

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

ð

I N S I D E M A C I N T O S H

Memory

 Apple Computer, Inc.

© 1992, Apple Computer, Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA,
AppleShare, A/UX, LaserWriter,
Macintosh, MPW, and MultiFinder
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

Finder, PowerBook, and
QuickDraw are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.

AGFA is a trademark of
Agfa-Gevaert.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA

AND REPLACEMENT

ALL IMPLIED WARRANTIES ON

THIS MANUAL, INCLUDING

IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE, ARE

LIMITED IN DURATION TO

NINETY (90) DAYS FROM THE DATE

OF THE ORIGINAL RETAIL

PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this

manual, APPLE MAKES NO

WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED,

WITH RESPECT TO THIS MANUAL,

ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. AS

A RESULT, THIS MANUAL IS SOLD

“AS IS,” AND YOU, THE

PURCHASER, ARE ASSUMING THE

ENTIRE RISK AS TO ITS QUALITY

AND ACCURACY.

IN NO EVENT WILL APPLE BE

LIABLE FOR DIRECT, INDIRECT,

SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES

RESULTING FROM ANY DEFECT

OR INACCURACY IN THIS

MANUAL, even if advised of the

possibility of such damages.

THE WARRANTY AND REMEDIES

SET FORTH ABOVE ARE

EXCLUSIVE AND IN LIEU OF ALL

OTHERS, ORAL OR WRITTEN,

EXPRESS OR IMPLIED. No Apple

dealer, agent, or employee is

authorized to make any modification,

extension, or addition to this warranty.

Some states do not allow the exclusion

or limitation of implied warranties or

liability for incidental or

consequential damages, so the above

limitation or exclusion may not apply

to you. This warranty gives you

specific legal rights, and you may also

have other rights which vary from

state to state.

ISBN 0-201-63240-3
1 2 3 4 5 6 7 8 9-MU-9695949392
First Printing, August 1992

iii

Contents

Figures, Tables, and Listings ix

Preface

About This Book

xi

Format of a Typical Chapter xii

Conventions Used in This Book xii

Special Fonts xii

Types of Notes xiii

Assembly-Language Information xiii

Development Environment xiv

Chapter 1

Introduction to Memory Management

1-1

About Memory 1-4

Organization of Memory by the Operating System 1-4

The System Heap 1-6

The System Global Variables 1-6

Organization of Memory in an Application Partition 1-7

The Application Stack 1-8

The Application Heap 1-9

The Application Global Variables and A5 World 1-12

Temporary Memory 1-13

Virtual Memory 1-15

Addressing Modes 1-15

Heap Management 1-16

Relocatable and Nonrelocatable Blocks 1-16

Properties of Relocatable Blocks 1-20

Locking and Unlocking Relocatable Blocks 1-20

Purging and Reallocating Relocatable Blocks 1-21

Memory Reservation 1-22

Heap Purging and Compaction 1-23

Heap Fragmentation 1-24

Deallocating Nonrelocatable Blocks 1-25

Reserving Memory 1-25

Locking Relocatable Blocks 1-26

Allocating Nonrelocatable Blocks 1-27

Summary of Preventing Fragmentation 1-28

Dangling Pointers 1-29

Compiler Dereferencing 1-29

Loading Code Segments 1-31

Callback Routines 1-32

iv

Invalid Handles 1-33

Disposed Handles 1-33

Empty Handles 1-34

Fake Handles 1-35

Low-Memory Conditions 1-36

Memory Cushions 1-36

Memory Reserves 1-37

Grow-Zone Functions 1-38

Using Memory 1-38

Setting Up the Application Heap 1-38

Changing the Size of the Stack 1-39

Expanding the Heap 1-40

Allocating Master Pointer Blocks 1-41

Determining the Amount of Free Memory 1-42

Allocating Blocks of Memory 1-44

Maintaining a Memory Reserve 1-46

Defining a Grow-Zone Function 1-48

Memory Management Reference 1-50

Memory Management Routines 1-50

Setting Up the Application Heap 1-50

Allocating and Releasing Relocatable Blocks of Memory 1-54

Allocating and Releasing Nonrelocatable Blocks of Memory 1-58

Setting the Properties of Relocatable Blocks 1-60

Managing Relocatable Blocks 1-67

Manipulating Blocks of Memory 1-73

Assessing Memory Conditions 1-75

Grow-Zone Operations 1-77

Setting and Restoring the A5 Register 1-78

Application-Defined Routines 1-80

Grow-Zone Functions 1-80

Summary of Memory Management 1-82

Pascal Summary 1-82

Data Types 1-82

Memory Management Routines 1-82

Application-Defined Routines 1-83

C Summary 1-84

Data Types 1-84

Memory Management Routines 1-84

Application-Defined Routines 1-85

Assembly-Language Summary 1-86

Global Variables 1-86

Result Codes 1-86

v

Chapter 2

Memory Manager

2-1

About the Memory Manager 2-3

Temporary Memory 2-4

Multiple Heap Zones 2-5

The System Global Variables 2-6

Using the Memory Manager 2-7

Reading and Writing System Global Variables 2-8

Extending an Application’s Memory 2-9

Allocating Temporary Memory 2-10

Determining the Features of Temporary Memory 2-11

Using the System Heap 2-12

Allocating Memory at Startup Time 2-13

Creating Heap Zones 2-14

Installing a Purge-Warning Procedure 2-16

Organization of Memory 2-19

Heap Zones 2-19

Block Headers 2-22

Memory Manager Reference 2-24

Data Types 2-24

Memory Manager Routines 2-26

Setting Up the Application Heap 2-27

Allocating and Releasing Relocatable Blocks of Memory 2-29

Allocating and Releasing Nonrelocatable Blocks of Memory 2-35

Changing the Sizes of Relocatable and Nonrelocatable Blocks 2-39

Setting the Properties of Relocatable Blocks 2-43

Managing Relocatable Blocks 2-51

Manipulating Blocks of Memory 2-59

Assessing Memory Conditions 2-66

Freeing Memory 2-71

Grow-Zone Operations 2-76

Allocating Temporary Memory 2-77

Accessing Heap Zones 2-80

Manipulating Heap Zones 2-83

Application-Defined Routines 2-89

Grow-Zone Functions 2-89

Purge-Warning Procedures 2-90

Summary of the Memory Manager 2-93

Pascal Summary 2-93

Constants 2-93

Data Types 2-93

Memory Manager Routines 2-94

Application-Defined Routines 2-97

C Summary 2-97

Constants 2-97

Data Types 2-97

Memory Manager Routines 2-98

vi

Application-Defined Routines 2-101

Assembly-Language Summary 2-101

Constants 2-101

Data Structures 2-102

Trap Macros 2-102

Global Variables 2-104

Result Codes 2-105

Chapter 3

Virtual Memory Manager

3-1

About the Virtual Memory Manager 3-3

Virtual Memory 3-4

The Logical Address Space 3-5

24-Bit Addressing 3-5

32-Bit Addressing 3-7

The Physical Address Space 3-9

Page Faults 3-11

Using the Virtual Memory Manager 3-13

Obtaining Information About Virtual Memory 3-14

Holding and Releasing Memory 3-14

Locking and Unlocking Memory 3-15

Mapping Logical to Physical Addresses 3-16

Deferring User Interrupt Handling 3-20

Virtual Memory and Debuggers 3-21

Bus-Error Vectors 3-22

Special Nonmaskable Interrupt Needs 3-22

Supervisor Mode 3-23

The Debugging State 3-23

Keyboard Input 3-23

Page States 3-24

Virtual Memory Manager Reference 3-24

Data Structures 3-24

Memory-Block Record 3-24

Translation Table 3-25

Routines 3-25

Virtual Memory Management 3-25

Virtual Memory Debugger Support Routines 3-34

Summary of the Virtual Memory Manager 3-41

Pascal Summary 3-41

Constants 3-41

Data Types 3-41

Routines 3-42

vii

C Summary 3-42

Constants 3-42

Data Types 3-43

Routines 3-43

Assembly-Language Summary 3-44

Data Types 3-44

Trap Macros 3-44

Result Codes 3-45

Chapter 4

Memory Management Utilities

4-1

The Memory Control Panel 4-3

About the Memory Management Utilities 4-5

The A5 Register 4-5

Addressing Modes 4-7

Address Translation 4-8

Processor Caches 4-8

Stale Instructions 4-9

Stale Data 4-10

Using the Memory Management Utilities 4-13

Accessing the A5 World in Completion Routines 4-14

Accessing the A5 World in Interrupt Tasks 4-16

Using QuickDraw Global Variables in Stand-Alone Code 4-18

Switching Addressing Modes 4-20

Stripping Flag Bits From Memory Addresses 4-21

Translating Memory Addresses 4-23

Memory Management Utilities Reference 4-24

Routines 4-24

Setting and Restoring the A5 Register 4-24

Changing the Addressing Mode 4-26

Manipulating Memory Addresses 4-27

Manipulating the Processor Caches 4-29

Summary of the Memory Management Utilities 4-34

Pascal Summary 4-34

Constants 4-34

Routines 4-34

C Summary 4-35

Constants 4-35

Routines 4-35

Assembly-Language Summary 4-36

Trap Macros 4-36

Global Variables 4-36

Result Codes 4-36

viii

Glossary

GL-1

Index

IN-1

ix

Figures, Tables, and Listings

Preface

About This Book

xi

Chapter 1

Introduction to Memory Management

1-1

Figure 1-1

Memory organization with several applications open 1-5

Figure 1-2

Organization of an application partition 1-7

Figure 1-3

The application stack 1-9

Figure 1-4

A fragmented heap 1-10

Figure 1-5

A compacted heap 1-11

Figure 1-6

Organization of an application’s A5 world 1-12

Figure 1-7

Using temporary memory allocated from unused RAM 1-14

Figure 1-8

A pointer to a nonrelocatable block 1-17

Figure 1-9

A handle to a relocatable block 1-19

Figure 1-10

Purging and reallocating a relocatable block 1-22

Figure 1-11

Allocating a nonrelocatable block 1-23

Figure 1-12

An effectively partitioned heap 1-26

Listing 1-1

Locking a block to avoid dangling pointers 1-30

Listing 1-2

Creating a fake handle 1-35

Listing 1-3

Increasing the amount of space allocated for the stack 1-40

Listing 1-4

Setting up your application heap and stack 1-42

Listing 1-5

Determining whether allocating memory would deplete the memory
cushion 1-43

Listing 1-6

Allocating relocatable blocks 1-44

Listing 1-7

Allocating nonrelocatable blocks 1-45

Listing 1-8

Allocating a dialog record 1-45

Listing 1-9

Creating an emergency memory reserve 1-46

Listing 1-10

Checking the emergency memory reserve 1-47

Listing 1-11

Determining whether allocating memory would deplete the memory
cushion 1-47

Listing 1-12

Reallocating the emergency memory reserve 1-48

Listing 1-13

A grow-zone function that releases emergency storage 1-49

Chapter 2

Memory Manager

2-1

Listing 2-1

Reading the value of a system global variable 2-8

Listing 2-2

Changing the value of a system global variable 2-9

Listing 2-3

Determining whether temporary-memory routines are
available 2-12

Listing 2-4

Calling a procedure by address 2-13

Listing 2-5

Creating a subzone of the original application heap zone 2-15

Listing 2-6

A purge-warning procedure 2-17

Listing 2-7

Installing a purge-warning procedure 2-18

Listing 2-8

A purge-warning procedure that calls the Resource Manager’s
procedure 2-19

x

Figure 2-1

A block header in a 24-bit zone 2-22

Figure 2-2

A block header in a 32-bit zone 2-23

Chapter 3

Virtual Memory Manager

3-1

Figure 3-1

24-bit Memory Manager logical address space 3-6

Figure 3-2

32-bit Memory Manager logical address space 3-8

Figure 3-3

The physical address space on a Macintosh IIci with 8 MB of
RAM 3-10

Listing 3-1

Translating logical to physical addresses 3-19

Chapter 4

Memory Management Utilities

4-1

Figure 4-1

The Memory control panel 4-4

Table 4-1

Caches available in MC680x0 microprocessors 4-9

Figure 4-2

Initializing a status code 4-11

Figure 4-3

Reading stale data 4-12

Figure 4-4

Reading invalid instructions 4-13

Listing 4-1

A sample grow-zone function 4-15

Listing 4-2

Passing A5 to a notification response procedure 4-16

Listing 4-3

Setting up and restoring the A5 register at interrupt time 4-17

Listing 4-4

Structure of the QuickDraw global variables 4-18

Listing 4-5

Copying the QuickDraw global variables into a record 4-19

Listing 4-6

A control’s draw routine using the calling application’s QuickDraw
patterns 4-19

Listing 4-7

Stripping the program counter 4-21

Listing 4-8

Stripping addresses in time-critical code 4-23

Listing 4-9

Calculating the

StripAddress

 mask 4-23

Listing 4-10

Translating 24-bit to 32-bit addresses 4-24

xi

P R E F A C E

About This Book

This book,

Inside Macintosh: Memory,

 describes the parts of the Macintosh

Operating System that allow you to allocate memory directly, release it, or

otherwise manipulate it. The book includes introductory material about

managing memory on Macintosh computers as well as a complete technical

reference to the Memory Manager, the Virtual Memory Manager, and other

memory-related services provided by the system software.

If you are new to programming on the Macintosh Operating System, you

should begin with the chapter “Introduction to Memory Management.” This

chapter provides a general introduction to memory management on

Macintosh computers. It describes how the Operating System organizes and

manages the available memory, and it shows how you can use the services

provided by the Memory Manager and other system software components to

manage the memory in your application partition effectively. Because this

chapter is designed to be largely self-contained, the reference and summary

sections in this chapter are subsets of the corresponding sections from the

other chapters in this book.

Once you are familiar with basic memory management on Macintosh

computers, you should look at the chapter “Memory Manager.” It describes

how to allocate memory outside your application partition and how to

perform more advanced memory operations than are described in the

introductory chapter.

The chapter “Virtual Memory Manager” describes the operation of virtual

memory and describes the routines that you can use to intervene in the

otherwise automatic operations of the Virtual Memory Manager. Most

applications are not affected by the operation of virtual memory and do not

need to use the routines provided by the Virtual Memory Manager. If your

application sends memory addresses to some NuBus

™

 master hardware,

however, you should read the discussion of mapping virtual to physical

addresses in that chapter.

The final chapter in this book, “Memory Management Utilities,” describes a

number of utility routines provided by the system software. You need to read

this chapter primarily if you install routines that are executed by system

software routines or in response to an interrupt, or if you need to change

the addressing mode. You also need to read this chapter if your application

might be affected by the normal operation of the processor’s instruction or

data caches.

xii

P R E F A C E

Format of a Typical Chapter 0

Almost all chapters in this book follow a standard structure. For example, the

Memory Manager chapter contains these sections:

■

“About the Memory Manager.” This section provides an overview of the
features provided by the Memory Manager.

■

“Using the Memory Manager.” This section describes the tasks you can
accomplish using the Memory Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

■

“Memory Manager Reference.” This section provides a complete reference
to the Memory Manager by describing the data structures, routines, and
resources that it uses. Each routine description also follows a standard
format, which gives the routine declaration and description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or
result codes.

■

“Summary of the Memory Manager.” This section provides the Memory
Manager’s Pascal interface, as well as the C interface, for the constants,
data structures, routines, and result codes associated with the Memory
Manager. It also includes relevant assembly-language interface information.

Some chapters also contain additional main sections that provide more

detailed discussions of certain topics. For example, the Memory Manager

chapter contains the section “Organization of Memory” that describes how

the Memory Manager organizes zones and blocks in RAM.

Conventions Used in This Book 0

Inside Macintosh

 uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, use special formats so that you can

scan them quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (

this
is Courier

).

Words that appear in

boldface

 are key terms or concepts and are defined in

the Glossary.

xiii

P R E F A C E

Types of Notes 0

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-8.)

◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-7.)

▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 1-16.)

▲

Assembly-Language Information 0

Inside Macintosh

 provides information about the registers for specific routines

like this:

In addition,

Inside Macintosh

 presents information about the fields of a

parameter block in this format:

Parameter block

The arrow in the far left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The routine returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal

interface files; the third column indicates the Pascal data type of that field.

The fourth column provides a brief description of the use of the field. For a

complete description of each field, see the discussion that follows the

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

↔

inAndOut Integer

Input/output parameter.

←

output1 Ptr

Output parameter.

→

input1 Ptr

Input parameter.

xiv

P R E F A C E

parameter block or the description of the parameter block in the reference

section of the chapter.

Development Environment 0

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. This book shows

system software routines in their Pascal interface using the Macintosh

Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of

using various routines and illustrate techniques for accomplishing particular

tasks. All code listings have been compiled and, in most cases, tested.

However, Apple Computer does not intend that you use these code samples

in your application.

APDA, Apple’s source for developer tools, offers worldwide access to a broad

range of programming products, resources, and information for anyone

developing on Apple platforms. You’ll find the most current versions of

Apple and third-party development tools, debuggers, compilers, languages,

and technical references for all Apple platforms. To establish an APDA

account, obtain additional ordering information, or find out about site

licensing and developer training programs, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G

Cupertino, CA 95014-6299

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
800-562-3910 (elsewhere in the world)

Fax: 408-562-3971

Telex: 171-576

Contents

1-1

C H A P T E R 1

1

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to Memory

Contents

Management

About Memory 1-4

Organization of Memory by the Operating System 1-4

The System Heap 1-6

The System Global Variables 1-6

Organization of Memory in an Application Partition 1-7

The Application Stack 1-8

The Application Heap 1-9

The Application Global Variables and A5 World 1-12

Temporary Memory 1-13

Virtual Memory 1-15

Addressing Modes 1-15

Heap Management 1-16

Relocatable and Nonrelocatable Blocks 1-16

Properties of Relocatable Blocks 1-20

Locking and Unlocking Relocatable Blocks 1-20

Purging and Reallocating Relocatable Blocks 1-21

Memory Reservation 1-22

Heap Purging and Compaction 1-23

Heap Fragmentation 1-24

Deallocating Nonrelocatable Blocks 1-25

Reserving Memory 1-25

Locking Relocatable Blocks 1-26

Allocating Nonrelocatable Blocks 1-27

Summary of Preventing Fragmentation 1-28

Dangling Pointers 1-29

Compiler Dereferencing 1-29

Loading Code Segments 1-31

C H A P T E R 1

1-2

Contents

Callback Routines 1-32

Invalid Handles 1-33

Disposed Handles 1-33

Empty Handles 1-34

Fake Handles 1-35

Low-Memory Conditions 1-36

Memory Cushions 1-36

Memory Reserves 1-37

Grow-Zone Functions 1-38

Using Memory 1-38

Setting Up the Application Heap 1-38

Changing the Size of the Stack 1-39

Expanding the Heap 1-40

Allocating Master Pointer Blocks 1-41

Determining the Amount of Free Memory 1-42

Allocating Blocks of Memory 1-44

Maintaining a Memory Reserve 1-46

Defining a Grow-Zone Function 1-48

Memory Management Reference 1-50

Memory Management Routines 1-50

Setting Up the Application Heap 1-50

Allocating and Releasing Relocatable Blocks of Memory 1-54

Allocating and Releasing Nonrelocatable Blocks of Memory 1-58

Setting the Properties of Relocatable Blocks 1-60

Managing Relocatable Blocks 1-67

Manipulating Blocks of Memory 1-73

Assessing Memory Conditions 1-75

Grow-Zone Operations 1-77

Setting and Restoring the A5 Register 1-78

Application-Defined Routines 1-80

Grow-Zone Functions 1-80

Summary of Memory Management 1-82

Pascal Summary 1-82

Data Types 1-82

Memory Management Routines 1-82

Application-Defined Routines 1-83

C Summary 1-84

Data Types 1-84

Memory Management Routines 1-84

Application-Defined Routines 1-85

Assembly-Language Summary 1-86

Global Variables 1-86

Result Codes 1-86

C H A P T E R 1

1-3

1

Introduction to M
em

ory M
anagem

ent

Introduction to Memory Management 1

This chapter is a general introduction to memory management on Macintosh computers.

It describes how the Operating System organizes and manages the available memory,

and it shows how you can use the services provided by the Memory Manager and other

system software components to manage the memory in your application partition

effectively.

You should read this chapter if your application or other software allocates memory

dynamically during its execution. This chapter describes how to

■

set up your application partition at launch time

■

determine the amount of free memory in your application heap

■

allocate and dispose of blocks of memory in your application heap

■

minimize fragmentation in your application heap caused by blocks of memory that
cannot move

■

implement a scheme to avoid low-memory conditions

You should be able to accomplish most of your application’s memory allocation and

management by following the instructions given in this chapter. If, however, your

application needs to allocate memory outside its own partition (for instance, in the

system heap), you need to read the chapter “Memory Manager” in this book. If your

application has timing-critical requirements or installs procedures that execute at

interrupt time, you need to read the chapter “Virtual Memory Manager” in this book. If

your application’s executable code is divided into multiple segments, you might also

want to look at the chapter “Segment Manager” in

Inside Macintosh: Processes

 for

guidelines on how to divide your code into segments. If your application uses resources,

you need to read the chapter “Resource Manager” in

Inside Macintosh: More Macintosh

Toolbox

 for information on managing memory allocated to resources.

This chapter begins with a description of how the Macintosh Operating System

organizes the available physical random-access memory (RAM) in a Macintosh

computer and how it allocates memory to open applications. Then this chapter describes

in detail how the Memory Manager allocates blocks of memory in your application’s

heap and how to use the routines provided by the Memory Manager to perform the

memory-management tasks listed above.

This chapter ends with descriptions of the routines used to perform these tasks. The

“Memory Management Reference” and “Summary of Memory Management” sections

in this chapter are subsets of the corresponding sections in the remaining chapters in

this book.

C H A P T E R 1

Introduction to Memory Management

1-4

About Memory

About Memory 1

A Macintosh computer’s available RAM is used by the Operating System, applications,

and other software components, such as device drivers and system extensions. This

section describes both the general organization of memory by the Operating System

and the organization of the memory partition allocated to your application when

it is launched. This section also provides a preliminary description of three related

memory topics:

■

temporary memory

■

virtual memory

■

24- and 32-bit addressing

For more complete information on these three topics, you need to read the remaining

chapters in this book.

Organization of Memory by the Operating System 1

When the Macintosh Operating System starts up, it divides the available RAM into two

broad sections. It reserves for itself a zone or

partition

 of memory known as the

system

partition.

 The system partition always begins at the lowest addressable byte of memory

(memory address 0) and extends upward. The system partition contains a system heap

and a set of global variables, described in the next two sections.

All memory outside the system partition is available for allocation to applications or

other software components. In system software version 7.0 and later (or when

MultiFinder is running in system software versions 5.0 and 6.0), the user can have

multiple applications open at once. When an application is launched, the Operating

System assigns it a section of memory known as its

 application partition.

 In general, an

application uses only the memory contained in its own application partition.

Figure 1-1 illustrates the organization of memory when several applications are open at

the same time. The system partition occupies the lowest position in memory. Application

partitions occupy part of the remaining space. Note that application partitions are

loaded into the top part of memory first.

C H A P T E R 1

Introduction to Memory Management

About Memory

1-5

1

Introduction to M
em

ory M
anagem

ent

Figure 1-1

Memory organization with several applications open

In Figure 1-1, three applications are open, each with its own application partition. The

application labeled Application 1 is the active application. (The labels on the right side of

the figure are system global variables, explained in “The System Global Variables” on

page 1-6.)

High memory

System
partition

BufPtr

Low memory

ApplZone

ApplLimit

CurrentA5

System heap

System global variables

Heap

A5 world

Stack

Application 3
partition

Application 2
partition

Heap

A5 world
Stack

Application 1
partition

Stack

Heap

A5 world

Used Area

Unused area

C H A P T E R 1

Introduction to Memory Management

1-6

About Memory

The System Heap 1

The main part of the system partition is an area of memory known as the

system heap.

In general, the system heap is reserved for exclusive use by the Operating System and

other system software components, which load into it various items such as system

resources, system code segments, and system data structures. All system buffers and

queues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific

applications, such as code resources that add features to the Operating System or that

provide control of special-purpose peripheral equipment. System patches and system

extensions (stored as code resources of type

'INIT'

) are loaded into the system heap

during the system startup process. Hardware device drivers (stored as code resources of

type

'DRVR'

) are loaded into the system heap when the driver is opened.

Most applications don’t need to load anything into the system heap. In certain cases,

however, you might need to load resources or code segments into the system heap. For

example, if you want a vertical retrace task to continue to execute even when your

application is in the background, you need to load the task and any data associated with

it into the system heap. Otherwise, the Vertical Retrace Manager ignores the task when

your application is in the background.

The System Global Variables 1

The lowest part of memory is occupied by a collection of global variables called

system

global variables

 (or

 low-memory

system global variables

). The Operating System uses

these variables to maintain different kinds of information about the operating

environment. For example, the

Ticks

 global variable contains the number of ticks

(sixtieths of a second) that have elapsed since the system was most recently started up.

Similar variables contain, for example, the height of the menu bar (

MBarHeight

) and

pointers to the heads of various operating-system queues (

DTQueue

,

FSQHdr

,

VBLQueue

, and so forth). Most low-memory global variables are of this variety: they

contain information that is generally useful only to the Operating System or other

system software components.

Other low-memory global variables contain information about the current application.

For example, the

ApplZone

 global variable contains the address of the first byte

of the active application’s partition. The

ApplLimit

 global variable contains the

address of the last byte the active application’s heap can expand to include. The

CurrentA5

 global variable contains the address of the boundary between the active

application’s global variables and its application parameters. Because these global

variables contain information about the active application, the Operating System

changes the values of these variables whenever a context switch occurs.

In general, it is best to avoid reading or writing low-memory system global variables.

Most of these variables are undocumented, and the results of changing their values can

be unpredictable. Usually, when the value of a low-memory global variable is likely to be

useful to applications, the system software provides a routine that you can use to read or

write that value. For example, you can get the current value of the

Ticks

 global variable

by calling the

TickCount

 function.

C H A P T E R 1

Introduction to Memory Management

About Memory

1-7

1

Introduction to M
em

ory M
anagem

ent

In rare instances, there is no routine that reads or writes the value of a documented

global variable. In those cases, you might need to read or write that value directly. See

the chapter “Memory Manager” in this book for instructions on reading and writing the

values of low-memory global variables from a high-level language.

Organization of Memory in an Application Partition 1

When your application is launched, the Operating System allocates for it a partition of

memory called its

application partition.

 That partition contains required segments of the

application’s code as well as other data associated with the application. Figure 1-2

illustrates the general organization of an application partition.

Figure 1-2

Organization of an application partition

Your application partition is divided into three major parts:

■

the application stack

■

the application heap

■

the application global variables and A5 world

A5 world

ApplZone

ApplLimit

CurStackBase
CurrentA5

Stack

High memory

Heap

Low memory

Used Area

Unused area

C H A P T E R 1

Introduction to Memory Management

1-8

About Memory

The heap is located at the low-memory end of your application partition and always

expands (when necessary) toward high memory. The A5 world is located at the

high-memory end of your application partition and is of fixed size. The stack begins

at the low-memory end of the A5 world and expands downward, toward the top of

the heap.

As you can see in Figure 1-2, there is usually an unused area of memory between the

stack and the heap. This unused area provides space for the stack to grow without

encroaching upon the space assigned to the application heap. In some cases, however,

the stack might grow into space reserved for the application heap. If this happens, it is

very likely that data in the heap will become corrupted.

The

ApplLimit

 global variable marks the upper limit to which your heap can grow. If

you call the

MaxApplZone

 procedure at the beginning of your program, the heap

immediately extends all the way up to this limit. If you were to use all of the heap’s free

space, the Memory Manager would not allow you to allocate additional blocks above

ApplLimit

. If you do not call

MaxApplZone

, the heap grows toward

ApplLimit

whenever the Memory Manager finds that there is not enough memory in the heap to fill

a request. However, once the heap grows up to

ApplLimit

, it can grow no further.

Thus, whether you maximize your application heap or not, you can use only the space

between the bottom of the heap and

ApplLimit

.

Unlike the heap, the stack is not bounded by

ApplLimit

. If your application uses

heavily nested procedures with many local variables or uses extensive recursion, the

stack could grow downward beyond

ApplLimit

. Because you do not use Memory

Manager routines to allocate memory on the stack, the Memory Manager cannot stop

your stack from growing beyond

ApplLimit

 and possibly encroaching upon space

reserved for the heap. However, a vertical retrace task checks approximately 60 times

each second to see if the stack has moved into the heap. If it has, the task, known as the

“stack sniffer,” generates a system error. This system error alerts you that you have

allowed the stack to grow too far, so that you can make adjustments. See “Changing the

Size of the Stack” on page 1-39 for instructions on how to change the size of your

application stack.

Note

To ensure during debugging that your application generates this system
error if the stack extends beyond

ApplLimit

, you should call

MaxApplZone

 at the beginning of your program to expand the heap to

ApplLimit

. For more information on expanding the heap, see “Setting
Up the Application Heap” beginning on page 1-38.

◆

The Application Stack 1

The

stack

 is an area of memory in your application partition that can grow or shrink at

one end while the other end remains fixed. This means that space on the stack is always

allocated and released in LIFO (last-in, first-out) order. The last item allocated is always

the first to be released. It also means that the allocated area of the stack is always

contiguous. Space is released only at the top of the stack, never in the middle, so there

can never be any unallocated “holes” in the stack.

C H A P T E R 1

Introduction to Memory Management

About Memory

1-9

1

Introduction to M
em

ory M
anagem

ent

By convention, the stack grows from high memory toward low memory addresses. The

end of the stack that grows or shrinks is usually referred to as the “top” of the stack,

even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation

connected with the execution of functions or procedures. When your application calls a

routine, space is automatically allocated on the stack for a stack frame. A

stack frame

contains the routine’s parameters, local variables, and return address. Figure 1-3

illustrates how the stack expands and shrinks during a function call. The leftmost

diagram shows the stack just before the function is called. The middle diagram shows

the stack expanded to hold the stack frame. Once the function is executed, the local

variables and function parameters are popped off the stack. If the function is a Pascal

function, all that remains is the previous stack with the function result on top.

Figure 1-3

The application stack

Note

Dynamic memory allocation on the stack is usually handled
automatically if you are using a high-level development language such
as Pascal. The compiler generates the code that creates and deletes stack
frames for each function or procedure call.

◆

The Application Heap 1

An

application heap

 is the area of memory in your application partition in which space

is dynamically allocated and released on demand. The heap begins at the low-memory

High memory

Top
of stack

High memory High memory

Function result

Low memory Low memoryLow memory

Used Area

Unused area

C H A P T E R 1

Introduction to Memory Management

1-10

About Memory

end of your application partition and extends upward in memory. The heap contains

virtually all items that are not allocated on the stack. For instance, your application heap

contains the application’s code segments and resources that are currently loaded into

memory. The heap also contains other dynamically allocated items such as window

records, dialog records, document data, and so forth.

You allocate space within your application’s heap by making calls to the Memory

Manager, either directly (for instance, using the

NewHandle

 function) or indirectly

(for instance, using a routine such as

NewWindow

, which calls Memory Manager

routines). Space in the heap is allocated in

blocks,

 which can be of any size needed

for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the

heap as they are allocated and released. Because these operations can occur in any order,

the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead,

after your application has been running for a while, the heap can tend to become

fragmented into a patchwork of allocated and free blocks, as shown in Figure 1-4. This

fragmentation is known as

heap fragmentation.

Figure 1-4

A fragmented heap

High memory

Allocated blocks

Free blocks

Low memory

C H A P T E R 1

Introduction to Memory Management

About Memory

1-11

1

Introduction to M
em

ory M
anagem

ent

One result of heap fragmentation is that the Memory Manager might not be able to

satisfy your application’s request to allocate a block of a particular size. Even though

there is enough free space available, the space is broken up into blocks smaller than the

requested size. When this happens, the Memory Manager tries to create the needed

space by moving allocated blocks together, thus collecting the free space in a single

larger block. This operation is known as

heap compaction.

 Figure 1-5 shows the results

of compacting the fragmented heap shown in Figure 1-4.

Figure 1-5

A compacted heap

Heap fragmentation is generally not a problem as long as the blocks of memory you

allocate are free to move during heap compaction. There are, however, two situations in

which a block is not free to move: when it is a nonrelocatable block, and when it is a

locked, relocatable block. To minimize heap fragmentation, you should use

nonrelocatable blocks sparingly, and you should lock relocatable blocks only when

absolutely necessary. See “Relocatable and Nonrelocatable Blocks” starting on page 1-16

for a description of relocatable and nonrelocatable blocks, and “Heap Fragmentation” on

page 1-24 for a description of how best to avoid fragmenting your heap.

High memory

Allocated blocks

Free blocks

Low memory

C H A P T E R 1

Introduction to Memory Management

1-12 About Memory

The Application Global Variables and A5 World 1

Your application’s global variables are stored in an area of memory near the top of your

application partition known as the application A5 world. The A5 world contains four

kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the

jump table may vary from application to application. Figure 1-6 shows the standard

organization of the A5 world.

Figure 1-6 Organization of an application’s A5 world

Note
An application’s global variables may appear either above or below the
QuickDraw global variables. The relative locations of these two items
are determined by your development system’s linker. In addition, part
of the jump table might appear below the boundary pointed to by
CurrentA5 . ◆

High memory

CurrentA5

Jump table

Application parameters

pointer to QuickDraw global variables

QuickDraw global
variables

Application global
variables

Low memory

C H A P T E R 1

Introduction to Memory Management

About Memory 1-13

1

Introduction to M
em

ory M
anagem

ent

The system global variable CurrentA5 points to the boundary between the

current application’s global variables and its application parameters. For this reason,

the application’s global variables are found as negative offsets from the value of

CurrentA5 . This boundary is important because the Operating System uses it to access

the following information from your application: its global variables, its QuickDraw

global variables, the application parameters, and the jump table. This information is

known collectively as the A5 world because the Operating System uses the

microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing

environment. For example, among these variables is a pointer to the current

graphics port.

Your application’s jump table contains an entry for each of your application’s routines

that is called by code in another segment. The Segment Manager uses the jump table to

determine the address of any externally referenced routines called by a code segment.

For more information on jump tables, see the chapter “Segment Manager” in Inside

Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global

variables; they’re reserved for use by the Operating System. The first long word of those

parameters is a pointer to your application’s QuickDraw global variables.

Temporary Memory 1
In the Macintosh multitasking environment, each application is limited to a particular

memory partition (whose size is determined by information in the 'SIZE' resource of

that application). The size of your application’s partition places certain limits on the size

of your application heap and hence on the sizes of the buffers and other data structures

that your application uses. In general, you specify an application partition size that is

large enough to hold all the buffers, resources, and other data that your application is

likely to need during its execution.

If for some reason you need more memory than is currently available in your application

heap, you can ask the Operating System to let you use any available memory that is not

yet allocated to any other application. This memory, known as temporary memory, is

allocated from the available unused RAM; usually, that memory is not contiguous with

the memory in your application’s zone. Figure 1-7 shows an application using some

temporary memory.

C H A P T E R 1

Introduction to Memory Management

1-14 About Memory

Figure 1-7 Using temporary memory allocated from unused RAM

In Figure 1-7, Application 1 has almost exhausted its application heap. As a result, it has

requested and received a large block of temporary memory, extending from the top of

Application 2’s partition to the top of the allocatable space. Application 1 can use the

temporary memory in whatever manner it desires.

Your application should use temporary memory only for occasional short-term purposes

that could be accomplished in less space, though perhaps less efficiently. For example, if

you want to copy a large file, you might try to allocate a fairly large buffer of temporary

memory. If you receive the temporary memory, you can copy data from the source file

into the destination file using the large buffer. If, however, the request for temporary

memory fails, you can instead use a smaller buffer within your application heap.

High memory

System
partition

BufPtr

Low memory

Application 1
partition

Stack

Heap

A5 world

Temporary
memory

Stack

Heap

Application 2
partition

A5 world

Handle to block
of temporary
memory

Used Area

Unused area

MyHandle

master pointer

C H A P T E R 1

Introduction to Memory Management

About Memory 1-15

1

Introduction to M
em

ory M
anagem

ent

Although using the smaller buffer might prolong the copying operation, the file is

nonetheless copied.

One good reason for using temporary memory only occasionally is that you cannot

assume that you will always receive the temporary memory you request. For example, in

Figure 1-7, all the available memory is allocated to the two open applications; any

further requests by either one for some temporary memory would fail. For complete

details on using temporary memory, see the chapter “Memory Manager” in this book.

Virtual Memory 1
In system software version 7.0 and later, suitably equipped Macintosh computers can

take advantage of a feature of the Operating System known as virtual memory, by which

the machines have a logical address space that extends beyond the limits of the available

physical memory. Because of virtual memory, a user can load more programs and data

into the logical address space than would fit in the computer’s physical RAM.

The Operating System extends the address space by using part of the available

secondary storage (that is, part of a hard disk) to hold portions of applications and data

that are not currently needed in RAM. When some of those portions of memory are

needed, the Operating System swaps out unneeded parts of applications or data to the

secondary storage, thereby making room for the parts that are needed.

It is important to realize that virtual memory operates transparently to most

applications. Unless your application has time-critical needs that might be adversely

affected by the operation of virtual memory or installs routines that execute at interrupt

time, you do not need to know whether virtual memory is operating. For complete

details on virtual memory, see the chapter “Virtual Memory Manager” later in this book.

Addressing Modes 1
On suitably equipped Macintosh computers, the Operating System supports 32-bit

addressing, that is, the ability to use 32 bits to determine memory addresses. Earlier

versions of system software use 24-bit addressing, where the upper 8 bits of memory

addresses are ignored or used as flag bits. In a 24-bit addressing scheme, the logical

address space has a size of 16 MB. Because 8 MB of this total are reserved for I/O space,

ROM, and slot space, the largest contiguous program address space is 8 MB. When 32-bit

addressing is in operation, the maximum program address space is 1 GB.

The ability to operate with 32-bit addressing is available only on certain Macintosh

models, namely those with systems that contain a 32-bit Memory Manager. (For

compatibility reasons, these systems also contain a 24-bit Memory Manager.) In order for

your application to work when the machine is using 32-bit addressing, it must be 32-bit

clean, that is, able to run in an environment where all 32 bits of a memory address are

significant. Fortunately, writing applications that are 32-bit clean is relatively easy if you

follow the guidelines in Inside Macintosh. In general, applications are not 32-bit clean

because they manipulate flag bits in master pointers directly (for instance, to mark the

associated memory blocks as locked or purgeable) instead of using Memory Manager

C H A P T E R 1

Introduction to Memory Management

1-16 Heap Management

routines to achieve the desired result. See “Relocatable and Nonrelocatable Blocks” on

page 1-16 for a description of master pointers.

▲ W A R N I N G

You should never make assumptions about the contents of Memory
Manager data structures, including master pointers and zone headers.
These structures have changed in the past and they are likely to change
again in the future. ▲

Occasionally, an application running when 24-bit addressing is enabled might need to

modify memory addresses to make them compatible with the 24-bit Memory Manager.

In addition, drivers or other code might need to use 32-bit addresses, even when running

in 24-bit mode. See the descriptions of the routines StripAddress and

Translate24to32 in the chapter “Memory Management Utilities” for details.

Heap Management 1

Applications allocate and manipulate memory primarily in their application heap. As

you have seen, space in the application heap is allocated and released on demand. When

the blocks in your heap are free to move, the Memory Manager can often reorganize the

heap to free space when necessary to fulfill a memory-allocation request. In some cases,

however, blocks in your heap cannot move. In these cases, you need to pay close

attention to memory allocation and management to avoid fragmenting your heap and

running out of memory.

This section provides a general description of how to manage blocks of memory in your

application heap. It describes

■ relocatable and nonrelocatable blocks

■ properties of relocatable blocks

■ heap purging and compaction

■ heap fragmentation

■ dangling pointers

■ low-memory conditions

For examples of specific techniques you can use to implement the strategies discussed in

this section, see “Using Memory” beginning on page 1-38.

Relocatable and Nonrelocatable Blocks 1
You can use the Memory Manager to allocate two different types of blocks in your heap:

nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of

memory whose location in the heap is fixed. In contrast, a relocatable block is a block

of memory that can be moved within the heap (perhaps during heap compaction).

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-17

1

Introduction to M
em

ory M
anagem

ent

The Memory Manager sometimes moves relocatable blocks during memory operations

so that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and

nonrelocatable blocks. It also provides routines that allow you to allocate and release

blocks of both types.

To reference a nonrelocatable block, you can use a pointer variable, defined by the Ptr

data type.

TYPE

SignedByte = –128..127;

Ptr = ^SignedByte;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a

nonrelocatable block of memory is simply the address of the first byte in the block, as

illustrated in Figure 1-8. After you allocate a nonrelocatable block, you can make copies

of the pointer variable. Because a pointer is the address of a block of memory that cannot

be moved, all copies of the pointer correctly reference the block as long as you don’t

dispose of it.

Figure 1-8 A pointer to a nonrelocatable block

myPointer

Nonrelocatable

Free space

Heap

C H A P T E R 1

Introduction to Memory Management

1-18 Heap Management

The pointer variable itself occupies 4 bytes of space in your application partition.

Often the pointer variable is a global variable and is therefore contained in

your application’s A5 world. But the pointer can also be allocated on the stack

or in the heap itself.

To reference relocatable blocks, the Memory Manager uses a scheme known as

double indirection. The Memory Manager keeps track of a relocatable block internally

with a master pointer, which itself is part of a nonrelocatable master pointer block

in your application heap and can never move.

Note
The Memory Manager allocates one master pointer block (containing
64 master pointers) for your application at launch time, and you can
call the MoreMasters procedure to request that additional master
pointer blocks be allocated. See “Setting Up the Application Heap”
beginning on page 1-38 for instructions on allocating master pointer
blocks. ◆

When the Memory Manager moves a relocatable block, it updates the master pointer

so that it always contains the address of the relocatable block. You reference the block

with a handle, defined by the Handle data type.

TYPE

Handle = ^Ptr;

A handle contains the address of a master pointer. The left side of Figure 1-9 shows

a handle to a relocatable block of memory located in the middle of the application

heap. If necessary (perhaps to make room for another block of memory), the

Memory Manager can move that block down in the heap, as shown in the right

side of Figure 1-9.

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-19

1

Introduction to M
em

ory M
anagem

ent

Figure 1-9 A handle to a relocatable block

Master pointers for relocatable objects in your heap are always allocated in your

application heap. Because the blocks of masters pointers are nonrelocatable, it is best to

allocate them as low in your heap as possible. You can do this by calling the

MoreMasters procedure when your application starts up.

Whenever possible, you should allocate memory in relocatable blocks. This gives the

Memory Manager the greatest freedom when rearranging the blocks in your application

heap to create a new block of free memory. In some cases, however, you may be forced to

allocate a nonrelocatable block of memory. When you call the Window Manager function

NewWindow, for example, the Window Manager internally calls the NewPtr function to

allocate a new nonrelocatable block in your application partition. You need to exercise

care when calling Toolbox routines that allocate such blocks, lest your application heap

become overly fragmented. See “Allocating Blocks of Memory” on page 1-44 for specific

guidelines on allocating nonrelocatable blocks.

Heap

Before relocation After relocation

Heap

myHandle

Master pointer

myHandle

Master pointerBlock of
master pointers

(nonrelocatable)

Nonrelocatable block

Free space

Relocatable block

C H A P T E R 1

Introduction to Memory Management

1-20 Heap Management

Using relocatable blocks makes the Memory Manager more efficient at managing

available space, but it does carry some overhead. As you have seen, the Memory

Manager must allocate extra memory to hold master pointers for relocatable blocks. It

groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this

extra space is negligible, but if you allocate many very small relocatable blocks, the cost

can be considerable. For this reason, you should avoid allocating a very large number of

handles to small blocks; instead, allocate a single large block and use it as an array to

hold the data you need.

Properties of Relocatable Blocks 1
As you have seen, a heap block can be either relocatable or nonrelocatable. The

designation of a block as relocatable or nonrelocatable is a permanent property of that

block. If relocatable, a block can be either locked or unlocked; if it’s unlocked, a block can

be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and

changed as necessary. The following sections explain how to lock and unlock blocks, and

how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks 1

Occasionally, you might need a relocatable block of memory to stay in one place. To

prevent a block from moving, you can lock it, using the HLock procedure. Once you

have locked a block, it won’t move. Later, you can unlock it, using the HUnlock

procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might

be moved during the time that you read or write the data in that block. This might

happen, for instance, if you dereference a handle to obtain a pointer to the data and

(for increased speed) use the pointer within a loop that calls routines that might

cause memory to be moved. If, within the loop, the block whose data you are accessing

is in fact moved, then the pointer no longer points to that data; this pointer is said

to dangle.

Note
Locking a block is only one way to prevent a dangling pointer. See
“Dangling Pointers” on page 1-29 for a complete discussion of how to
avoid dangling pointers. ◆

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-21

1

Introduction to M
em

ory M
anagem

ent

Using locked relocatable blocks can, however, slow the Memory Manager down as much

as using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In

addition, except when you allocate memory and resize relocatable blocks, it can’t move

relocatable blocks around locked relocatable blocks (just as it can’t move them around

nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods

of time can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can

become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable

blocks only at well-defined, predictable times. In general, each routine description in

Inside Macintosh indicates whether the routine could move or purge memory. If you do

not call any of those routines in a section of code, you can rely on all blocks to remain

stationary while that code executes. Note that the Segment Manager might move

memory if you call a routine located in a segment that is not currently resident

in memory. See “Loading Code Segments” on page 1-31 for details.

Purging and Reallocating Relocatable Blocks 1

One advantage of relocatable blocks is that you can use them to store information that

you would like to keep in memory to make your application more efficient, but that you

don’t really need if available memory space becomes low. For example, your application

might, at the beginning of its execution, load user preferences from a preferences file into

a relocatable block. As long as the block remains in memory, your application can access

information from the preferences file without actually reopening the file. However,

reopening the file probably wouldn’t take enough time to justify keeping the block in

memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free

the space it occupies if necessary. If you later want to prohibit the Memory Manager

from freeing the space occupied by a relocatable block, you can make the block

unpurgeable. You can use the HPurge and HNoPurge procedures to change back

and forth between these two states. A block you create by calling NewHandle is

initially unpurgeable.

Once you make a relocatable block purgeable, you should subsequently check

handles to that block before using them if you call any of the routines that could

move or purge memory. If a handle’s master pointer is set to NIL , then the

Operating System has purged its block. To use the information formerly in the block,

you must reallocate space for it (perhaps by calling the ReallocateHandle procedure)

and then reconstruct its contents (for example, by rereading the preferences file).

C H A P T E R 1

Introduction to Memory Management

1-22 Heap Management

Figure 1-10 illustrates the purging and reallocating of a relocatable block. When the block

is purged, its master pointer is set to NIL . When it is reallocated, the handle correctly

references a new block, but that block’s contents are initially undefined.

Figure 1-10 Purging and reallocating a relocatable block

Memory Reservation 1
The Memory Manager does its best to prevent situations in which nonrelocatable blocks

in the middle of the heap trap relocatable blocks. When it allocates new nonrelocatable

blocks, it attempts to reserve memory for them as low in the heap as possible. The

Memory Manager reserves memory for a nonrelocatable block by moving unlocked

relocatable blocks upward until it has created a space large enough for the new block.

When the Memory Manager can successfully pack all nonrelocatable blocks into the

bottom of the heap, no nonrelocatable block can trap a relocatable block, and it has

successfully prevented heap fragmentation.

Figure 1-11 illustrates how the Memory Manager allocates nonrelocatable blocks.

Although it could place a block of the requested size at the top of the heap, it instead

reserves space for the block as close to the bottom of the heap as possible and then puts

the block into that reserved space. During this process, the Memory Manager might even

move a relocatable block over a nonrelocatable block to make room for another

nonrelocatable block.

Heap

Before purging After purging

Heap

MyHandle

After reallocating

Heap

Master
pointers

NIL

MyHandle MyHandle

Nonrelocatable block

Free space

Relocatable block

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-23

1

Introduction to M
em

ory M
anagem

ent

Figure 1-11 Allocating a nonrelocatable block

When allocating a new relocatable block, you can, if you want, manually reserve space

for the block by calling the ReserveMem procedure. If you do not, the Memory Manager

looks for space big enough for the block as low in the heap as possible, but it does not

create space near the bottom of the heap for the block if there is already enough space

higher in the heap.

Heap Purging and Compaction 1
When your application attempts to allocate memory (for example, by calling either the

NewPtr or NewHandle function), the Memory Manager might need to compact or

purge the heap to free memory and to fuse many small free blocks into fewer large free

blocks. The Memory Manager first tries to obtain the requested amount of space by

compacting the heap; if compaction fails to free the required amount of space, the

Memory Manager then purges the heap.

When compacting the heap, the Memory Manager moves unlocked, relocatable blocks

down until they reach nonrelocatable blocks or locked, relocatable blocks. You can

compact the heap manually, by calling either the CompactMem function or the MaxMem
function.

Heap

Before allocation

Heap

After allocation

New
nonrelocatable
block

Nonrelocatable

Free space

Relocatable

C H A P T E R 1

Introduction to Memory Management

1-24 Heap Management

In a purge of the heap, the Memory Manager sequentially purges unlocked, purgeable

relocatable blocks until it has freed enough memory or until it has purged all such

blocks. It purges a block by deallocating it and setting its master pointer to NIL .

If you want, you can manually purge a few blocks or an entire heap in anticipation of a

memory shortage. To purge an individual block manually, call the EmptyHandle

procedure. To purge your entire heap manually, call the PurgeMem procedure or the

MaxMem function.

Note
In general, you should let the Memory Manager purge and compact
your heap, instead of performing these operations yourself. ◆

Heap Fragmentation 1
Heap fragmentation can slow your application by forcing the Memory Manager to

compact or purge your heap to satisfy a memory-allocation request. In the worst cases,

when your heap is severely fragmented by locked or nonrelocatable blocks, it might be

impossible for the Memory Manager to find the requested amount of contiguous free

space, even though that much space is actually free in your heap. This can have

disastrous consequences for your application. For example, if the Memory Manager

cannot find enough room to load a required code segment, your application will crash.

Obviously, it is best to minimize the amount of fragmentation that occurs in your

application heap. It might be tempting to think that because the Memory Manager

controls the movement of blocks in the heap, there is little that you can do to prevent

heap fragmentation. In reality, however, fragmentation does not strike your application’s

heap by chance. Once you understand the major causes of heap fragmentation, you can

follow a few simple rules to minimize it.

The primary causes of heap fragmentation are indiscriminate use of nonrelocatable

blocks and indiscriminate locking of relocatable blocks. Each of these creates immovable

blocks in your heap, thus creating “roadblocks” for the Memory Manager when it

rearranges the heap to maximize the amount of contiguous free space. You can

significantly reduce heap fragmentation simply by exercising care when you allocate

nonrelocatable blocks and when you lock relocatable blocks.

Throughout this section, you should keep in mind the following rule: the Memory

Manager can move a relocatable block around a nonrelocatable block (or a locked

relocatable block) at these times only:

■ When the Memory Manager reserves memory for a nonrelocatable block (or when
you manually reserve memory before allocating a block), it can move unlocked,
relocatable blocks upward over nonrelocatable blocks to make room for the new block
as low in the heap as possible.

■ When you attempt to resize a relocatable block, the Memory Manager can move that
block around other blocks if necessary.

In contrast, the Memory Manager cannot move relocatable blocks over nonrelocatable

blocks during compaction of the heap.

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-25

1

Introduction to M
em

ory M
anagem

ent

Deallocating Nonrelocatable Blocks 1

One of the most common causes of heap fragmentation is also one of the most difficult to

avoid. The problem occurs when you dispose of a nonrelocatable block in the middle of

the pile of nonrelocatable blocks at the bottom of the heap. Unless you immediately

allocate another nonrelocatable block of the same size, you create a gap where the

nonrelocatable block used to be. If you later allocate a slightly smaller, nonrelocatable

block, that gap shrinks. However, small gaps are inefficient because of the small

likelihood that future memory allocations will create blocks small enough to occupy

the gaps.

It would not matter if the first block you allocated after deleting the nonrelocatable block

were relocatable. The Memory Manager would place the block in the gap if possible. If

you were later to allocate a nonrelocatable block as large as or smaller than the gap, the

new block would take the place of the relocatable block, which would join other

relocatable blocks in the middle of the heap, as desired. However, the new

nonrelocatable block might be smaller than the original nonrelocatable block, leaving a

small gap.

Whenever you dispose of a nonrelocatable block that you have allocated, you create

small gaps, unless the next nonrelocatable block you allocate happens to be the same size

as the disposed block. These small gaps can lead to heavy fragmentation over the course

of your application’s execution. Thus, you should try to avoid disposing of and then

reallocating nonrelocatable blocks during program execution.

Reserving Memory 1

Another cause of heap fragmentation ironically occurs because of a limitation of memory

reservation, a process designed to prevent it. Memory reservation never makes

fragmentation worse than it would be if there were no memory reservation. Ordinarily,

memory reservation ensures that allocating nonrelocatable blocks in the middle of your

application’s execution causes no problems. Occasionally, however, memory reservation

can cause fragmentation, either when it succeeds but leaves small gaps in the reserved

space, or when it fails and causes a nonrelocatable block to be allocated in the middle of

the heap.

The Memory Manager uses memory reservation to create space for nonrelocatable blocks

as low as possible in the heap. (You can also manually reserve memory for relocatable

blocks, but you rarely need to do so.) However, when the Memory Manager moves a

block up during memory reservation, that block cannot overlap its previous location.

As a result, the Memory Manager might need to move the relocatable block up more

than is necessary to contain the new nonrelocatable block, thereby creating a gap

between the top of the new block and the bottom of the relocated block. (See Figure 1-11

on page 1-23.)

