supported.

Table 8-1 Macro number-format conversions

From n umber f ormat To number f ormat

Fixed fract

Fixed floating-point

Fixed integer

fract floating-point

fract Fixed

fract gxColorValue

floating-point fract

floating-point Fixed

integer Fixed

gxColorValue fract

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-9

8
Q

uickD
raw

 G
X

 M
athem

atics

QuickDraw GX also provides macros that

■ round a Fixed number to its nearest integer

■ determine the greatest integer that is not greater than a given Fixed number

■ use a function to determine the square root of a Fixed number

The use of QuickDraw GX macros is described in the section “Converting Number
Formats” beginning on page 8-26. Each macro is described in the section
“Number-Conversion Macros” beginning on page 8-36.

Mathematical Functions 8
QuickDraw GX provides mathematical functions for

■ fixed-point operations on Fixed , long , and fract number formats

■ fixed-point operations on a wide number format

■ vector operations

■ Cartesian and polar coordinate point conversions

■ random number generation

■ linear and quadratic roots

■ bit analysis

A description of each QuickDraw GX mathematics function is provided in the section
“Mathematical Functions” beginning on page 8-42.

Operations on Fixed, long, and fract Numbers 8

QuickDraw GX provides functions that perform operations on Fixed , long , and fract
number formats. Functions are provided that

■ determine the product of two numbers (a × b)

■ determine the quotient of two numbers (a / b)

■ determine the product of two numbers and the quotient of a third number (a × b) / c

■ determine both the sine and cosine of an angle measured in degrees [sine(angle) and
cosine(angle)]

■ determine the square root of a number (a)1/2

■ determine the cube root of a number (a)1/3

■ determine the magnitude of a two-dimensional vector

The functions that perform operations on Fixed , long , and fract number formats are
described in the section “Fixed-Point Operations” beginning on page 8-42.

C H A P T E R 8

QuickDraw GX Mathematics

8-10 About QuickDraw GX Mathematics

Operations on wide Numbers 8

QuickDraw GX provides functions for operations on wide numbers. Functions are
provided that

■ determine the sum of two wide numbers (a + b)

■ determine the difference between two wide numbers (a – b)

■ determine the product, as a wide number, of two long numbers (a × b)

■ determine the quotient, as a long number (without remainder), of a wide number
divided by a long number (a / b)

■ determine the result, as a long quotient and a long remainder, of dividing a wide
number by a long number (a / b + remainder)

■ determine the square root of a wide number (a)1/2

■ negate a wide number (–a)

■ shift bits in a wide number to the right or left

■ determine the highest order bit in the absolute value of a wide number

■ compare two wide numbers

The functions that perform operations on wide number formats are described in the
section “Operations on wide Numbers” beginning on page 8-49.

Vector Operations 8

QuickDraw GX provides vector operation functions that

■ determine the dot product of two vectors (v1 • v2)

■ determine the dot product of two vectors and divide by a number (v1 • v2)/a

The use of QuickDraw GX vector operation functions is described in the section
“Performing Vector Operations” beginning on page 8-29. These functions are described
in the section “Vector Operations” beginning on page 8-54.

Cartesian and Polar Coordinate Conversion 8

You use Cartesian coordinates to specify points with QuickDraw GX. Some shapes, such
as rectangles, are more easily drawn using Cartesian coordinates; however, some shapes
that have symmetry about a point are more easily drawn with polar coordinates. For that
reason, QuickDraw GX provides conversion routines so that you can work in either
coordinate system.

For QuickDraw GX, Cartesian coordinates have a positive x direction to the right and a
positive y direction downward (not upward, as in many other Cartesian coordinate
systems). Cartesian coordinates are written in the order (x, y). The origin is at (0, 0). The
gxPoint structure describes points using Cartesian coordinates.

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-11

8
Q

uickD
raw

 G
X

 M
athem

atics

Polar coordinates have the same origin point as Cartesian coordinates, but locations are
specified differently. The polar coordinate of a point is specified by the length of the
radius vector r from the origin to the point and the direction of the vector is specified by
polar angle a. Angles in QuickDraw GX are measured clockwise in degrees from the
Cartesian coordinate positive x-axis. The polar coordinate of a point specified by a vector
of length r and direction a degrees from the x-axis is written as point (r, a). The polar
origin point has the coordinates (0, a), where a is any angle. Points having polar
coordinates are defined by the gxPolar structure. The gxPolar structure is described
in the section “Constants and Data Types” beginning on page 8-35. The relationship of
the Cartesian and polar coordinates is shown in Figure 8-1.

Figure 8-1 Cartesian and polar coordinates

The gxPolar location (r, a) corresponds to the gxPoint location (r × cos(a), r × sin(a)).
The mathematical relationship between the two coordinate systems is given by the
expressions r2 = x2 + y2 and tan(a / 2) = y / (r + x). The angle can also be defined by the
more familiar term tan(a) = y / x.

The use of the polar-to-Cartesian and Cartesian-to-polar coordinates functions are
described in the section “Converting Between Cartesian and Polar Coordinates”
beginning on page 8-29. These functions are described in the section “Cartesian and
Polar Coordinate Point Conversions” beginning on page 8-56.

Random Number Generation 8

The QuickDraw GX random-number algorithm generates random integers in the range
of 0 to 2count – 1, where count is the number of bits to be generated by the random
number generator.

0.0, any angle

Polar coordinates

0.0,0.0

Point (x, y)

Cartesian coordinates

+x

+y

+x

+y
Angle a

r

Point (r, a)

C H A P T E R 8

QuickDraw GX Mathematics

8-12 About QuickDraw GX Mathematics

The sequence of values that the random number generator produces is dependent upon
the initialization value called the seed. The algorithm uses the seed to calculate the next
random number and a new seed. If no seed is provided, QuickDraw GX uses a default
seed value of 0. To repeat a sequence of random numbers, you can use the same seed
value.

QuickDraw GX provides random number generation functions that

■ generate a sequence of random bits

■ change the seed used by the random number algorithm

■ determine the current seed for the random number algorithm

The use of the random number generation functions is described in the section
“Generating Random Numbers” beginning on page 8-33. These functions are described
in the section “Random Number Generation” beginning on page 8-58.

Roots of Linear and Quadratic Equations 8

QuickDraw GX provides mathematical functions that

■ determine the root of a linear equation

■ determine the roots of a quadratic equation

The linear and quadratic equation solving functions are described in the section “Linear
and Quadratic Roots” beginning on page 8-60.

Bit Analysis 8

QuickDraw GX provides a mathematical function that allows you to determine the
highest bit number that is set in a number.

The FirstBit function is described in the section “Bit Analysis” beginning on
page 8-62.

Transformation Operations With Mappings 8
A mapping is a 3 × 3 perspective matrix that performs transformations of spatial
locations in two dimensions. You can apply a mapping operation to a set of points either
directly (as when directly modifying the geometry of a shape), or indirectly, by
multiplying a mapping with another mapping (as when altering the mapping in the
transform object associated with a shape).

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-13

8
Q

uickD
raw

 G
X

 M
athem

atics

QuickDraw GX uses mappings to perform the following transformations on shapes or
other two-dimensional data:

■ Translation shifts the position of a shape by the amount specified in the mapping.
Translation functions allow you to specify either a relative shift along either
coordinate axis, or an absolute shift to a new specified location.

■ Scaling changes the size of a shape by the factor specified in the mapping. Scaling
functions allow you to change size along either axis, and can also result in reflection
about the coordinate axes.

■ Rotation changes the angle of rotation of a shape by the amount specified in the
mapping, rotating all points around a given point.

■ Skewing changes the slant applied to a shape by the amount specified in the
mapping. Skewing functions allow you to apply slant along either coordinate axis,
relative to a given point. The term shearing is synonymous with skewing.

■ Perspective modifies the positions of points to give a three-dimensional effect.

When you multiply two or more matrices to obtain a cumulative result, you concatenate,
or accumulate the transformations of, both mappings. Matrix multiplication is not
commutative. This means that [A] × [B] ≠ [B] × [A]. As a result, the order that you
concatenate is important. [A] is postmultiplied by [B] if [A] is replaced by [A] × [B].
Conversely, [A] is premultiplied by [B] if [A] is replaced by [B] × [A]. A mapping is
applied to a point via postmultiplication (which is to say that points are row vectors);
therefore, the default for applying one mapping to another is also postmultiplication.

Multiple concatenations can occur in QuickDraw GX, such as when drawing picture
shapes or when drawing any shape through a hierarchy of view ports. If you are
going to apply several mappings to a relatively large bitmap or other shape, it is
advantageous to concatenate the mappings first (with the MapMapping function) and
then apply the resultant mapping to the shape (with the GXMapShape function).

The motivation is speed. It is much faster to concatenate mappings than to apply a
mapping to a large number of points. For bitmaps, an additional motivation is accuracy.
Each time a shape is transformed, a certain amount of roundoff error is introduced.
Because the pixels of a bitmap are at integral coordinates, the roundoff error is on the
average of a quarter pixel, compared with thousandths of a pixel for fixed-point
coordinates.

C H A P T E R 8

QuickDraw GX Mathematics

8-14 About QuickDraw GX Mathematics

QuickDraw GX provides two groups of mapping functions. The first group allows you
to copy and perform standard matrix operations on mappings. With these functions, you
can

■ make a copy of a mapping

■ normalize a mapping

■ reset a mapping to identity

■ invert a mapping

■ concatenate (postmultiply) a mapping to another mapping

■ apply a mapping to each of a given set of points

The second group allows you to modify how a mapping transforms the objects or
coordinate space it is applied to. With these functions, you can

■ add translation to mapping

■ modify a mapping to specify translation to an absolute location

■ add horizontal and vertical scaling to a mapping

■ add rotation to a mapping

■ add horizontal and vertical skew to a mapping

Figure 8-2 shows an example of how modifying a mapping can modify the scaling,
rotation, skewing, and perspective of a shape.

Figure 8-2 Transformation operations with a mapping matrix

Original Scale Rotate Skew Perspective

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-15

8
Q

uickD
raw

 G
X

 M
athem

atics

Characteristics of a Mapping 8

QuickDraw GX achieves these two-dimensional transformations of shapes and points on
a plane by matrix multiplication of each Cartesian point P by the mapping matrix [T] to
generate a transformed point P´.

P(x, y) [T] = P´(x´, y´)

To multiply a two-dimensional point by a three-dimensional matrix, we first expand it to
a three-dimensional point (x, y, 1). After multiplication, the resulting point is (x´, y´, z´),
which normalizes to (x´/z´, y´/z, 1) or, in two dimensions, (x´/z´, y´/z).

The QuickDraw GX mapping is defined as

struct gxMapping { Fixed map[3][3];};

The mapping consists of linear elements a, b, c, and d; perspective elements u and v;
translation elements h and k; and the scale factor w, which is commonly set to fract1 .
Although defined as containing only Fixed numbers, the rightmost column of the
matrix—containing elements u, v, and w—consists of fract numbers. Figure 8-3 shows
the elements of the matrix in place.

Figure 8-3 Mapping matrix elements

Point P(x, y) is transformed to point P´(x´, y´) by matrix multiplication of the row vector
 [x y 1] by the mapping matrix to yield the expanded general expression shown in
Figure 8-4.

Figure 8-4 Applying a mapping matrix to a point

a b u

c d v

wh k

Perspective
elements

fract1

Linear
elements

Translation
elements

a b u

c d v

wh k

x y 1 ax + cy + h, bx + dy + k, ux + vy + w=

C H A P T E R 8

QuickDraw GX Mathematics

8-16 About QuickDraw GX Mathematics

The x and y elements of the transformed vector can be mapped back to the x and
y-coordinates by dividing each element by the term ux + vy + w. The resulting general
expression for the transformation of point P(x, y) to P´(x´, y´) is shown in Figure 8-5.

Figure 8-5 The point (x, y) as transformed by the mapping matrix

A mapping is normalized whenever the transformation matrix element w has the
value 1. Most QuickDraw GX mapping operations will be automatically normalized.
However, mappings that an application generates itself might not be normalized.
Subsequent operations with that mapping may be slow.

If a mapping does not specify perspective (that is, if its perspective elements u and v are
zero), normalization of the transformation involves dividing the map by the absolute
value of w, if possible. If this division is not possible (due to overflow) or if the mapping
specifies perspective, normalization involves bit-shifting each element of the mapping to
the left. The amount of shift provided by the minimum of the following two operations
is selected:

■ shift the minimum number of bits so that the absolute value of some element of the
mapping is >= fract1 (compared as long values).

■ shift the maximum number of bits so that the sum of the absolute values of u and v is
<= fract1 – fixed1 (compared as long values).

The identity mapping, or identity matrix, has the unique characteristic that it maps
points to the same point. The identity matrix has all diagonal elements equal to 1 and all
other matrix elements have the value 0. The identity matrix is shown in Figure 8-6.

x y
ax + cy + h

ux + vy + w
, bx + dy + k

ux + vy + w

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-17

8
Q

uickD
raw

 G
X

 M
athem

atics

Figure 8-6 The identity matrix

The inverse of a mapping is the mathematical inverse of the matrix. This means that if
you concatenate a mapping with its inverse, you will get the identity matrix.

The rest of this section discusses the use of the mapping functions in modifying the
translation, scaling, rotation, and skewing factors in a mapping. It ends with a discussion
of how to modify the perspective factors in a mapping. For additional information about
the use of mappings in the transform object and in view port and view device objects,
see the chapters “Transform Objects” and “View-Related Objects,” respectively, in Inside
Macintosh: QuickDraw GX Objects.

Translation by a Relative Amount 8

You can use the MoveMapping function to make a relative change (in both x and y)
to the translation specified by a mapping. Matrix elements h and k control the amount of
the translation. Figure 8-7 shows what happens to a mapping M when you call
MoveMapping and specify horizontal and vertical offsets of hOffset and vOffset . A
purely translational matrix is applied to the target mapping, so that the resultant
mapping’s translation is increased by the specified offsets.

Figure 8-7 Changing the translation specified by a mapping

1 0 0

0 1 0

10 0

x y 1 x, y, 1=

(x, y) (x, y)

1 0 0

0 1 0

hOffset vOffset 1

Original
mapping

Translation
matrix

×M
Transformed

mapping

M′=

C H A P T E R 8

QuickDraw GX Mathematics

8-18 About QuickDraw GX Mathematics

Figure 8-8 shows the use of the MoveMapping function to provide translation of a
mapping by the increments given by the hOffset and vOffset parameters. The
MoveMapping function is described on page 8-67.

Figure 8-8 Translation by a relative amount with MoveMapping

Translation to a Specified Point 8

You can specify translation of the origin to a given point by using the MoveMappingTo
function. Moving the origin means that the point (0, 0) will become the point (h, k) after
the mapping is applied to it. Matrix elements h and k again control the amount of
translation. Figure 8-9 shows what happens to a mapping M when you call
MoveMappingTo and specify the desired location (hPosition , vPosition). A relative
translation of (–h/w, –k/w) is applied to the target mapping to bring its origin to (0, 0),
and then a relative translation of (hPosition , vPosition) is applied. The resultant
mapping ends up with translational values of hPosition and vPosition .

hOffset

vO
ff

se
t

Original
shape

Shape after
MoveMappingy

x
0.0,0.0

(h,k)

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-19

8
Q

uickD
raw

 G
X

 M
athem

atics

Figure 8-9 Setting the origin specified by a mapping

Figure 8-10 shows the use of the MoveMappingTo function to move the origin to a
specific location. Note that this figure assumes that the origin of the shape—point (0.0,
0.0) in its geometry—is at its upper left corner. The MoveMappingTo function is
described on page 8-68.

Figure 8-10 Translation to a specific origin location

1 0 0

0 1 0

1

Translation
matrix

×M
Original
mapping

Transformed
mapping

M′=
(hPosition −) h

w (vPosition −)k
w

hPosition

vP
o

si
tio

n

Original
shape

Shape after
MoveMappingTo

0.0,0.0

(h,k)

y

x

C H A P T E R 8

QuickDraw GX Mathematics

8-20 About QuickDraw GX Mathematics

Scaling 8

You can use the ScaleMapping function to modify the scaling factors in a mapping.
Matrix elements a and d in the mapping matrix control the degree of the scaling in the
horizontal and vertical directions, respectively. Figure 8-11 shows what happens to a
mapping M when you call ScaleMapping with horizontal and vertical scaling factors
of hFactor and vFactor and a center of scaling at (xCenter , yCenter). First, a
relative translation of –xCenter and –yCenter moves the center of scaling to (0, 0);
then a purely scaling matrix multiplies the scaling by hFactor and vFactor ; finally,
another relative translation moves the center of scaling by +xCenter and +yCenter . In
effect, the center of scaling is moved to (0, 0), the scaling is applied, and the scaling
center is then moved back to where it was.

