

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

ð

I N S I D E M A C I N T O S H

Interapplication Communication

ISBN 0-201-62200-9
1 2 3 4 5 6 7 8 9-MU-9796959493
First Printing, June 1993

7

The paper used in this book meets the
EPA standards for recycled fiber
ð Apple Computer, Inc.
© 1993, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
Macintosh, MPW, and SANE are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
AppleScript, Finder, Moof, New York,
QuickDraw, QuickTime, and System 7
are trademarks of Apple Computer, Inc.
Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered trademark
of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica, Palatino, and Times are
registered trademarks of Linotype
Company.
HyperCard and HyperTalk are
registered trademarks of Claris
Corporation.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures, Tables, and Listings xv

Preface About This Book xxiii

Format of a Typical Chapter xxiv
Conventions Used in This Book xxv

Special Fonts xxv
Types of Notes xxv
Assembly-Language Information xxvi

The Development Environment xxvi

Chapter 1 Introduction to Interapplication Communication 1-1

Overview of Interapplication Communication 1-3
Sharing Data Among Applications 1-6
Sending and Responding to Apple Events 1-9

Standard Apple Events 1-10
Handling Apple Events 1-12

Supporting AppleScript and Other Scripting Languages 1-13
Scriptable Applications 1-16
Recordable Applications 1-18
Applications That Manipulate and Execute Scripts 1-19

Exchanging Message Blocks 1-22

Chapter 2 Edition Manager 2-1

Introduction to Publishers, Subscribers, and Editions 2-4
About the Edition Manager 2-12
Using the Edition Manager 2-12

Receiving Apple Events From the Edition Manager 2-13
Creating the Section Record and Alias Record 2-15
Saving a Document Containing Sections 2-19
Opening and Closing a Document Containing Sections 2-22
Reading and Writing a Section 2-24

Formats in an Edition 2-24
Opening an Edition 2-26
Format Marks 2-27
Reading and Writing Edition Data 2-27
Closing an Edition 2-28
iii

Creating a Publisher 2-29
Creating the Edition Container 2-32
Opening an Edition Container to Write Data 2-35

Creating a Subscriber 2-37
Opening an Edition Container to Read Data 2-41
Choosing Which Edition Format to Read 2-41

Using Publisher and Subscriber Options 2-43
Publishing a New Edition While Saving or Manually 2-47
Subscribing to an Edition Automatically or Manually 2-48
Canceling Sections Within Documents 2-48
Locating a Publisher Through a Subscriber 2-49

Renaming a Document Containing Sections 2-50
Displaying Publisher and Subscriber Borders 2-50

Text Borders 2-54
Spreadsheet Borders 2-55
Object-Oriented Graphics Borders 2-56
Bitmapped Graphics Borders 2-57
Duplicating Publishers and Subscribers 2-58

Modifying a Subscriber 2-59
Relocating an Edition 2-60
Customizing Dialog Boxes 2-60

Subscribing to Non-Edition Files 2-62
Getting the Current Edition Opener 2-63
Setting an Edition Opener 2-63
Calling an Edition Opener 2-64
Opening and Closing Editions 2-68
Listing Files That Can Be Subscribed To 2-68
Reading From and Writing to Files 2-68
Calling a Format I/O Function 2-68

Edition Manager Reference 2-71
Data Structures 2-71

The Edition Container Record 2-71
The Section Record 2-72

Edition Manager Routines 2-73
Initializing the Edition Manager 2-74
Creating and Registering a Section 2-74
Creating and Deleting an Edition Container 2-79
Setting and Getting a Format Mark 2-81
Reading in Edition Data 2-83
Writing out Edition Data 2-86
Closing an Edition After Reading or Writing 2-88
Displaying Dialog Boxes 2-90
Locating a Publisher and Edition From a Subscriber 2-98
Edition Container Formats 2-101
Reading and Writing Non-Edition Files 2-102

Application-Defined Routines 2-105
iv

Summary of the Edition Manager 2-106
Pascal Summary 2-106

Constants 2-106
Data Types 2-108
Edition Manager Routines 2-111
Application-Defined Routines 2-113

C Summary 2-114
Constants 2-114
Data Types 2-116
Edition Manager Routines 2-119
Application-Defined Routines 2-122

Result Codes 2-122

Chapter 3 Introduction to Apple Events 3-1

About Apple Events 3-3
Apple Events and Apple Event Objects 3-6
Apple Event Attributes and Parameters 3-7

Apple Event Attributes 3-8
Apple Event Parameters 3-9
Interpreting Apple Event Attributes and Parameters 3-10

Data Structures Within Apple Events 3-12
Descriptor Records 3-12
Keyword-Specified Descriptor Records 3-15
Descriptor Lists 3-16

Responding to Apple Events 3-20
Accepting and Processing Apple Events 3-20
About Apple Event Handlers 3-23

Extracting and Checking Data 3-23
Interacting With the User 3-25
Performing the Requested Action and Returning a Result 3-25

Creating and Sending Apple Events 3-28
Creating an Apple Event Record 3-29
Adding Apple Event Attributes and Parameters 3-29
Sending an Apple Event and Handling the Reply 3-30

Working With Object Specifier Records 3-32
Data Structures Within an Object Specifier Record 3-34
The Classification of Apple Event Objects 3-39

Object Classes 3-39
Properties and Elements 3-42

Finding Apple Event Objects 3-46
About the Apple Event Manager 3-48

Supporting Apple Events as a Server Application 3-48
Supporting Apple Events as a Client Application 3-49
Supporting Apple Event Objects 3-49
Supporting Apple Event Recording 3-50
v

Chapter 4 Responding to Apple Events 4-1

Handling Apple Events 4-4
Accepting an Apple Event 4-5
Installing Entries in the Apple Event Dispatch Tables 4-7

Installing Entries for the Required Apple Events 4-8
Installing Entries for Apple Events Sent by the Edition Manager 4-9
How Apple Event Dispatching Works 4-9

Handling the Required Apple Events 4-11
Required Apple Events 4-11
Handling the Open Application Event 4-14
Handling the Open Documents Event 4-15
Handling the Print Documents Event 4-17
Handling the Quit Application Event 4-19

Handling Apple Events Sent by the Edition Manager 4-20
The Section Read, Section Write, and Section Scroll Events 4-21
Handling the Create Publisher Event 4-22

Getting Data Out of an Apple Event 4-25
Getting Data Out of an Apple Event Parameter 4-26
Getting Data Out of an Attribute 4-28
Getting Data Out of a Descriptor List 4-31

Writing Apple Event Handlers 4-33
Replying to an Apple Event 4-36
Disposing of Apple Event Data Structures 4-39
Writing and Installing Coercion Handlers 4-41

Interacting With the User 4-45
Setting the Client Application’s User Interaction Preferences 4-46
Setting the Server Application’s User Interaction Preferences 4-48
Requesting User Interaction 4-49

Reference to Responding to Apple Events 4-56
Data Structures Used by the Apple Event Manager 4-56

Descriptor Records and Related Data Structures 4-56
Apple Event Array Data Types 4-60

Routines for Responding to Apple Events 4-61
Creating and Managing the Apple Event Dispatch Tables 4-61
Dispatching Apple Events 4-66
Getting Data or Descriptor Records Out of Apple Event Parameters and

Attributes 4-68
Counting the Items in Descriptor Lists 4-74
Getting Items From Descriptor Lists 4-74
Getting Data and Keyword-Specified Descriptor Records Out of AE

Records 4-78
Requesting User Interaction 4-81
Requesting More Time to Respond to Apple Events 4-84
Suspending and Resuming Apple Event Handling 4-85
Getting the Sizes and Descriptor Types of Descriptor Records 4-89
Deleting Descriptor Records 4-92
vi

Deallocating Memory for Descriptor Records 4-93
Coercing Descriptor Types 4-94
Creating and Managing the Coercion Handler Dispatch Tables 4-96
Creating and Managing the Special Handler Dispatch Tables 4-99
Getting Information About the Apple Event Manager 4-103

Application-Defined Routines 4-104
Summary of Responding to Apple Events 4-108

Pascal Summary 4-108
Constants 4-108
Data Types 4-112
Routines for Responding to Apple Events 4-114
Application-Defined Routines 4-118

C Summary 4-118
Constants 4-118
Data Types 4-123
Routines for Responding to Apple Events 4-124
Application-Defined Routines 4-128

Assembly-Language Summary 4-128
Trap Macros 4-128

Result Codes 4-129

Chapter 5 Creating and Sending Apple Events 5-1

Creating an Apple Event 5-3
Adding Parameters to an Apple Event 5-5
Specifying Optional Parameters for an Apple Event 5-7
Specifying a Target Address 5-10

Creating an Address Descriptor Record 5-11
Addressing an Apple Event for Direct Dispatching 5-13

Sending an Apple Event 5-13
Dealing With Timeouts 5-21
Writing an Idle Function 5-22
Writing a Reply Filter Function 5-24

Reference to Creating and Sending Apple Events 5-25
Routines for Creating and Sending Apple Events 5-25

Creating Apple Events 5-26
Creating and Duplicating Descriptor Records 5-27
Creating Descriptor Lists and AE Records 5-29
Adding Items to Descriptor Lists 5-30
Adding Data and Descriptor Records to AE Records 5-33
Adding Parameters and Attributes to Apple Events 5-34
Sending Apple Events 5-38

Application-Defined Routines 5-42
vii

Summary of Creating and Sending Apple Events 5-45
Pascal Summary 5-45

Constants 5-45
Data Types 5-49
Routines for Creating and Sending Apple Events 5-51
Application-Defined Routines 5-52

C Summary 5-52
Constants 5-52
Data Types 5-57
Routines for Creating and Sending Apple Events 5-58
Application-Defined Routines 5-60

Assembly-Language Summary 5-60
Trap Macros 5-60

Result Codes 5-61

Chapter 6 Resolving and Creating Object Specifier Records 6-1

Resolving Object Specifier Records 6-4
Descriptor Records Used in Object Specifier Records 6-8

Object Class 6-9
Container 6-9
Key Form 6-11
Key Data 6-12

Key Data for a Property ID 6-13
Key Data for an Object’s Name 6-14

Key Data for a Unique ID 6-14
Key Data for Absolute Position 6-14
Key Data for Relative Position 6-15
Key Data for a Test 6-15
Key Data for a Range 6-20

Installing Entries in the Object Accessor Dispatch Tables 6-21
Installing Object Accessor Functions That Find Apple Event Objects 6-23
Installing Object Accessor Functions That Find Properties 6-27

Writing Object Accessor Functions 6-28
Writing Object Accessor Functions That Find Apple Event Objects 6-29
Writing Object Accessor Functions That Find Properties 6-37
Defining Tokens 6-39
Handling Whose Tests 6-41

Writing Object Callback Functions 6-45
Writing an Object-Counting Function 6-48
Writing an Object-Comparison Function 6-50
Writing Marking Callback Functions 6-53

Creating Object Specifier Records 6-55
Creating a Simple Object Specifier Record 6-57

Specifying the Container Hierarchy 6-61
viii

Specifying a Property 6-63
Specifying a Relative Position 6-64

Creating a Complex Object Specifier Record 6-64
Specifying a Test 6-64
Specifying a Range 6-72

Reference to Resolving and Creating Object Specifier Records 6-75
Data Structures Used in Object Specifier Records 6-75
Routines for Resolving and Creating Object Specifier Records 6-77

Initializing the Object Support Library 6-77
Setting Object Accessor Functions and Object Callback Functions 6-77
Getting, Calling, and Removing Object Accessor Functions 6-81
Resolving Object Specifier Records 6-85
Deallocating Memory for Tokens 6-87
Creating Object Specifier Records 6-88

Application-Defined Routines 6-94
Object Accessor Functions 6-94
Object Callback Functions 6-96

Summary of Resolving and Creating Object Specifier Records 6-104
Pascal Summary 6-104

Constants 6-104
Data Types 6-106
Routines for Resolving and Creating Object Specifier Records 6-106
Application-Defined Routines 6-108

C Summary 6-109
Constants 6-109
Data Types 6-111
Routines for Resolving and Creating Object Specifier Records 6-112
Application-Defined Routines 6-114

Assembly-Language Summary 6-115
Trap Macros 6-115

Result Codes 6-115

Chapter 7 Introduction to Scripting 7-1

About Scripts and Scripting Components 7-4
Script Editors and Script Files 7-6
Scripting Components and Scriptable Applications 7-8
Scripting Components and Applications That Execute Scripts 7-11

Making Your Application Scriptable 7-14
About Apple Event Terminology Resources 7-15

How AppleScript Uses Terminology Information 7-17
Dynamic Loading of Terminology Information 7-20

Making Your Application Recordable 7-20
Manipulating and Executing Scripts 7-22

Compiling, Saving, Modifying, and Executing Scripts 7-24
Using a Script Context to Handle an Apple Event 7-25
ix

Chapter 8 Apple Event Terminology Resources 8-1

Defining Terminology for Use by the AppleScript Component 8-3
Structure of Apple Event Terminology Resources 8-8
Creating an Apple Event Terminology Extension Resource 8-13

Supporting Standard Suites Without Extensions 8-14
Extending the Standard Suites 8-16
Supporting Subsets of Suites 8-23
Supporting New Suites 8-23

Handling the Get AETE Event 8-23
Reference to Apple Event Terminology Resources 8-26

Header Data for an Apple Event Terminology Resource 8-27
Suite Data for an Apple Event Terminology Resource 8-27

Event Data 8-29
Object Class Data 8-36
Comparison Operator Data 8-42
Enumeration and Enumerator Data 8-43

The Scripting Size Resource 8-45

Chapter 9 Recording Apple Events 9-1

About Recordable Applications 9-3
Factoring Your Application for Recording 9-6

Factoring the Quit Command and the New Command 9-6
Sending Apple Events Without Executing Them 9-12

What to Record 9-14
Recording User Actions 9-15
Recording the Selection of Text Objects 9-18
Recording Insertion Points 9-23
Recording Typing 9-27
Recording the Selection of Nontext Objects 9-30
Identifying Objects 9-32
Moving the Selection During Recording 9-34
Recording Interactions With Dialog Boxes 9-35

How Apple Event Recording Works 9-35

Chapter 10 Scripting Components 10-1

Connecting to a Scripting Component 10-3
Using Scripting Component Routines 10-7

Compiling and Executing Source Data 10-7
Saving Script Data 10-12

Storage Formats for Script Data 10-12
Resource and File Types for Script Data 10-13
x

Loading and Executing Script Data 10-14
Modifying and Recompiling a Compiled Script 10-17
Using a Script Context to Handle an Apple Event 10-19
Supplying a Resume Dispatch Function 10-21
Supplying an Alternative Active Function 10-23
Supplying Alternative Create and Send Functions 10-24

Alternative Create Functions 10-24
Alternative Send Functions 10-25

Recording Scripts 10-26
Writing a Scripting Component 10-27
Scripting Components Reference 10-28

Data Structures 10-29
Required Scripting Component Routines 10-30

Saving and Loading Script Data 10-30
Executing and Disposing of Scripts 10-33
Setting and Getting Script Information 10-41
Manipulating the Active Function 10-45

Optional Scripting Component Routines 10-46
Compiling Scripts 10-47
Getting Source Data 10-51
Coercing Script Values 10-52
Manipulating the Create and Send Functions 10-55
Recording Scripts 10-59
Executing Scripts in One Step 10-61
Manipulating Dialects 10-67
Using Script Contexts to Handle Apple Events 10-71

AppleScript Component Routines 10-80
Initializing AppleScript 10-80
Getting and Setting Styles for Source Data 10-82

Generic Scripting Component Routines 10-84
Getting and Setting the Default Scripting Component 10-86
Using Component-Specific Routines 10-87

Routines Used by Scripting Components 10-92
Manipulating Trailers for Generic Storage Descriptor Records 10-92

Application-Defined Routines 10-94
Summary of Scripting Components 10-99

Pascal Summary 10-99
Constants 10-99
Data Types 10-105
Required Scripting Component Routines 10-106
Optional Scripting Component Routines 10-107
AppleScript Component Routines 10-110
Generic Scripting Component Routines 10-110
Routines Used by Scripting Components 10-111
Application-Defined Routines 10-111
xi

C Summary 10-112
Constants 10-112
Data Types 10-118
Required Scripting Component Routines 10-119
Optional Scripting Component Routines 10-120
AppleScript Component Routines 10-123
Generic Scripting Component Routines 10-123
Routines Used by Scripting Components 10-124
Application-Defined Routines 10-124

Result Codes 10-125

Chapter 11 Program-to-Program Communications Toolbox 11-1

About the PPC Toolbox 11-4
Ports, Sessions, and Message Blocks 11-4
Setting Up Authenticated Sessions 11-6

Using the PPC Toolbox 11-10
PPC Toolbox Calling Conventions 11-14
Specifying Port Names and Location Names 11-17

Opening a Port 11-20
Browsing for Ports Using the Program Linking Dialog Box 11-22
Obtaining a List of Available Ports 11-27

Preparing for a Session 11-29
Initiating a PPC Session 11-29
Receiving Session Requests 11-35
Accepting or Rejecting Session Requests 11-37

Exchanging Data During a PPC Session 11-39
Reading Data From an Application 11-40
Sending Data to an Application 11-42

Ending a Session and Closing a Port 11-43
Invalidating Users 11-44

PPC Toolbox Reference 11-46
Data Structures 11-46

The PPC Toolbox Parameter Block 11-46
The PPC Port Record 11-49
The Location Name Record 11-50
The Port Information Record 11-51

PPC Toolbox Routines 11-51
Initializing the PPC Toolbox 11-52
Using the Program Linking Dialog Box 11-52
Obtaining a List of Ports 11-55
Opening and Closing a Port 11-57
Starting and Ending a Session 11-60
Receiving, Accepting, and Rejecting a Session 11-67
Reading and Writing Data 11-72
Locating a Default User and Invalidating a User 11-76
xii

Application-Defined Routines 11-78
Completion Routines for PPC Toolbox Routines 11-78
Port Filter Functions 11-79

Summary of the PPC Toolbox 11-81
Pascal Summary 11-81

Constants 11-81
Data Types 11-82
PPC Toolbox Routines 11-88
Application-Defined Routines 11-89

C Summary 11-90
Constants 11-90
Data Types 11-91
PPC Toolbox Routines 11-96
Application-Defined Routines 11-97

Assembly-Language Summary 11-97
Trap Macros 11-97

Result Codes 11-98

Chapter 12 Data Access Manager 12-1

About the Data Access Manager 12-5
The High-Level Interface 12-7

Sending a Query Through the High-Level Interface 12-8
Retrieving Data Through the High-Level Interface 12-9

The Low-Level Interface 12-9
Sending a Query Through the Low-Level Interface 12-10
Retrieving Data Through the Low-Level Interface 12-11

Comparison of the High-Level and Low-Level Interfaces 12-11
Using the Data Access Manager 12-12

Executing Routines Asynchronously 12-12
General Guidelines for the User Interface 12-13

Keep the User in Control 12-13
Provide Feedback to the User 12-13

Using the High-Level Interface 12-14
Writing a Status Routine for High-Level Functions 12-22
Using the Low-Level Interface 12-28
Getting Information About Sessions in Progress 12-36
Processing Query Results 12-37

Getting Query Results 12-37
Converting Query Results to Text 12-43

Creating a Query Document 12-47
User Interface Guidelines for Query Documents 12-47
Contents of a Query Document 12-49
Query Records and Query Resources 12-52
Writing a Query Definition Function 12-52
xiii

Data Access Manager Reference 12-55
Data Structures 12-55

The Asynchronous Parameter Block 12-56
The Query Record 12-57
The Results Record 12-59

Data Access Manager Routines 12-60
Initializing the Data Access Manager 12-61
High-Level Interface: Handling Query Documents 12-62
High-Level Interface: Handling Query Results 12-66
Low-Level Interface: Controlling the Session 12-69
Low-Level Interface: Sending and Executing Queries 12-77
Low-Level Interface: Retrieving Results 12-83
Installing and Removing Result Handlers 12-87

Application-Defined Routines 12-90
Resources 12-91

The Query Resource 12-91
The Query String Resource 12-92
The Query Definition Function Resource 12-93

Summary of the Data Access Manager 12-94
Pascal Summary 12-94

Constants 12-94
Data Types 12-95
Data Access Manager Routines 12-97
Application-Defined Routines 12-99

C Summary 12-99
Constants 12-99
Data Types 12-101
Data Access Manager Routines 12-102
Application-Defined Routines 12-104

Assembly-Language Summary 12-104
Trap Macros 12-104

Result Codes 12-105

Glossary GL-1

Index IN-1
xiv

Figures, Tables, and Listings

Preface About This Book xxiii

Chapter 1 Introduction to Interapplication Communication 1-1

Figure 1-1 Principal methods of communication between applications 1-5
Figure 1-2 Sharing data with the aid of the Edition Manager 1-7
Figure 1-3 A publisher, an edition, and a subscriber 1-8
Figure 1-4 Sharing dynamic data with other applications 1-8
Figure 1-5 Sending and responding to Apple events with the aid of the Apple