Memory reservation can also fragment the heap if there is not enough space in the heap

to move the relocatable block up. In this case, the Memory Manager allocates the new

nonrelocatable block above the relocatable block. The relocatable block cannot then

move over the nonrelocatable block, except during the times described previously.

C H A P T E R 1

Introduction to Memory Management

1-26 Heap Management

Locking Relocatable Blocks 1

Locked relocatable blocks present a special problem. When relocatable blocks are locked,

they can cause as much heap fragmentation as nonrelocatable blocks. One solution is to

reserve memory for all relocatable blocks that might at some point need to be locked,

and to leave them locked for as long as they are allocated. This solution has drawbacks,

however, because then the blocks would lose any flexibility that being relocatable

otherwise gives them. Deleting a locked relocatable block can create a gap, just as

deleting a nonrelocatable block can.

An alternative partial solution is to move relocatable blocks to the top of the heap before

locking them. The MoveHHi procedure allows you to move a relocatable block upward

until it reaches the top of the heap, a nonrelocatable block, or a locked relocatable block.

This has the effect of partitioning the heap into four areas, as illustrated in Figure 1-12.

At the bottom of the heap are the nonrelocatable blocks. Above those blocks are the

unlocked relocatable blocks. At the top of the heap are locked relocatable blocks.

Between the locked relocatable blocks and the unlocked relocatable blocks is an area of

free space. The principal idea behind moving relocatable blocks to the top of the heap

and locking them there is to keep the contiguous free space as large as possible.

Figure 1-12 An effectively partitioned heap

Heap

IMM (Fi) A ff i l i i d h

Locked relocatable blocks
(using MoveHHi, HLock)

Nonrelocatable

Free space

Relocatable

Locked Relocatable

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-27

1

Introduction to M
em

ory M
anagem

ent

Using MoveHHi is, however, not always a perfect solution to handling relocatable blocks

that need to be locked. The MoveHHi procedure moves a block upward only until it

reaches either a nonrelocatable block or a locked relocatable block. Unlike NewPtr and

ReserveMem, MoveHHi does not currently move a relocatable block around one that is

not relocatable.

Even if MoveHHi succeeds in moving a block to the top area of the heap, unlocking or

deleting locked blocks can cause fragmentation if you don’t unlock or delete those blocks

beginning with the lowest locked block. A relocatable block that is locked at the top area

of the heap for a long period of time could trap other relocatable blocks that were locked

for short periods of time but then unlocked.

This suggests that you need to treat relocatable blocks locked for a long period of time

differently from those locked for a short period of time. If you plan to lock a relocatable

block for a long period of time, you should reserve memory for it at the bottom of the

heap before allocating it, then lock it for the duration of your application’s execution (or

as long as the block remains allocated). Do not reserve memory for relocatable blocks

you plan to allocate for only short periods of time. Instead, move them to the top of the

heap (by calling MoveHHi) and then lock them.

Note
You should call MoveHHi only on blocks located in your application
heap. Don’t call MoveHHi on relocatable blocks in the system heap. Desk
accessories should not call MoveHHi . ◆

In practice, you apply the same rules to relocatable blocks that you reserve space for and

leave permanently locked as you apply to nonrelocatable blocks: Try not to allocate such

blocks in the middle of your application’s execution, and don’t dispose of and reallocate

such blocks in the middle of your application’s execution.

After you lock relocatable blocks temporarily, you don’t need to move them manually

back into the middle area when you unlock them. Whenever the Memory Manager

compacts the heap or moves another relocatable block to the top heap area, it brings all

unlocked relocatable blocks at the bottom of that partition back into the middle area.

When moving a block to the top area, be sure to call MoveHHi on the block and then lock

the block, in that order.

Allocating Nonrelocatable Blocks 1

As you have seen, there are two reasons for not allocating nonrelocatable blocks during

the middle of your application’s execution. First, if you also dispose of nonrelocatable

blocks in the middle of your application’s execution, then allocation of new

nonrelocatable blocks is likely to create small gaps, as discussed earlier. Second, even if

you never dispose of nonrelocatable blocks until your application terminates, memory

reservation is an imperfect process, and the Memory Manager could occasionally place

new nonrelocatable blocks above relocatable blocks.

C H A P T E R 1

Introduction to Memory Management

1-28 Heap Management

There is, however, an exception to the rule that you should not allocate nonrelocatable

blocks in the middle of your application’s execution. Sometimes you need to allocate a

nonrelocatable block only temporarily. If between the times that you allocate and dispose

of a nonrelocatable block, you allocate no additional nonrelocatable blocks and do not

attempt to compact the heap, then you have done no harm. The temporary block cannot

create a new gap because the Memory Manager places no other block over the

temporary block.

Summary of Preventing Fragmentation 1

Avoiding heap fragmentation is not difficult. It simply requires that you follow a few

rules as closely as possible. Remember that allocation of even a small nonrelocatable

block in the middle of your heap can ruin a scheme to prevent fragmentation of the

heap, because the Memory Manager does not move relocatable blocks around

nonrelocatable blocks when you call MoveHHi or when it attempts to compact the heap.

If you adhere to the following rules, you are likely to avoid significant heap

fragmentation:

■ At the beginning of your application’s execution, call the MaxApplZone procedure
once and the MoreMasters procedure enough times so that the Memory Manager
never needs to call it for you.

■ Try to anticipate the maximum number of nonrelocatable blocks you will need and
allocate them at the beginning of your application’s execution.

■ Avoid disposing of and then reallocating nonrelocatable blocks during your
application’s execution.

■ When allocating relocatable blocks that you need to lock for long periods of time, use
the ReserveMem procedure to reserve memory for them as close to the bottom of the
heap as possible, and lock the blocks immediately after allocating them.

■ If you plan to lock a relocatable block for a short period of time and allocate
nonrelocatable blocks while it is locked, use the MoveHHi procedure to move the
block to the top of the heap and then lock it. When the block no longer needs to be
locked, unlock it.

■ Remember that you need to lock a relocatable block only if you call a routine that
could move or purge memory and you then use a dereferenced handle to the
relocatable block, or if you want to use a dereferenced handle to the relocatable block
at interrupt time.

Perhaps the most difficult restriction is to avoid disposing of and then reallocating

nonrelocatable blocks in the middle of your application’s execution. Some Toolbox

routines require you to use nonrelocatable blocks, and it is not always easy to anticipate

how many such blocks you will need. If you must allocate and dispose of blocks in the

middle of your program’s execution, you might want to place used blocks into a linked

list of free blocks instead of disposing of them. If you know how many nonrelocatable

blocks of a certain size your application is likely to need, you can add that many to the

beginning of the list at the beginning of your application’s execution. If you need a

nonrelocatable block later, you can check the linked list for a block of the exact size

instead of simply calling the NewPtr function.

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-29

1

Introduction to M
em

ory M
anagem

ent

Dangling Pointers 1
Accessing a relocatable block by double indirection, through its handle instead of

through its master pointer, requires an extra memory reference. For efficiency, you might

sometimes want to dereference the handle—that is, make a copy of the block’s master

pointer—and then use that pointer to access the block by single indirection. When you

do this, however, you need to be particularly careful. Any operation that allocates space

from the heap might cause the relocatable block to be moved or purged. In that event,

the block’s master pointer is correctly updated, but your copy of the master pointer is

not. As a result, your copy of the master pointer is a dangling pointer.

Dangling pointers are likely to make your application crash or produce garbled output.

Unfortunately, it is often easy during debugging to overlook situations that could leave

pointers dangling, because pointers dangle only if the relocatable blocks that they

reference actually move. Routines that can move or purge memory do not necessarily do

so unless memory space is tight. Thus, if you improperly dereference a handle in a

section of code, that code might still work properly most of the time. If, however, a

dangling pointer does cause errors, they can be very difficult to trace.

This section describes a number of situations that can cause dangling pointers and

suggests some ways to avoid them.

Compiler Dereferencing 1

Some of the most difficult dangling pointers to isolate are not caused by any explicit

dereferencing on your part, but by implicit dereferencing on the part of the compiler.

For example, suppose you use a handle called myHandle to access the fields of a

record in a relocatable block. You might use Pascal’s WITH statement to do so,

as follows:

WITH myHandle^^ DO

BEGIN

...

END;

A compiler is likely to dereference myHandle so that it can access the fields of the

record without double indirection. However, if the code between the BEGIN and END

statements causes the Memory Manager to move or purge memory, you are likely to end

up with a dangling pointer.

The easiest way to prevent dangling pointers is simply to lock the relocatable block

whose data you want to read or write. Because the block is locked and cannot move,

C H A P T E R 1

Introduction to Memory Management

1-30 Heap Management

the master pointer is guaranteed always to point to the beginning of the block’s data.

Listing 1-1 illustrates one way to avoid dangling pointers by locking a relocatable block.

Listing 1-1 Locking a block to avoid dangling pointers

VAR

origState: SignedByte; {original attributes of handle}

origState := HGetState(Handle(myData)); {get handle attributes}

MoveHHi(Handle(myData)); {move the handle high}

HLock(Handle(myData)); {lock the handle}

WITH myData^^ DO {fill in window data}

BEGIN

editRec := TENew(gDestRect, gViewRect);

vScroll := GetNewControl(rVScroll, myWindow);

hScroll := GetNewControl(rHScroll, myWindow);

fileRefNum := 0;

windowDirty := FALSE;

END;

HSetState(origState); {reset handle attributes}

The handle myData needs to be locked before the WITH statement because the functions

TENew and GetNewControl allocate memory and hence might move the block whose

handle is myData .

You should be careful to lock blocks only when necessary, because locked relocatable

blocks can increase heap fragmentation and slow down your application unnecessarily.

You should lock a handle only if you dereference it, directly or indirectly, and then use a

copy of the original master pointer after calling a routine that could move or purge

memory. When you no longer need to reference the block with the master pointer, you

should unlock the handle. In Listing 1-1, the handle myData is never explicitly unlocked.

Instead, the original attributes of the handle are saved by calling HGetState and later

are restored by calling HSetState . This strategy is preferable to just calling HLock and

HUnlock .

A compiler can generate hidden dereferencing, and hence potential dangling pointers, in

other ways, for instance, by assigning the result of a function that might move or purge

blocks to a field in a record referenced by a handle. Such problems are particularly

common in code that manipulates linked data structures. For example, you might use

this code to allocate a new element of a linked list:

myHandle^^.nextHandle := NewHandle(sizeof(myLinkedElement));

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-31

1

Introduction to M
em

ory M
anagem

ent

This can cause problems because your compiler could dereference myHandle before

calling NewHandle . Therefore, you should either lock myHandle before performing

the allocation, or use a temporary variable to allocate the new handle, as in the

following code:

tempHandle := NewHandle(sizeof(myLinkedElement));

myHandle^^.nextHandle := tempHandle;

Passing fields of records as arguments to routines that might move or purge memory can

cause similar problems, if the records are in relocatable blocks referred to with handles.

Problems arise only when you pass a field by reference rather than by value. Pascal

conventions call for all arguments larger than 4 bytes to be passed by reference. In

Pascal, a variable is also passed by reference when the routine called requests a variable

parameter. Both of the following lines of code could leave a pointer dangling:

TEUpdate(hTE^^.viewRect, hTE);

InvalRect(theControl^^.contrlRect);

These problems occur because a compiler may dereference a handle before calling the

routine to which you pass the handle. Then, that routine may move memory before it

uses the dereferenced handle, which might then be invalid. As before, you can solve

these problems by locking the handles or using temporary variables.

Loading Code Segments 1

If you call an application-defined routine located in a code segment that is not currently

in RAM, the Segment Manager might need to move memory when loading that code

segment, thus jeopardizing any dereferenced handles you might be using. For example,

suppose you call an application-defined procedure ManipulateData , which

manipulates some data at an address passed to it in a variable parameter.

PROCEDURE MyRoutine;

BEGIN

...

ManipulateData(myHandle^);

...

END;

You can create a dangling pointer if ManipulateData and MyRoutine are in different

segments, and the segment containing ManipulateData is not loaded when

MyRoutine is executed. You can do this because you’ve passed a dereferenced copy of

myHandle as an argument to ManipulateData . If the Segment Manager must allocate

a new relocatable block for the segment containing ManipulateData , it might move

myHandle to do so. If so, the dereferenced handle would dangle. A similar problem can

occur if you assign the result of a function in a nonresident code segment to a field in a

record referred to by a handle.

C H A P T E R 1

Introduction to Memory Management

1-32 Heap Management

You need to be careful even when passing a field in a record referenced by a handle to a

routine in the same code segment as the caller, or when assigning the result of a function

in the same code segment to such a field. If that routine could call a Toolbox routine that

might move or purge memory, or call a routine in a different, nonresident code segment,

then you could indirectly cause a pointer to dangle.

Callback Routines 1

Code segmentation can also lead to a different type of dangling-pointer problem when

you use callback routines. The problem rarely arises, but it is difficult to debug. Some

Toolbox routines require that you pass a pointer to a procedure in a variable of type

ProcPtr . Ordinarily, it does not matter whether the procedure you pass in such a

variable is in the same code segment as the routine that calls it or in a different code

segment. For example, suppose you call TrackControl as follows:

myPart := TrackControl(myControl, myEvent.where, @MyCallBack);

If MyCallBack were in the same code segment as this line of code, then a compiler

would pass to TrackControl the absolute address of the MyCallBack procedure. If it

were in a different code segment, then the compiler would take the address from the

jump table entry for MyCallBack . Either way, TrackControl should call MyCallBack

correctly.

Occasionally, you might use a variable of type ProcPtr to hold the address of a callback

procedure and then pass that address to a routine. Here is an example:

myProc := @MyCallBack;

...

myPart := TrackControl(myControl, myEvent.where, myProc);

As long as these lines of code are in the same code segment and the segment is not

unloaded between the execution of those lines, the preceding code should work

perfectly. Suppose, however, that myProc is a global variable, and the first line of the

code is in a different segment from the call to TrackControl . Suppose, further, that the

MyCallBack procedure is in the same segment as the first line of the code (which is in a

different segment from the call to TrackControl). Then, the compiler might place the

absolute address of the MyCallBack routine into the variable myProc . The compiler

cannot realize that you plan to use the variable in a different code segment from the one

that holds both the routine you are referencing and the routine you are using to initialize

the myProc variable. Because MyCallBack and the call to TrackControl are in

different code segments, the TrackControl procedure requires that you pass an

address in the jump table, not an absolute address. Thus, in this hypothetical situation,

myProc would reference MyCallBack incorrectly.

To avoid this problem, make sure to place in the same segment any code in which you

assign a value to a variable of type ProcPtr and any code in which you use that

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-33

1

Introduction to M
em

ory M
anagem

ent

variable. If you must put them in different code segments, then be sure that you place

the callback routine in a code segment different from the one that initializes the variable.

Note
Some development systems allow you to specify compiler options
that force jump table references to be generated for routine addresses.
If you specify those options, the problems described in this section
cannot arise. ◆

Invalid Handles 1
An invalid handle refers to the wrong area of memory, just as a dangling pointer does.

There are three types of invalid handles: empty handles, disposed handles, and fake

handles. You must avoid empty, disposed, or fake handles as carefully as dangling

pointers. Fortunately, it is generally easier to detect, and thus to avoid, invalid handles.

Disposed Handles 1

A disposed handle is a handle whose associated relocatable block has been disposed of.

When you dispose of a relocatable block (perhaps by calling the procedure

DisposeHandle), the Memory Manager does not change the value of any handle

variables that previously referenced that block. Instead, those variables still hold the

address of what once was the relocatable block’s master pointer. Because the block has

been disposed of, however, the contents of the master pointer are no longer defined.

(The master pointer might belong to a subsequently allocated relocatable block, or it

could become part of a linked list of unused master pointers maintained by the

Memory Manager.)

If you accidentally use a handle to a block you have already disposed of, you can obtain

unexpected results. In the best cases, your application will crash. In the worst cases, you

will get garbled data. It might, however, be difficult to trace the cause of the garbled

data, because your application can continue to run for quite a while before the problem

begins to manifest itself.

You can avoid these problems quite easily by assigning the value NIL to the handle

variable after you dispose of its associated block. By doing so, you indicate that the

handle does not point anywhere in particular. If you subsequently attempt to operate on

such a block, the Memory Manager will probably generate a nilHandleErr result code.

If you want to make certain that a handle is not disposed of before operating on a

relocatable block, you can test whether the value of the handle is NIL , as follows:

IF myHandle <> NIL THEN

...; {handle is valid, so we can operate on it here}

Note
This test is useful only if you manually assign the value NIL to
all disposed handles. The Memory Manager does not do that
automatically. ◆

C H A P T E R 1

Introduction to Memory Management

1-34 Heap Management

Empty Handles 1

An empty handle is a handle whose master pointer has the value NIL . When the

Memory Manager purges a relocatable block, for example, it sets the block’s master

pointer to NIL . The space occupied by the master pointer itself remains allocated, and

handles to the purged block continue to point to the master pointer. This is useful,

because if you later reallocate space for the block by calling ReallocateHandle , the

master pointer will be updated and all existing handles will correctly access the

reallocated block.

Note
Don’t confuse empty handles with 0-length handles, which are handles
whose associated block has a size of 0 bytes. A 0-length handle has a
non-NIL master pointer and a block header. ◆

Once again, however, inadvertently using an empty handle can give unexpected results

or lead to a system crash. In the Macintosh Operating System, NIL technically refers to

memory location 0. But this memory location holds a value. If you doubly dereference an

empty handle, you reference whatever data is found at that location, and you could

obtain unexpected results that are difficult to trace.

You can check for empty handles much as you check for disposed handles. Assuming

you set handles to NIL when you dispose of them, you can use the following code to

determine whether a handle both points to a valid master pointer and references a

nonempty relocatable block:

IF myHandle <> NIL THEN

IF myHandle^ <> NIL THEN

... {we can operate on the relocatable block here}

Note that because Pascal evaluates expressions completely, you need two IF -THEN

statements rather than one compound statement in case the value of the handle itself is

NIL . Most compilers, however, allow you to use “short-circuit” Boolean operators to

minimize the evaluation of expressions. For example, if your compiler uses the operator

& as a short-circuit operator for AND, you could rewrite the preceding code like this:

IF (myHandle <> NIL) & (myHandle^ <> NIL) THEN

... {we can operate on the relocatable block here}

In this case, the second expression is evaluated only if the first expression evaluates

to TRUE.

Note
The availability and syntax of short-circuit Boolean operators are
compiler dependent. Check the documentation for your development
system to see whether you can use such operators. ◆

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-35

1

Introduction to M
em

ory M
anagem

ent

It is useful during debugging to set memory location 0 to an odd number, such as

$50FFC001. This causes the Operating System to crash immediately if you attempt to

dereference an empty handle. This is useful, because you can immediately fix problems

that might otherwise require extensive debugging.

Fake Handles 1

A fake handle is a handle that was not created by the Memory Manager. Normally, you

create handles by either directly or indirectly calling the Memory Manager function

NewHandle (or one of its variants, such as NewHandleClear). You create a fake

handle—usually inadvertently—by directly assigning a value to a variable of type

Handle , as illustrated in Listing 1-2.

Listing 1-2 Creating a fake handle

FUNCTION MakeFakeHandle: Handle; {DON’T USE THIS FUNCTION!}

CONST

kMemoryLoc = $100; {a random memory location}

VAR

myHandle: Handle;

myPointer: Ptr;

BEGIN

myPointer := Ptr(kMemoryLoc); {the address of some memory}

myHandle := @myPointer; {the address of a pointer}

MakeFakeHandle := myHandle;

END;

▲ W A R N I N G

The technique for creating a fake handle shown in Listing 1-2 is included
for illustrative purposes only. Your application should never create fake
handles. ▲

Remember that a real handle contains the address of a master pointer. The fake handle

manufactured by the function MakeFakeHandle in Listing 1-2 contains an address that

may or may not be the address of a master pointer. If it isn’t the address of a master

pointer, then you virtually guarantee chaotic results if you pass the fake handle to a

system software routine that expects a real handle.

For example, suppose you pass a fake handle to the MoveHHi procedure. After allocating

a new relocatable block high in the heap, MoveHHi is likely to copy the data from the

original block to the new block by dereferencing the handle and using, supposedly, a

master pointer. Because, however, the value of a fake handle probably isn’t the address

of a master pointer, MoveHHi copies invalid data. (Actually, it’s unlikely that MoveHHi
would ever get that far; probably it would run into problems when attempting to

determine the size of the original block from the block header.)

C H A P T E R 1

Introduction to Memory Management

1-36 Heap Management

Not all fake handles are as easy to spot as those created by the MakeFakeHandle

function defined in Listing 1-2. You might, for instance, attempt to copy the data in an

existing record (myRecord) into a new handle, as follows:

myHandle := NewHandle(SizeOf(myRecord)); {create a new handle}

myHandle^ := @myRecord; {DON’T DO THIS!}

The second line of code does not make myHandle a handle to the beginning of the

myRecord record. Instead, it overwrites the master pointer with the address of that

record, making myHandle a fake handle.

▲ W A R N I N G

Never assign a value directly to a master pointer. ▲

A correct way to create a new handle to some existing data is to make a copy of the data

using the PtrToHand function, as follows:

myErr := PtrToHand(@myRecord, myHandle, SizeOf(myRecord));

The Memory Manager provides a set of pointer- and handle-manipulation routines that

can help you avoid creating fake handles. See the chapter “Memory Manager” in this

book for details on those routines.

Low-Memory Conditions 1
It is particularly important to make sure that the amount of free space in your

application heap never gets too low. For example, you should never deplete the available

heap memory to the point that it becomes impossible to load required code segments. As

you have seen, your application will crash if the Segment Manager is called to load a

required code segment and there is not enough contiguous free memory to allocate a

block of the appropriate size.

You can take several steps to help maximize the amount of free space in your heap. For

example, you can mark as purgeable any relocatable blocks whose contents could easily

be reconstructed. By making a block purgeable, you give the Memory Manager the

freedom to release that space if heap memory becomes low. You can also help maximize

the available heap memory by intelligently segmenting your application’s executable

code and by periodically unloading any unneeded segments. The standard way to do

this is to unload every nonessential segment at the end of your application’s main event

loop. (See the chapter “Segment Manager” in Inside Macintosh: Processes for a complete

discussion of code-segmentation techniques.)

Memory Cushions 1

These two measures—making blocks purgeable and unloading segments—help you

only by releasing blocks that have already been allocated. It is even more important to

make sure, before you attempt to allocate memory directly, that you don’t deplete the

available heap memory. Before you call NewHandle or NewPtr , you should check that,

if the requested amount of memory were in fact allocated, the remaining amount of

C H A P T E R 1

Introduction to Memory Management

Heap Management 1-37

1

Introduction to M
em

ory M
anagem

ent

space free in the heap would not fall below a certain threshold. The free memory defined

by that threshold is your memory cushion. You should not simply inspect the handle

or pointer returned to you and make sure that its value isn’t NIL , because you might

have succeeded in allocating the space you requested but left the amount of free space

dangerously low.

You also need to make sure that indirect memory allocation doesn’t cut into the memory

cushion. When, for example, you call GetNewDialog , the Dialog Manager might need

to allocate space for a dialog record; it also needs to allocate heap space for the dialog

item list and any other custom items in the dialog. Before calling GetNewDialog ,

therefore, you need to make sure that the amount of space left free after the call is greater

than your memory cushion.

The execution of some system software routines requires significant amounts of memory

in your heap. For example, some QuickDraw operations on regions can temporarily

allocate fairly large amounts of space in your heap. Some of these system software

routines, however, do little or no checking to see that your heap contains the required

amount of free space. They either assume that they will get whatever memory they need

or they simply issue a system error when they don’t get the needed memory. In either

case, the result is usually a system crash.

You can avoid these problems by making sure that there is always enough space in your

heap to handle these hidden memory allocations. Experience has shown that 40 KB is a

reasonably safe size for this memory cushion. If you can consistently maintain that

amount of space free in your heap, you can be reasonably certain that system software

routines will get the memory they need to operate. You also generally need a larger

cushion (about 70 KB) when printing.

Memory Reserves 1

Unfortunately, there are times when you might need to use some of the memory in the

cushion yourself. It is better, for instance, to dip into the memory cushion, if necessary, to

save a user’s document than to reject the request to save the document. Some actions

your application performs should not be rejectable simply because they require it to

reduce the amount of free space below a desired minimum.

Instead of relying on just the free memory of a memory cushion, you can allocate a

memory reserve, some additional emergency storage that you release when free memory

becomes low. The important difference between this memory reserve and the memory

cushion is that the memory reserve is a block of allocated memory, which you release

whenever you detect that essential tasks have dipped into the memory cushion.

That emergency memory reserve might provide enough memory to compensate for any

essential tasks that you fail to anticipate. Because you allow essential tasks to dip into the

memory cushion, the release itself of the memory reserve should not be a cause for

alarm. Using this scheme, your application releases the memory reserve as a

precautionary measure during ordinary operation. Ideally, however, the application

should never actually deplete the memory cushion and use the memory reserve.

C H A P T E R 1

Introduction to Memory Management

1-38 Using Memory

Grow-Zone Functions 1

The Memory Manager provides a particularly easy way for you to make sure that the

emergency memory reserve is released when necessary. You can define a grow-zone

function that is associated with your application heap. The Memory Manager calls your

heap’s grow-zone function only after other techniques of freeing memory to satisfy a

memory request fail (that is, after compacting and purging the heap and extending the

heap zone to its maximum size). The grow-zone function can then take appropriate steps

to free additional memory.

A grow-zone function might dispose of some blocks or make some unpurgeable blocks

purgeable. When the function returns, the Memory Manager once again purges and

compacts the heap and tries to reallocate memory. If there is still insufficient memory, the

Memory Manager calls the grow-zone function again (but only if the function returned a

nonzero value the previous time it was called). This mechanism allows your grow-zone

function to release just a little bit of memory at a time. If the amount it releases at any

time is not enough, the Memory Manager calls it again and gives it the opportunity to

take more drastic measures. As the most drastic step to freeing memory in your heap,

you can release the emergency reserve.

Using Memory 1

This section describes how you can use the Memory Manager to perform the most

typical memory management tasks. In particular, this section shows how you can

■ set up your application heap at application launch time

■ determine how much free space is available in your application heap

■ allocate and release blocks of memory in your heap

■ define and install a grow-zone function

The techniques described in this section are designed to minimize fragmentation of your

application heap and to ensure that your application always has sufficient memory to

complete any essential operations. Many of these techniques incorporate the heap

memory cushion and emergency memory reserve discussed in “Low-Memory

Conditions,” beginning on page 1-36.

Note
This section describes relatively simple memory-management
techniques. Depending on the requirements of your application, you
might want to manage your heap memory differently. ◆

Setting Up the Application Heap 1
When the Process Manager launches your application, it calls the Memory Manager to

create and initialize a memory partition for your application. The Process Manager then

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-39

1

Introduction to M
em

ory M
anagem

ent

loads code segments into memory and sets up the stack, heap, and A5 world (including

the jump table) for your application.

To help prevent heap fragmentation, you should also perform some setup of your own

early in your application’s execution. Depending on the needs of your application, you

might want to

■ change the size of your application’s stack

■ expand the heap to the heap limit

■ allocate additional master pointer blocks

The following sections describe in detail how and when to perform these operations.

Changing the Size of the Stack 1

Most applications allocate space on their stack in a predictable way and do not need to

monitor stack space during their execution. For these applications, stack usage usually

reaches a maximum in some heavily nested routine. If the stack in your application can

never grow beyond a certain size, then to avoid collisions between your stack and heap

you simply need to ensure that your stack is large enough to accommodate that size.

If you never encounter system error 28 (generated by the stack sniffer when it detects a

collision between the stack and the heap) during application testing, then you probably

do not need to increase the size of your stack.

Some applications, however, rely heavily on recursive programming techniques, in

which one routine repeatedly calls itself or a small group of routines repeatedly call each

other. In these applications, even routines with just a few local variables can cause stack

overflow, because each time a routine calls itself, a new copy of that routine’s parameters

and variables is appended to the stack. The problem can become particularly acute if one

or more of the local variables is a string, which can require up to 256 bytes of stack space.

You can help prevent your application from crashing because of insufficient stack space

by expanding the size of your stack. If your application does not depend on recursion,

you should do this only if you encounter system error 28 during testing. If your

application does depend on recursion, you might consider expanding the stack so that

your application can perform deeply nested recursive computations. In addition, some

object-oriented languages (for example, C++) allocate space for objects on the stack. If

you are using one of these languages, you might need to expand your stack.

Note
If you are programming in LISP or another language that depends
extensively on recursion, your development system might allocate
memory for local variables in the heap rather than on the stack. If so,
expanding the size of the stack is not helpful. Consult your development
system’s documentation for details on how it allocates memory. ◆

To increase the size of your stack, you simply reduce the size of your heap. Because the

heap cannot grow above the boundary contained in the ApplLimit global variable, you

can lower the value of ApplLimit to limit the heap’s growth. By lowering ApplLimit ,

C H A P T E R 1

Introduction to Memory Management

1-40 Using Memory

technically you are not making the stack bigger; you are just preventing collisions

between it and the heap.

By default, the stack can grow to 8 KB on Macintosh computers without Color

QuickDraw and to 32 KB on computers with Color QuickDraw. (The size of the stack for

a faceless background process is always 8 KB, whether Color QuickDraw is present or

not.) You should never decrease the size of the stack, because future versions of system

software might increase the default amount of space allocated for the stack. For the same

reason, you should not set the stack to a predetermined absolute size or calculate a new

absolute size for the stack based on the microprocessor’s type. If you must modify the

size of the stack, you should increase the stack size only by some relative amount that is

sufficient to meet the increased stack requirements of your application. There is no

maximum size to which the stack can grow.

Listing 1-3 defines a procedure that increases the stack size by a given value. It does so

by determining the current heap limit, subtracting the value of the extraBytes

parameter from that value, and then setting the application limit to the difference.

Listing 1-3 Increasing the amount of space allocated for the stack

PROCEDURE IncreaseStackSize (extraBytes: Size);

BEGIN

SetApplLimit(Ptr(ORD4(GetApplLimit) - extraBytes));

END;

You should call this procedure at the beginning of your application, before you

call the MaxApplZone procedure (as described in the next section). If you call

IncreaseStackSize after you call MaxApplZone , it has no effect, because the

SetApplLimit procedure cannot change the ApplLimit global variable to a value

lower than the current top of the heap.

Note
Some compilers add to the beginning of your application some default
initialization code that automatically calls MaxApplZone . You might
need to specify a compiler directive that turns off such default
initialization if you want to increase the size of the stack. Consult your
development system’s documentation for details. ◆

Expanding the Heap 1

Near the beginning of your application’s execution, before you allocate any memory,

you should call the MaxApplZone procedure to expand the application heap

immediately to the application heap limit. If you do not do this, the Memory Manager

gradually expands your heap as memory needs require. This gradual expansion can

result in significant heap fragmentation if you have previously moved relocatable blocks

to the top of the heap (by calling MoveHHi) and locked them (by calling HLock). When

the heap grows beyond those locked blocks, they are no longer at the top of the heap.

Your heap then remains fragmented for as long as those blocks remain locked.

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-41

1

Introduction to M
em

ory M
anagem

ent

Another advantage to calling MaxApplZone is that doing so is likely to reduce the

number of relocatable blocks that are purged by the Memory Manager. The Memory

Manager expands your heap to fulfill a memory request only after it has exhausted other

methods of obtaining the required amount of space, including compacting the heap and

purging blocks marked as purgeable. By expanding the heap to its limit, you can prevent

the Memory Manager from purging blocks that it otherwise would purge. This, together

with the fact that your heap is expanded only once, can make memory allocation

significantly faster.

Note
As indicated in the previous section, you should call MaxApplZone
only after you have expanded the stack, if necessary. ◆

Allocating Master Pointer Blocks 1

After calling MaxApplZone , you should call the MoreMasters procedure to allocate as

many new nonrelocatable blocks of master pointers as your application is likely to need

during its execution. Each block of master pointers in your application heap contains 64

master pointers. The Operating System allocates one block of master pointers as your

application is loaded into memory, and every relocatable block you allocate needs one

master pointer to reference it.

If, when you allocate a relocatable block, there are no unused master pointers in your

application heap, the Memory Manager automatically allocates a new block of master

pointers. For several reasons, however, you should try to prevent the Memory Manager

from calling MoreMasters for you. First, MoreMasters executes more slowly if it has

to move relocatable blocks up in the heap to make room for the new nonrelocatable

block of master pointers. When your application first starts running, there are no such

blocks that might have to be moved. Second, the new nonrelocatable block of master

pointers is likely to fragment your application heap. At any time the Memory Manager is

forced to call MoreMasters for you, there are already at least 64 relocatable blocks

allocated in your heap. Unless all or most of those blocks are locked high in the heap (an

unlikely situation), the new nonrelocatable block of master pointers might be allocated

above existing relocatable blocks. This increases heap fragmentation.

To prevent this fragmentation, you should call MoreMasters at the beginning of your

application enough times to ensure that the Memory Manager never needs to call it for

you. For example, if your application never allocates more than 300 relocatable blocks in

its heap, then five calls to the MoreMasters should be enough. It’s better to call

MoreMasters too many times than too few, so if your application usually allocates

about 100 relocatable blocks but sometimes might allocate 1000 in a particularly busy

session, you should call MoreMasters enough times at the beginning of the program to

cover the larger figure.

You can determine empirically how many times to call MoreMasters by using a

low-level debugger. First, remove all the calls to MoreMasters from your code and then

give your application a rigorous workout, opening and closing windows, dialog boxes,

and desk accessories as much as any user would. Then, find out from your debugger

how many times the system called MoreMasters . To do so, count the nonrelocatable

C H A P T E R 1

Introduction to Memory Management

1-42 Using Memory

blocks of size $100 bytes (decimal 256, or 64 × 4). Because of Memory Manager size

corrections, you should also count any nonrelocatable blocks of size $108, $10C, or

$110 bytes. (You should also check to make sure that your application doesn’t allocate

other nonrelocatable blocks of those sizes. If it does, subtract the number it allocates from

the total.) Finally, call MoreMasters at least that many times at the beginning of your

application.

Listing 1-4 illustrates a typical sequence of steps to configure your application heap

and stack. The DoSetUpHeap procedure defined there increases the size of the stack by

32 KB, expands the application heap to its new limit, and allocates five additional blocks

of master pointers.

Listing 1-4 Setting up your application heap and stack

PROCEDURE DoSetUpHeap;

CONST

kExtraStackSpace = $8000; {32 KB}

kMoreMasterCalls = 5; {for 320 master ptrs}

VAR

count: Integer;

BEGIN

IncreaseStackSize(kExtraStackSpace); {increase stack size}

MaxApplZone; {extend heap to limit}

FOR count := 1 TO kMoreMasterCalls DO

MoreMasters; {64 more master ptrs}

END;

To reduce heap fragmentation, you should call DoSetUpHeap in a code segment that

you never unload (possibly the main segment) rather than in a special initialization code

segment. This is because MoreMasters allocates a nonrelocatable block. If you call

MoreMasters from a code segment that is later purged, the new master pointer block is

located above the purged space, thereby increasing fragmentation.

Determining the Amount of Free Memory 1
Because space in your heap is limited, you cannot usually honor every user request that

would require your application to allocate memory. For example, every time the user

opens a new window, you probably need to allocate a new window record and other

associated data structures. If you allow the user to open windows endlessly, you risk

running out of memory. This might adversely affect your application’s ability to perform

important operations such as saving existing data in a window.

It is important, therefore, to implement some scheme that prevents your application

from using too much of its own heap. One way to do this is to maintain a memory

cushion that can be used only to satisfy essential memory requests. Before allocating

memory for any nonessential task, you need to ensure that the amount of memory that

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-43

1

Introduction to M
em

ory M
anagem

ent

remains free after the allocation exceeds the size of your memory cushion. You can do

this by calling the function IsMemoryAvailable defined in Listing 1-5.

Listing 1-5 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

The IsMemoryAvailable function calls the Memory Manager’s PurgeSpace

procedure to determine the size of the largest contiguous block that would be available if

the application heap were purged; that size is returned in the contig parameter. If the

size of the potential memory request together with the size of the memory cushion is less

than the value returned in contig , IsMemoryAvailable is set to TRUE, indicating that

it is safe to allocate the specified amount of memory; otherwise, IsMemoryAvailable

returns FALSE.

Notice that the IsMemoryAvailable function does not itself cause the heap to be

purged or compacted; the Memory Manager does so automatically when you actually

attempt to allocate the memory.

Usually, the easiest way to determine how big to make your application’s memory

cushion is to experiment with various values. You should attempt to find the lowest

value that allows your application to execute successfully no matter how hard you try to

allocate memory to make the application crash. As an extra guarantee against your

application’s crashing, you might want to add some memory to this value. As indicated

earlier in this chapter, 40 KB is a reasonable size for most applications.

CONST

kMemCushion = 40 * 1024; {size of memory cushion}

You should call the IsMemoryAvailable function before all nonessential memory

requests, no matter how small. For example, suppose your application allocates a new,

small relocatable block each time a user types a new line of text. That block might be

small, but thousands of such blocks could take up a considerable amount of space.

Therefore, you should check to see if there is sufficient memory available before

allocating each one. (See Listing 1-6 on page 1-44 for an example of how to call

IsMemoryAvailable .)

You should never, however, call the IsMemoryAvailable function before an essential

memory request. When deciding how big to make the memory cushion for your

application, you must make sure that essential requests can never deplete all of the

cushion. Note that when you call the IsMemoryAvailable function for a nonessential

C H A P T E R 1

Introduction to Memory Management

1-44 Using Memory

request, essential requests might have already dipped into the memory cushion. In that

case, IsMemoryAvailable returns FALSE no matter how small the nonessential

request is.

Some actions should never be rejectable. For example, you should guarantee that there is

always enough memory free to save open documents, and to perform typical

maintenance tasks such as updating windows. Other user actions are likely to be always

rejectable. For example, because you cannot allow the user to create an endless number

of documents, you should make the New Document and Open Document menu

commands rejectable.

Although the decisions of which actions to make rejectable are usually obvious, modal

and modeless boxes present special problems. If you want to make such dialog boxes

available at all costs, you must ensure that you allocate a large enough memory cushion

to handle the maximum number of these dialog boxes that the user could open at once.

If you consider a certain dialog box (for instance, a spelling checker) nonessential, you

must be prepared to inform the user that there is not enough memory to open it if

memory space become low.

Allocating Blocks of Memory 1
As you have seen, a key element of the memory-management scheme presented in this

chapter is to disallow any nonessential memory allocation requests that would deplete

the memory cushion. In practice, this means that, before calling NewHandle , NewPtr , or

another function that allocates memory, you should check that the amount of space

remaining after the allocation, if successful, exceeds the size of the memory cushion.

An easy way to do this is never to allocate memory for nonessential tasks by calling

NewHandle or NewPtr directly. Instead call a function such as NewHandleCushion ,

defined in Listing 1-6, or NewPtrCushion , defined in Listing 1-7.

Listing 1-6 Allocating relocatable blocks

FUNCTION NewHandleCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewHandleCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewHandleCushion := NewHandleClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

The NewHandleCushion function first calls IsMemoryAvailable to determine

whether allocating the requested number of bytes would deplete the memory cushion.

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-45

1

Introduction to M
em

ory M
anagem

ent

If so, NewHandleCushion returns NIL to indicate that the request has failed. Otherwise,

if there is indeed sufficient space for the new block, NewHandleCushion calls

NewHandleClear to allocate the relocatable block. Before calling NewHandleClear ,

however, NewHandleCushion disables the grow-zone function for the application

heap. This prevents the grow-zone function from releasing any emergency memory

reserve your application might be maintaining. See “Defining a Grow-Zone Function”

on page 1-48 for details on grow-zone functions.

You can define a function NewPtrCushion to handle allocation of nonrelocatable

blocks, as shown in Listing 1-7.

Listing 1-7 Allocating nonrelocatable blocks

FUNCTION NewPtrCushion (logicalSize: Size): Handle;

BEGIN

IF NOT IsMemoryAvailable(logicalSize) THEN

NewPtrCushion := NIL

ELSE

BEGIN

SetGrowZone(NIL); {remove grow-zone function}

NewPtrCushion := NewPtrClear(logicalSize);

SetGrowZone(@MyGrowZone); {install grow-zone function}

END;

END;

Note
The functions NewHandleCushion and NewPtrCushion allocate
prezeroed blocks in your application heap. You can easily modify those
functions if you do not want the blocks prezeroed. ◆

Listing 1-8 illustrates a typical way to call NewPtrCushion .

Listing 1-8 Allocating a dialog record

FUNCTION GetDialog (dialogID: Integer): DialogPtr;

VAR

myPtr: Ptr; {storage for the dialog record}

BEGIN

myPtr := NewPtrCushion(SizeOf(DialogRecord));

IF MemError = noErr THEN

GetDialog := GetNewDialog(dialogID, myPtr, WindowPtr(-1))

ELSE

GetDialog := NIL; {can’t get memory}

END;

C H A P T E R 1

Introduction to Memory Management

1-46 Using Memory

When you allocate memory directly, you can later release it by calling the

DisposeHandle and DisposePtr procedures. When you allocate memory indirectly

by calling a Toolbox routine, there is always a corresponding Toolbox routine to release

that memory. For example, the DisposeWindow procedure releases memory allocated

with the NewWindow function. Be sure to use these special Toolbox routines instead of

the generic Memory Manager routines when applicable.

Maintaining a Memory Reserve 1
A simple way to help ensure that your application always has enough memory available

for essential operations is to maintain an emergency memory reserve. This memory

reserve is a block of memory that your application uses only for essential operations and

only when all other heap space has been allocated. This section illustrates one way to

implement a memory reserve in your application.

To create and maintain an emergency memory reserve, you follow three distinct steps:

■ When your application starts up, you need to allocate a block of reserve memory.
Because you allocate the block, it is no longer free in the heap and does not enter into
the free-space determination done by IsMemoryAvailable .

■ When your application needs to fulfill an essential memory request and there isn’t
enough space in your heap to satisfy the request, you can release the reserve. This
effectively ensures that you always have the memory you request, at least for essential
operations. You can use a grow-zone function to release the reserve when necessary;
see “Defining a Grow-Zone Function” on page 1-48 for details.

■ Each time through your main event loop, you should check whether the reserve has
been released. If it has, you should attempt to recover the reserve. If you cannot
recover the reserve, you should warn the user that memory is critically short.

To refer to the emergency reserve, you can declare a global variable of type Handle .

VAR

gEmergencyMemory: Handle; {handle to emergency memory reserve}

Listing 1-9 defines a function that you can call early in your application’s execution

(before entering your main event loop) to create an emergency memory reserve. This

function also installs the application-defined grow-zone procedure. See “Defining a

Grow-Zone Function” on page 1-48 for a description of the grow-zone function.

Listing 1-9 Creating an emergency memory reserve

PROCEDURE InitializeEmergencyMemory;

BEGIN

gEmergencyMemory := NewHandle(kEmergencyMemorySize);

SetGrowZone(@MyGrowZone);

END;

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-47

1

Introduction to M
em

ory M
anagem

ent

The InitializeEmergencyMemory procedure defined in Listing 1-9 simply allocates

a relocatable block of a predefined size. That block is the emergency memory reserve.

A reasonable size for the memory reserve is whatever size you use for the memory

cushion. Once again, 40 KB is a good size for many applications.

CONST

kEmergencyMemorySize = 40 * 1024; {size of memory reserve}

When using a memory reserve, you need to change the IsMemoryAvailable function

defined earlier in Listing 1-5. You need to make sure, when determining whether a

nonessential memory allocation request should be honored, that the memory reserve has

not been released. To check that the memory reserve is intact, use the function

IsEmergencyMemory defined in Listing 1-10.

Listing 1-10 Checking the emergency memory reserve

FUNCTION IsEmergencyMemory: Boolean;

BEGIN

IsEmergencyMemory :=

(gEmergencyMemory <> NIL) & (gEmergencyMemory^ <> NIL);

END;

Then, you can replace the function IsMemoryAvailable defined in Listing 1-5

(page 1-43) by the version defined in Listing 1-11.

Listing 1-11 Determining whether allocating memory would deplete the memory cushion

FUNCTION IsMemoryAvailable (memRequest: LongInt): Boolean;

VAR

total: LongInt; {total free memory if heap purged}

contig: LongInt; {largest contiguous block if heap purged}

BEGIN

IF NOT IsEmergencyMemory THEN {is emergency memory available?}

IsMemoryAvailable := FALSE

ELSE

BEGIN

PurgeSpace(total, contig);

IsMemoryAvailable := ((memRequest + kMemCushion) < contig);

END;

END;

As you can see, this is exactly like the earlier version except that it indicates that memory

is not available if the memory reserve is not intact.

C H A P T E R 1

Introduction to Memory Management

1-48 Using Memory

Once you have allocated the memory reserve early in your application’s execution, it

should be released only to honor essential memory requests when there is no other space

available in your heap. You can install a simple grow-zone function that takes care of

releasing the reserve at the proper moment. Each time through your main event loop,

you can check whether the reserve is still intact; to do this, add these lines of code to

your main event loop, before you make your event call:

IF NOT IsEmergencyMemory THEN

RecoverEmergencyMemory;

The RecoverEmergencyMemory function, defined in Listing 1-12, simply attempts to

reallocate the memory reserve.

Listing 1-12 Reallocating the emergency memory reserve

PROCEDURE RecoverEmergencyMemory;

BEGIN

ReallocateHandle(gEmergencyMemory, kEmergencyMemorySize);

END;

If you are unable to reallocate the memory reserve, you might want to notify the user

that because memory is in short supply, steps should be taken to save any important

data and to free some memory.

Defining a Grow-Zone Function 1
The Memory Manager calls your heap’s grow-zone function only after other attempts to

obtain enough memory to satisfy a memory allocation request have failed. A grow-zone

function should be of the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

The Memory Manager passes to your function (in the cbNeeded parameter) the number

of bytes it needs. Your function can do whatever it likes to free that much space in the

heap. For example, your grow-zone function might dispose of certain blocks or make

some unpurgeable blocks purgeable. Your function should return the number of bytes, if

any, it managed to free.

When the function returns, the Memory Manager once again purges and compacts the

heap and tries again to allocate the requested amount of memory. If there is still

insufficient memory, the Memory Manager calls your grow-zone function again, but

only if the function returned a nonzero value when last called. This mechanism allows

your grow-zone function to release memory gradually; if the amount it releases is not

enough, the Memory Manager calls it again and gives it the opportunity to take more

drastic measures.

C H A P T E R 1

Introduction to Memory Management

Using Memory 1-49

1

Introduction to M
em

ory M
anagem

ent

Typically a grow-zone function frees space by calling the EmptyHandle procedure,

which purges a relocatable block from the heap and sets the block’s master pointer to

NIL . This is preferable to disposing of the space (by calling the DisposeHandle

procedure), because you are likely to want to reallocate the block.

The Memory Manager might designate a particular relocatable block in the heap as

protected; your grow-zone function should not move or purge that block. You can

determine which block, if any, the Memory Manager has protected by calling the

GZSaveHnd function in your grow-zone function.

Listing 1-13 defines a very basic grow-zone function. The MyGrowZone function

attempts to create space in the application heap simply by releasing the block of

emergency memory. First, however, it checks that (1) the emergency memory hasn’t

already been released and (2) the emergency memory is not a protected block of memory

(as it would be, for example, during an attempt to reallocate the emergency memory

block). If either of these conditions isn’t true, then MyGrowZone returns 0 to indicate that

no memory was released.

Listing 1-13 A grow-zone function that releases emergency storage

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

VAR

theA5: LongInt; {value of A5 when function is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF (gEmergencyMemory^ <> NIL) & (gEmergencyMemory <> GZSaveHnd) THEN

BEGIN

EmptyHandle(gEmergencyMemory);

MyGrowZone := kEmergencyMemorySize;

END

ELSE

MyGrowZone := 0; {no more memory to release}

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The function MyGrowZone defined in Listing 1-13 saves the current value of the A5

register when it begins and then restores the previous value before it exits. This is

necessary because your grow-zone function might be called at a time when the system is

attempting to allocate memory and value in the A5 register is not correct. See the chapter

“Memory Management Utilities” in this book for more information about saving and

restoring the A5 register.

Note
You need to save and restore the A5 register only if your grow-zone
function accesses your A5 world. (In Listing 1-13, the grow-zone
function uses the global variable gEmergencyMemory .) ◆

C H A P T E R 1

Introduction to Memory Management

1-50 Memory Management Reference

Memory Management Reference 1

This section describes the routines used to illustrate the memory-management

techniques presented earlier in this chapter. In particular, it describes the routines that

allow you to manipulate blocks of memory in your application heap.

Note
For a complete description of all Memory Manager data types and
routines, see the chapter “Memory Manager” in this book. ◆

Memory Management Routines 1

This section describes the routines you can use to set up your application’s heap, allocate

and dispose of relocatable and nonrelocatable blocks, manipulate those blocks, assess the

availability of memory in your application’s heap, free memory from the heap, and

install a grow-zone function for your heap.

Note
The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MemError
function (or, from assembly language, inspect the MemErr global
variable) to get a routine’s result code. ◆

You cannot call most Memory Manager routines at interrupt time for several reasons.

You cannot allocate memory at interrupt time because the Memory Manager might

already be handling a memory-allocation request and the heap might be in an

inconsistent state. More generally, you cannot call at interrupt time any Memory

Manager routine that returns its result code via the MemError function, even if that

routine doesn’t allocate or move memory. Resetting the MemErr global variable at

interrupt time can lead to unexpected results if the interrupted code depends on the

value of MemErr. Note that Memory Manager routines like HLock return their results

via MemError and therefore should not be called in interrupt code.

Setting Up the Application Heap 1

The Operating System automatically initializes your application’s heap when your

application is launched. To help prevent heap fragmentation, you should call the

procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxApplZone procedure to extend the application heap zone to the application

heap limit so that the Memory Manager does not do so gradually as memory requests

require. Use the MoreMasters procedure to preallocate enough blocks of master

pointers so that the Memory Manager never needs to allocate new master pointer blocks

for you.

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-51

1

Introduction to M
em

ory M
anagem

ent

MaxApplZone 1

To help ensure that you can use as much of the application heap zone as possible, call the

MaxApplZone procedure. Call this once near the beginning of your program, after you

have expanded your stack.

PROCEDURE MaxApplZone;

DESCRIPTION

The MaxApplZone procedure expands the application heap zone to the application heap

limit. If you do not call MaxApplZone , the application heap zone grows as necessary to

fulfill memory requests. The MaxApplZone procedure does not purge any blocks

currently in the zone. If the zone already extends to the limit, MaxApplZone does

nothing.

It is a good idea to call MaxApplZone once at the beginning of your program if you

intend to maintain an effectively partitioned heap. If you do not call MaxApplZone and

then call MoveHHi to move relocatable blocks to the top of the heap zone before locking

them, the heap zone could later grow beyond these locked blocks to fulfill a memory

request. If the Memory Manager were to allocate a nonrelocatable block in this new

space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxApplZone are

RESULT CODES

MoreMasters 1

Call the MoreMasters procedure several times at the beginning of your program to

prevent the Memory Manager from running out of master pointers in the middle of

application execution. If it does run out, it allocates more, possibly causing heap

fragmentation.

PROCEDURE MoreMasters;

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 1

Introduction to Memory Management

1-52 Memory Management Reference

DESCRIPTION

The MoreMasters procedure allocates another block of master pointers in the current

heap zone. In the application heap, a block of master pointers consists of 64 master

pointers, and in the system heap, a block consists of 32 master pointers. (These values,

however, might change in future versions of system software.) When you initialize

additional heap zones, you can specify the number of master pointers you want to have

in a block of master pointers.

The Memory Manager automatically calls MoreMasters once for every new heap zone,

including the application heap zone.

You should call MoreMasters at the beginning of your program enough times to ensure

that the Memory Manager never needs to call it for you. For example, if your application

never allocates more than 300 relocatable blocks in its heap zone, then five calls to the

MoreMasters should be enough. It’s better to call MoreMasters too many times than

too few. For instance, if your application usually allocates about 100 relocatable blocks

but might allocate 1000 in a particularly busy session, call MoreMasters enough times

at the beginning of the program to accommodate times of greater memory use.

If you are forced to call MoreMasters so many times that it causes a significant

slowdown, you could change the moreMast field of the zone header to the total number

of master pointers you need and then call MoreMasters just once. Afterward, be sure to

restore the moreMast field to its original value.

SPECIAL CONSIDERATIONS

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main

code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MoreMasters are

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-53

1

Introduction to M
em

ory M
anagem

ent

GetApplLimit 1

Use the GetApplLimit function to get the application heap limit, beyond which the

application heap cannot expand.

FUNCTION GetApplLimit: Ptr;

DESCRIPTION

The GetApplLimit function returns the current application heap limit. The Memory

Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating

System detects that the stack has crashed into the heap, it generates a system error. To

avoid this, use GetApplLimit and the SetApplLimit procedure to set the application

limit low enough so that a growing stack does not encounter the heap.

Note
The GetApplLimit function does not indicate the amount of memory
available to your application. ◆

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplLimit contains the current application heap limit.

SetApplLimit 1

Use the SetApplLimit procedure to set the application heap limit, beyond which the

application heap cannot expand.

PROCEDURE SetApplLimit (zoneLimit: Ptr);

zoneLimit A pointer to a byte in memory demarcating the upper boundary of the
application heap zone. The zone can grow to include the byte preceding
zoneLimit in memory, but no further.

DESCRIPTION

The SetApplLimit procedure sets the current application heap limit to zoneLimit .