Figure 8-11 Changing the amount of scaling specified by a mapping

–xCenter –yCenter

1 0 0

0 1 0

1

Transformed
mapping

Translation
matrix

×
0 0

hFactor 0 0

0 vFactor 0

1

Scaling
matrix

Translation
matrix

xCenter yCenter

1 0 0

0 1 0

1

× ×M
Original
mapping

M′=

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-21

8
Q

uickD
raw

 G
X

 M
athem

atics

Figure 8-12 shows the use of the ScaleMapping function scale for various horizontal
and vertical factors, in which the center of scaling corresponds to the center of the shape.
The ScaleMapping function is described on page 8-69.

Figure 8-12 Scaling horizontally and vertically

hFactor = 2

vF
a

ct
o

r
=

 2

Original shape

Shape after
ScaleMapping

(xCenter,yCenter)

(xCenter,yCenter)

vF
a

ct
o

r
=

 2

hFactor = 0.5

hFactor = 2

vF
a

ct
o

r
=

 0
.5

(xCenter,yCenter)

(xCenter,yCenter)

C H A P T E R 8

QuickDraw GX Mathematics

8-22 About QuickDraw GX Mathematics

Note that if vFactor equals hFactor , scaling is uniform in both directions. If vFactor
is not equal to hFactor , distortion of the image occurs, as shown in Figure 8-12.

The mapping matrix also accommodates reflection transformations. If hFactor is
negative, a reflection about the vertical axis occurs. If vFactor is negative, a reflection
about the horizontal axis occurs. If both vFactor and hFactor are negative, a 180°
rotation occurs.

Rotation 8

You can use the RotateMapping function to modify the rotation specified by a
mapping. Matrix elements a, b, c, and d together specify the angle of rotation. Figure
8-13 shows what happens to a mapping M when you call RotateMapping to rotate by
an angle β about a rotational origin of xCenter and yCenter . First, a relative
translation of –xCenter and –yCenter moves the center of rotation to (0, 0); then a
purely rotational matrix adds β to the amount of rotation already specified in the
mapping; finally, another relative translation moves the center of rotation by +xCenter
and +yCenter , back to where it was.

Figure 8-13 Changing the degree of rotation specified by a mapping

Figure 8-14 shows the use of the RotateMapping function to change the rotation of a
mapping. Note that positive values of the angle parameter cause clockwise rotation
(consistent with y values increasing downward), and note also that changing the center
of rotation can significantly change the final position of the rotated objects. The
RotateMapping function is described on page 8-70.

–xCenter –yCenter

×
1 0 0

0 1 0

1

Translation
matrix

×
0 0

cos(β) sin(β) 0

–sin(β) cos(β) 0

1

Rotation
matrix

Translation
matrix

xCenter yCenter

1 0 0

0 1 0

1
M

Original
mapping

Transformed
mapping

× M′=×

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-23

8
Q

uickD
raw

 G
X

 M
athem

atics

Figure 8-14 Rotating about different center points

Original shape Shape after RotateMapping

(xCenter,yCenter)

Original shape

(xCenter,yCenter)

(xCenter,yCenter)

Shape after RotateMapping

Center point within mapping

Center point outside of mapping

(xCenter,yCenter)

Angle

Angle

C H A P T E R 8

QuickDraw GX Mathematics

8-24 About QuickDraw GX Mathematics

Skewing 8

You can use the SkewMapping function to modify the skewing imposed by a mapping.
Matrix elements b and c control the amount of the skew. Element b controls skew in the
y direction and element c controls skew in the x direction. Figure 8-15 shows what
happens to a mapping M when you call SkewMapping with x and y skew factors of
xSkew and ySkew, and a skew origin (the point at which no shearing takes place) of
xCenter and yCenter . First, a relative translation of –xCenter and –yCenter moves
the center of skewing to (0, 0); then a purely skewing matrix modifies the amount of
skew already specified in the mapping; finally, another relative translation moves the
center of skewing by +xCenter and +yCenter , back to where it was.

Figure 8-15 Changing the amount of skew specified by a mapping

Figure 8-16 shows the use of the SkewMapping function to change the skew specified by
a mapping. (Note that the skew in the x direction in Figure 8-16 is negative; as y
decreases—upward—the amount of shear in the x direction increases.) The
SkewMapping function is described on page 8-71.

–xCenter –yCenter
M ×

1 0 0

0 1 0

1

=

Original
mapping

Transformed
mapping

Translation
matrix

×
0 0

1 ySkew 0

xSkew 1 0

1

Skew
matrix

×

Translation
matrix

xCenter yCenter

1 0 0

0 1 0

1
M′

C H A P T E R 8

QuickDraw GX Mathematics

About QuickDraw GX Mathematics 8-25

8
Q

uickD
raw

 G
X

 M
athem

atics

Figure 8-16 Skewing a shape both horizontally and vertically

SkewX

SkewY

(xCenter,yCenter)

SkewY

(xCenter,yCenter)

(xCenter,yCenter)

Original shape Shape after SkewMapping

(xCenter,yCenter)
Skew x only

Skew y only

Skew x and y

SkewX

C H A P T E R 8

QuickDraw GX Mathematics

8-26 Using QuickDraw GX Mathematics

Perspective 8

You can manipulate the elements of a mapping to modify its specification of perspective.
The matrix elements u, v, and w determine how the perspective will appear when the
mapping is applied. The action performed on a point by a mapping whose perspective
elements are nonzero is shown in Figure 8-18.

Figure 8-17 Changing the perspective specified by a mapping

There is currently no QuickDraw GX function that modifies the perspective-controlling
elements of a mapping for you. If you wish to create perspective, you need to modify the
individual matrix elements directly.

Using QuickDraw GX Mathematics 8

This section describes how you can use QuickDraw GX number formats, macros, and
functions in your application.

Converting Number Formats 8
You can use QuickDraw GX macros to convert between Fixed , fract , integer,
floating-point, and gxColorValue number formats. Macros are also provided to round,
truncate, and compute the square root of a fixed-point number.

For example, you can use the IntToFixed macro to convert an integer to a
Fixed format and you can use the FloatToFixed macro to convert from
a floating-point format to a Fixed format. The functionality of the
FloatToFixed macro is also provided as the shortened fl macro. The functionality
of the IntToFixed macro is also provided as the shortened ff macro.

1 0 u

0 1 v

10 0

x y 1 x, y, xu + yv + 1=

(x, y)
x

xu + yv + 1

y

xu + yv + 1,
()

C H A P T E R 8

QuickDraw GX Mathematics

Using QuickDraw GX Mathematics 8-27

8
Q

uickD
raw

 G
X

 M
athem

atics

The ff macro is especially useful when you are coding specific points in your
application. For example, it’s easier to define a line in your application using the ff
macro:

gxLine lineData = {ff(25), ff(25) , ff(125), ff(125)};

than to use the equivalent, but much longer IntToFixed macro:

gxLine lineData = {IntToFixed(25), IntToFixed(25),

 IntToFixed(125), IntToFixed(125)};

For constants, using ff is faster and more efficient than using fl , because ff is
evaluated at compile time, whereas fl is evaluated at run time.

The IntToFixed macro is described on page 8-37. The FloatToFixed macro is
described on page 8-39. The fl macro is described on page 8-39. The ff macro
is described on page 8-38.

Performing Fixed-Point Operations 8
You can use QuickDraw GX functions to provide operations on Fixed , long , fract
and wide numbers. The equivalent QuickDraw GX fixed-point functions for functions in
the Macintosh Mathematical Utilities is shown in Table 8-2.

The Macintosh Mathematical Utilities are described in Inside Macintosh: Operating System
Utilities.

Some functions combine multiple functions into a single function to increase calculation
speed over that obtained using sequential function calls. For example, the
FractSineCosine function returns both the sine and cosine of an angle.

Table 8-2 QuickDraw GX and Macintosh Toolbox fixed-point functions

QuickDra w GX Macintosh Mathematical Utilities

FractDivide FracDiv

FractMultiply FracMul

FractSquareRoot FracSqrt

FixedDivide FixDiv

FixedMultiply FixMul

WideMultiply LongMul

C H A P T E R 8

QuickDraw GX Mathematics

8-28 Using QuickDraw GX Mathematics

Some functions support the use of 64-bit numbers to increase the accuracy of
calculations. For example, the WideAdd function returns the 64-bit sum of two 64-bit
numbers, and the WideDivide function returns the quotient of a 64-bit number and a
32-bit number. The MultiplyDivide function uses a 64-bit intermediate result to
increase accuracy of the calculation and to prevent premature overflow.

The MultiplyDivide , Magnitude , and VectorMultiplyDivide functions are
derivatives of other functions. For example, MultiplyDivide (x, y, z) is the same
as:

wide temp;

WideDivide (WideMultiply(x, y, &temp), z, 0)

The final argument of 0 specifies that the returned number will be rounded with no
remainder.

You can use the Magnitude function to determine the magnitude (length) of a
two-dimensional vector, or the distance between two points on a plane. Figure 8-18
shows the use of function parameters deltaX and deltaY .

Figure 8-18 Determining the length of a line with the Magnitude function

Functions that provide arithmetic operations on fixed-point numbers are described in the
section “Fixed-Point Operations” beginning on page 8-42. Functions that provide
operations on wide numbers are described in the section “Operations on wide
Numbers” beginning on page 8-49. The Magnitude function is described on page 8-45.

Le
ng

th
 o

f li
ne

P (x , y)

deltaX = x –x

d
e

lta
Y

 =
 y

 –
y

2 1

2
1

2 22

P (x , y)1 11

C H A P T E R 8

QuickDraw GX Mathematics

Using QuickDraw GX Mathematics 8-29

8
Q

uickD
raw

 G
X

 M
athem

atics

Converting Between Cartesian and Polar Coordinates 8
You can use QuickDraw GX functions to convert between Cartesian and polar
coordinates. The PolarToPoint function converts a point in polar coordinates to
Cartesian coordinates, (r, a) to (x, y). The PointToPolar function converts a point
in Cartesian coordinates to polar coordinates, (x, y) to (r, a). The gxPolar point (r, a)
corresponds to the gxPoint point (r × cos(a), r × sin(a)). Since r2 = x2 + y2 and
tan(a) = y / x, the gxPoint structure (100, 100) corresponds to the gxPolar structure
(141.42136, 45). Figure 8-19 shows the Cartesian coordinate of point (100, 100) and the
polar coordinate of identical point (141.42136, 45).

Figure 8-19 Converting between Cartesian and polar coordinates

The Cartesian and polar coordinate systems are described in the section “Cartesian and
Polar Coordinate Conversion” beginning on page 8-10. The PolarToPoint function is
described on page 8-56. The PointToPolar function is described on page 8-57.

Performing Vector Operations 8
You can use the VectorMultiply function to obtain the dot product of two vectors
with 64-bit accuracy. The function takes six parameters: the first parameter specifies the
number of long numbers to multiply, and the third and fifth parameters specify the step
size to use when walking the arrays to which the second and fourth parameters point.

For example:

VectorMultiply(4,a,1,b,2,&c) sets the wide number pointed to by the parameter
c to the following value:

a[0] * b[0] +a [1] * b[2] +a[2] * b[4] + a[3] * b[6]

0.0, any angle

Polar coordinates

0.0,0.0

Point (100.0, 100.0)

Cartesian coordinates

+x

+y Angle a

r

Point (141.42136, 45.0)

PointToPolar

PolarToPoint

+x

+y

C H A P T E R 8

QuickDraw GX Mathematics

8-30 Using QuickDraw GX Mathematics

If the count is negative, the sign of the terms in the dot product are alternated.

VectorMultiply(–4,a,1,b,2,&c) sets the wide parameter c to the following value
and the result is returned in c :

a[0] * b[0] – a[1] * b[2] + a[2] * b[4] – a[3] * b[6]

You can also use VectorMultiply to determine the cross-product of a pair of vectors,
as in Listing 8-1.

Listing 8-1 Calculating a cross-product with VectorMultiply

gxPoint *CrossProduct(const gxPoint *a, gxPoint *b,)

{

wide temp;

WideShift(VectorMultiply(-2, &a->x, 1, &b->y, -1, &temp), 16);

}

You can also use VectorMultiply to work with mappings. Listing 8-2 is a sample
function that applies a mapping to a single point.

Listing 8-2 Applying a mapping to one point

gxPoint *MapPoint(const gxMapping *map, gxPoint *pt)

{

fixed temp[3] = { 0, 0, fixed1 };

*(gxPoint *)temp = *pt;

wide dot;

fixed p = WideShift(VectorMultiply(3, temp, 1, &map[0][2],

3, &dot), 30);

pt->x = WideDivide(VectorMultiply(3, temp, 1, &map[0][0],

3, &dot), p, nil);

pt->y = WideDivide(VectorMultiply(3, temp, 1, &map[0][1],

3, &dot), p, nil);

return pt;

}

The VectorMultiply function is described on page 8-54. Functions that perform vector
operations are described in the section “Vector Operations” beginning on page 8-54.

C H A P T E R 8

QuickDraw GX Mathematics

Using QuickDraw GX Mathematics 8-31

8
Q

uickD
raw

 G
X

 M
athem

atics

Shifting the Bits of a wide Number 8
You can use the WideShift function to shift bits in a wide format number. Listing 8-3
shows how to use the WideShift function to provide a fixed-point version of the
VectorMultiply function.

Listing 8-3 Using the WideShift function to create a fixed-point VectorMultiply function

Fixed VectorFixMul(long count, Fixed *vector1, long step1,

Fixed *vector2, long step2)

{

wide temp;

return WideShift(VectorMultiply(count, vector1, step1,

vector2, step2, &temp), 16)->lo;

}

Listing 8-4 shows how to use the WideShift function in a multiplication function for a
fixed-point number with a fixed-point bias of 6 bits.

Listing 8-4 Using the WideShift function in a fixed-point multiplication function

long MultiplyDot6(long a, long b)

{

wide temp;

return (long)WideShift(WideMultiply(a, b, &temp), 6)->lo;

}

Listing 8-5 shows how to use the WideShift function in a division function for a
fixed-point number with a fixed-point bias of 6 bits. Listing 8-6 gives an alternative, but
equivalent, approach.

Listing 8-5 Using the WideShift function to create a fixed-point division function

long DivideDot6(long a, long b)

{

wide temp;

temp.hi = (temp.lo = a) < 0 ? -1 : 0; /* sign extend a */

return WideDivide(WideShift(&temp, -6), b, 0);

}

C H A P T E R 8

QuickDraw GX Mathematics

8-32 Using QuickDraw GX Mathematics

Listing 8-6 shows how to use the WideShift function for a second fixed-point division
function with a fixed-point bias of 6 bits. Listing 8-5 gives an alternative, but equivalent,
approach.

Listing 8-6 Using the WideShift function to create a second fixed-point division function

long DivideDot6(long a, long b)

{

wide temp;

temp.hi = a;

temp.lo = 0;

return WideDivide(WideShift(&temp, 26), b, 0);

}

Determining the Highest Order Bit of a wide Number 8
You can use the WideScale function to obtain the bit number of the highest order bit in
the absolute value of a wide number. Listing 8-3 shows how to use the WideScale
function in a function that multiplies two numbers in long format. If the product is too
big to fit in a long , the function shifts the product so that it fits into a long and returns
the bit shift. This operation can be termed pseudo-floating-point.

Listing 8-7 Using the WideScale function to create a pseudo-floating-point function

long FloatMul(long a, long b, long *product)

{

wide temp;

long shift = WideScale(WideMultiply(a, b, &temp)) - 30;

if (shift > 0)

WideShift(&temp, shift);

else

shift = 0;

if (product) *product = temp.lo;

return shift;

}

The WideScale function is described on page 8-53.

C H A P T E R 8

QuickDraw GX Mathematics

Using QuickDraw GX Mathematics 8-33

8
Q

uickD
raw

 G
X

 M
athem

atics

Generating Random Numbers 8
You can use the QuickDraw GX random number functions to return a sequence of
random numbers. The RandomBits function generates random integers in the range of
0 to 2count – 1, where count is the number of bits in the integer to be generated by the
random number generator.

The SetRandomSeed function allows you to use a seed other than the default seed. If
the SetRandomSeed function is not used, the initial seed will always be 0. You can use
the GetRandomSeed function to return the value of the current seed.

Listing 8-8 is a sample function that generates an unsigned random number between
zero and the value passed in the limit parameter. It uses the RandomBits function,
and it also uses the WideMultiply function, correcting for the fact that WideMultiply
works with signed long integers whereas this random generator uses unsigned longs.