Event Manager 1-10
Figure 1-6 A Set Data event 1-12
Figure 1-7 How a scripting component executes a script 1-14
Figure 1-8 A Set Data event sent during script execution 1-17
Figure 1-9 Recording user actions in a factored application 1-19
Figure 1-10 Controlling an application’s own behavior by executing a

script 1-20
Figure 1-11 Posting an invoice and updating a database by executing a

script 1-21

Chapter 2 Edition Manager 2-1

Figure 2-1 The default edition icon 2-4
Figure 2-2 A publisher, an edition, and a subscriber 2-5
Figure 2-3 The publisher dialog box 2-5
Figure 2-4 The subscriber dialog box 2-7
Figure 2-5 A document and its corresponding editions 2-8
Figure 2-6 Publisher and subscriber borders 2-9
Figure 2-7 Edition Manager commands in the Edit menu 2-10
Figure 2-8 Edition Manager commands under the Publishing menu

command 2-11
Listing 2-1 Accepting Section Read events and verifying if a section is

registered 2-14
Figure 2-9 A document with a publisher and subscriber and its resource

fork 2-16
Figure 2-10 The new publisher alert box 2-19
Listing 2-2 Saving a document containing sections 2-21
Listing 2-3 Opening a document containing sections 2-23
Figure 2-11 A sample publisher dialog box 2-29
Listing 2-4 Creating a publisher 2-33
Listing 2-5 Writing data to an edition 2-36
Figure 2-12 A sample subscriber dialog box 2-37
Listing 2-6 Creating a subscriber 2-40
Listing 2-7 Reading in edition data 2-42
xv

Figure 2-13 The publisher options dialog box with update mode set to On
Save 2-43

Figure 2-14 The publisher options dialog box with update mode set to
Manually 2-44

Figure 2-15 The subscriber options dialog box with update mode set to
Automatically 2-44

Figure 2-16 The subscriber options dialog box with update mode set to
Manually 2-45

Listing 2-8 Responding to action codes 2-46
Figure 2-17 Edit menu with Show/Hide Borders menu command 2-51
Figure 2-18 Publisher borders 2-52
Figure 2-19 Subscriber borders 2-53
Figure 2-20 A publisher with contents removed 2-54
Figure 2-21 A publisher border within a spreadsheet document 2-55
Figure 2-22 A publisher border with resize handles 2-56
Figure 2-23 A publisher and subscriber with clipped graphics 2-57
Figure 2-24 Creating multiple publishers alert box 2-58
Figure 2-25 Saving multiple publishers alert box 2-58
Figure 2-26 Subscribing directly to a 'PICT' file 2-62
Listing 2-9 Using your own edition opener function 2-67

Chapter 3 Introduction to Apple Events 3-1

Figure 3-1 An Open Documents event 3-4
Figure 3-2 A Get Data event 3-7
Figure 3-3 Major attributes and direct parameter of an Open Documents

event 3-10
Figure 3-4 Major attributes and direct parameter of a Get Data event 3-11
Figure 3-5 A descriptor record whose data handle refers to an unterminated

string 3-13
Figure 3-6 A descriptor record whose data handle refers to event class

data 3-14
Figure 3-7 A keyword-specified descriptor record for the event class attribute

of an Open Documents event 3-16
Figure 3-8 A descriptor list for a list of aliases 3-17
Figure 3-9 Data structures within an Open Documents event 3-19
Figure 3-10 Accepting and processing an Open Documents event 3-21
Figure 3-11 The Apple Event Manager calling the handler for an Open

Documents event 3-22
Figure 3-12 Responding to an Open Documents event 3-27
Figure 3-13 Data structures within a simple object specifier record 3-37
Figure 3-14 An object specifier record in a Get Data event 3-38
Figure 3-15 Superclasses and subclasses 3-40
Figure 3-16 The object class inheritance hierarchy for the object class

cWindow 3-44

Figure 3-17 An Apple event object of class cWord contained in an Apple event
object of class cParagraph 3-46
xvi

Chapter 4 Responding to Apple Events 4-1

Listing 4-1 A DoEvent procedure 4-5
Listing 4-2 A DoHighLevelEvent procedure for handling Apple events and

other high-level events 4-6
Listing 4-3 Adding entries for the required Apple events to an application’s

Apple event dispatch table 4-8
Listing 4-4 Adding entries for Apple events sent by the Edition Manager to an

application’s Apple event dispatch table 4-9
Listing 4-5 A handler for the Open Application event 4-15
Listing 4-6 A handler for the Open Documents event 4-15
Listing 4-7 A handler for the Print Documents event 4-18
Listing 4-8 A handler for the Quit Application event 4-19
Listing 4-9 A handler for the Create Publisher event 4-23
Listing 4-10 Extracting items from a descriptor list 4-33
Listing 4-11 A function that checks for a keyMissedKeywordAttr

attribute 4-35
Listing 4-12 Adding the keyErrorString parameter to the reply Apple

event 4-38
Listing 4-13 Adding parameters to the reply Apple event 4-39
Table 4-1 Coercion handling provided by the Apple Event Manager 4-43
Listing 4-14 Using the AEInteractWithUser function 4-50
Figure 4-1 A document with a button that triggers a Get Data event 4-51
Figure 4-2 A server application displaying a dialog box that requests

information from the user 4-52
Figure 4-3 Handling user interaction 4-53
Figure 4-4 Handling user interaction with the kAEWaitReply flag set 4-54
Figure 4-5 Handling user interaction with the kAEQueueReply flag

set 4-55
Table 4-2 Descriptor types used by the Apple Event Manager (excluding

those used with object specifier records) 4-57

Chapter 5 Creating and Sending Apple Events 5-1

Listing 5-1 Creating the optional keyword for the Create Publisher
event 5-9

Listing 5-2 Creating a target address 5-11
Listing 5-3 Specifying a target address in an Apple event by using the

PPCBrowser function 5-12
Listing 5-4 Sending an Apple event 5-18
Listing 5-5 An idle function 5-23

Chapter 6 Resolving and Creating Object Specifier Records 6-1

Figure 6-1 Resolving an object specifier record for a table in a
document 6-6

Figure 6-2 Nested object specifier records that specify a container
hierarchy 6-10

Table 6-1 Standard descriptor types used with keyAEKeyData 6-12

Table 6-2 Keyword-specified descriptor records for
typeCompDescriptor 6-16
xvii

Table 6-3 Keyword-specified descriptor records for
typeLogicalDescriptor 6-17

Figure 6-3 The container hierarchy for the first row in a table that meets a
test 6-18

Figure 6-4 A logical descriptor record that specifies a test 6-19
Table 6-4 Keyword-specified descriptor records in a descriptor record of type

typeRangeDescriptor 6-20

Listing 6-1 Installing object accessor functions that find elements of different
classes for container tokens of the same type 6-23

Listing 6-2 Installing one object accessor function that finds elements of
different classes for container tokens of one type 6-25

Listing 6-3 Installing object accessor functions that find elements of the same
class for container tokens of different types 6-25

Listing 6-4 Installing object accessor functions that locate elements of different
classes in the default container 6-26

Listing 6-5 An object accessor function that locates Apple event objects of
object class cDocument 6-30

Listing 6-6 An object accessor function that locates Apple event objects of
object class cParagraph 6-32

Listing 6-7 An object accessor function that locates Apple event objects of
object class cWord 6-34

Listing 6-8 An object accessor function that locates Apple event objects of
object class cWindow 6-35

Listing 6-9 An object accessor function that identifies any property of a
window 6-38

Figure 6-5 Descriptor record for an application-defined token that identifies a
document 6-39

Figure 6-6 Descriptor record for an application-defined token that identifies the
pbounds property of a window 6-40

Table 6-5 Keyword-specified descriptor records for
typeWhoseDescriptor 6-42

Figure 6-7 A container hierarchy created by the Apple Event Manager using a
whose descriptor record 6-43

Table 6-6 Keyword-specified descriptor records for
typeWhoseRange 6-44

Listing 6-10 An object-counting function 6-49
Listing 6-11 Object-comparison function that compares two Apple event

objects 6-52
Table 6-7 Nested object specifier records that describe a container

hierarchy 6-56
Listing 6-12 Creating an object specifier record using

CreateObjSpecifier 6-58

Listing 6-13 Using CreateObjSpecifier in an application-defined
function 6-59

Listing 6-14 Specifying a document container 6-61
Listing 6-15 Specifying a table container 6-62
Table 6-8 Object specifier record for the first row that meets a test in the table

named “MyAddresses” 6-65
Table 6-9 Logical descriptor record that specifies a test 6-66
Listing 6-16 Creating an object specifier record with the key form

formName 6-67

Listing 6-17 Creating a comparison descriptor record 6-68
Listing 6-18 Creating a logical descriptor record 6-70
Listing 6-19 Creating a complex object specifier record 6-70
xviii

Table 6-10 A range descriptor record 6-73
Listing 6-20 Creating a range descriptor record 6-74
Table 6-11 Keyword-specified descriptor records for

typeObjectSpecifier 6-76

Chapter 7 Introduction to Scripting 7-1

Figure 7-1 A script window in the Script Editor application 7-6
Figure 7-2 Script file icons in the Finder and corresponding user

actions 7-7
Figure 7-3 How the AppleScript component executes a script 7-9
Figure 7-4 How an application uses the AppleScript component to execute a

script 7-13
Figure 7-5 Role of the 'aete' and 'aeut' resources when the AppleScript

component compiles and executes a script 7-18
Figure 7-6 Role of the 'aete' and 'aeut' resources when the AppleScript

component records and decompiles a script 7-19
Figure 7-7 Using a handler in a script context to handle an Apple

event 7-26

Chapter 8 Apple Event Terminology Resources 8-1

Table 8-1 Syntax for AppleScript arguments that correspond to direct
parameters 8-5

Table 8-2 Syntax for AppleScript arguments that correspond to insertion
location descriptor records 8-6

Table 8-3 Structure of the 'aeut' and 'aete' resources 8-8
Listing 8-1 Resource type declaration for the 'aeut' resource 8-9
Listing 8-2 Rez input for an 'aete' resource for an application that supports

the Required and Core suites in their entirety 8-15
Listing 8-3 Rez input for an 'aete' resource that extends the definitions of

the Required, Core, and Text suites 8-17
Listing 8-4 A handler for the Get AETE event 8-25
Figure 8-1 Structure of an 'aeut' or 'aete' resource 8-26
Figure 8-2 Structure of the header data in an 'aeut' or 'aete'

resource 8-27
Figure 8-3 Structure of suite data in an 'aeut' or 'aete' resource 8-28
Figure 8-4 Structure of event data in an 'aeut' or 'aete' resource 8-30
Figure 8-5 Structure of additional parameter data in an 'aeut' or 'aete'

resource 8-34
Figure 8-6 Structure of object class data in an 'aeut' or 'aete'

resource 8-36
Figure 8-7 Structure of property data in an 'aeut' or 'aete'

resource 8-38
Figure 8-8 Structure of element class data in an 'aeut' or 'aete'

resource 8-41
Figure 8-9 Structure of comparison operator data in an 'aeut' or 'aete'

resource 8-42
xix

Figure 8-10 Structure of enumeration data in an 'aeut' or 'aete'
resource 8-43

Figure 8-11 Structure of enumerator data in an 'aeut' or 'aete'
resource 8-44

Listing 8-5 Resource type declaration for the 'scsz' resource 8-45

Chapter 9 Recording Apple Events 9-1

Listing 9-1 A function used by a factored application to send itself a Quit
Application event 9-7

Listing 9-2 A routine used by a factored application to handle a Quit
Application event 9-8

Listing 9-3 A routine used by a factored application to send itself a Create
Element event 9-10

Listing 9-4 The Create Element event handler for a factored
application 9-11

Listing 9-5 A routine used by a factored application to handle window
movement 9-13

Chapter 10 Scripting Components 10-1

Listing 10-1 Locating a scripting component that supports specific optional
routines 10-6

Listing 10-2 A routine that compiles and executes source data 10-9
Listing 10-3 A procedure that uses OSAScriptError to get information about

an execution error 10-11
Figure 10-1 A generic storage descriptor record 10-12
Figure 10-2 A component-specific storage descriptor record 10-13
Listing 10-4 A routine that loads and executes script data previously saved

using a generic storage descriptor record 10-16
Listing 10-5 A routine that displays a compiled script for editing and recompiles

it 10-18
Listing 10-6 A function that loads and modifies script data, then saves it using a

generic storage descriptor record 10-19
Listing 10-7 A general Apple event handler that uses the OSADoEvent

function 10-21

Chapter 11 Program-to-Program Communications Toolbox 11-1

Figure 11-1 A PPC Toolbox session between two applications 11-5
Figure 11-2 The icon for the Sharing Setup control panel 11-6
Figure 11-3 The Sharing Setup control panel 11-6
Figure 11-4 The session termination alert box 11-7
Figure 11-5 The users and groups dialog box 11-8
Figure 11-6 The user termination alert box 11-8
Figure 11-7 The guest dialog box 11-9
Figure 11-8 The PPC Toolbox authentication process 11-10
Listing 11-1 Initializing the PPC Toolbox using the PPCInit function 11-12
Figure 11-9 Database and spreadsheet applications using the PPC

Toolbox 11-13
xx

Figure 11-10 Two Macintosh applications and their corresponding
ports 11-18

Figure 11-11 The PPC Toolbox and a dictionary service application 11-20
Listing 11-2 Opening a PPC port 11-21
Figure 11-12 The program linking dialog box 11-22
Figure 11-13 The program linking dialog box without a zone list 11-23
Listing 11-3 Using a port filter function 11-24
Listing 11-4 Browsing through dictionary service ports 11-26
Listing 11-5 Using the IPCListPorts function to obtain a list of

ports 11-28
Figure 11-14 The user identity dialog box 11-30
Figure 11-15 The incorrect password dialog box 11-31
Figure 11-16 The invalid user name dialog box 11-31
Listing 11-6 Using the StartSecureSession function to establish a

session 11-32
Listing 11-7 Initiating a session using the PPCStart function 11-34
Listing 11-8 Using the PPCInform function to enable a port to receive

sessions 11-36
Listing 11-9 Completion routine for a PPCInform function 11-37
Listing 11-10 Accepting a session request using the PPCAccept

function 11-38
Listing 11-11 Completion routine for a PPCAccept function 11-38
Listing 11-12 Rejecting a session request using the PPCReject

function 11-39
Listing 11-13 Completion routine for a PPCReject function 11-39
Figure 11-17 Transmitting message blocks 11-40
Listing 11-14 Using the PPCRead function to read data during a

session 11-41
Listing 11-15 Polling the ioResult field to determine if a PPCRead function has

completed 11-41
Listing 11-16 Using the PPCWrite function to write data during a

session 11-42
Listing 11-17 Polling the ioResult field to determine if a PPCWrite function

has completed 11-43
Listing 11-18 Ending a PPC session using the PPCEnd function 11-43
Listing 11-19 Closing a PPC port using the PPCClose function 11-44
Listing 11-20 Using the DeleteUserIdentity function to invalidate a user

identity 11-45
Figure 11-18 The PPC Toolbox parameter blocks 11-47

Chapter 12 Data Access Manager 12-1

Figure 12-1 A connection with a database 12-6
Figure 12-2 Using high-level Data Access Manager routines 12-8
Figure 12-3 Using low-level Data Access Manager routines 12-10
Figure 12-4 A flowchart of a session using the high-level interface 12-15
Listing 12-1 Using the high-level interface 12-18
Listing 12-2 Two completion routines 12-21
Listing 12-3 A sample status routine 12-26
Figure 12-5 A flowchart of a session using the low-level interface 12-30
Listing 12-4 Sending a query fragment 12-32
Listing 12-5 Using the low-level interface 12-34
xxi

Table 12-1 Data types defined by the Data Access Manager 12-39
Listing 12-6 A result handler 12-46
Figure 12-6 A query document dialog box 12-48
Figure 12-7 The relationship between resources in a query document and the

query record 12-50
Figure 12-8 The relationship between a query definition function and

queries 12-51
Listing 12-7 A query definition function 12-53
Figure 12-9 Structure of a compiled query ('qrsc') resource 12-91
Figure 12-10 Structure of a compiled query string ('wstr') resource 12-92
xxii

P R E F A C E

About This Book

This book, Inside Macintosh: Interapplication Communication, describes the
interapplication communication architecture, which provides a standard and
extensible mechanism for communication among Macintosh applications.
This book also describes the system software routines that you can use to
implement various forms of interapplication communication in your
application.

If you are new to programming on the Macintosh computer, you should
read Inside Macintosh: Overview for an introduction to general concepts of
Macintosh programming; Inside Macintosh: Macintosh Toolbox Essentials for
information on how to use menus, windows, and controls in your application;
and Macintosh Human Interface Guidelines for a complete discussion of user
interface guidelines and principles that every Macintosh application
should follow.

This book describes how to implement publish and subscribe features in your
application, how to communicate with other applications using Apple events,
how to respond to scripts, and how to exchange information with other
applications using the PPC Toolbox. It also discusses how your application
can use the Data Access Manager to access information from a database
application or other data source.

For an overview of all the features provided by the interapplication
communication architecture, see the chapter “Introduction to Interapplication
Communication” in this book.

To provide support for publish and subscribe features in your application,
see the chapter “Edition Manager” in this book. This chapter describes how
your application can allow users to share dynamic data among many
documents.

To communicate with other applications by using Apple events, first see
the chapter “Introduction to Apple Events” for a general introduction
to Apple events. For information on how to respond to the required
Apple events, see the chapter “Responding to Apple Events.” To create
and send Apple events, see the chapter “Creating and Sending Apple Events.”

You can choose to write your application so that it can recognize descriptions,
in Apple events, of objects in the application such as words, paragraphs,
shapes, or documents. To do so, see the chapter “Resolving and Creating
Object Specifier Records.”

In addition to supporting Apple events, you can make your application
scriptable—that is, capable of responding to Apple events sent to it by
a scripting component. By executing scripts, users of scriptable applications
can automate repetitive tasks or conditional tasks that involve multiple
xxiii

P R E F A C E

applications. For more general information about scripting, see the chapter
“Introduction to Scripting.” See the chapter “Apple Event Terminology
Resources” for information on the resources your application needs to
provide in order to be scriptable.

You can also make your application recordable, that is, capable of recording a
user’s actions for later playback. For more information, see the chapter
“Recording Apple Events.”

For information on how your application can execute a script with the aid of a
scripting component, see the chapter “Scripting Components.”

Although you’ll usually want to use Apple events to communicate with
other applications, if you need low-level control of communication between
applications you can use the Program-to-Program Communications (PPC)
Toolbox. For more information, see the chapter “Program-to-Program
Communications Toolbox.”

Applications can use the Data Access Manager to access information from
a database application or other data source. For example, a user in
San Francisco might use a spreadsheet application to request data from a
company database in New York. The spreadsheet application can use
the Data Access Manager to request the data from the database. The
database application in New York sends back the requested data, and
the spreadsheet application can then use this data to generate a graph of the
information. For information on sending and retrieving information from a
data source, see the chapter “Data Access Manager.”

For definitions of specific Apple events and Apple event objects, see the
Apple Event Registry: Standard Suites, available from APDA.

For information on handling files in your application and a description of
aliases and alias records, see Inside Macintosh: Files.

For information on processes and process serial numbers, see
Inside Macintosh: Processes.

Format of a Typical Chapter 0

Almost all chapters in this book follow a standard structure. For example, the
chapter “Creating and Sending Apple Events” contains these sections:

■ “Creating an Apple Event” and “Sending an Apple Event.” These
sections describe how your application can create and send Apple events.
They describe the Apple Event Manager routines that you can use to
accomplish these tasks, give related user interface information, and
provide code samples and additional information.

■ “Reference to Creating and Sending Apple Events.” This section provides a
complete reference to the Apple Event Manager routines you can use to
create and send Apple events. Each routine description also follows a
xxiv

P R E F A C E

standard format, which presents the routine declaration followed by a
description of every parameter of the routine. Some routine descriptions
also give additional descriptive information, such as assembly-language
information or result codes.

■ “Summary of Creating and Sending Apple Events.” This section provides
the Pascal and C interfaces for the constants, data structures, routines, and
result codes associated with the Apple Event Manager routines for creating
and sending Apple events. It also includes relevant assembly-language
interface information.

Conventions Used in This Book 0

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as the contents of registers, use special formats so that you
can scan them quickly.

Special Fonts 0
All code listings, reserved words, and the names of actual data structures,
fields, constants, parameters, and routines are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes 0
There are several types of notes used in this book.

Note
A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 3-26.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 3-33.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on page
page 4-10.) ▲
xxv

P R E F A C E

Assembly-Language Information 0
Some chapters provide additional assembly-language information. For
example, Inside Macintosh provides information about the registers for specific
routines like this:

In addition, Inside Macintosh provides information about the fields of a
parameter block in this format:

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all
input parameters and input/output parameters. The routine returns values
in output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

The Development Environment 0

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. When showing
system software routines, this book uses the Pascal interface available with
the Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal (except for listings that
describe resources, which are shown in Rez-input format). They show
methods of using various routines and illustrate techniques for accomplishing
particular tasks. All code listings have been compiled and, in many cases,
tested. However, Apple Computer, Inc., does not intend for you to use these
code samples in your application. You can find the location of code listings in
the list of figures, tables, and listings. If you know the name of a particular

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

↔ inAndOut Integer Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.
xxvi

P R E F A C E

routine (such as MyHandleODoc or MyHandleQuit) shown in a code listing,
you can find the page on which the routine occurs by looking under the entry
“sample routines” in the index of this book.

In order to make the code listings in this book more readable, they show only
limited error handling. You need to develop your own techniques for
handling errors.

This book occasionally illustrates concepts by reference to sample applications
called SurfWriter, SurfDB, and SurfCharter; these are not actual products of
Apple Computer, Inc.