The Memory Manager then can expand the application heap only up to the byte

C H A P T E R 1

Introduction to Memory Management

1-54 Memory Management Reference

preceding the application limit. If the zone already extends beyond the specified limit,

the Memory Manager does not cut it back but does prevent it from growing further.

Note
The zoneLimit parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the SetApplLimit procedure only with
a value obtained from the Memory Manager functions GetApplLimit
or ApplicationZone . ◆

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetApplLimit are

RESULT CODES

SEE ALSO

To use SetApplLimit to expand the default size of the stack, see the discussion in

“Changing the Size of the Stack” on page 1-39.

Allocating and Releasing Relocatable Blocks of Memory 1

You can use the NewHandle function to allocate a relocatable block of memory. If you

want to allocate new blocks of memory with their bits precleared to 0, you can use the

NewHandleClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposeHandle procedure to free relocatable blocks of memory you

have allocated.

Registers on entry

A0 Pointer to desired new zone limit

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-55

1

Introduction to M
em

ory M
anagem

ent

NewHandle 1

You can use the NewHandle function to allocate a relocatable memory block of a

specified size.

FUNCTION NewHandle (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandle function attempts to allocate a new relocatable block in the current heap

zone with a logical size of logicalSize bytes and then return a handle to the block.

The new block is unlocked and unpurgeable. If NewHandle cannot allocate a block of

the requested size, it returns NIL .

▲ W A R N I N G

Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Ptr to a variable of
type Handle . The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. ▲

The NewHandle function pursues all available avenues to create a block of the requested

size, including compacting the heap zone, increasing its size, and purging blocks from it.

If all of these techniques fail and the heap zone has a grow-zone function installed,

NewHandle calls the function. Then NewHandle tries again to free the necessary amount

of memory, once more compacting and purging the heap zone if necessary. If memory

still cannot be allocated, NewHandle calls the grow-zone function again, unless that

function had returned 0, in which case NewHandle gives up and returns NIL .

SPECIAL CONSIDERATIONS

Because NewHandle allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewHandle are

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or NIL

D0 Result code

C H A P T E R 1

Introduction to Memory Management

1-56 Memory Management Reference

If you want to clear the bytes of a block of memory to 0 when you allocate it with the

NewHandle function, set bit 9 of the routine trap word. You can usually do this by

supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandle ,CLEAR

RESULT CODES

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can

prevent heap fragmentation by allocating the block as low as possible in the heap zone.

To do this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you might want to move

it to the top of the heap zone to prevent heap fragmentation. For more information, see

the description of the MoveHHi procedure on page 1-71.

NewHandleClear 1

You can use the NewHandleClear function to allocate prezeroed memory in a

relocatable block of a specified size.

FUNCTION NewHandleClear (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleClear function works much as the NewHandle function does but sets

all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHandleClear clears the block one byte at a time. For a large block, it

might be faster to clear the block manually a long word at a time.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-57

1

Introduction to M
em

ory M
anagem

ent

DisposeHandle 1

When you are completely done with a relocatable block, call the DisposeHandle

procedure to free it and its master pointer for other uses.

PROCEDURE DisposeHandle (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The DisposeHandle procedure releases the memory occupied by the relocatable block

whose handle is h. It also frees the handle’s master pointer for other uses.

▲ W A R N I N G

After a call to DisposeHandle , all handles to the released block
become invalid and should not be used again. Any subsequent calls to
DisposeHandle using an invalid handle might damage the master
pointer list. ▲

Do not use DisposeHandle to dispose of a handle obtained from the Resource

Manager (for example, by a previous call to GetResource); use ReleaseResource

instead. If, however, you have called DetachResource on a resource handle, you

should dispose of the storage by calling DisposeHandle .

SPECIAL CONSIDERATIONS

Because DisposeHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposeHandle are

RESULT CODES

Registers on entry

A0 Handle to the relocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

1-58 Memory Management Reference

Allocating and Releasing Nonrelocatable Blocks of Memory 1

You can use the NewPtr function to allocate a nonrelocatable block of memory. If you

want to allocate new blocks of memory with their bits precleared to 0, you can use the

NewPtrClear function.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposePtr procedure to free nonrelocatable blocks of memory you

have allocated.

NewPtr 1

You can use the NewPtr function to allocate a nonrelocatable block of memory of a

specified size.

FUNCTION NewPtr (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtr function attempts to allocate, in the current heap zone, a nonrelocatable

block with a logical size of logicalSize bytes and then return a pointer to the block. If

the requested number of bytes cannot be allocated, NewPtr returns NIL .

The NewPtr function attempts to reserve space as low in the heap zone as possible for

the new block. If it is able to reserve the requested amount of space, NewPtr allocates the

nonrelocatable block in the gap ReserveMem creates. Otherwise, NewPtr returns NIL

and generates a memFullErr error.

SPECIAL CONSIDERATIONS

Because NewPtr allocates memory, you should not call it at interrupt time.

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-59

1

Introduction to M
em

ory M
anagem

ent

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewPtr are

If you want to clear the bytes of a block of memory to 0 when you allocate it with the

NewPtr function, set bit 9 of the routine trap word. You can usually do this by supplying

the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr ,CLEAR

RESULT CODES

NewPtrClear 1

You can use the NewPtrClear function to allocate prezeroed memory in a

nonrelocatable block of a specified size.

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrClear function works much as the NewPtr function does, but sets all bytes

in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewPtrClear clears the block one byte at a time. For a large block, it might

be faster to clear the block manually a long word at a time.

RESULT CODES

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or NIL

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 1

Introduction to Memory Management

1-60 Memory Management Reference

DisposePtr 1

When you are completely done with a nonrelocatable block, call the DisposePtr

procedure to free it for other uses.

PROCEDURE DisposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

DESCRIPTION

The DisposePtr procedure releases the memory occupied by the nonrelocatable block

specified by p.

▲ W A R N I N G

After a call to DisposePtr , all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. ▲

SPECIAL CONSIDERATIONS

Because DisposePtr purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposePtr are

RESULT CODES

Setting the Properties of Relocatable Blocks 1

A relocatable block can be either locked or unlocked and either purgeable or

unpurgeable. In addition, it can have its resource bit either set or cleared. To determine

the state of any of these properties, use the HGetState function. To change these

Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-61

1

Introduction to M
em

ory M
anagem

ent

properties, use the HLock , HUnlock , HPurge , HNoPurge , HSetRBit , and HClrRBit

procedures. To restore these properties, use the HSetState procedure.

▲ W A R N I N G

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. ▲

HGetState 1

You can use the HGetState function to get the current properties of a relocatable block

(perhaps so that you can change and then later restore those properties).

FUNCTION HGetState (h: Handle): SignedByte;

h A handle to a relocatable block.

DESCRIPTION

The HGetState function returns a signed byte containing the flags of the master pointer

for the given handle. You can save this byte, change the state of any of the flags, and

then restore their original states by passing the byte to the HSetState procedure,

described next.

You can use bit-manipulation functions on the returned signed byte to determine the

value of a given attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable

block, HGetState returns the low-order byte of the result code as its function result. For

example, if the handle h points to a master pointer whose value is NIL , then the signed

byte returned by HGetState will contain the value –109.

Bit Meaning

0–4 Reserved

5 Set if relocatable block is a resource

6 Set if relocatable block is purgeable

7 Set if relocatable block is locked

C H A P T E R 1

Introduction to Memory Management

1-62 Memory Management Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HGetState are

RESULT CODES

HSetState 1

You can use the HSetState procedure to restore properties of a block after a call to

HGetState .

PROCEDURE HSetState (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.

DESCRIPTION

The HSetState procedure restores to the handle h the properties specified in the flags

signed byte. See the description of the HGetState function for a list of the currently

used bits in that byte. Because additional bits of the flags byte could become significant

in future versions of system software, use HSetState only with a byte returned by

HGetState . If you need to set two or three properties of a relocatable block at once, it is

better to use the procedures that set individual properties than to manipulate the bits

returned by HGetState and then call HSetState .

Registers on entry

A0 Handle whose properties you want to get

Registers on exit

D0 Byte containing flags

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-63

1

Introduction to M
em

ory M
anagem

ent

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetState are

RESULT CODES

HLock 1

You can use the HLock procedure to lock a relocatable block so that it does not move in

the heap. If you plan to dereference a handle and then allocate, move, or purge memory

(or call a routine that does so), then you should lock the handle before using the

dereferenced handle.

PROCEDURE HLock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it

from being moved within its heap zone. If the block is already locked, HLock does

nothing.

Registers on entry

A0 Handle whose properties you want to set

D0 Byte containing flags indicating the handle’s new properties

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

1-64 Memory Management Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLock are

RESULT CODES

SEE ALSO

If you plan to lock a relocatable block for long periods of time, you can prevent

fragmentation by ensuring that the block is as low as possible in the heap zone. To do

this, see the description of the ReserveMem procedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you can prevent heap

fragmentation by moving the block to the top of the heap zone before locking. For more

information, see the description of the MoveHHi procedure on page 1-71.

HUnlock 1

You can use the HUnlock procedure to unlock a relocatable block so that it is free to

move in its heap zone.

PROCEDURE HUnlock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HUnlock procedure unlocks the relocatable block to which h is a handle, allowing it

to be moved within its heap zone. If the block is already unlocked, HUnlock does

nothing.

Registers on entry

A0 Handle to lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-65

1

Introduction to M
em

ory M
anagem

ent

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HUnlock are

RESULT CODES

HPurge 1

You can use the HPurge procedure to mark a relocatable block so that it can be purged if

a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HPurge procedure makes the relocatable block to which h is a handle purgeable. If

the block is already purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone

containing the block to satisfy a memory request. A direct call to the PurgeMem

procedure or the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to

the block are not empty before you access the block. If they are empty, you must

reallocate space for the block and recopy the block’s data from another source, such as a

resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does

mark it as purgeable. If you later call HUnlock on h, the block is subject to purging.

Registers on entry

A0 Handle to unlock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

1-66 Memory Management Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HPurge are

RESULT CODES

SEE ALSO

If the Memory Manager has purged a block, you can reallocate space for it by using the

ReallocateHandle procedure, described on page 1-68.

You can immediately free the space taken by a handle without disposing of it by calling

EmptyHandle . This procedure, described on page 1-67, does not require that the block

be purgeable.

HNoPurge 1

You can use the HNoPurge procedure to mark a relocatable block so that it cannot be

purged.

PROCEDURE HNoPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HNoPurge procedure makes the relocatable block to which h is a handle

unpurgeable. If the block is already unpurgeable, HNoPurge does nothing.

The HNoPurge procedure does not reallocate memory for a handle if it has already

been purged.

Registers on entry

A0 Handle to make purgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-67

1

Introduction to M
em

ory M
anagem

ent

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HNoPurge are

RESULT CODES

SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged,

you can use the ReallocateHandle procedure, described in the next section,

“Managing Relocatable Blocks.”

Managing Relocatable Blocks 1

The Memory Manager provides routines that allow you to purge and later reallocate

space for relocatable blocks and control where in their heap zone relocatable blocks are

located.

To free the memory taken up by a relocatable block without releasing the master pointer

to the block for other uses, use the EmptyHandle procedure. To reallocate space for a

handle that you have emptied or the Memory Manager has purged, use the

ReallocateHandle procedure.

To ensure that a relocatable block that you plan to lock for short or long periods of time

does not cause heap fragmentation, use the MoveHHi and the ReserveMem procedures,

respectively.

EmptyHandle 1

The EmptyHandle procedure allows you to free memory taken by a relocatable block

without freeing the relocatable block’s master pointer for other uses.

PROCEDURE EmptyHandle (h: Handle);

h A handle to a relocatable block.

Registers on entry

A0 Handle to make unpurgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 1

Introduction to Memory Management

1-68 Memory Management Reference

DESCRIPTION

The EmptyHandle procedure purges the relocatable block whose handle is h and sets

the handle’s master pointer to NIL . The block whose handle is h must be unlocked but

need not be purgeable.

Note
If there are multiple handles to the relocatable block, then calling
the EmptyHandle procedure empties them all, because all of the
handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. ◆

SPECIAL CONSIDERATIONS

Because EmptyHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for EmptyHandle are

RESULT CODES

SEE ALSO

To free the memory taken up by a relocatable block and release the block’s master

pointer for other uses, use the DisposeHandle procedure, described on page 1-57.

ReallocateHandle 1

To recover space for a relocatable block that you have emptied or the Memory Manager

has purged, use the ReallocateHandle procedure.

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

Registers on entry

A0 Handle to relocatable block

Registers on exit

A0 Handle to relocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-69

1

Introduction to M
em

ory M
anagem

ent

h A handle to a relocatable block.

logicalSize
The desired new logical size (in bytes) of the relocatable block.

DESCRIPTION

The ReallocateHandle procedure allocates a new relocatable block with a logical size

of logicalSize bytes. It updates the handle h by setting its master pointer to point to

the new block. The new block is unlocked and unpurgeable.

Usually you use ReallocateHandle to reallocate space for a block that you have

emptied or the Memory Manager has purged. If the handle references an existing block,

ReallocateHandle releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResource , not ReallocateHandle . ◆

If many handles reference a single purged, relocatable block, you need to call

ReallocateHandle on just one of them.

In case of an error, ReallocateHandle neither allocates a new block nor changes the

master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because ReallocateHandle might purge and allocate memory, you should not call it

at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReallocateHandle are

RESULT CODES

Registers on entry

A0 Handle for new relocatable block

D0 Desired logical size, in bytes, of new block

Registers on exit

D0 Result code

noErr 0 No error
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block

C H A P T E R 1

Introduction to Memory Management

1-70 Memory Management Reference

ReserveMem 1

Use the ReserveMem procedure when you allocate a relocatable block that you intend to

lock for long periods of time. This helps prevent heap fragmentation because it reserves

space for the block as close to the bottom of the heap as possible. Consistent use of

ReserveMem for this purpose ensures that all locked, relocatable blocks and

nonrelocatable blocks are together at the bottom of the heap zone and thus do not

prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The ReserveMem procedure attempts to create free space for a block of cbNeeded

contiguous logical bytes at the lowest possible position in the current heap zone. It

pursues every available means of placing the block as close as possible to the bottom of

the zone, including moving other relocatable blocks upward, expanding the zone (if

possible), and purging blocks from it.

Because ReserveMem does not actually allocate the block, you must combine calls to

ReserveMem with calls to the NewHandle function.

Do not use the ReserveMem procedure for a relocatable block you intend to lock for

only a short period of time. If you do so and then allocate a nonrelocatable block above

it, the relocatable block becomes trapped under the nonrelocatable block when you

unlock that relocatable block.

Note
It isn’t necessary to call ReserveMem to reserve space for a
nonrelocatable block, because the NewPtr function calls it automatically.
Also, you do not need to call ReserveMem to reserve memory before
you load a locked resource into memory, because the Resource Manager
calls ReserveMem automatically. ◆

SPECIAL CONSIDERATIONS

Because the ReserveMem procedure could move and purge memory, you should not call

it at interrupt time.

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-71

1

Introduction to M
em

ory M
anagem

ent

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReserveMem are

RESULT CODES

MoveHHi 1

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap

fragmentation.

PROCEDURE MoveHHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The MoveHHi procedure attempts to move the relocatable block referenced by the handle

h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of

the heap.

▲ W A R N I N G

If you call MoveHHi to move a handle to a resource that has its
resChanged bit set, the Resource Manager updates the resource by
using the WriteResource procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure SetResPurge(FALSE) before you call MoveHHi , and then
call SetResPurge(TRUE) to restore the default setting. ▲

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short

periods of time, you help prevent islands of immovable memory from accumulating in

(and thus fragmenting) the heap.

Registers on entry

D0 Number of bytes to reserve

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 1

Introduction to Memory Management

1-72 Memory Management Reference

Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of

time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps

preventing other blocks already at the top of the heap from moving down once they are

unlocked. Instead, use the ReserveMem procedure before allocating such blocks, thus

keeping them in the bottom partition of the heap, where they do not prevent relocatable

blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always

locked and calling the ReserveMem procedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the

Memory Manager to move it back to the middle partition as soon as it can. (The

MoveHHi procedure cannot move locked blocks; be sure to lock blocks after, not before,

calling MoveHHi .)

Note
Using the MoveHHi procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHHi from moving blocks to the top of
the heap. ◆

SPECIAL CONSIDERATIONS

Because the MoveHHi procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHHi on blocks in the system heap. Don’t call MoveHHi from a desk

accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for MoveHHi are

RESULT CODES

Registers on entry

A0 Handle to move

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memLockedErr –117 Block is locked

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-73

1

Introduction to M
em

ory M
anagem

ent

HLockHi 1

You can use the HLockHi procedure to move a relocatable block to the top of the heap

and lock it.

PROCEDURE HLockHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle

h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of

the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures

MoveHHi and HLock .

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockHi from a desk

accessory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLockHi are

RESULT CODES

Manipulating Blocks of Memory 1

The Memory Manager provides a routine for copying blocks of memory referenced by

pointers. To copy a block of memory to a nonrelocatable block, you can use the

BlockMove procedure.

Registers on entry

A0 Handle to move and lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memLockedErr –117 Block is locked

C H A P T E R 1

Introduction to Memory Management

1-74 Memory Management Reference

BlockMove 1

To copy a sequence of bytes from one location in memory to another, you can use the

BlockMove procedure.

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.

destPtr The address of the first byte to copy to.

byteCount The number of bytes to copy. If the value of byteCount is 0, BlockMove
does nothing.

DESCRIPTION

The BlockMove procedure moves a block of byteCount consecutive bytes from the

address designated by sourcePtr to that designated by destPtr . It updates no

pointers.

The BlockMove procedure works correctly even if the source and destination blocks

overlap.

SPECIAL CONSIDERATIONS

You can safely call BlockMove at interrupt time. Even though it moves memory,

BlockMove does not move relocatable blocks, but simply copies bytes.

The BlockMove procedure currently flushes the processor caches whenever the number

of bytes to be moved is greater than 12. This behavior can adversely affect your

application’s performance. You might want to avoid calling BlockMove to move small

amounts of data in memory if there is no possibility of moving stale data or instructions.

For more information about stale data and instructions, see the discussion of the

processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for BlockMove are

Registers on entry

A0 Pointer to source

A1 Pointer to destination

D0 Number of bytes to copy

Registers on exit

D0 Result code

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-75

1

Introduction to M
em

ory M
anagem

ent

RESULT CODE

Assessing Memory Conditions 1

The Memory Manager provides routines to test how much memory is available. To

determine the total amount of free space in the current heap zone or the size of the

maximum block that could be obtained after a purge of the heap, call the PurgeSpace

function.

To find out whether a Memory Manager operation finished successfully, use the

MemError function.

PurgeSpace 1

Use the PurgeSpace procedure to determine the total amount of free memory and the

size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

total On exit, the total amount of free memory in the current heap zone if it
were purged.

contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

DESCRIPTION

The PurgeSpace procedure returns, in the total parameter, the total amount of space

(in bytes) that could be obtained after a general purge of the current heap zone; this

amount includes space that is already free. In the contig parameter, PurgeSpace

returns the size of the largest allocatable block in the current heap zone that could be

obtained after a purge of the zone.

The PurgeSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for PurgeSpace are

RESULT CODES

noErr 0 No error

Registers on exit

A0 Maximum number of contiguous bytes after purge

D0 Total free memory after purge

noErr 0 No error

C H A P T E R 1

Introduction to Memory Management

1-76 Memory Management Reference

MemError 1

To find out whether your application’s last direct call to a Memory Manager routine

executed successfully, use the MemError function.

FUNCTION MemError: OSErr;

DESCRIPTION

The MemError function returns the result code produced by the last Memory Manager

routine your application called directly.

This function is useful during application debugging. You might also use the function as

one part of a memory-management scheme to identify instances in which the Memory

Manager rejects overly large memory requests by returning the error code memFullErr .

▲ W A R N I N G

Do not rely on the MemError function as the only component of a
memory-management scheme. For example, suppose you call
NewHandle or NewPtr and receive the result code noErr , indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on MemError ,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. ▲

ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register D0, you do not

ordinarily need to call the MemError function if you program in assembly language. See

the description of an individual routine to find out whether it returns a result code in

register D0. If not, you can examine the global variable MemErr. When MemError

returns, register D0 contains the result code.

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-77

1

Introduction to M
em

ory M
anagem

ent

Grow-Zone Operations 1

You can implement a grow-zone function that the Memory Manager calls when it cannot

fulfill a memory request. You should use the grow-zone function only as a last resort to

free memory when all else fails.

The SetGrowZone procedure specifies which function the Memory Manager should use

for the current zone. The grow-zone function should call the GZSaveHnd function to

receive a handle to a relocatable block that the grow-zone function must not move

or purge.

SetGrowZone 1

To specify a grow-zone function for the current heap zone, pass a pointer to that function

to the SetGrowZone procedure. Ordinarily, you call this procedure early in the

execution of your application.

If you initialize your own heap zones besides the application and system zones, you can

alternatively specify a grow-zone function as a parameter to the InitZone procedure.

PROCEDURE SetGrowZone (growZone: ProcPtr);

growZone A pointer to the grow-zone function.

DESCRIPTION

The SetGrowZone procedure sets the current heap zone’s grow-zone function as

designated by the growZone parameter. A NIL parameter value removes any grow-zone

function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other

avenues of satisfying a memory request, including compacting the zone, increasing its

size (if it is the original application zone and is not yet at its maximum size), and purging

blocks from it.

See “Grow-Zone Functions” on page 1-80 for a complete description of a grow-zone

function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetGrowZone are

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit

D0 Result code

C H A P T E R 1

Introduction to Memory Management

1-78 Memory Management Reference

RESULT CODES

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a description of a grow-zone

function.

GZSaveHnd 1

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a

protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTION GZSaveHnd: Handle;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone

function must not move, purge, or delete. It returns NIL if there is no such block. The

returned handle is a handle to the block of memory being manipulated by the Memory

Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRootHnd.

Setting and Restoring the A5 Register 1

Any code that runs asynchronously or as a callback routine and that accesses the calling

application’s A5 world must ensure that the A5 register correctly points to the boundary

between the application parameters and the application global variables. To accomplish

this, you can call the SetCurrentA5 function at the beginning of any asynchronous or

callback code that isn’t executed at interrupt time. If the code is executed at interrupt

time, you must use the SetA5 function to set the value of the A5 register. (You determine

this value at noninterrupt time by calling SetCurrentA5 .) Then you must restore the

A5 register to its previous value before the interrupt code returns.

noErr 0 No error

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-79

1

Introduction to M
em

ory M
anagem

ent

SetCurrentA5 1

You can use the SetCurrentA5 function to get the current value of the system global

variable CurrentA5 .

FUNCTION SetCurrentA5: LongInt;

DESCRIPTION

The SetCurrentA5 function does two things: First, it gets the current value in the

A5 register and returns it to your application. Second, SetCurrentA5 sets register A5 to

the value of the low-memory global variable CurrentA5 . This variable points to the

boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call SetCurrentA5 in code that is executed at interrupt time unless

you first guarantee that your application is the current process (for example, by calling

the Process Manager function GetCurrentProcess). In general, you should call

SetCurrentA5 at noninterrupt time and then pass the returned value to the

interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory

global variable CurrentA5 .

SetA5 1

In interrupt code that accesses application global variables, use the SetA5 function first

to restore a value previously saved using SetCurrentA5 , and then, at the end of the

code, to restore the A5 register to the value it had before the first call to SetA5 .

FUNCTION SetA5 (newA5: LongInt): LongInt;

newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The SetA5 function performs two tasks: it returns the address in the A5 register when

the function is called, and it sets the A5 register to the address specified in newA5.

C H A P T E R 1

Introduction to Memory Management

1-80 Memory Management Reference

Application-Defined Routines 1

The techniques illustrated in this chapter use only one application-defined routine, a

grow-zone function.

Grow-Zone Functions 1

The Memory Manager calls your application’s grow-zone function whenever it cannot

find enough contiguous memory to satisfy a memory allocation request and has

exhausted other means of obtaining the space.

MyGrowZone 1

A grow-zone function should have the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

DESCRIPTION

Whenever the Memory Manager has exhausted all available means of creating space

within your application heap—including purging, compacting, and (if possible)

expanding the heap—it calls your application-defined grow-zone function. The

grow-zone function can do whatever is necessary to create free space in the heap.

Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an

emergency memory reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of

memory it has freed, or zero if it is unable to free any. When the function returns a

nonzero value, the Memory Manager once again purges and compacts the heap zone

and tries to reallocate memory. If there is still insufficient memory, the Memory Manager

calls the grow-zone function again (but only if the function returned a nonzero value the

previous time it was called). This mechanism allows your grow-zone function to release

just a little bit of memory at a time. If the amount it releases at any time is not enough,

the Memory Manager calls it again and gives it the opportunity to take more drastic

measures.

C H A P T E R 1

Introduction to Memory Management

Memory Management Reference 1-81

1

Introduction to M
em

ory M
anagem

ent

The Memory Manager might designate a particular relocatable block in the heap as

protected; your grow-zone function should not move or purge that block. You can

determine which block, if any, the Memory Manager has protected by calling the

GZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting

to allocate memory. As a result, your grow-zone function should not allocate memory

itself or perform any other actions that might indirectly cause memory to be allocated

(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the InitZone procedure

when you create a new heap zone or by calling the SetGrowZone procedure at any

other time.

SPECIAL CONSIDERATIONS

Your grow-zone function might be called at a time when the system is attempting to

allocate memory and the value in the A5 register is not correct. If your function accesses

your application’s A5 world or makes any trap calls, you need to set up and later restore

the A5 register by calling SetCurrentA5 and SetA5 .

Because of the optimizations performed by some compilers, the actual work of the

grow-zone function and the setting and restoring of the A5 register might have to be

placed in separate procedures.

SEE ALSO

See “Defining a Grow-Zone Function” on page 1-48 for a definition of a sample

grow-zone function.

C H A P T E R 1

Introduction to Memory Management

1-82 Summary of Memory Management

Summary of Memory Management 1

Pascal Summary 1

Data Types 1

TYPE

SignedByte = -128..127; {arbitrary byte of memory}

Byte = 0..255; {unsigned, arbitrary byte}

Ptr = ^SignedByte; {pointer to nonrelocatable block}

Handle = ^Ptr; {handle to relocatable block}

ProcPtr = Ptr; {procedure pointer}

Size = LongInt; {size, in bytes, of block}

Memory Management Routines 1

Setting Up the Application Heap

PROCEDURE MaxApplZone;

PROCEDURE MoreMasters;

FUNCTION GetApplLimit : Ptr;

PROCEDURE SetApplLimit (zoneLimit: Ptr);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle (logicalSize: Size): Handle;

FUNCTION NewHandleClear (logicalSize: Size): Handle;

PROCEDURE DisposeHandle (h: Handle);

Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTION NewPtr (logicalSize: Size): Ptr;

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

PROCEDURE DisposePtr (p: Ptr);

C H A P T E R 1

Introduction to Memory Management

Summary of Memory Management 1-83

1

Introduction to M
em

ory M
anagem

ent

Setting the Properties of Relocatable Blocks

FUNCTION HGetState (h: Handle): SignedByte;

PROCEDURE HSetState (h: Handle; flags: SignedByte);

PROCEDURE HLock (h: Handle);

PROCEDURE HUnlock (h: Handle);

PROCEDURE HPurge (h: Handle);

PROCEDURE HNoPurge (h: Handle);

Managing Relocatable Blocks

PROCEDURE EmptyHandle (h: Handle);

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE MoveHHi (h: Handle);

PROCEDURE HLockHi (h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

Assessing Memory Conditions

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

FUNCTION MemError : OSErr;

Grow-Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

FUNCTION GZSaveHnd : Handle;

Setting and Restoring the A5 Register

FUNCTION SetCurrentA5 : LongInt;

FUNCTION SetA5 (newA5: LongInt) : LongInt;

Application-Defined Routines 1

Grow-Zone Functions

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

C H A P T E R 1

Introduction to Memory Management

1-84 Summary of Memory Management

C Summary 1

Data Types 1

typedef char SignedByte; /*arbitrary byte of memory*/

typedef unsigned char Byte; /*unsigned, arbitrary byte*/

typedef char *Ptr; /*pointer to nonrelocatable block*/

typedef Ptr *Handle; /*handle to relocatable block*/

typedef long (*ProcPtr)(); /*procedure pointer*/

typedef long Size; /*size in bytes of block*/

Memory Management Routines 1

Setting Up the Application Heap

pascal void MaxApplZone (void);

pascal void MoreMasters (void);

#define GetApplLimit() (* (Ptr*) 0x0130)

pascal void SetApplLimit (void *zoneLimit);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handle NewHandle (Size byteCount);

pascal Handle NewHandleClear (Size byteCount);

pascal void DisposeHandle (Handle h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Size byteCount);

pascal Ptr NewPtrClear (Size byteCount);

pascal void DisposePtr (Ptr p);

Setting the Properties of Relocatable Blocks

pascal char HGetState (Handle h);

pascal void HSetState (Handle h, char flags);

pascal void HLock (Handle h);

pascal void HUnlock (Handle h);

pascal void HPurge (Handle h);

pascal void HNoPurge (Handle h);

C H A P T E R 1

Introduction to Memory Management

Summary of Memory Management 1-85

1

Introduction to M
em

ory M
anagem

ent

Managing Relocatable Blocks

pascal void EmptyHandle (Handle h);

pascal void ReallocateHandle (Handle h, Size byteCount);

pascal void ReserveMem (Size cbNeeded);

pascal void MoveHHi (Handle h);

pascal void HLockHi (Handle h);

Manipulating Blocks of Memory

pascal void BlockMove (const void *srcPtr, void *destPtr,
Size byteCount);

Assessing Memory Conditions

pascal void PurgeSpace (long *total, long *contig);

#define MemError() (* (OSErr*) 0x0220)

Grow-Zone Operations

pascal void SetGrowZone (GrowZoneProcPtr growZone);

#define GZSaveHnd() (* (Handle*) 0x0328)

Setting and Restoring the A5 Register

long SetCurrentA5 (void);

long SetA5 (long newA5);

Application-Defined Routines 1

Grow-Zone Functions

pascal long MyGrowZone (Size cbNeeded);

C H A P T E R 1

Introduction to Memory Management

1-86 Summary of Memory Management

Assembly-Language Summary 1

Global Variables 1

Result Codes 1

ApplLimit long The application heap limit, beyond which the heap cannot expand.

ApplZone long A pointer to the original application heap zone.

BufPtr long Address of highest byte of allocatable memory.

CurrentA5 long Address of the boundary between the application global variables and the
application parameters of the current application.

GZRootHnd long A handle to a block that the grow-zone function must not move.

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked

Contents

2-1

C H A P T E R 2

2

Figure 2-0
Listing 2-0
Table 2-0

Contents

2 Memory Manager

About the Memory Manager 2-3

Temporary Memory 2-4

Multiple Heap Zones 2-5

The System Global Variables 2-6

Using the Memory Manager 2-7

Reading and Writing System Global Variables 2-8

Extending an Application’s Memory 2-9

Allocating Temporary Memory 2-10

Determining the Features of Temporary Memory 2-11

Using the System Heap 2-12

Allocating Memory at Startup Time 2-13

Creating Heap Zones 2-14

Installing a Purge-Warning Procedure 2-16

Organization of Memory 2-19

Heap Zones 2-19

Block Headers 2-22

Memory Manager Reference 2-24

Data Types 2-24

Memory Manager Routines 2-26

Setting Up the Application Heap 2-27

Allocating and Releasing Relocatable Blocks of Memory 2-29

Allocating and Releasing Nonrelocatable Blocks of Memory 2-35

Changing the Sizes of Relocatable and Nonrelocatable Blocks 2-39

Setting the Properties of Relocatable Blocks 2-43

Managing Relocatable Blocks 2-51

Manipulating Blocks of Memory 2-59

Assessing Memory Conditions 2-66

Freeing Memory 2-71

Grow-Zone Operations 2-76

Allocating Temporary Memory 2-77

C H A P T E R 2

2-2

Contents

Accessing Heap Zones 2-80

Manipulating Heap Zones 2-83

Application-Defined Routines 2-89

Grow-Zone Functions 2-89

Purge-Warning Procedures 2-90

Summary of the Memory Manager 2-93

Pascal Summary 2-93

Constants 2-93

Data Types 2-93

Memory Manager Routines 2-94

Application-Defined Routines 2-97

C Summary 2-97

Constants 2-97

Data Types 2-97

Memory Manager Routines 2-98

Application-Defined Routines 2-101

Assembly-Language Summary 2-101

Constants 2-101

Data Structures 2-102

Trap Macros 2-102

Global Variables 2-104

Result Codes 2-105

C H A P T E R 2

About the Memory Manager

2-3

2

M
em

ory M
anager

Memory Manager 2

This chapter describes how your application can use the Memory Manager to manage

memory both in its own partition and outside its partition. Ordinarily, you allocate

memory in your application heap only. You might, however, occasionally need to

access memory outside of your application partition, or you might want to create

additional heap zones within your application partition.

You need to read this chapter if you want to use Memory Manager routines other than

those described in the chapter “Introduction to Memory Management” in this book. That

chapter shows how to use the Memory Manager and other system software components

to perform the most common memory-manipulation operations while avoiding heap

fragmentation and low memory situations. This chapter addresses a number of other

important memory-related issues.

This chapter begins with a description of areas of memory that are outside your

application’s partition and their typical uses. Then it describes how you can

■

allocate temporary memory

■

allocate memory in and install code into the system heap

■

read and change the values of system global variables

■

allocate high memory during the startup process

■

create additional heap zones within your application’s partition

■

install a purge-warning procedure for a heap zone

This chapter also addresses some advanced topics that are generally of use only to

developers of very specialized applications or memory utilities. These advanced

topics include

■

how the Memory Manager organizes heap zones

■

how the Memory Manager organizes memory blocks

To use this chapter, you should be familiar with ordinary use of the Memory Manager

and other system software components that allow you to manage memory, as described

in the chapter “Introduction to Memory Management” earlier in this book.

The “Memory Manager Reference” and “Summary of the Memory Manager” sections in

this chapter provide a complete reference and summary of the constants, data types, and

routines provided by the Memory Manager.

About the Memory Manager 2

The Memory Manager is the part of the Macintosh Operating System that controls the

dynamic

allocation

 of memory space. Ordinarily, you need to access information only

within your own application’s heap, stack, and A5 world. Occasionally, however, you

might need to use the Memory Manager to allocate temporary memory outside of your

application’s partition or to initialize new heap zones within your application partition.

You might also need to read a system global variable to obtain information about the

environment in which your application is executing.

C H A P T E R 2

Memory Manager

2-4

About the Memory Manager

The Memory Manager provides a large number of routines that you can use to perform

various operations on blocks within your application partition. You can use the Memory

Manager to

■

set up your application partition

■

allocate and release both relocatable and nonrelocatable blocks in your
application heap

■

copy data from nonrelocatable blocks to relocatable blocks, and vice versa

■

determine how much space is free in your heap

■

determine the location of the top of your stack

■

determine the size of a memory block and, if necessary, change that size

■

change the properties of relocatable blocks

■

install or remove a grow-zone function for your heap

■

obtain the result code of the most recent Memory Manager routine executed

The Memory Manager also provides routines that you can use to access areas of memory

outside your application partition. You can use the Memory Manager to

■

allocate memory outside your partition that is currently unused by any open
application or by the Operating System

■

allocate memory in the system heap

This section describes the areas of memory that lie outside your application partition.

It also describes multiple heap zones.

Temporary Memory 2

In the Macintosh multitasking environment, your application is limited to a particular

memory partition (whose size is determined by information in the

'SIZE'

 resource of

your application). The size of your application’s partition places certain limits on the size

of your application heap and hence on the sizes of the buffers and other data structures

that your application can use.

If for some reason you need more memory than is currently available in your application

heap, you can ask the Operating System to let you use any available memory that is not

yet allocated to any other application. This memory, called

temporary memory,

 is

allocated from the available unused RAM; in general, that memory is not contiguous

with the memory in your application’s zone

Your application should use temporary memory only for occasional short-term purposes

that could be accomplished in less space, though perhaps less efficiently. For example, if

you want to copy a large file, you might try to allocate a fairly large buffer of temporary

memory. If you receive the temporary memory, you can use the large buffer to copy data

from the source file into the destination file. If, however, the request for temporary

memory fails, you can instead use a smaller buffer within your application heap.

Although the use of a smaller buffer might prolong the copy operation, the file is

nonetheless copied.

C H A P T E R 2

Memory Manager

About the Memory Manager

2-5

2

M
em

ory M
anager

One good reason for using temporary memory only occasionally is that you cannot

assume that you will always receive the temporary memory you request. For example, if

two or more applications use all available memory outside the system partition, then a

request by any of them for some temporary memory would fail.

Another strategy for using temporary memory is to use it, when possible, for all

nonessential memory requests. For example, you could allocate window records and any

associated window data using temporary memory. This scheme allows you to keep your

application partition relatively small (because you don’t need space for nonessential

tasks) but assumes that users will not fill up the available memory with other

applications.

Multiple Heap Zones 2

A

heap zone

 is a heap (that is, an area in which you can dynamically allocate and release

memory on demand) together with a zone header and a zone trailer. The

zone header

 is

an area of memory that contains essential information about the heap, such as the

number of free bytes in the heap and the addresses of the heap’s grow-zone function and

purge-warning procedure. The

zone trailer

 is just a minimum-sized block placed as a

marker at the end of the heap zone. (See “Heap Zones” on page 2-19 for a complete

description of zone headers and trailers.)

When your application is executing, there exist at least two heap zones: your

application’s heap zone (created when your application was launched) and the

system heap zone (created when the system was started up). The

system heap zone

 is

the heap zone that contains the system heap. Your

application heap zone

 (also known

as the

original application heap zone

) is the heap zone initially provided by the

Memory Manager for use by your application and any system software routines your

application calls.

Ordinarily, you allocate and release blocks of memory in the

current heap zone,

 which

by default is your application heap zone. Unless you change the current heap zone (for

example, by calling the

InitZone

 or

SetZone

 procedures), you do not need to worry

about which is the current zone; all blocks that you access are taken from the current

heap zone, that is, your application heap zone.

Occasionally, however, you might need to allocate memory in the system heap zone.

System software uses the system heap to store information it needs. Although, in

general, you should not allocate memory in the system heap, there are several valid

reasons for doing so. First, if you are implementing a system extension, the extension can

use the system heap to store information. Second, if you want the Time Manager or

Vertical Retrace Manager to execute some interrupt code when your application is not

the current application, you might in certain cases need to store the task record and the

task code in the system heap. Third, if you write interrupt code that itself uses heap

memory, you should either place that memory in the system heap or hold it in real RAM

to prevent page faults at interrupt time, as discussed in the chapter “Virtual Memory

Manager” in this book.

C H A P T E R 2

Memory Manager

2-6

About the Memory Manager

You can create additional heap zones for your application’s own use by calling the

InitZone

 procedure. If you do maintain more than one heap zone, you can find out

which heap zone is the current one at any time by calling the

GetZone

 function, and

you can switch zones by calling the

SetZone

 procedure. Almost all Memory Manager

operations implicitly apply to the current heap zone. To refer to the system heap zone or

to the (original) application heap zone, you can call the functions

SystemZone

 or

ApplicationZone

. To find out which zone a particular block resides in, you can call

the

HandleZone

 function (if the block is relocatable) or the

PtrZone

 function (if it’s

nonrelocatable).

▲ W A R N I N G

Be sure, when calling routines that access blocks, that the zone in which
the block is located is the current zone. If, for example, you attempt to
release an empty resource in the system zone when the current zone is
not the system zone, the Operating System might incorrectly update the
list of free master pointers in your partition.

▲

Once you have created a heap zone, it remains fixed in size and location. For this reason,

it usually makes more sense to use the undivided application heap zone for all of your

memory-allocation needs. You might, however, choose to initialize an additional heap

zone in circumstances like these:

■

If you are implementing a software development environment and want to launch
applications within the development environment’s partition, you can initialize a
heap zone for the launched application to use as its heap zone.

■

If you want to avoid heap fragmentation but cannot prevent allocation of small
nonrelocatable blocks in the middle of your program’s execution, you could, soon
after your application starts up, allocate a small heap zone to hold the nonrelocatable
blocks you allocate during execution.

■

If you need to resize a particular handle quite often, you can minimize the resizing
time by creating a heap zone whose size is set to the maximum size the handle will
ever be assigned. Because there is only one relocatable block in the new heap zone, the
resizing is likely to happen more quickly than if that block were in the original heap
zone (where other relocatable blocks in the zone might need to be moved).

Before deciding to create additional heap zones, however, make sure that you really need

to. Maintaining multiple heap zones requires a considerable amount of extra work. You

must always make sure to allocate or release memory in the correct zone, and you must

monitor memory conditions in each zone so that your application doesn’t run out

of memory.

The System Global Variables 2

Just as the Toolbox stores information about your drawing environment in a set of

QuickDraw global variables within your application partition, the Operating System and

Toolbox store information about the entire multiple-application environment in a set of

system global variables,

 also called low-memory global variables. The system global

variables are stored in the lowest part of the physical RAM, in the system partition.

C H A P T E R 2

Memory Manager

Using the Memory Manager

2-7

2

M
em

ory M
anager

Most system global variables are intended for use by system software only, and you

should never need to read or write them directly. Current versions of system software

contain functions that return values equivalent to most of the important system global

variables. Use those routines whenever they are available. However, you might

occasionally need to access the value of a system global variable to maintain

compatibility with previous versions of system software, or you might need to access a

system global variable whose value no equivalent function returns.

The MPW interface file

SysEqu.p

 defines the memory locations at which system global

variables are stored in the latest version of system software. For example,

SysEqu.p

contains lines like these:

CONST

RndSeed = $156; {random number seed (long)}

Ticks = $16A; {ticks since last boot (unsigned long)}

DeskHook = $A6C; {hook for painting desktop (pointer)}

MBarHeight = $BAA; {height of menu bar (integer)}

You can use these memory locations to examine the value of one of these variables. See

“Reading and Writing System Global Variables” on page 2-8 for instructions on reading

and writing the values of system global variables from a high-level language.

You should avoid relying on the value of a system global variable whenever possible.

The meanings of many global variables have changed in the past and will change again

in the future. Using the system global variables documented in

Inside Macintosh

 is fairly

safe, but you risk incompatibility with future versions of system software if you attempt

to access global variables defined in the interface files but not explicitly documented.

Even when

Inside Macintosh

 does document a particular system global variable, you

should use any available routines to access that variable’s value instead of examining it

directly. For example, you should use the

TickCount

 function to find the number of

ticks since startup instead of examining the

Ticks

 global variable directly.

IMPORTANT

You should read or write the value of a system global variable only
when that variable is documented in

Inside Macintosh

 and when there is
no alternate method of reading or writing the information you need.

▲

Using the Memory Manager 2

This section discusses the techniques you can use both to deal with memory outside of

your application’s partition and to manipulate your own application’s partition.

You can use the techniques in this section to

■

read and write the values of system global variables when there is no Toolbox routine
that would accomplish the work for you

C H A P T E R 2

Memory Manager

2-8

Using the Memory Manager

■

check for the availability of temporary memory and use it to speed operations that
depend on memory buffers

■

allocate memory in the system heap

■

install code into the system heap

■

allocate memory at the high end of the available RAM from within a system extension
during the startup process

■

initialize new heap zones within your application heap zone, on your application’s
stack, or in the application global variables area

■

install a purge-warning procedure for your application heap zone

Reading and Writing System Global Variables 2

In general, you should avoid relying on the values of system global variables whenever

possible. However, you might occasionally need to access the value of one of these

variables. Because the actual values associated with global variables in MPW’s

SysEqu.p

 interface file are memory locations, you can access the value of a

low-memory variable simply by dereferencing a memory location.

Many system global variables are process-independent, but some are process-specific.

The Operating System swaps the values of the process-specific variables as it switches

processes. If you write interrupt code that reads low memory, that code could execute at

a time when another process’s system global variables are installed. Therefore, before

reading low memory from interrupt code, you should call the Process Manager to ensure

that your process is the current process. If it is not, you should not rely on the value of

system global variables that could conceivably be process-specific.

Note

No available documentation distinguishes process-specific from
process-independent system global variables.

◆

The routine defined in Listing 2-1 illustrates how you can read a system global variable,

in this case the system global variable

BufPtr

, which gives the address of the highest

byte of allocatable memory.

Listing 2-1

Reading the value of a system global variable

FUNCTION FindHighestByte: LongInt;

TYPE

LongPtr = ^LongInt;

BEGIN

FindHighestByte := LongPtr(BufPtr)^;

END;

In Pascal, the main technique for reading system global variables is to define a new data

type that points to the variable type you want to read. In this example, the address is

C H A P T E R 2

Memory Manager

Using the Memory Manager

2-9

2

M
em

ory M
anager

stored as a long integer. Thus, the memory location

BufPtr

 is really a pointer to a long

integer. Because of Pascal’s strict typing rules, you must cast the low-memory address

into a pointer to a long integer. Then, you can dereference the pointer and return the

long integer itself as the function result.

You can use a similar technique to change the value of a system global variable. For

example, suppose you are writing an extension that displays a window at startup time.

To maintain compatibility with pre-Macintosh II systems, you need to clear the system

global variable named

DeskHook

. This global variable holds a

ProcPtr

 that references

a procedure called by system software to paint the desktop. If the value of the pointer is

NIL

, the system software uses the standard desktop pattern. If you do not set

DeskHook

to

NIL

, the system software might attempt to use whatever random data it contains to

call an updating procedure when you move or close your window. The procedure

defined in Listing 2-2 sets

DeskHook

 to

NIL

.

Listing 2-2 Changing the value of a system global variable

PROCEDURE ClearDeskHook;

TYPE

ProcPtrPtr = ^ProcPtr; {pointer to ProcPtr}

VAR

deskHookProc: ProcPtrPtr;

BEGIN

deskHookProc := ProcPtrPtr(DeskHook); {initialize variable}

deskHookProc^ := NIL; {clear DeskHook proc}

END;

You can use a similar technique to change the value of any other documented system

global variable.

Extending an Application’s Memory 2
Rather than using your application’s 'SIZE' resource to specify a preferred partition

size that is large enough to contain the largest possible application heap, you should

specify a smaller but adequate partition size. When you need more memory for

temporary use, you can use a set of Memory Manager routines for the allocation

of temporary memory.

By using the routines for allocating temporary memory, your application can request

some additional memory for occasional short-term needs. For example, the Finder uses

these temporary-memory routines to secure buffer space for use during file copy

operations. Any available memory (that is, memory currently unallocated to any

application’s partition) is dedicated to this purpose. The Finder releases this memory as

soon as the copy is completed, thus making the memory available to other applications

or to the Operating System for launching new applications.

C H A P T E R 2

Memory Manager

2-10 Using the Memory Manager

Because the requested amount of memory might not be available, you cannot be sure

that every request for temporary memory will be honored. Thus, you should make sure

that your application will work even if your request for temporary memory is denied.

For example, if the Finder cannot allocate a large temporary copy buffer, it uses a

reserved small copy buffer from within its own heap zone, prolonging the copying but

performing it nonetheless.

Temporary memory is taken from RAM that is reserved for (but not yet used by) other

applications. Thus, if you use too much temporary memory or hold temporary memory

for long periods of time, you might prevent the user from being able to launch other

applications. In certain circumstances, however, you can hold temporary memory

indefinitely. For example, if the temporary memory is used for open files and the user

can free that memory simply by closing those files, it is safe to hold onto that memory as

long as necessary.

Temporary memory is tracked (or monitored) for each application, and so you must use

it only for code that is running on an application’s behalf. Moreover, the Operating

System frees all temporary memory allocated to an application when the application

quits or crashes. As a result, you should not use temporary memory for VBL tasks, Time

Manager tasks, or other procedures that should continue to be executed after your

application quits. Similarly, it is wise not to use temporary memory for an interprocess

buffer (that is, a buffer whose address is passed to another application in a high-level

event) because the originating application could crash, quit, or be terminated, thereby

causing the temporary memory to be released before (or even while) the receiving

application uses that memory.

Although you can usually perform ordinary Memory Manager operations on temporary

memory, there are two restrictions. First, you must never lock temporary memory across

calls to GetNextEvent or WaitNextEvent . Second, although you can determine the

zone from which temporary memory is generated (using the HandleZone function),

you should not use this information to make new blocks or perform heap operations on

your own.

Allocating Temporary Memory 2

You can request a block of memory for temporary use by calling the Memory Manager’s

TempNewHandle function. This function attempts to allocate a new relocatable block of

the specified size for temporary use. For example, to request a block that is one-quarter

megabyte in size, you might issue this command:

myHandle := TempNewHandle($40000, myErr); {request temp memory}

If the routine succeeds, it returns a handle to the block of memory. The block of memory

returned by a successful call to TempNewHandle is initially unlocked. If an error occurs

and TempNewHandle fails, it returns a NIL handle. You should always check for NIL

handles before using any temporary memory. If you detect a NIL handle, the second

parameter (in this example, myErr) contains the result code from the function.

C H A P T E R 2

Memory Manager

Using the Memory Manager 2-11

2

M
em

ory M
anager

Instead of asking for a specific amount of memory and then checking the returned

handle to find out whether it was allocated, you might prefer to determine beforehand

how much temporary memory is available. There are two functions that return

information on the amount of free memory available for temporary allocation. The first

is the TempFreeMem function, which you can use as follows:

memFree := TempFreeMem; {find amount of free temporary memory}

The result is a long integer containing the amount, in bytes, of free memory available for

temporary allocation. It usually isn’t possible to allocate a block of this size because of

fragmentation. Consequently, you’ll probably want to use the second function,

TempMaxMem, to determine the size of the largest contiguous block of space available. To

allocate that block, you can write

mySize := TempMaxMem(grow);

myHandle := TempNewHandle(mySize, myErr);

The TempMaxMem function returns the size, in bytes, of the largest contiguous free block

available for temporary allocation. (The TempMaxMem function is analogous to the

MaxMem function.) The grow parameter is a variable parameter of type Size ; after the

function returns, it always contains 0, because the temporary memory does not come

from the application’s heap. Even when you use TempMaxMem to determine the size of

the available memory, you should check that the handle returned by TempNewHandle

is not NIL .

Determining the Features of Temporary Memory 2

Only computers running system software version 7.0 and later can use temporary

memory as described in this chapter. For this reason, you should always check that the

routines are available and that they have the features you require before calling them.

Note
The temporary-memory routines are available in some earlier system
software versions when MultiFinder is running. However, the handles
to blocks of temporary memory are neither tracked nor real. ◆

The Gestalt function includes a selector to determine whether the temporary-memory

routines are present in the operating environment and, if they are, whether

the temporary-memory handles are tracked and whether they are real. If

temporary-memory handles are not tracked, you must release temporary memory before

your next call to GetNextEvent or WaitNextEvent . If temporary-memory handles are

not real, then you cannot use normal Memory Manager routines such as HLock to

manipulate them.

C H A P T E R 2

Memory Manager

2-12 Using the Memory Manager

To determine whether the temporary-memory routines are implemented, you can check

the value returned by the TempMemCallsAvailable function, defined in Listing 2-3.

Listing 2-3 Determining whether temporary-memory routines are available

FUNCTION TempMemCallsAvailable: Boolean;

VAR

myErr: OSErr; {Gestalt result code}

myRsp: LongInt; {response returned by Gestalt}

BEGIN

TempMemCallsAvailable := FALSE;

myErr := Gestalt(gestaltOSAttr, myRsp);

IF myErr <> noErr THEN

DoError(myErr) {Gestalt failed}

ELSE {check bit for temp mem support}

TempMemCallsAvailable :=

BAND(myRsp, gestaltTempMemSupport) <> 0;

END;

You can use similar code to determine whether temporary-memory handles are real and

whether the temporary memory is tracked.

Using the System Heap 2
The system heap is used to store most of the information needed by the Operating

System and other system software components. As a result, it is ideal for storing

information needed by a system extension (which by definition extends the capabilities

of system software). You might also need to use the system heap to store a task record

and the code for an interrupt task that should continue to be executed when your

application is not the current application.

Allocating blocks in the system heap is straightforward. Most ordinary Memory

Manager routines have counterparts that allocate memory in the system heap zone

instead of the current heap zone. For example, the counterpart of the NewPtr function is

the NewPtrSys function. The following line of code allocates a new nonrelocatable

block of memory in the system heap to store a Time Manager task record:

myTaskPtr := QElemPtr(NewPtrSys(SizeOf(TMTask)));

Alternatively, you can change the current zone and use ordinary Memory Manager

operations, as follows:

SetZone(SystemZone);

myTaskPtr := QElemPtr(NewPtr(SizeOf(TMTask)));

...

SetZone(ApplicationZone);

C H A P T E R 2

Memory Manager

Using the Memory Manager 2-13

2

M
em

ory M
anager

You might also need to store the interrupt code itself in the system heap. For example,

when an application that installed a vertical retrace task with the VInstall function is

in the background, the Vertical Retrace Manager executes the task only if the vblAddr

field of the task record points to a routine in the system heap.

Unfortunately, manually copying a routine into the system heap is difficult in Pascal.

The easiest way to install code into the system heap is to place the code into a separate

stand-alone code resource in your application’s resource fork. You should set the system

heap bit and the locked bit of the code resource’s attributes. Then, when you need to use

the code, you must load the resource from the resource file and cast the resource handle’s

master pointer into a procedure pointer (a variable of type ProcPtr), as follows:

myProcHandle := GetResource(kProcType, kProcID);

IF myProcHandle <> NIL THEN

myTaskPtr^.vblAddr := ProcPtr(myProcHandle^);

Because the resource is locked in memory, you don’t have to worry about creating

a dangling pointer when you dereference a handle to the resource. If you want the

code to remain in the system heap after the user quits your application, you can call

the Resource Manager procedure DetachResource so that closing your application’s

resource fork does not destroy the resource data. Note, however, that if you do so and

your application crashes, the code still remains in the system heap.