Listing 8-8 A random number generator

unsigned long RandomLong(unsigned long limit)

{

wide temp;

unsigned long random = RandomBits(32, 0);

/* This treats random and limit as signed */

WideMultiply(random, limit, &temp);

if ((long)limit < 0)

temp.hi += random; /* correct for the “sign” of limit */

if ((long)random < 0)

temp.hi += limit; /* correct for the “sign” of random */

return temp.hi;

}

The general topic of random numbers and the functions you use to generate them
generation are discussed in the section “Random Number Generation” beginning on
page 8-58.

Analyzing the Bits in a Number 8
You can use the FirstBit function to determine the highest bit number that is set in a
32-bit number. The following examples demonstrate the use of this function with the
parameter x :

If x is 1, the highest order bit that is set is bit number 0,
so FirstBit(1) = 0, as shown below.

FirstBit(0000000000000000000000000000001) = 0x0000

C H A P T E R 8

QuickDraw GX Mathematics

8-34 Using QuickDraw GX Mathematics

If x is 2, the highest order bit that is set is bit number 1, so FirstBit(2) = 1, as shown
below.

FirstBit(000000000000000000000000000001 0) = 0x0001

If x is 3, the highest order bit that is set is bit 1, so FirstBit(3) = 1, as shown below.

FirstBit(000000000000000000000000000001 1) = 0x0001

If no bits in the number are set, FirstBit returns a value of –1.

You can also use FirstBit to find the last (= lowest-order) bit that is set in a number.
Listing 8-9 is an example of such a function.

Listing 8-9 Determining the lowest bit of a number

short LastBit(unsigned long x)

{

if (x == 0)

return 32;

return FirstBit(x & -x);

}

The FirstBit function is described on page 8-62.

Resetting a Mapping 8
You can use the ResetMapping function to reset a mapping. The following code
example first uses the ResetMapping function to initialize the destination to the
identity matrix, and then uses RotateMapping to calculate a resultant mapping that
rotates by a given angle about a specified center.

gxMapping *RotationMap(gxMapping *dest, Fixed angle,

gxPoint *center)

{

 return RotateMapping(ResetMapping(dest), angle,

center->x,center->y);

}

The ResetMapping function is described on page 8-64.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-35

8
Q

uickD
raw

 G
X

 M
athem

atics

QuickDraw GX Mathematics Reference 8

This section describes the constants, data types, structures, macros, and functions that
relate to QuickDraw GX mathematics.

Constants and Data Types 8

This section describes the constants and data types that are used to define QuickDraw
GX mathematical number formats and the transformation matrix.

Number Formats and Constants 8

QuickDraw GX provides Fixed , fract , and gxColorValue number formats. Polar
coordinates are defined by the gxPolar structure. A structure consisting of two long
values defines the wide number format.

typedef long fract;

typedef unsigned short gxColorValue;

struct gxPolar {

Fixed radius;

Fixed angle;

};

struct wide {

long hi;

unsigned long lo;

};

For convenience, QuickDraw GX provides constants for the value 1.0 for Fixed , fract ,
and gxColorValue types:

#define fixed1 ((Fixed) 0x00010000)

#define fract1 ((fract) 0x40000000)

#define gxColorValue1 ((gxColorValue) 0xFFFF)

QuickDraw GX also provides constants for the largest and smallest possible values for
Fixed and fract numbers:

#define gxPositiveInfinity ((Fixed) 0x7FFFFFFF)

#define gxNegativeInfinity ((Fixed) 0x80000000)

C H A P T E R 8

QuickDraw GX Mathematics

8-36 QuickDraw GX Mathematics Reference

The Mapping Structure 8

QuickDraw GX defines a transformation matrix with the gxMapping structure:

struct gxMapping {

Fixed map[3][3];

};

Field descriptions

map A 3 × 3 array of Fixed numbers whose values determine the
translation, scaling, rotation, skewing, and perspective operations
that can be applied to two-dimensional data. Although defined as
containing only Fixed numbers, the rightmost column of the
matrix consists of fract numbers. Furthermore, element [3][3] is
commonly set to fract1 .

The use of the mapping matrix is described further in the section “Transformation
Operations With Mappings” beginning on page 8-12.

Number-Conversion Macros 8

QuickDraw GX defines macros for conversion between fixed-point number formats. It
also provides macros to round and truncate numbers, as well as a macro that uses the
FractSquareRoot function to compute the square root of a Fixed number.

Format Conversions 8

The macros in this section convert between Fixed , fract , integer, floating-point, and
gxColorValue numbers.

FixedToFract 8

You can use the FixedToFract macro to convert a fixed number to a fract number.

#define FixedToFract(a) ((fract) (a) << 14)

a A Fixed number to be converted to a fract number, –2 ≤ a <2.

macro result A fract number having the same value as the fixed number.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-37

8
Q

uickD
raw

 G
X

 M
athem

atics

FractToFixed 8

You can use the FractToFixed macro to convert a fract number to a Fixed number.

#define FractToFixed (a) ((Fixed) (a) + 8192L >> 14)

a A fract number to be converted to a Fixed number.

macro result A Fixed number having the closest value to the fract number.

FixedToInt 8

You can use the FixedToInt macro to convert a Fixed number to an integer.

#define FixedToInt(a) ((short) ((Fixed) (a) + fixed1/2 >> 16))

a A Fixed number to be converted to an integer.

macro result An integer having the closest value to the Fixed number.

IntToFixed 8

You can use the IntToFixed macro to convert an integer to a Fixed number.

#define IntToFixed(a) ((Fixed)(a) << 16)

a An integer to be converted to a Fixed number.

macro result A Fixed number having the same value as the integer.

SPECIAL CONSIDERATIONS

QuickDraw GX also defines a shorthand version of this macro. IntToFixed(a) can
also be coded as ff(a) .

SEE ALSO

The ff macro is described next.

C H A P T E R 8

QuickDraw GX Mathematics

8-38 QuickDraw GX Mathematics Reference

ff 8

You can use the ff macro to convert an integer to a Fixed number.

#define ff(a) ((Fixed)(a) << 16)

a An integer to be converted to a Fixed number.

macro result A Fixed number having the same value as the integer.

DESCRIPTION

The ff macro converts an integer a to a Fixed number. This macro name is shorthand
notation for the IntToFixed macro, and provides identical functionality.

SEE ALSO

For an example of how to use the ff macro, see the section “Converting Number
Formats” beginning on page 8-26.

The IntToFixed macro is described in the previous section.

FixedToFloat 8

You can use the FixedToFloat macro to convert a Fixed number to a floating-point
number.

#define FixedToFloat(a) ((float)(a) / fixed1)

a A Fixed number to be converted to a floating-point number.

macro result A floating-point number having the same value as the Fixed number.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-39

8
Q

uickD
raw

 G
X

 M
athem

atics

FloatToFixed 8

You can use the FloatToFixed macro to convert a floating-point number to a Fixed
number.

#define FloatToFixed(a) ((Fixed)((float) (a) * fixed1))

a A floating-point number to be converted to a Fixed number.

macro result The closest Fixed number to the floating-point number.

SPECIAL CONSIDERATIONS

QuickDraw GX also defines a shorthand version of this macro. The FloatToFixed
macro can also be coded as fl(a) .

SEE ALSO

The fl macro is described next.

fl 8

You can use the fl macro to convert a floating-point number to a Fixed number.

#define fl(a) ((Fixed)((float) (a) * fixed1))

a A floating-point number to be converted to a Fixed number.

macro result The closest Fixed number to the floating-point number.

DESCRIPTION

The fl macro converts a floating-point number a to a Fixed number. This macro name
is shorthand notation for the FloatToFixed macro, and provides identical functionality.

SEE ALSO

The FloatToFixed macro is described in the previous section.

C H A P T E R 8

QuickDraw GX Mathematics

8-40 QuickDraw GX Mathematics Reference

FractToFloat 8

You can use the FractToFloat macro to convert a fract number to a floating-point
number.

define FractToFloat(a) ((float)(a)/fract1)

a A fract number to be converted to a floating-point number.

macro result A floating-point number having the closest value to the fract number.

FloatToFract 8

You can use the FloatToFract macro to convert a floating-point number to a fract
number.

define FloatToFract(a) ((fract)((float)(a)*fract1))

a A floating-point number to be converted to a fract number.

macro result A fract number having the closest value to the floating-point number.

ColorToFract 8

You can use the ColorToFract macro to convert a gxColorValue number to a fract
number.

#define ColorToFract(a) (((fract)(a)<<14) + ((fract)(a) +2 >>2))

a A gxColorValue number to be converted to a fract number.

macro result A fract number having the same value as the gxColorValue number.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-41

8
Q

uickD
raw

 G
X

 M
athem

atics

FractToColor 8

You can use the FractToColor macro to convert a fract number to a gxColorValue
number.

#define FractToColor(a) ((gxColorValue)((a)-((a)>>16)+8191>>14))

a A fract number to be converted to a gxColorValue number.

macro result The closest gxColorValue number to the fract number.

Rounding, Truncating, and Square Root Operations 8

The macros in this section round, truncate, and determine the square root of fixed
numbers.

FixedRound 8

You can use the FixedRound macro to round a Fixed number to its nearest integer.

#define FixedRound(a) ((short) ((Fixed)(a) + fixed1/2 >> 16))

a The number to be rounded.

macro result The closest integer to the Fixed number.

FixedTruncate 8

You can use the FixedTruncate macro to obtain an integer that is the greatest integer
that is not greater than the given Fixed number.

#define FixedTruncate(a) ((short)((Fixed)(a) >> 16))

a The number that is to be truncated.

macro result The largest integer that is not greater than the Fixed number.

C H A P T E R 8

QuickDraw GX Mathematics

8-42 QuickDraw GX Mathematics Reference

FixedSquareRoot 8

You can use the FixedSquareRoot macro to determine the square root of a fixed
number.

#define FixedSquareRoot(a) ((Fixed)FractSquareRoot(a) + 64 >>7)

a The number for which the square root is to be determined.

macro result The square root of the number.

Mathematical Functions 8

This section describes the QuickDraw GX functions you can use to perform

■ fixed-point operations

■ wide number operations

■ vector operations

■ mapping operations

■ random number generation

■ bit analysis

Fixed-Point Operations 8

QuickDraw GX provides an assortment of fixed-point mathematical functions that you
can use in your application.

FixedMultiply 8

You can use the FixedMultiply function to return the product of two numbers.

Fixed FixedMultiply (Fixed multiplicand, Fixed multiplier);

multiplicand
The number to be multiplied by the multiplier.

multiplier
The number by which the multiplicand is to be multiplied.

function result The product of two numbers.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-43

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The FixedMultiply function multiplies two fixed numbers. The format of the Fixed
number returned depends on the respective number formats of the multiplicand and
multiplier. The operation has a bias of 16 bits; in general, the bias of the resulting number
is the sum of the biases of the input numbers, shifted right by 16 bits. If either the
multiplicand or the multiplier is Fixed , the result of the FixedMultiply function will
be the same fixed-point format as the other parameter (long , Fixed , or fract).

Table 8-3 shows the bias of the product for different combinations of formats. The
dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use
the rules of the operation to determine it.

SPECIAL CONSIDERATIONS

The FixedMultiply function does not pin its result in the case of an overflow; the
result returned is modulo 65,536.

FixedDivide 8

You can use the FixedDivide function to return the quotient of a dividend and divisor.

Fixed FixedDivide (Fixed dividend, Fixed divisor);

dividend The number to be divided.

divisor The number by which the dividend is to be divided.

function result The quotient of the dividend and the divisor.

DESCRIPTION

The FixedDivide function divides the dividend parameter by the divisor
parameter and returns the quotient. The format of the fixed number returned depends
on the respective number formats of the dividend and divisor parameters. The
operation has a bias of 16 bits; in general, the bias of the resulting number is the
difference between the biases of the input numbers, shifted left by 16 bits. If the
divisor parameter is fixed, then the result will be the same fixed-point format as the

Table 8-3 FixedMultiply product bias

long fixed fract

long --- long ---

fixed long fixed fract

fract --- fract ---

C H A P T E R 8

QuickDraw GX Mathematics

8-44 QuickDraw GX Mathematics Reference

dividend. If both the dividend and divisor are the same fixed-point format, the result
will be in Fixed format.

Table 8-4 shows the bias for the quotient of two numbers that are of dissimilar formats.
The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract.
Use the rules of the operation to determine it.

SPECIAL CONSIDERATIONS

In the case of overflow, FixedDivide pins its result to either the
gxPositiveInfinity or gxNegativeInfinity constant.

MultiplyDivide 8

You can use the MultiplyDivide function to multiply two numbers and divide by a
third number.

long MultiplyDivide (long multiplicand, long multiplier,

long divisor);

multiplicand
The number to be multiplied by the multiplier.

multiplier
The number by which the multiplicand is multiplied.

divisor The number by which the product is divided.

function result The quotient of the product of two numbers and the divisor.

Table 8-4 FixedDivide quotient bias

Denominator Numerator

long fixed fract

long fixed --- ---

fixed long fixed fract

fract --- --- fixed

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-45

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The MultiplyDivide function calculates the quotient of the product of two numbers
(parameters multiplicand and multiplier) and a divisor.

The function uses a 64-bit intermediate result to maintain accuracy and to prevent
premature overflow. The parameters do not need to all be the same fixed-point format.
The operation has a bias of 0 bits; if the divisor is the same format as the multiplier, the
result is the same format as the multiplicand. If the divisor is the same format as the
multiplicand, the result is in the same format as the multiplier.

SPECIAL CONSIDERATIONS

In the case of overflow, MultiplyDivide pins its result to either the
gxPositiveInfinity or gxNegativeInfinity constant.

Magnitude 8

You can use the Magnitude function to obtain the magnitude of a vector, the length of a
line, or the distance between two points.

unsigned long Magnitude (long deltaX, long deltaY);

deltaX The difference in the x-coordinates of the vector’s end points.

deltaY The difference in the y-coordinates of the vector’s end points.

function result The magnitude of the vector.

DESCRIPTION

The Magnitude function returns (deltaX 2 + deltaY 2)1/2, the Euclidean distance
between two points whose x-coordinates are separated by deltaX and whose
y-coordinates are separated by deltaY .

The fixed-point format of the result is the same as the fixed-point format for both of the
parameters. Make sure that the two parameters use the same format.

C H A P T E R 8

QuickDraw GX Mathematics

8-46 QuickDraw GX Mathematics Reference

FractSineCosine 8

You can use the FractSineCosine function to obtain both the sine and cosine of an
angle measured in degrees.

fract FractSineCosine (Fixed degrees, fract *cosine);

degrees The angle in degrees for which the cosine and sine are required.

cosine A pointer to the location where the cosine of the angle is required.

function result The sine of the angle specified.

DESCRIPTION

Given the degrees parameter in degrees, the FractSineCosine function returns the
sine as the function result and the cosine in the cosine parameter. Values for the
degrees parameter are specified in degrees, not radians. The range of the angle is
–32,768 to +32,769.999 degrees.

FractSquareRoot 8

You can use the FractSquareRoot function to calculate the square root of a fract
number.

fract FractSquareRoot (fract source);

source The number for which the square root is required.

function result The square root of the fract number.

DESCRIPTION

The FractSquareRoot function returns the square root of the fract number specified
by the source parameter. The number is interpreted as unsigned and in the range 0
through 4 – (2–30). This means that bit 31 has a weight of 2, instead of –2. The result is an
unsigned number in the range of 0 through 2.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-47

8
Q

uickD
raw

 G
X

 M
athem

atics

FractCubeRoot 8

You can use the FractCubeRoot function to calculate the cube root of a fract number.

fract FractCubeRoot (fract source);

source The fract number for which the cube root is required.

function result The cube root of the fract number. This number is a signed value.

DESCRIPTION

The FractCubeRoot function returns the cube root of a fract number.

FractMultiply 8

You can use the FractMultiply function to calculate the product of two numbers.

fract FractMultiply (fract multiplicand, fract multiplier);

multiplicand
The number to be multiplied by the multiplier.

multiplier
The number by which the multiplicand is to multiplied.

function result The product of two numbers.

DESCRIPTION

The FractMultiply function calculates the product of two numbers, specified in the
multiplicand and multiplier parameters. If the parameters are a and b, the
product a × b is returned.

The format of the number returned depends on the respective number formats of the
multiplicand and multiplier parameters. The operation has a bias of 30 bits; in
general, the bias of the resulting number is the sum of the biases of the input numbers,
shifted right by 30 bits. Thus if either the multiplicand or multiplier parameter is
fract , then the result is the same fixed-point format as the other argument.

C H A P T E R 8

QuickDraw GX Mathematics

8-48 QuickDraw GX Mathematics Reference

Table 8-5 shows the bias of the FractMultiply result. The dashed line indicates that the
resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to
determine it

SPECIAL CONSIDERATIONS

FractMultiply does not pin its result in the case of an overflow; the result returned is
modulo 4.