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com
xxvii

P R E F A C E

The Apple Event Registrar maintains the Apple Event Registry: Standard Suites
and other information about the ongoing development of Apple event suites.
For more information about Apple event suites, including those under
development, send electronic mail to the AppleLink address REGISTRY.
xxviii

C H A P T E R 1

1

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to
Interapplication

Contents

Communication

Overview of Interapplication Communication 1-3
Sharing Data Among Applications 1-6
Sending and Responding to Apple Events 1-9

Standard Apple Events 1-10
Handling Apple Events 1-12

Supporting AppleScript and Other Scripting Languages 1-13
Scriptable Applications 1-16
Recordable Applications 1-18
Applications That Manipulate and Execute Scripts 1-19

Exchanging Message Blocks 1-22
Contents 1-1

C H A P T E R 1

1

Introduction to Interapplication C
om

m
unication

Introduction to Interapplication Communication 1

This chapter describes the interapplication communication (IAC) architecture for
Macintosh computers, summarizes how your application can take advantage of it, and
tells you where in this book to find the information you need to perform specific tasks.

The Apple Event Manager, Event Manager, and Program-to-Program Communications
(PPC) Toolbox underlie all the IAC tasks your application can perform. This chapter
introduces the Apple Event Manager and the Program-to-Program Communications
Toolbox. For information about the Event Manager, see Inside Macintosh: Macintosh
Toolbox Essentials. For definitions of the standard Apple events available for use by all
applications, see the Apple Event Registry: Standard Suites.

The IAC architecture includes the Open Scripting Architecture (OSA). The OSA provides
a mechanism that allows users to control multiple applications by means of scripts, or
sets of instructions, written in a variety of scripting languages. Each scripting language
has a corresponding scripting component that is managed by the Component Manager.
When a user executes a script, the scripting component sends Apple events to one or
more applications to perform the actions the script describes.

This chapter introduces the OSA and describes how to make your application scriptable,
or capable of responding to Apple events sent to it by a scripting component.
For more information about using the Component Manager, see Inside Macintosh:
More Macintosh Toolbox.

Overview of Interapplication Communication 1

The interapplication communication (IAC) architecture provides a standard and
extensible mechanism for communication among Macintosh applications. The IAC
architecture makes it possible for your application to

■ provide automated copy and paste operations between your application and other
applications

■ be manipulated by means of scripts

■ send and respond to Apple events

■ send and respond to high-level events other than Apple events

■ read and write blocks of data between applications

The chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials describes
how your application can use Event Manager routines to send and respond to high-level
events. High-level events need not adhere to any specific protocol, so their interpretation
is defined by each application that sends or receives them.

The most important requirement for high-level communication among all applications is
a common vocabulary of events. To provide such a standard, Apple Computer, Inc., has
defined a protocol called the Apple Event Interprocess Messaging Protocol (AEIMP).
High-level events that conform to this protocol are called Apple events.
Overview of Interapplication Communication 1-3

C H A P T E R 1

Introduction to Interapplication Communication

The vocabulary of publicly available Apple events is published in the Apple Event
Registry: Standard Suites, which defines the standard Apple events that developers and
Apple have worked out for use by all applications. To ensure that your application can
communicate at a high level with other applications that support Apple events now and
in the future, you should support the standard Apple events that are appropriate for
your application.

Effective IAC requires close cooperation among applications at several levels. In addition
to the format for high-level events and the standard vocabulary of Apple events, Apple
has defined several other standards your application can use to communicate with other
applications. These include standard methods for dealing with shared dynamic data,
scripts, and low-level message blocks.

The IAC architecture comprises the following parts:

■ The Edition Manager allows applications to automate copy and paste operations
between applications, so that data can be shared dynamically.

■ The Open Scripting Architecture (OSA) provides a standard mechanism, based on
the Apple Event Manager, that allows users to control multiple applications by means
of scripts written in a variety of scripting languages.

■ The Apple Event Manager allows applications to send and respond to Apple events.

■ The Event Manager allows applications to send and respond to high-level events
other than Apple events.

■ The Program-to-Program Communications (PPC) Toolbox allows applications to
exchange blocks of data with each other by reading and writing low-level message
blocks. It also provides a standard user interface that allows a user working in one
application to select another application with which to exchange data.

Figure 1-1 shows the primary relationships among these parts. The managers and
components toward the top of the figure rely on the managers beneath them. The Edition
Manager uses the services of the Apple Event Manager to support dynamic data sharing.
Scripting components manipulate and execute scripts with the aid of the Apple Event
Manager. The Apple Event Manager in turn relies on the Event Manager to send Apple
events as high-level events, and the Event Manager uses the services of the PPC Toolbox.

Figure 1-1 also shows the five principal means of communication provided by the IAC
architecture. In addition to using the Edition Manager and scripting components to send
Apple events on their behalf, applications can use the Apple Event Manager directly to
send Apple events to other applications. All applications can use the Apple Event
Manager to respond appropriately to Apple events, whether they are sent by the
Edition Manager, a scripting component, or other applications. Applications can
also use the Event Manager directly to send or receive high-level events other than
Apple events, and the PPC Toolbox directly to send or receive blocks of data.
1-4 Overview of Interapplication Communication

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

Figure 1-1 Principal methods of communication between applications

The five forms of IAC shown in Figure 1-1 can be summarized as follows:

■ Sharing dynamic data. The Edition Manager allows users to copy data from one
application’s document to another application’s document, updating information
automatically when the data in the original document changes. The verbs publish and
subscribe describe this form of dynamic data sharing, and the noun edition describes a
copy of the data to be shared. Applications that support dynamic data sharing must
implement the Create Publisher and Subscribe To menu commands. The Edition
Manager provides the interface that allows applications to share editions.
You can let users publish and subscribe on a local volume or across a network. In
general, users should be able to publish or subscribe to anything that they can copy or
paste. “Sharing Data Among Applications,” which begins on page 1-6, describes how
you can use the publish and subscribe features in your application.

■ Scripting. The OSA includes the Apple Event Manager, the Apple events defined by
the Apple Event Registry: Standard Suites, and the routines supported by scripting
components, which applications can use via the Component Manager to execute
scripts. Script-editing applications such as Script Editor (not shown in Figure 1-1)
allow users to manipulate and execute scripts.
Each scripting language has a corresponding scripting component that can execute
scripts written in that language. Scripting components typically implement a
text-based scripting language based on Apple events. For example, the AppleScript
component implements AppleScript, the standard user scripting language defined by

Apple
events

High-level
events

Low-level
message
blocksEdition Script

Event Manager

PPC Toolbox

Scripting
componentEdition Manager

Apple Event Manager
Overview of Interapplication Communication 1-5

C H A P T E R 1

Introduction to Interapplication Communication

Apple Computer, Inc. When the AppleScript component executes a script, it performs
the actions described in the script, including sending Apple events to applications
when necessary.
“Supporting AppleScript and Other Scripting Languages,” which begins on page 1-13,
describes how the OSA makes it possible for your application to
n provide human-language equivalents to Apple event codes so that scripting

components can send your application the appropriate Apple events during script
execution

n allow users to record their actions in the form of a script
n manipulate and execute scripts

■ Sending and responding to Apple events. Your application can send Apple events directly
to other applications to request services or information or to provide information. To
support AppleScript and most other scripting languages based on the OSA, your
application must be able to respond to Apple events. “Sending and Responding to
Apple Events,” which begins on page 1-9, describes how applications can send and
respond to Apple events with the aid of the Apple Event Manager.

■ Sending and responding to other high-level events. The Event Manager allows applications
to support high-level events other than Apple events. See the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about
high-level events.

■ Exchanging message blocks. The PPC Toolbox allows applications to exchange blocks of
data with each other by reading and writing low-level message blocks. This method of
communication is most useful for applications that are closely integrated, specifically
designed to work together, or dependent on each other for information. It can also be
used in code that is not event-based. See “Exchanging Message Blocks” on page 1-22
for a summary of the capabilities provided by the PPC Toolbox.

All forms of IAC are based on the premise that applications cooperate with each other.
Both the application sending a high-level event or low-level message block and the
application receiving it must agree on the protocol for communication. You can ensure
effective high-level communication between your application and other Macintosh
applications by supporting the standard Apple events defined in the Apple Event
Registry: Standard Suites.

Sharing Data Among Applications 1

All Macintosh applications can use the Scrap Manager to share static data by
allowing the user to copy and paste data between documents. Dynamic data sharing, or
automated copy and paste operations between applications, extends this capability to
dynamically changing data. The Edition Manager lets applications share dynamic data at
the user’s request. You incorporate publish and subscribe capabilities in your application
much as you incorporate copy and paste capabilities.
1-6 Sharing Data Among Applications

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

A user can publish data by selecting a portion of text, graphics, or other data in a
document and choosing Create Publisher from the Edit menu. In response, your
application saves the selected information in a separate file. This stored information is
referred to as an edition. The user can subscribe to an edition by choosing Subscribe To
from the Edit menu; when the user selects a file that contains an edition, your
application includes the information from the edition in the current document. The
information in an edition can be shared by many documents.

Figure 1-2 shows the principal relationships among the Edition Manager, the publishing
application, the subscribing application, and the file that contains the edition. In addition
to the relationships illustrated in the figure, the Edition Manager uses the Apple Event
Manager to communicate with applications that are sharing dynamic data.

Figure 1-2 Sharing data with the aid of the Edition Manager

A publisher is a portion of a document that is made available to other documents
through an edition. A subscriber is a portion of a document that reads the information
from an edition.

Figure 1-3 shows a document containing a publisher, a file containing an edition, and a
document containing a subscriber. The bottom fish in the Fishes of the World document
is a publisher. The information from this publisher is made available to other documents
through the Illustration edition. The Aquarium poster document contains a subscriber
that gets its information from the Illustration edition. Note that when a user selects a
publisher or subscriber within a document, your application should display a border
surrounding the publisher or subscriber.

In general, when a user modifies the contents of a publisher and saves the document,
your application should write the new data to the edition. The Edition Manager then
uses the Apple Event Manager to inform all open applications with subscribers to the
edition that it has been updated. These applications can then automatically update the
subscribers in the documents.

Edition

Edition Manager

Publishing
application

Subscribing
application
Sharing Data Among Applications 1-7

C H A P T E R 1

Introduction to Interapplication Communication

Figure 1-3 A publisher, an edition, and a subscriber

For example, suppose the user changes the color of the fish in the Fishes of the World
document shown in Figure 1-3, then saves the document. This automatically changes the
Illustration edition, and the subscribing application can update the Aquarium poster
document if that’s what the user wants to do.

Figure 1-4 shows how a user might create a poster from information contained in other
documents.

Figure 1-4 Sharing dynamic data with other applications

Aquarium poster

The sjdh akjdh ajdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zhgc. Hjf zxc
zjhc zjc zkjckjz zl
xhajhdjhk djfuw dj
G ahjcx zkjais.

The sjdh akjdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zh.
zjhc zjc zkjckjz zl
xhajhdjhk djfuw
G ahjcx zkjais.

The sjdh akjdh ajdh
cvxjs dkjxl. IN j
ashdjh hxcgjhc zjxc.
Thanks to jvh znx
xcjchz zhgc. Hjf
zjhc zjc zkjckjz zl
xhajhdjhk djf
G ahjcx zkjais.

E X P E R I E N C E
The AquariumFishes of the

World

Illustration

Illustration

Aquarium poster

Title text

Text for poster

The sjdh akjdh ajdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zhgc. Hjf zxc
zjhc zjc zkjckjz zl
xhajhdjhk djfuw dj
G ahjcx zkjais.

The sjdh akjdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zh.
zjhc zjc zkjckjz zl
xhajhdjhk djfuw
G ahjcx zkjais.

The sjdh akjdh ajdh
cvxjs dkjxl. IN j
ashdjh hxcgjhc zjxc.
Thanks to jvh znx
xcjchz zhgc. Hjf
zjhc zjc zkjckjz zl
xhajhdjhk djf
G ahjcx zkjais.

E X P E R I E N C E
The Aquarium

The sjdh akjdh ajdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zhgc. Hjf zxc
zjhc zjc zkjckjz zl
xhajhdjhk djfuw dj
G ahjcx zkjais.

The sjdh akjdh
cvxjs dkjxl. IN jhchc
ashdjh hxcgjhc zjxc.
Thanks to jvh znxcjk
xcjchz zh.
zjhc zjc zkjckjz zl
xhajhdjhk djfuw
G ahjcx zkjais.

The sjdh akjdh ajdh
cvxjs dkjxl. IN j
ashdjh hxcgjhc zjxc.
Thanks to jvh znx
xcjchz zhgc. Hjf
zjhc zjc zkjckjz zl
xhajhdjhk djf
G ahjcx zkjais.

E X P E R I E N C E
The Aquarium
1-8 Sharing Data Among Applications

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

Your application should save the new information in the edition whenever the user edits
the publisher and saves the document that contains the publisher—unless the user has
indicated that the information should be saved in the edition on request only. When the
user saves new information in an edition, the Edition Manager replaces the previous
contents.

When an edition is updated, the Edition Manager informs your application. Your
application should then update any subscribers (unless the user has indicated that
updates should be incorporated on request only).

For example, suppose a user opens a word-processing document called My Stocks that
accesses information from an edition called Stock Report. The Stock Report edition
might be updated twice a day by an online database. As the information in the edition
changes, the My Stocks document can receive automatic updates with the latest
information.

You can implement publish and subscribe capabilities in your application by using the
routines provided by the Edition Manager and supporting the related Apple events. The
chapter “Edition Manager” in this book provides sample code that shows how to add
these features to your application. The chapter “Responding to Apple Events” in this
book describes how to support the related Apple events.

Sending and Responding to Apple Events 1

An Apple event is a high-level event that conforms to the Apple Event Interprocess
Messaging Protocol. The Apple Event Manager uses the Event Manager to send Apple
events between applications on the same computer or between applications on remote
computers.

Applications typically use Apple events to request services and information from
other applications or to provide services and information in response to such requests.
For example, any application can use the Get Data Apple event to request that your
application locate and return a particular set of data, such as a table. If your application
supports the Get Data event, it should be able to recognize the event and respond by
locating the requested data and returning a copy of the data to the application that
requested it.

Communication between two applications that support Apple events is initiated by a
client application, which sends an Apple event to request a service or information. For
example, a client application might request services such as printing specific files,
checking the spelling of a list of words, or performing a numeric calculation; or it might
request information, such as one customer’s address or a list of names and addresses of
all customers living in Ohio. The application providing the service or the requested
information is called a server application. The client and server applications can reside
on the same local computer or on remote computers connected to a network.
Sending and Responding to Apple Events 1-9

C H A P T E R 1

Introduction to Interapplication Communication

Figure 1-5 shows the relationships among a client application, the Apple Event Manager,
and a server application. The client application uses Apple Event Manager routines to
create and send the Apple event, and the server application uses Apple Event Manager
routines to interpret the Apple event and respond appropriately. If the client application
so requests, the server application adds information to a reply Apple event that the
Apple Event Manager returns to the client application.

Figure 1-5 Sending and responding to Apple events with the aid of the Apple Event Manager

If an Apple event is one of the standard events defined in the Apple Event Registry:
Standard Suites, the client application can construct the event and the server application
can interpret it according to the standard definition for that event. To ensure that your
application can respond to Apple events sent by other applications, you should support
the standard Apple events that are appropriate for your application.

Standard Apple Events 1
The current edition of Apple Event Registry: Standard Suites defines the standard suites of
Apple events, which are groups of related events that are usually implemented together.
The Apple Event Registrar maintains the Apple Event Registry: Standard Suites and other
information about the ongoing development of Apple event suites.

The standard suites include the following:

■ The Required suite consists of the four Apple events that the Finder sends to
applications. These events are Open Application, Open Documents, Print Documents,
and Quit Application. The Finder uses the required events as part of the mechanisms
in System 7 and later versions for launching and terminating applications. To support
System 7, your application must support the required Apple events as described in
the chapter “Responding to Apple Events” in this book.

Apple Event Manager

Client
application

Server
application

Apple
event

Reply
Apple
event (if
requested)
1-10 Sending and Responding to Apple Events

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

■ The Core suite consists of the basic Apple events, including Get Data, Set Data, Move,
Delete, and Save, that nearly all applications use to communicate. You should support
the Apple events in the Core suite that make sense for your application.

■ A functional-area suite consists of a group of Apple events that support a related
functional area. Functional-area suites include the Text suite and the Database suite.
You can decide which functional-area suites to support according to which features
your application provides. For example, most word-processing applications should
support the Text suite, and most database applications should support the
Database suite.

You do not need to implement all Apple events at once. You should begin by supporting
the required Apple events, then add support for the events sent by the Edition Manager,
the core events, and the functional-area events as appropriate for your application.

If necessary, you can extend the definitions of the standard Apple events to suit
specific capabilities of your application. You can also define your own custom
Apple events. However, only those applications that choose to support your
custom Apple events explicitly will be able to make use of them. If all applications
communicated solely by means of custom Apple events, every application would have
to support all other applications’ custom events. Instead of creating custom Apple
events, try to use the standard Apple events and extend their definitions as necessary.

Apple events describe actions to be performed by the applications that receive them. In
addition to a vocabulary of actions, or “verbs,” effective communication between
applications requires a method of referring to windows, data (such as words or graphic
elements), files, folders, volumes, zones, and other items on which actions can be
performed. The Apple Event Manager provides a method for specifying structured
names, or “noun phrases,” that applications can use to describe the objects on which
Apple events act.

The Apple Event Registry: Standard Suites includes definitions for Apple event object
classes, which are simply names for objects that can be acted upon by each kind of
Apple event. Applications use these definitions and Apple Event Manager routines to
create complex descriptions of almost any discrete item in another application or its
documents. For example, an application could use Apple Event Manager routines and
standard object class definitions to construct a Get Data event that requests “the most
recent invoice to John Chapman in the Invoices database on the Archives server in the
Accounting zone” and send the event to the appropriate application across the network.

An Apple event object is any item supported by an application, such as a word,
paragraph, shape, or document, that can be described in an Apple event. In the example
just given, the specified invoice, the Invoices database, the Archives server, and the
Accounting zone are nested Apple event objects. Nearly any item that a user can
differentiate and manipulate on a Macintosh computer can be described as an Apple
event object of a specified object class nested within other Apple event objects. When
handling an Apple event that includes such a description, an application must locate the
specified Apple event object and perform the requested action on it.
Sending and Responding to Apple Events 1-11

C H A P T E R 1

Introduction to Interapplication Communication

Most of the standard Apple events defined in the Apple Event Registry: Standard Suites
require your application to recognize specific Apple event object classes. Support for the
standard Apple events, including Apple event object classes, allows your application to
respond to requests for services or information from any other application or process.

Handling Apple Events 1
Figure 1-6 shows a common Apple event from the Core suite, the Set Data event. The
SurfDB application is the client; it sends a Set Data event to the SurfCharter application.
This event requests that SurfCharter use some new sales figures generated by SurfDB to
update the data for the chart named “Summary of Sales” in the document named “Sales
Chart.” The Apple event contains information that identifies an action—setting data—
and a description of the Apple event object on which to perform the action—“the chart
named Summary of Sales in the document named Sales Report.” The Apple event also
includes the new data for the chart.

Figure 1-6 A Set Data event

To respond appropriately, the SurfCharter application in Figure 1-6 can use the
Apple Event Manager to determine what kind of Apple event has been sent and pass
the event to the appropriate Apple event handler. An Apple event handler is an
application-defined function that extracts pertinent data from an Apple event, performs
the requested action, and returns a result. In this case, the Set Data event handler must
locate an Apple event object—that is, the specified chart in the specified document—and
change the data displayed in the chart as requested.

Client
application

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

Apple event

Set Data

Chart named
“Summary of Sales”

of document “Sales Chart”

300 788 500 825

Server
application

SurfCharter

Set Data
event handler

SurfDB

Apple
event
object

Data to
set

Description
of Apple
event
object
1-12 Sending and Responding to Apple Events

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

The Apple Event Manager provides routines that a server application can use in its
Apple event handlers to take apart an Apple event and examine its contents. The
SurfCharter application in Figure 1-6 can interpret the contents of the Set Data Apple
event according to the definition of that event in the Apple Event Registry: Standard Suites.
The Set Data event handler uses both Apple Event Manager routines and the SurfCharter
application’s own routines to locate the chart and make the requested change.

The Apple Event Manager also provides routines that a client application can use to
construct and send an Apple event. However, the most important requirement for
applications that support IAC is the ability to respond to Apple events, because this
ability is essential for an application that users can control through scripts. The next
section describes how you can use Apple events to support scripting in your application.

The chapter “Introduction to Apple Events” in this book provides an overview of Apple
events and describes how you can use the Apple Event Manager to implement Apple
events in your application. The chapters “Responding to Apple Events,” “Creating and
Sending Apple Events,” “Resolving and Creating Object Specifier Records,” and
“Recording Apple Events” provide detailed information about the Apple Event
Manager.

Supporting AppleScript and Other Scripting Languages 1

A script is any collection of data that, when executed by the appropriate program, causes
a corresponding action or series of actions. For example, some database,
telecommunications, and page-layout applications allow users to automate repetitive or
conditional tasks by means of scripts written in proprietary scripting languages. The
HyperTalk® scripting language allows users to control the behavior of HyperCard®
stacks. Macro programs can automate tasks at the level of mouse clicks and keystrokes.