Once you have loaded a code resource into memory and created a ProcPtr that

references the entry point of the code resource, you can use that ProcPtr just as you can

use any such variable. For example, you could assign the value of the variable to the

vblAddr field of a vertical retrace task record (as shown just above). If you are

programming in assembly language, you can then call the code directly. To call the

routine from a high-level language such as Pascal, you’ll need to use some inline

assembly-language code. Listing 2-4 defines a routine that you can use to execute a

procedure by address.

Listing 2-4 Calling a procedure by address

PROCEDURE CallByAddress (aRoutine: ProcPtr);

INLINE $205F, {MOVE.L (SP)+,A0}

$4ED0; {JMP (A0)}

Allocating Memory at Startup Time 2
If you are implementing a system extension, you might need to allocate memory at

startup time. As explained in the previous section, an ideal place to allocate such

memory is in the system heap. To allocate memory in the system heap under system

software version 7.0 and later, you merely need to call the appropriate Memory Manager

routines, and the system heap expands dynamically to meet your request. In earlier

versions of system software, you must use a 'sysz' resource to indicate how much the

Operating System should increase the size of the system zone.

C H A P T E R 2

Memory Manager

2-14 Using the Memory Manager

Alternatively, however, you can allocate blocks in high memory. The global variable

BufPtr always references the highest byte in memory that might become part of an

application partition. You can lower the value of BufPtr and then use the memory

between the old and new values of BufPtr .

Note
In general, if you are implementing a system extension, you should
allocate memory in the system heap instead of high memory. In this
way, you avoid the problems associated with lowering the value of
BufPtr too far (described in the following paragraphs) and ensure that
the extension is not paged out if virtual memory is operating. ◆

Lowering the value of BufPtr too far can be dangerous for several reasons. In 128K

ROM Macintosh computers running system software version 4.1, you must avoid

lowering the value of BufPtr so that it points in the system startup blocks. The highest

byte of these blocks can always be found relative to the global variable MemTop, at

MemTop DIV 2 + 1024 .

In later versions of the Macintosh system software, the system startup blocks were no

longer barriers to BufPtr , but new barriers arose, including Macintosh IIci video

storage, for example. To maintain compatibility with extensions that rely on the ability to

lower BufPtr relative to MemTop, the system software simply adjusts MemTop so that

the formula still holds. Thus, at startup, the MemTop global variable currently does not

reference any memory location in particular. Instead, it holds a value that guarantees

that the formula allowing you to lower BufPtr as low as MemTop DIV 2 + 1024 but

no further still holds.

Beginning in system software version 7.0, the Operating System can detect excessive

lowering of BufPtr , but only after the fact. When the Operating System does detect

that the value of BufPtr has fallen too low, it generates an out-of-memory system error.

▲ W A R N I N G

Although the above formula has been true since system software version
4.1, a bug in the Macintosh IIci and later ROMs made it invalid in certain
versions of system software 6.x. ▲

Because there is no calling interface for lowering BufPtr , you must do it manually, by

changing the value of the system variable, as explained in “Reading and Writing System

Global Variables” on page 2-8. To obtain the value of the MemTop global variable, you

can use the TopMem function.

Creating Heap Zones 2
You can create heap zones as subzones of your application heap zone or (in rare

instances) either in space reserved for the application global variables or on the stack.

You can also create heap zones in a block of temporary memory or within the system

heap zone. This section describes how to create new heap zones by calling the

InitZone procedure.

C H A P T E R 2

Memory Manager

Using the Memory Manager 2-15

2

M
em

ory M
anager

Note
Most applications do not need to create heap zones. ◆

To create a new heap zone in the application heap, you must allocate nonrelocatable

blocks in your application heap to hold new subzones of the application heap. In

addition to being able to create subzones of the application zone, you can create

subzones of any other zone to which you have access, including a zone that is itself

a subzone of another zone.

You create a heap zone by calling the InitZone procedure, which takes four

parameters. The first parameter specifies a grow-zone function for the new zone, or NIL

if you do not want the zone to have a grow-zone function. The second parameter

specifies the number of new master pointers that you want each block of master pointers

in the zone to contain. The InitZone procedure allocates one such block to start with,

and you can allocate more by calling the MoreMasters procedure. The third and fourth

parameters specify, respectively, the first byte beyond the end of the new zone and the

first byte of the zone.

When initializing a zone with the InitZone procedure, make sure that you are

subdividing the current zone. When InitZone returns, the new zone becomes

current. Thus, if you subdivide the application zone into several subzones, you must

call SetZone(ApplicationZone) before you create the second and each of the

subsequent subzones. Listing 2-5 shows a technique for creating a single subzone of the

original application zone, assuming that the application zone is the current zone. The

technique for subdividing subzones is similar.

Listing 2-5 Creating a subzone of the original application heap zone

FUNCTION CreateSubZone: THz;

CONST

kZoneSize = 10240; {10K zone}

kNumMasterPointers = 16; {num of master ptrs for new zone}

VAR

start: Ptr; {first byte in zone}

limit: Ptr; {first byte beyond zone}

BEGIN

start := NewPtr(kZoneSize); {allocate storage for zone}

IF MemError <> noErr THEN

BEGIN {allocation successful}

limit := Ptr(ORD4(start) + kZoneSize);

{compute byte beyond end of zone}

InitZone(NIL, kNumMasterPointers, limit, start);

{initialize zone header, trailer}

END;

CreateSubZone := THz(start); {cast storage to a zone pointer}

END;

C H A P T E R 2

Memory Manager

2-16 Using the Memory Manager

To create a subzone in the system heap zone, you can call SetZone(SystemZone) at

the beginning of the procedure in Listing 2-5. You might find this technique useful if you

are implementing a system extension but want to manage your extension’s memory

much as you manage memory in an application. Instead of simply allocating blocks in

the system heap, you can make your zone current whenever your extension is executed.

Then, you can call regular Memory Manager routines to allocate memory in your

subzone of the system heap, and you can compact and purge your subzone without

compacting and purging the entire system heap zone.

When you allocate memory for a subzone, you must allocate that memory in a

nonrelocatable block (as in Listing 2-5) or in a locked relocatable block. If you create a

subzone within an unlocked relocatable block, the Memory Manager might move your

entire subzone during memory operations in the zone containing your subzone. If so,

any references to nonrelocatable blocks that you allocated in the subzone would become

invalid. Even handles to relocatable blocks in the subzone would no longer be valid,

because the Memory Manager does not update the handles’ master pointers correctly.

This happens because the Memory Manager views a subzone of another zone as a

single block. If that subzone is a relocatable block, the Memory Manager updates only

that block’s master pointer when moving it, and does not update the block’s contents

(that is, the blocks allocated within the subzone).

If you use a block of temporary memory as a heap zone, you must lock the temporary

memory immediately after allocating it. Then, you can pass to InitZone a dereferenced

copy of a handle to the temporary memory. If you find (after a call to the Gestalt

function) that temporary memory handles are not real, then you must dispose of the new

zone before any calls to GetNextEvent or WaitNextEvent . You must dispose of the

new zone because you cannot lock a handle to temporary memory across event calls if

the handle is not real.

Once you have created a subzone as a nonrelocatable block or a locked relocatable block,

you can allocate both relocatable and nonrelocatable blocks within it. Although the

Memory Manager can move such relocatable blocks only within the subzone, it correctly

updates those blocks’ master pointers, which are also in the subzone.

Installing a Purge-Warning Procedure 2
You can define a purge-warning procedure that the Memory Manager calls whenever it

is about to purge a block from your application heap. You can use this procedure to save

the data in the block, if necessary, or to perform other processing in response to this

notification.

Note
Most applications don’t need to install a purge-warning procedure. This
capability is provided primarily for applications that require greater
control over their heap. Examples are applications that maintain
purgeable handles containing important data and applications that for
any other reason need notification when a block is about to be purged. ◆

C H A P T E R 2

Memory Manager

Using the Memory Manager 2-17

2

M
em

ory M
anager

When your purge-warning procedure is called, the Memory Manager passes it a handle

to the block about to be purged. In your procedure, you can test the handle to determine

whether it contains data that needs to be saved; if so, you can save the data (possibly by

writing it to some open file). Listing 2-6 defines a very simple purge-warning procedure.

Listing 2-6 A purge-warning procedure

PROCEDURE MyPurgeProc (h: Handle);

VAR

theA5: LongInt; {value of A5 when procedure is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF BAND(HGetState(h), $20) = 0 THEN

BEGIN {if the handle isn’t a resource handle}

IF InSaveList(h) THEN

WriteData(h); {save the data in the block}

END;

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The MyPurgeProc procedure defined in Listing 2-6 inspects the handle’s properties

(using HGetState) to see whether its resource bit is clear. If so, the procedure next

determines whether the handle is contained in an application-maintained list of

handles whose data should be saved before purging. If the handle is in that list, the

purge-warning procedure writes its data to disk. (The file into which the data is written

should already be open at the time the procedure is called, because opening a file might

cause memory to move.)

Note that MyPurgeProc sets up the A5 register with the application’s A5 value upon

entry and restores it to its previous value before exiting. This is necessary because you

cannot rely on the A5 register within a purge-warning procedure.

▲ W A R N I N G

Because of the optimizations performed by some compilers, the actual
work of the purge-warning procedure and the setting and restoring of
the A5 register might have to be placed in separate procedures. See the
chapter “Vertical Retrace Manager” in Inside Macintosh: Processes for an
illustration of how you can do this. ▲

To install a purge-warning procedure, you need to install the address of the

procedure into the purgeProc field of your application’s heap zone header.

Listing 2-7 illustrates one way to do this.

C H A P T E R 2

Memory Manager

2-18 Using the Memory Manager

Listing 2-7 Installing a purge-warning procedure

PROCEDURE InstallPurgeProc;

VAR

myZone: THz;

BEGIN

myZone := GetZone; {find the current zone header}

gPrevProc := myZone^.purgeProc; {remember previous procedure}

myZone^.purgeProc := @MyPurgeProc; {install new procedure}

END;

The InstallPurgeProc procedure defined in Listing 2-7 first obtains the address of

the current heap zone by calling the GetZone function. Then it saves the address of any

existing purge-warning procedure in the global variable gPrevProc . Finally,

InstallPurgeProc installs the new procedure by putting its address directly into the

purgeProc field of the zone header. (For more information on zone headers, see “Heap

Zones” on page 2-19.)

Keep in mind that the Memory Manager calls your purge-warning procedure each time

it decides to purge any purgeable block, and it might call your procedure far more often

than you would expect. Your purge-warning procedure might be passed handles not

only to blocks that you explicitly mark as purgeable (by calling HPurge), but also to

resources whose purgeable attribute is set. (In general, applications don’t need to take

any action on handles that belong to the Resource Manager.) Because of the potentially

large number of times your purge-warning procedure might be called, it should be able

to determine quickly whether a handle that is about to be purged needs additional

processing.

Remember that a purge-warning procedure is called during the execution of some

Memory Manager routine. As a result, your procedure cannot cause memory to be

moved or purged. In addition, it should not dispose of the handle it is passed or change

the purge status of the handle. See “Purge-Warning Procedures” on page 2-90 for a

complete description of the limitations on purge-warning procedures.

▲ W A R N I N G

If your application calls the Resource Manager procedure
SetResPurge with the parameter TRUE (to have the Resource Manager
automatically save any modified resources that are about to be purged),
you should avoid using a purge-warning procedure. This is because the
Resource Manager installs its own purge-warning procedure when you
call SetResPurge in this way. If you must install your own
purge-warning procedure, you should remove your procedure, call
SetResPurge , then reinstall your procedure as shown in Listing 2-7.
You then need to make sure that your procedure calls the Resource
Manager’s purge-warning procedure (which is saved in the global
variable gPrevProc) before exiting. Most applications do not need to
call SetResPurge at all. ▲

C H A P T E R 2

Memory Manager

Organization of Memory 2-19

2

M
em

ory M
anager

If your application does call SetResPurge(TRUE) , you should use the version of

MyPurgeProc defined in Listing 2-8. It is just like the version defined in Listing 2-6

except that it calls the Resource Manager’s purge-warning procedure before exiting.

Listing 2-8 A purge-warning procedure that calls the Resource Manager’s procedure

PROCEDURE MyPurgeProc (h: Handle);

VAR

theA5: LongInt; {value of A5 when procedure is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF BAND(HGetState(h), $20) = 0 THEN

BEGIN {if the handle isn’t a resource handle}

IF InSaveList(h) THEN

WriteData(h); {save the data in the block}

END

ELSE IF gPrevProc <> NIL THEN

CallByAddress(gPrevProc);

theA5 := SetA5(theA5); {restore previous value of A5}

END;

See Listing 2-4 on page 2-13 for a definition of the procedure CallByAddress .

Organization of Memory 2

This section describes the organization of heap zones and block headers. In general, you

do not need to know how the Memory Manager organizes heap zones or block headers

if your application simply allocates and releases blocks of memory. The information

described in this section is used by the Memory Manager for its own purposes.

Developers of some specialized applications and utilities might, however, need to know

exactly how zones and block headers are organized. This information is also sometimes

useful for debugging.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization and size of heap zones and block headers is subject to
change in future system software versions. ▲

Heap Zones 2
Except for temporary memory blocks, all relocatable and nonrelocatable blocks

exist within heap zones. A heap zone consists of a zone header, a zone trailer block,

and usable bytes in between. The header contains all of the information the

C H A P T E R 2

Memory Manager

2-20 Organization of Memory

Memory Manager needs about that heap zone; the trailer is just a minimum-sized free

block placed as a marker at the end of the zone.

In Pascal, a heap zone is defined as a zone record of type Zone . The zone record contains

all of the fields of the zone header. A heap zone is always referred to with a zone pointer

of data type THz.

▲ W A R N I N G

The fields of the zone header are for the Memory Manager’s own
internal use. You can examine the contents of the zone’s fields, but in
general it doesn’t make sense for your application to try to change them.
The only fields of the zone record that you can safely modify directly are
the moreMast and purgeProc fields. ▲

TYPE Zone =

RECORD

bkLim: Ptr; {first usable byte after zone}

purgePtr: Ptr; {used internally}

hFstFree: Ptr; {first free master pointer}

zcbFree: LongInt; {number of free bytes in zone}

gzProc: ProcPtr; {grow-zone function}

moreMast: Integer; {num. of master ptrs to allocate}

flags: Integer; {used internally}

cntRel: Integer; {reserved}

maxRel: Integer; {reserved}

cntNRel: Integer; {reserved}

maxNRel: Integer; {reserved}

cntEmpty: Integer; {reserved}

cntHandles: Integer; {reserved}

minCBFree: LongInt; {reserved}

purgeProc: ProcPtr; {purge-warning procedure}

sparePtr: Ptr; {used internally}

allocPtr: Ptr; {used internally}

heapData: Integer; {first usable byte in zone}

END;

THz = ^Zone; {zone pointer}

Field descriptions

bkLim A pointer to the byte following the last byte of usable space in
the zone.

purgePtr Used internally.

hFstFree A pointer to the first free master pointer in the zone. All master
pointers that are allocated but not currently in use are linked
together into a list. The hFstFree field references the head node of
this list. The Memory Manager updates this list every time it
allocates a new relocatable block or releases one, so that the list
contains all unused master pointers. If the Memory Manager needs

C H A P T E R 2

Memory Manager

Organization of Memory 2-21

2

M
em

ory M
anager

a new master pointer but this field is set to NIL , it allocates a new
nonrelocatable block of master pointers. You can check the value of
this field to see whether allocating a relocatable block would cause a
new block of master pointers to be allocated.

zcbFree The number of free bytes remaining in the zone. As blocks are
allocated and released, the Memory Manager adjusts this field
accordingly. You can use the FreeMem function to determine the
value of this field for the current heap zone.

gzProc A pointer to a grow-zone function that system software uses to
maintain control over the heap. The system’s grow-zone function
subsequently calls the grow-zone function you specify for your
heap, if any. You can change a heap zone’s grow-zone function at
any time but should do so only by calling the InitZone or
SetGrowZone procedures. Note that in current versions of system
software, this field does not contain a pointer to the grow-zone
function that your application defines.

moreMast The number of master pointers the Memory Manager should
allocate at a time. The Memory Manager allocates this many
automatically when a heap zone is initialized. By default, master
pointers are allocated 32 at a time for the system heap zone and 64
at a time for the application heap zone, but this might change in
future versions of system software.

flags Used internally.

cntRel Reserved.

maxRel Reserved.

cntNRel Reserved.

maxNRel Reserved.

cntEmpty Reserved.

cntHandles Reserved.

minCBFree Reserved.

purgeProc A pointer to the zone’s purge-warning procedure, or NIL if there is
none. The Memory Manager calls this procedure before it purges a
block from the zone. Note that whenever you call the Resource
Manager procedure SetResPurge with the parameter set to TRUE,
the Resource Manager installs its own purge-warning procedure,
overriding any purge-warning procedure you have specified here.

sparePtr Used internally.

allocPtr Used internally.

heapData A dummy field marking the beginning of the zone’s usable
memory space. The integer in this field has no significance in
itself; it is just the first 2 bytes in the block header of the first
block in the zone. For example, if myZone is a zone pointer, then
@(myZone^.heapData) is the address of the first usable byte in
the zone, and myZone^.bkLim is a pointer to the byte following
the last usable byte in the zone.

C H A P T E R 2

Memory Manager

2-22 Organization of Memory

The structure of a heap zone is the same in both 24-bit and 32-bit addressing modes. The

use of several of the fields that are reserved or used internally, however, may differ in

24-bit and 32-bit heap zones.

Block Headers 2
Every block in a heap zone, whether allocated or free, has a block header that the

Memory Manager uses to find its way around in the zone. Block headers are completely

transparent to your application. All pointers and handles to allocated blocks reference

the beginning of the block’s logical contents, following the end of the header. Similarly,

whenever you use a variable of type Size , that variable refers to the number of bytes in

the block’s logical contents, not including the block header. That size is known as the

block’s logical size, as opposed to its physical size, the number of bytes it actually

occupies in memory, including the header and any unused bytes at the end of the block.

There are two reasons that a block might contain such unused bytes:

■ The Memory Manager allocates space only in even numbers of bytes. (This practice
guarantees that both the contents and the address of a master pointer are even.)
If a block’s logical size is odd, an extra, unused byte is added at the end to make the
physical size an even number. On computers containing the MC68020, MC68030,
or MC68040 microprocessor, blocks are padded to 4-byte boundaries.

■ The minimum number of bytes in a block is 12. This minimum applies to all
blocks, free as well as allocated. If allocating the required number of bytes from a
free block would leave a fragment of fewer than 12 free bytes, the leftover bytes are
included unused at the end of the newly allocated block instead of being returned to
free storage.

There is no Pascal record type defining the structure of block headers because you

shouldn’t normally need to access them directly. In addition, the structure of a block

header depends on whether the block is located in a 24-bit or 32-bit zone.

In a 24-bit zone, a block header consists of 8 bytes, which together make up two long

words, as shown in Figure 2-1.

Figure 2-1 A block header in a 24-bit zone

Physical size of block

Address of block's zone, or relative handle

7 6 5 4 3 0

Size correction

Unused

Block type
00: Free block
01: Nonrelocatable block
10: Relocatable block

C H A P T E R 2

Memory Manager

Organization of Memory 2-23

2

M
em

ory M
anager

In the first long word, the low-order 3 bytes contain the block’s physical size in bytes.

Adding this number to the block’s address gives the address of the next block in the

zone. The first byte of the block header is a tag byte that provides other information on

the block. The bits in the tag byte have these meanings:

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),

relocatable (binary 10), or nonrelocatable (binary 01). The low-order 4 bits contain a

block’s size correction, the number of unused bytes at the end of the block, beyond the

end of the block’s contents. This correction is equal to the difference between the block’s

logical and physical sizes, excluding the 8 bytes of overhead for the block header, as in

the following formula:

physicalSize = logicalSize + sizeCorrection + 8

The contents of the second long word (4 bytes) in the 24-bit block header depend on the

type of block. For relocatable blocks, the second long word contains the block’s relative

handle: a pointer to the block’s master pointer, expressed as an offset relative to the start

of the heap zone rather than as an absolute memory address. Adding the relative handle

to the zone pointer produces a true handle for this block. For nonrelocatable blocks, the

second long word of the header is just a pointer to the block’s zone. For free blocks, the

contents of these 4 bytes are undefined.

In a 32-bit zone, a block header consists of 12 bytes, which together make up three long

words, as shown in Figure 2-2.

Figure 2-2 A block header in a 32-bit zone

Bit Meaning

0–3 The block’s size correction

4–5 Reserved

6–7 The block type

Physical size of block

7 6 5 0

Size
correction

Unused

Block type
00: Free block
01: Nonrelocatable block
11: Relocatable block

Address of block's zone, or relative handle

ReservedMaster pointer
flag bits

C H A P T E R 2

Memory Manager

2-24 Memory Manager Reference

The first byte of the block header is a tag byte that indicates the type of the block. The

bits in the tag byte have these meanings:

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),

relocatable (binary 10), or nonrelocatable (binary 01).

The second byte in the block header contains the master pointer flag bits, if the block is a

relocatable block. Otherwise, this byte is undefined. The bits in this byte have these

meanings:

The low-order byte of the high-order long word contains the block’s size correction. This

correction is equal to the difference between the block’s logical and physical sizes,

excluding the 12 bytes of overhead for the block header, as follows:

physicalSize = logicalSize + sizeCorrection + 12

The second long word in the 32-bit block header contains the block’s physical size, and

the third long word contains the block’s relative handle. These fields have the same

meaning as the corresponding fields in the 24-bit block header.

Memory Manager Reference 2

This section describes the data types and routines provided by the Memory Manager. It

describes the general-purpose data types the Memory Manager defines and all routines

that relate to manipulating blocks of memory or managing memory in the application

heap zone. This section also describes the data structures and routines that allow your

application to allocate temporary memory and to use multiple heap zones.

Data Types 2

This section discusses the general-purpose data types defined by the Memory Manager.

Most of these types are used throughout the system software.

Bit Meaning

0–5 Reserved

6–7 The block type

Bit Meaning

0–4 Reserved

5 If set, block contains resource data

6 If set, block is purgeable

7 If set, block is locked

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-25

2

M
em

ory M
anager

The Memory Manager uses pointers and handles to reference nonrelocatable and

relocatable blocks, respectively. The data types Ptr and Handle define pointers and

handles as follows:

TYPE

SignedByte = –128..127;

Byte = 0..255;

Ptr = ^SignedByte;

Handle = ^Ptr;

The SignedByte type stands for an arbitrary byte in memory, just to give Ptr and

Handle something to point to. The Byte type is an alternative definition that treats

byte-length data as an unsigned rather than a signed quantity.

Many other data types also use the concept of pointers and handles. For example, the

Macintosh system software stores strings in arrays of up to 255 characters, with the first

byte of the array storing the length of the string. Some Toolbox routines allow you to

pass such a string directly; others require that you pass a pointer or handle to a string.

The following type definitions define character strings:

TYPE

Str255 = STRING[255];

StringPtr = ^Str255;

StringHandle = ^StringPtr;

Some Toolbox routines allow you to execute code after a certain amount of time elapses

or after a certain condition is met. Any such routine requires you to pass the address of

the routine containing the code to be executed so that it knows what routine to call when

the time has elapsed or the condition has been met. You use the data type ProcPtr to

define a pointer to a procedure or function.

TYPE ProcPtr = Ptr;

For example, after the declarations

VAR

aProcPtr: ProcPtr;

PROCEDURE MyProc;

BEGIN

...

END;

you can make aProcPtr reference the MyProc procedure by using the @ operator,

as follows:

aProcPtr := @MyProc;

C H A P T E R 2

Memory Manager

2-26 Memory Manager Reference

With the @ operator, you can assign procedures and functions to variables of type

ProcPtr , embed them in data structures, and pass them as arguments to other routines.

Notice, however, that the data type ProcPtr technically points to an arbitrary byte, not

an actual routine. As a result, there’s no direct way in Pascal to access the underlying

routine via this pointer in order to call it. (See Listing 2-4 on page 2-13 for some

assembly-language code you can use to do so.) The routines in the Operating System

and Toolbox, which are written in assembly language, can however, call routines

designated by pointers of type ProcPtr .

Note
You can’t use the @ operator to reference procedures or functions whose
declarations are nested within other routines. ◆

The Memory Manager uses the Size data type to refer to the size, in bytes, of memory

blocks. For example, when specifying how large a relocatable block you want to allocate,

you pass a parameter of type Size . The Size data type is also defined as a long integer.

TYPE Size = LongInt;

Memory Manager Routines 2

This section describes the routines provided by the Memory Manager. You can use these

routines to set up your application’s partition, allocate and dispose of relocatable and

nonrelocatable blocks, manipulate those blocks, assess the availability of memory in

your application’s heap, free memory from the heap, and install a grow-zone function

for your heap. The Memory Manager also provides routines that allow you to allocate

temporary memory and manipulate heap zones.

Note
The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MemError
function (or, from assembly language, inspect the MemErr global
variable) to get a routine’s result code. ◆

You cannot call most Memory Manager routines at interrupt time for several reasons.

You cannot allocate memory at interrupt time because the Memory Manager might

already be handling a memory-allocation request and the heap might be in an

inconsistent state. More generally, you cannot call at interrupt time any Memory

Manager routine that returns its result code via the MemError function, even if that

routine doesn’t allocate or move memory. Resetting the MemErr global variable at

interrupt time can lead to unexpected results if the interrupted code depends on the

value of MemErr. Note that Memory Manager routines like HLock return their results

via MemError and therefore should not be called in interrupt code.

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-27

2

M
em

ory M
anager

Setting Up the Application Heap 2

The Operating System automatically initializes your application’s heap when your

application is launched. To help prevent heap fragmentation, you should call the

procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxApplZone procedure to extend the application heap zone to the application

heap limit so that the Memory Manager does not do so gradually as memory requests

require. Use the MoreMasters procedure to preallocate enough blocks of master

pointers so that the Memory Manager never needs to allocate new master pointer blocks

for you.

MaxApplZone 2

To help ensure that you can use as much of the application heap zone as possible, call the

MaxApplZone procedure. Call this once near the beginning of your program, after you

have expanded your stack.

PROCEDURE MaxApplZone;

DESCRIPTION

The MaxApplZone procedure expands the application heap zone to the application heap

limit. If you do not call MaxApplZone , the application heap zone grows as necessary to

fulfill memory requests. The MaxApplZone procedure does not purge any blocks

currently in the zone. If the zone already extends to the limit, MaxApplZone does

nothing.

It is a good idea to call MaxApplZone once at the beginning of your program if you

intend to maintain an effectively partitioned heap. If you do not call MaxApplZone and

then call MoveHHi to move relocatable blocks to the top of the heap zone before locking

them, the heap zone could later grow beyond these locked blocks to fulfill a memory

request. If the Memory Manager were to allocate a nonrelocatable block in this new

space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxApplZone are

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

2-28 Memory Manager Reference

MoreMasters 2

Call the MoreMasters procedure several times at the beginning of your program to

prevent the Memory Manager from running out of master pointers in the middle of

application execution. If it does run out, it allocates more, possibly causing heap

fragmentation.

PROCEDURE MoreMasters;

DESCRIPTION

The MoreMasters procedure allocates another block of master pointers in the current

heap zone. In the application heap, a block of master pointers consists of 64 master

pointers, and in the system heap, a block consists of 32 master pointers. (These values,

however, might change in future versions of system software.) When you initialize

additional heap zones, you can specify the number of master pointers you want to have

in a block of master pointers.

The Memory Manager automatically calls MoreMasters once for every new heap zone,

including the application heap zone.

You should call MoreMasters at the beginning of your program enough times to ensure

that the Memory Manager never needs to call it for you. For example, if your application

never allocates more than 300 relocatable blocks in its heap zone, then five calls to the

MoreMasters should be enough. It’s better to call MoreMasters too many times than

too few. For instance, if your application usually allocates about 100 relocatable blocks

but might allocate 1000 in a particularly busy session, call MoreMasters enough times

at the beginning of the program to accommodate times of greater memory use.

If you are forced to call MoreMasters so many times that it causes a significant

slowdown, you could change the moreMast field of the zone header to the total number

of master pointers you need and then call MoreMasters just once. Afterward, be sure to

restore the moreMast field to its original value.

SPECIAL CONSIDERATIONS

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main

code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MoreMasters are

Registers on exit

D0 Result code

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-29

2

M
em

ory M
anager

RESULT CODES

SEE ALSO

If you initialize a new zone, you can specify the number of master pointers that a master

pointer block should contain. See the description of the InitZone procedure on

page 2-86 for details.

Allocating and Releasing Relocatable Blocks of Memory 2

You can use the NewHandle function to allocate a relocatable block of memory, or the

NewEmptyHandle function to allocate handles for which you do not yet need blocks of

memory. If you want to allocate new blocks of memory in the system heap or with their

bits precleared to 0, you can use the functions NewHandleSys , NewHandleClear , and

NewHandleSysClear .

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposeHandle procedure to free relocatable blocks of memory you

have allocated.

NewHandle 2

You can use the NewHandle function to allocate a relocatable memory block of a

specified size.

FUNCTION NewHandle (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandle function attempts to allocate a new relocatable block in the current heap

zone with a logical size of logicalSize bytes and then return a handle to the block.

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

2-30 Memory Manager Reference

The new block is unlocked and unpurgeable. If NewHandle cannot allocate a block of

the requested size, it returns NIL .

▲ W A R N I N G

Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Ptr to a variable of
type Handle . The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. ▲

The NewHandle function pursues all available avenues to create a block of the requested

size, including compacting the heap zone, increasing its size, and purging blocks from it.

If all of these techniques fail and the heap zone has a grow-zone function installed,

NewHandle calls the function. Then NewHandle tries again to free the necessary amount

of memory, once more compacting and purging the heap zone if necessary. If memory

still cannot be allocated, NewHandle calls the grow-zone function again, unless that

function had returned 0, in which case NewHandle gives up and returns NIL .

SPECIAL CONSIDERATIONS

Because NewHandle allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewHandle are

You can specify that the NewHandle function apply to the system heap zone instead of

the current zone by setting bit 10 of the routine trap word. In most development systems,

you can do this by supplying the word SYS as the second argument to the routine macro,

as follows:

_NewHandle ,SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the

NewHandle function, set bit 9 of the routine trap word. You can usually do this by

supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandle ,CLEAR

You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewHandle ,SYS,CLEAR

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or NIL

D0 Result code

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-31

2

M
em

ory M
anager

RESULT CODES

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can

prevent heap fragmentation by allocating the block as low as possible in the heap zone.

To do this, see the description of the ReserveMem procedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you might want to move

it to the top of the heap zone to prevent heap fragmentation. For more information, see

the description of the MoveHHi procedure on page 2-56.

NewHandleSys 2

You can use the NewHandleSys function to allocate a relocatable block of memory of a

specified size in the system heap.

FUNCTION NewHandleSys (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandleSys function works much as the NewHandle function does, but

attempts to allocate the requested block in the system heap zone instead of in the current

heap zone. If it cannot, it returns NIL .

RESULT CODES

NewHandleClear 2

You can use the NewHandleClear function to allocate prezeroed memory in a

relocatable block of a specified size.

FUNCTION NewHandleClear (logicalSize: Size): Handle;

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 2

Memory Manager

2-32 Memory Manager Reference

logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleClear function works much as the NewHandle function does but sets

all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHandleClear clears the block one byte at a time. For a large block, it

might be faster to clear the block manually a long word at a time.

RESULT CODES

NewHandleSysClear 2

You can use the NewHandleSysClear function to allocate, in the system heap,

prezeroed memory in a relocatable block of a specified size.

FUNCTION NewHandleSysClear (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleSysClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleSysClear function works much as the NewHandleClear function

does, but attempts to allocate the requested block in the system heap zone instead of in

the current heap zone. NewHandleSysClear sets all bytes in the new block to 0 instead

of leaving the contents of the block undefined.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-33

2

M
em

ory M
anager

NewEmptyHandle 2

If you want to initialize a handle but not allocate any space for it, use the

NewEmptyHandle function. The Resource Manager uses this function extensively,

but you probably won’t need to use it.

FUNCTION NewEmptyHandle: Handle;

DESCRIPTION

The NewEmptyHandle function initializes a new handle by allocating a master pointer

for it, but it does not allocate any memory for the handle to control. NewEmptyHandle

sets the handle’s master pointer to NIL .

SPECIAL CONSIDERATIONS

Because NewEmptyHandle might need to call the MoreMasters procedure to

allocate new master pointers, it might allocate memory. Thus, you should not call

NewEmptyHandle at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for NewEmptyHandle are

You can specify that the NewEmptyHandle function apply to the system heap zone

instead of the current zone. To do so, set bit 10 of the routine trap word. In most

development systems, you can do this by supplying the word SYS as the second

argument to the routine macro, as follows:

_NewEmptyHandle ,SYS

RESULT CODES

SEE ALSO

When you want to allocate memory for the empty handle, use the ReallocateHandle

procedure, described on page 2-52.

Registers on exit

A0 Address of the new block’s master pointer

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

2-34 Memory Manager Reference

NewEmptyHandleSys 2

If you want to initialize a handle in the system heap but not allocate any space for it, use

the NewEmptyHandleSys function. The Resource Manager uses this function

extensively, but you probably won’t need to use it.

FUNCTION NewEmptyHandleSys: Handle;

DESCRIPTION

The NewEmptyHandleSys function initializes a new handle in the system heap by

allocating a master pointer for it, but it does not allocate any memory for the handle to

control. NewEmptyHandleSys sets the handle’s master pointer to NIL .

SPECIAL CONSIDERATIONS

Because NewEmptyHandleSys might need to call the MoreMasters procedure to

allocate new master pointers, it might allocate memory. Thus, you should not call

NewEmptyHandleSys at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for NewEmptyHandleSys are

RESULT CODES

SEE ALSO

When you want to allocate memory for the empty handle, use the ReallocateHandle

procedure, described on page 2-52.

DisposeHandle 2

When you are completely done with a relocatable block, call the DisposeHandle

procedure to free it and its master pointer for other uses.

PROCEDURE DisposeHandle (h: Handle);

Registers on exit

A0 Address of the new block’s master pointer

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-35

2

M
em

ory M
anager

h A handle to a relocatable block.

DESCRIPTION

The DisposeHandle procedure releases the memory occupied by the relocatable block

whose handle is h. It also frees the handle’s master pointer for other uses.

▲ W A R N I N G

After a call to DisposeHandle , all handles to the released block
become invalid and should not be used again. Any subsequent calls to
DisposeHandle using an invalid handle might damage the master
pointer list. ▲

Do not use DisposeHandle to dispose of a handle obtained from the Resource

Manager (for example, by a previous call to GetResource); use ReleaseResource

instead. If, however, you have called DetachResource on a resource handle, you

should dispose of the storage by calling DisposeHandle .

SPECIAL CONSIDERATIONS

Because DisposeHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposeHandle are

RESULT CODES

Allocating and Releasing Nonrelocatable Blocks of Memory 2

You can use the NewPtr function to allocate a nonrelocatable block of memory. If you

want to allocate new blocks of memory in the system heap or with their bits precleared

to 0, you can use the NewPtrSys , NewPtrClear , and NewPtrSysClear functions.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposePtr procedure to free nonrelocatable blocks of memory you

have allocated.

Registers on entry

A0 Handle to the relocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-36 Memory Manager Reference

NewPtr 2

You can use the NewPtr function to allocate a nonrelocatable block of memory of a

specified size.

FUNCTION NewPtr (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtr function attempts to allocate, in the current heap zone, a nonrelocatable

block with a logical size of logicalSize bytes and then return a pointer to the block. If

the requested number of bytes cannot be allocated, NewPtr returns NIL .

The NewPtr function attempts to reserve space as low in the heap zone as possible for

the new block. If it is able to reserve the requested amount of space, NewPtr allocates

the nonrelocatable block in the gap ReserveMem creates. Otherwise, NewPtr returns

NIL and generates a memFullErr error.

SPECIAL CONSIDERATIONS

Because NewPtr allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewPtr are

You can specify that the NewPtr function apply to the system heap zone instead of the

current zone. To do so, set bit 10 of the routine trap word. In most development systems,

you can do this by supplying the word SYS as the second argument to the routine macro,

as follows:

_NewPtr ,SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the

NewPtr function, set bit 9 of the routine trap word. You can usually do this by supplying

the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr ,CLEAR

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or NIL

D0 Result code

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-37

2

M
em

ory M
anager

You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewPtr ,SYS,CLEAR

RESULT CODES

NewPtrSys 2

You can use the NewPtrSys function to allocate a nonrelocatable block of memory of a

specified size in the system heap.

FUNCTION NewPtrSys (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrSys function works much as the NewPtr function does, but attempts to

allocate the requested block in the system heap zone instead of in the current heap zone.

RESULT CODES

NewPtrClear 2

You can use the NewPtrClear function to allocate prezeroed memory in a

nonrelocatable block of a specified size.

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrClear function works much as the NewPtr function does, but sets all bytes

in the new block to 0 instead of leaving the contents of the block undefined.

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

2-38 Memory Manager Reference

Currently, NewPtrClear clears the block one byte at a time. For a large block, it might

be faster to clear the block manually a long word at a time.

RESULT CODES

NewPtrSysClear 2

You can use the NewPtrSysClear function to allocate, in the system heap, prezeroed

memory in a nonrelocatable block of a specified size.

FUNCTION NewPtrSysClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrSysClear function works much as the NewPtr function does, but attempts

to allocate the requested block in the system heap zone instead of in the current heap

zone. Also, it sets all bytes in the new block to 0 instead of leaving the contents of the

block undefined.

RESULT CODES

DisposePtr 2

When you are completely done with a nonrelocatable block, call the DisposePtr

procedure to free it for other uses.

PROCEDURE DisposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-39

2

M
em

ory M
anager

DESCRIPTION

The DisposePtr procedure releases the memory occupied by the nonrelocatable block

specified by p.

▲ W A R N I N G

After a call to DisposePtr , all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. ▲

SPECIAL CONSIDERATIONS

Because DisposePtr purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposePtr are

RESULT CODES

Changing the Sizes of Relocatable and Nonrelocatable Blocks 2

You can use the GetHandleSize function and the SetHandleSize procedure to find

out and change the logical size of a relocatable block, and you can use the GetPtrSize

function and the SetPtrSize procedure to find out and change the logical size of a

nonrelocatable block.

GetHandleSize 2

You can use the GetHandleSize function to find out the logical size of the relocatable

block corresponding to a handle.

FUNCTION GetHandleSize (h: Handle): Size;

h A handle to a relocatable block.

Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-40 Memory Manager Reference

DESCRIPTION

The GetHandleSize function returns the logical size, in bytes, of the relocatable block

whose handle is h. In case of an error, GetHandleSize returns 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for GetHandleSize are

The trap dispatcher sets the condition codes before returning from a trap by testing the

low-order word of register D0 with a TST.W instruction. Because the block size returned

in D0 by _GetHandleSize is a full 32-bit long word, the word-length test sets the

condition codes incorrectly in this case. To branch on the contents of D0, use your own

TST.L instruction on return from the trap to test the full 32 bits of the register.

SPECIAL CONSIDERATIONS

You shouldn’t call GetHandleSize at interrupt time because the heap might be in an

inconsistent state.

RESULT CODES

SetHandleSize 2

You can use the SetHandleSize procedure to change the logical size of the relocatable

block corresponding to a handle.

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

h A handle to a relocatable block.

newSize The desired new logical size, in bytes, of the relocatable block.

DESCRIPTION

The SetHandleSize procedure attempts to change the logical size of the relocatable

block whose handle is h. The new logical size is specified by newSize .

Registers on entry

A0 Handle to the relocatable block

Registers on exit

D0 If >=0 , number of bytes in relocatable block

If <0, result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-41

2

M
em

ory M
anager

SetHandleSize might need to move the relocatable block to obtain enough space for

the resized block. Thus, for best results you should unlock a block before resizing it.

An attempt to increase the size of a locked block might fail, because of blocks above and

below it that are either nonrelocatable or locked. You should be prepared for this

possibility.

SPECIAL CONSIDERATIONS

Because SetHandleSize allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetHandleSize are

RESULT CODES

SEE ALSO

Instead of using the SetHandleSize procedure to set the size of a handle to 0, you can

use the EmptyHandle procedure, described on page 2-51.

GetPtrSize 2

You can use the GetPtrSize function to find out the logical size of the nonrelocatable

block corresponding to a pointer.

FUNCTION GetPtrSize (p: Ptr): Size;

p A pointer to a nonrelocatable block.

Registers on entry

A0 Handle to the relocatable block

D0 Desired new size of relocatable block

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-42 Memory Manager Reference

DESCRIPTION

The GetPtrSize function returns the logical size, in bytes, of the nonrelocatable block

pointed to by p. In case of an error, GetPtrSize returns 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for GetPtrSize are

The trap dispatcher sets the condition codes before returning from a trap by testing the

low-order word of register D0 with a TST.W instruction. Because the block size returned

in D0 by _GetPtrSize is a full 32-bit long word, the word-length test sets the condition

codes incorrectly in this case. To branch on the contents of D0, use your own TST.L

instruction on return from the trap to test the full 32 bits of the register.

RESULT CODES

SetPtrSize 2

You can use the SetPtrSize procedure to change the logical size of the nonrelocatable

block corresponding to a pointer.

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

p A pointer to a nonrelocatable block.

newSize The desired new logical size, in bytes, of the nonrelocatable block.

DESCRIPTION

The SetPtrSize procedure attempts to change the logical size of the nonrelocatable

block pointed to by p. The new logical size is specified by newSize .

An attempt to increase the size of a nonrelocatable block might fail because of a block

above it that is either nonrelocatable or locked. You should be prepared for this

possibility.

Registers on entry

A0 Pointer to the nonrelocatable block

Registers on exit

D0 If >=0 , number of bytes in nonrelocatable block

If <0, result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-43

2

M
em

ory M
anager

SPECIAL CONSIDERATIONS

Because SetPtrSize allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetPtrSize are

RESULT CODES

Setting the Properties of Relocatable Blocks 2

A relocatable block can be either locked or unlocked and either purgeable or

unpurgeable. In addition, it can have its resource bit either set or cleared. To determine

the state of any of these properties, use the HGetState function. To change these

properties, use the HLock , HUnlock , HPurge , HNoPurge , HSetRBit , and HClrRBit

procedures. To restore these properties, use the HSetState procedure.

▲ W A R N I N G

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. ▲

HGetState 2

You can use the HGetState function to get the current properties of a relocatable block

(perhaps so that you can change and then later restore those properties).

FUNCTION HGetState (h: Handle): SignedByte;

h A handle to a relocatable block.

Registers on entry

A0 Pointer to the nonrelocatable block

D0 Desired new size of nonrelocatable block

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-44 Memory Manager Reference

DESCRIPTION

The HGetState function returns a signed byte containing the flags of the master pointer

for the given handle. You can save this byte, change the state of any of the flags using the

routines described on page 2-45 through page 2-50, and then restore their original states

by passing the byte to the HSetState procedure, described next.

You can use bit-manipulation functions on the returned signed byte to determine the

value of a given attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable

block, HGetState returns the low-order byte of the result code as its function result. For

example, if the handle h points to a master pointer whose value is NIL , then the signed

byte returned by HGetState will contain the value –109.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HGetState are

RESULT CODES

HSetState 2

You can use the HSetState procedure to restore properties of a block after a call to

HGetState .

PROCEDURE HSetState (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.

Bit Meaning

0–4 Reserved

5 Set if relocatable block is a resource

6 Set if relocatable block is purgeable

7 Set if relocatable block is locked

Registers on entry

A0 Handle whose properties you want to get

Registers on exit

D0 Byte containing flags

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-45

2

M
em

ory M
anager

DESCRIPTION

The HSetState procedure restores to the handle h the properties specified in the flags

signed byte. See the description of the HGetState function for a list of the currently

used bits in that byte. Because additional bits of the flags byte could become significant

in future versions of system software, use HSetState only with a byte returned by

HGetState . If you need to set two or three properties of a relocatable block at once, it is

better to use the procedures that set individual properties than to manipulate the bits

returned by HGetState and then call HSetState .

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetState are

RESULT CODES

HLock 2

You can use the HLock procedure to lock a relocatable block so that it does not move in

the heap. If you plan to dereference a handle and then allocate, move, or purge memory

(or call a routine that does so), then you should lock the handle before using the

dereferenced handle.

PROCEDURE HLock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it

from being moved within its heap zone. If the block is already locked, HLock does

nothing.

Registers on entry

A0 Handle whose properties you want to set

D0 Byte containing flags indicating the handle’s new properties

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-46 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLock are

RESULT CODES

SEE ALSO

If you plan to lock a relocatable block for long periods of time, you can prevent

fragmentation by ensuring that the block is as low as possible in the heap zone. To do

this, see the description of the ReserveMem procedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you can prevent heap

fragmentation by moving the block to the top of the heap zone before locking. For more

information, see the description of the MoveHHi procedure on page 2-56.

HUnlock 2

You can use the HUnlock procedure to unlock a relocatable block so that it is free to

move in its heap zone.

PROCEDURE HUnlock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HUnlock procedure unlocks the relocatable block to which h is a handle, allowing it

to be moved within its heap zone. If the block is already unlocked, HUnlock does

nothing.

Registers on entry

A0 Handle to lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-47

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HUnlock are

RESULT CODES

HPurge 2

You can use the HPurge procedure to mark a relocatable block so that it can be purged if

a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HPurge procedure makes the relocatable block to which h is a handle purgeable. If

the block is already purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone

containing the block to satisfy a memory request. A direct call to the PurgeMem

procedure or the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to

the block are not empty before you access the block. If they are empty, you must

reallocate space for the block and recopy the block’s data from another source, such as a

resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does

mark it as purgeable. If you later call HUnlock on h, the block is subject to purging.

Registers on entry

A0 Handle to unlock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-48 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HPurge are

RESULT CODES

SEE ALSO

If the Memory Manager has purged a block, you can reallocate space for it by using the

ReallocateHandle procedure, described on page 2-52.

You can immediately free the space taken by a handle without disposing of it by calling

EmptyHandle . This procedure, described on page 2-51, does not require that the block

be purgeable.

HNoPurge 2

You can use the HNoPurge procedure to mark a relocatable block so that it cannot be

purged.

PROCEDURE HNoPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HNoPurge procedure makes the relocatable block to which h is a handle

unpurgeable. If the block is already unpurgeable, HNoPurge does nothing.

The HNoPurge procedure does not reallocate memory for a handle if it has already

been purged.

Registers on entry

A0 Handle to make purgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-49

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HNoPurge are

RESULT CODES

SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged,

you can use the ReallocateHandle procedure, described on page 2-52.

HSetRBit 2

You can use the HSetRBit procedure to set the resource flag of a relocatable block. The

Resource Manager uses this routine extensively, but you should never need to use it.

PROCEDURE HSetRBit (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HSetRBit procedure sets the resource flag of the relocatable block to which h is a

handle. It does nothing if the flag is already set.

▲ W A R N I N G

When the resource flag is set, the Resource Manager identifies the
associated relocatable block as belonging to a resource. This can cause
problems if that block wasn’t actually read from a resource. ▲

Registers on entry

A0 Handle to make unpurgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-50 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetRBit are

RESULT CODES

HClrRBit 2

You can use the HClrRBit procedure to clear the resource flag of a relocatable block.

The Resource Manager uses this routine extensively, but you probably won’t need

to use it.

PROCEDURE HClrRBit (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HClrRBit procedure clears the resource flag of a relocatable block. It does nothing

if the flag is already cleared.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HClrRBit are

RESULT CODES

Registers on entry

A0 Handle whose resource flag you want to set

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Handle whose resource flag you want to clear

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-51

2

M
em

ory M
anager

SEE ALSO

To disassociate the data in a resource handle from the resource file, you should use the

Resource Manager procedure DetachResource instead of this procedure.

Managing Relocatable Blocks 2

The Memory Manager provides routines that allow you to purge and later reallocate

space for relocatable blocks, recreate handles to relocatable blocks if you have access to

their master pointers, and control where in their heap zone relocatable blocks are located.

To free the memory taken up by a relocatable block without releasing the master pointer

to the block for other uses, use the EmptyHandle procedure. To reallocate space for a

handle that you have emptied or the Memory Manager has purged, use the

ReallocateHandle procedure.

If, because you have dereferenced a handle, you no longer have access to it but do

have access to its master pointer, you can use the RecoverHandle function to recreate

the handle.

To ensure that a relocatable block that you plan to lock for short or long periods of time

does not cause heap fragmentation, use the MoveHHi and the ReserveMem procedures,

respectively.

EmptyHandle 2

The EmptyHandle procedure allows you to free memory taken by a relocatable block

without freeing the relocatable block’s master pointer for other uses.

PROCEDURE EmptyHandle (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The EmptyHandle procedure purges the relocatable block whose handle is h and sets

the handle’s master pointer to NIL . The block whose handle is h must be unlocked but

need not be purgeable.

Note
If there are multiple handles to the relocatable block, then calling
the EmptyHandle procedure empties them all, because all of the
handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. ◆

C H A P T E R 2

Memory Manager

2-52 Memory Manager Reference

SPECIAL CONSIDERATIONS

Because EmptyHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for EmptyHandle are

RESULT CODES

SEE ALSO

To purge all of the blocks in a heap zone that are marked purgeable, use the PurgeMem

procedure, described on page 2-73.

To free the memory taken up by a relocatable block and release the block’s master

pointer for other uses, use the DisposeHandle procedure, described on page 2-34.

ReallocateHandle 2

To recover space for a relocatable block that you have emptied or the Memory Manager

has purged, use the ReallocateHandle procedure.

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

h A handle to a relocatable block.

logicalSize
The desired new logical size (in bytes) of the relocatable block.

DESCRIPTION

The ReallocateHandle procedure allocates a new relocatable block with a logical size

of logicalSize bytes. It updates the handle h by setting its master pointer to point to

the new block. The new block is unlocked and unpurgeable.

Registers on entry

A0 Handle to relocatable block

Registers on exit

A0 Handle to relocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-53

2

M
em

ory M
anager

Usually you use ReallocateHandle to reallocate space for a block that you have

emptied or the Memory Manager has purged. If the handle references an existing block,

ReallocateHandle releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResource , not ReallocateHandle . ◆

If many handles reference a single purged, relocatable block, you need to call

ReallocateHandle on just one of them.

In case of an error, ReallocateHandle neither allocates a new block nor changes the

master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because ReallocateHandle might purge and allocate memory, you should not call it

at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReallocateHandle are

RESULT CODES

SEE ALSO

Because ReallocateHandle releases any existing relocatable block referenced by the

handle h before allocating a new one, it does not provide an efficient technique for

resizing relocatable blocks. To do that, use the SetHandleSize procedure, described on

page 2-40.

Registers on entry

A0 Handle for new relocatable block

D0 Desired logical size, in bytes, of new block

Registers on exit

D0 Result code

noErr 0 No error
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block

C H A P T E R 2

Memory Manager

2-54 Memory Manager Reference

RecoverHandle 2

The Memory Manager does not allow you to change relocatable blocks into

nonrelocatable blocks, or vice-versa. However, if you no longer have access to a handle

but still have access to its master pointer, you can use the RecoverHandle function to

recreate a handle to the relocatable block referenced by the master pointer.

FUNCTION RecoverHandle (p: Ptr): Handle;

p The master pointer to a relocatable block.

DESCRIPTION

The RecoverHandle function returns a handle to the relocatable block pointed to by p.

If p doesn’t point to a valid block, the results of RecoverHandle are undefined.

SPECIAL CONSIDERATIONS

Even though RecoverHandle does not move or purge memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for RecoverHandle are

Unlike most other Memory Manager routines, RecoverHandle does not return a

result code in register D0; the previous contents of D0 are preserved unchanged.

The result code is, however, returned by MemError .

The RecoverHandle function looks only in the current heap zone for the relocatable

block pointed to by the parameter p. If you want to use the RecoverHandle function to

recover a handle for a relocatable block in the system heap, set bit 10 of the routine trap

word. In most development systems, you can do this by supplying the word SYS as the

second argument to the routine macro, as follows:

_RecoverHandle ,SYS

Registers on entry

A0 Master pointer

Registers on exit

A0 Handle to master pointer’s relocatable block

D0 Unchanged

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-55

2

M
em

ory M
anager

RESULT CODES

ReserveMem 2

Use the ReserveMem procedure when you allocate a relocatable block that you intend to

lock for long periods of time. This helps prevent heap fragmentation because it reserves

space for the block as close to the bottom of the heap as possible. Consistent use of

ReserveMem for this purpose ensures that all locked, relocatable blocks and

nonrelocatable blocks are together at the bottom of the heap zone and thus do not

prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The ReserveMem procedure attempts to create free space for a block of cbNeeded

contiguous logical bytes at the lowest possible position in the current heap zone. It

pursues every available means of placing the block as close as possible to the bottom

of the zone, including moving other relocatable blocks upward, expanding the zone

(if possible), and purging blocks from it.

Because ReserveMem does not actually allocate the block, you must combine calls to

ReserveMem with calls to the NewHandle function.

Do not use the ReserveMem procedure for a relocatable block you intend to lock for

only a short period of time. If you do so and then allocate a nonrelocatable block above

it, the relocatable block becomes trapped under the nonrelocatable block when you

unlock that relocatable block.