FractDivide 8

You can use the FractDivide function to return the quotient of a dividend and divisor.

fract FractDivide (fract dividend, fract divisor);

dividend The number to be divided.

divisor The number by which the dividend is to be divided.

function result The quotient of two numbers.

DESCRIPTION

The FractDivide function divides the dividend parameter by the divisor
parameter and returns the quotient. If the dividend parameter is a and the
divisor parameter is b, the quotient a / b is returned.

The format of the number returned depends on the respective number formats of the
dividend and divisor. The operation has a bias of 30 bits; in general, the bias of the
resulting number is the difference between the biases of the input numbers, shifted left
by 30 bits. Thus if the divisor is a fract , the result is the same format as the dividend. If
the divisor and the dividend parameters are the same format, the result is in fract
format, as shown inTable 8-6. The dashed line indicates that the resulting bias is not
equivalent to long, fixed, or fract. Use the rules of the operation to determine it.

Table 8-5 FractMultiply result bias

long fixed fract

long --- --- long

fixed --- --- fixed

fract long fixed fract

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-49

8
Q

uickD
raw

 G
X

 M
athem

atics

SPECIAL CONSIDERATIONS

In the case of division of a large number by a very small number,the FractDivide
function pins its result to either the gxPositiveInfinity or the
gxNegativeInfinity constant.

Operations on wide Numbers 8

QuickDraw GX provides an assortment of 64-bit mathematical functions for your use.
You can use wide functions to increase the accuracy of calculations.

WideAdd 8

You can use the WideAdd function to add two wide numbers.

wide *WideAdd(wide *target, const wide *source);

target A pointer to the number to be added to. On return, contains the sum of
the two numbers.

source A pointer to the number that is to be added to the target number.

function result A pointer to the result (also a pointer to the target number).

DESCRIPTION

The WideAdd function adds the wide number in the source parameter to the wide
number in the target parameter and returns the target pointer.

Table 8-6 FractDivide result bias

Denominator Numerator

long fixed fract

long fract --- ---

fixed --- fract ---

fract long fixed fixed

C H A P T E R 8

QuickDraw GX Mathematics

8-50 QuickDraw GX Mathematics Reference

WideSubtract 8

You can use the WideSubtract function to subtract one wide number from another.

wide *WideSubtract(wide *target, const wide *source);

target A pointer to the number to be subtracted from. On return, contains the
difference between the two numbers.

source A pointer to the number that is to be subtracted from the number at target.

function result A pointer to the target number.

DESCRIPTION

The WideSubtract function subtracts the source number from the target number and
returns a pointer to the target number.

WideNegate 8

You can use the WideNegate function to change a wide number to its negative.

wide *WideNegate(wide *target);

target A pointer to the number to be negated. On return, contains the negated
number.

function result A pointer to the target number.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-51

8
Q

uickD
raw

 G
X

 M
athem

atics

WideShift 8

You can use the WideShift function to shift bits in a wide number.

wide *WideShift(wide *target, long shift);

target A pointer to the number for which the bits are to be shifted. On return,
contains the shifted number.

shift The number of bits by which the target is to be shifted to the right.

function result A pointer to the target number.

DESCRIPTION

The shift direction is to the right (a decrease in magnitude) if the shift parameter is
greater than 0, and to the left if the shift parameter is less than 0. The result of a right
shift is rounded.

WideMultiply 8

You can use the WideMultiply function to calculate the wide product of two long
numbers.

wide *WideMultiply(long multiplicand, long multiplier,

wide *target);

multiplicand
The number to be multiplied by the multiplier.

multiplier
The number by which the multiplicand is to be multiplied.

target A pointer to the location where the product of the two numbers is to be
stored.

function result A pointer to the target value, which holds the result.

DESCRIPTION

The operation has a bias of 0 bits. The bias of the result is the sum of the biases of the
inputs.

C H A P T E R 8

QuickDraw GX Mathematics

8-52 QuickDraw GX Mathematics Reference

WideDivide 8

You can use the WideDivide function to calculate the long quotient and long
remainder for a wide dividend and long divisor.

long WideDivide(const wide *dividend, long divisor,

 long *remainder);

dividend A pointer to the wide number to be divided.

divisor The number by which the dividend is to be divided.

remainder A pointer to a location to store the remainder of the division.

function result The quotient of the division.

DESCRIPTION

The WideDivide function divides the dividend by the divisor and returns the quotient
in the function result and the remainder in the long number pointed to by the
remainder parameter. If the dividend is a and the divisor is b, the quotient a / b is
returned with a remainder. The operation has a bias of 0 bits; the bias of the result is the
difference between the biases of the dividend and the divisor. The bias of the remainder
is the same as the bias of the dividend.

If an overflow occurs, the result is pinned to the closest infinity and the remainder is set
to gxNegativeInfinity (an impossible remainder).

If the remainder parameter is nil , no remainder is returned and the WideDivide
function returns a rounded quotient. Passing (long *)-1 in the remainder parameter
is the same as passing nil except in the case of an overflow, in which case
gxNegativeInfinity is returned.

WideWideDivide 8

You can use the WideWideDivide function to calculate a wide quotient and long
remainder for a wide dividend and a long divisor.

wide *WideWideDivide(wide *dividend, long divisor,

long *remainder);

dividend A pointer to the wide number to be divided.

divisor The number by which the dividend is to be divided.

remainder A pointer to a location to store the remainder of the division.

function result A pointer to the quotient (also to the dividend).

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-53

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The WideWideDivide function returns the quotient of the dividend and divisor as its
function result and places the remainder in the remainder parameter. If the
remainder parameter is nil , WideWideDivide returns the rounded quotient. The
quotient replaces the dividend. The operation has a bias of 0 bits; the bias of the result is
the difference between the biases of the dividend and the divisor. The bias of the
remainder is the same as the bias of the dividend.

If the remainder parameter is nil , no remainder is returned and the WideDivide
function returns a rounded quotient. Passing (long *)-1 in the remainder parameter
is the same as passing nil .

Note that this function cannot result in overflow.

WideSquareRoot 8

You can use the WideSquareRoot function to calculate the square root of a wide
number.

unsigned long WideSquareRoot(const wide *source);

source A pointer to the number for which the square root is to be calculated.

function result A number that is the square root of the number in the argument.

DESCRIPTION

The WideSquareRoot function returns the square root of the wide number pointed to
by the source parameter. The source value for this function must be an unsigned wide
value ranging from 0 to 264 – 1, not –263 to 263 – 1. If you supply a non-integer value for
this function, its bias must be an even number of bits.

WideScale 8

You can use the WideScale function to obtain the bit number of the highest-order
nonzero bit in the absolute value of a wide number.

short WideScale(const wide *w);

w A pointer to the number whose scale is desired.

function result The bit number of the highest order nonzero bit in the absolute value of w.
The returned value is 63 if the highest-order bit is set, and 0 if the lowest
order bit is set. If no bit is set, the return value is –1.

C H A P T E R 8

QuickDraw GX Mathematics

8-54 QuickDraw GX Mathematics Reference

WideCompare 8

You can use the WideCompare function to compare the magnitudes of two 64-bit
numbers.

short WideCompare(const wide *target, const wide *source);

target A pointer to one of the two wide numbers to be compared.

source A pointer to the second of the two wide numbers to be compared.

function result 1 if the target number is greater, –1 if the source number is greater, and 0
if the two numbers are equal.

Vector Operations 8

QuickDraw GX provides an assortment of vector mathematics functions for your use.

VectorMultiply 8

You can use the VectorMultiply function to obtain the dot product of two vectors
with 64-bit accuracy.

wide *VectorMultiply(long count, const long *vector1, long step1,

const long *vector2, long step2, wide *dot);

count The size of each vector.

vector1 A pointer to one of the two vectors.

step1 The index increment for the vector1 vector.

vector2 A pointer to the second of two vectors.

step2 The index increment for the vector 2 vector.

dot A pointer to the destination of the result.

function result A pointer to the dot product of the two vectors.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-55

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The VectorMultiply function calculates the wide dot product of the parameters
vector1 and vector2 . The size of each vector is given by the count parameter. The
index increment is given by the parameters step1 and step2 , respectively. The dot
parameter points to the destination wide number and is returned as the function result.

SEE ALSO

Examples of how to use the VectorMultiply function are provided in the section
“Performing Vector Operations” beginning on page 8-29.

VectorMultiplyDivide 8

You can use the VectorMultiplyDivide function to calculate the quotient of the dot
product of two vectors and a divisor.

long *VectorMultiplyDivide(long count, const long *vector1,

long step1, const long *vector2,

long step2, long divisor);

count The size of each vector.

vector1 A pointer to one of the two vectors.

step1 The index increment for the vector1 vector.

vector2 A pointer to the second of two vectors.

step2 The index increment for the vector 2 vector.

divisor The number by which the dot product is to be divided.

function result The quotient of the dot product of two vectors and a divisor.

DESCRIPTION

The VectorMultiplyDivide function calculates the quotient of a dot product of
parameters vector1 and vector2 and a divisor parameter. The size of each vector is
given by the count parameter. The index increment is given by the parameters step1
and step2 , respectively. If the count parameter is negative, the terms are alternated.
This is equivalent to

WideDivide(VectorMultiply(),divisor)

C H A P T E R 8

QuickDraw GX Mathematics

8-56 QuickDraw GX Mathematics Reference

Cartesian and Polar Coordinate Point Conversions 8

QuickDraw GX provides two functions for converting Cartesian to polar coordinates.

PolarToPoint 8

You can use the PolarToPoint function to convert a point in polar coordinates to the
identical point in Cartesian coordinates.

gxPoint *PolarToPoint(const gxPolar *ra, gxPoint *xy);

ra A pointer to the point in polar coordinates.

xy A pointer to the destination of the resulting point in Cartesian coordinates.

function result A pointer to the converted point (also a pointer to the xy parameter).

DESCRIPTION

The PolarToPoint function converts the polar coordinate point (r, a) to the identical
Cartesian coordinate point (x, y). The parameters of the PolarToPoint function are the
gxPolar structure pointer ra and a gxPoint structure pointer xy.

If both pointers point to the same location, the source gxPolar structure will be
converted to a gxPoint structure and will replace the gxPolar structure.

SEE ALSO

The gxPolar structure is described in the section “Constants and Data Types”
beginning on page 8-35. Polar coordinate to Cartesian coordinate conversions are
discussed in the section “Cartesian and Polar Coordinate Conversion” beginning on
page 8-10. The PointToPolar function converts a point in Cartesian coordinates to the
identical point in polar coordinates. The PointToPolar function is described next.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-57

8
Q

uickD
raw

 G
X

 M
athem

atics

PointToPolar 8

The PointToPolar function converts a point in Cartesian coordinates to the identical
point in polar coordinates.

gxPolar *PointToPolar(const gxPoint *xy, gxPolar *ra);

xy A pointer to the Cartesian coordinate.

ra A pointer to the destination of the resulting polar coordinate.

function result The pointer passed in ra .

DESCRIPTION

The PointToPolar function converts the Cartesian coordinate point (x, y) to the
identical polar coordinate point (r, a). The parameters of the PointToPolar function are
a gxPoint structure pointer xy and a gxPolar structure pointer ra .

If both pointers point to the same location, the source gxPoint structure will be
converted to a gxPolar structure and will replace the gxPoint structure.

SEE ALSO

The gxPolar structure is described in the section “Constants and Data Types”
beginning on page 8-35. The PolarToPoint function converts a point in polar
coordinates to the identical point in Cartesian coordinates. The PolarToPoint function
is described in the previous section.

C H A P T E R 8

QuickDraw GX Mathematics

8-58 QuickDraw GX Mathematics Reference

Random Number Generation 8

QuickDraw GX provides random number generation functions that can be used in your
application.

RandomBits 8

You can use the RandomBits function to return a sequence of pseudorandom numbers.

unsigned long RandomBits(long count, long focus);

count The number of bits in the number to be generated by the random number
generator.

focus The degree of clustering about the mean value.

function result A sequence of pseudorandom numbers.

DESCRIPTION

The RandomBits function returns random numbers in the range of 0 to 2count – 1. A
focus of 0 generates numbers that are uniformly distributed.

A positive value for the focus parameter generates numbers that are clustered about
the mean, analogous to averaging 2focus uniform random numbers. A negative focus
generates numbers that tend to avoid the mean.

If you define a value limit to be 1 << count , the result of the RandomBits function
ranges from 0 to limit – 1. Its mean is (limit – 1) / 2. The mean is independent of the
focus. If the focus is positive, the standard deviation of the numbers generated by the
RandomBits function is approximately (0.28868 × limit) / e1.41421 × focus. As the focus
parameter gets bigger, two things happen:

■ The values cluster about the mean.

■ The values approximate a normal distribution (central limit theorem).

If the focus is negative, the RandomBits function result is computed as if it were
positive; for results less than limit / 2, limit / 2 is added; for others, limit / 2 is
subtracted. This causes the distribution to avoid the mean.

To generate a clustering of points around a given value, generate x and y offsets with

FractMultiply(radius, RandomBits(31, focus) - fract1);

The average distance will be 0.57735 × radius/e1.41421 × focus.

A good way to select a value for the focus is to experiment until the desired result is
achieved.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-59

8
Q

uickD
raw

 G
X

 M
athem

atics

SEE ALSO

The SetRandomSeed function sets the starting number seed for the random number
generator algorithm. The SetRandomSeed function is described in the next section. The
GetRandomSeed function returns the current starting number seed for the random
number generator algorithm. The GetRandomSeed function is described on page 8-60.

SetRandomSeed 8

You can use the SetRandomSeed function to set the starting number for the random
number generator algorithm.

void SetRandomSeed(const wide *seed);

seed The pointer to the number to be used by the random number algorithm to
generate random numbers.

DESCRIPTION

Random number generators are seeded with a value that is used by the algorithm to
generate a random number. The seed is then used to generate the next random number.

The SetRandomSeed function allows you to select the seed used by the QuickDraw GX
random number algorithm. If SetRandomSeed is not used, QuickDraw GX will select a
default seed of 0. This results in the same sequence of random numbers each time
RandomBits is called.

In order to obtain a different set of random numbers than those obtained using the
default seed value or a previously set seed, use the SetRandomSeed function.

SEE ALSO

The RandomBits function uses the current seed to generate the next random
number. The RandomBits function is described on page 8-58. The GetRandomSeed
function returns the current seed. The GetRandomSeed function is described next.

C H A P T E R 8

QuickDraw GX Mathematics

8-60 QuickDraw GX Mathematics Reference

GetRandomSeed 8

You can use the GetRandomSeed function to return the current seed for the random
number generating algorithm.

wide *GetRandomSeed(wide *seed);

seed A pointer to the current random number generator seed.

function result The pointer passed in the seed parameter.

DESCRIPTION

The GetRandomSeed function returns the current seed for the random number
generator and returns the pointer passed in seed .

SEE ALSO

The RandomBits function uses the current seed to generate the next random
number. The RandomBits function is described in the previous section. The
SetRandomSeed function changes the current seed. The SetRandomSeed function is
described in the previous section.

Linear and Quadratic Roots 8

QuickDraw GX provides two functions that solve for the roots of linear and quadratic
equations.

LinearRoot 8

You can use the LinearRoot function to obtain the root of a linear equation.

long LinearRoot(Fixed first, Fixed last, fract t[]);

first The first coefficient.

last The last coefficient.

t An array of fract numbers. On return, it contains the roots of the equation.

function result The number of roots of the linear equation. This value may be 0 or 1
(or –1 if all values of t are roots).

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-61

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The LinearRoot function computes any t between 0 and 1 in which a(1 – t) + bt = 0.
The coefficient a is the parameter first . The coefficient b is the parameter last . The
function returns the number of roots between 0 and 1.

Any root is returned in the t array, which only needs to hold one value. If both a and b
are zero, the function returns the number –1, indicating that a(1 – t) + bt = 0 for all t.

QuadraticRoot 8

You can use the QuadraticRoot function to calculate the roots of a quadratic equation.

long QuadraticRoot(Fixed first, Fixed control, Fixed last, fract

t[]);

first The first coefficient.

control The second coefficient.

last The third coefficient.

t An array of fract numbers. On return, it contains the roots of the equation.

function result The number of roots of the quadratic equation. This value may be 0, 1, or
2 (or –1 if all values of t are roots).

DESCRIPTION

The QuadraticRoot function returns roots between 0 and 1 for quadratic equations
having the form a(1 – t)2 + 2bt(1 – t) + ct2 = 0. The coefficient a is the parameter first .
The coefficient b is the parameter control . The coefficient c is the parameter last .