The Open Scripting Architecture (OSA) provides a standard mechanism that allows
users to control multiple applications with scripts written in a variety of scripting
languages. Each scripting language has a corresponding scripting component. When a
scripting component executes a script, it performs the actions described in the script,
including sending Apple events to applications if necessary.

The OSA comprises the following parts:

■ The Apple Event Manager allows applications to respond to Apple events sent by
scripting components (see the previous section, “Sending and Responding to Apple
Events”).

■ The Apple Event Registry: Standard Suites defines the standard vocabulary of
Apple events.

■ The standard scripting component data structures, routines, and resources allow
applications to interact with any scripting component.

■ The AppleScript component implements the AppleScript scripting language.
Supporting AppleScript and Other Scripting Languages 1-13

C H A P T E R 1

Introduction to Interapplication Communication

The AppleScript component, which implements the AppleScript scripting language, is
the implementation of the OSA provided by Apple Computer, Inc. Users can view a
script written in the AppleScript scripting language in several different dialects, or
versions of the AppleScript language that resemble specific human languages or
programming languages.

Figure 1-7 shows the relationships among some of these parts. The client application
in Figure 1-7 is Script Editor, an application provided by Apple Computer, Inc., that
allows users to record, edit, and execute scripts. The client application could also be any
other application that uses the standard scripting component routines to execute scripts.
Script Editor uses the Component Manager to open a connection with the scripting
component that created the script to be executed.

Figure 1-7 How a scripting component executes a script

Component Manager

Client
application

Scripting component

Server applications

Apple events

Apple Event Manager

Script Editor
Script
1-14 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication

Like sound resources, scripts can be stored in applications and documents as well as in
distinct script files that can be manipulated from the Finder. Script Editor allows users to
execute scripts stored in script files. Users can also execute special script files called
script applications simply by opening them from the Finder.

During script execution, scripting components perform actions described in the script,
using the Apple Event Manager to send Apple events when necessary. The server
applications shown in Figure 1-7 use the Apple Event Manager to examine the contents
of the Apple events they receive and to respond appropriately. A server application
always responds to the same Apple event in the same way, regardless of whether the
event is sent by a scripting component or directly by a client application.

You can take advantage of the OSA in three ways:

■ You can make your application scriptable, or capable of responding to Apple events
sent to it by a scripting component. An application is scriptable if it
n Responds to the appropriate standard Apple events. See the previous section,

“Sending and Responding to Apple Events.”
n Provides an Apple event terminology extension ('aete') resource that describes

which Apple events your application supports and the corresponding
human-language terminology for use in scripts. The 'aete' resource allows
scripting components to interpret scripts correctly and send the appropriate Apple
events to your application during script execution.

By executing scripts, users of scriptable applications can perform almost any task that
they would otherwise perform by choosing menu commands, typing, and so on.
Users can also execute scripts to perform many tasks that might otherwise be difficult
to accomplish, especially repetitive or conditional tasks that involve multiple
applications.

■ You can make your application recordable— that is, capable of sending Apple events
to itself in response to user actions such as choosing a menu command or changing
the contents of a document. After a user has turned on recording for a particular
scripting component, the scripting component receives copies of all subsequent
Apple events and records them in the form of a script.

■ You can have your application manipulate and execute scripts with the aid of a
scripting component. To do so, your application must
n use the Component Manager to open a connection with the appropriate component
n use the standard scripting component routines to record, edit, compile, save, load,

or execute scripts when necessary
Users of applications that execute scripts can modify the applications’ behavior by
editing the scripts. For example, a user of an invoice program might be able to write a
script that checks and if necessary updates customer information in a separate
database application each time the user posts an invoice.

The sections that follow describe these three kinds of scripting capabilities in more
detail. The chapter “Introduction to Scripting” in this book provides an overview of the
way scripting components work and how you can implement support for scripting in
your application.
Supporting AppleScript and Other Scripting Languages 1-15

C H A P T E R 1

Introduction to Interapplication Communication
Scriptable Applications 1
If your application can respond to standard Apple events sent by other applications, it
can also respond to the same Apple events sent by a scripting component. Before
executing a script that controls your application, a scripting component must associate
the human-language terms used in the script with specific Apple event codes supported
by your application. Scriptable applications provide this information in an Apple event
terminology extension ('aete') resource.

Because scripting components can obtain information from 'aete' resources about the
nature of different applications’ support for Apple events, a single script can describe
complex tasks performed cooperatively by several specialized applications. For example,
a user can execute an AppleScript script to locate all records in a database with specific
characteristics, update a series of charts based on those records, import the charts into a
page-layout document, and send the document to a remote computer on the network via
electronic mail.

When a user executes such a script, the AppleScript component attempts to perform the
actions the script describes, including sending Apple events to various applications
when necessary. To map human-language terms used in the script to the corresponding
Apple events supported by each application, the AppleScript component looks up the
terms in the applications’ 'aete' resources. Each human-language term specified by an
application’s 'aete' resource has a corresponding Apple event code. After the
AppleScript component has identified the Apple event codes for the terms used in a
script, it can create and send the Apple events that perform the actions described in
the script.

To respond appropriately to the Apple events sent to it by the AppleScript component,
the database application in this example must be able to locate records with specific
characteristics so that it can identify and return the requested data. The other
applications involved must support Apple events that perform the other actions
described in the script.

One line in such a script might be a statement like this:

copy Totals to chart "Summary of Sales" of document "Sales Chart"

In this statement, the word Totals is a variable that has been set earlier in the same
script to the value of the new data generated by a database application. The statement
causes the AppleScript component to send a Set Data event updating the chart named
“Summary of Sales.” Figure 1-8 shows how the AppleScript component would execute
this statement. (Figure 1-6 on page 1-12 shows a database application that sends a similar
Set Data event directly.)

To interpret the terms in this script statement correctly, the AppleScript component must
be able to look them up in the SurfCharter application’s 'aete' resource, which maps
those terms to the corresponding codes for Apple events, object classes, and so on used
by the Apple Event Manager. The AppleScript component can then create and send the
Set Data event to SurfCharter.
1-16 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
When it receives the Set Data event, the SurfCharter application uses the Apple Event
Manager to determine what kind of Apple event has been sent and to pass the event to
SurfCharter’s handler for that event, which in turn locates the chart and changes its data
as requested.

The chapter “Introduction to Scripting” in this book describes how the 'aete' resource
works. The chapter “Apple Event Terminology Resources” describes how to define
terminology for use by the AppleScript component and how to create an 'aete'
resource.

Figure 1-8 A Set Data event sent during script execution

Client
application

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

Apple event

Set Data

Chart named
“Summary of Sales”

of document
“Sales Chart”

300 788 500 825

Server
application

SurfCharter

Set Data
event handler

Component Manager

AppleScript
component

Apple event codes for human-language terms
'aete' resource

Script Editor

Script

tell application "SurfCharter"
 copy Totals to chart "Summary of Sales"¬
			 of document "Sales Chart"
end tell
Supporting AppleScript and Other Scripting Languages 1-17

C H A P T E R 1

Introduction to Interapplication Communication
Recordable Applications 1
If you decide to make your application scriptable, you can also make it recordable,
allowing users to record their actions in your application in the form of a script. Even
users with little or no knowledge of a particular scripting language can record their
actions in recordable applications in the form of a script. More knowledgeable users can
record scripts and then edit or combine them as desired.

Applications generally have two parts: the code that implements the application’s user
interface and the code that actually performs the work of the application when the user
manipulates the interface. To make your application fully recordable, you should
separate these two parts of your application, using Apple events to connect user actions
with the work your application performs.

Any significant user action within a recordable application should generate Apple events
that a scripting component can record as statements in a script. For example, when a
user chooses New from the File menu, a recordable application sends itself a Create
Element event, and the application’s handler for that event creates the new document.
Implementing Apple events in this manner is called factoring your application. A
factored application acts as both the client and the server application for the Apple
events it sends to itself.

In general, a recordable application should generate Apple events for any user action
that could be reversed by the Undo command. A recordable application can usually
handle a greater variety of Apple events than it can record, since it must record the same
action the same way every time even though Apple events might be able to trigger
that action in several different ways.

A recordable event is any Apple event that any recordable application sends to itself
while recording is turned on for the local computer (with the exception of events that the
application indicates it does not want to be recorded). After a user turns on recording
from the Script Editor application, the Apple Event Manager sends copies of all
recordable events to Script Editor. A scripting component previously selected by the user
handles each copied event for Script Editor by translating the event into the scripting
component’s scripting language and recording the translation as part of a Script Editor
script. When a scripting component executes a recorded script, it sends the
corresponding Apple events to the applications in which they were recorded.

Figure 1-9 illustrates how Apple event recording works. The user performs a significant
action (such as choosing New from the File menu), and the SurfCharter application
sends itself an Apple event to perform the task associated with that action. If recording is
turned on, the Apple Event Manager automatically sends a copy of each recordable
Apple event to the application (for example, Script Editor) that initiated recording. The
scripting component handles the copy of each recordable event by translating it and
recording it as part of a script. To translate each Apple event correctly, the scripting
component must first check what equivalent human-language terminology the
SurfCharter application uses for that Apple event. The scripting component then records
the equivalent statement in the script.
1-18 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
The chapter “Recording Apple Events” in this book describes the Apple Event
Manager’s recording mechanism in more detail and explains how to use Apple events to
factor your application.

Figure 1-9 Recording user actions in a factored application

Applications That Manipulate and Execute Scripts 1
Like sound resources, scripts can be stored either as separate files with their own icons in
the Finder or within an application or its documents. Your application can store and
execute scripts regardless of whether it is scriptable or recordable. If your application is
scriptable, however, it can execute scripts that control its own behavior, thus acting
as both the client application and the server application for the corresponding
Apple events.

Your application can establish a connection with any scripting component that is
registered with the Component Manager on the same computer. Each scripting
component can manipulate and execute scripts written in the corresponding scripting
language (or, as in the case of AppleScript, one of the scripting language’s dialects) when
your application calls the standard scripting component routines.

You can use the standard scripting component routines to

■ get a handle to a script so you can save the script in a preferences file, in the data fork
of a document, or as a separate script file

■ manipulate scripts associated with any part of your application or its documents,
including both Apple event objects and other objects defined by the application

Apple
event

Copy of
Apple event

User action
handler

Apple event
handler

SurfCharter

Scripting component

Human-language terms for
 Apple event codes

'aete' resource

User action

Script
Supporting AppleScript and Other Scripting Languages 1-19

C H A P T E R 1

Introduction to Interapplication Communication
■ let users record and edit scripts

■ compile and execute scripts

Figure 1-10 shows how an application might execute a script that controls its own
behavior. The appropriate user action handler executes the script in response to a user
action, which can be almost anything: choosing a menu command, clicking a button,
tabbing from one table cell to another, and so on. The script might consist of a single
statement that describes some default action, such as saving or printing, or a series
of statements that describe a series of tasks, such as setting default preferences or styles.
Figure 1-10 shows a script that corresponds to a single Apple event, but the script could
just as easily correspond to a whole series of Apple events. If your application allows
users to modify such a script, they can modify the behavior of your application to suit
their needs.

Figure 1-10 Controlling an application’s own behavior by executing a script

Your application can associate a script with any Apple event object or
application-defined object and execute the script when that object is manipulated in
some way. The script can describe actions to be taken by your application, as in
Figure 1-10, or actions to be taken by several applications. For example, a user of a
word-processing application might attach a script to a specific word so that the
application executes the script whenever that word is double-clicked. Such a script could
trigger Apple events that look up and display related information from a separate
document, run a QuickTime movie, perform a calculation, play a voice annotation, and
so on.

User action
handler

Apple event
handler

Component Manager

SurfWriter

Apple event

User action

Script

Scripting component
1-20 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
Figure 1-11 shows one way that a script can be used to control two or more applications.
When a user chooses the Post Invoice command in the accounting application, the user
action handler for that menu command executes a default script for posting an invoice.
That script might describe actions such as saving the invoice, updating the sales journal,
and so on. The scripting component sends Apple events to the accounting application to
perform these actions.

Figure 1-11 Posting an invoice and updating a database by executing a script

The accounting application also allows users to open the default invoice-posting script in
Script Editor and modify it so that additional actions are performed when it is executed.
For example, as shown in Figure 1-11, the script could instruct the SurfDB application to
update a database of customer information in addition to performing the default posting
actions. In this case, the scripting component sends Apple events to both the accounting
application and SurfDB to carry out all the actions described by the script.

User action
handler

Component Manager

Apple
event handler

Scripting
component

Apple events

Apple events

SurfDB

Apple
event handler

Client

Accounting application

Script
Supporting AppleScript and Other Scripting Languages 1-21

C H A P T E R 1

Introduction to Interapplication Communication
There is no limit to the actions such a script can describe. In addition to sending
the Apple events shown in Figure 1-11, the invoice-posting script could be used to
trigger Apple events that cause other applications to perform a credit check, send the
invoice to the customer by electronic mail, forward inventory information to a remote
server on the network, and so on.

The chapter “Scripting Components” in this book describes how your application can
use the standard scripting component routines to manipulate and execute its own scripts
and allow users to modify those scripts.

Exchanging Message Blocks 1

You should be able to meet most of your application’s IAC needs by using the Apple
Event Manager or the Event Manager. However, if you need low-level control or services
not provided by the Apple Event Manager or the Event Manager, you can use the PPC
Toolbox. The PPC Toolbox lets you send large amounts of data to other applications
located on the same computer or across a network. The PPC Toolbox can also be used by
pieces of code that are not event-driven. The PPC Toolbox is usually called by the
Operating System; device drivers, desk accessories, or other code modules can also use it.

You cannot use the PPC Toolbox to send data between applications unless both your
application and the application you’re communicating with are open at the same time.
To initiate communication, one program opens a port and requests a session with
another program. The target application must also open a port and accept the request.
Once a session is established, the two programs can read and write low-level message
blocks.

The PPC Toolbox also provides a standard user interface that allows a user working in
one application to select another application with which to exchange data, whether the
communication is achieved by means of Apple events, other high-level events, or
message blocks.

The chapter “Program-to-Program Communications Toolbox” in this book describes
how programs can exchange low-level message blocks.
1-22 Exchanging Message Blocks

C H A P T E R 2

2

Figure 2-0
Listing 2-0
Table 2-0

Contents

2 Edition Manager

Introduction to Publishers, Subscribers, and Editions 2-4
About the Edition Manager 2-12
Using the Edition Manager 2-12

Receiving Apple Events From the Edition Manager 2-13
Creating the Section Record and Alias Record 2-15
Saving a Document Containing Sections 2-19
Opening and Closing a Document Containing Sections 2-22
Reading and Writing a Section 2-24

Formats in an Edition 2-24
Opening an Edition 2-26
Format Marks 2-27
Reading and Writing Edition Data 2-27
Closing an Edition 2-28

Creating a Publisher 2-29
Creating the Edition Container 2-32
Opening an Edition Container to Write Data 2-35

Creating a Subscriber 2-37
Opening an Edition Container to Read Data 2-41
Choosing Which Edition Format to Read 2-41

Using Publisher and Subscriber Options 2-43
Publishing a New Edition While Saving or Manually 2-47
Subscribing to an Edition Automatically or Manually 2-48
Canceling Sections Within Documents 2-48
Locating a Publisher Through a Subscriber 2-49

Renaming a Document Containing Sections 2-50
Displaying Publisher and Subscriber Borders 2-50

Text Borders 2-54
Spreadsheet Borders 2-55
Contents 2-1

C H A P T E R 2

Object-Oriented Graphics Borders 2-56
Bitmapped Graphics Borders 2-57
Duplicating Publishers and Subscribers 2-58

Modifying a Subscriber 2-59
Relocating an Edition 2-60
Customizing Dialog Boxes 2-60

Subscribing to Non-Edition Files 2-62
Getting the Current Edition Opener 2-63
Setting an Edition Opener 2-63
Calling an Edition Opener 2-64
Opening and Closing Editions 2-68
Listing Files That Can Be Subscribed To 2-68
Reading From and Writing to Files 2-68
Calling a Format I/O Function 2-68

Edition Manager Reference 2-71
Data Structures 2-71

The Edition Container Record 2-71
The Section Record 2-72

Edition Manager Routines 2-73
Initializing the Edition Manager 2-74
Creating and Registering a Section 2-74
Creating and Deleting an Edition Container 2-79
Setting and Getting a Format Mark 2-81
Reading in Edition Data 2-83
Writing out Edition Data 2-86
Closing an Edition After Reading or Writing 2-88
Displaying Dialog Boxes 2-90
Locating a Publisher and Edition From a Subscriber 2-98
Edition Container Formats 2-101
Reading and Writing Non-Edition Files 2-102

Application-Defined Routines 2-105
Summary of the Edition Manager 2-106

Pascal Summary 2-106
Constants 2-106
Data Types 2-108
Edition Manager Routines 2-111
Application-Defined Routines 2-113

C Summary 2-114
Constants 2-114
Data Types 2-116
Edition Manager Routines 2-119
Application-Defined Routines 2-122

Result Codes 2-122
2-2 Contents

C H A P T E R 2

2

E
dition M

anager

Edition Manager 2

This chapter describes how you can use the Edition Manager to allow your users to
share and automatically update data from numerous documents and applications.

The Edition Manager is available only in System 7 or later. It can be used by many
different applications located on a single disk or throughout a network of Macintosh
computers. To test for the existence of the Edition Manager, use the Gestalt function,
described in Inside Macintosh: Operating System Utilities.

Read the information in this chapter if you want your application’s documents to share
and automatically update data, or if you want to share and automatically update data
with documents created by other applications that support the Edition Manager.

For example, a user might want to capture sales figures and totals from within a
spreadsheet and then include this information in a word-processing document that
summarizes sales for a given month. The Edition Manager establishes a connection
between these two documents. When a user modifies the spreadsheet, the information in
the word-processing document can be automatically updated to contain the latest
changes. To accomplish this, both the spreadsheet application and the word-processing
application must support the features of the Edition Manager.

To use this chapter, you should be familiar with sending and receiving high-level events,
described in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials. Your application must also support Apple events to receive Apple events from
the Edition Manager. See the following chapters in this book for detailed information on
Apple events.

The Edition Manager provides you with the ability to

■ capture data within a document and integrate it into another document

■ modify information in a document and automatically update any document that
shares its data

■ share information between applications on the same computer or across a network of
Macintosh computers

Building the capabilities of the Edition Manager into your program is similar to building
cut-and-paste features into your program. Text, graphics, spreadsheet cells, database
reports—any data that you can select, you can make accessible to other applications that
support the Edition Manager. The next section provides an overview of the main
elements of the Edition Manager. Following sections discuss how to implement these
features in your application.

This chapter also describes an advanced feature that allows applications to share data
directly from a file.
2-3

C H A P T E R 2

Edition Manager

Introduction to Publishers, Subscribers, and Editions 2

A section is a portion of a document that shares its contents with other documents. The
Edition Manager supports two types of sections: publishers and subscribers. A
publisher is a section within a document that makes its data available to other
documents or applications. A subscriber is a section within a document that obtains its
data from other documents or applications.

Your application writes a copy of the data in each publisher to a separate file called an
edition container. The actual data that is written to the edition container is referred to as
the edition. Your application obtains the data for each subscriber by reading data
from the edition container. Note that throughout this chapter, the term edition refers to
the edition container and the data it contains.

You publish data when you want to make it available to other documents and
applications. When data is published, it is stored in an edition container. You subscribe
to data that a publisher makes available by reading an edition from its container.

Note
Section and edition container are programmatic terms. You should not use
them in your application or your documentation. Use publishers,
subscribers, and editions. You should also refrain from using other terms
such as publication or subscription to describe the dynamic sharing of
information provided by the Edition Manager. Use the terms publish and
subscribe to describe the Edition Manager features. ◆

Each edition has an icon that is visible from the Finder. Figure 2-1 shows the
default edition icon.

Figure 2-1 The default edition icon

The name that the user specifies for the edition is located next to the edition icon. For
information on providing icons for the editions created by your application, see the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials. Figure 2-2
illustrates a document containing a single publisher, its corresponding edition, and a
subscriber to the edition in another document.

sample
2-4 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Figure 2-2 A publisher, an edition, and a subscriber

Note that the publisher and subscriber borders illustrated in Figure 2-2 may appear
slightly different from the borders you see on the screen. Figure 2-6 on page 2-9 shows
the publisher and subscriber borders as they appear onscreen.

Data always flows in one direction, from publisher to edition to subscriber. Documents
that contain publishers and subscribers do not have to be open at the same time to share
data. Whenever the user saves a document that contains a publisher, the edition changes
to reflect the current data from the publisher. All subscribers update their contents from
the edition. Any number of subscribers can subscribe to a single edition.

To create a publisher within a document, a user selects an area of the document to
share and chooses Create Publisher from the Edit menu (see Figure 2-7 on page 2-10).
Figure 2-3 shows the dialog box that your application should display when the user
chooses Create Publisher.

Figure 2-3 The publisher dialog box

SubscriberPublisher

$1324.67 $4567.67 $7689.75
$2313.78 $2345.34 $3425.67
$4312.87 $3425.80 $5463.90
$3590.00 $5465.98 $7865.90

These figures reflect the increases over a two
month period which were affected by
the increase cost of
operating expenses for that period.
Adjustments to these figures will be evaluated
shortly.