Note
It isn’t necessary to call ReserveMem to reserve space for a
nonrelocatable block, because the NewPtr function calls it automatically.
Also, you do not need to call ReserveMem to reserve memory before
you load a locked resource into memory, because the Resource Manager
calls ReserveMem automatically. ◆

SPECIAL CONSIDERATIONS

Because the ReserveMem procedure could move and purge memory, you should not call

it at interrupt time.

noErr 0 No error
memBCErr –115 Block check failed

C H A P T E R 2

Memory Manager

2-56 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReserveMem are

The ReserveMem procedure reserves memory in the current heap zone. If you want to

reserve memory in the system heap zone rather than in the current heap zone, set bit 10

of the routine trap word. In most development systems, you can do this by supplying

the word SYS as the second argument to the routine macro, as follows:

_ResrvMem ,SYS

RESULT CODES

ReserveMemSys 2

If you plan to lock a relocatable block for long periods of time in the system heap zone,

use the ReserveMemSys procedure to reserve space for the block as low in the system

heap as possible.

PROCEDURE ReserveMemSys (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the system heap.

DESCRIPTION

The ReserveMemSys procedure works much as the ReserveMem procedure does, but

reserves memory in the system heap zone rather than in the current heap zone.

MoveHHi 2

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap

fragmentation.

PROCEDURE MoveHHi (h: Handle);

Registers on entry

D0 Number of bytes to reserve

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-57

2

M
em

ory M
anager

h A handle to a relocatable block.

DESCRIPTION

The MoveHHi procedure attempts to move the relocatable block referenced by the handle

h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of

the heap.

▲ W A R N I N G

If you call MoveHHi to move a handle to a resource that has its
resChanged bit set, the Resource Manager updates the resource by
using the WriteResource procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure SetResPurge(FALSE) before you call MoveHHi , and then
call SetResPurge(TRUE) to restore the default setting. ▲

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short

periods of time, you help prevent islands of immovable memory from accumulating in

(and thus fragmenting) the heap.

Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of

time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps

preventing other blocks already at the top of the heap from moving down once they are

unlocked. Instead, use the ReserveMem procedure before allocating such blocks, thus

keeping them in the bottom partition of the heap, where they do not prevent relocatable

blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always

locked and calling the ReserveMem procedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the

Memory Manager to move it back to the middle partition as soon as it can. (The

MoveHHi procedure cannot move locked blocks; be sure to lock blocks after, not before,

calling MoveHHi .)

Note
Using the MoveHHi procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHHi from moving blocks to the top of
the heap. ◆

SPECIAL CONSIDERATIONS

Because the MoveHHi procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHHi on blocks in the system heap. Don’t call MoveHHi from a desk

accessory.

C H A P T E R 2

Memory Manager

2-58 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for MoveHHi are

RESULT CODES

HLockHi 2

You can use the HLockHi procedure to move a relocatable block to the top of the heap

and lock it.

PROCEDURE HLockHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle

h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of

the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures

MoveHHi and HLock .

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockHi from a desk

accessory.

Registers on entry

A0 Handle to move

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memLockedErr –117 Block is locked

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-59

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLockHi are

RESULT CODES

Manipulating Blocks of Memory 2

The Memory Manager provides three routines for copying blocks of memory referenced

by pointers. To copy a block of memory to a nonrelocatable block, use the BlockMove

procedure. To copy to a new relocatable block, use the PtrToHand function. To copy to

an existing relocatable block, use the PtrToXHand function. If you want to use any of

these routines to copy memory you access with a handle, you must first dereference and

lock the handle. A fourth routine, HandToHand, allows you to copy information from

one handle to another.

To concatenate blocks of memory, you can use the HandAndHand and PtrAndHand

functions.

BlockMove 2

To copy a sequence of bytes from one location in memory to another, you can use the

BlockMove procedure.

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.

destPtr The address of the first byte to copy to.

byteCount The number of bytes to copy. If the value of byteCount is 0, BlockMove
does nothing.

DESCRIPTION

The BlockMove procedure moves a block of byteCount consecutive bytes from

the address designated by sourcePtr to that designated by destPtr . It updates

no pointers.

Registers on entry

A0 Handle to move and lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memLockedErr –117 Block is locked

C H A P T E R 2

Memory Manager

2-60 Memory Manager Reference

The BlockMove procedure works correctly even if the source and destination

blocks overlap.

SPECIAL CONSIDERATIONS

You can safely call BlockMove at interrupt time. Even though it moves memory,

BlockMove does not move relocatable blocks, but simply copies bytes.

The BlockMove procedure currently flushes the processor caches whenever the number

of bytes to be moved is greater than 12. This behavior can adversely affect your

application’s performance. You might want to avoid calling BlockMove to move small

amounts of data in memory if there is no possibility of moving stale data or instructions.

For more information about stale data and instructions, see the discussion of the

processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for BlockMove are

RESULT CODE

PtrToHand 2

To copy data referenced by a pointer to a new relocatable block, use the PtrToHand

function.

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle;

size: LongInt): OSErr;

srcPtr The address of the first byte to copy.

dstHndl A handle for which you have not yet allocated any memory. The
PtrToHand function allocates memory for the handle and copies size
bytes beginning at srcPtr into it.

size The number of bytes to copy.

Registers on entry

A0 Pointer to source

A1 Pointer to destination

D0 Number of bytes to copy

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-61

2

M
em

ory M
anager

DESCRIPTION

The PtrToHand function returns, in dstHndl , a newly created handle to a copy of the

number of bytes specified by the size parameter, beginning at the location specified by

srcPtr . The dstHndl parameter must be a handle variable that is not empty and is not

a handle to an allocated block of size 0.

SPECIAL CONSIDERATIONS

Because PtrToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrToHand are

RESULT CODES

SEE ALSO

You can use the PtrToHand function to copy data from one handle to a new handle

if you dereference and lock the source handle. However, if you want to copy all of

the data from one handle to another, the HandToHand function (described on page 2-62)

is more efficient.

PtrToXHand 2

To copy data referenced by a pointer to an already existing relocatable block, use the

PtrToXHand function.

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LongInt):

OSErr;

srcPtr The address of the first byte to copy.

Registers on entry

A0 Pointer to source

D0 Number of bytes to copy

Registers on exit

A0 Destination handle

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

2-62 Memory Manager Reference

dstHndl A handle to an already existing relocatable block to which to copy size
bytes, beginning at srcPtr .

size The number of bytes to copy.

DESCRIPTION

The PtrToXHand function makes the existing handle, specified by dstHndl , a handle to

a copy of the number of bytes specified by the size parameter, beginning at the location

specified by srcPtr .

SPECIAL CONSIDERATIONS

Because PtrToXHand affects memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrToXHand are

RESULT CODES

HandToHand 2

Use the HandToHand function to copy all of the data from one relocatable block to a new

relocatable block.

FUNCTION HandToHand (VAR theHndl: Handle): OSErr;

theHndl On entry, a handle to the relocatable block whose data is to be copied. On
exit, a handle to a new relocatable block whose data duplicates that of
the original.

Registers on entry

A0 Pointer to source

A1 Handle to destination

D0 Number of bytes to copy

Registers on exit

A0 Handle to destination

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-63

2

M
em

ory M
anager

DESCRIPTION

The HandToHand function attempts to copy the information in the relocatable block to

which theHndl is a handle; if successful, HandToHand returns a handle to the new

relocatable block in theHndl . The new relocatable block is created in the same heap

zone as the original block (which might not be the current heap zone).

Because HandToHand replaces its input parameter with the new handle, you should

retain the original value of the input parameter somewhere else, or you won’t be able to

access it. Here is an example:

VAR

original, copy: Handle;

myErr: OSErr;

...

copy := original; {both handles access same block}

myErr := HandToHand(copy); {copy now points to copy of block}

SPECIAL CONSIDERATIONS

If successful in creating a new relocatable block, the HandToHand function does not

duplicate the properties of the original block. The new block is unlocked, unpurgeable,

and not a resource. You might need to call HLock , HPurge , or HSetRBit (or the

combination of HGetState and HSetState) to adjust the properties of the new block.

Because HandToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandToHand are

RESULT CODES

Registers on entry

A0 Handle to original data

Registers on exit

A0 Handle to copy of data

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-64 Memory Manager Reference

SEE ALSO

If you want to copy only part of a relocatable block into a new relocatable block, use the

PtrToHand function, described on page 2-60, after locking and dereferencing a handle

to the relocatable block to be copied.

HandAndHand 2

Use the HandAndHand function to concatenate two relocatable blocks.

FUNCTION HandAndHand (aHndl, bHndl: Handle): OSErr;

aHndl A handle to the first relocatable block, whose contents do not change but
are concatenated to the end of the second relocatable block.

bHndl A handle to the second relocatable block, whose size the Memory
Manager expands so that it can concatenate the information from aHndl
to the end of the contents of this block.

DESCRIPTION

The HandAndHand function concatenates the information from the relocatable block to

which aHndl is a handle onto the end of the relocatable block to which bHndl is a

handle. The aHndl variable remains unchanged.

▲ W A R N I N G

The HandAndHand function dereferences the handle aHndl . You must call the
HLock procedure to lock the block before calling HandAndHand. Afterward,
you can call the HUnlock procedure to unlock it. Alternatively, you can save
the block’s original state by calling the HGetState function, lock the block by
calling HLock , and then restore the original settings by calling HSetState . ▲

SPECIAL CONSIDERATIONS

Because HandAndHand moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandAndHand are

Registers on entry

A0 Handle to be concatenated

A1 Handle to contain itself, data from A0’s handle

Registers on exit

A0 Handle to concatenated data

D0 Result code

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-65

2

M
em

ory M
anager

RESULT CODES

PtrAndHand 2

Use the PtrAndHand function to concatenate part or all of a memory block to the end of

a relocatable block.

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LongInt):

OSErr;

pntr A pointer to the beginning of the data that the Memory Manager is to
concatenate onto the end of the relocatable block.

hndl A handle to the relocatable block, whose size the Memory Manager
expands so that it can concatenate the information from pntr onto the
end of this block.

size The number of bytes of the block referenced by pntr to be copied.

DESCRIPTION

The PtrAndHand function takes the number of bytes specified by the size parameter,

beginning at the location specified by pntr , and concatenates them onto the end of the

relocatable block to which hndl is a handle.

The contents of the source block remain unchanged.

SPECIAL CONSIDERATIONS

Because PtrAndHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrAndHand are

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Pointer to data to copy

A1 Handle to relocatable block at whose end the copied data concatenated

A2 Number of bytes to concatenate

Registers on exit

A0 Handle to now-concatenated relocatable block

D0 Result code

C H A P T E R 2

Memory Manager

2-66 Memory Manager Reference

RESULT CODES

Assessing Memory Conditions 2

The Memory Manager provides four routines to test how much memory is available, one

routine used after memory operations to determine if an error occurred, and one routine

to determine the location in memory of the top of your application’s partition.

To determine the total amount of free space in the current heap zone or the size of the

maximum block that could be obtained after compacting the heap, use the FreeMem and

MaxBlock functions, respectively. To determine what those values would be after a

purge of the heap zone, call the PurgeSpace procedure. Finally, to find out how much

your stack can grow before it collides with the heap, use the StackSpace function.

To find out whether a Memory Manager operation finished successfully, use the

MemError function.

FreeMem 2

By calling the FreeMem function, you can find out the total amount of free space, in

bytes, in the current heap zone.

FUNCTION FreeMem: LongInt;

DESCRIPTION

The FreeMem function returns the total amount of free space (in bytes) in the current

heap zone. Note that it usually isn’t possible to allocate a block of that size, because

of heap fragmentation due to nonrelocatable or locked blocks.

SPECIAL CONSIDERATIONS

Even though FreeMem does not move or purge memory, you should not call it at

interrupt time because the heap might be in an inconsistent state.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for FreeMem are

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on exit

D0 Number of bytes available in heap zone

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-67

2

M
em

ory M
anager

The FreeMem function reports the number of free bytes in the current heap zone. If you

want to know how many bytes are available in the system heap zone rather than in the

current heap zone, set bit 10 of the routine trap word. In most development systems, you

can do this by supplying the word SYS as the second argument to the routine macro,

as follows:

_FreeMem ,SYS

RESULT CODES

FreeMemSys 2

To determine how much free space remains in the system heap zone, use the

FreeMemSys function.

FUNCTION FreeMemSys: LongInt;

DESCRIPTION

The FreeMemSys function works much as the FreeMem function does, but returns the

total amount of free memory in the system heap zone instead of in the current heap zone.

RESULT CODES

MaxBlock 2

Use the MaxBlock function to determine the size of the largest block you could allocate

in the current heap zone after a compaction.

FUNCTION MaxBlock: LongInt;

DESCRIPTION

The MaxBlock function returns the maximum contiguous space, in bytes, that you could

obtain after compacting the current heap zone. MaxBlock does not actually do the

compaction.

noErr 0 No error

noErr 0 No error

C H A P T E R 2

Memory Manager

2-68 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxBlock are

If you want to know the size of the largest allocatable block in the system heap zone,

rather than in the current heap zone, set bit 10 of the routine trap word. In most

development systems, you can do this by supplying the word SYS as the second

argument to the routine macro, as follows:

_MaxBlock ,SYS

RESULT CODES

MaxBlockSys 2

Use the MaxBlockSys function to determine the size of the largest block you could

allocate in the system heap after a compaction.

FUNCTION MaxBlockSys: LongInt;

DESCRIPTION

The MaxBlockSys function works much as the MaxBlock function does, but returns

the maximum contiguous space, in bytes, that you could obtain after compacting the

system heap. MaxBlockSys does not actually do the compaction.

RESULT CODES

PurgeSpace 2

Use the PurgeSpace procedure to determine the total amount of free memory and the

size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

total On exit, the total amount of free memory in the current heap zone if it
were purged.

Registers on exit

D0 Size of largest allocatable block

noErr 0 No error

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-69

2

M
em

ory M
anager

contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

DESCRIPTION

The PurgeSpace procedure returns, in the total parameter, the total amount of space

(in bytes) that could be obtained after a general purge of the current heap zone; this

amount includes space that is already free. In the contig parameter, PurgeSpace

returns the size of the largest allocatable block in the current heap zone that could be

obtained after a purge of the zone.

The PurgeSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for PurgeSpace are

If you want to test the system heap zone instead of the current zone, set bit 10 of the

routine trap word. In most development systems, you can do this by supplying the word

SYS as the second argument to the routine macro, as follows:

_PurgeSpace ,SYS

RESULT CODES

StackSpace 2

Use the StackSpace function to find out how much space there is between the bottom

of the stack and the top of the application heap.

FUNCTION StackSpace: LongInt;

DESCRIPTION

The StackSpace function returns the current amount of stack space (in bytes) between

the current stack pointer and the application heap at the instant of return from the trap.

Registers on exit

A0 Maximum number of contiguous bytes after purge

D0 Total free memory after purge

noErr 0 No error

C H A P T E R 2

Memory Manager

2-70 Memory Manager Reference

SPECIAL CONSIDERATIONS

Ordinarily, you determine the maximum amount of stack space you need before you

ship your application. In general, therefore, this routine is useful only during debugging

to determine how big to make the stack. However, if your application calls a recursive

function that conceivably could call itself many times, that function should keep track of

the stack space and take appropriate action if it becomes too low.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for StackSpace are

RESULT CODES

MemError 2

To find out whether your application’s last direct call to a Memory Manager routine

executed successfully, use the MemError function.

FUNCTION MemError: OSErr;

DESCRIPTION

The MemError function returns the result code produced by the last Memory Manager

routine your application called directly.

This function is useful during application debugging. You might also use the function as

one part of a memory-management scheme to identify instances in which the Memory

Manager rejects overly large memory requests by returning the error code memFullErr .

▲ W A R N I N G

Do not rely on the MemError function as the only component of a
memory-management scheme. For example, suppose you call
NewHandle or NewPtr and receive the result code noErr , indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on MemError ,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. ▲

Registers on exit

D0 Number of bytes between stack and heap

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-71

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register D0, you do not

ordinarily need to call the MemError function if you program in assembly language. See

the description of an individual routine to find out whether it returns a result code in

register D0. If not, you can examine the global variable MemErr. When MemError

returns, register D0 contains the result code.

RESULT CODES

Freeing Memory 2

The Memory Manager compacts and purges the heap whenever necessary to satisfy

requests for memory. You can also compact or purge the heap manually. To compact the

current heap zone manually, use the CompactMem function. To purge it manually, use

the PurgeMem procedure. To do both at once, use the MaxMem function. To perform the

same operations on the system heap zone, use the CompactMemSys function, the

PurgeMemSys procedure, and the MaxMemSys function.

Note
Most applications don’t need to call the routines described in this
section. Normally you should let the Memory Manager compact or
purge your application heap. ◆

CompactMem 2

The Memory Manager compacts the heap for you when you make a memory request

that it can’t fill. However, you can use the CompactMem function to compact the current

heap zone manually.

FUNCTION CompactMem (cbNeeded: Size): Size;

cbNeeded The size, in bytes, of the block for which CompactMem should attempt to
make room.

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked

C H A P T E R 2

Memory Manager

2-72 Memory Manager Reference

DESCRIPTION

The CompactMem function compacts the current heap zone by moving unlocked,

relocatable blocks down until they encounter nonrelocatable blocks or locked, relocatable

blocks, but not by purging blocks. It continues compacting until it either finds a

contiguous block of at least cbNeeded free bytes or has compacted the entire zone.

The CompactMem function returns the size, in bytes, of the largest contiguous free block

for which it could make room, but it does not actually allocate that block.

To compact the entire heap zone, call CompactMem(maxSize) . The Memory Manager

defines the constant maxSize for the largest contiguous block possible in the 24-bit

Memory Manager:

CONST

maxSize = $800000; {maximum size of a block}

SPECIAL CONSIDERATIONS

Because CompactMem moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for CompactMem are

The CompactMem function compacts the current heap zone. If you want to compact the

system heap zone rather than the current heap zone, set bit 10 of the routine trap word.

In most development systems, you can do this by supplying the word SYS as the second

argument to the routine macro, as follows:

_CompactMem ,SYS

RESULT CODES

CompactMemSys 2

You can use the CompactMemSys function to compact the system heap zone manually.

FUNCTION CompactMemSys (cbNeeded: Size): Size;

Registers on entry

D0 Size of block to make room for

Registers on exit

D0 Size of largest allocatable block

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-73

2

M
em

ory M
anager

cbNeeded The size in bytes of the block for which CompactMemSys should attempt
to make room.

DESCRIPTION

The CompactMemSys function works much as the CompactMem function does, but

compacts the system heap instead of the current heap.

RESULT CODES

PurgeMem 2

The Memory Manager purges the heap for you when you make a memory request that it

can’t fill. However, you can use the PurgeMem procedure to purge the current heap zone

manually.

PROCEDURE PurgeMem (cbNeeded: Size);

cbNeeded The size, in bytes, of the block for which PurgeMem should attempt to
make room.

DESCRIPTION

The PurgeMem procedure sequentially purges blocks from the current heap zone until it

either allocates a contiguous block of at least cbNeeded free bytes or has purged the

entire zone. If it purges the entire zone without creating a contiguous block of at least

cbNeeded free bytes, PurgeMem generates a memFullErr .

The PurgeMem procedure purges only relocatable, unlocked, purgeable blocks.

The PurgeMem procedure does not actually attempt to allocate a block of

cbNeeded bytes.

To purge the entire heap zone, call PurgeMem(maxSize) .

SPECIAL CONSIDERATIONS

Because PurgeMem purges memory, you should not call it at interrupt time.

noErr 0 No error

C H A P T E R 2

Memory Manager

2-74 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PurgeMem are

The PurgeMem procedure purges the current heap zone. If you want to purge the system

heap zone rather than the current heap zone, set bit 10 of the routine trap word. In most

development systems, you can do this by supplying the word SYS as the second

argument to the routine macro, as follows:

_PurgeMem ,SYS

RESULT CODES

PurgeMemSys 2

You can use the PurgeMemSys procedure to purge the system heap manually.

PROCEDURE PurgeMemSys (cbNeeded: Size);

cbNeeded The size, in bytes, of the block for which PurgeMemSys should attempt
to make room.

DESCRIPTION

The PurgeMemSys procedure works much as the PurgeMem procedure does, but purges

the system heap instead of the current heap.

RESULT CODES

MaxMem 2

Use the MaxMem function to compact and purge the current heap zone.

FUNCTION MaxMem (VAR grow: Size): Size;

Registers on entry

D0 Size of block to make room for

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-75

2

M
em

ory M
anager

grow On exit, the maximum number of bytes by which the current heap zone
can grow. After a call to MaxApplZone , MaxMem always returns 0 in this
parameter.

DESCRIPTION

The MaxMem function compacts the current heap zone and purges all relocatable,

unlocked, and purgeable blocks from the zone. It returns the size, in bytes, of the largest

contiguous free block in the zone after the compacting and purging. If the current zone is

the original application zone, the grow parameter is set to the maximum number of

bytes by which the zone can grow. For any other heap zone, grow is set to 0. MaxMem
doesn’t actually expand the zone or call the zone’s grow-zone function.

SPECIAL CONSIDERATIONS

Because MaxMem moves and purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxMem are

The MaxMem function compacts the current heap zone. If you want to compact and purge

the system heap zone rather than the current heap zone, set bit 10 of the routine trap

word. In most development systems, you can do this by supplying the word SYS as the

second argument to the routine macro, as follows:

_MaxMem ,SYS

RESULT CODES

MaxMemSys 2

You can use the MaxMemSys function to purge and compact the system heap zone

manually.

FUNCTION MaxMemSys (VAR grow: Size): Size;

grow On exit, the MaxMemSys function sets this parameter to 0. Ignore this
parameter.

Registers on exit

A0 Number of bytes zone can grow

D0 Size in bytes of largest allocatable block

noErr 0 No error

C H A P T E R 2

Memory Manager

2-76 Memory Manager Reference

DESCRIPTION

The MaxMemSys function works much as the MaxMem function does, but compacts and

purges the system heap instead of the current heap. It returns the size, in bytes, of the

largest block you can allocate in the system heap.

RESULT CODES

Grow-Zone Operations 2

You can implement a grow-zone function that the Memory Manager calls when it cannot

fulfill a memory request. You should use the grow-zone function only as a last resort to

free memory when all else fails. For explanations of how grow-zone functions work and

an example of a memory-management scheme that uses a grow-zone function, see the

discussion of low-memory conditions in the chapter “Introduction to Memory

Management” in this book.

The SetGrowZone procedure specifies which function the Memory Manager should use

for the current zone. The grow-zone function should call the GZSaveHnd function to

receive a handle to a relocatable block that the grow-zone function must not move

or purge.

SetGrowZone 2

To specify a grow-zone function for the current heap zone, pass a pointer to that function

to the SetGrowZone procedure. Ordinarily, you call this procedure early in the

execution of your application.

If you initialize your own heap zones besides the application and system zones, you can

alternatively specify a grow-zone function as a parameter to the InitZone procedure.

PROCEDURE SetGrowZone (growZone: ProcPtr);

growZone A pointer to the grow-zone function.

DESCRIPTION

The SetGrowZone procedure sets the current heap zone’s grow-zone function as

designated by the growZone parameter. A NIL parameter value removes any grow-zone

function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other

avenues of satisfying a memory request, including compacting the zone, increasing its

size (if it is the original application zone and is not yet at its maximum size), and purging

blocks from it.

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-77

2

M
em

ory M
anager

See “Grow-Zone Functions” on page 2-89 for a complete description of a grow-zone

function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetGrowZone are

RESULT CODES

GZSaveHnd 2

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a

protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTION GZSaveHnd: Handle;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone

function must not move, purge, or delete. It returns NIL if there is no such block.

The returned handle is a handle to the block of memory being manipulated by the

Memory Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRootHnd.

Allocating Temporary Memory 2

In system software version 7.0 and later, you can manipulate temporary memory

with three routines that are counterparts to other Memory Manager routines.

The TempNewHandle function allocates a new block of relocatable memory, the

TempFreeMem function returns the total amount of free memory available for temporary

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

2-78 Memory Manager Reference

allocation, and the TempMaxMem function compacts the heap zone and returns the size

of the largest contiguous block available for temporary allocation.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

TempNewHandle 2

To allocate a new relocatable block of temporary memory, call the TempNewHandle

function after making sure that there is enough free space to satisfy the request.

FUNCTION TempNewHandle (logicalSize: Size;

VAR resultCode: OSErr): Handle;

logicalSize
The requested logical size, in bytes, of the new temporary block of
memory.

resultCode
On exit, the result code from the function call.

DESCRIPTION

The TempNewHandle function returns a handle to a block of size logicalSize . If it

cannot allocate a block of that size, the function returns NIL . Before you use the returned

handle, make sure its value is not NIL .

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempNewHandle are

SPECIAL CONSIDERATIONS

Because TempNewHandle might allocate memory, you should not call it at

interrupt time.

Note that TempNewHandle returns its result code in a parameter, not through

MemError .

RESULT CODES

Trap macro Selector

_OSDispatch $001D

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-79

2

M
em

ory M
anager

TempFreeMem 2

To find out the total amount of memory available for temporary allocation, use the

TempFreeMem function.

FUNCTION TempFreeMem: LongInt;

DESCRIPTION

The TempFreeMem function returns the total amount of free temporary memory that

you could allocate by calling TempNewHandle. The returned value is the total number

of free bytes. Because these bytes might be dispersed throughout memory, it is ordinarily

not possible to allocate a single relocatable block of that size.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempFreeMem are

SPECIAL CONSIDERATIONS

Even though TempFreeMem does not move or purge memory, you should not call it at

interrupt time.

TempMaxMem 2

To find the size of the largest contiguous block available for temporary allocation, use the

TempMaxMem function.

FUNCTION TempMaxMem (VAR grow: Size): Size;

grow On exit, this parameter always contains 0 after the function call because
temporary memory does not come from the application’s heap zone, and
only that zone can grow. Ignore this parameter.

DESCRIPTION

The TempMaxMem function compacts the current heap zone and returns the size of the

largest contiguous block available for temporary allocation.

Trap macro Selector

_OSDispatch $0018

C H A P T E R 2

Memory Manager

2-80 Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempMaxMem are

SPECIAL CONSIDERATIONS

Because TempMaxMem could move memory, you should not call it at interrupt time.

Accessing Heap Zones 2

The majority of applications, which allocate memory in their application heap zone

only, do not need to use any of the routines in this section. The few applications

that do allocate memory in zones other than the application heap zone can use the

GetZone function and the SetZone procedure to get and set the current zone, the

ApplicationZone and SystemZone functions to obtain pointers to the application

and system zones, and the HandleZone and PtrZone functions to find the zones in

which relocatable and nonrelocatable blocks lie.

GetZone 2

To find which zone is current, use the GetZone function.

FUNCTION GetZone: THz;

DESCRIPTION

The GetZone function returns a pointer to the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for GetZone are

The global variable TheZone contains a pointer to the current heap zone.

RESULT CODES

Trap macro Selector

_OSDispatch $0015

Registers on exit

A0 Pointer to current heap zone

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-81

2

M
em

ory M
anager

SetZone 2

To change the current heap zone, you can use the SetZone procedure.

PROCEDURE SetZone (hz: THz);

hz A pointer to the heap zone to make current.

DESCRIPTION

The SetZone procedure makes the zone to which hz points the current

heap zone. Often, you use the SetZone procedure in conjunction with one of

the ApplicationZone , SystemZone , HandleZone , and PtrZone functions. For

example, the code SetZone(SystemZone) makes the system heap zone current.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetZone are

RESULT CODES

ApplicationZone 2

To obtain a pointer to the application heap zone, you can use the ApplicationZone

function.

FUNCTION ApplicationZone: THz;

DESCRIPTION

The ApplicationZone function returns a pointer to the original application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplZone contains a pointer to the original application heap zone.

Registers on entry

A0 Pointer to new current heap zone

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

2-82 Memory Manager Reference

SystemZone 2

To obtain a pointer to the system heap zone, you can use the SystemZone function.

FUNCTION SystemZone: THz;

DESCRIPTION

The SystemZone function returns a pointer to the system heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The global variable SysZone contains a pointer to the system heap zone.

HandleZone 2

If you need to know which heap zone contains a particular relocatable block, you can

use the HandleZone function.

FUNCTION HandleZone (h: Handle): THz;

h A handle to a relocatable block.

DESCRIPTION

The HandleZone function returns a pointer to the heap zone containing the relocatable

block whose handle is h. In case of an error, the result returned by HandleZone is

undefined and should be ignored.

IMPORTANT

If the handle h is empty (that is, if it points to a NIL master pointer),
HandleZone returns a pointer to the heap zone that contains the master
pointer. ▲

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandleZone are

Registers on entry

A0 Handle whose zone is to be found

Registers on exit

A0 Pointer to handle’s heap zone

D0 Result code

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-83

2

M
em

ory M
anager

RESULT CODES

PtrZone 2

If you have allocated a nonrelocatable block and need to know in which zone it lies, you

can use the PtrZone function.

FUNCTION PtrZone (p: Ptr): THz;

p A pointer to a nonrelocatable block.

DESCRIPTION

The PtrZone function returns a pointer to the heap zone containing the nonrelocatable

block pointed to by p.

In case of an error, the result returned by PtrZone is undefined and should be ignored.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrZone are

RESULT CODES

Manipulating Heap Zones 2

The Memory Manager provides several routines for initializing and resizing heap zones.

To obtain information about the current application partition, applications can call the

GetApplLimit function and the TopMem function. If your application uses the stack

extensively, you might want to ensure that the stack is set to at least some minimum size,

at the expense of the heap. To do so, use the SetApplLimit procedure to change the

application heap limit before you call the MaxApplZone procedure.

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Pointer whose zone is to be found

Registers on exit

A0 Pointer to heap zone of nonrelocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

C H A P T E R 2

Memory Manager

2-84 Memory Manager Reference

To initialize a new heap zone, use the InitZone procedure. The Operating System

automatically initializes the application zone by calling the SetApplBase procedure,

which subsequently calls the InitApplZone procedure.

GetApplLimit 2

Use the GetApplLimit function to get the application heap limit, beyond which the

application heap cannot expand.

FUNCTION GetApplLimit: Ptr;

DESCRIPTION

The GetApplLimit function returns the current application heap limit. The Memory

Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating

System detects that the stack has crashed into the heap, it generates a system error. To

avoid this, use GetApplLimit and the SetApplLimit procedure to set the application

limit low enough so that a growing stack does not encounter the heap.

Note
The GetApplLimit function does not indicate the amount of memory
available to your application. ◆

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplLimit contains the current application heap limit.

SetApplLimit 2

Use the SetApplLimit procedure to set the application heap limit, beyond which the

application heap cannot expand.

PROCEDURE SetApplLimit (zoneLimit: Ptr);

zoneLimit A pointer to a byte in memory demarcating the upper boundary of the
application heap zone. The zone can grow to include the byte preceding
zoneLimit in memory, but no further.

DESCRIPTION

The SetApplLimit procedure sets the current application heap limit to zoneLimit .

The Memory Manager then can expand the application heap only up to the byte

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-85

2

M
em

ory M
anager

preceding the application limit. If the zone already extends beyond the specified limit,

the Memory Manager does not cut it back but does prevent it from growing further.

Note
The zoneLimit parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the SetApplLimit procedure only with
a value obtained from the Memory Manager functions GetApplLimit
or ApplicationZone . ◆

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetApplLimit are

RESULT CODES

TopMem 2

To find out the location of the top of an application’s partition, you can use the TopMem

function, which exhibits special behavior during the startup process.

FUNCTION TopMem: Ptr;

DESCRIPTION

Except during the startup process, the TopMem function returns a pointer to the byte at

the top of an application’s partition, directly above the jump table. The function does this

to maintain compatibility with programs that check TopMem to find out how much

memory is installed in a computer. To obtain this information, you can currently use the

Gestalt function.

The function exhibits special behavior at startup time, and the value it returns controls

the amount by which an extension can lower the value of the global variable BufPtr at

startup time. If you are writing a system extension, you should not lower the value of

BufPtr by more than MemTop DIV 2 + 1024 . If you do lower BufPtr too far, the

startup process generates an out-of-memory system error.

Registers on entry

A0 Pointer to desired new zone limit

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

C H A P T E R 2

Memory Manager

2-86 Memory Manager Reference

You should never need to call TopMem except during the startup process.

ASSEMBLY-LANGUAGE INFORMATION

The TopMem function returns the value of the MemTop global variable.

InitZone 2

If you want to use heap zones other than the original application heap zone, a temporary

memory zone, or the system heap zone, you can use the InitZone procedure to

initialize a new heap zone.

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: Integer;

limitPtr, startPtr: Ptr);

pGrowZone A pointer to a grow-zone function for the new heap zone. If you do not
want the new zone to have a grow-zone function, set this parameter
to NIL .

cMoreMasters
The number of master pointers that should be allocated at a time for the
new zone. The Memory Manager allocates this number initially, and, if it
needs to allocate more later, allocates them in increments of this same
number.

limitPtr The first byte beyond the end of the zone.

startPtr The first byte of the new zone.

DESCRIPTION

The InitZone procedure creates a new heap zone, initializes its header and trailer, and

makes it the current zone. Although the new zone occupies memory addresses from

startPtr through limitPtr–1 , the new zone includes a zone header and a zone

trailer. In addition, the new zone contains a block header for the master pointer block

and 4 bytes for each master pointer. If you need to create a zone with some specific

number of usable bytes, see “Organization of Memory,” beginning on page 2-19, for

details on the sizes of the zone header, zone trailer, and block header.

Note
The sizes of zones and block headers may change in future system
software versions. You should ensure that your zones are large enough
to accommodate a reasonable increase in the sizes of those structures. ◆

SPECIAL CONSIDERATIONS

Because InitZone changes the current zone, you should not call it at interrupt time.

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-87

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for InitZone are

The parameter block whose address is passed in register A0 has no Pascal type

definition. It has this structure:

Parameter block

RESULT CODES

InitApplZone 2

The Process Manager calls the InitApplZone procedure indirectly when it

starts up your application. You should never need to call it. It is documented for

completeness only.

PROCEDURE InitApplZone;

DESCRIPTION

The InitApplZone procedure initializes the application heap zone and makes it the

current zone. The Memory Manager discards the contents of any previous application

zone and discards all previously existing blocks in that zone. The procedure sets

the zone’s grow-zone function to NIL .

▲ W A R N I N G

Reinitializing the application zone from within a running program is
dangerous, because the application’s code itself normally resides in the
application zone. To do so safely, you must make sure that the code
containing the InitApplZone call is not in the application zone. ▲

Registers on entry

A0 Pointer to parameter block

Registers on exit

D0 Result code

→ startPtr Ptr The first byte of the new zone.
→ limitPtr Ptr The first byte beyond the new zone.
→ cMoreMasters Integer The number of master pointers to be allocated

at a time.
→ pGrowZone ProcPtr A pointer to the new zone’s grow-zone

function, or NIL if none.

noErr 0 No error

C H A P T E R 2

Memory Manager

2-88 Memory Manager Reference

SPECIAL CONSIDERATIONS

You should not call InitApplZone at all, but, if you must, be sure not to call it at

interrupt time because it could purge and allocate memory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for InitApplZone are

RESULT CODES

SetApplBase 2

The Process Manager calls the SetApplBase procedure when it starts up your

application. You should never need to call it. It is documented for completeness only.

PROCEDURE SetApplBase (startPtr: Ptr);

startPtr The starting address for the application heap zone to be initialized.

DESCRIPTION

The SetApplBase procedure sets the starting address of the application heap zone

for the application being initialized to the address designated by startPtr , and

then calls the InitApplZone procedure.

▲ W A R N I N G

Like InitApplZone , SetApplBase is a potentially dangerous
operation, because the program’s code itself normally resides in the
application heap zone. To do so safely, you must make sure that the code
containing the SetApplBase call is not in the application zone. ▲

SPECIAL CONSIDERATIONS

You should not call SetApplBase at all, but, if you must, be sure not to call it at

interrupt time because it affects memory.

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-89

2

M
em

ory M
anager

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for SetApplBase are

RESULT CODES

Application-Defined Routines 2

The Memory Manager provides a means for you to intervene in its otherwise automatic

operations by allowing you to define a grow-zone function and a purge-warning

procedure.

Note
Many applications use a grow-zone function as part of a general
strategy to prevent low-memory situations. Most applications, however,
do not need to use purge-warning procedures. ◆

Grow-Zone Functions 2

The Memory Manager calls your application’s grow-zone function whenever it cannot

find enough contiguous memory to satisfy a memory allocation request and has

exhausted other means of obtaining the space.

MyGrowZone 2

A grow-zone function should have the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

DESCRIPTION

Whenever the Memory Manager has exhausted all available means of creating space

within your application heap—including purging, compacting, and (if possible)

expanding the heap—it calls your application-defined grow-zone function. The

grow-zone function can do whatever is necessary to create free space in the heap.

Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an

emergency memory reserve maintained by your application.

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Memory Manager

2-90 Memory Manager Reference

The grow-zone function should return a nonzero value equal to the number of bytes of

memory it has freed, or zero if it is unable to free any. When the function returns a

nonzero value, the Memory Manager once again purges and compacts the heap zone

and tries to reallocate memory. If there is still insufficient memory, the Memory Manager

calls the grow-zone function again (but only if the function returned a nonzero value the

previous time it was called). This mechanism allows your grow-zone function to release

just a little bit of memory at a time. If the amount it releases at any time is not enough,

the Memory Manager calls it again and gives it the opportunity to take more drastic

measures.

The Memory Manager might designate a particular relocatable block in the heap as

protected; your grow-zone function should not move or purge that block. You can

determine which block, if any, the Memory Manager has protected by calling the

GZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting

to allocate memory. As a result, your grow-zone function should not allocate memory

itself or perform any other actions that might indirectly cause memory to be allocated

(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the InitZone procedure

when you create a new heap zone or by calling the SetGrowZone procedure at any

other time.

SPECIAL CONSIDERATIONS

Your grow-zone function might be called at a time when the system is attempting to

allocate memory and the value in the A5 register is not correct. If your function accesses

your application’s A5 world or makes any trap calls, you need to set up and later restore

the A5 register by calling SetCurrentA5 and SetA5 . See the chapter “Memory

Management Utilities” in this book for a description of these two functions.

Because of the optimizations performed by some compilers, the actual work of the

grow-zone function and the setting and restoring of the A5 register might have to be

placed in separate procedures.

SEE ALSO

See the chapter “Introduction to Memory Management” in this book for a definition of a

sample grow-zone function.

Purge-Warning Procedures 2

The Memory Manager calls your application’s purge-warning procedure whenever it is

about to purge a relocatable block from your application heap.

C H A P T E R 2

Memory Manager

Memory Manager Reference 2-91

2

M
em

ory M
anager

MyPurgeProc 2

A purge-warning procedure should have the following form:

PROCEDURE MyPurgeProc (h: Handle);

h A handle to the block that is about to be purged.

DESCRIPTION

Whenever the Memory Manager needs to purge a block from the application heap, it

first calls any application-defined purge-warning procedure that you have installed. The

purge-warning procedure can, if necessary, save the contents of that block or otherwise

respond to the warning.

Your purge-warning procedure is called during a memory-allocation request. As a result,

you should not call any routines that might cause memory to be moved or purged. In

particular, if you save the data of the block in a file, the file should already be open when

your purge-warning procedure is called, and you should write the data synchronously.

You should not dispose of or change the purgeable status of the block whose handle is

passed to your procedure.

To install a purge-warning procedure, you need to assign its address to the purgeProc

field of the associated zone header.

Note
If you call the Resource Manager procedure SetResPurge with the
parameter TRUE, any existing purge-warning procedure is replaced
by a purge-warning procedure installed by the Resource Manager.
You can execute both warning procedures by calling SetResPurge ,
saving the existing value of the purgeProc field of the zone
header, and then reinstalling your purge-warning procedure.
Your purge-warning procedure should call the Resource Manager’s
purge-warning procedure internally. ◆

SPECIAL CONSIDERATIONS

Your purge-warning procedure might be called at a time when the system is attempting

to allocate memory and the value in the A5 register is not correct. If your function

accesses your application’s A5 world or makes any trap calls, you need to set up and

later restore the A5 register by calling SetCurrentA5 and SetA5 .

Because of the optimizations performed by some compilers, the actual work of the

purge-warning procedure and the setting and restoring of the A5 register might have to

be placed in separate procedures.

C H A P T E R 2

Memory Manager

2-92 Memory Manager Reference

Your purge-warning procedure is called for every handle that is about to be purged

(not necessarily for every purgeable handle in your heap, however). Your procedure

should be able to determine quickly whether the handle it is passed is one whose

associated data needs to be saved or otherwise processed.

SEE ALSO

See “Installing a Purge-Warning Procedure” on page 2-16 for a definition of a sample

purge-warning procedure and for instructions on installing the procedure.

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-93

2

M
em

ory M
anager

Summary of the Memory Manager 2

Pascal Summary 2

Constants 2

CONST

{Gestalt constants}

gestaltOSAttr = 'os '; {O/S attributes}

gestaltTempMemSupport = 4; {temp memory support present}

gestaltRealTempMemory = 5; {temp memory handles are real}

gestaltTempMemTracked = 6; {temp memory handles tracked}

maxSize = $800000; {maximum size of a block}

Data Types 2

TYPE

SignedByte = -128..127; {arbitrary byte of memory}

Byte = 0..255; {unsigned, arbitrary byte}

Ptr = ^SignedByte; {pointer to nonrelocatable block}

Handle = ^Ptr; {handle to relocatable block}

Str255 = STRING[255]; {Pascal string}

StringPtr = ^Str255;

StringHandle = ^StringPtr;

ProcPtr = Ptr; {procedure pointer}

Size = LongInt; {size in bytes of block}

C H A P T E R 2

Memory Manager

2-94 Summary of the Memory Manager

Zone =

RECORD

bkLim: Ptr; {first usable byte after zone}

purgePtr: Ptr; {used internally}

hFstFree: Ptr; {first free master pointer}

zcbFree: LongInt; {number of free bytes}

gzProc: ProcPtr; {grow-zone function}

moreMast: Integer; {number of master ptrs to allocate}

flags: Integer; {used internally}

cntRel: Integer; {reserved}

maxRel: Integer; {reserved}

cntNRel: Integer; {reserved}

maxNRel: Integer; {reserved}

cntEmpty: Integer; {reserved}

cntHandles: Integer; {reserved}

minCBFree: LongInt; {reserved}

purgeProc: ProcPtr; {purge-warning procedure}

sparePtr: Ptr; {used internally}

allocPtr: Ptr; {used internally}

heapData: Integer; {first usable byte in zone}

END;

THz = ^Zone; {zone pointer}

Memory Manager Routines 2

Setting Up the Application Heap

PROCEDURE MaxApplZone;

PROCEDURE MoreMasters;

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle (logicalSize: Size): Handle;

FUNCTION NewHandleSys (logicalSize: Size): Handle;

FUNCTION NewHandleClear (logicalSize: Size): Handle;

FUNCTION NewHandleSysClear (logicalSize: Size): Handle;

FUNCTION NewEmptyHandle : Handle;

FUNCTION NewEmptyHandleSys : Handle;

PROCEDURE DisposeHandle (h: Handle);

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-95

2

M
em

ory M
anager

Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTION NewPtr (logicalSize: Size): Ptr;

FUNCTION NewPtrSys (logicalSize: Size): Ptr;

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

FUNCTION NewPtrSysClear (logicalSize: Size): Ptr;

PROCEDURE DisposePtr (p: Ptr);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

FUNCTION GetHandleSize (h: Handle): Size;

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

FUNCTION GetPtrSize (p: Ptr): Size;

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

Setting the Properties of Relocatable Blocks

FUNCTION HGetState (h: Handle): SignedByte;

PROCEDURE HSetState (h: Handle; flags: SignedByte);

PROCEDURE HLock (h: Handle);

PROCEDURE HUnlock (h: Handle);

PROCEDURE HPurge (h: Handle);

PROCEDURE HNoPurge (h: Handle);

PROCEDURE HSetRBit (h: Handle);

PROCEDURE HClrRBit (h: Handle);

Managing Relocatable Blocks

PROCEDURE EmptyHandle (h: Handle);

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

FUNCTION RecoverHandle (p: Ptr): Handle;

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE ReserveMemSys (cbNeeded: Size);

PROCEDURE MoveHHi (h: Handle);

PROCEDURE HLockHi (h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle;
size: LongInt): OSErr;

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LongInt):
OSErr;

C H A P T E R 2

Memory Manager

2-96 Summary of the Memory Manager

FUNCTION HandToHand (VAR theHndl: Handle): OSErr;

FUNCTION HandAndHand (aHndl, bHndl: Handle): OSErr;

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LongInt): OSErr;

Assessing Memory Conditions

FUNCTION FreeMem : LongInt;

FUNCTION FreeMemSys : LongInt;

FUNCTION MaxBlock : LongInt;

FUNCTION MaxBlockSys : LongInt;

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

FUNCTION StackSpace : LongInt;

FUNCTION MemError : OSErr;

Freeing Memory

FUNCTION CompactMem (cbNeeded: Size): Size;

FUNCTION CompactMemSys (cbNeeded: Size): Size;

PROCEDURE PurgeMem (cbNeeded: Size);

PROCEDURE PurgeMemSys (cbNeeded: Size);

FUNCTION MaxMem (VAR grow: Size): Size;

FUNCTION MaxMemSys (VAR grow: Size): Size;

Grow-Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

FUNCTION GZSaveHnd : Handle;

Allocating Temporary Memory

FUNCTION TempNewHandle (logicalSize: Size; VAR resultCode: OSErr):
Handle;

FUNCTION TempFreeMem : LongInt;

FUNCTION TempMaxMem (VAR grow: Size): Size;

Accessing Heap Zones

FUNCTION GetZone : THz;

PROCEDURE SetZone (hz: THz);

FUNCTION ApplicationZone : THz;

FUNCTION SystemZone : THz;

FUNCTION HandleZone (h: Handle): THz;

FUNCTION PtrZone (p: Ptr): THz;

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-97

2

M
em

ory M
anager

Manipulating Heap Zones

FUNCTION GetApplLimit : Ptr;

PROCEDURE SetApplLimit (zoneLimit: Ptr);

FUNCTION TopMem : Ptr;

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: Integer;
limitPtr, startPtr: Ptr);

PROCEDURE InitApplZone;

PROCEDURE SetApplBase (startPtr: Ptr);

Application-Defined Routines 2

Grow-Zone Functions

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

Purge-Warning Procedures

PROCEDURE MyPurgeProc (h: Handle);

C Summary 2

Constants 2

/*Gestalt constants*/

#define gestaltOSAttr 'os '; /*O/S attributes*/

#define gestaltTempMemSupport 4; /*temp memory support present*/

#define gestaltRealTempMemory 5; /*temp memory handles are real*/

#define gestaltTempMemTracked 6; /*temp memory handles tracked*/

#define maxSize 0x800000; /*maximum size of a block*/

Data Types 2

typedef char SignedByte; /*arbitrary byte of memory*/

typedef unsigned char Byte; /*unsigned, arbitrary byte*/

typedef char *Ptr; /*pointer to nonrelocatable block*/

typedef Ptr *Handle; /*handle to relocatable block*/

C H A P T E R 2

Memory Manager

2-98 Summary of the Memory Manager

typedef unsigned char Str255[256]; /*Pascal string*/

typedef unsigned char *StringPtr;

typedef unsigned char **StringHandle;

typedef long (*ProcPtr)(); /*procedure pointer*/

typedef long Size; /*size in bytes of block*/

struct Zone {

Ptr bkLim; /*first usable byte after zone*/

Ptr purgePtr; /*used internally*/

Ptr hFstFree; /*first free master pointer*/

long zcbFree; /*number of free bytes*/

GrowZoneProcPtr gzProc; /*grow-zone function*/

short moreMast; /*number of master ptrs to allocate*/

short flags; /*used internally*/

short cntRel; /*reserved*/

short maxRel; /*reserved*/

short cntNRel; /*reserved*/

short maxNRel; /*reserved*/

short cntEmpty; /*reserved*/

short cntHandles; /*reserved*/

long minCBFree; /*reserved*/

ProcPtr purgeProc; /*purge-warning procedure*/

Ptr sparePtr; /*used internally*/

Ptr allocPtr; /*used internally*/

short heapData; /*first usable byte in zone*/

};

typedef struct Zone Zone;

typedef Zone *THz; /*zone pointer*/

Memory Manager Routines 2

Setting Up the Application Heap

pascal void MaxApplZone (void);

pascal void MoreMasters (void);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handle NewHandle (Size byteCount);

pascal Handle NewHandleSys (Size byteCount);

pascal Handle NewHandleClear (Size byteCount);

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-99

2

M
em

ory M
anager

pascal Handle NewHandleSysClear

(Size byteCount);

pascal Handle NewEmptyHandle (void);

pascal Handle NewEmptyHandleSys

(void);

pascal void DisposeHandle (Handle h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Size byteCount);

pascal Ptr NewPtrSys (Size byteCount);

pascal Ptr NewPtrClear (Size byteCount);

pascal Ptr NewPtrSysClear (Size byteCount);

pascal void DisposePtr (Ptr p);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

pascal Size GetHandleSize (Handle h);

pascal void SetHandleSize (Handle h, Size newSize);

pascal Size GetPtrSize (Ptr p);

pascal void SetPtrSize (Ptr p, Size newSize);

Setting the Properties of Relocatable Blocks

pascal char HGetState (Handle h);

pascal void HSetState (Handle h, char flags);

pascal void HLock (Handle h);

pascal void HUnlock (Handle h);

pascal void HPurge (Handle h);

pascal void HNoPurge (Handle h);

pascal void HSetRBit (Handle h);

pascal void HClrRBit (Handle h);

Managing Relocatable Blocks

pascal void EmptyHandle (Handle h);

pascal void ReallocateHandle (Handle h, Size byteCount);

pascal Handle RecoverHandle (Ptr p);

pascal void ReserveMem (Size cbNeeded);

pascal void ReserveMemSys (Size cbNeeded);

pascal void MoveHHi (Handle h);

pascal void HLockHi (Handle h);

C H A P T E R 2

Memory Manager

2-100 Summary of the Memory Manager

Manipulating Blocks of Memory

pascal void BlockMove (const void *srcPtr, void *destPtr,
Size byteCount);

pascal OSErr PtrToHand (Ptr srcPtr, Handle *dstHndl, long size);

pascal OSErr PtrToXHand (Ptr srcPtr, Handle dstHndl, long size);

pascal OSErr HandToHand (Handle *theHndl);

pascal OSErr HandAndHand (Handle hand1, Handle hand2);

pascal OSErr PtrAndHand (Ptr ptr1, Handle hand2, long size);

Assessing Memory Conditions

pascal long FreeMem (void);

pascal long FreeMemSys (void);

pascal long MaxBlock (void);

pascal long MaxBlockSys (void);

pascal void PurgeSpace (long *total, long *contig);

pascal long StackSpace (void);

#define MemError() (* (OSErr*) 0x0220)

Freeing Memory

pascal Size CompactMem (Size cbNeeded);

pascal Size CompactMemSys (Size cbNeeded);

pascal void PurgeMem (Size cbNeeded);

pascal void PurgeMemSys (Size cbNeeded);

pascal Size MaxMem (Size *grow);

pascal Size MaxMemSys (Size *grow);

Grow-Zone Operations

pascal void SetGrowZone (GrowZoneProcPtr growZone);

#define GZSaveHnd() (* (Handle*) 0x0328)

Allocating Temporary Memory

pascal Handle TempNewHandle (Size logicalSize, OSErr *resultCode);

pascal long TempFreeMem (void);

pascal Size TempMaxMem (Size *grow);

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-101

2

M
em

ory M
anager

Accessing Heap Zones

pascal THz GetZone (void);

pascal void SetZone (THz hz);

#define ApplicationZone() (* (THz*) 0x02AA)

#define SystemZone() (* (THz*) 0x02A6)

pascal THz HandleZone (Handle h);

pascal THz PtrZone (Ptr p);

Manipulating Heap Zones

#define GetApplLimit() (* (Ptr*) 0x0130)

pascal void SetApplLimit (void *zoneLimit);

#define TopMem() (* (Ptr*) 0x0108)

pascal void InitZone (GrowZoneProcPtr pgrowZone, short cmoreMasters,
void *limitPtr, void *startPtr);

pascal void InitApplZone (void);

pascal void SetApplBase (void *startPtr);

Application-Defined Routines 2

Grow-Zone Functions

pascal long MyGrowZone (Size cbNeeded);

Purge-Warning Procedures

pascal void MyPurgeProc (Handle h);

Assembly-Language Summary 2

Constants 2

;flags in trap words

CLEAR EQU $200 ;set all bytes in block to 0

SYS EQU $400 ;use the system heap

;values for the tag byte of a block header

tyBkFree EQU 0 ;free block

tyBkNRel EQU 1 ;nonrelocatable block

tyBkRel EQU 2 ;relocatable block

C H A P T E R 2

Memory Manager

2-102 Summary of the Memory Manager

;flags for the high-order byte of a 24-bit master pointer

lock EQU 7 ;lock bit

purge EQU 6 ;purge bit

resource EQU 5 ;resource bit

Data Structures 2

Zone Data Structure

Parameter Block for InitZone Procedure

Trap Macros 2

Trap Macro Names

0 bkLim long pointer to first usable byte after zone
4 purgePtr long used internally
8 hFstFree long first free master pointer

12 zcbFree 4 bytes number of free bytes in zone
16 gzProc long grow-zone function
20 mAllocCnt word number of master pointers to allocate
22 flags word used internally
24 cntRel word reserved
26 maxRel word reserved
28 cntNRel word reserved
30 maxNRel word reserved
32 cntEmpty word reserved
34 cntHandles word reserved
36 minCBFree long reserved
40 purgeProc long purge-warning procedure
44 sparePtr long used internally
48 allocPtr long used internally
52 heapData word first usable byte in zone

0 startPtr long first byte of new zone
4 limitPtr long first byte beyond new zone
8 cMoreMasters word number of master pointers to be allocated at a time

10 pGrowZone long pointer to grow-zone function for new zone

Pascal name Trap macro name

BlockMove _BlockMove

CompactMem _CompactMem

CompactMemSys _CompactMem

DisposeHandle _DisposeHandle

DisposePtr _DisposePtr

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-103

2

M
em

ory M
anager

EmptyHandle _EmptyHandle

FreeMem _FreeMem

FreeMemSys _FreeMem

GetHandleSize _GetHandleSize

GetPtrSize _GetPtrSize

GetZone _GetZone

HandAndHand _HandAndHand

HandleZone _HandleZone

HandToHand _HandToHand

HClrRBit _HClrRBit

HGetState _HGetState

HLock _HLock

HNoPurge _HNoPurge

HPurge _HPurge

HSetRBit _HSetRBit

HSetState _HSetState

HUnlock _HUnlock

InitApplZone _InitApplZone

InitZone _InitZone

MaxApplZone _MaxApplZone

MaxBlock _MaxBlock

MaxBlockSys _MaxBlock

MaxMem _MaxMem

MaxMemSys _MaxMem

MoreMasters _MoreMasters

MoveHHi _MoveHHi

NewEmptyHandle _NewEmptyHandle

NewEmptyHandleSys _NewEmptyHandle

NewHandle _NewHandle

NewHandleClear _NewHandle

NewHandleSys _NewHandle

NewHandleSysClear _NewHandle

NewPtr _NewPtr

NewPtrClear _NewPtr

NewPtrSys _NewPtr

NewPtrSysClear _NewPtr

Pascal name Trap macro name

C H A P T E R 2

Memory Manager

2-104 Summary of the Memory Manager

Trap Macro Requiring Routine Selectors

_OSDispatch

Global Variables 2

PtrAndHand _PtrAndHand

PtrToHand _PtrToHand

PtrToXHand _PtrToXHand

PtrZone _PtrZone

PurgeMem _PurgeMem

PurgeMemSys _PurgeMem

PurgeSpace _PurgeSpace

ReallocateHandle _ReallocHandle

RecoverHandle _RecoverHandle

ReserveMem _ResrvMem

ReserveMemSys _ResrvMem

SetApplBase _SetApplBase

SetApplLimit _SetApplLimit

SetGrowZone _SetGrowZone

SetHandleSize _SetHandleSize

SetPtrSize _SetPtrSize

SetZone _SetZone

StackSpace _StackSpace

Selector Routine

$0015 TempMaxMem

$0018 TempFreeMem

$001D TempNewHandle

ApplLimit long The application heap limit, beyond which the heap cannot expand.