All roots are returned in increasing order in the t array. The array can have at most two
values. If a, b, and c are all zero, then the function returns the number –1, indicating that
a(1 – t)2 + 2bt(1 – t) + ct2 = 0 for all t.

C H A P T E R 8

QuickDraw GX Mathematics

8-62 QuickDraw GX Mathematics Reference

Bit Analysis 8

QuickDraw GX provides a function that allows you to analyze the bits in a number.

FirstBit 8

You can use the FirstBit function to determine the highest order bit that is set in a
number.

short FirstBit (unsigned long x);

x The number for which the first bit is to be determined.

function result The bit number of the highest order bit of the number in the argument.

DESCRIPTION

The FirstBit function returns the bit number of the highest order bit in a number that
is set, or –1 if the number is 0. The highest-order bit is bit 31; the lowest-order bit is bit 0.

DESCRIPTION

The use of the FirstBit function is described in the section “Analyzing the Bits in a
Number” on page 8-33.

Mapping Functions 8

QuickDraw GX provides two groups of mapping functions. The first group allows you
to manipulate mapping matrices and apply them to other mappings or to points. The
second group allows you to modify the transformational properties of a mapping matrix.

Mappings are described in the section “Transformation Operations With Mappings”
beginning on page 8-12.

For specific information on mapping matrices as applied to transform objects, view port
objects, and view device objects, see the chapters “Transform Objects” and
“View-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-63

8
Q

uickD
raw

 G
X

 M
athem

atics

Manipulating and Applying Mappings 8

This section describes functions with which you can copy, normalize, reset, and invert
a mapping. It also describes functions with which you can apply a mapping to another
mapping, and apply a mapping to an array of points.

CopyToMapping 8

You can use the CopyToMapping function to copy a mapping from one location to
another location.

gxMapping *CopyToMapping(gxMapping *target,

const gxMapping *source);

target A pointer to the destination mapping. On return, it is a copy of the source
mapping.

source A pointer to the mapping to be copied.

function result A pointer to the copied mapping, which is also the target mapping.

DESCRIPTION

The CopyToMapping function copies the mapping pointed to by the source parameter
into the location pointed to by the target parameter. Note that it may be faster in C to
simply copy the gxMapping structure into another gxMapping structure than to call
this function.

ERRORS, WARNINGS, AND NOTICES

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

8-64 QuickDraw GX Mathematics Reference

NormalizeMapping 8

You can use the NormalizeMapping function to normalize a mapping.

gxMapping *NormalizeMapping(gxMapping *target);

*target A pointer to the mapping to be normalized. On return, it is the
normalized mapping.

function result A pointer to the normalized mapping, which is also the target mapping.

DESCRIPTION

The NormalizeMapping function normalizes the target mapping. If the mapping’s
perspective elements (u and v) are 0, each element of the mapping is divided by element
w (target–>[2][2]). If the mapping has a nonzero perspective, each element is
shifted to ensure that fract1 /2 < |u| + |v| +(|w| >> 15) ≤ fract1 .

ERRORS, WARNINGS, AND NOTICES

ResetMapping 8

You can use the ResetMapping function to reset a mapping.

gxMapping *ResetMapping(gxMapping *target);

target A pointer to the mapping that is to be reset. On return, contains the
identity mapping.

function result A pointer to the reset mapping, which is also the target mapping.

DESCRIPTION

The ResetMapping function resets the target mapping to the identity matrix.

ERRORS, WARNINGS, AND NOTICES

Errors
mapping_is_nil

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-65

8
Q

uickD
raw

 G
X

 M
athem

atics

SEE ALSO

An example of the use of the ResetMapping function is provided on page 8-34.

InvertMapping 8

You can use the InvertMapping function to create an inverted copy of a mapping.

gxMapping *InvertMapping(gxMapping *target,

 const gxMapping *source);

target A pointer to a mapping structure. On return, contains the inverse of the
mapping specified in the source parameter.

source A pointer to the mapping to be inverted.

function result A pointer to the inverted mapping, which is also the target mapping.

DESCRIPTION

The InvertMapping function creates a copy of the source mapping, inverts it, and
returns the inverted mapping in the target parameter. If both the source and target
parameters point to the same gxMapping structure, that mapping will be replaced by its
inverse. If the mapping is not invertible, the function returns nil and the target is not
changed.

ERRORS, WARNINGS, AND NOTICES

MapMapping 8

You can use the MapMapping function to concatenate two mappings.

gxMapping *MapMapping(gxMapping *target, const gxMapping *source);

target A pointer to the mapping to be modified. On return, contains the result of
the concatenation.

source A pointer to the mapping to be concatenated with the target mapping.

function result A pointer to the resultant mapping, which is also the target mapping.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

8-66 QuickDraw GX Mathematics Reference

DESCRIPTION

The MapMapping function postmultiplies the target mapping by the source mapping,
and returns the result in the target parameter.

The result of passing the function result of MapMapping tothe GXMapShape function is
equivalent to passing the result of one call to GXMapShape to another call to
GXMapShape, as shown below (for the shape s):

GXMapShape(s, target);

GXMapShape(s, source);

The same results would be obtained more efficiently and perhaps more accurately by
making these calls:

MapMapping(target, source);

GXMapShape(s, target);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The GXMapShape function is described in the chapter Transform Objects in Inside
Macintosh: QuickDraw GX Objects.

MapPoints 8

You can use the MapPoints function to apply a mapping to each of the points in an
array.

void MapPoints(const gxMapping *source, long count,

gxPoint vector[]);

source A pointer to the mapping that is to be applied to the array of points.

count The number of points in the array.

vector The array of points to which the mapping is to be applied. On return, the
array contains the transformed points.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-67

8
Q

uickD
raw

 G
X

 M
athem

atics

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For an example of a function that applies a mapping to a single point, see Listing 8-2 on
page 8-30.

Modifying Mappings 8

This section describes functions with which you can modify the translational, scaling,
rotational, and skewing properties of a mapping.

Similar functions are available that allow you to directly modify the transformational
properties of the mapping in the transform object associated with a QuickDraw GX
shape. See the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects for
more information.

MoveMapping 8

You can use the MoveMapping function to change the horizontal and vertical translation
factors of a mapping by given amounts.

gxMapping *MoveMapping(gxMapping *target, Fixed hOffset,

Fixed vOffset);

target A pointer to the mapping to be modified. On return, points to the
modified mapping.

hOffset The horizontal translation to add to the mapping.

vOffset The vertical translation to add to the mapping.

function result A pointer to the modified mapping, which is also the target mapping.

Errors
mapping_is_nil
parameter_is_nil
number_of_points_exceeds_implementation_limit

Warnings
map_points_out_of_range

C H A P T E R 8

QuickDraw GX Mathematics

8-68 QuickDraw GX Mathematics Reference

DESCRIPTION

The MoveMapping function postmultiplies the target mapping by a mapping that adds
hOffset to the x translation and vOffset to the y translation of the target mapping.

Passing the result of this function to the GXMapShape function is equivalent to calling
the GXMapShape function and then calling the GXMoveShape function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the MoveMapping function is described in the section “Translation by a
Relative Amount” beginning on page 8-17.

The GXMapShape and GXMoveShape functions are described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

MoveMappingTo 8

You can use the MoveMappingTo function to assign specific values to the horizontal and
vertical translation factors of a mapping.

gxMapping *MoveMappingTo(gxMapping *target, Fixed hPosition,

Fixed vPosition);

target A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

hPosition The horizontal translation to be assigned to the target mapping.

vPosition The vertical translation to be assigned to the target mapping.

function result A pointer to the modified mapping, which is also the target mapping.

DESCRIPTION

The MoveMappingTo function postmultiplies the target mapping by a mapping that
assigns hPosition to the x translation and vPosition to the y translation of the target
mapping. This function sets the translational origin of the mapping; the point (0, 0),
when postmultiplied by the mapping that results from this function, will be at location
(hPosition , vPosition).

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-69

8
Q

uickD
raw

 G
X

 M
athem

atics

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the MoveMappingTo function is described in the section “Translation to a
Specified Point” beginning on page 8-18.

ScaleMapping 8

You can use the ScaleMapping function to change the horizontal and vertical scale
factors of a mapping.

gxMapping *ScaleMapping(gxMapping *target,

Fixed hFactor, Fixed vFactor,

Fixed xCenter, Fixed yCenter);

target A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

hFactor The horizontal scaling factor to apply. A value of 1.0 means no scale
change in the x direction.

vFactor The vertical scaling factor to apply. A value of 1.0 means no scale change
in the y direction.

xCenter The x-coordinate of the center of scaling.

yCenter The y-coordinate of the center of scaling.

function result A pointer to the modified mapping, which is also the target mapping.

DESCRIPTION

The ScaleMapping function postmultiplies the target mapping by a mapping that
specifies a horizontal scaling factor of hFactor and a vertical scaling factor of vFactor ,
about the point (xCenter , yCenter). Note that if hFactor is 1, xCenter irrelevant;
likewise, if vFactor is 1, yCenter is irrelevant.

These scaling factors are in addition to any preexisting scaling factors in the target
mapping. The center of scaling is the point that does not move when the scaling is
applied.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

8-70 QuickDraw GX Mathematics Reference

Passing the result of the ScaleMapping function to the GXMapShape function is
equivalent to calling the GXMapShape function and then calling the GXScaleShape
function. For example, you could make these calls (for the shape s):

ScaleMapping(target, hFactor, vFactor, xCenter, yCenter);

GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);

GXScaleShape(s, hFactor, vFactor, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the ScaleMapping function is described in the section “Scaling” beginning
on page 8-20.

The GXMapShape and GXScaleShape functions are described in the chapter
“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

RotateMapping 8

You can use the RotateMapping function to change the rotation specified by a mapping.

gxMapping *RotateMapping(gxMapping *target, Fixed angle,

Fixed xCenter, Fixed yCenter);

target A pointer to the mapping to be modified. On return, points to the
modified mapping.

angle The amount of rotation (in degrees clockwise) to be added to the
mapping.

xCenter The x-coordinate of the center of rotation.

yCenter The y-coordinate of the center of rotation.

function result A pointer to the modified mapping, which is also the target mapping.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference 8-71

8
Q

uickD
raw

 G
X

 M
athem

atics

DESCRIPTION

The RotateMapping function postmultiplies the target mapping by a mapping that
specifies a rotation (clockwise if positive) by a specified number of degrees about the
point (xCenter , yCenter).

The rotation is in addition to any preexisting rotation specified by the target mapping.

Passing the result of this function to the GXMapShape function is equivalent to calling
the GXMapShape function and then calling the GXRotateShape function. For example,
you could make these calls (for the shape s):

RotateMapping(target, angle, xCenter, yCenter);

GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);

GXRotateShape(s, angle, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the RotateMapping function is described in the section “Rotation”
beginning on page 8-22.

The GXMapShape and GXRotateShape functions are described in the chapter
“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

SkewMapping 8

You can use the SkewMapping function to change the horizontal and vertical skew
specified by a mapping.

gxMapping *SkewMapping(gxMapping target,

Fixed skewX, Fixed skewY,

Fixed xCenter, Fixed yCenter);

target A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

skewX The scaling factor that determines the amount of skew in the x direction.
A value of 0 means no horizontal skew.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

8-72 QuickDraw GX Mathematics Reference

skewY The scaling factor that determines the amount of skew in the y direction.
A value of 0 means no vertical skew.

xCenter The x-coordinate of the center of skewing.

yCenter The y-coordinate of the center of skewing.

function result A pointer to the modified mapping, which is also the target mapping.

DESCRIPTION

The SkewMapping function postmultiplies the target mapping by a mapping that
specifies a horizontal skew factor of skewX and a vertical skew factor of skewY, about
the point (xCenter , yCenter). Note that if skewX is 0, yCenter irrelevant; likewise, if
skewY is 0, xCenter is irrelevant.

These skew factors are in addition to any preexisting skew specified in the target
mapping. The center of skewing specifies the point at which no translation takes place
because of the skewing.

Passing the result of the SkewMapping function to the GXMapShape function is
equivalent to calling the GXMapShape function and then calling the GXSkewShape
function. For example, you could make these calls (for the shape s):

SkewMapping(target, hFactor, vFactor, xCenter, yCenter);

GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);

GXSkewShape(s, skewX, skewY, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the SkewMapping function is described in the section “Skewing” beginning
on page 8-24.

The GXMapShape and GXSkewShape functions are described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

Errors
mapping_is_nil

C H A P T E R 8

QuickDraw GX Mathematics

Summary of QuickDraw GX Mathematics 8-73

8
Q

uickD
raw

 G
X

 M
athem

atics

Summary of QuickDraw GX Mathematics 8

Constants and Data Types 8

Number Formats and Constants

typedef long fract;

typedef unsigned short gxColorValue;

struct gxPolar {

Fixed radius;

Fixed angle;

};

struct wide {

long hi;

unsigned long lo;

};

#define fixed1 ((Fixed) 0x00010000) /* = 1.0 for Fixed */

#define fract1 ((fract) 0x40000000) /* = 1.0 for fract */

#define gxColorValue1 ((gxColorValue) 0xFFFF) /* 1.0 for gxColorValue*/

#define gxPositiveInfinity ((Fixed) 0x7FFFFFFF) /* for Fixed and fract */

#define gxNegativeInfinity ((Fixed) 0x80000000) /* for Fixed and fract */

The Mapping Structure

struct gxMapping {

Fixed map[3][3];

};

C H A P T E R 8

QuickDraw GX Mathematics

8-74 Summary of QuickDraw GX Mathematics

Number-Conversion Macros 8

Format Conversions

#define FixedToFract(a) ((fract) (a) << 14)

#define FractToFixed(a) ((Fixed) (a) + 8192L >> 14)

#define FixedToInt(a) ((short) ((Fixed) (a) + fixed1/2 >> 16))

#define IntToFixed(a) ((Fixed)(a) << 16)

#define ff(a) ((Fixed)(a) << 16)

#define FixedToFloat(a) ((float)(a) / fixed1)

#define FloatToFixed(a) ((Fixed)((float) (a) * fixed1))

#define fl(a) ((Fixed)((float) (a) * fixed1))

#define FractToFloat(a) ((float)(a)/fract1)

#define FloatToFract(a) ((fract)((float)(a)*fract1))

#define ColorToFract(a) (((fract)(a)<<14) + ((fract)(a) +2 >>2))

#define FractToColor(a) ((gxColorValue)((a)-((a)>>16)+8191>>14))

Rounding, Truncating, and Square Root Operations

#define FixedRound(a) ((short) ((Fixed)(a) + fixed1/2 >> 16))

#define FixedTruncate(a) ((short)((Fixed)(a) >> 16))

#define FixedSquareRoot(a) ((Fixed)FractSquareRoot(a) + 64 >>7)

Mathematical Functions 8

Fixed-Point Operations

Fixed FixedMultiply (Fixed multiplicand, Fixed multiplier);

Fixed FixedDivide (Fixed dividend, Fixed divisor);

long MultiplyDivide (long multiplicand, long multiplier,
long divisor);

unsigned long Magnitude (long deltaX, long deltaY);

fract FractSineCosine (Fixed degrees, fract *cosine);

fract FractSquareRoot (fract source);

fract FractCubeRoot (fract source);

fract FractMultiply (fract multiplicand, fract multiplier);

fract FractDivide (fract dividend,fract divisor);

C H A P T E R 8

QuickDraw GX Mathematics

Summary of QuickDraw GX Mathematics 8-75

8
Q

uickD
raw

 G
X

 M
athem

atics

Operations on wide Numbers

wide *WideAdd (wide *target, const wide *source);

wide *WideSubtract (wide *target, const wide *source);

wide *WideNegate (wide *target);

wide *WideShift (wide *target, long shift);

wide *WideMultiply (long multiplicand, long multiplier,
wide *target);

long WideDivide (const wide *dividend, long divisor,
long *remainder);

wide *WideWideDivide (wide *dividend, long divisor, long *remainder);

unsigned long WideSquareRoot
(const wide *source);

short WideScale (const wide *w);

short WideCompare (const wide *target, const wide *source);

Vector Operations

wide *VectorMultiply (long count, const long *vector1, long step1,
const long *vector2, long step2, wide *dot);

long *VectorMultiplyDivide (long count, const long *vector1, long step1,
const long *vector2, long step2, long divisor);

Cartesian and Polar Coordinate Point Conversions

gxPoint *PolarToPoint (const gxPolar *ra, gxPoint *xy);

gxPolar *PointToPolar (const gxPoint *xy, gxPolar *ra);

Random Number Generation

unsigned long RandomBits (long count, long focus);

void SetRandomSeed (const wide *seed);

wide *GetRandomSeed (wide *seed);

Linear and Quadratic Roots

long LinearRoot (Fixed first, Fixed last, fract t[]);

long QuadraticRoot (Fixed first, Fixed control, Fixed last,
fract t[]);

Bit Analysis
short FirstBit (unsigned long x);

C H A P T E R 8

QuickDraw GX Mathematics

8-76 Summary of QuickDraw GX Mathematics

Mapping Functions 8

Manipulating and Applying Mappings

gxMapping *CopyToMapping (gxMapping *target, const gxMapping *source);

gxMapping *NormalizeMapping (gxMapping *target);

gxMapping *ResetMapping (gxMapping *target);

gxMapping *InvertMapping (gxMapping *target, const gxMapping *source);

gxMapping *MapMapping (gxMapping *target, const gxMapping *source);

void MapPoints (const gxMapping source, long count,
gxPoint vector[]);

Modifying Mappings
gxMapping *MoveMapping (gxMapping *target,

Fixed hOffset, Fixed vOffset);

gxMapping *MoveMappingTo (gxMapping *target,
Fixed hPosition, Fixed vPosition);

gxMapping *ScaleMapping (gxMapping *target,
Fixed hFactor, Fixed vFactor,
Fixed xCenter, Fixed yCenter);

gxMapping *RotateMapping (gxMapping *target, Fixed angle,
Fixed xCenter, Fixed yCenter);

gxMapping *SkewMapping (gxMapping target, Fixed skewX, Fixed skewY,
Fixed xCenter, Fixed yCenter);

GL-1

all object validation

A QuickDraw GX
validation level that confirms that all references
to all object types are valid, that the properties of
the object are valid, and that all internal caches
built for all objects are valid. Compare

 type
validation

 and

structure validation

.

application heap

A region of memory that is
allocated by the Macintosh Memory Manager
when an application is launched. This is the
memory region reserved for application code and
data structures.

attribute mask

A means of editing the
attributes of a collection object.

attributes

A property of many QuickDraw GX
objects that is a set of flags that control various
aspects of that object’s behavior.

bad parameter error

A nonfatal QuickDraw GX
error indicating that one or more function
parameters are incorrect.

bad reference error

A QuickDraw GX error
indicating that an invalid reference to a view or
font device, view group, or view port was made.

bias

The number of bits to the right of a binary
point in a fixed point number. See also

gxColor

Value

,

Fixed

,

fixed-point number

,

fract

,

long

, and

short

.

bitmap

(1) A QuickDraw GX data structure that
describes a pixel map on a physical device. A
bitmap structure is a property of a view device
object. (2) A type of QuickDraw GX shape.

cache

See

QuickDraw GX cache.

cache error

A QuickDraw GX error indicating
that a memory cache problem occurred.