January February Totals
$1324.46 $1938.99 $3251.45
$2313.56 $2457.89 $3425.66
$4312.87 $3255.09 $5468.00
$3590.67 $5655.88 $7861.23
$3890.88 $6586.45 $5433.71

November December Totals
$1394.67 $5677.67 $2349.75
$3875.78 $2837.34 $3984.67
$9356.87 $3695.80 $5463.90
$5690.78 $5465.98 $7489.14

January February Totals
$1312.46 $1938.99 $3251.45
$2313.56 $2457.89 $3425.66

Sales data

TO: Nick
FROM: Laura Palmer

Here are the sales figures that you requested.
Introduction to Publishers, Subscribers, and Editions 2-5

C H A P T E R 2

Edition Manager

Your application provides a thumbnail sketch of the edition data, which the
Edition Manager displays in the preview area of the publisher dialog box. Your preview
of the edition in this dialog box should provide a visual cue about the type of
information that the user has selected to publish.

A preview area also appears in the subscriber dialog box (see Figure 2-4). This preview,
too, should provide a visual cue about the type of information the edition contains.
For example, it should allow users to distinguish between text information and
spreadsheet arrays.

The publisher dialog box uses the extended interface of the standard file dialog box that
accompanies System 7. The user navigates through the contents of the disk using the
mouse or keyboard.

A user can modify a publisher within a document just like any other portion of a
document. As a default, each time a user saves a document containing a publisher, your
application should automatically write the publisher’s data to the edition. You also need
to provide the user with the choice of sending new publisher data to an edition manually
(that is, only at the user’s specific request). You should provide these options by using
the publisher options dialog box described later in “Using Publisher and Subscriber
Options” beginning on page 2-43.

For example, one user may choose to update an edition automatically each time a
document is saved. This update mode is useful for a user who creates a publisher within
a spreadsheet application that records stock information. Each time the user updates the
stock information and saves the spreadsheet, a new edition automatically becomes
available to subscribers.

Another user may choose to update an edition only upon request. This update mode
might be useful for a user who creates a publisher within a word-processing application
for a quarterly sales report. The user incrementally updates the sales report throughout
the entire quarter but does not want this information to be available to subscribers
until the end of the quarter. Only at the end of each quarter does the user specifically
request to update the edition and make it available to any subscribers.

To create a subscriber within a document, the user places the insertion point and chooses
Subscribe To from the Edit menu. Figure 2-4 shows the dialog box that your application
should display when the user chooses Subscribe To.
2-6 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Figure 2-4 The subscriber dialog box

The subscriber dialog box also uses the extended interface of the standard file dialog box
introduced with System 7. Initially, the dialog box should highlight the name of the last
edition published or subscribed to. This allows a user to create a publisher and
immediately subscribe to its edition.

A subscriber receives its data from a single edition. By default, your application should
automatically update a document containing a subscriber whenever a new edition is
available. You also need to provide the user with the choice of receiving the latest edition
manually (that is, only when the user specifically requests it). You can provide these
options by using the subscriber options dialog box described later in “Using Publisher
and Subscriber Options” beginning on page 2-43.

For example, one user may choose to receive new editions automatically as they become
available. This update mode is useful for a user who subscribes to information from an
edition that consists of daily sales figures. This user automatically acquires each version
of the sales information as it becomes available.

Another user may choose to receive a new edition only upon request. This update mode
is useful for a user who creates a subscriber to an edition that consists of graphics data
(such as a company logo). The user may require only periodic versions of the logo and
not need frequent updates. In this case, your application should update the subscriber
with a new edition only when the user specifically requests it.

A user can select, cut, copy, or paste an entire subscriber. Although the contents of the
subscriber as a whole can be modified, a user cannot edit portions of a subscriber. For
example, a user can underline or italicize the entire subscriber text but cannot delete a
sentence or rotate a single graphic object. This restriction protects the user from losing
changes to a subscriber when a new edition arrives. Remember that, as a default, new
editions should automatically update a subscriber. Any changes that a user made to the
subscriber text would have to be reapplied by the user when the new edition arrives. See
“Modifying a Subscriber” on page 2-59 for further information.
Introduction to Publishers, Subscribers, and Editions 2-7

C H A P T E R 2

Edition Manager

A single document can contain any number or combination of publishers and
subscribers. Figure 2-5 shows an example of a document that contains two publishers
and one subscriber (and their corresponding editions). Remember that data always flows
in one direction, from publisher to edition to subscriber. The “Concert flyer” document
contains a publisher that is subscribed to by the “Benefit concert” document. The
“Concert flyer” document also subscribes to a portion of the “Pianos & palm trees”
document. In addition, the “Concert flyer” document as a whole is subscribed to by the
“Sample flyer” document.

Figure 2-5 A document and its corresponding editions

M u s i c

in

the

park

Join us every Wednesday evening
at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium
shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.
The series will continue through

April 25.

Concert
flyer

Benefit concert

is a series of benefit concerts
being held by the City Arts
Foundation. All proceeds
will be donated to the children’s
art museum and the city center
arts council.

u s i c
in

the

park

M

Subscriber

Title

Pianos & palm trees

Publisher

Graphic

Sample flyer

Here is a sample
flyer.

M u s i c

in

the

park

Join us every Wednesday evening
at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium
shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.
The series will continue through

April 25.

Subscriber

Flyer
2-8 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

You should distinguish each selected publisher and subscriber within a document with a
border. Display a publisher border as three pixels wide with 50 percent gray lines, and
display a subscriber border as three pixels wide with 75 percent gray lines. A rectangle of
one white pixel should separate the data from the border itself. Borders should be drawn
outside the contents of publishers and subscribers so that data is not obscured. See
Figure 2-6 for an illustration of the borders as they appear onscreen. See “Displaying
Publisher and Subscriber Borders” on page 2-50 for detailed information on how to
implement borders for specific applications.

Figure 2-6 shows a document containing a publisher and a document containing a
subscriber, with borders displayed for each.

Borders for publishers and subscribers should behave like the borders of 'PICT'
graphics within a word-processing document. Your application should display a border
whenever the user clicks within the content area of a publisher or a subscriber. Your
application should hide the border whenever the user clicks outside the content area. See
“Displaying Publisher and Subscriber Borders” on page 2-50 for detailed information on
how to implement borders for specific applications.

Figure 2-6 Publisher and subscriber borders
Introduction to Publishers, Subscribers, and Editions 2-9

C H A P T E R 2

Edition Manager

You also need to support the standard Edition Manager menu commands in the
Edit menu. These menu items include

■ Create Publisher…

■ Subscribe To…

■ Publisher/Subscriber Options…

■ Show/Hide Borders (optional)

■ Stop All Editions (optional)

Use a divider to separate the Edition Manager menu commands from the standard
Edit menu commands Cut, Copy, and Paste. Figure 2-7 shows the standard Edition
Manager menu commands.

Figure 2-7 Edition Manager commands in the Edit menu

The Subscriber Options menu command should toggle with the Publisher Options menu
command. When a user selects a subscriber and then accesses the menu bar, your
application should adjust its menus so that the Subscriber Options menu command
appears in the Edit menu. When a user selects a publisher and then accesses the menu
bar, your application should adjust its menus so that the Publisher Options menu
command appears in the Edit menu. In addition, you may support a Show Borders
menu command that toggles with Hide Borders to display or hide all publishers and
subscriber borders within documents. You may also support a Stop All Editions menu
command to provide a method for temporarily suspending all update activity in a
document. When the user chooses this command, you should place a checkmark next to
it. You should also stop all publishers from sending data to editions and all subscribers
from receiving new editions. When the user chooses this command again, remove the
checkmark and update any subscribers that are set up to receive new editions
automatically.
2-10 Introduction to Publishers, Subscribers, and Editions

C H A P T E R 2

Edition Manager

2

E
dition M

anager

If you find that you need all of the available space in the Edit menu for your
application’s commands, you may create a hierarchical menu for the Edition Manager
menu commands. If you choose to implement this structure, you should allow users to
access the Edition Manager menu commands through a Publishing menu command in
the Edit menu. Because this menu structure is not as accessible to users, you should
implement it only if you have no other alternative.

Figure 2-8 shows the Edition Manager menu commands in a hierarchical menu structure.

Figure 2-8 Edition Manager commands under the Publishing menu command

For each publisher or subscriber within an open document, you must have a section
record and an alias record. The section record contains a time stamp that records the
version of the data that resides in the section. The section record also identifies the
section as either a publisher or subscriber, and it establishes a unique identity for each
publisher or subscriber. The section record does not contain the data within the section.
The alias record is a reference to the edition container from the document that contains
the corresponding publisher or subscriber section.

There are special options associated with publishers and subscribers within documents.
Your application can use the publisher and subscriber options dialog boxes provided by
the Edition Manager to make these choices available to the user. For example, a user can
select Open Publisher within the subscriber options dialog box to access the document
containing the publisher. Your application can also allow a user to cancel subscribers or
publishers within documents, specify when to update an edition from a publisher, or
specify when to update a subscriber with a new edition. These options are described in
“Using Publisher and Subscriber Options” beginning on page 2-43.
Introduction to Publishers, Subscribers, and Editions 2-11

C H A P T E R 2

Edition Manager

About the Edition Manager 2

The next section discusses how to save, open, read, and write a document that shares
data. In addition, it describes how to

■ make data accessible to other applications

■ integrate data into numerous documents

■ set update options

■ implement borders

■ modify shared data

■ customize dialog boxes

■ subscribe to data in non-edition files

Using the Edition Manager 2

This section describes how your application can

■ receive Apple events from the Edition Manager

■ set up a section record and alias record for open documents containing sections

■ save a document that contains sections

■ open a document that contains sections

■ read and write sections

■ create a publisher within a document, create its edition container, and write data to it

■ create a subscriber within a document and read its data from an edition

To begin, you must determine whether the Edition Manager is available on the system
by using the Gestalt function with the gestaltEditionMgrAttr ('edtn') selector.
If the response parameter returns 1 in the bit defined by the
gestaltEditionMgrPresent constant (bit 0), the Edition Manager is present.

If the Edition Manager is present, load it into memory using the InitEditionPack
function. This function determines whether the machine has enough space in the system
heap for the Edition Manager to operate.

err := InitEditionPack;

If the InitEditionPack function returns noErr, you have enough space to load the
package. If you do not have enough space, the application can either terminate itself or
continue with the Edition Manager functionality disabled.
2-12 About the Edition Manager

C H A P T E R 2

Edition Manager

2

E
dition M

anager

Receiving Apple Events From the Edition Manager 2
Applications that use the Edition Manager must support Apple events. This requires that
your application support the required Open Documents event and Apple events sent by
the Edition Manager. See the chapter “Introduction to Apple Events” in this book for
general information on Apple events.

Apple events sent by the Edition Manager arrive as high-level events. The
EventRecord data type defines the event record.

TYPE EventRecord =

RECORD

what: Integer; {kHighLevelEvent}

message: LongInt; {'sect'}

when: LongInt;

where: Point; {'read', 'writ', 'cncl', 'scrl'}

modifiers: Integer;

END;

The Edition Manager can send these Apple events with the event class and event ID as
shown here:

■ Section Read events ('sect' 'read')

■ Section Write events ('sect' 'writ')

■ Section Cancel events ('sect' 'cncl')

■ Section Scroll events ('sect' 'scrl')

Each time your application creates a publisher or a subscriber, the Edition Manager
registers its section. When an edition is updated, the Edition Manager scans its list to
locate registered subscribers. For each registered subscriber that is set up to receive
updated editions automatically, your application receives a Section Read event.

If the Edition Manager discovers that an edition file is missing while registering a
publisher, it creates a new edition file and sends the publisher a Section Write event.

When you receive a Section Cancel event, you need to cancel the specified section. Note
that the current Edition Manager does not send you Section Cancel events, but you do
need to provide a handler for future expansion.

If the user selects a subscriber within a document and then selects Open Publisher in the
subscriber options dialog box, the publishing application receives the Open Documents
event and opens the document containing the publisher. The publishing application also
receives a Section Scroll event. Scroll to the location of the publisher, display this section
on the user’s screen, and turn on its border.

See “Opening and Closing a Document Containing Sections” beginning on page 2-22 for
detailed information on registering and unregistering a section and writing data to an
edition. See “Using Publisher and Subscriber Options” beginning on page 2-43 for
information on publisher and subscriber options.
Using the Edition Manager 2-13

C H A P T E R 2

Edition Manager
After receiving an Apple event sent by the Edition Manager, use the Apple Event
Manager to extract the section handle. In addition, you must also call the
IsRegisteredSection function to determine whether the section is registered. It is
possible (because of a race condition) to receive an event for a section that you recently
disposed of or unregistered. One way to ensure that an event corresponds to a valid
section is to call the IsRegisteredSection function after you receive an event.

err := IsRegisteredSection (sectionH);

Listing 2-1 illustrates how to use the Apple Event Manager and install an event handler
to handle Section Read events. You can write similar code for Section Write events,
Section Scroll events, and Section Cancel events.

Listing 2-1 Accepting Section Read events and verifying if a section is registered

{the following goes in your initialization code}

myErr := AEInstallEventHandler(sectionEventMsgClass {'sect'},

 sectionReadMsgID {'read'},

 @MyHandleSectionReadEvent, 0,

 FALSE);

{this is the routine the Apple Event Manager calls when a }

{ Section Read event arrives}

FUNCTION MyHandleSectionReadEvent(theAppleEvent,

 reply: AppleEvent;

 refCon: LongInt): OSErr;

VAR

myErr: OSErr;

sectionH: SectionHandle;

BEGIN

{get section handle out of Apple event message buffer}

myErr := MyGetSectionHandleFromEvent(theAppleEvent, sectionH);

IF myErr = noErr THEN

BEGIN

IF IsRegisteredSection(sectionH) = noErr THEN

{if section is registered, read the new data}

MyHandleSectionReadEvent := DoSectionRead(sectionH);

END

ELSE

MyHandleSectionReadEvent := myErr;

END; {MyHandleSectionReadEvent}
2-14 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{this routine reads in subscriber data and updates its display}

FUNCTION DoSectionRead(subscriber: SectionHandle): OSErr;

BEGIN

{your code here}

END; {DoSectionRead}

{this is part of your Apple event–handling code}

FUNCTION MyGetSectionHandleFromEvent(theAppleEvent: AppleEvent;

 VAR sectionH: SectionHandle)

 : OSErr;

VAR

ignoreType: DescType;

ignoreSize: Size;

BEGIN

{parse section handle out of message buffer}

MyGetSectionHandleFromEvent

:= AEGetParamPtr(theAppleEvent, {event to parse}

keyDirectObject, {look for direct }

{ object}

typeSectionH, {want a SectionHandle}

ignoreType, {ignore type it could }

{ get}

@sectionH, {put SectionHandle }

{ here}

SizeOf(sectionH), {size of storage for }

{ SectionHandle}

ignoreSize); {ignore storage it }

{ used}

END; {MyGetSectionHandleFromEvent}

In addition to the Section Read, Section Write, Section Cancel, and Section Scroll events,
your application can also respond to the Create Publisher event. For more information
on this event, as well as additional information on how to handle Apple events, see the
chapter “Responding to Apple Events” in this book.

Creating the Section Record and Alias Record 2
Your application is responsible for creating a section record and an alias record for each
publisher and subscriber section within an open document.

The section record identifies each section as a publisher or subscriber and provides
identification for each section. The section record does not contain the data within the
section; it describes the attributes of the section. Your application must provide its own
method for associating the data within a section with its section record. Your application
is also responsible for saving the data in the section.
Using the Edition Manager 2-15

C H A P T E R 2

Edition Manager
The alias field of the section record contains a handle to its alias record. The alias
record is a reference to the edition container from the document that contains the
publisher or subscriber section. You should be familiar with the Alias Manager’s
conventions for creating alias records and identifying files, folders, and volumes to
locate files that have been moved, copied, or restored from backup. For information on
the Alias Manager, see Inside Macintosh: Files.

When a user saves a document, your application should store all section records and
alias records in the document’s resource fork. Corresponding section records and alias
records should have the same resource ID.

Figure 2-9 shows a document containing a publisher and subscriber, and the
corresponding section records and alias records.

Figure 2-9 A document with a publisher and subscriber and its resource fork

Publisher

Subscriber

Apple SCSI Cable Terminators
are hardware devices
that attach to a SCSI
device or SCSI cable.
There must be no more than
two terminators in a SCSI chain.

SCSI cables and terminators
Devices connected to the SCSI port on the back
of the main unit must have the proper number
of terminators for the devices to work correctly
and to prevent damage to the SCSI chip
inside your computer.

Resource fork

version:
kind:
mode:
mdDate:
sectionID:
refCon:
alias:

subPart:
nextSection:
controlBlock:
refNum:

version:
kind:
mode:
mdDate:
sectionID:
refCon:
alias:

subPart:
nextSection:
controlBlock:
refNum:

Adding Cable Terminators

A Cable Terminator acts as a damper in
your SCSI Cable System. Terminators
keep signals from bouncing off one end
of the line and rippling back, interfering
with the new messages.

Section record

Section record

Terminator

SCSI info

Alias record

Alias record
2-16 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
A section record contains information to identify the data contained within a section as a
publisher or a subscriber, a time stamp to record the last modification of the section,
and unique identification for each section. The SectionRecord data type defines the
section record.

TYPE SectionRecord =

RECORD

version: SignedByte; {always 1 in 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change in document}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function described later within this }

{ chapter. Do not modify the private fields.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private, do not use as a }

{ linked list}

controlBlock: Handle; {may be used for comparison }

{ only}

refNum: EditionRefNum; {private}

END;

Field descriptions

version Indicates the version of the section record, currently $01.
kind Defines the section type as either publisher or subscriber with the

stPublisher or stSubscriber constant.
mode Indicates if editions are updated automatically or manually.
mdDate Indicates which version (modification date) of the section’s contents

is contained within the publisher or subscriber. The mdDate field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on
page 2-28 for detailed information.
Using the Edition Manager 2-17

C H A P T E R 2

Edition Manager
sectionID Provides a unique number for each section within a document. A
simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPublisherSection function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or –1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

refCon Reference constant available for application-specific use.
alias Contains a handle to the alias record for a particular section within

a document.

Whenever the user creates a publisher or subscriber, call the NewSection function to
create the section record and the alias record.

err := NewSection(container, sectionDocument, kind, sectionID,

 initialMode, sectionH);

The NewSection function creates a new section record (either publisher or subscriber),
indicates whether editions are updated automatically or manually, sets the modification
date, and creates an alias record from the document containing the section to the edition
container.

You can set the sectionDocument parameter to NIL if the current document has never
been saved. Use the AssociateSection function to update the alias record of a
registered section when the user names or renames a document by choosing Save As
from the File menu. If you are creating a subscriber with the initialMode parameter
set to receive new editions automatically, your application receives a Section Read event
each time a new edition becomes available for this subscriber.

If an error is encountered, the NewSection function returns NIL in the sectionH
parameter. Otherwise, NewSection returns a handle to the allocated section record in
the sectionH parameter.
2-18 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Set the initialMode parameter to the update mode for each subscriber and publisher
created. You can specify the update mode using these constants:

CONST sumAutomatic = 0; {subscriber receives new }

{ editions automatically}

sumManual = 1; {subscriber receives new }

{ editions manually}

pumOnSave = 0; {publisher sends new }

{ editions on save}

pumManual = 1; {publisher does not send }

{ new editions until user }

 { request}

See “Using Publisher and Subscriber Options” beginning on page 2-43 for detailed
information on update modes for publishers and subscribers. See Listing 2-4 beginning
on page 2-33 for code that uses the NewSection function to create a publisher. See
Listing 2-6 on page 2-40 for code that uses NewSection to create a subscriber.

Saving a Document Containing Sections 2
When saving a document that contains sections, you should write out each section
record as a resource of type 'sect' and write out each alias record as a resource of type
'alis' with the same ID as the section record. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on resources.

If a user closes a document that contains newly created publishers without attempting to
save its contents, you should display an alert box similar to the one shown in Figure 2-10.

Figure 2-10 The new publisher alert box
Using the Edition Manager 2-19

C H A P T E R 2

Edition Manager
If you keep the section records and alias records for each publisher and subscriber as
resources, you can use the ChangedResource or WriteResource function. If you
detach the section records and alias records from each section, you need to clone the
handles and use the AddResource function. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for detailed information on the
ChangedResource, WriteResource, and AddResource functions.

Use the PBExchangeFiles function to ensure that the file ID remains the same each
time you save a document that contains sections. Saving a file typically involves creating
a new file (with a temporary name), writing data to it, closing it, and then deleting the
original file that you are replacing. You rename the temporary file with the original
filename, which leads to a new file ID. The PBExchangeFiles function swaps the
contents of the two files (even if they are open) by getting both catalog entries and
swapping the allocation pointers. If the files are open, the file control block (FCB) is
updated so that the reference numbers still access the same contents (under a new
name). See Inside Macintosh: Files for detailed information on the PBExchangeFiles
function.

Listing 2-2 illustrates how to save a file that contains sections. If the contents of a
publisher have changed since the last save, the application-defined procedure
MySaveDocument writes the publisher’s data to its edition. It then writes out to
the saved document the section records and alias records of all publishers and
subscribers. MySaveDocument calls another application-defined routine,
MyGetSectionAliasPair, to return a handle and resource ID to a section. As
described earlier, you should write out the eligible section records and alias records as
resources to allow for future compatibility. There are several different techniques for
saving or adding resources; this listing illustrates one technique. The section handles are
still valid after using the AddResource function because this listing illustrates just
saving, not closing, the file.

Before you write out sections, you need to see if any publisher sections share the same
control block. Publishers that share the same control block share the same edition.