ApplZone long A pointer to the original application heap zone.

BufPtr long Address of highest byte of allocatable memory.

CurStackBase long Address of base of stack; start of application global variables.

GZRootHnd long A handle to a block that the grow-zone function must not move.

HeapEnd long Address of end of application heap zone.

MemErr word The current value that MemError would return.

MemTop long After startup time, the address at the end of an application’s partition.

SysZone long A pointer to the system heap zone.

TheZone long A pointer to the current heap zone.

Pascal name Trap macro name

C H A P T E R 2

Memory Manager

Summary of the Memory Manager 2-105

2

M
em

ory M
anager

Result Codes 2
noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked

Contents

3-1

C H A P T E R 3

3

Figure 3-0
Listing 3-0
Table 3-0

Contents

3 Virtual Memory Manager

About the Virtual Memory Manager 3-3

Virtual Memory 3-4

The Logical Address Space 3-5

24-Bit Addressing 3-5

32-Bit Addressing 3-7

The Physical Address Space 3-9

Page Faults 3-11

Using the Virtual Memory Manager 3-13

Obtaining Information About Virtual Memory 3-14

Holding and Releasing Memory 3-14

Locking and Unlocking Memory 3-15

Mapping Logical to Physical Addresses 3-16

Deferring User Interrupt Handling 3-20

Virtual Memory and Debuggers 3-21

Bus-Error Vectors 3-22

Special Nonmaskable Interrupt Needs 3-22

Supervisor Mode 3-23

The Debugging State 3-23

Keyboard Input 3-23

Page States 3-24

Virtual Memory Manager Reference 3-24

Data Structures 3-24

Memory-Block Record 3-24

Translation Table 3-25

Routines 3-25

Virtual Memory Management 3-25

Virtual Memory Debugger Support Routines 3-34

Summary of the Virtual Memory Manager 3-41

Pascal Summary 3-41

Constants 3-41

C H A P T E R 3

3-2

Contents

Data Types 3-41

Routines 3-42

C Summary 3-42

Constants 3-42

Data Types 3-43

Routines 3-43

Assembly-Language Summary 3-44

Data Types 3-44

Trap Macros 3-44

Result Codes 3-45

C H A P T E R 3

About the Virtual Memory Manager

3-3

3

V
irtual M

em
ory M

anager

Virtual Memory Manager 3

This chapter describes the Virtual Memory Manager, the part of the Operating System

that allows memory to be extended beyond the limits of the physical address space

provided by the available RAM. A user can select (in the Memory control panel) whether

to enable this larger or “virtual” address space.

Most applications are completely unaffected by the operation of the Virtual Memory

Manager and have no need to know whether any virtual memory is available.

You might, however, need to intervene in the otherwise automatic workings of

the Virtual Memory Manager if your application has critical timing requirements,

executes code at interrupt time, or performs debugging operations.

The Virtual Memory Manager also offers services that might be of use to software

components even if virtual memory is not enabled on a particular computer. On some

Macintosh computers, the physical address space is discontiguous and is therefore not

identical with the logical address space. In normal operations, the Operating System uses

the MMU coprocessor to map logical addresses to their corresponding physical

addresses. In some cases, however, you might need to perform this address mapping

yourself. For example, if you are writing software that runs in the Macintosh Operating

System but communicates addresses to NuBus™ expansion cards with bus master

or direct memory access (DMA) capabilities, you need to pass physical and not

logical addresses. You can use the Virtual Memory Manager to determine those

physical addresses.

To use this chapter, you should be familiar with the normal operation of the Memory

Manager, as described in the chapter “Introduction to Memory Management” in this

book. If your application or other software executes code at interrupt time, you should

also be familiar with the process of scheduling interrupt code, as described in the chapter

“Introduction to Processes and Tasks” in

Inside Macintosh: Processes.

This chapter begins with a description of how the Virtual Memory Manager provides

virtual memory. It explains how the logical and physical address spaces are mapped to

one another and when you might need to use the services provided by the Virtual

Memory Manager. Then it explains how you can use the Virtual Memory Manager to

■

make portions of the logical address space resident in physical RAM

■

make portions of the logical address space immovable in physical RAM

■

map logical to physical addresses

■

defer execution of application-defined interrupt code until a safe time

This chapter also provides information about a number of routines that are useful only

for the implementation of debuggers that operate under virtual memory.

About the Virtual Memory Manager 3

The Virtual Memory Manager is the part of the Operating System that provides

virtual

memory,

 addressable memory beyond the limits of the available physical RAM. The

principal benefit of using virtual memory is that a user can run more applications at once

C H A P T E R 3

Virtual Memory Manager

3-4

About the Virtual Memory Manager

and work with larger amounts of data than would be possible if the logical address

space were limited to the available RAM. Instead of equipping a computer with amounts

of RAM large enough to handle all possible needs, the user can install only enough RAM

to meet average needs. Then, during those occasional times when more memory is

needed for large tasks or many applications, the user can take advantage of virtual

memory. When virtual memory is present, the perceived amount of RAM can be

extended to as much as 14 MB on systems with 24-bit addressing and as much as 1 GB

on systems with 32-bit addressing.

The Virtual Memory Manager also provides a number of routines that your software can

use to modify or get information about its operations. You can use the Virtual Memory

Manager to

■

hold portions of the logical address space in physical RAM

■

lock portions of the logical address space in their physical RAM locations

■

determine whether a particular portion of the logical address space is currently in
physical RAM

■

determine, from a logical address, the physical address of a block of memory

This section describes how the Virtual Memory Manager provides virtual memory. It

also explains why you might need to use certain Virtual Memory Manager routines even

when virtual memory is not available.

Virtual Memory 3

The Virtual Memory Manager extends the logical address space by using part of the

available secondary storage (such as a hard disk) to hold portions of applications and

data that are not currently in use in physical memory. When an application needs to

operate on portions of memory that have been transferred to disk, the Virtual Memory

Manager loads those portions back into physical memory by making them trade places

with other, unused segments of memory. This process of moving portions (or

pages

) of

memory between physical RAM and the hard disk is called

paging.

For the most part, the Virtual Memory Manager operates invisibly to applications and to

the user. Most applications do not need to know whether virtual memory is installed

unless they have critical timing requirements, execute code at interrupt time, or perform

debugging operations. The only time that users need to know about virtual memory is

when they configure it in the Memory control panel. One visible cost of this extra

memory is the use of an equivalent amount of storage on a storage device, such as a SCSI

hard disk. Another cost of using virtual memory is a possible perception of sluggishness

as paged-out segments of memory are pulled back into physical memory. Performance

degradation due to the use of virtual memory ranges from unnoticeable to severe,

depending on the ratio of virtual memory to physical RAM and the behavior of the

actual applications running.

C H A P T E R 3

Virtual Memory Manager

About the Virtual Memory Manager

3-5

3

V
irtual M

em
ory M

anager

There are two main requirements for running virtual memory. First, the computer must

be running system software version 7.0 or later. Second, the computer must be equipped

with an

MMU

 or

PMMU

 coprocessor. Apple’s 68040- and 68030-based machines have

an MMU built into the CPU and are ready to run virtual memory with no additional

hardware. A Macintosh II (68020-based) computer can take advantage of virtual memory

if it has the 68851 PMMU coprocessor on its main logic board in place of the standard

Address Management Unit (AMU).

 (The PMMU is the same coprocessor needed to run

A/UX.) Apple’s 68000-based machines cannot take advantage of virtual memory.

Users control and configure virtual memory through the Memory control panel. Controls

in this panel allow the user to turn virtual memory on or off, set the size of virtual

memory, and set the volume on which the invisible backing-store file resides. (The

backing-store file

 is the file in which the Operating System stores the contents of

nonresident pages of memory.) Other memory-related user controls appear in this

control panel. These include settings for the disk cache and for 24-bit or 32-bit Memory

Manager addressing. If users change the virtual memory, addressing, or disk cache

settings, they must restart the computer for the changes to take effect.

The virtual memory setting in the control panel reflects the total amount of memory

available to the system (and not simply the amount of memory to be added to available

RAM). Also, the backing-store file is as large as the amount of virtual memory. This

backing-store file can be located on any HFS volume that allows block-level access. (This

volume is known as the

paging device

 or

backing volume.

) Because the paging device

must support block-level access, users cannot select as the paging device a volume

mounted through AppleShare. Also, users cannot select removable disks, including

floppy disks, as paging devices.

The Logical Address Space 3

When virtual memory is present, the logical address space is larger than the physical

address space provided by the available RAM. The actual size of the logical address

space, and hence the amount of virtual memory, depends on a number of factors,

including

■

the addressing mode currently used by the Memory Manager

■

the amount of space available on a secondary storage device for use by the
backing-store file

■

if 24-bit addressing is in operation, the number of NuBus expansion cards, if any,
installed in the computer

24-Bit Addressing 3

When running with

24-bit addressing,

 the Memory Manager can address at most

2

24

 bytes, or 16 MB. Of these 16 MB, at most 8 MB can be used to address physical RAM.

The remaining 8 MB are devoted to ROM addresses, I/O device addresses, and NuBus

slot addresses. Figure 3-1 illustrates the logical address space mapping used by the 24-bit

Memory Manager.

C H A P T E R 3

Virtual Memory Manager

3-6

About the Virtual Memory Manager

Note

In some Macintosh computers, the ROM is mapped to the address range
$01000000 to $010FFFFF (indicated as belonging to slot $A in Figure 3-1).
In these computers, the maximum amount of physical RAM is 10 MB
instead of 8 MB. The remainder of this section describes the original
layout of the 24-bit logical address space only.

◆

Figure 3-1

24-bit Memory Manager logical address space

$01000000

RAM
addresses

NuBus
addresses

High memory

Low memory

ROM

I/O devices

Slot $E

Slot $D

Slot $C

Slot $B

Slot $A

Slot $9

$00F00000

$00900000

$00800000

$00000000

C H A P T E R 3

Virtual Memory Manager

About the Virtual Memory Manager

3-7

3

V
irtual M

em
ory M

anager

When 24-bit addressing is in operation and virtual memory is available, the Virtual

Memory Manager uses, as part of the addressable application memory, any 1 MB

segments not assigned to a NuBus card. For example, if a Macintosh computer has three

NuBus expansion cards installed, that computer can address at most 11 MB of virtual

memory. The maximum amount of virtual memory possible in a 24-bit environment is

14 MB (that is, 8 MB of physical RAM + 6 MB of additional space previously reserved for

the NuBus); this maximum is achievable only on a computer with no NuBus expansion

cards installed.

Notice in Figure 3-1 that addresses from $00800000 to $008FFFFF are reserved for ROM.

In other words, the largest contiguous block of space that an application can allocate

when virtual memory is available is somewhat less than 8 MB, even though the total

amount of virtual memory available can be as large as 14 MB. The rest of the virtual

memory can be in a contiguous block as large as 4 or 5 MB, unless the user has

fragmented the NuBus space by making a poor choice of slots in which to install

expansion cards. To maximize the amount of contiguous virtual memory, users should

place cards in consecutive slots at either end of the expansion bus. A haphazard

placement of NuBus cards may result in a number of 1 MB or 2 MB “islands” in the

upper portion of the 24-bit address space; in general, this kind of fragmentation reduces

the effectiveness of a large virtual address space.

Note

Some Macintosh computers have fewer than six NuBus slots, and the
numbering of the slots is not consistent across different models. In a
Macintosh IIcx, the three available slots are numbered $9 through $B, so
expansion cards should be grouped toward the lowest-numbered slot
(contiguous with the ROM space). In a Macintosh IIci, the slots are
numbered $C through $E, so expansion cards should be grouped toward
the highest-numbered slot (contiguous with the I/O space). However,
the RAM-based video on the Macintosh IIci occupies addresses reserved
for slot $B; as a result, it is impossible to avoid some degree of
fragmentation of the virtual address space when you use the
RAM-based video option on that computer.

◆

32-Bit Addressing 3

When running with

32-bit addressing,

 the Memory Manager can address at most

2

32

 bytes, or 4 GB. Of these 4 GB, at most 1 GB can be used to address physical RAM. The

remaining 3 GB are devoted to ROM addresses, I/O device addresses, and NuBus slot

addresses. Figure 3-2 illustrates the logical address space mapping used by the 32-bit

Memory Manager.

C H A P T E R 3

Virtual Memory Manager

3-8

About the Virtual Memory Manager

Figure 3-2

32-bit Memory Manager logical address space

$FFFFFFFF

RAM
addresses

NuBus
addresses

High memory

Low memory

I/O devices

NuBus

ROM

$F0000000

$60000000

$40000000

$00000000

ROM
addresses

I/O
device

$50000000

$F1000000

Reserved

C H A P T E R 3

Virtual Memory Manager

About the Virtual Memory Manager

3-9

3

V
irtual M

em
ory M

anager

Note

The fragmentation of the virtual address space that sometimes occurs
when 24-bit addressing is in operation is never a problem when 32-bit
addressing is in operation. In the 32-bit address space, virtual memory
and the NuBus slots do not share space.

◆

The Physical Address Space 3

The original versions of the Macintosh Operating System used physical addresses

exclusively. A particular location in RAM could be accessed by its physical address,

regardless of whether that address was generated by an application, by the system

software, or even by a NuBus expansion card. In short, there was no difference between

the logical and the physical address spaces.

However, both hardware and software advances have forced the Operating System

to abstract the logical address space from the physical address space. As you have seen,

the logical address space is larger than the physical address space when virtual memory

is available. The Operating System uses the MMU coprocessor to map logical addresses

to their corresponding physical addresses.

In addition, some Macintosh computers have a discontiguous physical address space.

For example, on a Macintosh IIci with 8 MB of physical RAM, the physical memory

appears to the CPU and to the NuBus expansion bus as two separate 4 MB ranges

(see Figure 3-3). As you can see, the physical RAM occupies two separate ranges:

the RAM installed in bank A, ranging from $00000000 to $003FFFFF, and the RAM

installed in bank B, ranging from $04000000 to $043FFFFF.

C H A P T E R 3

Virtual Memory Manager

3-10

About the Virtual Memory Manager

Figure 3-3

The physical address space on a Macintosh IIci with 8 MB of RAM

In most cases, a discontiguous physical address space causes no problems, because the

Operating System uses the MMU coprocessor to map the available physical memory into

a single contiguous logical address space. All memory addresses returned to your

application by the Memory Manager (for instance, when you allocate a new block by

calling

NewHandle

) are logical addresses. When you read or write a logical memory

address, the Operating System uses the MMU coprocessor to determine the physical

address corresponding to your logical address. This address translation is completely

transparent to your application. For example, if you read the system global variable

located at address $10C, it doesn’t matter that the CPU actually looks at the physical

address $0400010C.

Bank B

High memory

Low memory

Bank A

$04400000
(68 MB)

$04000000
(64 MB)

$00400000
(4 MB)

$00000000

C H A P T E R 3

Virtual Memory Manager

About the Virtual Memory Manager

3-11

3

V
irtual M

em
ory M

anager

In some cases, however, you can run into problems if you don’t account for the

possibility that the logical address space and the physical address space might differ.

Suppose, for instance, that you are developing a driver that passes addresses to NuBus

master hardware. In this case, you need to take care to pass it

physical

 addresses only,

because NuBus hardware does not use the MMU to translate logical addresses into

physical addresses. If your driver passes a logical address, the NuBus hardware cannot

translate it into a physical address because it does not have access to the MMU’s

address-mapping tables. If your hardware then attempts to write data to that address, it

is likely to overwrite some other portion of physical memory.

To prevent this problem, you need to make certain that you always convert logical

addresses to their corresponding physical addresses before you pass those addresses to

any alternate bus master. You can do this by calling the

GetPhysical

 function, as

described later in “Mapping Logical to Physical Addresses,” which begins on page 3-16.

The

GetPhysical

 function is implemented in ROM on all machines that have a

discontiguous physical address space—whether or not virtual memory is available.

Accordingly, before you pass addresses to an alternate bus master, you should check for

the availability of the

GetPhysical

 call; if it’s available, you should use it to translate

logical to physical addresses.

Note

Passive or slave NuBus cards (such as video cards) that do not read or
write physical RAM are not likely to be affected by the presence of
virtual memory or by a discontiguous physical address space.

◆

Page Faults 3

When an application or other software component tries to access data in a page of

memory that is not currently resident in RAM, the Operating System issues a special

kind of bus error known as a

page fault.

 The Virtual Memory Manager intercepts page

faults and tries to load the affected page or pages into memory. It does so by executing

its own internal page-fault handler, which handles page faults and passes other bus

errors to the standard bus-error vector in low memory.

To load the required pages into memory, the Virtual Memory Manager’s page-fault

handler takes over the SCSI bus and makes calls directly to the driver of the

backing-store file. While the Virtual Memory Manager is handling a page fault, it is

essential that no other page faults occur. If a page fault did occur during page-fault

handling—a condition known as a

double page fault

—the Virtual Memory Manager

would have to interrupt the driver of the paging device to make a further request to load

the needed page. Unless the driver of the paging device is

concurrent

 (that is, able to

handle several requests at once), the driver cannot handle this second request.

Unfortunately, current versions of most SCSI disk drivers are not concurrent. As a result,

a double page fault results in a system crash.

The Virtual Memory Manager takes special steps to avoid double page faults caused by

user code (that is, code that is not executed as the result of an exception). It defers all

C H A P T E R 3

Virtual Memory Manager

3-12

About the Virtual Memory Manager

user code while the driver of the paging device is busy. In particular, the Virtual Memory

Manager defers until a safe time the following types of code:

■

VBL tasks

■

Slot-based VBL tasks

■

Time Manager tasks

■

I/O completion routines

Note

Because these types of tasks may be deferred under virtual memory,
any application or device driver that uses them to achieve real-time
performance might be adversely affected by the operation of the Virtual
Memory Manager.

◆

Other software components must take care not to cause page faults at interrupt time. In

particular, device drivers, which commonly run at interrupt time, should make certain

that any data structures or buffers that they reference at interrupt time are in physical

memory at that time. You can make sure that this happens by holding the required data

in physical memory, as described in “Holding and Releasing Memory” on page 3-14.

In an effort to maintain compatibility with existing drivers, the Operating System

automatically keeps the entire system heap in physical memory at all times. Therefore,

if your device driver and its associated data structures are loaded into the system heap,

you do not need to worry about causing page faults at interrupt time.

▲ W A R N I N G

Future versions of the system software are not guaranteed to keep the
entire system heap in physical memory. To be safe, you should explicitly
hold in physical memory any code or data that you know might be
accessed at interrupt time.

▲

The Virtual Memory Manager provides this further level of protection against page

faults caused by device drivers at interrupt time: it automatically holds in physical

memory any buffers used by the Device Manager

_Read

 and

_Write

 operations. Any

driver that uses the

_Read

 and

_Write

 calls to move data between main memory and

the driver’s associated hardware device is therefore automatically compatible with

virtual memory. If, however, you use

_Status

 or

_Control

 calls to move data at

interrupt time, you must explicitly hold or lock all buffers that are referenced in the

_Status

 or

_Control

 parameter block. If possible, you should rewrite your driver

so that it uses

_Read

 and

_Write

 calls instead of

_Status

 and

_Control

 calls to

move data.

The Virtual Memory Manager provides one other routine that you can use to help

prevent double page faults. If your application or other code installs interrupt routines

other than those handled automatically by the Virtual Memory Manager (such as VBL

tasks, Time Manager tasks, and Device Manager completion calls), you can explicitly

defer the execution of the routine by calling it via the function

DeferUserFn

. See

“Deferring User Interrupt Handling” on page 3-20 for details on calling

DeferUserFn

.

C H A P T E R 3

Virtual Memory Manager

Using the Virtual Memory Manager

3-13

3

V
irtual M

em
ory M

anager

Using the Virtual Memory Manager 3

The routines described in this section allow drivers and applications with critical timing

needs to intervene in the otherwise automatic workings of the Virtual Memory

Manager’s paging mechanism.

Note

The vast majority of applications do not need to use these
routines. They are used primarily by drivers, debuggers, and other
interrupt-servicing code.

◆

If necessary, your software can request that a range of memory be held in physical

memory. Holding means that the specified memory range cannot be paged out to disk,

although it might be moved within physical RAM. As a result, no page faults can result

from reading or writing memory addresses of pages that are held in memory.

Similarly, a page or range of pages can be locked in physical memory. Locking means

that the specified memory cannot be paged out to disk and that the memory cannot

change its real (physical) RAM location. You can also request that a range of pages be

locked in a contiguous range of physical memory, although contiguity is not guaranteed.

The need to lock pages in a contiguous area of memory arises primarily when external

hardware transfers data directly into physical RAM. In this case, locking might be useful

for keeping a contiguous range of memory stationary during operations of an external

CPU (on a NuBus card, for example) that cannot support a DMA action.

Most applications do not need to hold or lock pages in physical RAM. The Virtual

Memory Manager usually works quickly enough that your application is not affected by

any delay that might result from paging. Device drivers or sound and animation

applications with critical timing requirements usually need only to hold memory, not

lock it. Here are some general rules regarding when to hold or lock memory:

■ Avoid executing tasks that could cause page faults at interrupt time. The less work
done at interrupt time, the better for all applications running.

■ You cannot hold or lock memory (or call any Memory Manager routines that move or
purge memory) at interrupt time.

■ Don’t lock or hold everything in RAM. Sometimes you do need to hold or lock pages
in RAM, but if you are in doubt, then probably you need to do neither.

■ Your application must explicitly release or unlock whatever it held or locked. If for
some reason an area of RAM is held and locked, or held twice, then it must be
released and unlocked, or released twice.

The last directive is especially important. Your application is responsible for undoing the

effects of locking or holding ranges of memory. In particular, the Virtual Memory

Manager does not automatically unlock pages that have been locked. If you do not undo

these effects in a timely fashion, you are likely to degrade performance. In the worst

case, you could cause the system to run out of physical memory.

C H A P T E R 3

Virtual Memory Manager

3-14 Using the Virtual Memory Manager

Obtaining Information About Virtual Memory 3
You should always determine whether virtual memory is available before attempting to

use any Virtual Memory Manager routines. To do this, pass the Gestalt function the

gestaltVMAttr selector. The Gestalt function’s response indicates the version of

virtual memory, if any, installed. If bit 0 of the response is set to 1, then the system

software version 7.0 implementation of virtual memory is installed.

Note
Sometimes you don’t need to check whether virtual memory is actually
available before calling some Virtual Memory Manager routines. For
example, you might need to call the GetPhysical function even if
virtual memory is not enabled. Instead of calling Gestalt to see
whether virtual memory is available, you should simply test whether
the appropriate trap is available. In the case of the GetPhysical
function, you should check that the _MemoryDispatchA0Result trap
is available. ◆

You can also use the Gestalt function to obtain information about the memory

configuration of the system, in particular, information about the amount of physical

memory installed in a computer, the amount of logical memory available in a computer,

the version of virtual memory installed (if any), and the size of a logical page. By

obtaining this information from Gestalt , you can help insulate your applications or

drivers from possible future changes in the details of the virtual memory

implementation.

Holding and Releasing Memory 3
You can use the HoldMemory function to make a portion of the address space resident in

physical memory and ineligible for paging. This function is intended primarily for use

by drivers that access user data buffers at interrupt level, whether transferring data to or

from them. Calling HoldMemory on the appropriate memory ranges thus prevents them

from causing page faults at interrupt level and effectively prevents them from generating

fatal double page faults. The contents of the specified range of virtual addresses can

move in physical memory, but they are guaranteed always to be in physical memory

when accessed.

Note
If you use the device-level _Read and _Write functions when doing
data transfers, the Virtual Memory Manager automatically ensures that
the data buffers and parameter blocks are held before the transfer
of data. ◆

The following sample code instructs the Virtual Memory Manager to hold in RAM an

8192-byte range of memory starting at address $32500:

myAddress := $32500;

myLength := 8192;

myErr := HoldMemory(myAddress, myLength);

C H A P T E R 3

Virtual Memory Manager

Using the Virtual Memory Manager 3-15

3

V
irtual M

em
ory M

anager

Note that whole pages of the virtual address space are held, regardless of the starting

address and length parameters you supply. If the starting address parameter supplied to

the HoldMemory function is not on a page boundary, then it is rounded down to the

nearest page boundary. Similarly, if the specified range does not end on a page boundary,

the length parameter is rounded up so that one or more whole pages are held. This

rounding might result in the holding of several pages of physical memory, even if the

specified range is less than a page in length.

To release memory held as a result of a call to HoldMemory , you must use the

UnholdMemory function, which simply reverses the effects of the HoldMemory

function. For example, the page or pages held in memory in the previous example can be

released as follows:

myErr := UnholdMemory(myAddress, myLength);

Like holding, releasing applies to whole pages of the virtual address space. Similar

rounding of the address and length parameters is performed, as required, to make the

range begin and end on page boundaries.

Note
In current versions of system software, the system heap is always held
in memory and is never paged out. ◆

Locking and Unlocking Memory 3
You can use the LockMemory function to make a portion of the address space

immovable in physical memory and ineligible for paging. The Operating System may

move the contents of the specified range of logical addresses to a more convenient

location in physical memory during the locking operation, but on completion, the

contents of the specified range of logical addresses are resident and do not move in

physical memory.

Locking a range of memory is a more drastic measure than just holding it. Locking not

only forces the range to be held resident in RAM but also prevents its logical address

from moving with respect to its physical address. The LockMemory function is used by

drivers and other code when hardware other than the Macintosh CPU is transferring

data to or from user buffers, such as any NuBus master peripheral card or DMA

hardware. This function prevents both paging and physical relocation of a specified

memory area and allows the physical addresses of a memory area to be exported to the

non-CPU hardware. Typically, you would use this service for the duration of a single

I/O request. However, you could use this service to lock data structures that are

permanently shared between a driver (or other code) and a NuBus master.

Note
Don’t confuse locking address ranges in RAM (using LockMemory)
with locking a handle (using HLock). A locked handle can still be
paged out. ◆

C H A P T E R 3

Virtual Memory Manager

3-16 Using the Virtual Memory Manager

The main reason to disable movement of pages in physical memory is to allow

translation of virtual memory addresses to physical addresses. This translation is needed

by bus masters, which must write to memory in the physical address space. To avoid

stale data, the memory locked in RAM is marked as noncacheable in the MMU

page tables.

You can lock a range of memory in a contiguous range of physical memory by calling the

LockMemoryContiguous function. This function can be used by driver and NuBus

master or driver and DMA hardware combinations when a non-CPU device accessing

memory cannot handle physically discontiguous data transfers. You can also use this

service when the transfer of physically discontiguous data would degrade performance.

However, the call to LockMemoryContiguous may be expensive, because sometimes

entire pages must be copied to make a range contiguous.

Note
It might not be possible to make a range physically contiguous if any of
the pages in the range are already locked. Because a call to
LockMemoryContiguous is not guaranteed to return the desired
results, you must include in your code an alternate method for locking
the necessary ranges of memory. In general, you should avoid calling
LockMemoryContiguous if at all possible. If you must call it, do so as
early as possible—preferably at system startup time—to increase the
likelihood of finding enough contiguous memory. ◆

To unlock a range of previously locked pages, use the UnlockMemory function. This

function reverses the effects of LockMemory or LockMemoryContiguous . Unlocked

pages are marked as cacheable.

Locking, contiguous locking, and unlocking operations are applied to ranges of the

logical address space. If necessary to force the ranges onto page boundaries, the Virtual

Memory Manager performs rounding of addresses and sizes, as described in “Holding

and Releasing Memory” on page 3-14.

Mapping Logical to Physical Addresses 3
To obtain information about page mapping between logical and physical addresses, use

the GetPhysical function, which translates logical addresses into their corresponding

physical addresses. It provides drivers and other software with the actual physical

memory addresses of a specified logical address range. Non-CPU devices need this

information to access memory mapped by the CPU.

C H A P T E R 3

Virtual Memory Manager

Using the Virtual Memory Manager 3-17

3

V
irtual M

em
ory M

anager

The GetPhysical function allows you to obtain the physical addresses that correspond

to any logically addressable range of main memory. To specify the logical address

range to be translated, you use a memory-block record, defined by the MemoryBlock

data type.

TYPE MemoryBlock =

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;

A memory-block record identifies a single contiguous block of memory by specifying the

first byte in the block and the length of the block.

Note
Don’t confuse the blocks of memory defined by the MemoryBlock data
type with memory blocks as manipulated by the Memory Manager. The
portion of the logical address space to be translated by GetPhysical
can overlap several Memory Manager memory blocks or be just a part of
one. Typically, however, that range coincides with the contents of a
single Memory Manager block. ◆

A single logical address range sometimes corresponds to more than one range of

physical addresses. As a result, GetPhysical needs to pass back to your application an

array of memory-block records. You pass a logical address range to GetPhysical , and

it returns an array of physical address ranges. This operation requires the use of a

logical-to-physical translation table, defined by the LogicalToPhysicalTable

data type.

TYPE LogicalToPhysicalTable =

RECORD

logical: MemoryBlock; {a logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF

 MemoryBlock; {equivalent physical blocks}

END;

To call GetPhysical , you need to pass a translation table whose logical field

specifies the logical address range you want to translate. You also need to specify how

many contiguous physical address ranges you want returned. In this way, you can adjust

the number of elements in the array to suit your own needs. By default, a translation

table contains enough space for eight physical memory blocks.

CONST defaultPhysicalEntryCount = 8;

C H A P T E R 3

Virtual Memory Manager

3-18 Using the Virtual Memory Manager

If the variable myTable is of type LogicalToPhysicalTable and myCount is of type

LongInt , you can call GetPhysical as follows:

myCount := (SizeOf(myTable) DIV SizeOf(MemoryBlock)) - 1;

myErr := GetPhysical(myTable, myCount);

The algorithm used here to calculate the number of physical entries returned (myCount)

allows you to change the size (and hence the type) of the myTable variable to include

more or fewer memory blocks. The default size of the translation table is sufficient for

most purposes. Before you do the translation, you can determine how many physical

blocks you need to accommodate the entire logical address space specified in the table’s

logical parameter. To determine this, you pass a variable whose initial value is 0:

myCount := 0; {get number of blocks needed for given range}

myErr := GetPhysical(myTable, myCount);

If the value of its second parameter is 0, GetPhysical returns in that parameter the

total number of physical blocks that would be required to translate the entire logical

address range. In this case, both the logical and physical fields of the translation

table are unchanged.

If the value of its second parameter is not 0, GetPhysical returns in the physical

field of the translation table an array specifying the physical blocks that correspond to

the logical address specified in the logical field. The GetPhysical function returns

in its second parameter the number of entries in that array (which may be fewer than

were asked for). If the translation table was not large enough to contain all the physical

blocks corresponding to the logical block, GetPhysical updates the fields of the

logical memory block to reflect the remaining number of bytes in the logical range left

to translate (count field) and the next address in the logical address range to translate

(start field).

Note
You must lock (using LockMemory) the address range passed to
GetPhysical to guarantee that the translation data returned are
accurate (that is, that the logical pages do not move around in physical
memory and that paging activity has not invalidated the translation
data). An error is returned if you call GetPhysical on an address
range that is not locked. ◆

Recall that you sometimes need to call GetPhysical even if virtual memory is not

available. (See “The Physical Address Space” on page 3-9 for details.) In general, if

GetPhysical is available in the operating environment, then you should call it

any time your software exports addresses to a NuBus expansion card that can read or

write physical RAM directly. Listing 3-1 defines a general algorithm for implementing

driver calls to a generic NuBus master card. To maximize compatibility with virtual

memory, make sure that your hardware and device drivers support this method of

issuing driver calls.

C H A P T E R 3

Virtual Memory Manager

Using the Virtual Memory Manager 3-19

3

V
irtual M

em
ory M

anager

Listing 3-1 Translating logical to physical addresses

PROGRAM GetPhysicalUsage;

USES Types, Traps, Memory, Utilities;

CONST

kTestPtrSize = $100000;

VAR

myPtr: Ptr;

myPtrSize: LongInt;

hasGetPhysical: Boolean; {does this machine have GetPhysical?}

lockOK: Boolean; {was the block successfully locked?}

myErr: OSErr;

myTable: LogicalToPhysicalTable;

myCount: LongInt;

index: Integer;

PROCEDURE SendDMACmd (addr: Ptr; count: LongInt);

BEGIN

{This is where you would probably make a driver call }

{ to initiate DMA from a NuBus master or similar hardware.}

END;

BEGIN

myPtrSize := kTestPtrSize;

myPtr := NewPtr(myPtrSize);

IF myPtr <> NIL THEN

BEGIN

hasGetPhysical := TrapAvailable(_MemoryDispatch);

IF hasGetPhysical THEN

BEGIN

myErr := LockMemory(myPtr, myPtrSize);

lockOK := (myErr = noErr);

IF lockOK THEN

BEGIN

myTable.logical.address := myPtr;

myTable.logical.count := myPtrSize;

myErr := noErr;

WHILE (myErr = noErr) & (myTable.logical.count <> 0) DO

BEGIN

myCount := SizeOf(myTable) DIV SizeOf(MemoryBlock) - 1;

myErr := GetPhysical(myTable, myCount);

IF myErr = noErr THEN

FOR index := 0 TO (myCount - 1) DO

WITH myTable DO

SendDMACmd(physical[index].address,

C H A P T E R 3

Virtual Memory Manager

3-20 Using the Virtual Memory Manager

physical[index].count)

ELSE

BEGIN

{Handle GetPhysical error indicated by myErr.}

{Loop will terminate unless myErr is reset to noErr.}

END;

END; {WHILE}

{Always unlock a range you locked; ignore any error here.}

myErr := UnlockMemory(myPtr, myPtrSize);

END

ELSE {not lockOK}

BEGIN

{handle LockMemory error indicated by myErr}

END;

END

ELSE {GetPhysical not available}

SendDMACmd(myPtr, myPtrSize);

END; {IF myPtr}

END.

If the GetPhysical function is not available, the program defined in Listing 3-1 simply

calls your routine to send a DMA command to the NuBus hardware. In that case, no

address translation is necessary. If, however, GetPhysical is available, you need to

lock the logical address range whose physical addresses you want to get. If you

successfully lock the range, you can call GetPhysical as illustrated earlier. Be sure to

unlock the range you previously locked before exiting the program.

▲ W A R N I N G

Some Macintosh computers contain the _MemoryDispatch trap in
ROM, even though they do not contain an MMU coprocessor. In this
case, the system software patches the _MemoryDispatch trap to make
it appear unimplemented. However, software that executes before
system patches are installed cannot use this as a test of whether to call
GetPhysical or not. If your code is executed before the installation of
system patches, you should use the Gestalt function to test directly for
the existence of an MMU coprocessor. ▲

Deferring User Interrupt Handling 3
During the time that the Macintosh is handling a page fault, it is critical that no other

page faults occur. Because the system performs no other work while it is handling a page

fault, only code that runs as a result of an interrupt can generate a second page fault. For

this reason, you must call the HoldMemory function on buffers or code that are to be

referenced by any interrupt service routine. You must call this function at noninterrupt

level because the MemoryDispatch calls may cause movement of logical memory or

physical memory and possible I/O.

C H A P T E R 3

Virtual Memory Manager

Virtual Memory and Debuggers 3-21

3

V
irtual M

em
ory M

anager

The use of procedure pointers (variables of type ProcPtr) in specifying I/O completion

routines, socket listeners, and so forth makes it impossible for drivers to know the exact

location and size of all code or buffers that might be referenced when these routines are

invoked. However, these routines must still be called only at a safe time, when paging is

not currently in progress. Because the locations of all needed pages cannot be known, an

alternate strategy is used to prevent a fatal double page fault.

The DeferUserFn function is provided to allow interrupt service routines to defer, until

a safe time, code that might cause page faults. This function determines whether the call

can be made immediately and, if it is safe, makes the call. If a page fault is in progress,

the address of the service routine and its parameter are saved, and the routine is deferred

until page faults are again permitted.

Virtual Memory and Debuggers 3

Note
You need the information in this section only if you are writing a
debugger that is to operate under virtual memory. ◆

Debuggers running under virtual memory can use any of the virtual memory routines

discussed in the previous sections. For example, if a debugger is in a situation where

page faulting would be fatal, it can use DeferUserFn to defer the debugging until

paging is safe. However, debuggers running under virtual memory might require a few

routines that differ from those available to other applications. In addition, debuggers

might depend on some specific features of virtual memory that other applications

should not depend on.

For example, because debugger code might be entered at a time when paging would be

unsafe, you should lock (and not just hold) the debugger and all of its data and buffer

space in memory. Normally, the locking operation is used to allow NuBus masters or

other DMA devices to transfer data directly into physical memory. This requires that

data caching be disabled on the locked page. You might, however, want your debugger

to benefit from the performance of the data cache on pages belonging solely to the

debugger. The DebuggerLockMemory function does exactly what LockMemory does,

except that it leaves data caching enabled on the affected pages. You can call the

DebuggerUnlockMemory function to reverse the effects of DebuggerLockMemory .

Other special debugger support functions

■ determine whether paging is safe

■ allow the debugger to enter supervisor mode

■ enter and exit the debugging state

■ obtain keyboard input while in the debugging state

■ determine the state of a page of logical memory

C H A P T E R 3

Virtual Memory Manager

3-22 Virtual Memory and Debuggers

All of these functions are implemented as extensions of _DebugUtil , a trap intended

for use by debuggers to allow greater machine independence. This trap is not present in

the Macintosh II, Macintosh IIx, Macintosh IIcx, or Macintosh SE/30 models, but it is

present in all later models. The Virtual Memory Manager implements this trap for all

machines that it supports, so a debugger can use _DebugUtil (and functions defined in

terms of _DebugUtil) if Gestalt reports that virtual memory is present.

When the virtual memory extensions to _DebugUtil are not present (that is, when the

computer supports virtual memory but is not a Macintosh II, Macintosh IIx, Macintosh

IIcx, or Macintosh SE/30), _DebugUtil provides functions that can determine the

highest _DebugUtil function supported, enter the debugging state, poll the keyboard

for input, and exit the debugging state.

Bus-Error Vectors 3
The Operating System needs to intercept page faults and do the necessary paging. In

addition, various applications and pieces of system software need to handle other kinds

of bus errors. Virtual memory takes care of the complications of bus-error handling by

providing two bus-error vectors. The vector that applications and other system software

see is the one in low memory (at address $8). The vector that virtual memory uses (the

one actually used by the processor) is in virtual memory’s private storage and is pointed

to by the Vector Base Register (VBR). Virtual memory’s bus-error handler handles page

faults and passes other bus errors to the vector in low memory at address $8.

When a debugger wants the contents of a page to be loaded into memory, it can read a

byte from that page. The Operating System detects the page fault and loads the

appropriate page (perhaps swapping another page to disk).

Note that a debugger will probably temporarily replace one or both of the bus-error

vectors while it is executing. A debugger that wants virtual memory to continue paging

while the debugger runs can put a handler only in the low-memory bus-error vector. A

debugger that displays memory without allowing virtual memory to continue paging

can put a handler in the virtual memory’s bus-error vector (at VBR + $8).

Because the current version of virtual memory is not reentrant, there are times when

trying to load a page into memory would be fatal. To allow for this, you can use the

PageFaultFatal function to determine whether a page fault would be fatal at that

time. If this function returns TRUE, the debugger should not allow the virtual memory’s

bus-error handler to detect any page faults. Thus, you should always replace the virtual

memory’s bus-error vector if the PageFaultFatal function returns TRUE.

Special Nonmaskable Interrupt Needs 3
Because a debugger can be triggered with a nonmaskable interrupt (level 7, triggered by

the interrupt switch), it has special needs that other code in the system does not. For

example, because a nonmaskable interrupt might occur while virtual memory is moving

pages (to make them contiguous, for example), debugger code must be locked (instead

of held, like most other code that must run at a time when page faults would be fatal).

C H A P T E R 3

Virtual Memory Manager

Virtual Memory and Debuggers 3-23

3

V
irtual M

em
ory M

anager

Unfortunately, the LockMemory function is intended for use by device drivers and

automatically disables data caching for the locked pages. Because this is not desirable for

the debugger, the functions DebuggerLockMemory and DebuggerUnlockMemory

lock pages without inhibiting the caching of those pages. Note that both stack, code, and

other storage used by the debugger might need to be locked in this way.

Supervisor Mode 3
Because a debugger is typically activated through one of the processor vectors, it usually

executes in supervisor mode, allowing it access to all of memory and all processor

registers. When the debugger is entered in another way—for example, through

the _Debugger or _DebugStr trap or when it is first loaded—it is necessary to enter

supervisor mode. You can accomplish this with the following assembly-language

instructions:

MOVEQ #EnterSupervisorMode,D0

_DebugUtil ;OS trap to DebugUtils

;on exit, D0 still holds old SR

The code switches the caller into supervisor mode, and the previous status register is

returned in register D0. Thus, when the debugger returns to the interrupted code, you

can restore the previous interrupt level, condition codes, and so forth. When the

debugger is ready to return to user mode, it simply loads the status register with the

result returned in D0. Entering supervisor mode also switches the stack pointer from the

user stack pointer (USP) to the interrupt stack pointer (ISP); reentering user mode

changes the stack pointer back to the user stack pointer.

The Debugging State 3
When activated by an exception, _Debug or _DebugStr trap, or any other means, the

debugger should call the DebuggerEnter procedure to notify _DebugUtil that the

debugger is entering the debugging state. Then _DebugUtil can place hardware in a

quiescent state and prepare for subsequent _DebugUtil calls.

Before returning to the interrupted application code, the debugger must call

the DebuggerExit procedure to allow _DebugUtil to return hardware affected by

DebuggerEnter to its previous state.

Keyboard Input 3
A debugger can obtain the user’s keyboard input by calling the DebuggerPoll

procedure. This routine can obtain keyboard input even when interrupts are disabled.

After you call this service, you must then obtain keyboard events through the normal

event-queue mechanism.

C H A P T E R 3

Virtual Memory Manager

3-24 Virtual Memory Manager Reference

Page States 3
Debuggers need a way to display the contents of memory without paging or to display

the contents of pages currently on disk. The GetPageState function returns one of

these values to specify the state of a page containing a virtual address:

TYPE PageState = Integer;

CONST

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

A debugger can use this information to determine whether certain memory addresses

should be referenced. Note that ROM and I/O space are not pageable and therefore are

considered not paged.

Virtual Memory Manager Reference 3

This section describes the data structures and routines that are provided by the Virtual

Memory Manager.

Data Structures 3

The Virtual Memory Manager defines two data structures for use with the

GetPhysical function, the memory-block record and the translation table.

Memory-Block Record 3

The GetPhysical function uses a memory-block record to hold information about a

block of memory, either logical or physical. The memory-block record is a data structure

of type MemoryBlock .

TYPE MemoryBlock =

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;

Field descriptions

address A pointer to the beginning of a block of memory.

count The number of bytes in the block of memory.

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-25

3

V
irtual M

em
ory M

anager

Translation Table 3

The GetPhysical function uses a translation table to hold information about a logical

address range and its corresponding physical addresses. A translation table is defined by

the data type LogicalToPhysicalTable .

TYPE LogicalToPhysicalTable =

RECORD

logical: MemoryBlock; {a logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF

 MemoryBlock; {equivalent physical blocks}

END;

Field descriptions

logical A logical block of memory whose corresponding physical blocks are
to be determined.

physical A physical translation table that identifies the blocks of physical
memory corresponding to the logical block identified in the
logical field.

Routines 3

This section describes the routines you can use to control virtual memory. The section

“Virtual Memory Management” describes the routines that allow you to control pages in

physical memory, and the section “Virtual Memory Debugger Support Routines”

describes the routines that only programmers implementing debuggers need to use.

Virtual Memory Management 3

This section describes the routines you can use to hold logical pages in physical memory

and let go of them, lock and unlock pages in physical memory, obtain information about

page mapping, and handle interrupts. To hold and release pages, use the HoldMemory

and UnholdMemory functions. To lock and unlock pages, use the LockMemory ,

LockMemoryContiguous , and UnlockMemory functions. To obtain page-mapping

information, use the GetPhysical function. To defer user interrupt handling, use the

DeferUserFn function.

HoldMemory 3

To make a portion of the address space resident in physical memory and ineligible for

paging, use the HoldMemory function.

FUNCTION HoldMemory (address: UNIV Ptr; count: LongInt): OSErr;

C H A P T E R 3

Virtual Memory Manager

3-26 Virtual Memory Manager Reference

address The starting address of the range of memory to be held in RAM.

count The size, in bytes, of the range of memory to be held in RAM.

DESCRIPTION

The HoldMemory function makes the portion of the address space beginning at

address and having a size of count bytes resident in physical memory and ineligible

for paging.

If the address parameter supplied to the HoldMemory function is not on a page

boundary, then it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is held.

SPECIAL CONSIDERATIONS

Even though HoldMemory does not move or purge memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HoldMemory function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0000

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
interruptsMaskedErr –624 Called with interrupts masked

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-27

3

V
irtual M

em
ory M

anager

UnholdMemory 3

To make a currently held range of memory eligible for paging again, use the

UnholdMemory function.

FUNCTION UnholdMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be released.

count The size, in bytes, of the range of memory to be released.

DESCRIPTION

The UnholdMemory function makes the portion of the address space beginning at

address and having a size of count bytes eligible for paging.

If the address parameter supplied to the UnholdMemory function is not on a page

boundary, then it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is released.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnholdMemory function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0001

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to release

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notHeldErr –621 Specified range of memory is not held
interruptsMaskedErr –624 Called with interrupts masked

C H A P T E R 3

Virtual Memory Manager

3-28 Virtual Memory Manager Reference

LockMemory 3

To make a portion of the address space immovable in physical memory and ineligible for

paging, use the LockMemory function.

FUNCTION LockMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be locked in RAM.

count The size, in bytes, of the range of memory to be locked in RAM.

DESCRIPTION

The LockMemory function makes the portion of the address space beginning at

address and having a size of count bytes immovable in physical memory and

ineligible for paging.

If the address parameter supplied to the LockMemory function is not on a page

boundary, it is rounded down to the nearest page boundary. Similarly, if the specified

range does not end on a page boundary, the count parameter is rounded up so that the

entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the

Macintosh IIci ROM, all physical RAM is marked noncacheable.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockMemory function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0002

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to lock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
interruptsMaskedErr –624 Called with interrupts masked

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-29

3

V
irtual M

em
ory M

anager

LockMemoryContiguous 3

The LockMemoryContiguous function is exactly like the LockMemory function,

except that it attempts to obtain a contiguous block of physical memory associated

with the specified logical address range.

FUNCTION LockMemoryContiguous (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range of memory to be locked in RAM.

count The size, in bytes, of the range of memory to be locked in RAM.

DESCRIPTION

The LockMemoryContiguous function makes the portion of the address space

beginning at address and having a size of count bytes immovable in physical memory

and ineligible for paging. The function attempts to obtain a contiguous block of physical

memory associated with the specified logical address range. It might not be possible to

make a range physically contiguous if any of the pages contained in the range are

already locked.

If the address parameter supplied to the LockMemoryContiguous function is not on

a page boundary, it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the

Macintosh IIci ROM, all physical RAM is marked noncacheable.

SPECIAL CONSIDERATIONS

Because a call to LockMemoryContiguous is not guaranteed to succeed,

all code that uses LockMemoryContiguous must have an alternate method

for locking the necessary ranges of memory. In general, you should avoid using

LockMemoryContiguous if at all possible. If you must call it, do so as early as

possible—preferably at system startup time—to increase the likelihood that enough

contiguous memory can be found.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockMemoryContiguous function are

Trap macro Selector

_MemoryDispatch $0004

C H A P T E R 3

Virtual Memory Manager

3-30 Virtual Memory Manager Reference

The registers on entry and exit for this routine are

RESULT CODES

UnlockMemory 3

To undo the effects of either LockMemory or LockMemoryContiguous , use the

UnlockMemory function.

FUNCTION UnlockMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be unlocked.

count The size, in bytes, of the range of memory to be unlocked.

DESCRIPTION

The UnlockMemory function makes the portion of the address space beginning at

address and having a size of count bytes movable in real memory and eligible for

paging again.

If the address parameter supplied to the UnlockMemory function is not on a page

boundary, then it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnlockMemory function are

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to unlock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
cannotMakeContiguousErr –622 Cannot make specified range contiguous
interruptsMaskedErr –624 Called with interrupts masked

Trap macro Selector

_MemoryDispatch $0003

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-31

3

V
irtual M

em
ory M

anager

The registers on entry and exit for this routine are

RESULT CODES

GetPhysical 3

To translate logical addresses into their corresponding physical addresses, use the

GetPhysical function.

FUNCTION GetPhysical (VAR addresses: LogicalToPhysicalTable;

VAR physicalEntryCount: LongInt): OSErr;

addresses A translation table. On entry, set the logical field of this record to the
block of memory to translate. On exit, the physical field of this record
holds the corresponding physical address blocks.

physicalEntryCount
The number of physical entries to translate. On entry, set this field to 0 if
you want GetPhysical to return the number of table entries needed to
translate the entire logical address range.

DESCRIPTION

The GetPhysical function translates a logical address range into its corresponding

physical address ranges. The logical field of the addresses translation table specifies

the logical address range to be translated. GetPhysical translates up to the size of the

physical table or until it completes the translation, whichever occurs first.

If you call GetPhysical with the physicalEntryCount parameter set to 0, it returns

in physicalEntryCount the number of table entries needed to translate the entire

address range. In this case, the translation table specified by the addresses parameter

is unchanged.

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to unlock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked

C H A P T E R 3

Virtual Memory Manager

3-32 Virtual Memory Manager Reference

If you call GetPhysical with the physicalEntryCount parameter set to a number

greater than 0, it returns in the physical field of the addresses translation table an

array specifying the physical blocks that correspond to the logical address specified in

the logical field. In the physicalEntryCount parameter, GetPhysical returns the

number of entries in that array (which may be fewer than were asked for). If the

physical field of the translation table was not large enough to contain all the physical

blocks corresponding to the logical block, GetPhysical updates the fields of the

logical memory block to reflect the remaining number of bytes in the logical range

left to translate (count field) and the next address in the logical address range to

translate (start field).

Note
The logical address range must be locked to ensure validity of the
translation data. ◆

SPECIAL CONSIDERATIONS

The GetPhysical function as currently implemented under virtual memory supports

only logical RAM. You cannot use GetPhysical to translate addresses in the address

spaces of the ROM, I/O devices, or NuBus slots. Some Macintosh computers map a

portion of the physical RAM into NuBus space, to simulate the presence of a video

expansion card. GetPhysical returns the result code paramErr if you attempt to read

that memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPhysical function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatchA0Result $0005

Registers on entry

D0 Selector code

A0 Pointer to a translation table

A1 physicalEntryCount in table

Registers on exit

A0 physicalEntryCount translated

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-33

3

V
irtual M

em
ory M

anager

SEE ALSO

See “Mapping Logical to Physical Addresses,” beginning on page 3-16, for a method of

calling GetPhysical to translate addresses to be sent to a NuBus master card.

DeferUserFn 3

To determine whether code that might cause page faults can safely be called

immediately, use the DeferUserFn function.