Cartesian coordinate

A coordinate system used
for view devices in which the positive x direction
is to the right and the positive y direction is
down with respect to the origin, at the upper-left

corner. A point is defined by specifying the x-
and y-coordinates in the format (

x

,

y

). Compare
polar coordinate.

child view port

For a given view port, a view
port immediately below it in the view port
hierarchy.

child view port list

A property of a view port
object that is an array of references to the child
view ports of that view port.

clip

A QuickDraw GX shape and a property of
a transform object, view port object, and view
device.

collection

An abstract data type that allows
you to store information. Unlike an array, a
collection allows you to store variable-sized
items.

collection index

A means of uniquely
identifying each item within a collection.

collection item

A part of a collection object.

collection object

See

 collection.

concatenate

An operation consisting of two or
more sequential mappings.

data stream

A highly structured sequence of
bytes that contains all of the information required
to store, print, or display QuickDraw GX objects.

dead cache

A shape cache that is out of date.
The object or environment associated with the
cache has been changed since the cache was
created.

debugging environment

The QuickDraw GX
application development environment consisting
of the debugging version; errors, warnings, and
notices; application-defined message handlers;
the drawing errors; validation function; and the
MacsBug and GraphicsBug utilities. See also

error

,

warning, notice

, and

message handler.

Glossary

G L O S S A R Y

GL-2

debugging version

The version of QuickDraw
GX that provides validation and an extended set
of errors, warnings, and notices. This version is
intended for use during application
development. See also

non-debugging version

,

error

,

warning

, and

notice.

default attributes

The attributes that
determines the initial attribute values assigned to
items added to a collection.

default memory size

The implementation limit
size of the graphic client memory heap that
QuickDraw GX will select if the memory size is
not specified.

default object

A QuickDraw GX object with
the properties of a newly created object.
Whenever it creates an object, QuickDraw GX
assigns it the default properties for that kind of
object; an application may then alter those
properties through accessor functions.

discontiguous memory

One or more
non-continuous blocks of memory. For example,
a graphics client heaps might be discontiguous.

dispose of

To delete a reference to an object.
When an application no longer needs an object, it
disposes of the object. That action deletes the
object from memory if there are no other current
references to the object; otherwise, disposing of
an object merely decreases its owner count by 1.

drawing error

A QuickDraw GX error
indicating why your shape did not draw
successfully. The

GXGetShapeDrawError

function posts such a single error.

drawing process sequence

The sequence in
which QuickDraw processes objects: shape, style,
ink, transform, view port, and view device.

error

A single descriptive phrase that is posted
by QuickDraw GX whenever an application is
unable to execute. Execution is terminated at the
nonexecutable function. Each error message is
assigned a unique number in the range –27999
through –27000. Errors are posted in both the
debugging and non-debugging versions of
QuickDraw GX.

Fixed

number

A 32-bit signed integer with 16
bits to the left and 16 bits to the right of the
binary decimal point. A fixed-point number with
a bias of 16.

Fixed

 numbers range from –32,768
to nearly +32,768. The

fixed

 number for 1.0 is
0x0001000.

fixed-point number

A signed 16-bit, 32-bit, or
64-bit quantity containing an integer part in the
high-order word and a fractional part in the low-
order word. Integers are interpreted as real
numbers by the use of bias to define where the
decimal point is located. Numbers having the

gxColorValue

,

short

,

long

,

fixed

,

fract

,
and

wide

 number formats are fixed point
numbers. See also

bias

,

long

number

,

fract

number

,

short

number

,

gxColorValue

 and

wide

 number.

flatten

To convert an object created by your
application from its original format to a
QuickDraw GX stream format.

font management error

A QuickDraw GX error
that involves the storage, attributes, or parameter
of a font.

font scaler error

A QuickDraw GX error that
involves the conversion of a glyph outline to a
bitmap.

font scaler warning

A QuickDraw GX warning
that involves the conversion of a glyph outline to
a bitmap.

forward

To invoke the override of the next
handler in the chain for the current message.

fract

 number

A 32-bit signed integer with
two bits to the left and 30 bits to the right of the
binary decimal point. A fixed-point number with
a bias of 2.

Fract

 numbers range from –2 to +2.
The

fract

 number for 1.0 is 0x40000000.

geometry

A property of a QuickDraw GX
shape object

.

 A shape’s geometry is the
specification of the actual size, position, and fill
of the shape. For example, for a rectangle shape,
the geometry specifies the locations of the
rectangle’s corners in local coordinates.

G L O S S A R Y

GL-3

global coordinates

For QuickDraw GX, the
coordinate system used for a view group. For
example, a view port’s location is described in
global coordinates. This coordinate system
represents all potential drawing space. The
origin, point (0,0), of the global coordinate
system is located at the upper-left corner of the
main screen. The positive x-axis extends to the
right. The positive y-axis extends downward.

GraphicsBug

A QuickDraw GX debugging
utility that allows detailed analysis of heaps and
objects. See also

heaps

 and

objects.

graphics client

A region of memory where
bookkeeping data is stored for a graphics client
heap. This includes the memory starting address,
the size and location of all of the heap’s memory
blocks, and the error, warning, and notice state.
See also

graphics client heap.

graphics client heap

A region of memory that
contains all of the objects that a QuickDraw GX
application creates. A heap that consists of public
objects, such as shapes, styles, inks, and
transforms, as well as private objects used for
heap management. See also

graphics client

 and

heap.

graphics device

Any graphics hardware
attached to the system.

gxColorValue

A 16-bit unsigned integer. A
fixed-point number that ranges from 0 to 65,535
to represent the numbers 0 to 1. The integer must
be divided by 65,535 to obtain the real number
represented. The color value number for 1.0 is
0xFFFF.

handler

A recipient and processor of messages.
It can be a printing extension, a printer driver,
QuickDraw GX printing, or an application. For
example, an application can supply a handler for
errors, warnings, and messages. See also message
chain.

heap

An area of memory that is dynamically
allocated and deallocated on demand. See also

application heap

 and

graphics client heap.

hit-testing

The conversion of a specific
geometric location, such as a pixel position in a
view port, to logical location (part, control point,
or glyph) in the geometry of a shape object.
Hit-testing is used to highlight or activate parts

of geometric shapes or to highlight or draw a
caret within the displayed text of a typographic
shape.

identity matrix

A mapping matrix that maps a
point to the same point. A mapping matrix with
the value 1 for the diagonal matrix elements and
the value 0 for all other matrix elements.

ignore notice stack

A stack that can contain the
implementation limit of notice numbers. Notices
on the ignore notice stack are not posted by
QuickDraw GX.

ignore warning stack

A stack that can contain
the implementation limit of warning numbers.
Warnings on the ignore warning stack are not
posted by QuickDraw GX.

implementation limit error

A QuickDraw GX
error indicating that the implementation limit of
a structure has been exceeded. See also
implementation limit.

implementation limit

An upper or lower
bounds of a size, number, or value. This limit is
defined by the current version of QuickDraw GX.
See also

default memory size

.

instance

A single copy of a message handler in
memory.

See also

instantiate

.

instantiate

To create an instance of a message
handler separate and unique from all other
instances. See also

instance

.

ink

A QuickDraw GX object associated with a
shape object. An ink object contains information
that affects the color of a shape and the transfer
mode with which it is drawn.

internal error A nonfatal QuickDraw GX error
indicating a damaged file, memory problem, or
incorrect implementation.

internal validation An optional validation
mode in which object parameter validation
occurs whenever an application uses a public
function and whenever QuickDraw GX uses an
internal function. Compare public validation.

interrupt programming A type of
programming in which QuickDraw GX allows an
application to switch tasks, but only when it is
not performing critical functions.

G L O S S A R Y

GL-4

invalid data warning A QuickDraw GX
warning indicating that an object contains
incorrect data or that extra data was passed.

inverse of a mapping The mathematical
inverse of the mapping matrix. A mapping
concatenated with its inverse results in the
identity matrix.

live cache A QuickDraw GX cache that
contains current information. The object
associated with the cache has not been changed
since the cache was created. See also dead cache.

load [an object] To return an unloaded
QuickDraw GX object from external storage to
memory. QuickDraw GX automatically and
transparently loads and unloads objects in the
course of managing memory; an application need
never know whether an object it accesses is
currently loaded or unloaded.

local coordinates For QuickDraw GX, the
coordinate space local to each shape. For
example, a shape’s geometry is described in local
coordinates.

lock attribute When set, this attribute prevents
an item in a collection from being replaced.

long number A 32-bit signed integer. A fixed-
point number with a bias of 0. Long numbers
range from –2,147,483,648 to +2,147,483,647. The
long number for 1.0 is 0x00000001.

Macintosh interface functions A set of
Macintosh-specific functions. Most other
QuickDraw GX functions can exist on any
platform.

macro A sequence of predefined directives that
the C preprocessor interprets at compile time.
When the preprocessor encounters the macro
name in the source code, the preprocessor
substitutes the macro definition for it.
QuickDraw GX provides macros for number
format conversions.

MacsBug A Macintosh debugging utility.

map See mapping.

mapping A transformation of spatial locations
(points) that can be represented by a 3 × 3
perspective matrix. Synonymous with map and
mapping matrix.

mapping matrix See mapping.

memory allocation Specification of the starting
address of the graphics client in memory.

memory block An area of contiguous memory
within a heap or zone.

memory size The number of bytes of random
access memory allocated to the QuickDraw GX
graphics client. The default size is 600 KB.

message A notification passed to a message
object so that the message object will perform an
operation.

message chain One or more handlers that wish
to receive and respond to messages. A handler at
the top of a message chain always receives a
message first. See also message handler.

message class The set of messages and
methods defined at run time that are understood
by message objects.

message handler A component of a message
class that can override messages.

Message Manager A low-level software
manager that is part of the QuickDraw GX
message-passing printing architecture.

message object The recipient and sender of
messages.

message override See override.

non-debugging environment The QuickDraw
GX end-user environment consisting of the
non-debugging version, errors and warnings,
and application-defined message handlers. See
also error, warning, and message handler.

non-debugging version The version of
QuickDraw GX that provides a limited set of
errors and warnings. This version is intended for
use with a debugged application. See also
debugging version, error, and warning.

G L O S S A R Y

GL-5

normalize To divide a mapping matrix by the
absolute value of matrix element w. A mapping is
considered normalized whenever the matrix
element w has the value 1.

notice A single descriptive phrase that is
posted by the debugging version of QuickDraw
GX whenever an unnecessary or redundant
function has been performed. Execution
continues as if the notice had not been posted.
Notices are posted only in the debugging version
of QuickDraw GX. A notice number is a unique
number in the range –25999 through –25500
assigned to each QuickDraw GX notice message.
Each notice number has a unique notice name.
See also notice name.

notice name A multiple-word phrase that
describes the QuickDraw GX notice posted. Each
notice name has a unique notice number. See also
notice.

notice number See notice.

object A private QuickDraw GX data structure.
An object is defined by properties and is accessed
by a reference.

omit byte A means of assigning different data
compressions to type constants and object
properties that immediately follow this byte.

omit byte mask With the omit byte shift, this is
a means of interpreting the meaning of each of
the bits in an omit byte.

omit byte shift With the omit byte mask, this is
a means of interpreting the meaning of each of
the bits in an omit byte.

overflow notice A QuickDraw GX notice
indicating that a notice could not be added to the
ignore notice stack because the implementation
limit had been exceeded. See also
implementation limit.

overflow warning A QuickDraw GX warning
indicating that a warning could not be added to
the ignore warning stack because the
implementation limit had been exceeded. See
also implementation limit.

override A message handler’s implementation
of a given message. A message handler’s
override performs the operation requested by the

message received by the message object. A partial
override forwards the message. A complete
override does not forward the message.

owner A variable, structure, or QuickDraw GX
object that references an object. Many objects can
be referenced by more than one variable and can
thus have multiple owners.

owner count A property of some QuickDraw
GX objects that indicates the number of current
references to the object.

parameter out of range warning A QuickDraw
GX warning indicating that a function parameter
is out of the valid range.

parent view port A property of a view port
object. A view port’s parent is that view port
immediately above it in the view port hierarchy.

persistence attribute An attribute that causes
an item to be included when the Collection
Manager flattens a collection. See flatten.

polar coordinate A coordinate system in which
a point is specified by the length of the radius
vector r from the origin to the point and the
direction of the vector is specified by the polar
angle a. A point is defined by specifying the
coordinates r and a in the format (r, a). The polar
origin has the coordinates (0, a), where a is any
angle. Compare Cartesian coordinate.

posting The process of generating error,
warning, and notice messages by QuickDraw
GX. See also debugging version, non-debugging
version, error, warning, and notice.

postmultiplied A term that describes the order
in which matrices are multiplied. Matrix [A] is
postmultiplied by matrix [B] if matrix [A] is
replaced by [A] × [B]. Compare premultiplied .

premultiplied A term that describes the order
in which matrices are multiplied. Matrix [A] is
premultiplied by matrix [B] if matrix [A] is
replaced by [B] × [A]. Compare postmultiplied.

property An item or set of data in a QuickDraw
GX object. A property of an object is analogous to
a field (or member) of a data structure; however,
a field is accessed through its name, whereas a
property is accessed through an accessor function.

G L O S S A R Y

GL-6

public validation The process of checking the
validity of the parameters passed by an
application. See validation.