If a user creates an identical copy of a file by choosing Save As from the File menu and
does not make any changes to this new file, you simply use the AssociateSection
function to indicate to the Edition Manager which document a section is located in.
2-20 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-2 Saving a document containing sections

PROCEDURE MySaveDocument(thisDocument: MyDocumentInfoPtr;

 numberOfSections: Integer);

VAR

aSectionH: SectionHandle;

copiedSectionH: Handle;

copiedAliasH: Handle;

resID: Integer;

thisone: Integer;

myErr: OSErr;

BEGIN

FOR thisone := 1 TO numberOfSections DO

BEGIN

aSectionH := MyGetSectionAliasPair(thisDocument, thisone,

 resID);

IF (aSectionH^^.kind = stPublisher) &

(aSectionH^^.mode = pumOnSave) &

(MyCheckForDataChanged(aSectionH)) THEN

DoWriteEdition(aSectionH);

END; {end of for}

{set the curResFile to the resource fork of thisDocument}

UseResFile(thisDocument^.resForkRefNum);

{write all section and alias records to the document}

FOR thisone := 1 TO numberOfSections DO

BEGIN

{given an index, get the next section handle and resID }

{ from your internal list of sections for this file}

aSectionH := MyGetSectionAliasPair(thisDocument, thisone,

 resID);

{check for duplication of control block values}

MyCheckForDupes(thisDocument, numberOfSections);

{save section record to disk}

copiedSectionH := Handle(aSectionH);

myErr := HandToHand(copiedSectionH);

AddResource(copiedSectionH, rSectionType, resID, '');

{save alias record to disk}

copiedAliasH := Handle(aSectionH^^.alias);

myErr := HandToHand(copiedAliasH);

AddResource(copiedSectionH, rAliasType, resID, '');

END; {end of for}

{write rest of document to disk}

END;
Using the Edition Manager 2-21

C H A P T E R 2

Edition Manager
Opening and Closing a Document Containing Sections 2
When opening a document that contains sections, your application should use the
GetResource function to get the section record and the alias record for each publisher
and subscriber. Set the alias field of the section record to be the handle to the alias. See
the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for detailed
information on the GetResource function.

You also need to register each section using the RegisterSection function. The
RegisterSection function informs the Edition Manager that a section exists.

err := RegisterSection(sectionDocument, sectionH,

 aliasWasUpdated);

The RegisterSection function adds the section record to the Edition Manager’s list of
registered sections. This function assumes that the alias field of each section record is a
handle to the alias record. The alias record is a reference to the edition container from the
section’s document. If the RegisterSection function successfully locates the edition
container for a particular section, the section is registered through a shared control block.
The control block is a private field in the section record.

If the RegisterSection function cannot find the edition container for a particular
subscriber, RegisterSection returns the containerNotFoundWrn result code. If
the RegisterSection function cannot find the edition container for a particular
publisher, RegisterSection creates an empty edition container for the publisher in
the last place the edition was located. The Edition Manager sends your application a
Section Write event for that section.

When a user attempts to open a document that contains multiple publishers to the same
edition, you should warn the user by displaying an alert box (see “Duplicating
Publishers and Subscribers” on page 2-58).

When a user opens a document that contains a subscriber (with an update mode set to
automatic), receives a new edition, and then closes the document without making any
changes to the file, you should update the document and simply allow the user to close
it. You do not need to prompt the user to save changes to the file.

When closing a document that contains sections, you must unregister each section (using
the UnRegisterSection function) and dispose of each corresponding section record
and alias record.

err := UnRegisterSection(sectionH);

The UnRegisterSection function removes the section record from the list of
registered sections and unlinks itself from the shared control block.
2-22 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-3 illustrates how to open an existing file that contains sections. As described
earlier, you should retrieve the section and alias resources, connect the pair through the
alias field of the section record, and register the section with the Edition Manager.
There are many different techniques for retrieving resources; this listing shows one
technique. If an alias was out of date and was updated by the Alias Manager during
the resolve, the Edition Manager sets the aliasWasUpdated parameter of the
RegisterSection function to TRUE. This means that you should save the document.
Additionally, your application must maintain its own list of registered sections for each
open document that contains sections. You use this list to write out new editions for
updated publishers within a document.

Listing 2-3 Opening a document containing sections

PROCEDURE MyOpenExistingDocument(thisDocument: MyDocumentInfoPtr);

VAR

sectionH: SectionHandle;

aliasH: AliasHandle;

aliasWasUpdated: Boolean;

registerErr: OSErr;

resID: Integer;

theResType: ResType;

thisone: Integer;

numberOfSections: Integer;

aName: Str255;

BEGIN

UseResFile(thisDocument^.resForkRefNum);

{find out the number of section resources}

numberOfSections := Count1Resources(rSectionType);

FOR thisone := 1 TO numberOfSections DO

BEGIN

sectionH := SectionHandle(Get1IndResource(rSectionType,

 thisone));

IF sectionH = NIL THEN {something could be wrong with }

MySectionErr; { the file, handle appropriately}

{get resource ID of the section & use same ID for alias}

GetResInfo(Handle(sectionH), resID, theResType, aName);

{detaching is not necessary, but it is convenient}

DetachResource(Handle(sectionH));

{get the alias}

aliasH := AliasHandle(Get1Resource(rAliasType, resID));

IF aliasH = NIL THEN {something could be wrong with }

MyAliasErr; { the file, handle appropriately}

DetachResource(Handle(aliasH));
Using the Edition Manager 2-23

C H A P T E R 2

Edition Manager
{connect section and alias together}

sectionH^^.alias := aliasH;

{register the section}

registerErr := RegisterSection(thisDocument^.fileSpec,

 sectionH, aliasWasUpdated);

{The RegisterSection function may return an error if }

{ a section is not registered. This is not a fatal error. }

{ Continue looping to register remaining sections.}

{add this section/alias pair to your internal bookkeeping}

MyAddSectionAliasPair(thisDocument, sectionH, resID);

IF aliasWasUpdated THEN

{If alias has changed, make a note of this. }

{ It's important to know this when you save.}

MyAliasHasChanged(sectionH);

END; {end of FOR}

END;

Reading and Writing a Section 2
Your application writes publisher data to an edition. New publisher data replaces the
previous contents of the edition, making the previous edition information irretrievable.
Your application reads data from an edition for each subscriber within a document.

The following sections describe how to

■ use different formats to write to or read from an edition

■ open an edition to initiate writing or reading

■ set a format mark

■ write to or read from an edition

■ close an edition after successfully writing or reading data

Formats in an Edition 2

You can write data to an edition in several different formats. These formats are the same
as scrap format types. Scrap format types are indicated by a four-character tag.

Typically, when a user copies data, you identify the scrap format types and then write
the data to the scrap. With the Edition Manager, when a user decides to publish data,
you identify the format types and then write the data to an edition. You can write
multiple formats of the same data.

For an edition, you should write your preferred formats first. In general, to write data
to an edition, your application should use either 'TEXT' format or 'PICT' format. This
allows your application to share data with most other applications. To subscribe to
an edition, your application should be able to read both 'TEXT' and 'PICT' files. In
addition, your application can write any other private formats that you want to support.
2-24 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Scrap format types are described in the chapter “Scrap Manager” in Inside Macintosh:
More Macintosh Toolbox.

A few special formats are defined as constants.

CONST kPublisherDocAliasFormat = 'alis';{alias record from the }

{ edition to publisher}

kPreviewFormat = 'prvw';{'PICT' thumbnail }

{ sketch}

kFormatListFormat = 'fmts';{lists all available }

{ formats}

The kPublisherDocAliasFormat ('alis') format is written by the Edition
Manager. It is an alias record from the edition to the publisher’s document. Appended to
the end of the alias is the section ID of the publisher, which the Edition Manager uses to
distinguish between multiple publishers to a single edition. You should discourage users
from making multiple copies of the same publisher. See “Duplicating Publishers and
Subscribers” on page 2-58 for detailed information.

In addition to writing a publisher’s data to an edition in the 'TEXT' format or 'PICT'
format, your application can also write data to an edition in the kPreviewFormat
('prvw') format. If you provide a 'prvw' format in an edition, the Edition Manager
uses it to display a preview of the edition data in the preview area of the subscriber
dialog box. The 'prvw' format has the same format as a 'PICT' file. To draw a preview
in the 'prvw' format, the Edition Manager calls DrawPicture with a rectangle of
120 by 120 pixels. (See Inside Macintosh: Imaging for more information about
DrawPicture.) Your application should provide data in a 'prvw' format so that the
data displays well in a rectangle of this size. Your application can also use this preview
to display subscriber data within a document (to save space).

If your application does not provide a preview in the 'prvw' format for an edition, the
Edition Manager attempts to provide a preview by using the edition’s 'PICT' format.
To draw a preview in the 'PICT' format, the Edition Manager examines the picture’s
bounding rectangle and calls DrawPicture with a rectangle that scales the picture
proportionally and centers it in a 120-by-12-pixel area.

The kFormatListFormat ('fmts') format is a virtual format that is read but never
written. It is a list of all the formats and their lengths. Applications can use this format in
place of the EditionHasFormat function (described in “Choosing Which Edition
Format to Read” on page 2-41), which provides a procedural interface to determine
which formats are available.

If your application can read two or more of the available formats, use 'fmts' to
determine the priority of these formats for a particular edition. The order of 'fmts'
reflects the order in which the formats were written.
Using the Edition Manager 2-25

C H A P T E R 2

Edition Manager
The FormatsAvailable data type defines a record for the 'fmts' format.

TYPE FormatsAvailable = ARRAY[0..0] OF

RECORD

theType: FormatType; {format type for an edition}

theLength: LongInt; {length of edition format }

{ type}

END;

For example, an edition container may have a format type 'TEXT' of length 100, and a
format type 'styl' of length 32. A subscriber to this edition can open it and then read
the format type 'fmts' to list all available formats. In this example, it returns 16 bytes:
'TEXT' $00000064 'styl' $00000020.

Opening an Edition 2

For a publisher, use the OpenNewEdition function to initiate the writing of data to an
edition. (Note that the edition container must already exist before you initiate writing;
see “Creating the Edition Container” beginning on page 2-32.)

err := OpenNewEdition(publisherSectionH, fdCreator,

 publisherSectionDocument, refNum);

The publisherSectionH parameter is the publisher section that you are writing to the
edition. The fdCreator parameter is the Finder creator type of the new edition.
(The edition container file already has a creator type; you can specify the same creator
type or establish a new creator type for the edition.)

The publisherSectionDocument parameter specifies the document that contains the
publisher. This parameter is used to create an alias from the edition to the publisher’s
document. If you pass NIL for publisherSectionDocument, an alias is not made in
the edition file. The refNum parameter returns the reference number for the edition.

For a subscriber, use the OpenEdition function to initiate the reading of data from
an edition.

err := OpenEdition(subscriberSectionH, refNum);

The subscriberSectionH parameter is a handle to the section record for a given
section. The refNum parameter returns the reference number for the edition.

The user may rename or move the edition in the Finder. Before writing to or reading data
from an edition, the Edition Manager verifies the name of the edition. This process is
referred to as synching or synchronization. Synching ensures that the Edition Manager’s
existing edition names correspond to the Finder’s existing edition names by updating
the control block.
2-26 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Format Marks 2

Each format has its own mark. The mark indicates the next position of a read or write
operation. Initially, a mark automatically defaults to 0. After reading or writing data, the
format mark is set past the last position written to or read from. The mark is similar to
the File Manager’s current read or write position marker for a data fork. Any time that
an edition is open (after calling the OpenEdition or the OpenNewEdition function),
any of the marks for each format can be queried or set.

To set the current mark for a section format to a new location, use the
SetEditionFormatMark function.

err := SetEditionFormatMark(whichEdition, whichFormat,

 setMarkTo);

To get the current mark for a format in an edition file, use the GetEditionFormatMark
function.

err := GetEditionFormatMark(whichEdition, whichFormat,

 currentMark);

Reading and Writing Edition Data 2

The Edition Manager allows you to read or write data a few bytes at a time (as with a
data fork of a Macintosh file) instead of in one block (as with the Scrap Manager). You
can read sequentially by setting the mark to 0 and repeatedly calling read, or you can
jump to a specific offset by setting the mark there. The Edition Manager also adds the
capability to stream multiple formats by keeping a separate mark for each format. This
allows you to write a few bytes of one format and then write a few bytes of another
format, and so forth.

Once you have opened the edition container for a particular publisher, you can begin
writing data to the edition. Use the WriteEdition function to write publisher data to
an edition.

err := WriteEdition(whichEdition, whichFormat, buffPtr, buffLen);

The WriteEdition function writes the specified format (beginning at the current mark
for that format type) from the buffer pointed to by the buffPtr parameter up to
buffLen bytes.

After you open the edition container for a subscriber and determine which formats to
read, use the ReadEdition function to read edition data.

err := ReadEdition(whichEdition, whichFormat, buffPtr, buffLen);
Using the Edition Manager 2-27

C H A P T E R 2

Edition Manager
The ReadEdition function reads the data with the specified format (whichFormat)
from the edition into the buffer. The ReadEdition function begins reading at the
current mark for that format and continues to read up to buffLen bytes. The actual
number of bytes read is returned in the buffLen parameter. Once the buffLen
parameter returns a value smaller than the value you have specified, there is no
additional data to read, and the ReadEdition function returns a noErr result code.

Note
The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not in
the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

Closing an Edition 2

When you are done writing to or reading data from an edition, call the CloseEdition
function.

err := CloseEdition(whichEdition, successful);

Each time a user edits a publisher within a document, you must update the modification
date in the section record (even if the data is not yet written). When the update mode is
set to Manually, the user can compare the modification dates for a publisher and its
edition in the publisher options dialog box. One modification date indicates when the
publisher last wrote data to the edition, and the other modification date indicates when
the publisher section was last edited.

If the successful parameter for a publisher is TRUE, the CloseEdition function
makes the newly written data available to subscribers and sets the modification date in
the mdDate field of the edition to correspond to the modification date of the publisher’s
section record. If the two dates differ, the Edition Manager sends a Section Read event to
all current subscribers.

If the successful parameter for a subscriber is TRUE, the CloseEdition function sets
the modification date of the subscriber’s section record to correspond to the modification
date of the edition.

If you cannot successfully read from or write data to an edition, set the successful
parameter to FALSE. For a publisher, data is not written to the edition, but it should still
be saved with the document that contains the section. When the document is next saved,
data can then be written to the edition. See “Closing an Edition After Reading or
Writing” on page 2-88 for additional information on the CloseEdition function.
2-28 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Creating a Publisher 2
You need to support a Create Publisher menu command in the Edit menu. When a user
selects a portion of a document and chooses Create Publisher from this menu, you
should display the publisher dialog box on the user’s screen. The Create Publisher menu
command should remain dimmed until the user selects a portion of a document.

Use the NewPublisherDialog function to display the publisher dialog box on the
user’s screen. This function is similar to the CustomPutFile procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

err := NewPublisherDialog(reply);

The dialog box contains space for a preview (a thumbnail sketch) of the edition and a
space for the user to type the name of the edition in which to write the publisher data.
Figure 2-11 illustrates a sample publisher dialog box.

Figure 2-11 A sample publisher dialog box

The NewPublisherDialog function displays the preview (provided by
your application), displays a text box with the default name of the edition
(provided by your application), and handles all user input until the user clicks
Publish or Cancel.
Using the Edition Manager 2-29

C H A P T E R 2

Edition Manager
You pass a new publisher reply record as a parameter to the NewPublisherDialog
function.

TYPE NewPublisherReply =

RECORD

canceled: Boolean; {user clicked Cancel}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always FALSE in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT', }

{ 'TEXT', or 'snd ' data}

previewFormat: {type of preview}

FormatType;

container: EditionContainerSpec;{initially, default name }

{ and location of edition; }

{ on return, edition name & }

{ location chosen by the }

{ user to publish data to}

END;

You fill in the usePart, preview, previewFormat, and container fields of the new
publisher reply record.

Always set the usePart field to FALSE. The preview field should contain either NIL or
the data to display in the preview. The previewFormat field should contain 'PICT',
'TEXT', 'snd ', or 'prvw'.

Set the container field to be the default name and folder for the edition. The default
name should reflect the data contained in the publisher. For example, if a user publishes
a bar chart of sales information entitled “sales data,” then the default name for the
edition could also be “sales data.” Otherwise, you should use the document name
followed by a hyphen (-) and a number to establish uniqueness. For example, your
default name could be “January Totals - 3.”

If the document has not been saved, the default name should be “untitled edition <n>”
where n is a number to establish uniqueness. The default folder should be the same as
the edition for the last publisher created in the same document. If this is the first
publisher in the document, the default folder should be the same folder that the
document is in.

The canceled field of the new publisher reply record indicates whether the user clicked
Cancel. The replacing field indicates whether the user chose to replace an existing
edition file. If replacing returns FALSE, call the CreateEditionContainerFile
function to create an edition file.
2-30 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {record that identifies the }

{ file to contain edition data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {not used in version 7.0}

thePartScript: ScriptCode; {not used in version 7.0}

END;

The field theFile is a file system specification record, a data structure of type FSSpec.
You identify the edition using a volume reference number, directory ID, and filename.
When specifying an edition, follow the standard conventions described in
Inside Macintosh: Files.

After filling in the fields of the new publisher reply record, pass it as a parameter to the
NewPublisherDialog function, which displays the publisher dialog box.

err := NewPublisherDialog(reply);

After displaying the publisher dialog box, use the CreateEditionContainerFile
function to create the edition container, and then use the NewSection function to create
the section record and the alias record. See the next section, “Creating the Edition
Container,” and “Creating the Section Record and Alias Record” on page 2-15 for
detailed information.

The following code segment illustrates how your application might respond to the
user choosing the Create Publisher menu item. In this case, the code sets up the
preview for the edition, sets the default name for the edition container, and calls an
application-defined function (DoNewPublisher, shown in Listing 2-4 on page 2-33) to
display the publisher dialog box on the user’s screen. An application might call the
DoNewPublisher function in response to the user’s choosing Create Publisher from the
Edit menu or in response to handling the Create Publisher event. The chapter
“Responding to Apple Events” in this book gives an example of a handler for the
Create Publisher event.

VAR

thisDocument: MyDocumentInfoPtr;

promptForDialog: Boolean;

preview: Handle;

previewFormat: FormatType;

defaultLocation: EditionContainerSpec;

myErr: OSErr;
Using the Edition Manager 2-31

C H A P T E R 2

Edition Manager
BEGIN

{Get a preview to show the user. The MyGetPreviewForSelection }

{ function returns a handle to the preview.}

preview := MyGetPreviewForSelection(thisDocument);

previewFormat := 'TEXT';

defaultLocation := MyGetDefaultEditionSpec(thisDocument);

promptForDialog := TRUE;

myErr := DoNewPublisher(thisDocument, promptForDialog, preview,

previewFormat, defaultLocation);

END;

Creating the Edition Container 2

Use the CreateEditionContainerFile function to create an edition container to
hold the publisher data.

err := CreateEditionContainerFile(editionFile, fdCreator,

 editionFileNameScript);

This function creates an edition container. The edition container is empty (that is, it does
not contain any formats) at this time.

To associate an icon with the edition container, create the appropriate entries for the icon
in your application’s bundle. See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for additional information. Depending on the contents of the
edition, the file type will be 'edtp' (for graphics), 'edtt' (for text), or 'edts'
(for sound).

After creating the edition container, use the NewSection function to create the section
record and alias record for the section.

Listing 2-4 illustrates how to create a publisher. The DoNewPublisher function shown
in the listing is a function provided by an application. Note that an application might call
the DoNewPublisher function in response to the user’s choosing the Create Publisher
command or in response to the Create Publisher event. The chapter “Responding to
Apple Events” in this book gives an example of a handler for the Create Publisher event.

The parameters to the DoNewPublisher function include a pointer to information
about the document, a Boolean value that indicates if the function should display the
new publisher dialog box, the preview for the edition, the preview format, and an
edition container.

The function displays the publisher dialog box if requested, letting the user accept or
change the name of the edition and the location where the edition should reside. Use the
CreateEditionContainerFile function to create the edition with the given name
and location. Use the NewSection function to create a new section for the publisher.
2-32 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
After the section is created, you must write out the edition data. Be sure to add the newly
created section to your list of sections for this document. There are several different
techniques for creating publishers and unique IDs; this listing displays one technique.

After creating the edition container and creating a new section record,
the DoNewPublisher function calls another application-defined routine,
DoWriteEdition, to open the edition and write data to it.