FUNCTION DeferUserFn (userFunction: ProcPtr;

argument: UNIV Ptr): OSErr;

userFunction
The address of the routine to run.

argument A pointer to the argument to pass to the specified routine.

DESCRIPTION

The DeferUserFn function determines whether or not code that might call page faults

can safely be called immediately. If the code can be called safely, DeferUserFn calls the

routine designated by userFunction with register A0 containing the value designated

by argument . If a page fault is in progress, however, the routine address and its

parameter are saved, and the routine is deferred until page faults are again permitted.

Note that the routine might be called immediately (before returning to the caller of

DeferUserFn). Deferred functions must follow the register conventions used by

interrupt handlers: they can use registers A0–A3 and D0–D3, and they must restore all

other registers used.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the DeferUserFn function are

RESULT CODES

Registers on entry

A0 Address of function

D0 Argument for function

Registers on exit

D0 Result code

noErr 0 No error
cannotDeferErr –625 Unable to defer additional user functions

C H A P T E R 3

Virtual Memory Manager

3-34 Virtual Memory Manager Reference

Virtual Memory Debugger Support Routines 3

This section describes the virtual-memory routines that pertain primarily to

debuggers. You need to read this section only if you are implementing a debugger.

To determine which debugger functions are present, use the DebuggerGetMax

function. When entering and exiting the debugging state, use the DebuggerEnter

and the DebuggerExit procedures. To determine whether paging is safe, use the

PageFaultFatal function. To lock and unlock memory with caching enabled, use

the DebuggerLockMemory and the DebuggerUnlockMemory functions. To poll for

keyboard input, use the DebuggerPoll procedure. To determine the state of a page of

logical memory, use the GetPageState function.

DebuggerGetMax 3

The Memory Manager includes a special routine that debuggers use, instead of the

Gestalt function, to determine which debugger functions are present.

FUNCTION DebuggerGetMax: LongInt;

DESCRIPTION

The DebuggerGetMax function returns the highest selector number of the debugger

routines that are defined in terms of the _DebugUtil trap. The numbers correspond to

the following routines:

Of course, you should use the Gestalt function to check whether virtual memory

is available at all before you call the DebuggerGetMax function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerGetMax function are

Selector Routine

$0000 DebuggerGetMax

$0001 DebuggerEnter

$0002 DebuggerExit

$0003 DebuggerPoll

$0004 GetPageState

$0005 PageFaultFatal

$0006 DebuggerLockMemory

$0007 DebuggerUnlockMemory

$0008 EnterSupervisorMode

Trap macro Selector

_DebugUtil $0000

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-35

3

V
irtual M

em
ory M

anager

The registers on entry and exit for this routine are

DebuggerEnter 3

Before entering the debugging state, call the DebuggerEnter procedure.

PROCEDURE DebuggerEnter;

DESCRIPTION

Call the DebuggerEnter procedure to enter the debugging state. This allows the

_DebugUtil trap to make preparations for subsequent debugging calls.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerEnter procedure are

The registers on entry for this routine are

DebuggerExit 3

Before exiting the debugging state, call the DebuggerExit procedure.

PROCEDURE DebuggerExit;

DESCRIPTION

The DebuggerExit procedure allows the _DebugUtil trap to clean up after all

debugging calls are completed.

Registers on entry

D0 Selector code

Registers on exit

D0 Highest available selector

Trap macro Selector

_DebugUtil $0001

Registers on entry

D0 Selector code

C H A P T E R 3

Virtual Memory Manager

3-36 Virtual Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerExit procedure are

The registers on entry for this routine are

PageFaultFatal 3

A debugger can use the PageFaultFatal function to determine whether it should

capture all bus errors or whether it is safe to allow them to flow through to virtual

memory. When paging is safe, the debugger can allow virtual memory to continue

servicing page faults, and the user can view all of memory.

FUNCTION PageFaultFatal: Boolean;

DESCRIPTION

The PageFaultFatal function returns TRUE if the debugger should not allow the

virtual memory’s bus-error handler to detect any page faults.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PageFaultFatal function are

The registers on entry and exit for this routine are

Trap macro Selector

_DebugUtil $0002

Registers on entry

D0 Selector code

Trap macro Selector

_DebugUtil $0005

Registers on entry

D0 Selector code

Registers on exit

D0 Returned value

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-37

3

V
irtual M

em
ory M

anager

DebuggerLockMemory 3

To lock a portion of the address space (as the LockMemory function does) while leaving

data caching enabled on the affected pages, use the DebuggerLockMemory function.

FUNCTION DebuggerLockMemory (address: UNIV Ptr; count: LongInt):

OSErr;

address The start address of the range of memory that is to be locked in RAM.

count The size in bytes of the range of memory that is to be locked in RAM.

DESCRIPTION

The DebuggerLockMemory function makes the portion of the address space beginning

at address and having a size of count bytes immovable in physical memory and

ineligible for paging. The function leaves data caching enabled on the affected pages.

If the address parameter supplied to the DebuggerLockMemory function is not on a

page boundary, then it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is locked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerLockMemory function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_DebuggerLockMemory $0006

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory

C H A P T E R 3

Virtual Memory Manager

3-38 Virtual Memory Manager Reference

DebuggerUnlockMemory 3

To reverse the effects of DebuggerLockMemory , use the DebuggerUnlockMemory

function.

FUNCTION DebuggerUnlockMemory (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range of memory that is to be unlocked.

count The size, in bytes, of the range of memory that is to be unlocked.

DESCRIPTION

The DebuggerUnlockMemory function makes the portion of the address space

beginning at address and having a size of count bytes movable in real memory and

eligible for paging again.

If the address parameter supplied to the DebuggerUnlockMemory function is not on

a page boundary, then it is rounded down to the nearest page boundary. Similarly, if the

specified range does not end on a page boundary, the count parameter is rounded up so

that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerUnlockMemory function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_DebugUtil $0007

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked

C H A P T E R 3

Virtual Memory Manager

Virtual Memory Manager Reference 3-39

3

V
irtual M

em
ory M

anager

DebuggerPoll 3

To poll for keyboard input, use the DebuggerPoll procedure.

PROCEDURE DebuggerPoll;

DESCRIPTION

Call the DebuggerPoll procedure, which you can use even if interrupts are disabled,

to poll for keyboard input.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerPoll procedure are

The registers on entry and exit for this routine are

GetPageState 3

To obtain the state of a page of logical memory, use the GetPageState function.

FUNCTION GetPageState (address: UNIV Ptr): PageState;

address An address in the page whose state you want to determine.

DESCRIPTION

The GetPageState function returns the page state of the page containing the address

passed in the address parameter. The returned value is one of these constants:

TYPE PageState = Integer;

CONST

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

Trap macro Selector

_DebugUtil $0003

Registers on entry

D0 Selector code

Registers on exit

D0 Result code

C H A P T E R 3

Virtual Memory Manager

3-40 Virtual Memory Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPageState function are

The registers on entry and exit for this routine are

Trap macro Selector

_DebugUtil $0004

Registers on entry

A0 Address in the page whose state is to be determined

D0 Selector code

Registers on exit

D0 Page state

C H A P T E R 3

Virtual Memory Manager

Summary of the Virtual Memory Manager 3-41

3

V
irtual M

em
ory M

anager

Summary of the Virtual Memory Manager 3

Pascal Summary 3

Constants 3

CONST

{Gestalt constants}

gestaltVMAttr = 'vm '; {virtual memory attributes}

gestaltVMPresent = 0; {bit set if virtual memory present}

{default number of physical blocks in a translation table}

defaultPhysicalEntryCount = 8;

{page states}

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

Data Types 3

TYPE

PageState = Integer;

LogicalToPhysicalTable = {translation table}

RECORD

logical: MemoryBlock; {logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF MemoryBlock;

{equivalent physical blocks}

END;

MemoryBlock = {memory-block record}

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;

C H A P T E R 3

Virtual Memory Manager

3-42 Summary of the Virtual Memory Manager

Routines 3

Virtual Memory Management

FUNCTION HoldMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION UnholdMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION LockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION LockMemoryContiguous

(address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION UnlockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION GetPhysical (VAR addresses: LogicalToPhysicalTable;
VAR physicalEntryCount: LongInt): OSErr;

FUNCTION DeferUserFn (userFunction: ProcPtr; argument: UNIV Ptr):
OSErr;

Virtual Memory Debugger Support Routines

FUNCTION DebuggerGetMax : LongInt;

PROCEDURE DebuggerEnter;

PROCEDURE DebuggerExit;

FUNCTION PageFaultFatal : Boolean;

FUNCTION DebuggerLockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION DebuggerUnlockMemory

(address: UNIV Ptr; count: LongInt): OSErr;

PROCEDURE DebuggerPoll;

FUNCTION GetPageState (address: UNIV Ptr): PageState;

C Summary 3

Constants 3

/*Gestalt constants*/

#define gestaltVMAttr 'vm '; /*virtual memory attributes*/

#define gestaltVMPresent 0; /*bit set if virtual memory present*/

/*default number of physical blocks in table*/

enum {

defaultPhysicalEntryCount = 8

};

C H A P T E R 3

Virtual Memory Manager

Summary of the Virtual Memory Manager 3-43

3

V
irtual M

em
ory M

anager

/*page states*/

enum {

kPageInMemory = 0, /*page is in RAM*/

kPageOnDisk = 1, /*page is on disk*/

kNotPaged = 2 /*address is not paged*/

};

Data Types 3

typedef short PageState;

struct LogicalToPhysicalTable { /*translation table*/

MemoryBlock logical; /*logical block*/

MemoryBlock physical[defaultPhysicalEntryCount];

/*equivalent physical blocks*/

};

typedef struct LogicalToPhysicalTable LogicalToPhysicalTable;

struct MemoryBlock { /*memory-block record*/

void *address; /*start of block*/

unsigned long count; /*size of block*/

};

typedef struct MemoryBlock MemoryBlock;

Routines 3

Virtual Memory Management

pascal OSErr HoldMemory (void *address, unsigned long count);

pascal OSErr UnholdMemory (void *address, unsigned long count);

pascal OSErr LockMemory (void *address, unsigned long count);

pascal OSErr LockMemoryContiguous

(void *address, unsigned long count);

pascal OSErr UnlockMemory (void *address, unsigned long count);

pascal OSErr GetPhysical (LogicalToPhysicalTable *addresses,
unsigned long *physicalEntryCount);

pascal OSErr DeferUserFn (ProcPtr userFunction, void *argument);

C H A P T E R 3

Virtual Memory Manager

3-44 Summary of the Virtual Memory Manager

Virtual Memory Debugger Support Routines

pascal long DebuggerGetMax (void);

pascal void DebuggerEnter (void);

pascal void DebuggerExit (void);

pascal Boolean PageFaultFatal

(void);

pascal OSErr DebuggerLockMemory

(void *address, unsigned long count);

pascal OSErr DebuggerUnlockMemory

(void *address, unsigned long count);

pascal void DebuggerPoll (void);

pascal PageState GetPageState

(const void *address);

Assembly-Language Summary 3

Data Types 3

Memory-Block Data Structure

Translation Table Data Structure

Trap Macros 3

Trap Macros Requiring Routine Selectors

_MemoryDispatch

0 address long start of block
4 count 4 bytes size of block

0 logical 8 bytes logical block
8 physical 64 bytes equivalent physical blocks

Selector Routine

$0000 HoldMemory

$0001 UnholdMemory

$0002 LockMemory

$0003 UnlockMemory

$0004 LockMemoryContiguous

C H A P T E R 3

Virtual Memory Manager

Summary of the Virtual Memory Manager 3-45

3

V
irtual M

em
ory M

anager

_MemoryDispatchA0Result

_DebugUtil

Result Codes 3

Selector Routine

$0005 GetPhysical

Selector Routine

$0000 DebuggerGetMax

$0001 DebuggerEnter

$0002 DebuggerExit

$0003 DebuggerPoll

$0004 GetPageState

$0005 PageFaultFatal

$0006 DebuggerLockMemory

$0007 DebuggerUnlockMemory

$0008 EnterSupervisorMode

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
notHeldErr –621 Specified range of memory is not held
cannotMakeContiguousErr –622 Cannot make specified range contiguous
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked
cannotDeferErr –625 Unable to defer additional user functions

Contents

4-1

C H A P T E R 4

4

Figure 4-0
Listing 4-0
Table 4-0

4 Memory Management

Contents

Utilities

The Memory Control Panel 4-3

About the Memory Management Utilities 4-5

The A5 Register 4-5

Addressing Modes 4-7

Address Translation 4-8

Processor Caches 4-8

Stale Instructions 4-9

Stale Data 4-10

Using the Memory Management Utilities 4-13

Accessing the A5 World in Completion Routines 4-14

Accessing the A5 World in Interrupt Tasks 4-16

Using QuickDraw Global Variables in Stand-Alone Code 4-18

Switching Addressing Modes 4-20

Stripping Flag Bits From Memory Addresses 4-21

Translating Memory Addresses 4-23

Memory Management Utilities Reference 4-24

Routines 4-24

Setting and Restoring the A5 Register 4-24

Changing the Addressing Mode 4-26

Manipulating Memory Addresses 4-27

Manipulating the Processor Caches 4-29

Summary of the Memory Management Utilities 4-34

Pascal Summary 4-34

Constants 4-34

Routines 4-34

C Summary 4-35

Constants 4-35

C H A P T E R 4

4-2

Contents

Routines 4-35

Assembly-Language Summary 4-36

Trap Macros 4-36

Global Variables 4-36

Result Codes 4-36

C H A P T E R 4

The Memory Control Panel

4-3

4

M
em

ory M
anagem

ent U
tilities

Memory Management Utilities 4

This chapter describes a number of utility routines you can use to control certain aspects

of the memory environment in Macintosh computers. Some features of the memory

environment are controlled by the user through the Memory control panel; others are

controlled by the Process Manager or other parts of the Macintosh Operating System and

Toolbox. The utility routines described in this chapter allow you to modify some of the

normal operations of the Operating System or the Toolbox.

You need to read this chapter if your application or driver

■

installs completion routines or interrupt tasks that are executed by the Operating
System or Toolbox, not directly by your application

■

modifies the addressing mode or converts addresses from one form to another

■

moves executable code in memory, or performs DMA operations

To use this chapter, you should be familiar with the information in the chapter

“Introduction to Memory Management” earlier in this book. Also, you can read the

chapter “Introduction to Processes and Tasks” in

Inside Macintosh: Processes

 for a related

discussion of the A5 register.

This chapter begins with a brief description of the Memory control panel, which allows

users to alter several aspects of the Operating System’s memory configuration. Then it

shows how you can use the Memory Management Utilities to

■

set up the A5 register so that your application-defined completion routines and
interrupt tasks can access your application’s global variables

■

get the value of the A5 register so that you can read your application’s QuickDraw
global variables from within stand-alone code

■

get or set a computer’s address-translation mode

■

strip the flag bits from a master pointer or other memory address

■

convert 24-bit addresses to 32-bit addresses

■

flush the microprocessor’s instruction and data caches

The Memory Control Panel 4

A user can alter several aspects of the system memory configuration by setting certain

controls in the Memory control panel. This panel contains controls governing the

operation of the disk cache, virtual memory, and the addressing mode used by the

Memory Manager. Figure 4-1 shows the Memory control panel.

C H A P T E R 4

Memory Management Utilities

4-4

The Memory Control Panel

Figure 4-1

The Memory control panel

The Disk Cache panel replaces the HFS RAM Cache panel (part of the General control

panel) used in earlier versions of system software. A

disk cache

 is a part of RAM that

acts as an intermediate buffer when data is read from and written to file systems on

secondary storage devices. Data is saved there in case it is needed again in the very near

future. If it is, the Operating System reads the data from the disk cache rather than the

secondary storage device (which would take considerably longer). By increasing the

cache size, the user increases the likelihood that data recently read from or written to the

file system will be in the cache. The controls in the Disk Cache panel allow the user to

configure the size of the disk cache used by the Operating System during file-access

operations. In system software version 7.0, unlike earlier versions, the user cannot turn

off disk caching.

In system software version 7.0, the minimum cache size is 16 KB. The default size is

32 KB per megabyte of installed RAM (thus, the default disk cache size for a computer

with 4 MB of RAM is 128 KB). The maximum disk cache size is 320 KB per megabyte of

installed RAM (thus, the maximum disk cache size for a computer with 4 MB of RAM is

1280 KB). The operation of the disk cache is completely transparent to your application.

Note

These cache size values are provided for informational purposes only
and may differ in later system software versions or on different
Macintosh computers. In addition, the use of RAM for a RAM-based
video interface or a RAM disk affects the amount of RAM available for
the disk cache.

◆

Disk Cache
panel

Virtual Memory
panel

32-Bit
Addressing

panel

RAM Disk
panel

User panel

Backing-Store
File pop-up menu

C H A P T E R 4

Memory Management Utilities

About the Memory Management Utilities

4-5

4

M
em

ory M
anagem

ent U
tilities

The Virtual Memory panel allows the user to set various features of virtual memory,

including whether virtual memory is turned on and, if so, how much is available. The

user can also specify the volume of the

backing-store file,

 in which the Virtual Memory

Manager stores unused portions of code and data. Changes to the virtual memory

configuration do not take effect until the user restarts the computer. Note that the Virtual

Memory panel appears only on computers that support virtual memory. For information

on how your application can interact with virtual memory, see the chapter “Virtual

Memory Manager” in this book.

Using the 32-Bit Addressing controls, the user can select the maximum size of the

address space used in the computer. The maximum size of the address space is

determined by the number of bits used to store memory addresses, as explained in the

chapter “Virtual Memory Manager” in this book. The 32-Bit Addressing panel appears

only on computers that support 32-bit addressing mode. By clicking the panel’s controls,

the user can turn 32-bit addressing off and on. Changes made in this panel do not go into

effect until the user restarts the computer.

Using the RAM Disk controls, the user can determine the amount of the available RAM

that is to be treated as a

RAM disk,

 a portion of RAM reserved for use as a temporary

storage device. It is most useful to create a RAM disk on battery-powered computers

(such as the Macintosh PowerBook computers) because the computer uses less energy to

access RAM than to access a hard disk or a floppy disk.

About the Memory Management Utilities 4

You can use the Memory Management Utilities to ensure that

■

your application’s callback routines, interrupt tasks, and stand-alone code can access
application global variables or QuickDraw global variables

■

your application or driver functions properly in both 24- and 32-bit modes

■

data or instructions in the microprocessor’s internal caches remain consistent with
data or instructions in RAM

This section explains when and why you might need to use these utilities; for actual

implementation details, see the section “Using the Memory Management Utilities,”

which begins on page 4-13.

The A5 Register 4

If you write code that accesses your application’s A5 world (usually to read or write

the application global variables) at a time that your application is not the current

application, you must ensure that the A5 register points to the boundary between

your application’s parameters and global variables. Because the Operating System

accesses your A5 world relative to the address stored in the A5 register, you can obtain

unpredictable results if you attempt to read or write data in your A5 world when the

contents of A5 are not valid.

C H A P T E R 4

Memory Management Utilities

4-6

About the Memory Management Utilities

There are two general cases in which code might execute when the contents of the A5

register are invalid:

■

when you install a completion routine that is executed when some other operation
(for instance, writing data to disk or playing a sound) is completed

■

when you install a routine (for instance, a VBL task) that is called in response to
an interrupt

If you install code that is to be executed at either of these times, you must make sure to

set up the A5 register upon entry and to restore it before exit. The sections “Accessing

the A5 World in Completion Routines” on page 4-14 and “Accessing the A5 World in

Interrupt Tasks” on page 4-16 describe how to do this in each case.

You might also need to determine the location of your application’s A5 world if you

want to read information in it from within a stand-alone code segment. You might want

to do this in application-defined definition procedures called on behalf of your

application. These include

■

control definition functions

■

window definition functions

■

menu definition functions

The problem with these kinds of stand-alone code segments is

not

 that the value in the

A5 register is incorrect at the time they are executed; rather, it is that they have no A5

world at all. During execution, these stand-alone code segments can effectively “borrow”

the A5 world of the current application. However, they must be compiled and linked

separately from your application. (A custom window definition procedure, for example,

is separately compiled and linked, and then included as a resource of type

'WDEF'

 in

your application’s resource fork.) The linker cannot resolve any offsets from the value in

the A5 register, because the code segment doesn’t have an A5 world.

A stand-alone code segment can solve this problem quite simply at run time, by

determining the location of your application’s A5 world and then copying the data it

needs to access into blocks of memory that it allocates itself. In the code segment, all

references to data in the A5 world are indirect: the code segment manipulates local

copies of the relevant data. Using this technique, you can avoid explicit symbolic

references to the A5 world, which the linker cannot resolve.

In theory, you could use this technique of copying global data into a stand-alone code

segment’s private storage to access any data contained in your application’s A5 world. In

practice, however, the A5 world can contain so much data that you wouldn’t want to

make local copies of it all. In addition, the precise organization of the entire A5 world is

not generally determinate. Usually, a custom definition procedure or other stand-alone

code segment needs to read only the QuickDraw global variables, which are of fixed size

and have a well-documented organization. See the section “Using QuickDraw Global

Variables in Stand-Alone Code” on page 4-18 for a complete description of how to read

your application’s QuickDraw global variables from within a stand-alone code segment.

C H A P T E R 4

Memory Management Utilities

About the Memory Management Utilities

4-7

4

M
em

ory M
anagem

ent U
tilities

Addressing Modes 4

The Memory Manager on the original Macintosh computers uses a 24-bit addressing

mode. To the underlying hardware, only the lower 24 bits of any 32-bit address are

significant. The CPU effectively ignores the upper 8 bits in a memory address by using a

24-bit address-translation mode. In this mode, the CPU (or the MMU coprocessor, if

present) maps all addresses to their lower-order 24 bits whenever it reads or writes a

memory location. This led both system software developers and third-party software

developers to put those upper 8 bits to other uses. For example, the Memory Manager

itself uses the upper 8 bits of the address in a master pointer to maintain information

about the associated relocatable block. These upper 8 bits are known as

master pointer

flag bits.

When the Operating System is running in 24-bit mode, you can address at most 1 MB of

the address space assigned to a NuBus expansion card. Some cards, however, can work

with far more than 1 MB of memory. As a result, a device driver might need to switch the

Operating System into 32-bit mode temporarily, so that it can access the entire address

range of the associated device (perhaps to copy data from the device’s RAM into the

heap). When 32-bit address translation is enabled, the CPU or the MMU does not ignore

the upper 8 bits of a memory address.

Note

Don’t confuse the current address-translation mode of the Macintosh
hardware with the current addressing state of the Memory Manager.
The addressing state of the Memory Manager is selectable on a per-boot
basis and cannot be changed by an application or driver. The
address-translation mode of the underlying hardware is controlled by
the CPU and MMU (if one is available) and can be changed, if necessary,
at any time.

◆

The Operating System provides two utilities,

GetMMUMode

 and

SwapMMUMode

, that

allow you to get and set the current address-translation mode. See “Switching

Addressing Modes” on page 4-20 for details.

If your device driver does in fact temporarily set the Macintosh hardware into 32-bit

address-translation mode, you need to be careful when you pass addresses to the

associated device. Suppose, for example, that your driver wants to transfer data to an

address in the heap (which is under the control of the Memory Manager). If the

24-bit Memory Manager is in operation, you need to strip the high byte from the

memory address; otherwise, the CPU would interpret the high byte of flags as part of the

address and transfer the data to the wrong location.

Note

You might also need to make the block of memory in the heap
immovable in physical memory, so that it is not paged out under virtual
memory. See the discussion of locking memory in the chapter “Virtual
Memory Manager” in this book.

◆

C H A P T E R 4

Memory Management Utilities

4-8

About the Memory Management Utilities

The Operating System provides the

StripAddress

 function, which you can use to

strip

the high-order byte from a memory address. Even if you are not writing Macintosh

drivers, you might still find it useful to call

StripAddress

. For example, suppose you

need to compare two memory addresses (two master pointers, perhaps). If the system is

running the 24-bit Memory Manager and you compare those addresses without first

clearing the flag bits, you might get invalid results. You should first call

StripAddress

to convert those addresses to their correct format before comparing them.

As you can see, the operation of

StripAddress

 is not dependent on the 24-bit or 32-bit

address translation state of the hardware, but on the 24-bit or 32-bit addressing state of

the Memory Manager. You need to call

StripAddress

 only when the 24-bit Memory

Manager is operating. When the 32-bit Memory Manager is operating,

StripAddress

returns unchanged any addresses passed to it, because they are already valid 32-bit

addresses. See “Stripping Flag Bits From Memory Addresses” on page 4-21 for complete

details on calling

StripAddress

.

Address Translation 4

When a driver or other software component switches the system to the 32-bit

address-translation mode (perhaps to manipulate special hardware on a slot device),

certain addresses normally accessible in 24-bit mode are not mapped to the same

location by the Macintosh hardware. In particular, the Virtual Memory Manager uses

some of the slot address space as part of the addressable RAM. In that case, the standard

24-to-32 bit translation is not valid for slot spaces that the MMU has remapped into the

application address space.

You can use the

Translate24To32

 function to translate 24-bit addresses that might

have been remapped by the Macintosh hardware. If you intend to use 24-bit addresses

when your software is executing in 32-bit mode, your code should check for the presence

of that function. If it is available, you should use it to map 24-bit addresses into the 32-bit

address space. For details, see “Translating Memory Addresses” on page 4-23.

Processor Caches 4

Some members of the Motorola MC680x0 family of microprocessors contain internal

caches that can significantly improve the overall performance of software executing on

those microprocessors. For example, the MC68020 microprocessor contains a 256-byte

on-board

instruction cache,

 an area of memory within the microprocessor that stores

the most recently executed instructions. Whenever the processor needs to fetch an

instruction, it first checks the instruction cache to determine whether the word required

is in the cache. The operation is much faster when the information is in the cache than

when it is only in RAM (which is external to the microprocessor).

Some other members of the MC680x0 family of microprocessors also contain an internal

data cache,

 an area of memory that holds recently accessed data. The data cache operates

much as the instruction cache does, but it caches data instead of instructions. Before

reading data from RAM, the microprocessor checks the data cache to determine whether

C H A P T E R 4

Memory Management Utilities

About the Memory Management Utilities

4-9

4

M
em

ory M
anagem

ent U
tilities

the operand required for an instruction is in the cache. Again, the overall performance of

the software is greatly increased by the operation of the data cache.

Table 4-1 lists the available caches and their sizes for the various microprocessors

currently used in Macintosh computers.

The operation of any available instruction and data caches is generally transparent to

your application. In certain cases, however, you need to make sure that the information

in the caches and the corresponding information in main memory remain consistent.

When some information in RAM changes but the corresponding information in the

cache does not, the cached information is said to be

stale.

 The following two sections

describe in detail how cached instructions and data can become stale. You can avoid

using stale instructions or data by

flushing

 the affected cache whenever you do

something that can cause instructions or data to become stale. See “Manipulating the

Processor Caches,” beginning on page 4-29, for routines that you can use to maintain

consistency between a cache and main memory.

Stale Instructions 4

Any time that you modify part of the executable code of your application or other

software, you risk creating

stale instructions

 in the instruction cache. Recall that the

microprocessor stores the most recently executed instructions in its internal instruction

cache, separately from main memory. Whenever your code modifies itself or any data in

memory that contains executable code, there is a possibility that a copy of the modified

instructions will be in the instruction cache (because they were executed recently). If so,

attempting to execute the modified instructions actually results in the execution of the

cached instructions, which are stale.

You can avoid using stale instructions by flushing the instruction cache every time you

modify executable instructions in memory. Flushing the cache invalidates all entries in it

and forces the processor to refill the cache from main memory.

IMPORTANT

Flushing the instruction cache has an adverse effect on the CPU’s
performance. You should flush the instruction cache only when
absolutely necessary.

▲

Table 4-1

Caches available in MC680x0 microprocessors

Microprocessor Instruction cache? Data cache?

MC68000 No No

MC68020 Yes (256 bytes) No

MC68030 Yes (256 bytes) Yes (256 bytes)

MC68040 Yes (4 KB) Yes (4 KB)

C H A P T E R 4

Memory Management Utilities

4-10

About the Memory Management Utilities

Any code that modifies itself directly is likely to create stale instructions in the

instruction cache. In addition, you can create stale instructions by modifying other parts

of memory that contain executable instructions. For example, if you modify jump table

entries, you’ll need to flush the instruction cache to avoid using stale instructions.

Similarly, if you install patches by copying code from one part of memory to another and

modifying

JMP

 instructions in order to execute the original routine, you’ll need to flush

the instruction cache. See the description of the

FlushInstructionCache

 procedure

on page 4-30 for details.

The system software automatically flushes the instruction cache when you call certain

traps that are often used to move code from one location to another in memory. The

system flushes the instruction cache whenever you call

_BlockMove

,

_Read

,

_LoadSeg

, and

_UnloadSeg

.

▲ W A R N I N G

The

_BlockMove

 trap is not guaranteed to flush the instruction cache
for blocks that are 12 bytes or smaller. If you use

_BlockMove

 to move
very small blocks of code, you should flush the instruction cache
yourself.

▲

Other traps may flush the instruction cache. In general, you need to worry about stale

instructions only when your application moves code and not when the system software

moves it.

Stale Data 4

A cache may contain

stale data

 whenever information in RAM is changed and that

information is already cached in the microprocessor’s data cache. Suppose, for example,

that a computer contains an expansion card capable of DMA data transfers from the card

to main memory. The card typically reads commands from a buffer in RAM, executes the

commands, and writes status information back to the buffer when the command

completes. Before the card reads a command, the CPU sets up the command buffer and

initializes the status code to 0. Figure 4-2 shows this situation on a computer with an

MC68030 microprocessor.

C H A P T E R 4

Memory Management Utilities

About the Memory Management Utilities

4-11

4

M
em

ory M
anagem

ent U
tilities

Figure 4-2

Initializing a status code

The MC68030 has a

write-through cache:

 any data written to the cache is immediately

written out to RAM (to avoid stale data in RAM). As a result, the cache and RAM both

contain the same value (0) for the status code. Suppose next that the expansion card

executes the first command and writes a nonzero status code to RAM. The card then

sends an interrupt to the CPU, indicating that the operation has completed.

At this point, the microprocessor might attempt to read the status code returned by the

external hardware. However, because the status code is in the microprocessor’s data

cache, the CPU reads the value in the cache, which is stale, instead of the value in main

memory (see Figure 4-3).

0

0

MC68030

0

Instruction cache

Data cache

RAM

Expansion card

0

0

C H A P T E R 4

Memory Management Utilities

4-12

About the Memory Management Utilities

Figure 4-3

Reading stale data

To avoid using this stale data, have your driver flush the data cache whenever you

transfer data directly into main memory.

IMPORTANT

Flushing the data cache has an adverse effect on the CPU’s performance.
You should flush the data cache only when absolutely necessary.

▲

The MC68040 has a

copy-back cache:

 any data written to the cache is written to RAM

only when necessary to make room in the cache for data accessed more recently or when

the cache is explicitly flushed. As you can see, a copy-back cache allows for even greater

performance improvements than a write-through cache, because the data in the cache

has to be written to main memory less often. This is extremely valuable for relatively

small amounts of data that are needed for only a short while, such as local stack frames

for C or Pascal function calls.

Because the data in a copy-back cache is written to main memory only in certain

circumstances, it’s possible to get stale data in RAM. If you write data that is to be read

by non-CPU devices (such as an expansion card that performs DMA operations), you

need to flush the data cache before instructing the alternate bus master to read that data.

If you don’t update the RAM, the DMA transfer from RAM will read stale data.

A copy-back data cache can also lead to the use of invalid instructions if the stale

data in RAM contains executable code. When fetching instructions, the CPU looks only

in the instruction cache and (if necessary) in main memory, not in the data cache.

Because the instruction and data caches are separate, it’s possible that the CPU will fetch

invalid instructions from memory, in the following way. Suppose that you alter some

-23

-23

MC68030

0

Instruction cache

Data cache

RAM

Expansion card

0

0

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-13

4

M
em

ory M
anagem

ent U
tilities

jump table entries and, in doing so, write the value $A9F0 (that is, the trap number of the

_LoadSeg trap) to memory. If the data cache is a copy-back cache, the data in main

memory is not updated immediately, but only when necessary to make room in the

cache (or when you explicitly flush the cache). As a result, the CPU might read invalid

instructions from memory when attempting to execute a routine whose jump table entry

you changed. Figure 4-4 illustrates this problem.

Figure 4-4 Reading invalid instructions

To avoid reading invalid instructions in this way, you need to flush the data cache before

calling any routines whose jump table entries you’ve altered. More generally, whenever

you need to flush the instruction cache, you also first need to flush the data cache—but

only if you’ve changed any executable code and those changes might not have been

written to main memory.

Another way to avoid using stale data is to prevent the data from being cached (and

hence from becoming stale). The Virtual Memory Manager function LockMemory locks

a specified range of pages in physical RAM and either disables the data cache or marks

the specified pages as noncacheable (depending on what’s possible and what makes the

most sense). Accordingly, you need not explicitly flush the processor’s data cache for

data buffers located in pages that are locked in memory. See the chapter “Virtual

Memory Manager” in this book for more information about locking page ranges.

Using the Memory Management Utilities 4

This section describes how you can

■ save and restore the value of the A5 register so that you can access your application’s
A5 world in completion routines or other interrupt tasks

■ access your application’s QuickDraw global variables from within stand-alone code

■ change the address-translation mode so that you can temporarily use 32-bit addresses

MC68040

Instruction cache

Data cache

RAM

$FFFF

$A9F0

$A9F0

$FFFF

C H A P T E R 4

Memory Management Utilities

4-14 Using the Memory Management Utilities

■ strip the flag bits from a master pointer or other memory address

■ convert 24-bit addresses to 32-bit addresses

Accessing the A5 World in Completion Routines 4
Some Toolbox and Operating System routines require you to pass the address of an

application-defined callback routine, usually in a variable of type ProcPtr . After a

certain condition has been met, the Toolbox executes the specified routine. The exact

time at which the Toolbox executes the routine varies. The timing of execution is

determined by the Toolbox routine to which you passed the routine’s address and the

action that must be completed before the routine is called.

Callback routines are quite common in the Macintosh system software. A grow-zone

function, for instance, is an application-defined callback routine that is called every time

the Memory Manager cannot find enough space in your heap to honor a

memory-allocation request. Similarly, if your application plays a sound asynchronously,

you can have the Sound Manager execute a completion routine after the sound is

played. The completion routine might release the sound channel used to play the sound

or perform other cleanup operations.

In general, you cannot predict what your application will be doing when an

asynchronous completion or callback routine is actually executed. The routine could be

called while your application is executing code of its own or executing another Toolbox

or Operating System routine.

Note
The completion or callback routine might even be called when your
application is in the background. Before executing a completion or
callback routine belonging to your application, the Process Manager
checks whether your application is in the foreground. If not, the Process
Manager performs a minor switch to give your application temporary
control of the CPU. ◆

Many Toolbox and Operating System routines do not need to access the calling

application’s global variables, QuickDraw global variables, or jump table. As a result,

they sometimes use the A5 register for their own purposes. They save the current value

of the register upon entry, modify the register as necessary, and then restore the original

value on exit. As you can see, if one of these routines is executing when your callback

routine is executed, your callback routine cannot depend on the value in the A5 register.

This effectively prevents your callback routine from using any part of its A5 world.

To solve this problem, simply use the strategy that the Toolbox employs when it takes

over the A5 register: save the current value in the A5 register at the start of your callback

procedure, install your application’s A5 value, and then restore the original value when

you exit. Listing 4-1 illustrates a very simple grow-zone function that uses this

technique. It uses the SetCurrentA5 and SetA5 utilities to manipulate the A5 register.

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-15

4

M
em

ory M
anagem

ent U
tilities

Listing 4-1 A sample grow-zone function

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

VAR

theA5: LongInt; {value of A5 when function is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF (gEmergencyMemory^ <> NIL) & (gEmergencyMemory <> GZSaveHnd) THEN

BEGIN

EmptyHandle(gEmergencyMemory);

MyGrowZone := kEmergencyMemorySize;

END

ELSE

MyGrowZone := 0; {no more memory to release}

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The function SetCurrentA5 does two things: it returns the current value in the A5

register, and it sets the A5 register to the value of the CurrentA5 low-memory global

variable. This global variable always contains a value that points to the boundary

between the current application’s parameters and its global variables. The MyGrowZone

function defined in Listing 4-1 calls SetCurrentA5 on entry to make sure that it can

read the value of the gEmergencyMemory global variable.

The function SetA5 also does two things: it returns the current value in the A5 register,

and it sets the A5 register to whatever value you pass to the function. The MyGrowZone

function calls SetA5 with the original value of the A5 register as the parameter. In this

case, the value returned by SetA5 is ignored.

There is no way to test whether, at the time your callback routine is called, your

application is executing a Toolbox routine that could change the A5 register. Therefore, to

be safe, you should save and restore the A5 register in any callback routine that accesses

any part of your A5 world. Such routines include

■ grow-zone functions

■ Sound Manager completion routines

■ File Manager I/O completion routines

■ control-action procedures

■ TextEdit word-break and click-loop routines

■ trap patches

■ custom menu definition, window definition, and control definition procedures

See the section of Inside Macintosh describing any particular completion or callback

routine for details on whether you need to save and restore the A5 register in this way.

C H A P T E R 4

Memory Management Utilities

4-16 Using the Memory Management Utilities

Accessing the A5 World in Interrupt Tasks 4
Sometimes, an application-defined routine executes at a time when you can’t reliably call

SetCurrentA5 . For example, if your application is not the current application and you

call SetCurrentA5 as illustrated in Listing 4-1, the function will not return your

application’s value of CurrentA5 . The SetCurrentA5 function always returns the

value of the low-memory global variable CurrentA5 , which always belongs to the

current application. You’ll end up reading some other application’s A5 world.

In general, you cannot reliably call SetCurrentA5 in any code that is executed in

response to an interrupt, including the following:

■ Time Manager tasks

■ VBL tasks

■ tasks installed using the Deferred Task Manager

■ Notification Manager response procedures

Instead of calling SetCurrentA5 at interrupt time, you can call it at noninterrupt time

when yours is the current application. Then store the returned value where you can read

it at interrupt time. For example, the Notification Manager allows you to store

information in the notification record passed to NMInstall . When you set up a

notification record, you can use the nmRefCon field to hold the value in the A5 register.

Listing 4-2 illustrates how to save the current value in the A5 register and pass that value

to a response procedure.

Listing 4-2 Passing A5 to a notification response procedure

VAR

gMyNotification: NMRec; {a notification record}

BEGIN

WITH gMyNotification DO

BEGIN

qType := ORD(nmType); {set queue type}

nmMark := 1; {put mark in Application menu}

nmIcon := NIL; {no alternating icon}

nmSound := Handle(-1); {play system alert sound}

nmStr := NIL; {no alert box}

nmResp := @SampleResponse; {set response procedure}

nmRefCon := SetCurrentA5; {pass A5 to notification task}

END;

END;

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-17

4

M
em

ory M
anagem

ent U
tilities

The key step is to save the value of CurrentA5 where the response procedure can find

it—in this case, in the nmRefCon field. You must call SetCurrentA5 at noninterrupt

time; otherwise, you cannot be certain that it will return the correct value.

When the notification response procedure is executed, its first task should be to call the

SetA5 function, which sets register A5 to the value stored in the nmRefCon field. At the

end of the routine, the notification response procedure should call the SetA5 function

again to restore the previous value of register A5. Listing 4-3 shows a simple response

procedure that sets up the A5 register, modifies a global variable, and then restores the

A5 register.

Listing 4-3 Setting up and restoring the A5 register at interrupt time

PROCEDURE SampleResponse (nmReqPtr: NMRecPtr);

VAR

oldA5: LongInt; {A5 when procedure is called}

BEGIN

oldA5 := SetA5(nmReqPtr^.nmRefCon);

{set A5 to the application’s A5}

gNotifReceived := TRUE; {set an application global }

{ to show alert was received}

oldA5 := SetA5(oldA5); {restore A5 to original value}

END;

Note
Many optimizing compilers (including MPW) might put the address of a
global variable used by the interrupt routine into a register before the
call to SetA5 , thereby possibly generating incorrect references to global
data. To avoid this problem, you can divide your completion routine
into two separate routines, one to set up and restore A5 and one to do
the actual completion work. Check the documentation for your
development system to see if this division is necessary, or contact
Macintosh Developer Technical Support. ◆

Several of the other managers that you can use to install interrupt code—including the

Deferred Task Manager, the Time Manager, and the Vertical Retrace Manager—do not

include a reference constant field in their task records. Therefore, if you wish to access

global variables from within one of these tasks, you must use another mechanism to

attach the value of the A5 register to the task record.

To do this, you can define a new record that contains the task record and your own

reference constant field. You can initialize the task record as you normally would and

then copy the value of your application’s A5 register into the reference constant field you

created. Then, when you obtain a pointer to the task record at interrupt time, you can

use your knowledge of the size of the task record to compute the location of your

reference constant field. See the chapters “Time Manager” and “Vertical Retrace

Manager” in Inside Macintosh: Processes for detailed illustrations of these techniques.

C H A P T E R 4

Memory Management Utilities

4-18 Using the Memory Management Utilities

Using QuickDraw Global Variables in Stand-Alone Code 4
If you are writing a stand-alone code segment such as a definition procedure for a

window, menu, or control, you might want routines in that segment to examine the

QuickDraw global variables of the current application. For example, you might want a

control definition function to reference some of the QuickDraw global variables, such as

thePort , screenBits , or the predefined patterns. Stand-alone segments, however,

have no A5 world; if you try to link a stand-alone code segment that references your

application’s global variables, the linker may be unable to resolve those references.

To solve this problem, you can have the definition function find the value of the

application’s A5 register (by calling the SetCurrentA5 function) and then use that

information to copy all of the application’s QuickDraw global variables into a record in

the function’s own private storage. Listing 4-4 defines a record type with the same

structure as the QuickDraw global variables. Note that randSeed is stored lowest in

memory and thePort is stored highest in memory.

Listing 4-4 Structure of the QuickDraw global variables

TYPE

QDVarRecPtr = ^QDVarRec;

QDVarRec =

RECORD

randSeed: LongInt; {for random-number generator}

screenBits: BitMap; {rectangle enclosing screen}

arrow: Cursor; {standard arrow cursor}

dkGray: Pattern; {75% gray pattern}

ltGray: Pattern; {25% gray pattern}

gray: Pattern; {50% gray pattern}

black: Pattern; {all-black pattern}

white: Pattern; {all-white pattern}

thePort: GrafPtr; {pointer to current GrafPort}

END;

The location of these variables is linker-dependent. However, the A5 register always

points to the last of these global variables, thePort . The Operating System references all

other QuickDraw global variables as negative offsets from thePort . Therefore, you

must dereference the value in A5 (to obtain the address of thePort), and then subtract

the combined size of the other QuickDraw global variables from that address. The

difference is a pointer to the first of the QuickDraw global variables, randSeed .

You can copy the entire record into a local variable simply by dereferencing that pointer,

as illustrated in Listing 4-5.

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-19

4

M
em

ory M
anagem

ent U
tilities

Listing 4-5 Copying the QuickDraw global variables into a record

PROCEDURE GetQDVars (VAR qdVars: QDVarRec);

TYPE

LongPtr = ^LongInt;

BEGIN

qdVars := QDVarRecPtr(LongPtr(SetCurrentA5)^ -

 (SizeOf(QDVarRec) - SizeOf(thePort)))^;

END;

Thereafter, your stand-alone code segment can read QuickDraw global variables through

the structure returned by GetQDVars . Listing 4-6 defines a very simple draw routine for

a control definition function. After reading the calling application’s QuickDraw global

variables, the draw routine paints a rectangle with a pattern.

Listing 4-6 A control’s draw routine using the calling application’s QuickDraw patterns

PROCEDURE DoDraw (varCode: Integer; myControl: ControlHandle;

flag: Integer);

VAR

cRect: Rect;

qdVars: QDVarRec;

origPenState: PenState;

CONST

kDraw = 1; {constant to specify drawing}

BEGIN

GetPenState(origPenState); {get original pen state}

cRect := myControl^^.contrlRect; {get control’s rectangle}

IF flag = kDraw THEN

BEGIN

GetQDVars(qdVars); {patterns are QD globals}

PenPat(qdVars.gray); {install desired pattern}

PaintRect(cRect); {paint the control}

END;

SetPenState(origPenState); {restore original pen state}

END;

The DoDraw drawing routine defined in Listing 4-6 retrieves the calling application’s

QuickDraw global variables and paints the control rectangle with a light gray pattern. It

also saves and restores the pen state, because the PenPat procedure changes that state.

C H A P T E R 4

Memory Management Utilities

4-20 Using the Memory Management Utilities

Switching Addressing Modes 4
If you are writing a driver for a slot-card device, you can use the SwapMMUMode
procedure to change to 32-bit address-translation mode temporarily, as follows:

myMode := true32b; {specify switch to 32-bit mode}

SwapMMUMode(myMode); {perform switch}

The parameter passed to SwapMMUMode must be a variable that is equal to the constant

false32b or the constant true32b .

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

The SwapMMUMode procedure switches to the specified mode and then changes the

parameter to indicate the mode previously in use. Thereafter, you can restore the

previous address-translation mode by again calling

SwapMMUMode(myMode);

Note
You should switch to 32-bit mode only if the computer supports 32-bit
addressing. To find out whether a system supports 32-bit mode and
whether a system started up in 32-bit mode, use the Gestalt function,
described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities. To determine the current address-translation
mode, call the GetMMUMode function. ◆

If you do call SwapMMUMode, be careful to avoid situations that can cause the system to

read an invalid address from the program counter. When the system is in 24-bit mode

and you load a code resource into a block of memory (for example, by calling

GetResource), the high byte of that block’s master pointer contains Memory Manager

flag bits. If you try to execute that code by performing an assembly-language JSR

instruction (typically JSR (A0) , with the master pointer in register A0), the entire

master pointer is translated directly into the program counter. This, however, is not a

valid 32-bit address. As soon as you switch to 32-bit mode, the program counter contains

an invalid value. This is virtually certain to cause the system to crash.

Note
This problem can arise when you change to 32-bit mode in code loaded
from a resource or placed into a block of memory that was allocated by
calls to Memory Manager routines. It does not arise with standard
'CODE' resources because the Segment Manager fixes the program
counter. ◆

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-21

4

M
em

ory M
anagem

ent U
tilities

To avoid this problem, simply call StripAddress on the address in the program

counter before you call SwapMMUMode. Listing 4-7 shows one way to do this.

Listing 4-7 Stripping the program counter

PROCEDURE FixPC;

INLINE $41FA, $000A, {LEA *+$000C,A0}

$2008, {MOVE.L A0,D0}

$A055, {_StripAddress}

$2040, {MOVEA.L D0,A0}

$4ED0; {JMP (A0); jump to next instruction}

For these same reasons, you also need to call StripAddress on any address you pass to

the _SetTrapAddress trap, if the address references a block in your application heap.

Stripping Flag Bits From Memory Addresses 4
If your code runs on a system that might have started up with the 24-bit Memory

Manager, you sometimes need to strip the flag bits from a memory address before you

use it. The Operating System provides the StripAddress function for this purpose.

The StripAddress function takes an address as a parameter and returns the value of

the address’s low-order 3 bytes if the computer started up in 24-bit mode. If the system

started up in 32-bit mode, StripAddress returns the address unchanged (because it

must already be a valid 32-bit address). Note that if a system starts up in 32-bit mode,

you cannot switch it to 24-bit mode.

▲ W A R N I N G

If you pass a valid 32-bit address to StripAddress and the computer
started in 24-bit mode, the function still strips off the high byte of the
address, thus probably rendering the address invalid. You can pass
32-bit addresses to StripAddress if the system started up in 32-bit
mode, but then the function does nothing to the address. Therefore, you
should ordinarily pass only 24-bit addresses to the StripAddress
function. ▲

You need to use StripAddress primarily in device drivers or other software that

communicates heap addresses to external hardware (such as a NuBus card). Because the

external hardware might interpret the flag bits of a master pointer as part of the address,

you need to call StripAddress to clear those flag bits.

There is nothing inherently dangerous about 24-bit addresses. They cause problems only

when you try to use them in 32-bit mode. So, unless you are switching addressing modes

(by calling SwapMMUMode), you generally don’t need to call StripAddress .

C H A P T E R 4

Memory Management Utilities

4-22 Using the Memory Management Utilities

You might, however, need to call StripAddress in these special cases, even if you are

not designing a driver:

■ Making ordered address comparisons. If you want to sort an array by address or do
any other kind of ordered address comparison (that is, using <, >, ≥, or ≤), you need to
call StripAddress on each address before the comparison. Even though the CPU
uses only the lower 3 bytes when it determines memory addresses in 24-bit mode, it
uses all 32 bits when it performs arithmetic operations.

■ Comparing master pointers. If you want to perform any type of comparison on
master pointers (that is, on dereferenced handles), you must first call StripAddress
on each address. The master pointer flag bits can change at any time, so you need to
clear them before making the comparison. In general, you should call StripAddress
when comparing any two pointers, if either of them might be a dereferenced handle.

■ Accessing addresses in 32-bit mode. If you switch the computer to 32-bit mode
manually, you need to call StripAddress on all 24-bit pointers and handles that you
access while in 32-bit mode. Be careful, however, not to call StripAddress on a
valid 32-bit address.

■ Fixing the program counter. You might need to use StripAddress to fix the value of
the program counter before you switch manually to 32-bit mode. See “Switching
Addressing Modes” on page 4-20 for details.

■ Overcoming Resource Manager limitations. To avoid a limitation in the Resource
Manager’s OpenResFile and OpenRFPerm routines, you should call
StripAddress on pointers to the filenames that you pass to those functions, but
only if the strings that represent the files are hard-coded into your application’s code
instead of in a separate resource. When the string is embedded in a code resource, the
Resource Manager calls the RecoverHandle function with an invalid master pointer.
Here is an example of the correct way to call OpenResFile :

fileName := 'This file';
myRef := OpenResFile(StringPtr(StripAddress(@fileName))^);

In virtually all other cases, you don’t need to call StripAddress before using a

valid 24-bit address. In particular, you don’t need to call StripAddress before

dereferencing a pointer or handle in 24-bit mode, unless you subsequently switch

to 32-bit mode by calling SwapMMUMode. Also, you don’t need to call StripAddress

when checking pointers and handles for equality or when performing address arithmetic.

Because you need to call StripAddress rarely (if ever), the additional processing time

required to call StripAddress shouldn’t adversely affect the execution of your

software. In some cases, however, you might want to avoid the overhead of calling the

trap dispatcher every time you need to call StripAddress . (A good example might be

a time-critical loop in an interrupt task.) You can use the QuickStrip function defined

in Listing 4-8 in place of StripAddress when speed is a real concern.

C H A P T E R 4

Memory Management Utilities

Using the Memory Management Utilities 4-23

4

M
em

ory M
anagem

ent U
tilities

Listing 4-8 Stripping addresses in time-critical code

FUNCTION QuickStrip (thePtr: Ptr): Ptr;

BEGIN

QuickStrip := Ptr(BAND(LongInt(thePtr), gStripAddressMask));

END;

The QuickStrip function defined in Listing 4-8 simply masks the address it is passed

with the same mask StripAddress uses. You can calculate that mask by executing the

lines of code in Listing 4-9 early in the execution of your software:

Listing 4-9 Calculating the StripAddress mask

VAR

gStripAddressMask: LongInt; {global mask variable}

gStripAddressMask := $FFFFFFFF;

gStripAddressMask :=

LongInt(StripAddress(Ptr(gStripAddressMask)));

Unless you are calling StripAddress repeatedly at interrupt time, you probably don’t

need to use this technique.

Translating Memory Addresses 4
As explained earlier in “Address Translation” on page 4-8, you sometimes need to

override the Operating System’s standard translation of 24-bit addresses into their 32-bit

equivalents. This is necessary because the Virtual Memory Manager might have

programmed the MMU to map unused NuBus slot addresses into the address space

reserved for RAM. If you try to use a 24-bit address when the system switches to 32-bit

mode, the standard translation might result in a 32-bit address that points to the space

reserved for expansion cards. In that case, you are virtually guaranteed to obtain

invalid results.

To prevent this problem, you can use the Translate24To32 function to get the

32-bit equivalent of a 24-bit address. In general, you should test for the presence of

the _Translate24To32 trap before you use any 24-bit addresses in 32-bit mode.

If it is available, you should use it in place of the static translation process performed

automatically by the Operating System while running in 32-bit mode.

Note
You need to use the Translate24To32 function only when the
computer is running in 32-bit mode, it was booted in 24-bit mode, and
you are communicating with external hardware. Most applications do
not need to use it. ◆

C H A P T E R 4

Memory Management Utilities

4-24 Memory Management Utilities Reference

Listing 4-10 illustrates how to use Translate24To32 . The DoRoutine procedure

defined there calls the application-defined routine MyRoutine to process a block of

data while in 32-bit mode. It checks whether the _Translate24To32 trap is available,

and if so, makes sure that the address to be read is a valid 32-bit address.

Listing 4-10 Translating 24-bit to 32-bit addresses

PROCEDURE DoRoutine (oldAddr: Ptr; length: LongInt);

BEGIN

IF TrapAvailable(_Translate24To32) THEN

MyRoutine(Translate24To32(oldAddr), length);

ELSE

MyRoutine(oldAddr, length);

END;

Note that you don’t need to call StripAddress before calling Translate24To32 ,

because the Translate24To32 function automatically ignores the high-order byte of

the 24-bit address you pass it. (For a definition of the TrapAvailable function, see the

chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.)

Memory Management Utilities Reference 4

This section describes the memory management utilities provided by the

Operating System.