QuickDraw GX cache Temporary memory
that is managed by QuickDraw GX. Each object
has a pointer to one or more caches. Each cache is
related to only one object. See also dead cache
and live cache.

recoverable error A nonfatal QuickDraw GX
error indicating fragmented memory, a problem
with the backing store, or a problem with the
unflattening process.

reference A long word value, neither a pointer
nor a handle, through which an application
accesses a QuickDraw GX object. References are
created by QuickDraw GX and passed to
applications.

reflection The symmetrical movement of a
mapping with respect to the Cartesian
coordinate axes. The movement can be about the
x- or y- or both axes.

reserved attributes The attributes of a
collection item’s 32 attributes that are reserved
and cannot be set.

restricted access error A QuickDraw GX error
indicating that the object data requested is
private and not available.

result out of range warning An application
execution warning detected and posted by
QuickDraw GX indicating that the function result
was out of the valid range.

seed An initialization value used by a random
number generator to produce a sequence of
values.

shape (1) A graphic or typographic item (such
as a geometric shape, bitmap, or a line of text)
created and drawn with QuickDraw GX. (2) A set
of QuickDraw GX objects that, taken together,
describe the type and characteristics of such a
graphic or typographic item. A shape consists of
a shape object, style object, ink object, and
transform object.

shape cache A cache created and maintained by
QuickDraw GX for storing the results of
intermediate calculations made prior to drawing
a shape.

shape fill A property of a shape object. The
shape fill specifies whether and how QuickDraw
GX fills in the outlines of a shape that is draws.

shape object A QuickDraw GX object that,
along with several other objects, describes a
QuickDraw GX shape. A shape object specifies
the fundamental type and contents of a shape.

shape type A property of a shape object. The
shape type specifies the classification (such as
point, line, bitmap, or text) of a particular shape.

short number A 16-bit signed integer with 16
bits to the left and 0-bits to the right of the binary
decimal point. A fixed point number with a bias
of 0. The short number for 1.0 is 0x0001.

specific object validation A QuickDraw GX
validation level that confirms that all references
to a specific object type are valid.

storage warning A QuickDraw GX warning
indicating a data stream problem.

stream format The public format available for
describing flattened QuickDraw GX objects.
Objects in stream format are compressed or
flattened. Flattened objects are unflattened when
they are converted back to object format. A
flattened object may be interpreted by using
QuickDraw GX unflattening functions or
reconstructed by parsing with an interpreter that
uses the stream format.

structure validation A QuickDraw GX
validation level that confirms that references to
object types are valid and that the properties of
the object are valid. Compare type validation,
and all object validation.

tag list A property of some QuickDraw GX
objects. The tag list is an array of references to tag
objects associated with the object.

tag list position The position of an item in a list
of items with the same collection tag.

tag object A QuickDraw GX object whose
purpose, structure, and content are entirely
controlled by the application creating it. Tag
objects exist to allow custom information and
behavior to be attached to standard QuickDraw
GX objects. Tag objects are classified by tag type;
objects reference their tag objects through a tag
list.

G L O S S A R Y

GL-7

translation options The use of one or more
constants to translate QuickDraw data to
QuickDraw GX shapes.

transfer mode A QuickDraw GX data structure,
also the property of an ink object, that controls
the interaction between the color of a shape and
the colors of the background at the location
where the shape is drawn.

transform A QuickDraw GX object associated
with a shape object. A transform object contains
information that affects the visual appearance of
a shape when it is drawn.

translator A set of functions that convert
QuickDraw data into QuickDraw GX shapes or
pictures. The translation approximates the intent
of the original QuickDraw images; it does not
provide a pixel-by-pixel mapping of the image.

type validation A QuickDraw GX validation
level that confirms that references to object types
are valid. Compare structure validation and all
object validation.

underflow notice A QuickDraw GX notice
indicating that a notice could not be removed
from the ignore notice stack because no notice
was on the stack.

underflow warning A QuickDraw GX warning
indicating that a warning could not be removed
from the ignore warning stack because no
warning was on the stack.

unexpected result warning A QuickDraw GX
warning indicating that a character or font
substitution took place or that the geometry of an
area or new device is probably incorrect.

unflatten To convert the public, stream-based
description of an object or set of objects into the
private, native QuickDraw GX object-based
format. Compare flatten. See also stream format.

unload [an object] To move a QuickDraw GX
object from memory to temporary external
storage. QuickDraw GX automatically and
transparently loads and unloads objects in the
course of managing memory; an application need
never know whether an object it accesses is
currently loaded or unloaded.

user attributes The lower 16 bits of an item’s
attributes; these bits can be defined for purposes
suitable to your application.

validation A set of debugging functions that
cause one or more actions to occur whenever a
QuickDraw GX function is called or whenever
the internal memory manager is called. See also
public validation , internal validation.

validation error A QuickDraw GX error
detected and posted by the debugging version
with validation error checking turned on. The
parameters of objects are checked to ensure that
the object is valid. See also validation.

view device A QuickDraw GX object associated
with a view port object. A view device object
describes the characteristics of a given physical
display device such as a monitor or printer.

view group A QuickDraw GX object that
consists of a grouping of view ports and view
devices.

view port A QuickDraw GX object associated
with a transform object. A view port describes
the characteristics of the drawing environment
for individual QuickDraw GX shapes.

view port hierarchy An ordered arrangement
of view ports that allows for such features as
windows within windows, including multiple
windows within a single window.

view port list A property of a transform object.
This list is an array of references to the view ports
that the shapes associated with that transform
can be drawn to.

warning A single descriptive phrase that is
posted by QuickDraw GX whenever an
application executes a function that may likely
not provide the result expected. Execution
continues internally, as if the warning had not
been posted. A warning number is a unique
number in the range –26999 through –26000
assigned to each QuickDraw GX warning
message. Each warning has a unique warning
name.

warning name See warning.

warning number See warning.

G L O S S A R Y

GL-8

wide number A 64-bit signed integer with
unspecified bias.

wrong type error A QuickDraw GX error
indicating that an invalid type has been assigned
to a shape.

IN-1

Index

A

AddCollectionItem

 function 5-62

AddCollectionItemHdl

 function 5-92
all object validation4-7
analyzing data streams7-56 to 7-89
application heap2-3 to 2-4
attribute bit masks

for collection objects5-52
attribute bit numbers

for collection objects5-50
attribute masks5-10, 5-16, 5-49
attributes of collection objects5-9, 5-9 to 5-11

B

bad parameter errors 3-9, 3-15
bad reference errors 3-17
bias (in fixed-point numbers)8-6, 8-7 to 8-8
bit analysis8-12, 8-32, 8-33 to 8-34, 8-62
bit-shifting of

wide

 numbers8-31 to 8-32

C

cache.

See

 QuickDraw GX cache
cache validation errors 3-18
Cartesian and polar coordinates8-10 to 8-11, 8-29, 8-56

to 8-57

CloneCollection

 function 5-56

'cltn'

 resource type5-41
collection attributes5-9
collection ID 5-8, 5-11

determining5-21
collection index5-11

determining5-19
collection items

adding to collection objects5-17, 5-62
attributes of5-9
collection index of5-11
defined5-8
determining collection index of5-19
determining size of variable-length data5-22
determining the collection tag and ID of5-21
editing attributes of5-82
getting attributes of5-24

identifying 5-11
properties of5-8
removing 5-30, 5-65
replacing5-28, 5-63, 5-93
retrieving data from 5-33, 5-71
setting attributes of5-24
tag list position of5-11

Collection Manager
data types for5-48 to 5-53
functions in5-53 to 5-99
resources for5-102
testing for availability5-13

collection objects
adding items to5-17, 5-62, 5-92
allocate memory for and dispose of global data5-54
allocating memory for5-54
application-defined exception procedure 5-101
application-defined flattening function5-100
attribute bit masks for5-52
attribute bit numbers for5-50
attribute masks for5-10, 5-50
cloning 5-14, 5-56
copying 5-14, 5-57
counting items in5-69
creating 5-14, 5-54
default attributes of5-10, 5-15
defined5-5
determining owner count of5-57
disposing of5-14, 5-55
examining collection tags of5-35, 5-87
exception procedures for 5-8, 5-58
flattening 5-37, 5-88, 5-97
properties of5-7
purging 5-30, 5-67
reading from disk 5-41
reading from resource files5-99
removing items from 5-30, 5-65
replacing items in5-28, 5-63, 5-93
unflattening5-37, 5-90, 5-98
writing to disk 5-41

collection resources 5-41, 5-44 to 5-45, 5-99, 5-102

CollectionTagExists

 function 5-85
collection tags5-8, 5-11, 5-21, 5-49

ColorToFract

 macro 8-40
complete message override6-6
compression type opcode7-92
concatenation of mappings8-13, 8-65
coordinates and coordinate spaces

converting from QuickDraw1-7 to 1-9, 1-28 to ??

I N D E X

IN-2

CopyCollection

 function 5-57

CopyToMapping

 function 8-63

CountCollectionItems

 function 5-69

CountCollectionOwners

 function 5-57

CountCollectionTags

 function 5-86

CountTaggedCollectionItems

 function 5-70
creating a picture with seven shapes7-56 to 7-59
cursor

obtaining location of, in global coordinates1-8 to
1-9, 1-30

obtaining location of, in local coordinates1-9, 1-30

D

data stream format7-5 to 7-53

See also

stream format
data streams

analyzing7-53 to 7-90
defined7-5

dead caches
defined2-11
disposing of2-11

debugging4-3 to 4-47
corrupted objects4-22
environment4-3
shapes4-8 to 4-15
utility 4-23 to 4-28
validation functions4-15 to 4-22
version of QuickDraw GX4-5
with GraphicsBug4-23 to 4-28

debugging version3-13
default attributes

of collection objects5-60

DisposeCollection

 function 5-55

DisposeMessageGlobals

 function 6-18
drawing 4-8, 4-9

analyzing problems4-9
intercepting with a view port filter1-9, 1-31 to 1-33,

1-40 to 1-41
drawing errors 4-8 to 4-15, 4-29 to 4-31, 4-33

function 4-6
ink 4-12
sequence4-9
shape type4-10
style 4-11
transform4-13
view device4-15
view port 4-14

E

EmptyCollection

 function 5-68
error handler

application-defined function3-72
installing 3-40 to 3-41

error handlers4-5
error number summary3-6, 3-14
errors 3-3 to 3-76, 4-5

application-defined handler for3-74
bad parameter3-9, 3-15
bad reference3-17
cache validation3-18
changing3-35
constants and data types for3-42 to 3-50
defined3-3
drawing 4-8 to 4-15, 4-29, 4-33
fatal 3-7
font management3-8
font scaler3-8
functions for3-56 to 3-60
handler for3-74
implementation limit3-10
ink drawing 4-12
internal 3-7
number summary3-6, 3-14
recoverable3-7
responding from application3-40
restricted access3-16
style drawing4-11
transform drawing4-13
validation 3-18
view device drawing4-15
view port drawing4-14
wrong type3-17

errors, warnings, and notices3-3 to 3-76
application-defined functions for3-72 to 3-74
changing3-35 to 3-37
constants and data types for3-42 to 3-55
functions for3-56 to 3-71
number ranges for3-55
responding from application3-40

exception procedures 5-8, 5-45 to 5-48, 5-101

F

fatal errors 3-7

ff

 macro 8-27, 8-38
filter functions for view ports1-9, 1-31 to 1-33, 1-40 to

1-41

FirstBit

 function 8-33, 8-62

FixedDivide

 function 8-43

FixedMultiply

 function 8-42

I N D E X

IN-3

Fixed

 number format8-6
fixed-point numbers

conversions of8-8
formats of8-6, 8-7
operations on8-7 to 8-8, 8-9 to 8-10, 8-27 to 8-28,

8-42 to 8-54

FixedRound

 macro 8-41

FixedSquareRoot

 macro 8-42

FixedToFloat

 macro 8-38

FixedToFract

 macro 8-36

FixedToInt

 macro 8-37

FixedTruncate

 macro 8-41

FlattenCollection

 function 5-88

FlattenCollectionToHdl

 function 5-97
flattening 5-100, 7-5

FlattenPartialCollection

 function 5-89

fl

 macro 8-39
floating-point numbers

conversions of8-8
formats of8-6

FloatToFixed

 macro 8-39

FloatToFract

 macro 8-40
font manager errors 3-8
font scaler errors 3-8
font scaler warnings3-12

ForwardMessage

 function 6-15 to 6-16, 6-24

ForwardThisMessage

 function 6-15 to 6-16, 6-25

FractCubeRoot

 function 8-47

FractDivide

 function 8-48

FractMultiply

 function 8-47

fract

 number format8-7, 8-35

FractSineCosine

 function 8-46

FractSquareRoot

 function 8-46

FractToColor

 macro 8-41

FractToFixed

 macro 8-37

FractToFloat

 macro 8-40

G—GXB

'gasz'

 resource type2-5 to 2-6

GDevice

 record 1-7

Gestalt

 function for QuickDraw GX1-4 to 1-5, 1-22
to 1-23

gestaltMessageMgrVersion

 enumeration6-16

GetCollectionDefaultAttributes

 function 5-60

GetCollectionExceptionProc

 function 5-58

GetCollectionItem

 function 5-71

GetCollectionItemHdl

 function 5-94

GetCollectionItemInfo

 function 5-76

GetIndexedCollectionItem

 function 5-72

GetIndexedCollectionItemHdl

 function 5-96

GetIndexedCollectionItemInfo

 function 5-78

GetIndexedCollectionTag

 function 5-87

GetMessageHandlerClassContext

 function 6-12
to 6-15, 6-22

GetMessageHandlerInstanceContext

function 6-10 to 6-12, 6-20

GetNewCollection

 function 5-99

GetRandomSeed

 function 8-33, 8-60

GetTaggedCollectionItem

 function 5-74

GetTaggedCollectionItemInfo

 function 5-80
global data

allocating and deallocating memory for6-8 to 6-10
creating an A5 world for 6-8 to 6-10
for a single handler instance6-10 to 6-12
for multiple handler instances6-12 to 6-15
for printing extensions and printer drivers6-7

global space
converting to, from QuickDraw1-7 to 1-8, 1-29
obtaining cursor location in1-8 to 1-9, 1-30

GraphicsBug4-7 to 4-8, 4-23 to 4-28
analyzing objects with4-25 to 4-28
commands4-23 to 4-24
flattening shapes with7-54 to 7-55

graphics client2-4, 2-16 to 2-17
changing the active2-17, 2-26
creating 2-5 to 2-9, 2-19
defined2-4
disposing of2-9 to 2-10, 2-21
functions not requiring 2-14
functions requiring 2-14
multiple 2-16 to 2-17
returning the active2-17, 2-24
starting location of2-14 to 2-16

graphics client heap2-3 to 2-4, 2-4
creating 2-5 to 2-9, 2-22
default size2-6
defined2-4
disposing of2-9 to 2-10, 2-23
functions requiring 2-14
memory requirements for2-8 to 2-9
size determination using GraphicsBug2-8 to 2-9

graphics devices
and view devices1-7, 1-27 to 1-28

graphics ports
and the QuickDraw–to–QuickDraw GX

translator1-10

GXC

gxColorValue

 number format8-6, 8-35

GXConvertPICTToShape

 function 1-20, 1-34

GXConvertQDfont

 function 1-33

GXConvertQDPoint

 function 1-7, 1-29

I N D E X

IN-4

GXD

GXDisposeGraphicsClient

 function 2-9 to 2-10,
2-21

gxDrawError

type 4-31

GXDrawShape

 function 4-17

GXE, GXF

GXEnterGraphics function 2-5 to 2-6, 2-7, 2-17, 2-22
GXExitGraphics function 2-9 to 2-10, 2-23

GXG, GXH

GXGetGDeviceViewDevice function 1-28
GXGetGlobalMouse function 1-8, 1-30
GXGetGraphicsClient function 2-16 to 2-17, 2-24
GXGetGraphicsClients function 2-16 to 2-17, 2-25
GXGetGraphicsError function 3-56
GXGetGraphicsNotice function 3-66
GXGetGraphicsWarning function 3-60
GXGetShapeDrawError function 4-8 to 4-15, 4-33

ink drawing errors 4-12
style errors 4-11
transform drawing errors 4-13
view device drawing errors 4-15
view port drawing errors 4-14

GXGetUserGraphicsError function 3-40, 3-59
GXGetUserGraphicsNotice function 3-40, 3-69
GXGetUserGraphicsWarning function 3-40, 3-63
GXGetValidationError function 4-21 to 4-22, 4-35
GXGetValidation function 4-15, 4-35
GXGetViewDeviceGDevice function 1-7, 1-27
GXGetViewPortFilter function 1-9, 1-32
GXGetViewPortMouse function 1-9, 1-30
GXGetViewPortWindow function 1-25
GXGetWindowViewPort function 1-26
gxGraphicErrors enumeration3-42
gxGraphicNotices enumeration3-53
gxGraphicsError type 3-42
gxGraphicsNotice type 3-53
gxGraphicsWarning type 3-50
gxGraphicWarnings enumeration3-50

GXI—GXK

GXIgnoreGraphicsNotice function 3-37 to 3-40,
3-70

GXIgnoreGraphicsWarning function 3-37 to 3-40,
3-64

GXInstallQDTranslator function 1-21, 1-36

GXL, GXM

GXLoadColorProfile function 2-34
GXLoadColorSet function 2-32
GXLoadInk function 2-29
GXLoadShape function 2-13, 2-26
GXLoadStyle function 2-28
GXLoadTag function 2-35
GXLoadTransform function 2-31
gxMapping structure 8-36