Listing 2-4 Creating a publisher

FUNCTION DoNewPublisher(thisDocument: MyDocumentInfoPtr;

promptForDialog: Boolean;

preview: Handle;

previewFormat: FormatType;

editionSpec: EditionContainerSpec)

: OSErr;

VAR

getLastErr, dialogErr: OSErr;

createErr, sectionErr: OSErr;

resID: Integer;

thisSectionH: SectionHandle;

reply: NewPublisherReply;

BEGIN

{set up info for new publisher reply record}

reply.replacing := FALSE;

reply.usePart := FALSE;

reply.preview := preview;

reply.previewFormat := previewFormat;

reply.container := editionSpec;

IF promptForDialog THEN

BEGIN {user interaction is allowed}

{display dialog box and let user select}

dialogErr := NewPublisherDialog(reply);

{dispose of preview data handle}

DisposeHandle(reply.preview);

IF dialogErr <> noErr THEN MyErrHandler(dialogErr);

IF reply.canceled THEN

BEGIN {do nothing if user canceled}

DoNewPublisher := userCanceledErr;

EXIT(DoNewPublisher);

END;

END; {of promptForDialog}
Using the Edition Manager 2-33

C H A P T E R 2

Edition Manager
IF NOT reply.replacing THEN

BEGIN

{if user isn't replacing an existing file, create a new one}

createErr :=

CreateEditionContainerFile(reply.container.theFile,

 kAppSignature,

 reply.container.theFileScript);

IF createErr <> noErr THEN

BEGIN

DoNewPublisher := errAEPermissionDenied;

EXIT(DoNewPublisher);

END;

END; {of not replacing}

{Advance counter to make a new unique sectionID for this }

{ document. It is not required that you equate section IDs }

{ with resources.}

thisDocument^.nextSectionID := thisDocument^.nextSectionID + 1;

{create a publisher section}

sectionErr := NewSection(reply.container,

 thisDocument^.fileSpecPtr,

 stPublisher,

 thisDocument^.nextSectionID,

 pumOnSave, thisSectionH);

IF (sectionErr <> noErr) & (sectionErr <> multiplePublisherWrn)

& (sectionErr <> notThePublisherWrn) THEN

MyErrHandler(sectionErr);

resID := thisDocument^.nextSectionID;

{add this section/alias pair to app's internal bookkeeping}

MyAddSectionAliasPair(thisDocument, thisSectionH, resID);

{write out first edition}

DoWriteEdition(thisSectionH);

{Remember that the section and alias records need to be }

{ saved as resources when the user saves the document.}

{set the function result appropriately}

DoNewPublisher := MyGetLastError;

END;
2-34 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Opening an Edition Container to Write Data 2

Several routines are required to write (publish) data from a publisher to an edition
container. (For information on creating an edition container, see the previous section.)
Before writing data to an edition, you must use the OpenNewEdition function. This
function should be used only for a publisher within a document. Use this function to
initiate the writing of data to an edition.

err := OpenNewEdition(publisherSectionH, fdCreator,

 publisherSectionDocument, refNum);

A user may try to save a document containing a publisher that is unable to write its data
to an edition—because another publisher (that shares the same edition) is writing,
another subscriber (that shares the same edition) is reading, or a publisher located
on another computer is registered to the section. In such a case, you may decide to
refrain from writing to the edition so that the user does not have to wait. You should
also refrain from displaying an error to the user. The contents of the publisher are saved
to disk with the document. The next time that the user saves the document, you can
write the publisher data to the edition. You should display an alert box to discourage
users from making multiple copies of the same publisher and pasting them in the same
or other documents (see “Duplicating Publishers and Subscribers” on page 2-58).

If a user clicks Send Edition Now within the publisher options dialog box (to write
publisher data to an edition manually), and the publisher is unable to write its data to its
edition (for any of the reasons outlined above), you should display an error message.

After you are finished writing data to an edition, use the CloseEdition function to
close the edition.

Listing 2-5 illustrates how to write data to an edition. For an existing edition container,
you must open the edition, write each format using the WriteEdition function, and
close the edition using the CloseEdition function. This listing shows how to write text
only. If the edition is written successfully, subscribers receive Section Read events.
Using the Edition Manager 2-35

C H A P T E R 2

Edition Manager
Listing 2-5 Writing data to an edition

PROCEDURE DoWriteEdition(thePublisher: SectionHandle);

VAR

eRefNum: EditionRefNum;

openErr: OSErr;

writeErr: OSErr;

closeErr: OSErr;

thisDocument: MyDocumentInfoPtr;

textHandle: Handle;

BEGIN

{find out which document this section belongs to}

thisDocument := MyFindDocument(thePublisher);

{open edition for writing}

openErr := OpenNewEdition(thePublisher, kAppSignature,

 thisDocument^.fileSpecPtr, eRefNum);

IF openErr <> noErr THEN

MyErrHandler(openErr);{handle error and exit}

{get the text data to write}

textHandle := MyGetTextInSection(thePublisher, thisDocument);

{write out text data}

HLock(textHandle);

writeErr := WriteEdition(eRefNum, 'TEXT', textHandle^,

 GetHandleSize(textHandle));

HUnLock(textHandle);

IF writeErr <> noErr THEN

BEGIN

{There were problems writing; simply close the edition. }

{ When successful = FALSE, the edition data <> section }

{ data. Note: this isn't fatal or bad; it just means }

{ that the data wasn't written and no Section Read events }

{ will be generated.}

closeErr := CloseEdition(eRefNum, FALSE);

END

ELSE

BEGIN

{The write was successful; now close the edition. }

{ When successful = TRUE, the edition data = section data.}

{ This edition is now available to any subscribers. }

{ Section Read events will be sent to current subscribers.}

closeErr := CloseEdition(eRefNum, TRUE);

END;

END;
2-36 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Creating a Subscriber 2
You need to create a Subscribe To menu command in the Edit menu. When a user
chooses Subscribe To from this menu, your application should display the subscriber
dialog box on the user’s screen.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen. This function is similar to the CustomGetFile procedure described in the
chapter “Standard File Package” in Inside Macintosh: Files.

To create a subscriber, you must get information from the user, such as the name
of the edition being subscribed to. The dialog box displays a listing of all available
editions and allows the user to see a preview (thumbnail sketch) of the edition selected.
Figure 2-12 shows a sample subscriber dialog box.

Figure 2-12 A sample subscriber dialog box

The subscriber dialog box allows the user to choose an edition to subscribe to. The
NewSubscriberDialog function handles all user interaction until a user clicks
Subscribe or Cancel. When a user selects an edition container, the Edition Manager
accesses the preview for the edition container (if it is available) and displays it.
Using the Edition Manager 2-37

C H A P T E R 2

Edition Manager
You pass a new subscriber reply record as a parameter to the NewSubscriberDialog
function.

TYPE NewSubscriberReply =

RECORD

canceled: Boolean; {user clicked Cancel}

formatsMask:SignedByte; {formats required}

container: EditionContainerSpec;{initially, default }

{ name & location of edition }

{ to subscribe to; on return, }

{ edition name & location }

{ chosen by the user}

END;

The canceled field returns a Boolean value of TRUE if the user clicked Cancel. To
indicate which edition format types (text, graphics, or sound) your application can read,
you set the formatsMask field to one or more of these constants:

CONST kPICTformatMask = 1; {can subscribe to 'PICT'}

kTEXTformatMask = 2; {can subscribe to 'TEXT'}

ksndFormatMask = 4; {can subscribe to 'snd '}

To support a combination of formats, add the constants together. For example, a
formatsMask of 3 displays both graphics and text edition format types in the
subscriber dialog box.

The container field is of data type EditionContainerSpec. You must initialize the
container field with the default edition volume reference number, directory ID,
filename, and part. To do so, use the GetLastEditionContainerUsed function to
obtain the name of the last edition displayed in the dialog box.

err := GetLastEditionContainerUsed(container);

This function returns the last edition container for which a new section was created
using the NewSection function. If there is no last edition, or if the edition was deleted,
GetLastEditionContainerUsed still returns the correct volume reference number
and directory ID to use, but leaves the filename blank and returns the fnfErr
result code.
2-38 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

The field theFile is of type FSSpec. See Inside Macintosh: Files for further information
on file system specification records.

After filling in the fields of the new subscriber reply record, pass it as a parameter to the
NewSubscriberDialog function, which displays the subscriber dialog box.

err := NewSubscriberDialog(reply);

After displaying the subscriber dialog box, call the NewSection function to create the
section record and the alias record. See “Creating the Section Record and Alias Record”
beginning on page 2-15 for detailed information.

If the subscriber is set up to receive new editions automatically (not manually), the
Edition Manager sends your application a Section Read event. Whenever your
application receives a Section Read event, it should read the contents of the edition into
the subscriber.

Listing 2-6 illustrates how to create a subscriber. As described earlier, you must set up
and display the subscriber dialog box to allow the user to subscribe to any of the
available editions. After your application creates a subscriber, your application receives a
Section Read event to read in the data being subscribed to. Be sure to add the newly
created section to your list of sections for this file. There are many different techniques
for creating subscribers and unique IDs; this listing displays one technique.
Using the Edition Manager 2-39

C H A P T E R 2

Edition Manager
Listing 2-6 Creating a subscriber

PROCEDURE DoNewSubscriber(thisDocument: MyDocumentInfoPtr);

VAR

getLastErr: OSErr;

dialogErr: OSErr;

sectionErr: OSErr;

resID: Integer;

thisSectionH: SectionHandle;

reply: NewSubscriberReply;

BEGIN

{put default edition name into reply record}

getLastErr := GetLastEditionContainerUsed(reply.container);

{can subscribe to pictures or text}

reply.formatsMask := kPICTformatMask + kTEXTformatMask;

{display dialog box & let user select edition to subscribe to}

dialogErr := NewSubscriberDialog(reply);

IF dialogErr <> noErr THEN

MyErrHandler(dialogErr); {handle error and exit}

IF reply.canceled THEN

EXIT(DoNewSubscriber); {do nothing if user canceled}

{Advance counter to make a new unique sectionID for this }

{ document. It is not necessary to equate section IDs with }

{ resources.}

thisDocument^.nextSectionID := thisDocument^.nextSectionID + 1;

{create a subscriber section}

sectionErr := NewSection(reply.container,

 thisDocument^.fileSpecPtr,

 stSubscriber,

 thisDocument^.nextSectionID,

 sumAutomatic, thisSectionH);

IF sectionErr <> noErr THEN

MyErrHandler(sectionErr);{handle error and exit}

resID := thisDocument^.nextSectionID;

{add this section/alias pair to app's internal bookkeeping}

MyAddSectionAliasPair(thisDocument, thisSectionH, resID);

{Remember that you will receive a Section Read event to read }

{ in the edition that you just subscribed to because the }

{ initial mode is set to sumAutomatic.}

{Remember that the section and alias records need to be saved }

{ as resources when the user saves the document.}

END;
2-40 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Opening an Edition Container to Read Data 2

Before reading data from an edition, you must use the OpenEdition function. Your
application should only use this function for a subscriber. Use this function to initiate the
reading of data from an edition.

err := OpenEdition(subscriberSectionH, refNum);

As a precaution, you should retain the old data until the user can no longer undo. This
allows you to undo changes if the user requests it.

Your application can supply a procedure such as DoReadEdition to read in data from
the edition to a subscriber. When your application opens a document containing a
subscriber that is set up to receive new editions automatically, the Edition Manager
sends you a Section Read event if the edition has been updated. The Section Read
event supplies the handle to the section that requires updating. Listing 2-7, shown in the
next section, provides an example of reading data from an edition.

Choosing Which Edition Format to Read 2

After your application opens the edition container for a subscriber, it can look in the
edition for formats that it understands. To accomplish this, use the EditionHasFormat
function.

err := EditionHasFormat(whichEdition, whichFormat, formatSize);

The EditionHasFormat function returns the noTypeErr result code if a requested
format is not available. If the requested format is available, this function returns the
noErr result code, and the formatSize parameter contains the size of the data in the
specified format or kFormatLengthUnknown (–1), which signifies that the size is
unknown.

Note
The Translation Manager (if it is available) attempts implicit translation
under certain circumstances. For instance, it does so when your
application attempts to read from an edition a format type that is not
in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

After your application opens the edition container and determines which formats
it wants to read, call the ReadEdition function to read in the edition data. See
“Reading and Writing Edition Data” on page 2-27 for detailed information.

After you have completed writing the edition data into the subscriber section, call the
CloseEdition function to close the edition. See “Closing an Edition” on page 2-28 for
detailed information.
Using the Edition Manager 2-41

C H A P T E R 2

Edition Manager
Listing 2-7 illustrates how to read data from an edition. As described earlier, you must
open the edition, determine which formats to read, use the ReadEdition function to
read in data, and then use the CloseEdition function to close the edition. This listing
shows how to read only text.

Listing 2-7 Reading in edition data

PROCEDURE DoReadEdition(theSubscriber: SectionHandle);

VAR

eRefNum: EditionRefNum;

openErr: OSErr;

readErr: OSErr;

closeErr: OSErr;

thisDocument: MyDocumentInfoPtr;

textHandle: Handle;

formatLen: Size;

BEGIN

{find out which document this section belongs to}

thisDocument := MyFindDocument(theSubscriber);

{open the edition for reading}

openErr := OpenEdition(theSubscriber, eRefNum);

IF openErr <> noErr THEN

MyErrHandler(openErr); {handle error and exit}

{look for 'TEXT' format}

IF EditionHasFormat(eRefNum, 'TEXT', formatLen) = noErr THEN

BEGIN

{get the handle of location to read to}

textHandle := MyGetTextInSection(theSubscriber,

 thisDocument);

SetHandleSize(textHandle, formatLen);

HLock(textHandle);

readErr := ReadEdition(eRefNum, 'TEXT', textHandle^,

 formatLen);

MyUpdateSubscriberText(theSubscriber, textHandle, readErr);

HUnLock(textHandle);

IF readErr = noErr THEN

BEGIN

{The read was successful; now close the edition. When }

{ successful = TRUE, the section data = edition data.}

closeErr := CloseEdition(eRefNum, TRUE);

EXIT(DoReadEdition);

END;

END; {of EditionHasFormat}
2-42 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{'TEXT' format wasn't found or read error; just close }

{ the edition. FALSE tells the Edition Manager that your }

{ application did not get the latest edition.}

closeErr := CloseEdition(eRefNum, FALSE);

END;

Using Publisher and Subscriber Options 2
You can allow users to set several special options associated with publishers and
subscribers. To set these preferences, users change settings in two dialog boxes provided
by the Edition Manager: publisher options and subscriber options. To make these dialog
boxes available to the user, provide a command in the Edit menu that toggles between
Publisher Options (when the user has selected a publisher within a document)
and Subscriber Options (when a user has selected a subscriber within a document).

When a user chooses one of these menu commands, you need to display the appropriate
dialog box. Use the SectionOptionsDialog function to display the publisher options
or subscriber options dialog box on the user’s screen.

err := SectionOptionsDialog(reply);

Each dialog box contains information regarding the section and its edition. Figure 2-13
shows the publisher options dialog box with the update mode set to On Save.

Figure 2-13 The publisher options dialog box with update mode set to On Save
Using the Edition Manager 2-43

C H A P T E R 2

Edition Manager
Figure 2-14 shows the publisher options dialog box with the update mode set
to Manually.

Figure 2-14 The publisher options dialog box with update mode set to Manually

As a shortcut for the user, you should display the publisher options dialog box when the
user double-clicks a publisher section in a document.

Figure 2-15 shows the subscriber options dialog box with the update mode set to
Automatically.

Figure 2-15 The subscriber options dialog box with update mode set to Automatically
2-44 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-16 shows the subscriber options dialog box with the update mode set
to Manually.

Figure 2-16 The subscriber options dialog box with update mode set to Manually

As a shortcut for the user, you should display the subscriber options dialog box when
the user double-clicks a subscriber section in a document.

You pass a section options reply record as a parameter to the SectionOptionsDialog
function.

TYPE SectionOptionsReply =

RECORD

canceled: Boolean; {user clicked Cancel}

changed: Boolean; {changed section record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

Set the sectionH parameter to the handle to the section record for the section the
user selected.

Upon return of the SectionOptionsDialog function, the canceled and changed
fields are set. If the canceled field is set to TRUE, the user clicked Cancel. Otherwise,
this field is set to FALSE. If the changed field is set to TRUE, the section record is
changed. For example, the user may have changed the update mode.
Using the Edition Manager 2-45

C H A P T E R 2

Edition Manager
The SectionOptionsDialog function returns in the action parameter the code for
one of five user actions. The function dismisses the publisher and subscriber options
dialog boxes after the user clicks a button.

■ Action code is 'read' for a click of the Get Edition Now button.

■ Action code is 'writ' for a click of the Send Edition Now button.

■ Action code is 'goto' for a click of the Open Publisher button.

■ Action code is 'cncl' for a click of the Cancel Publisher or Cancel Subscriber button.

■ Action code is ' ' ($20202020) for a click of the OK button.

Listing 2-8 shows an example of how your application can respond to the action codes
received from the section options reply record. You can use several different techniques
for this purpose; this listing shows one technique.

Listing 2-8 Responding to action codes

PROCEDURE DoOptionsDialog(theSection: SectionHandle);

VAR

reply: SectionOptionsReply;

theEditionInfo: EditionInfoRecord;

action: ResType;

sodErr, geiErr: OSErr;

gpiErr, gpsErr: OSErr;

BEGIN

reply.sectionH := theSection;

{display options dialog box}

sodErr := SectionOptionsDialog(reply);

{determine what the user did and handle appropriately}

IF reply.canceled THEN {user selected the Cancel button}

EXIT(DoOptionsDialog);

IF reply.changed THEN

{the section record has changed; make note of this}

MySectionHasChanged(theSection);

{if you customize, you may want to do some }

{ post-processing now}

{get the action code}

action := reply.action;

IF (action = 'read') THEN

BEGIN {user selected Get Edition Now button}

DoReadEdition(theSection);

EXIT(DoOptionsDialog);

END;
2-46 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
IF (action = 'writ') THEN

BEGIN {user selected Send Edition Now button}

DoWriteEdition(theSection);

EXIT(DoOptionsDialog);

END;

IF (action = 'goto') THEN

BEGIN {user selected Open Publisher button}

geiErr := GetEditionInfo(theSection, theEditionInfo);

IF geiErr <> noErr THEN

MyErrHandler(geiErr);{handle error and exit}

gpsErr := GotoPublisherSection(theEditionInfo.container);

IF gpsErr <> noErr THEN

MyErrHandler(gpsErr);{handle error and exit}

EXIT(DoOptionsDialog);

END;

IF (action = 'cncl') THEN

BEGIN {User selected Cancel Publisher or Cancel Subscriber }

{ button. Call the UnRegisterSection function and dispose }

{ of the section record and alias record.}

EXIT(DoOptionsDialog);

END;

END;

The following sections describe the features of the publisher and subscriber options
dialog boxes.

Publishing a New Edition While Saving or Manually 2

By default, your application should write publisher data to an edition each time the user
saves the document and the contents of the publisher differ from the latest edition. In the
publisher options dialog box, the user can choose to write new data to an edition each
time the document is saved (by clicking On Save) or only upon the user’s specific
request (by clicking Manually).

When the update mode is set to manual, a user must click the Send Edition Now button
in the publisher options dialog box to write publisher data to an edition. When a user
clicks this button, the section options reply record contains the action code 'writ'. In
this case, you should write out the new edition. Writing to an edition manually is useful
when a user tends to save a document numerous times while revising it.

Each time the user saves the document, check the update mode of the publisher section.
If the publisher section sends its data to an edition when the document is saved, check
whether the publisher data has changed since it was last written to the edition. If so,
write the publisher’s data to the new edition.
Using the Edition Manager 2-47

C H A P T E R 2

Edition Manager
In addition, you may also support a Stop All Editions menu command to provide a
method for temporarily suspending all update activity. See “Introduction to Publishers,
Subscribers, and Editions” beginning on page 2-4 for additional information.

Subscribing to an Edition Automatically or Manually 2

By default, your application should subscribe to an edition each time new edition data
becomes available. In the subscriber options dialog box, the user can choose to read new
data from an edition as the data is available (by clicking Automatically) or only upon the
user’s specific request (by clicking Manually).

When the update mode is set to manual, the user must click the Get Edition Now button
in the subscriber options dialog box to receive new editions. When a user clicks this
button, the section options reply record contains the action code 'read'. In this case,
you should read in the new edition. See “Opening an Edition Container to Read Data”
beginning on page 2-41 for detailed information.

When the update mode is set to automatic, your application receives a Section Read
event each time a new edition becomes available. In response, you should read the new
edition data beginning with the OpenEdition function.

Your application does not receive Section Read events for subscribers that receive new
editions manually.

You may also support a Stop All Editions menu command to provide a method for
temporarily suspending all update activity. See “Introduction to Publishers, Subscribers,
and Editions” beginning on page 2-4 for additional information.

Canceling Sections Within Documents 2

The option of canceling publishers and subscribers is available to the user through the
Cancel Publisher and Cancel Subscriber buttons in the corresponding options dialog
boxes. When the user clicks one of these buttons, the action code of the section options
reply record is 'cncl'. See “Relocating an Edition” on page 2-60 for additional
information on canceling a section.

When a user cancels a section (either a publisher or subscriber) and then saves the
document, or when a user closes an untitled document (which contains newly created
sections) without saving it, you must unregister each corresponding section record and
alias record using the UnRegisterSection function. In addition, you should also
delete the section record and alias record using the DisposeHandle procedure. See
Inside Macintosh: Memory for additional information on the DisposeHandle procedure.

When a user cancels a publisher section and then saves the document, or when a user
closes an untitled document (which contains newly created publishers) without saving
it, you must also delete any corresponding edition containers (in addition to deleting
section records and alias records).
2-48 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Do not delete an edition container file, section record, or alias record until the user saves
the document; the user may decide to undo changes before saving the document.

To locate the appropriate edition container to be deleted (before you use the
UnRegisterSection function), use the GetEditionInfo function.

err := GetEditionInfo(sectionH, editionInfo);

The editionInfo parameter is a record of data type EditionInfoRecord.

TYPE EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;{the edition}

END;

The GetEditionInfo function returns the edition container as part of the edition
information.

The crDate field contains the creation date of the edition. The mdDate field contains the
modification date of the edition.