Routines 4

This section describes the routines you use to set and restore the A5 register, change the

addressing mode, manipulate memory addresses, and manipulate the processor caches.

Setting and Restoring the A5 Register 4

Any code that runs asynchronously or as a callback routine and that accesses the calling

application’s A5 world must ensure that the A5 register correctly points to the boundary

between the application parameters and the application global variables. To accomplish

this, you can call the SetCurrentA5 function at the beginning of any asynchronous or

callback code that isn’t executed at interrupt time. If the code is executed at interrupt

time, you must use the SetA5 function to set the value of the A5 register. (You determine

this value at noninterrupt time by calling SetCurrentA5 .) Then you must restore the

A5 register to its previous value before the interrupt code returns.

C H A P T E R 4

Memory Management Utilities

Memory Management Utilities Reference 4-25

4

M
em

ory M
anagem

ent U
tilities

SetCurrentA5 4

You can use the SetCurrentA5 function to get the current value of the system global

variable CurrentA5 .

FUNCTION SetCurrentA5: LongInt;

DESCRIPTION

The SetCurrentA5 function does two things: First, it gets the current value in the A5

register and returns it to your application. Second, SetCurrentA5 sets register A5 to

the value of the low-memory global variable CurrentA5 . This variable points to the

boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call SetCurrentA5 in code that is executed at interrupt time unless

you first guarantee that your application is the current process (for example, by calling

the Process Manager function GetCurrentProcess). In general, you should call

SetCurrentA5 at noninterrupt time and then pass the returned value to the

interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory

global variable CurrentA5 .

SetA5 4

In interrupt code that accesses application global variables, use the SetA5 function first

to restore a value previously saved using SetCurrentA5 , and then, at the end of the

code, to restore the A5 register to the value it had before the first call to SetA5 .

FUNCTION SetA5 (newA5: LongInt): LongInt;

newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The SetA5 function performs two tasks: it returns the address in the A5 register when

the function is called, and it sets the A5 register to the address specified in newA5.

SEE ALSO

See “The A5 Register” on page 4-5 for a discussion of when you need to call SetA5 .

C H A P T E R 4

Memory Management Utilities

4-26 Memory Management Utilities Reference

Changing the Addressing Mode 4

If you wish to change address-translation modes manually, you can use the

GetMMUMode function to find out which mode is currently in use and the SwapMMUMode
procedure to swap modes.

Note
In general, you need to alter the CPU’s addressing mode manually only
if you are designing device drivers or other software that communicates
with NuBus expansion cards. ◆

GetMMUMode 4

To find out which address-translation mode (24-bit or 32-bit) is currently in use, use the

GetMMUMode function.

FUNCTION GetMMUMode: SignedByte;

DESCRIPTION

The GetMMUMode function returns the address-translation mode currently in use. On

exit, GetMMUMode returns one of the following constants:

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

SPECIAL CONSIDERATIONS

To find out which addressing mode was in effect at system startup, use the Gestalt

function.

ASSEMBLY-LANGUAGE INFORMATION

To determine the current address-translation mode, you can test the contents of the

global variable MMU32Bit . The value TRUE indicates that 32-bit mode is in effect.

SwapMMUMode 4

To change the address-translation mode from 24-bit to 32- bit or vice versa, use the

SwapMMUMode procedure.

PROCEDURE SwapMMUMode (VAR mode: SignedByte);

C H A P T E R 4

Memory Management Utilities

Memory Management Utilities Reference 4-27

4

M
em

ory M
anagem

ent U
tilities

mode On entry, the desired address-translation mode. On exit, the address
translation mode previously in use.

DESCRIPTION

The SwapMMUMode procedure sets the address-translation mode to the value specified

by the mode parameter. The mode in use prior to the call is returned in mode, and you

can restore the previous mode by calling SwapMMUMode again. The value of mode

should be one of the following constants on entry and will be one of the following

constants on exit:

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

SPECIAL CONSIDERATIONS

You might cause a system crash if you switch to 32-bit addressing mode when your

application is executing a code resource you loaded into memory while 24-bit mode was

in effect. See “Switching Addressing Modes” on page 4-20 for a description of how this

problem arises and how you can avoid it.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SwapMMUMode are

Manipulating Memory Addresses 4

Sometimes you need to modify a memory address before using it. You can strip off a

master pointer’s flag bits, if any, by calling the StripAddress function. You can map

24-bit addresses into the 32-bit address space by calling the Translate24To32 function.

StripAddress 4

Use the StripAddress function to strip the flag bits from a 24-bit memory address.

FUNCTION StripAddress (address: UNIV Ptr): Ptr;

address The address to strip.

Registers on entry

D0 New mode

Registers on exit

D0 Previous mode

C H A P T E R 4

Memory Management Utilities

4-28 Memory Management Utilities Reference

DESCRIPTION

The StripAddress function returns a pointer that references the same address

passed in the address parameter, but in a form that is comprehensible to the 32-bit

Memory Manager.

The effect of the StripAddress function depends on the startup mode of the Memory

Manager, not on the current mode. Thus, if the Memory Manager started up in 32-bit

mode, the address passed to StripAddress is unchanged (because it already must be a

32-bit address). If the Memory Manager started up in 24-bit mode, the function returns

the low-order 3 bytes of the address. You should not pass valid 32-bit addresses to

StripAddress if the Memory Manager started up in 24-bit mode.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for StripAddress are

Translate24To32 4

You can use the Translate24To32 function to map 24-bit addresses into the 32-bit

address space.

FUNCTION Translate24To32 (addr24: UNIV Ptr): Ptr;

addr24 An address that is meaningful to the 24-bit Memory Manager.

DESCRIPTION

The Translate24To32 function translates the address specified by the addr24

parameter from 24-bit into 32-bit addressing mode and returns that address. If addr24 is

already a 32-bit address, the function returns it unchanged.

Unlike the StripAddress function, Translate24To32 does not necessarily return an

address that can be used in 24-bit mode. Also, you cannot meaningfully call

Translate24To32 on the result of a previous translation.

SPECIAL CONSIDERATIONS

You need to call Translate24To32 only if you use 24-bit addresses while

communicating with external hardware in 32-bit mode and virtual memory is enabled.

See “Translating Memory Addresses” on page 4-23 for details.

Registers on entry

D0 The address to strip

Registers on exit

D0 The function result

C H A P T E R 4

Memory Management Utilities

Memory Management Utilities Reference 4-29

4

M
em

ory M
anagem

ent U
tilities

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for Translate24To32 are

Manipulating the Processor Caches 4

The system software provides routines that allow you to enable, disable, and flush the

processor caches. Before you call any of the routines described in this section, be sure to

check that the trap _HWPriv is implemented. The only exception is the

FlushCodeCache procedure, which is available whenever the processor has a cache

that can be flushed.

▲ W A R N I N G

If you call these routines and _HWPriv isn’t implemented, your
application will crash. ▲

SwapInstructionCache 4

You can use the SwapInstructionCache function to enable or disable the

instruction cache.

FUNCTION SwapInstructionCache (cacheEnable: Boolean): Boolean;

cacheEnable
The desired state of the instruction cache.

DESCRIPTION

The SwapInstructionCache function enables or disables the instruction cache,

depending on whether the cacheEnable parameter is set to TRUE or FALSE. On exit,

SwapInstructionCache returns the previous state of the instruction cache.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SwapInstructionCache are

Registers on entry

D0 A 24-bit addressing mode address

Registers on exit

D0 The translated address

Trap macro Selector

_HWPriv $0000

C H A P T E R 4

Memory Management Utilities

4-30 Memory Management Utilities Reference

FlushInstructionCache 4

You can use the FlushInstructionCache procedure to flush the instruction cache.

PROCEDURE FlushInstructionCache;

DESCRIPTION

The FlushInstructionCache procedure flushes the current contents of the

instruction cache. Because flushing this cache degrades performance of the CPU, you

should call this routine only when absolutely necessary. See “Stale Instructions” on

page 4-9 for details on when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushInstructionCache are

SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, FlushInstructionCache also flushes the

data cache before it flushes the instruction cache, to ensure that any instructions

subsequently copied to the instruction cache are not copied from stale RAM.

SwapDataCache 4

You can use the SwapDataCache function to enable or disable the data cache.

FUNCTION SwapDataCache (cacheEnable: Boolean): Boolean;

cacheEnable
The desired state of the data cache.

DESCRIPTION

The SwapDataCache function enables or disables the data cache, depending on

whether the cacheEnable parameter is set to TRUE or FALSE. On exit,

SwapDataCache returns the previous state of the data cache.

Trap macro Selector

_HWPriv $0001

C H A P T E R 4

Memory Management Utilities

Memory Management Utilities Reference 4-31

4

M
em

ory M
anagem

ent U
tilities

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SwapDataCache are

FlushDataCache 4

You can use the FlushDataCache procedure to flush the data cache.

PROCEDURE FlushDataCache;

DESCRIPTION

The FlushDataCache procedure flushes the current contents of the data cache. Because

flushing this cache degrades performance of the CPU, you should call this routine only

when absolutely necessary. See “Processor Caches” beginning on page 4-8 for details on

when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushDataCache are

FlushCodeCache 4

You can use the FlushCodeCache procedure to flush the instruction cache.

PROCEDURE FlushCodeCache;

DESCRIPTION

The FlushCodeCache procedure flushes the current contents of the instruction cache.

Because flushing this cache degrades performance of the CPU, you should call this

routine only when absolutely necessary. See “Processor Caches” beginning on page 4-8

for details on when to call this procedure.

Trap macro Selector

_HWPriv $0002

Trap macro Selector

_HWPriv $0003

C H A P T E R 4

Memory Management Utilities

4-32 Memory Management Utilities Reference

SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, FlushCodeCache also flushes the data

cache before it flushes the instruction cache, to ensure that any instructions subsequently

copied to the instruction cache are not copied from stale RAM.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for FlushCodeCache is _CacheFlush .

FlushCodeCacheRange 4

You can use the FlushCodeCacheRange function to flush a portion of the instruction

cache.

FUNCTION FlushCodeCacheRange (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range to flush.

count The size, in bytes, of the range to flush.

DESCRIPTION

The FlushCodeCacheRange function flushes the current contents of the instruction

cache. FlushCodeCacheRange is an optimized version of FlushCodeCache and is

intended for use on processors such as the MC68040 that support flushing only a portion

of the instruction cache. On processors that do not have this capability,

FlushCodeCacheRange simply flushes the entire instruction cache.

The FlushCodeCacheRange function might flush a larger portion of the instruction

cache than requested if it would be inefficient to satisfy the request exactly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushCodeCacheRange are

Trap macro Selector

_HWPriv $0009

C H A P T E R 4

Memory Management Utilities

Memory Management Utilities Reference 4-33

4

M
em

ory M
anagem

ent U
tilities

The registers on entry and exit for FlushCodeCacheRange are

RESULT CODES

Registers on entry

A0 Starting address of the range to flush

A1 Number of bytes to flush

D0 Routine selector

Registers on exit

D0 Result code

noErr 0 No error
hwParamErr –502 Processor does not support flushing a range

C H A P T E R 4

Memory Management Utilities

4-34 Summary of the Memory Management Utilities

Summary of the Memory Management Utilities 4

Pascal Summary 4

Constants 4

CONST

{Gestalt constants}

gestaltAddressingModeAttr = 'addr'; {addressing mode attributes}

gestalt32BitAddressing = 0; {started in 32-bit mode}

gestalt32BitSysZone = 1; {32-bit compatible sys. zone}

gestalt32BitCapable = 2; {machine is 32-bit capable}

{addressing mode constants}

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

Routines 4

Setting and Restoring the A5 Register

FUNCTION SetCurrentA5 : LongInt;

FUNCTION SetA5 (newA5: LongInt): LongInt;

Changing the Addressing Mode

FUNCTION GetMMUMode: SignedByte;

PROCEDURE SwapMMUMode (VAR mode: SignedByte);

Manipulating Memory Addresses

FUNCTION StripAddress (address: UNIV Ptr): Ptr;

FUNCTION Translate24To32 (addr24: UNIV Ptr): Ptr;

Manipulating the Processor Caches

FUNCTION SwapInstructionCache(cacheEnable: Boolean): Boolean;

PROCEDURE FlushInstructionCache;

FUNCTION SwapDataCache (cacheEnable: Boolean): Boolean;

C H A P T E R 4

Memory Management Utilities

Summary of the Memory Management Utilities 4-35

4

M
em

ory M
anagem

ent U
tilities

PROCEDURE FlushDataCache;

PROCEDURE FlushCodeCache;

FUNCTION FlushCodeCacheRange (address: UNIV Ptr; count: LongInt): OSErr;

C Summary 4

Constants 4

/*Gestalt constants*/

#define gestaltAddressingModeAttr 'addr'; /*addressing mode attributes*/

#define gestalt32BitAddressing 0; /*started in 32-bit mode*/

#define gestalt32BitSysZone 1; /*32-bit compatible sys. zone*/

#define gestalt32BitCapable 2; /*machine is 32-bit capable*/

/*addressing mode constants*/

enum {false32b = 0}; /*24-bit addressing mode*/

enum {true32b = 1}; /*32-bit addressing mode*/

Routines 4

Setting and Restoring the A5 Register

long SetCurrentA5 (void);

long SetA5 (long newA5);

Changing the Addressing Mode

pascal char GetMMUMode (void);

pascal void SwapMMUMode (char *mode);

Manipulating Memory Addresses

pascal Ptr StripAddress (Ptr address);

pascal Ptr Translate24To32 (Ptr addr24);

Manipulating the Processor Caches

pascal Boolean SwapInstructionCache
(Boolean cacheEnable);

pascal void FlushInstructionCache
(void);

C H A P T E R 4

Memory Management Utilities

4-36 Summary of the Memory Management Utilities

pascal Boolean SwapDataCache (Boolean cacheEnable);

pascal void FlushDataCache (void);

void FlushCodeCache (void);

OSErr FlushCodeCacheRange (void *address, unsigned long count);

Assembly-Language Summary 4

Trap Macros 4

Trap Macros Requiring Routine Selectors

_HWPriv

Global Variables 4

Result Codes 4

Selector Routine

$0000 SwapInstructionCache

$0001 FlushInstructionCache

$0002 SwapDataCache

$0003 FlushDataCache

$0009 FlushCodeCacheRange

CurrentA5 long Address of the boundary between the application global variables and the
application parameters of the current application.

MMU32Bit byte TRUE if 32-bit addressing mode is in effect.

noErr 0 No error
hwParamErr –502 Processor does not support flushing a range

GL-1

0-length handle

A handle whose associated
relocatable block has a logical size of 0 bytes.

24-bit addressing

The addressing mode in
which only the low-order 24 bits of a pointer or
handle are used in determining memory
addresses.

32-bit addressing

The ability of the Operating
System to use all 32 bits of a pointer or handle in
determining memory addresses.

32-bit clean

Said of an application that is able
to run in an environment where all 32 bits of a
memory address are used for addressing.

A5 world

An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

address

A number that specifies the location of
a byte in memory.

Address Management Unit (AMU)

The
Apple custom integrated circuit in Macintosh II
computers that performs 24-bit to 32-bit address
mapping.

address map

The assignment of portions of the
address space of a computer to specific devices.

address mapping

See

address translation.

address space

A range of accessible memory.
See also

address map.

address translation

The conversion of one set
of addresses into another, corresponding set. For
example, software designed for the original
Macintosh computers uses only 24 bits for
addresses, whereas the Macintosh II and later
models have a 32-bit address bus. As a result, the
Macintosh II and later models convert (or map)
the 24-bit addresses used by the software into the
32-bit addresses used by the hardware.

allocate

To assign an area of memory for use.

AMU

See

Address Management Unit.

application global variables

A set of variables
stored in the application’s A5 world that are
global to the application.

application heap

An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s

'CODE'

segment 1, data structures, resources, and other
code segments as needed.

application heap zone

The heap zone initially
provided by the Memory Manager for use by an
application and the Toolbox; initially equivalent
to the application heap, but may be subdivided
into two or more independent heap zones.

application parameters

Thirty-two bytes of
memory in the application partition that are
reserved for system use. The first long word is
the address of the first QuickDraw global
variable.

application partition

A partition of memory
reserved for use by an application. The
application partition consists of free space along
with the application’s heap, stack, and A5 world.

application space

Memory that’s reserved for
dynamic allocation by applications.

asynchronous execution

A mode of invoking
a routine. During the asynchronous execution
of a routine, an application is free to perform
other tasks.

backing-store file

The file in which the Virtual
Memory Manager stores the contents of
unneeded pages of memory.

backing volume

See

paging device.

block

See

memory block.

block contents

The area that’s available for use
in a memory block.

Glossary

G L O S S A R Y

GL-2

block header

The internal housekeeping
information maintained by the Memory Manager
at the beginning of each block in a heap zone.

cache

See

data cache, disk cache,

 or

instruction cache.

callback routine

A routine that is executed as
part of the operation of some other routine.

compact

See

heap compaction.

completion routine

A routine that is executed
when an asynchronous call to some other routine
is completed.

concurrent driver

A driver that can handle
several requests at once.

copy-back cache

A cache whose data is written
to RAM only when necessary to make room in
the cache for data accessed more recently or
when the cache is explicitly flushed. See also

write-through cache.

current heap zone

The heap zone currently
under attention, to which most Memory Manager
operations implicitly apply.

cushion

See

memory cushion.

dangling pointer

A copy of a master pointer
that no longer points to the correct memory
address.

data cache

An area of memory internal to some
microprocessors (for example, the MC68030 and
MC68040 microprocessors) that holds recently
accessed data. See also

instruction cache.

dereference

To refer to a block by its master
pointer instead of its handle.

direct memory access (DMA)

A technique for
transferring data in or out of memory without
using the CPU.

disk cache

A part of RAM that acts as an
intermediate buffer when data is read from
and written to file systems on secondary
storage devices.

disposed handle

A handle whose associated
relocatable block has been disposed of.

DMA

See

direct memory access.

double indirection

The means by which the
Memory Manager or an application accesses the
data associated with a handle variable.

double page fault

A page fault that occurs
while the Virtual Memory Manager is handling
another page fault. See also

page fault.

empty handle

A handle whose master pointer
has the value

NIL

 (possibly indicating that the
underlying relocatable block has been purged).

fake handle

A handle that was not created by
the Memory Manager.

flush

(1) To write data from a cache in memory
to a volume. (2) To write data or instructions
from a cache in the microprocessor to RAM.

fragmentation

See

heap fragmentation.

free block

A memory block containing space
available for allocation.

GB

Abbreviation for gigabyte. A gigabyte is
1024 megabytes, or 1,073,741,824 bytes.

global variables

See

application global
variables, system global variables,

 and

QuickDraw global variables.

grow-zone function

A function supplied by the
application program to help the Memory
Manager create free space within a heap.

handle

A variable containing the address of a
master pointer, used to access a relocatable block.
See also

pointer.

heap

An area of memory in which space
is dynamically allocated and released on
demand, using the Memory Manager. See
also

application heap.

heap compaction

The process of moving
allocated blocks within a heap to collect the free
space into a single block.

heap fragmentation

The state of a heap when
the available free space is scattered throughout
the heap in numerous unused blocks.

heap zone

An area of memory initialized by the
Memory Manager for heap allocation. A heap
zone consists of a

zone header,

 a

heap,

 and a

zone trailer.

G L O S S A R Y

GL-3

hold

To temporarily prevent a range of physical
memory from being paged out by the Virtual
Memory Manager.

instruction cache

An area of memory internal
to some microprocessors (for example, the
MC68020, MC68030, and MC68040
microprocessors) that holds recently used
instructions. See also

data cache.

jump table

An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments is implemented.

KB

Abbreviation for kilobyte. A kilobyte is
1024 bytes.

lock

(1) To temporarily prevent a relocatable
block from being moved during heap
compaction. (2) To temporarily prevent a range
of physical memory from being paged out or
moved by the Virtual Memory Manager.

logical address

An address used by
software. The logical address might be translated
into a physical address by the memory
management unit.

logical size

The number of bytes in a memory
block’s contents.

low-memory system global variables

See

system global variables.

master pointer

A pointer to a relocatable block,
maintained by the Memory Manager and
updated whenever the block is moved, purged,
or reallocated. All handles to a relocatable block
refer to it by double indirection through the
master pointer.

master pointer block

A nonrelocatable block of
memory that contains master pointers. A master
pointer block in your application heap contains
64 master pointers, and a master pointer block in
the system heap contains 32 master pointers.

master pointer flag bits

The high-order 8 bits of
a master pointer. In 24-bit addressing mode,
some of these bits are used to store information
about the relocatable block referenced by the
master pointer.

MB

Abbreviation for megabyte. A megabyte is
1024 kilobytes, or 1,048,576 bytes.

memory block

An area of contiguous memory
within a heap.

memory-block record

A data structure used by
the translation parameter block to indicate the
starting address and length of a given block of
memory. This parameter block is defined by the

MemoryBlock

 data type.

memory cushion

An application-defined
threshold below which the application should
refuse to honor any requests to allocate memory
for nonessential operations.

memory management unit (MMU)

Any
component that performs address mapping in a
Macintosh computer. In Macintosh II computers,
it is either the Address Management Unit (AMU)
or the Paged Memory Management Unit
(PMMU). The MMU function is built into the
MC68030 and MC68040 microprocessors.

Memory Manager

The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

memory map

See

address map.

memory reservation

The process of creating a
free space at the bottom of the heap for a newly
allocated block by moving unlocked relocatable
blocks upward.

memory reserve

An allocated block of memory
in the application heap that is held in reserve and
released only for essential operations when
memory in the heap is low.

MMU

See

memory management unit.

nonrelocatable block

A block whose location
in the heap is fixed. This block can’t be moved
during heap compaction or other memory
operations.

NuBus

The 32-bit wide synchronous bus used
for expansion cards in the Macintosh II family
of computers.

NuBus expansion slot

A connector attached to
the NuBus in a Macintosh II computer, into
which an expansion card can be installed.

G L O S S A R Y

GL-4

original application heap zone

See

application
heap zone.

page

The basic unit of memory used in virtual
memory.

Paged Memory Management Unit
(PMMU)

The Motorola MC68851 chip, used in
the Macintosh II computer to perform
logical-to-physical address translation and paged
memory management.

page fault

A special kind of bus error caused
by an attempt to access data in a page of memory
that is not currently resident in RAM. See also

double page fault.

paging

The process of moving data between
physical memory and the backing-store file.

paging device

The volume that contains the
backing-store file.

partition

A contiguous block of memory
reserved for use by the Operating System or by
an application. See also

application partition

 and

system partition.

physical address

An address represented
by bits on a physical address bus. The
physical address may be different from the
logical address, in which case the memory
management unit translates the logical address
into a physical address.

physical size

The actual number of bytes a
memory block occupies in its heap zone,
including the block header and any unused bytes
at the end of the block.

PMMU

See

Paged Memory Management Unit.

pointer

A variable containing the address of a
byte in memory. See also

handle.

processor cache

See

data cache

 or

instruction cache.

program counter

A register in the CPU that
contains a pointer to the memory location of the
next instruction to be executed.

protected block

A block of memory that should
not be moved or purged by a grow-zone function.

purge

To remove a relocatable block from the
heap, leaving its master pointer allocated but set
to

NIL

.

purgeable block

A relocatable block that can be
purged from the heap.

purge-warning procedure

A procedure
associated with a particular heap zone. The
Memory Manager calls this procedure whenever
a block is about to be purged from the zone.

QuickDraw global variables

A set of variables
stored in the application’s A5 world that contain
information used by QuickDraw.

RAM

See

random-access memory.

RAM disk

A portion of the available RAM
reserved for use as a temporary storage device.
A user can configure a RAM disk or disable it
altogether using controls in the Memory
control panel.

random-access memory (RAM)

Memory
whose contents can be changed. The RAM in a
Macintosh computer contains exception vectors,
buffers used by hardware devices, the system
and application heaps, the stack, and other
information used by applications.

read-only memory (ROM) Memory whose
contents are permanent. The ROM in a
Macintosh computer contains routines for the
Toolbox and the Operating System, and the
various system traps.

reallocate To allocate new space in the heap for
a purged block and to update the block’s master
pointer to point to its new location.

reentrant driver A driver that can be
interrupted while servicing a request, service
the new request, and then complete the original
request.

relative handle A pointer to a block’s master
pointer, expressed as an offset relative to the start
of the heap zone rather than as an absolute
memory address. A block’s relative handle is
contained in its block header.

release (1) To free an allocated area of memory,
making it available for reuse. (2) To allow a
previously held range of pages to be movable in
physical memory.

relocatable block A block that can be moved
within the heap during compaction.

reservation See memory reservation.

G L O S S A R Y

GL-5

reserve See memory reserve.

ROM See read-only memory.

size correction The number of unused bytes at
the end of the block, beyond the end of the
block’s contents.

stack An area of memory in the application
partition that is used to store temporary variables.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

stale data Data in the microprocessor’s data
cache whose corresponding value in RAM has
changed. You might need to flush the data cache
to avoid using stale data.

stale instructions Instructions in the
microprocessor’s instruction cache whose
corresponding value in RAM has changed. You
might need to flush the instruction cache to avoid
using stale instructions.

strip an address To clear the high-order byte of
a 24-bit address, making it usable in 32-bit mode.

synchronous execution A mode of invoking a
routine. After calling a routine synchronously, an
application cannot perform other tasks until the
routine is completed.

system global variables A collection of global
variables stored in the system partition.

system heap An area of memory in the
system partition reserved for use by the
Operating System.

system heap zone The heap zone provided by
the Memory Manager for use by the Operating
System; equivalent to the system heap.

system partition A partition of memory
reserved for use by the Operating System.

tag byte The first byte of a block header.

temporary memory Memory allocated outside
an application partition that may be available for
occasional short-term use.

translation table A data structure used by the
GetPhysical function to indicate which
physical blocks correspond to a given logical
block. This parameter block is defined by the
LogicalToPhysicalTable data type.

unlock (1) To allow a relocatable block to be
moved during heap compaction. (2) To allow a
previously locked range of pages to be paged out.

unpurgeable block A relocatable block that
can’t be purged from the heap.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused applications and data
to be stored on a secondary storage device
instead of in physical RAM.

Virtual Memory Manager The part of the
Operating System that provides virtual memory.

write-through cache A cache whose
information is immediately written to RAM
whenever that information changes. See also
copy-back cache.

zero-length handle See 0-length handle.

zone header An area of memory at the
beginning of a heap zone that contains essential
information about the heap, such as the number
of bytes free in the heap and the addresses of the
heap’s grow-zone function and purge-warning
procedure.

zone pointer A pointer to a zone record.

zone record A data structure representing a
heap zone.

zone trailer A minimum-sized free block
marking the end of a heap zone.

IN-1

Index

Symbols

&

 operator 1-34

@

 operator 2-25

Numerals

0 (memory location) 1-4, 1-35
0-length handles 1-34
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16

A

A5 register
and A5 world 1-13, 4-5 to 4-6
grow-zone functions saving and restoring 1-49, 4-14
setting and restoring 1-78 to 1-79, 4-14, 4-24 to 4-25
use of by Toolbox and Operating System

routines 4-14
using to access QuickDraw globals 4-18 to 4-19

A5 world
accessing in completion routines 4-14 to 4-15
accessing in interrupt tasks 4-16 to 4-17
defined 1-12, 1-13
setting 1-78 to 1-79, 4-24 to 4-25

addresses.

See

 memory addresses
addressing modes

24-bit 4-7
32-bit 4-7 to 4-8
current mode, getting 4-26
switching 4-20 to 4-21, 4-26 to 4-27

Address Management Unit (AMU) 3-5
address space.

See

 logical address space; physical
address space

address-translation mode
getting 4-26

setting 4-26 to 4-27
temporarily changing 4-20

AMU (Address Management Unit) 3-5

AND

 operator 1-34
AppleShare, and paging devices 3-5
application global variables 1-12

accessing in completion routines 4-14
accessing in interrupt tasks 4-17

application heap 1-9 to 1-11
defined 1-10
determining amount of free space 1-42 to 1-44
maximizing space to prevent fragmentation 1-40
setting up 1-38 to 1-42, 1-50 to 1-52, 2-27 to 2-29

application heap limit
getting 1-53, 2-84
setting 1-53 to 1-54, 2-84 to 2-85

application heap zone.

See also

 heap zones
defined 2-5
getting a pointer to 2-81
initializing 2-87 to 2-88
maximizing size of 1-51, 2-27
subdividing into multiple heap zones 2-14 to 2-16

application parameters 1-13
application partitions 1-4, 1-7 to 1-13

ApplicationZone

 function 2-81

ApplLimit

 global variable 1-8, 1-40, 1-53, 2-84

ApplZone

 global variable 2-81

B

backing-store files
defined 3-5
volume specified in Memory control panel 4-5

backing volume.

See

 paging device
block contents 2-22
block headers 2-22 to 2-24

BlockMove

 procedure 1-74 to 1-75, 2-59 to 2-60

_BlockMove

 trap, flushing instruction cache 4-10
blocks, memory.

See also

 nonrelocatable blocks;
relocatable blocks

allocating 1-44 to 1-46
concatenating 2-64 to 2-66
copying 1-74 to 1-75, 2-59 to 2-64
defined 1-10
how allocated 1-22
manipulating 2-59 to 2-66
releasing 1-44 to 1-46

I N D E X

IN-2

size correction for 2-23, 2-24
Boolean operators, short-circuit 1-34

BufPtr

 global variable 2-14
limitation on lowering during startup 2-85

bus-error vectors 3-22

Byte

 data type 2-25

C

caches.

See

 data cache; disk cache; instruction cache
callback routines

and code segmentation 1-32 to 1-33
maintaining the A5 register in 4-14 to 4-15

click-loop routines, and the A5 register 4-15
code resources, copying into system heap 2-13
code segmenting

and dangling pointers 1-31 to 1-32
effect on callback routines 1-32 to 1-33

compacting heap zones 2-71 to 2-73
compaction.

See

 heap compaction

CompactMem

 function 2-71 to 2-72

CompactMemSys

 function 2-72 to 2-73
completion routines

deferred under virtual memory 3-12
maintaining the A5 register in 4-14 to 4-15

concatenating memory blocks 2-64 to 2-66
concurrent drivers 3-11
control action procedures, and the A5 register 4-15
control definition procedures, and the A5 register 4-15
control panels, Memory.

See

 Memory control panel
copy-back cache 4-12
copying memory blocks 1-74 to 1-75, 2-59 to 2-64

CurrentA5

 global variable 1-79, 4-25
and callback routines 4-15
defined 1-13
getting value 1-79, 4-25

current heap zone 2-5

CurStackBase

 global variable 2-104
cushions.

See

 memory cushions

D

dangling pointers
avoiding 1-29 to 1-33
causes of 1-29 to 1-33
dangling procedure pointers 1-32 to 1-33
defined 1-29
detecting 1-29
introduced 1-20
locking blocks to prevent 1-29 to 1-30
referencing callback routines 1-32 to 1-33

using local variables to prevent 1-31
data cache 4-30 to 4-31

and virtual memory 3-21
defined 4-9
flushing 4-9, 4-12

DebuggerEnter

 procedure 3-23, 3-35

DebuggerExit

 procedure 3-23, 3-35 to 3-36

DebuggerGetMax

 function 3-34 to 3-35

DebuggerLockMemory

 function 3-21, 3-23, 3-37

DebuggerPoll

 procedure 3-23, 3-39
debuggers, and virtual memory 3-21 to 3-24

DebuggerUnlockMemory

 function 3-21, 3-23, 3-38

_DebugUtil

 trap 3-22, 3-45
deferred tasks, and the A5 register 4-16

DeferUserFn

 function 3-33
introduced 3-21
using 3-20 to 3-21

dereferenced handles 1-29

DeskHook

 global variable
clearing in Pascal 2-9
and displaying windows during startup time 2-9

DetachResource

 procedure 2-13
device drivers, avoiding page faults 3-12
dialog boxes, and low-memory situations 1-44
direct memory access (DMA) 3-3, 3-13, 3-15, 3-16, 3-18,

3-20, 3-21, 4-3, 4-10
and stale data 4-12

disk cache
defined 4-4
setting with the Memory control panel 4-4

disposed handles
checking for 1-33
defined 1-33
preventing dereferencing of 1-33
problems using 1-33

DisposeHandle

 procedure 1-46, 1-57, 2-34 to 2-35

DisposePtr

 procedure 1-46, 1-60, 2-38 to 2-39
DMA.

See

 direct memory access
double indirection 1-18
double page faults 3-11 to 3-12, 3-14
duplicating relocatable blocks 2-62 to 2-64

E

EmptyHandle

 procedure 1-67 to 1-68, 2-51 to 2-52
used by a grow-zone function 1-49

empty handles
checking for 1-34
defined 1-34

I N D E X

IN-3

F

fake handles 1-35 to 1-36, 1-55, 2-30
creating 1-35, 1-36
defined 1-35
problems using 1-35, 1-55, 2-30

Finder, allocation of memory for disk copying 2-9
flag bits

master pointer 4-7
stripping 4-7, 4-27

FlushCodeCache

 procedure 4-31 to 4-32

FlushCodeCacheRange

 function 4-32 to 4-33

FlushDataCache

 procedure 4-31
flushing

data cache 4-9, 4-12, 4-31
instruction cache 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

FlushInstructionCache

 procedure 4-30
fragmentation.

See

 heap fragmentation

FreeMem

 function 2-66 to 2-67

FreeMemSys

 function 2-67
free space

assessing 2-66 to 2-70
assessing availability for temporary memory 2-79 to

2-80

G

gaps in heaps, danger of 1-25

GetApplLimit

 function 1-53, 2-84

GetHandleSize

 function 2-39 to 2-40

GetMMUMode

 function 4-26

GetNextEvent

 function, and temporary memory 2-10

GetPageState

 function 3-24, 3-39 to 3-40

GetPhysical

 function 3-31 to 3-33
and discontiguous physical address space 3-11
introduced 3-16
using 3-16 to 3-20

GetPtrSize

 function 2-41 to 2-42

GetZone

 function 2-80
global variables.

See

 application global variables;
system global variables; QuickDraw global
variables

grow-zone functions 1-48 to 1-49, 1-80 to 1-81, 2-89 to
2-90

and the A5 register 4-15
defined 1-38
example of 1-49, 4-15
finding protected block 1-78, 2-77
setting 1-77 to 1-78, 2-76 to 2-77
using

SetA5

 function 1-81, 2-90
using

SetCurrentA5

 function 1-81, 2-90

GZRootHnd

 global variable 1-78, 2-77

GZSaveHnd

 function 1-49, 1-78, 2-77

H

HandAndHand

 function 2-64 to 2-65

Handle

 data type 1-18, 2-25
handles

.

See also

 relocatable blocks
checking validity of 1-34
defined 1-18 to 1-19
recovering 2-54 to 2-55
relative 2-23

HandleZone

 function 2-82 to 2-83

HandToHand

 function 2-62 to 2-64

HClrRBit

 procedure 2-50 to 2-51
heap compaction

defined 1-11, 1-23
movement of relocatable blocks during 1-24
routines for 2-71 to 2-73, 2-74 to 2-76

HeapEnd

 global variable 2-104
heap fragmentation

causes of 1-25 to 1-28
defined 1-10
during memory reservation 1-25
maximizing heap size to prevent 1-40
preventing 1-24 to 1-28
summary of prevention 1-28

heap purging 1-21 to 1-22
routines for 2-73 to 2-76

heap.

See

 application heap; system heap
heap zones

accessing 2-80 to 2-83
changing 2-81
defined 2-5
getting current zone 2-80
initializing 2-86 to 2-87
manipulating 2-83 to 2-89
organization of 2-19 to 2-22

.See also

 zone headers; zone trailers
subdividing into multiple heap zones 2-14 to 2-16

HFS RAM Cache panel 4-4

HGetState

 function 1-30, 1-61 to 1-62, 2-43 to 2-44
high memory, allocating at startup time 2-13 to 2-14

HLockHi

 procedure 1-73, 2-58 to 2-59

HLock

 procedure 1-30, 1-63 to 1-64, 2-45 to 2-46

HNoPurge

 procedure 1-66 to 1-67, 2-48 to 2-49
holding physical memory 3-14

HoldMemory

 function 3-14, 3-25 to 3-26

HPurge

 procedure 1-65 to 1-66, 2-47 to 2-48

HSetRBit procedure 2-49 to 2-50
HSetState procedure 1-30, 1-62 to 1-63, 2-44 to 2-45
HUnlock procedure 1-64 to 1-65, 2-46 to 2-47
_HWPriv trap macro 4-36

I N D E X

IN-4

I

InitApplZone procedure 2-87 to 2-88
initializing new heap zones within other heap

zones 2-14 to 2-16
InitZone procedure 1-81, 2-86 to 2-87, 2-90
instruction cache

defined 4-8
flushing 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

interprocess buffers, and temporary memory 2-10
interrupts, nonmaskable 3-23
interrupt tasks

and Memory Manager routines 1-50, 2-26
deferring under virtual memory 3-12
maintaining the A5 register 4-16 to 4-17
and temporary memory 2-10

interrupt time
avoiding Memory Manager routines at 1-50, 2-26
deferring code execution under virtual memory 3-20

I/O completion routines, and the A5 register 4-15
ISP. See stack pointer, interrupt

J

jump table 1-13
jump table entries

and stale instructions 4-10
for callback routines 1-32

L

linked lists, allocating new elements in 1-31
loading code segments, and dangling pointers 1-31 to

1-32
_LoadSeg trap, flushing instruction cache 4-10
locking physical memory

debugger routine 3-37
defined 3-13
routines for 3-28 to 3-30

locking relocatable blocks 1-20 to 1-21, 1-63 to 1-64,
2-45 to 2-46

LockMemoryContiguous function 3-16, 3-29 to 3-30
LockMemory function 3-28

and stale data 4-13
introduced 3-15

logical address space 3-5 to 3-9
possible fragmentation of 3-7
size of with 24-bit addressing 3-5
size of with 32-bit addressing 3-7
translating to physical address space 3-11

logical sizes of blocks 2-22

LogicalToPhysicalTable data structure 3-17, 3-25
logical-to-physical translation table. See translation

table
low-memory conditions 1-36 to 1-38
low-memory global variables

See system global variables

M

master pointer blocks 1-18
master pointer flag bits 4-7
master pointers

allocating manually 1-51 to 1-52, 2-28 to 2-29
comparing 4-22
defined 1-18
determining how many to preallocate 1-41 to 1-42
number per block in application zone 1-41
running out of 1-41

MaxApplZone procedure 1-51, 2-27
and ApplLimit global variable 1-8
automatic execution of 1-40, 2-16
and heap fragmentation 1-40

MaxBlock function 2-67 to 2-68
MaxBlockSys function 2-68
maximizing heap zone space 2-74 to 2-76
MaxMem function 2-74 to 2-75
MaxMemSys function 2-75 to 2-76
maxSize constant 2-72
MC680x0 microprocessor

data cache 4-9
instruction cache 4-8, 4-9
size of memory blocks with 2-22

MemErr global variable 1-50, 1-76, 2-26, 2-71
MemError function 1-50, 1-76, 2-26, 2-70 to 2-71
memory

allocating and releasing 1-54 to 1-60, 2-29 to 2-39
allocating during startup 2-13 to 2-14
assessing 2-66 to 2-83
changing sizes of blocks 2-39 to 2-43
freeing 2-71 to 2-76
holding 3-13, 3-14
organization of 1-4 to 1-13, 2-19 to 2-24
releasing 3-15
.See also temporary memory; virtual memory

memory addresses
comparing 4-8, 4-22
converting to 32-bit mode 4-7, 4-21 to 4-24, 4-26 to

4-27
mapping logical to physical 3-16 to 3-20
stripping flag bits from 4-7, 4-21 to 4-23, 4-27
translating 4-23 to 4-24, 4-28

MemoryBlock data structure 3-17, 3-24
memory-block record 3-17

I N D E X

IN-5

memory blocks. See blocks, memory
memory configuration, obtaining information

about 3-14
Memory control panel 3-4, 3-5, 4-3 to 4-5

addressing mode controls 4-5
disk cache controls 4-4
illustrated 4-4
introduced 4-3
RAM disk controls 4-5
virtual memory controls 4-5

memory cushions
defined 1-37
determining optimal size of 1-43
maintaining 1-43 to 1-44

_MemoryDispatchA0Result trap macro 3-45
_MemoryDispatch trap macro 3-20, 3-44
memory management unit (MMU) 3-5
Memory Manager 2-3 to 2-105

24-bit 1-15
32-bit 1-15
allocating master pointers 1-41
and application heap 1-10 to 1-11
application-defined routines 2-89 to 2-92
calling grow-zone function 1-48
capabilities of 2-4
compacting heap 1-23 to 1-24
data types 1-17 to 1-18, 2-24 to 2-26
defined 2-3
movement of blocks by 1-24
purging heap 1-23 to 1-24
reserving memory 1-22 to 1-23, 2-55 to 2-56
returning result codes 1-50, 1-76, 2-26, 2-70 to 2-71
routines 2-26 to 2-89
testing for features 2-11 to 2-12

memory reservation. See reserving memory
memory reserves

benefits of 1-37
defined 1-37
maintaining 1-46 to 1-48

MemTop global variable 2-14, 2-86
menu definition procedures, and the A5 register 4-15
MMU (memory management unit) 3-5
MoreMasters procedure 1-41 to 1-42, 1-51 to 1-52,

2-28 to 2-29
MoveHHi procedure 1-26 to 1-27, 1-71 to 1-72, 2-56 to

2-58
moving relocatable blocks high 1-26 to 1-27, 1-71 to

1-73, 2-56 to 2-59
multiple heap zones

implementing 2-14 to 2-16
uses for 2-6

N

NewEmptyHandle function 2-33
NewEmptyHandleSys function 2-34
NewHandleClear function 1-45, 1-56, 2-31 to 2-32
NewHandle function 1-44, 1-55 to 1-56, 2-29 to 2-31
NewHandleSysClear function 2-32
NewHandleSys function 2-31
NewPtrClear function 1-59, 2-37 to 2-38
NewPtr function 1-44, 1-58 to 1-59, 2-36 to 2-37
NewPtrSysClear function 2-38
NewPtrSys function 2-37
nonessential memory requests, checking whether to

satisfy 1-43
nonmaskable interrupts 3-23
nonrelocatable blocks

.See also blocks, memory
advantages of 1-20
allocating 1-28, 1-58 to 1-59, 2-36 to 2-38
allocating temporarily 1-28
data type for 1-18
defined 1-17
disposal and reallocation of 1-25
releasing 1-60, 2-38 to 2-39
sizing 2-41 to 2-43
when to allocate 1-27 to 1-28

Notification Manager, and the A5 world 4-16 to 4-17
notification response procedures, and the A5

register 4-16

O

OpenResFile function, calling StripAddress on
filenames 4-22

OpenRFPerm function, calling StripAddress on
filenames 4-22

operating system queues, storing elements in system
heap zone 2-12

ordered address comparisons 4-22
original application heap zone 2-5
_OSDispatch trap macro 2-104

P

Paged Memory Management Unit (PMMU) 3-5
PageFaultFatal function 3-22, 3-36
page faults

defined 3-11
handling 3-20
intercepted by Virtual Memory Manager 3-11 to

3-12, 3-22

I N D E X

IN-6

protection against 3-12, 3-14
.See also double page faults

pages, memory
defined 3-4
holding 3-14, 3-25
locking 3-15, 3-28
locking contiguously 3-29
releasing 3-15, 3-27
unlocking 3-30

PageState data type 3-24
paging 3-4
paging device 3-5
partitions 1-4

.See also application partitions; system partition
patches, and stale instructions 4-10
physical address space 3-9 to 3-11

discontiguous 3-9
physical memory 3-14 to 3-20

holding pages in 3-14 to 3-15
locking pages in 3-15 to 3-16
releasing pages 3-15
unlocking pages 3-16

physical sizes of blocks 2-22
PMMU (Paged Memory Management Unit) 3-5
pointers 1-17 to 1-18

.See also nonrelocatable blocks; dangling pointers
Process Manager, and callback routines 4-14
processor caches 4-8 to 4-13, 4-29 to 4-33

.See also data cache; instruction cache
ProcPtr data type 2-25 to 2-26

and code segmentation 1-32 to 1-33
referencing code in code resources 2-13

program counter, fixing before switching to 32-bit
mode 4-21

protected blocks
defined 1-49
determining which they are 1-81, 2-90
handle to returned by GZSaveHnd 1-78, 2-77

PtrAndHand function 2-65 to 2-66
Ptr data type 1-17, 2-25
PtrToHand function 2-60 to 2-61
PtrToXHand function 2-61 to 2-62
PtrZone function 2-83
PurgeMem procedure 2-73 to 2-74
PurgeMemSys procedure 2-74
PurgeSpace procedure 1-75, 2-68 to 2-69
purge-warning procedures 2-16 to 2-18, 2-21, 2-90 to

2-92
defined 2-16
installed by SetResPurge 2-18, 2-91
restrictions on 2-91
sample 2-17
using SetA5 function 2-91
using SetCurrentA5 function 2-91

purging heap zones 1-24, 2-73 to 2-74

purging relocatable blocks 1-21 to 1-22

Q

QuickDraw global variables
defined 1-13
reading in stand-alone code 4-18 to 4-19
structure of 4-18
using in stand-alone code 4-18 to 4-19

R

RAM cache. See disk cache
RAM disks

defined 4-5
setting size of with Memory control panel 4-5

_Read trap, flushing instruction cache 4-10
ReallocateHandle procedure 1-68 to 1-69, 2-52 to

2-53
reallocating relocatable blocks 1-21 to 1-22
RecoverHandle function 2-54 to 2-55
reference constant fields

using to store A5 value 4-17
relative handles 2-23
releasing held pages 3-15
relocatable blocks

.See also blocks, memory; handles
allocating 1-55 to 1-56, 2-29 to 2-34
changing properties 1-60 to 1-67, 2-43 to 2-51
clearing resource bit 2-50 to 2-51
concatenating 2-64 to 2-65
data type for 1-17
defined 1-17
disadvantages of 1-20
duplicating 2-62 to 2-64
emptying 1-67 to 1-68, 2-51 to 2-52
getting properties 1-61 to 1-62, 2-43 to 2-44
in bottom of heap zone 1-25
locking 1-20 to 1-21, 1-63 to 1-64, 2-45 to 2-46

for long periods of time 1-28
for short periods of time 1-28

making purgeable 1-65 to 1-66, 2-47 to 2-48
making unpurgeable 1-66 to 1-67, 2-48 to 2-49
managing 1-67 to 1-73, 2-51 to 2-59
master pointers after disposing 1-33
master pointers for 1-41
moving around nonrelocatable blocks 1-24
moving high 1-26 to 1-27, 1-71 to 1-73, 2-56 to 2-59
properties of 1-20 to 1-22
purging 1-21 to 1-22
reallocating 1-21 to 1-22, 1-68 to 1-69, 2-52 to 2-53

I N D E X

IN-7

releasing 1-57, 2-34 to 2-35
restrictions on locked blocks 1-27
setting properties 1-62 to 1-67, 2-44 to 2-51
setting resource bit 2-49 to 2-50
sizing 2-39 to 2-41

movement during 1-24
unlocking 1-20 to 1-21, 1-64 to 1-65, 2-46 to 2-47
when to lock 1-28

removable disks, and virtual memory 3-5
ReserveMem procedure 1-70 to 1-71, 2-55 to 2-56
ReserveMemSys procedure 2-56
reserves. See memory reserves
reserving memory 1-22 to 1-23

and heap fragmentation 1-25
defined 1-22
for relocatable blocks 1-26
limitation of 1-25
routines 2-55 to 2-56

resource bit
clearing 2-50 to 2-51
setting 2-49 to 2-50

Resource Manager, installing purge-warning
procedures 2-18, 2-91

resource types
'SIZE' 1-13
'sysz' 2-13

result codes for Memory Manager routines 1-50, 1-76,
2-26, 2-70 to 2-71

S

self-modifying code, and stale instructions 4-10
SetA5 function 1-79, 4-14, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetApplBase procedure 2-88 to 2-89
SetApplLimit procedure 1-53 to 1-54, 2-84 to 2-85

using to increase size of stack 1-40
SetCurrentA5 function 1-79, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetGrowZone procedure 1-77 to 1-78, 1-81, 2-76 to
2-77, 2-90

SetHandleSize procedure 2-40 to 2-41
SetPtrSize procedure 2-42 to 2-43
SetResPurge procedure, installing purge-warning

procedures 2-18
SetZone procedure 2-81
short-circuit Boolean operators 1-34
SignedByte data type 1-17, 2-25
size correction for blocks 2-23, 2-24
Size data type 2-26
'SIZE' resource type, specifying partition size 1-13

slot-based VBL tasks, deferred under virtual
memory 3-12

stack
collisions with the heap 1-8
default size of 1-40
defined 1-8
determining available space 2-69
increasing size of 1-39 to 1-40

stack frame 1-9
stack pointer

interrupt (ISP) 3-23
user (USP) 3-23

stack sniffer 1-8
StackSpace function 2-69 to 2-70
stale data

avoiding problems with 4-13
defined 4-10

stale instructions
avoiding problems with 4-9
defined 4-9

stand-alone code resources, changing
address-translation mode in 4-20

startup process
allocating memory during 2-13 to 2-14
displaying windows during 2-9

Str255 data type 2-25
StringHandle data type 2-25
StringPtr data type 2-25
StripAddress function 4-21 to 4-23, 4-27 to 4-28
supervisor mode 3-23
SwapDataCache function 4-30 to 4-31
SwapInstructionCache function 4-29
SwapMMUMode procedure 4-26 to 4-27

calling from stand-alone code 4-20
SysEqu.p interface file 2-7
system extensions, allocating memory at startup

time 2-13
system global variables

changing 2-9
defined 1-6 to 1-7, 2-6
reading 2-8 to 2-9
uses of 2-6 to 2-7

system heap 1-6
defined 1-6
held in RAM under virtual memory 3-12

system heap zone
allocating memory in 2-12
creating new heap zones within 2-16
defined 2-5
getting a pointer to 2-82
installing interrupt code into 2-13
uses for 2-5

system partition 1-4 to 1-7
.See also system heap; system global variables

SystemZone function 2-82

I N D E X

IN-8

SysZone global variable 2-82
'sysz' resource type 2-13

T

tag bytes 2-23
TempFreeMem function 2-79
TempMaxMem function 2-79 to 2-80
TempNewHandle function 2-78
temporary memory

allocating 2-10 to 2-11
confirming success of allocation 2-10
defined 1-13, 2-4
determining zone of 2-10
limitation on locking 2-10
operating on blocks 2-5
optimal usage of 2-5
release of during application termination 2-10
routines 2-77 to 2-80
testing for features of 2-11 to 2-12
tracking of 2-10
using as a heap zone 2-16

TheZone global variable 2-80
32-bit addressing 3-7 to 3-9, 4-8

defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16
THz data type 2-20
Time Manager tasks

and the A5 register 4-16
deferred under virtual memory 3-12

TopMem function 2-14, 2-85 to 2-86
Translate24To32 function 4-23 to 4-24, 4-28 to 4-29
translating logical to physical addresses 3-16 to 3-20,

3-31 to 3-33
translation tables 3-17, 3-25
trap patches, and the A5 register 4-15
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

U

UnholdMemory function 3-15, 3-27
_UnloadSeg trap, flushing instruction cache 4-10
unlocking physical memory 3-16, 3-30 to 3-31

debugger routine 3-38

unlocking relocatable blocks 1-20 to 1-21, 1-64 to 1-65,
2-46 to 2-47

UnlockMemory function 3-16, 3-30 to 3-31
updating windows, saving memory space for 1-44
USP. See stack pointer, user

V

VBL tasks
and the A5 register 4-16
deferred under virtual memory 3-12

Vector Base Register (VBR) 3-22
virtual memory

and AppleShare volumes 3-5
and removable disks 3-5
and user interrupts 3-21
backing-store file 4-5
bus-error vectors under 3-22
CPU data caching 3-15
debugger routines 3-34 to 3-40
debugger support for 3-21 to 3-24
deferring interrupt code execution 3-12, 3-20
introduced 1-15
management routines 3-25 to 3-33
mapping information, getting 3-16 to 3-18
requirements for running 3-5
setting with the Memory control panel 4-5
testing for availability 3-14

Virtual Memory Manager 3-3 to 3-45.See also virtual
memory

data structures 3-24 to 3-25
defined 3-3 to 3-4
routines 3-25 to 3-40

W, X, Y

WaitNextEvent function, and temporary
memory 2-10

window definition procedures, and the A5
register 4-15

WITH statement (Pascal), and dangling pointers 1-29
word-break routines, and the A5 register 4-15
write-through cache 4-11

Z

zero (memory location)See 0 (memory location)
zero-length handlesSee 0-length handles
Zone data structure 2-20

I N D E X

IN-9

zone headers 2-5, 2-20 to 2-21
zone pointers 2-20
zone records 2-20, 2-20 to 2-21
zone trailer blocks 2-20
zone trailers 2-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter II

NTX

 printer. Final page
negatives were output directly from text
files on an Agfa ProSet 9800 imagesetter.
Line art was created using Adobe

™

Illustrator. PostScript

™

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

®

 and display type is
Helvetica

®

. Bullets are ITC Zapf
Dingbats

®

. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Tim Monroe

WRITERS

Tim Monroe, Michael Abramowicz

DEVELOPMENTAL EDITOR

Antonio Padial

ILLUSTRATOR

Peggy Kunz

PRODUCTION EDITOR

Teresa Lujan

PROJECT MANAGER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Eric Anderson,
Jeff Crawford, and Brian McGhie.

Acknowledgments to Sanborn Hodgkins,
Craig Prouse, Jim Reekes, Keith Rollin,
and the entire

Inside Macintosh

team.