GXN, GXO

GXNewGraphicsClient function 2-5 to 2-6, 2-6 to
2-8, 2-14 to 2-16, 2-17, 2-19

GXNewWindowViewPort function 1-6, 1-24

GXP—GXR

gxPolar structure 8-35
GXPopGraphicsNotice function 3-37, 3-38, 3-71
GXPopGraphicsWarning function 3-37, 3-38, 3-65
GXPostGraphicsError function 3-35, 3-57
GXPostGraphicsNotice function 3-35, 3-67
GXPostGraphicsWarning function 3-35, 3-61
GXRemoveQDTranslator function 1-21, 1-39

GXS

GXSetGraphicsClient function 2-16 to 2-17, 2-26
GXSetUserGraphicsError function 3-40, 3-58
GXSetUserGraphicsNotice function 3-40, 3-68
GXSetUserGraphicsWarning function 3-40, 3-62
GXSetValidation function 4-15, 4-16, 4-17, 4-20, 4-34
GXSetViewPortFilter function 1-9, 1-31
gxShapeSpoolFunction type 1-37

GXT

gxTranslationOptions enumeration1-23
gxTranslationOption type 1-23
gxTranslationStatistics enumeration1-24

I N D E X

IN-5

gxTranslationStatistic type 1-24

GXU

GXUnloadColorProfile function 2-35
GXUnloadColorSet function 2-33
GXUnloadInk function 2-30
GXUnloadShape function 2-13, 2-27
GXUnloadStyle function 2-29
GXUnloadTag function 2-36
GXUnloadTransform function 2-32
gxUserViewPortFilter type 1-31

GXV—GXZ

GXValidateAll function 4-20, 4-43
GXValidateColorProfile function 4-20, 4-39
GXValidateColorSet function 4-20, 4-38
GXValidateGraphicsClient function 4-21, 4-42
GXValidateInk function 4-21, 4-37
GXValidateShape function 4-21, 4-36
GXValidateStyle function 4-21, 4-36
GXValidateTag function 4-21, 4-39
GXValidateTransform function 4-21, 4-38
GXValidateViewDevice function 4-21, 4-40
GXValidateViewGroup function 4-21, 4-41
GXValidateViewPort function 4-21, 4-40
gxValidationLevel constant4-31 to 4-32

H

handlers
error 3-72, 4-5
notice 3-74, 4-5
warning 3-73, 4-5

heap. See application heap; graphics client heap
highest order bit 8-12, 8-32, 8-33 to 8-34, 8-62

I—K

identity mapping8-16, 8-34, 8-64
ignoring warnings and notices3-37
implementation limit errors 3-10
instance6-7
integer numbers

conversions of8-8
formats of8-6

interface. See Macintosh interface functions

internal errors 3-7
internal validation4-6
IntToFixed macro 8-27, 8-37
invalid data warnings3-26
inverse of a mapping8-17, 8-65
InvertMapping function 8-65

L

linear and quadratic roots 8-12, 8-60 to 8-61
LinearRoot function 8-60
live caches

defined2-11
disposing of2-11

Loading 2-26
local space

converting to, from QuickDraw1-7 to 1-8, 1-29
obtaining cursor location in1-9, 1-30

lock attribute5-9
long number format8-6

M

Macintosh environment1-3 to 1-45
Macintosh interface functions1-3, 1-6 to 1-9
macros for number conversion8-8 to 8-9, 8-26 to 8-27,

8-36 to 8-42
MacsBug4-7 to 4-8
Magnitude function 8-28, 8-45
MapMapping function 8-65
mappings8-12 to 8-26, 8-62 to 8-72

changing perspective with8-13, 8-26
concatenating8-13, 8-65
defined8-12
identity 8-16
inverse of8-17, 8-65
normalized8-16, 8-64
postmultiplication of8-13, 8-66
reflection with8-22
resetting to identity8-34, 8-64
rotation with 8-13, 8-22 to 8-23, 8-70
scaling with8-13, 8-20 to 8-22, 8-69
setting origin with8-18 to 8-19, 8-68
skewing with8-13, 8-24 to 8-25, 8-71
translation with8-13, 8-17 to 8-19, 8-67 to 8-69

MapPoints function 8-66
mathematical functions8-9 to 8-12, 8-27 to 8-34, 8-42

to 8-62
bit analysis8-12, 8-32, 8-33 to 8-34, 8-62
bit-shifting of wide numbers8-31 to 8-32

I N D E X

IN-6

fixed-point operations8-9 to 8-10, 8-27 to 8-28, 8-42
to 8-54

linear and quadratic roots 8-12, 8-60 to 8-61
operations on wide numbers8-10, 8-31 to 8-32, 8-32,

8-49 to 8-54
polar and Cartesian coordinates8-10 to 8-11, 8-29,

8-56 to 8-57
random-number generation8-11 to 8-12, 8-33, 8-58

to 8-60
. See also mathematics
vector operations8-10, 8-29 to 8-30, 8-45, 8-54 to 8-55

mathematics8-5 to 8-76
constants and data types for8-35 to 8-36
mapping operations. See mappings
mathematical functions. See mathematical functions
number-conversion macros 8-8 to 8-9, 8-26 to 8-27,

8-36 to 8-42
number formats8-5 to 8-7

matrices. See mappings
memory

low 2-10 to 2-12
memory blocks

allocating 2-4, 2-5, 2-8, 2-11 to 2-12, 2-22
deallocating2-4, 2-9 to 2-10, 2-21, 2-23

memory management2-3 to 2-39
data structures for 2-18
functions for2-18 to 2-37
loading objects2-4, 2-13
low-memory conditions, handling2-10 to 2-11
unloading objects2-4, 2-11, 2-13
unloading picture shape objects2-11
using shape attributes2-11

Memory Manager2-4
message class6-7
MessageGlobalsInitProc type 6-16
message handlers

default defined6-6
defined6-6
instance of a single6-10 to 6-12
instances of multiple6-12 to 6-15

Message Manager6-3 to 6-6
application-defined functions for6-26
constants and data types for6-16
defined6-4
functions for6-17 to 6-25
message sending and forwarding 6-7
message terminology6-6 to 6-7

message object6-6
messages

defined6-6
QuickDraw GX 6-4 to 6-6
sending and forwarding 6-15

mouse. See cursor
MoveMapping function 8-18, 8-67
MoveMappingTo function 8-19, 8-68

MultiplyDivide function 8-28, 8-44
MyInitProc application-defined function6-26
MyShapeSpooler application-defined function1-41
MyUserGraphicsError application-defined

function 3-72
MyUserGraphicsNotice application-defined

function 3-74
MyUserGraphicsWarning application defined

function 3-73
MyViewPortFilter application-defined

function 1-40

N

NewCollection function 5-54
NewMessageGlobals function 6-8 to 6-10, 6-17
non-debugging environment4-3
non-debugging version3-5 to 3-6
normalization of mappings8-16, 8-64
NormalizeMapping function 8-64
notice handler

application-defined function3-74
notice handlers4-5
notice number summary3-27
notices3-3 to 3-76, 4-5

changing3-35
constants and data types for3-53 to 3-54
defined3-3
functions for3-66 to 3-71
ignoring 3-37 to 3-40
number summary3-27
responding from application3-40

number-conversion macros 8-8 to 8-9, 8-26 to 8-27,
8-36 to 8-42

number formats8-5 to 8-7
fixed-point 8-6, 8-7
floating-point 8-6
integer 8-6

O

objects
functions for2-26 to 2-37
loading and unloading2-4, 2-11, 2-11 to 2-12
. See also collection objects

omit byte
defined7-22

omit byte mask7-99 to 7-130
defined7-23

omit byte mask and shift
bit image7-120

I N D E X

IN-7

bitmap shape7-116 to 7-119
cap style7-104 to 7-105
colors 7-108 to 7-109
dash style7-99, 7-101, 7-103
face layer7-106 to 7-108
glyph shape7-122 to 7-124
join style 7-103 to 7-104
layout shape7-125 to 7-129
path shape7-115
pattern style7-101, 7-102, 7-103
picture parameters7-130
picture shape7-129
text face style7-105 to 7-106
text shape7-121 to 7-122
transfer7-110 to 7-112
transfer component7-112 to 7-114

omit byte shifts7-23, 7-99 to 7-130
opcodes7-91 to 7-99
optional return value constants

for Collection Manager functions5-49
origin, setting with a mapping8-18 to 8-19, 8-68
overflow warnings3-11

P

parameter out of range warnings3-12
partial message override6-6
patterns

QuickDraw, translated to shape fill1-16 to 1-17
PDD. See portable digital documents
persistence attribute5-9
perspective operations

with a mapping8-13, 8-26
picComment . See picture comments
PICT data. See QuickDraw pictures
picture comments

translating to QuickDraw GX1-17 to 1-19
pictures. See QuickDraw pictures
PointToPolar function 8-29, 8-57
polar and Cartesian coordinates8-10 to 8-11, 8-29, 8-56

to 8-57
PolarToPoint function 8-29, 8-56
portable digital document7-53

defined7-53
postmultiplication of mappings8-13, 8-66
print files 7-51 to 7-52

defined7-51
obtaining data from 7-89 to 7-90
QuickDraw picture data in7-53

printing
with QuickDraw GX 6-4 to 6-6
with the Macintosh Printing Manager6-4

programming environment

and Gestalt 1-4 to 1-5, 1-22 to 1-23
public validation4-6
PurgeCollection function 5-67
PurgeCollectionTag function 5-68

Q

quadratic and linear roots 8-12, 8-60 to 8-61
QuadraticRoot function 8-61
QuickDraw 4-5

converting coordinates from 1-7 to 1-9, 1-28 to ??
QuickDraw GX

debugging version3-3, 3-13
determining version and attributes of1-4 to 1-5,

1-22 to 1-23
non-debugging version3-3, 3-4, 3-5 to ??

QuickDraw GX cache
defined2-11
disposing of2-11 to 2-12

QuickDraw pictures
translating to QuickDraw GX1-20, 1-34 to 1-36

QuickDraw–to–QuickDraw GX translator1-4, 1-10 to
1-22

application-defined function for1-21 to 1-22, 1-41 to
1-42

functions using1-33 to 1-38
graphics port and view port relationship1-10
installing and removing 1-21
QuickDraw fill patterns and1-16 to 1-17
QuickDraw picture comments and1-17 to 1-19
scaling with1-11
statistics for1-20, 1-24
translation options1-11 to 1-16, 1-23

list of 1-11 to 1-13
use of, for drawing lines1-14 to 1-16

using, to intercept drawing calls1-21 to 1-22, 1-36 to
1-39

using, to translate QuickDraw picture data1-20,
1-34 to 1-36

R

RandomBits function 8-58
random-number generation8-11 to 8-12, 8-33, 8-58 to

8-60
recoverable errors 3-7
reflection transformations8-22
RemoveCollectionItem function 5-65
RemoveIndexedCollectionItem function 5-66
ReplaceIndexedCollectionItem function 5-63

I N D E X

IN-8

ReplaceIndexedCollectionItemHdl
function 5-93

ResetMapping function 8-34, 8-64
resource types

'cltn' 5-41, 5-44, 5-102
'gasz' 2-6, 2-20

resource types 'gasz' 2-5 to 2-6
restricted access errors 3-16
result out of range warnings3-11
RotateMapping function 8-22, 8-34, 8-70
rotation operations

with a mapping8-13, 8-22 to 8-23, 8-70

S

ScaleMapping function 8-21, 8-69
scaling operations

reflection 8-22
with a mapping8-13, 8-20 to 8-22, 8-69
with the QuickDraw–to–QuickDraw GX

translator1-11
SendMessage function 6-15 to 6-16, 6-23
SetCollectionDefaultAttributes function 5-61
SetCollectionExceptionProc function 5-59
SetCollectionItemInfo function 5-82
SetIndexedCollectionItemInfo function 5-84
SetMessageHandlerClassContext function 6-12

to 6-15, 6-21
SetMessageHandlerInstanceContext

function 6-10 to 6-12, 6-19
SetRandomSeed function 8-33, 8-59
shape-spooling callback function for translator1-21 to

1-22
short number format8-6
skewing operations

with a mapping8-13, 8-24 to 8-25, 8-71
SkewMapping function 8-24, 8-71
specific object validation4-7
storage warnings3-13
stream data types7-7
stream format7-5 to 7-53

analyzing a flattened bitmap shape7-81
analyzing a flattened curve shape7-67 to 7-68
analyzing a flattened line shape7-60 to 7-63
analyzing a flattened path shape7-69 to 7-71
analyzing a flattened polygon shape7-79 to 7-81
analyzing a flattened rectangle shape7-64 to 7-66
analyzing a flattened text shape7-72 to 7-78
data type opcode byte7-13 to 7-14
header7-27 to 7-28
omit byte 7-22
operation opcode byte7-10
print files 7-51 to 7-52

stream format opcodes
bit image compression7-98
data type7-91, 7-92
ink data 7-96
modified color profile data7-97
modified color set data7-96
modified shape data7-93
modified style data7-94
modified transform data7-98
operation7-92

structure validation4-7

T

tag list position5-11
threads package2-17
translation operations

with a mapping8-13, 8-17 to 8-19, 8-67 to 8-69
translator. See QuickDraw–to–QuickDraw GX

translator
type validation4-7

U

underflow warnings3-11
unexpected result warnings3-13
UnflattenCollectionFromHdl function 5-98
UnflattenCollection function 5-90
unflattened

defined7-5
user attributes

of collection objects5-9
utility

GraphicsBug4-7 to 4-8
MacsBug4-7 to 4-8

V

validation
all object 4-7, 4-20 to 4-21, 4-43
controlling 4-15 to 4-20
distinguishing public and internal errors 4-22
error analysis4-21 to 4-22
functions 4-15 to 4-22, 4-34 to 4-43
internal 4-6, 4-15 to 4-20
internal cache4-15 to 4-20
level 4-31 to 4-32
public 4-6, 4-15 to 4-20
specific object4-7, 4-36 to 4-42

I N D E X

IN-9

structure 4-7, 4-15 to 4-20
type 4-15 to 4-20

validation errors 3-18
validation functions4-6 to 4-7, 4-15 to 4-22, 4-34 to 4-43
variable-length data

determining size of5-22
of collection objects5-9
retrieving from a collection item5-33, 5-71, 5-94

VectorMultiplyDivide function 8-55
VectorMultiply function 8-29, 8-54
vector operations8-10, 8-29 to 8-30, 8-45, 8-54 to 8-55
version

debugging3-13
non-debugging3-5 to 3-6

version number of Message Manager6-8
version numbers of QuickDraw GX1-4 to 1-5, 1-22 to

1-23
view device objects

and graphics devices1-7, 1-27 to 1-28
view port objects

and windows1-6, 1-24 to 1-27
installing a drawing filter in1-9, 1-31 to 1-33, 1-40 to

1-41

W, X, Y, Z

warning handler
application-defined function3-73

warning handlers4-5
warning number summary3-10, 3-25
warnings3-3 to 3-76, 4-5

changing3-35
constants and data types for3-50 to 3-52
defined3-3
font scaler3-12
functions for3-60 to 3-65
ignoring 3-37 to 3-40
invalid data3-26
number summary3-10, 3-25
overflow 3-11
parameter out of range3-12
result out of range3-11
storage3-13
underflow 3-11
unexpected result 3-13

WideAdd function 8-49
WideCompare function 8-54
WideDivide function 8-31, 8-52
WideMultiply function 8-31, 8-51
WideNegate function 8-50
wide number format8-7

assigning values to8-7
operations on8-10, 8-31 to 8-32, 8-32, 8-49 to 8-54

WideScale function 8-32, 8-53
WideShift function 8-31, 8-51
WideSquareRoot function 8-53
wide structure 8-35
WideSubtract function 8-50
WideWideDivide function 8-52
windows

and view ports1-6, 1-24 to 1-27
wrong type errors 3-17

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator

™

 and
Adobe Photoshop

™

. PostScript

™

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

®

 and display type is
Helvetica

®

. Bullets are ITC Zapf
Dingbats

®

. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Richard Pettijohn, Marq Laube,
David Bice, Joanna Bujes

DEVELOPMENTAL EDITORS

Sue Factor, John Hammett

ILLUSTRATORS

Ruth Anderson, Barbara Carey,
Sandee Karr, Mai-Ly Pham

PRODUCTION EDITORS

Pat Christenson, Alan Morgenegg

PROJECT MANAGER

Trish Eastman

LEAD WRITER

David Bice

LEAD EDITOR

Laurel Rezeau

ART DIRECTOR/COVER DESIGNER

Barbara Smyth

Special thanks to Pete “Luke” Alexander,
Cary Clark, Pable Fernicola, Dave Good,
Dave Hersey, Rob Johnson

Acknowledgments to Tom Dowdy,
Ken Hittleman, Miki Lee, Chris Yerga