The fdType and the fdCreator fields are the type and creator of the edition file. The
container field includes a volume reference number, directory ID, filename, script, and
part number for the edition.

To remove the edition container, use the DeleteEditionContainerFile function.

err := DeleteEditionContainerFile(editionFile);

Locating a Publisher Through a Subscriber 2

The user can locate a publisher from a subscriber within a document by clicking the
Open Publisher button in the subscriber options dialog box. As a shortcut, Apple
suggests that you also allow the user to locate a publisher by selecting a subscriber in a
document and pressing Option–double-click.

When the action code of the SectionOptionsReply record is 'goto', use the
GoToPublisherSection function.

err := GoToPublisherSection(container);
Using the Edition Manager 2-49

C H A P T E R 2

Edition Manager
The GoToPublisherSection function locates the correct document by resolving the
alias in the edition, and it launches the document’s application if necessary (the
Edition Manager sends an Open Documents event). The Edition Manager then sends
the publishing application a Section Scroll event. If the document containing the
requested publisher is located on the same computer as its subscriber, the document
opens and scrolls to the location of the publisher. If the document containing the
requested publisher is located on a shared volume (using file sharing), the document
opens and scrolls to the location of the publisher only if the user has privileges to open
the document from the Finder.

You need to provide the GoToPublisherSection function with the edition container.
To accomplish this, use the GetEditionInfo function. See the previous section,
“Canceling Sections Within Documents,” for information on the GetEditionInfo
function.

Renaming a Document Containing Sections 2
If a user renames a document that contains sections by choosing Save As from the File
menu, or if a user pastes a portion of a document that contains a section into another
document, use the AssociateSection function.

Use the AssociateSection function to update the alias record of a registered section.

err := AssociateSection (sectionH, newSectionDocument);

The AssociateSection function internally calls the UpdateAlias function. It is
also possible to update the alias record using the Alias Manager (see the chapter
“Alias Manager” in Inside Macintosh: Files for additional information).

Displaying Publisher and Subscriber Borders 2
Each publisher and subscriber within a document should have a border that appears
when a user selects the contents of these sections. You should display a publisher border
as three pixels wide with 50 percent gray lines and a subscriber border as three pixels
wide with 75 percent gray lines. Separate the contents of the section from the border
itself with one pixel of white space. To create your borders, you should use patterns, not
colors. Depending on the user’s monitor type, colors may not be distinguishable.

In general, borders for publishers and subscribers should behave like the borders of
'PICT' graphics in a word-processing document. A border should appear when the
user clicks the content area of a publisher or a subscriber and disappear when
the user clicks outside the content area of a section. You can also make all publisher
and subscriber borders appear or disappear by implementing an optional
Show/Hide Borders menu command.
2-50 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-17 displays the Edition Manager Show/Hide Borders menu command in the
Edit menu.

Figure 2-17 Edit menu with Show/Hide Borders menu command

Depending on your application, you may choose to include resize handles or similar
components in your borders. See “Object-Oriented Graphics Borders” on page 2-56 for
an example of resize handles.

Whenever a user selects a portion of a publisher or sets the insertion point within a
publisher, you should display the border as 50 percent gray. A user can copy the contents
of a publisher or subscriber without copying the section itself by selecting the data,
copying, and then pasting the data in a new location. A user can cut and paste a selection
that contains an entire publisher or subscriber, but you should discourage users from
making multiple copies of a publisher. See “Duplicating Publishers and Subscribers” on
page 2-58 for detailed information.

When the user modifies a publisher, your application should grow or shrink its border to
accommodate the new dimension of the section.

You should display only one publisher border within a document at a time. If a cursor is
inserted within a publisher that is contained within a larger publisher, you should
display only the smaller, internal publisher border. If it is absolutely necessary to display
all section borders within a document at the same time, you can create a Show/Hide
Borders menu item.

You do not need to provide support for publishers contained within other publishers.
If you do not, you should dim the Create Publisher menu command (to indicate that it is
not selectable) when a user attempts to create a publisher within an existing publisher.
Using the Edition Manager 2-51

C H A P T E R 2

Edition Manager
Figure 2-18 shows the recommended border behavior for publishers. The top window
shows a publisher with its borders displayed. The middle window shows how the
borders look when a user selects some of the contents of a section. The bottom window
shows how the borders look when a user selects data within a document that includes a
publisher section.

Figure 2-18 Publisher borders
2-52 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-19 shows the recommended border behavior for subscribers. The top window
shows a subscriber with its borders displayed. The middle window shows how the
borders look when a user selects the contents of a section. The bottom window shows
how the borders look when a user selects data within a document that includes a
subscriber section.

Figure 2-19 Subscriber borders

If a user tries to select only a portion of a subscriber, you should highlight the entire
contents of the subscriber. A user cannot edit the data in a subscriber. See “Modifying a
Subscriber” on page 2-59 for detailed information.

If a user cancels a section using the publisher or subscriber options dialog box, your
application should leave the contents of the section within the document, but you should
be sure to remove the borders from this data, as it is no longer considered a section.
Using the Edition Manager 2-53

C H A P T E R 2

Edition Manager
Generally, the appearance and function of publisher and subscriber borders should be
the same across different applications. The following sections entitled “Text Borders,”
“Spreadsheet Borders,” “Object-Oriented Graphics Borders,” and “Bitmapped Graphics
Borders” describe specialized features for publisher and subscriber borders in
word-processing, spreadsheet, or graphics applications.

Text Borders 2

In word-processing documents, a publisher may contain other publishers. However, one
publisher should not overlap another publisher. You should display only one publisher
border at a time. If an insertion point is placed within a publisher that is encompassed by
another larger publisher, you should display only the smaller internal publisher border.

In exceptional cases, it may be necessary to display more than one publisher or
subscriber border at a time. For example, a publisher may consist of a paragraph that
includes a marker for a footnote. The data contained within the footnote should also be
considered part of the publisher. When a user selects the paragraph, you should
simultaneously display a border around the footnote.

The border of a publisher that contains text should be located between characters within
the text. The insertion point, when placed on such a boundary, should gravitate toward
the publisher. That is, a click in front (to the left) of a publisher border should place the
cursor inside the publisher, so that subsequent typing goes inside the publisher. Clicking
at the end (to the right) of a publisher border should also place the cursor inside the
publisher.

Whenever two separate borders are adjacent, the boundary click should go in between
them. This is also true for a border that is next to other nontextual aspects of a document,
such as 'PICT' graphics or page breaks.

When a user removes information from a publisher that contains text data, you should
resize the border so that it becomes smaller. When a user adds information to the
publisher, you should enlarge the border to accommodate the new text. The insertion
point should remain within the publisher.

If a user highlights the entire contents of a publisher and then chooses Cut from the Edit
menu, you should not delete the publisher border within the document. The user may
intend to delete the existing publisher data and replace it with new data, or the user may
want to move the entire publisher and its data to a new location. Figure 2-20 shows
this state.

Figure 2-20 A publisher with contents removed
2-54 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
You should leave the cursor inside the small publisher border for further typing. If the
user inserts the cursor in a new location (instead of typing data inside the existing
border), you need to remove the empty publisher border from the document to allow the
user to move the publisher. This effectively deletes the publisher from the document. If
the user pastes the publisher that is currently held in the scrap, you should re-create its
border. If the user cuts or copies other data from the document before pasting the
publisher from the scrap, the publisher should be removed from the scrap.

Spreadsheet Borders 2

Borders around spreadsheet data or other data in arrays should look and behave very
much like text borders. Figure 2-21 shows a typical border within a spreadsheet
document.

Figure 2-21 A publisher border within a spreadsheet document

Note that the border goes below the column headers (A, B, C, D) and to the right of the
row labels (1, 2, 3, 4)—it should not overlap these cell boundaries. The border at the
bottom and the border on the right side can be placed within the adjacent cells (outside
of the cells that constitute the publisher).

Unlike borders in word-processing applications, borders in spreadsheet documents (or
other documents with array data) can overlap. That is, a user can select a row of cells to
be a publisher and an overlapping column of those cells to be another publisher. You
should never display more than one publisher border at a time. When a user selects a
spreadsheet cell that is part of more than one publisher, you should display only the
border of the publisher that was last edited. (This can be accomplished by comparing the
modification dates of the publishers.)

If it is absolutely necessary to display all section borders within a document at the same
time, you can create a Show/Hide Borders command in the Edit menu to toggle all
borders on and off.

When data is added to or deleted from a publisher that consists of a spreadsheet cell or
other array, you should resize its border to accommodate the addition or deletion of
data. A publisher should behave like a named range in a spreadsheet. For example, if a
user cuts a row within a publisher that consists of a named range in a spreadsheet, you
should shrink the publisher data and its border correspondingly.
Using the Edition Manager 2-55

C H A P T E R 2

Edition Manager
When a user cuts a publisher and its entire contents within a spreadsheet document, the
entire section should be held in the scrap. Do not leave an empty publisher border in a
spreadsheet (as recommended for text borders). If a user attempts to paste a copy of an
existing publisher, you should warn the user by displaying an alert box (see
“Duplicating Publishers and Subscribers” on page 2-58).

Object-Oriented Graphics Borders 2

In an object-oriented drawing application, the publisher border should fit just around
the selected objects.

You can provide resize handles that appear with all drawing objects to allow the user
to resize the border of a publisher. Figure 2-22 shows a publisher border with resize
handles.

Figure 2-22 A publisher border with resize handles

An application can make publisher borders appear to float over the area the user
publishes. The border acts like a clipping rectangle—anything within the border
becomes the publisher. Figure 2-23 shows a publisher that contains clipped graphics and
its subscriber in another application.

A user can create publishers and subscribers that overlap each other. Thus, borders may
overlap and it may no longer be possible to turn on a particular border when the user
clicks within a publisher. Drawing applications should provide a menu command,
Show Borders, that toggles to Hide Borders. This command should allow users to turn
all publisher and subscriber borders on or off.
2-56 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Figure 2-23 A publisher and subscriber with clipped graphics

Bitmapped Graphics Borders 2

Creating a border around bitmapped graphics in applications is similar to doing so in
object-oriented drawing applications. The border appears around the selected area. The
user can create overlapping publishers and subscribers in bitmapped graphics
applications. You need to provide a Show/Hide Borders command to allow users to turn
all borders on and off.
Using the Edition Manager 2-57

C H A P T E R 2

Edition Manager
Duplicating Publishers and Subscribers 2

Whenever a user clicks a publisher or subscriber border, you should change the contents
of the section to a selected state. You should discourage users from making multiple
copies of a publisher and pasting them in the same or other documents, because the
contents of the edition would be difficult or impossible to predict. Multiple copies of the
same publisher also contain the same control block value. See “Creating and Registering
a Section” on page 2-74 for detailed information on control blocks.

When a user attempts to create a copy of a publisher that already exists, you should
display an alert box such as the one shown in Figure 2-24.

Figure 2-24 Creating multiple publishers alert box

When a user attempts to save a document that contains multiple copies of the same
publisher, display an alert box such as the one shown in Figure 2-25.

Figure 2-25 Saving multiple publishers alert box

If a user decides to ignore your alert box, your application should still save the
document, but you should continue to display this error message every time the user
saves this document.
2-58 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
A user can modify the contents of any duplicate publisher, but the contents of the edition
will be whichever publisher was the last to write.

When a user chooses to copy and paste or duplicate a section, use the HandToHand
function (described in Inside Macintosh: Memory) to duplicate the section record and alias
record. Set the alias field of the cloned section record to the handle of the cloned
alias record and generate a unique section identification number for it. In addition, you
should also place the section data, section record, and alias record in the scrap.

Use the RegisterSection function (described in “Opening and Closing a Document
Containing Sections” on page 2-22) to register the cloned section’s section record.

A user can select the contents of a publisher without selecting the border and copy just
the data to a new location. In this case, the user has simply copied data (and not the
publisher). Do not create a border for this data in the new location.

Modifying a Subscriber 2
When the user selects data or clicks the data area of a subscriber, you should highlight
the entire contents of the subscriber using inverse video. Although you shouldn’t allow a
user to edit the information in a subscriber, you can allow a user to make global
adornments to subscribers. In other words, users can change the font, size, or other
characteristics of the entire subscriber. For example, a user might select a subscriber
within a document and change all text from plain to bold. However, you should
discourage users from modifying the individual elements contained within a
subscriber—for example, by editing a sentence or rotating an individual graphic object.

Remember that each time a new edition arrives for a subscriber, any modifications that
the user has introduced are overwritten. Global changes to a subscriber are much easier
for your application to regenerate.

Note
Although adornments should be global and never partial, you may still
need to give users the ability to select portions of a subscriber, for
instance, when performing spell checking and search-and-replace
operations. ◆

If you do allow a user to edit a subscriber section, provide an
enable/disable editing option within the subscriber options dialog box using the
SectionOptionsExpDialog function, described in “Customizing Dialog Boxes”
beginning on the next page. When you allow a user to edit a subscriber, you should
change the subscriber from a selected state to editable data.

Because a user can modify a publisher just like any other portion of a document, its
subscriber may change in size as well as content. For example, a user may modify a
publisher by adding two additional columns to a spreadsheet.
Using the Edition Manager 2-59

C H A P T E R 2

Edition Manager
Relocating an Edition 2
In the Finder, users cannot move an edition across volumes. To relocate an edition,
the user must first select its publisher and cancel the section (remember to remove the
border). The user needs to republish and then select a new volume location for the
edition. As a convenience for the user, you should retain the selection of all the publisher
data after the user cancels the section to make it easy to republish the section.

Customizing Dialog Boxes 2
The expandable dialog box functions allow you to add items to the bottom of the
dialog boxes, apply alternate mapping of events to item hits, apply alternate meanings
to the item hits, and choose the location of the dialog boxes. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials and the chapter
“Standard File Package” in Inside Macintosh: Files for additional information.

The expandable versions of these dialog boxes require five additional parameters. Use
the NewPublisherExpDialog function to expand the publisher dialog box.

err := NewPublisherExpDialog (reply, where, expansionDITLresID,

dlgHook, filterProc, yourDataPtr);

Use the NewSubscriberExpDialog function to expand the subscriber dialog box.

err := NewSubscriberExpDialog (reply, where, expansionDITLresID,

 dlgHook, filterProc, yourDataPtr);

Use the SectionOptionsExpDialog function to expand the publisher options and the
subscriber options dialog boxes.

err := SectionOptionsExpDialog (reply, where, expansionDITLresID,

 dlgHook, filterProc, yourDataPtr);

The reply parameter is a pointer to a NewPublisherReply, NewSubscriberReply,
or SectionOptionsReply record, respectively.

You can automatically center the dialog box by passing (–1, –1) in the where parameter.

The expansionDITLresID parameter should contain 0 or a valid item list ('DITL')
resource ID. This integer is the resource ID of an item list whose items are appended to
the end of the standard item list. The dialog items keep their relative positions, but they
are moved as a group to the bottom of the dialog box. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for additional information on item lists.

The filterProc parameter should be a pointer to an expandable modal-dialog filter
function or NIL. An expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable modal-dialog filter
function accepts two extra parameters. The ModalDialog procedure calls the
expandable modal-dialog filter function you provide in this parameter.
2-60 Using the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Providing a filter function enables you to map real events (such as a mouse-down event)
to an item hit (such as clicking the Cancel button). For instance, you may want to
map a keyboard equivalent to an item hit. See the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for information on the ModalDialog
procedure.

The dlgHook parameter should be a pointer to an expandable dialog hook function
or NIL. An expandable dialog hook function is similar to a dialog hook
function except that an expandable dialog hook function accepts an additional
parameter. The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions call your expandable dialog hook function
after each call to the ModalDialog procedure. The dialog hook function should take the
appropriate action, such as filling in a checkbox. The itemOffset parameter to the
procedure is the number of items in the item list before the expansion dialog items. You
need to subtract the item offset from the item hit to get the relative item number in the
expansion dialog item list. The expandable dialog hook function should return as its
function result the absolute item number.

When the Edition Manager displays subsidiary dialog boxes in front of another dialog
box on the user’s screen, your dialog hook and event filter functions should check the
refCon field in the WindowRecord data type (from the window field in the
DialogRecord) to determine which window is currently in the foreground. The main
dialog box for the NewPublisherExpDialog and the NewSubscriberExpDialog
functions contains the following constant:

CONST sfMainDialogRefCon = 'stdf'; {new publisher and }

{ new subscriber}

The main dialog box for the SectionOptionsExpDialog function contains the
following constant:

CONST emOptionsDialogRefCon = 'optn'; {options dialog}

See “Summary of the Edition Manager” beginning on page 2-106 for additional constants.

The yourDataPtr parameter is reserved for your use. It is passed back to your dialog
hook and event filter function. This parameter does not have to be of type Ptr—it can be
any 32-bit quantity that you want. In Pascal, you can pass yourDataPtr in register A6 ,
and declare your dialog hook and modal-dialog filter as local functions without the last
parameter. The stack frame is set up properly for these functions to access their parent
local variables. See the chapter “Standard File Package” in Inside Macintosh: Files for
detailed information.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all the
pseudo-items for the Standard File Package—such as sfHookFirstCall(–1),
sfHookNullEvent(100), sfHookRebuildList(101), and sfHookLastCall(–2)—can
be used, as well as emHookRedrawPreview(150).
Using the Edition Manager 2-61

C H A P T E R 2

Edition Manager
For the SectionOptionsExpDialog function, the only valid pseudo-items are
sfHookFirstCall(–1), sfHookNullEvent(100), sfHookLastCall(–2),
emHookRedrawPreview(150), emHookCancelSection(160),
emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(164). See the chapter “Standard File Package” in
Inside Macintosh: Files for information on pseudo-items.

Subscribing to Non-Edition Files 2

Using the Edition Manager, a subscriber can read data directly from another document,
such as an entire 'PICT' file, instead of subscribing to an edition. This feature is for
advanced applications that can set up bottleneck procedures for reading. Figure 2-26
shows a document that is subscribing directly to a 'PICT' file.

Figure 2-26 Subscribing directly to a 'PICT' file

For each application, the Edition Manager keeps a pointer to a bottleneck function.
The Edition Manager never opens or closes an edition container directly. Instead, the
Edition Manager calls the current edition opener. The InitEditionPack function
(described on page 2-74) sets up the current system opener function.

Pianos & palm trees

M u s i c

in

the

park

Join us every Wednesday evening
at 8 PM beginning March 21.

The concerts will be held in the outdoor atrium
shell located across from the Academy of Sciences

in Golden Gate Park in San Francisco.
The series will continue through

April 25.

Subscriber
2-62 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTION MyOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock): OSErr;

Your opener needs to know which formats the file contains and how the data is
supposed to be read or written.

The opener function is passed an edition opener verb in the selector parameter, which
identifies the action the opener function should perform. The opener can allocate a
handle or pointer to contain information such as file reference numbers. This value is
passed to the I/O routines in the ioRefNum field of the edition opener parameter block.

The eoOpen and eoOpenNew edition opener verbs (described in “Calling an Edition
Opener” on page 2-64) return a pointer to a function to do the actual reading and writing.

The following sections describe

■ how to get the current edition opener

■ how to set your own edition opener

■ how to call an edition opener

■ the edition opener parameters

Getting the Current Edition Opener 2
When you want to get the current edition opener, use the GetEditionOpenerProc
function.

err := GetEditionOpenerProc(opener);

The opener parameter returns a pointer to the current edition opener. A different
current opener is kept for each application. One application’s opener is never called by
another application.

Setting an Edition Opener 2
You can provide your own edition opener. To do so, use the SetEditionOpenerProc
function.

err := SetEditionOpenerProc(@MyOpener);

The @MyOpener parameter is a pointer to the edition opener function that you are
providing. If you set the current opener to be a routine in your own code, be sure to call
the GetEditionOpenerProc function first so that you can save the previous opener. If
your opener is passed a selector that it does not understand, use the previous opener
provided by the Edition Manager to handle it. See the next section for a list of selectors.
Subscribing to Non-Edition Files 2-63

C H A P T E R 2

Edition Manager
Calling an Edition Opener 2
You use the CallEditionOpenerProc function to call an edition opener. Since
the Edition Manager is a package that may move, a real pointer cannot be safely
returned for the standard opener and I/O routines. The system opener and the
I/O routines are returned as a value that is not a valid address to a procedure. The
CallEditionOpenerProc and CallFormatIOProc functions check for these
values and call the system openers.

You should never assume that a value for a system opener is a fixed constant.

err := CallEditionOpenerProc (selector, PB, routine);

Set the selector parameter to one of the edition opener verbs. The edition opener
verbs include

■ eoCanSubscribe

■ eoOpen

■ eoClose

■ eoOpenNew

■ eoCloseNew

The PB parameter of the CallEditionOpenerProc function is an edition opener
parameter block.

TYPE EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or }

{ subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read }

{ formats}

success: Boolean; {reading or writing }

{ was successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;
2-64 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
The routine parameter of the CallEditionOpenerProc function is a pointer to an
edition opener function.

The following list shows which fields of the edition opener parameter block are used by
the edition opener verbs:

Opener verb Field Description Called by

eoCanSubscribe → info Edition container to
subscribe to.

NewSubscriberDialog
function for a subscriber

→ formatsMask Formats required to
subscribe.

← Return value A noErr code
indicates that an
edition container can
be subscribed to. A
noTypeErr code
indicates that an
edition container
cannot be subscribed
to.

eoOpen → info Edition container to
open for reading.

OpenEdition and
GetStandardFormats
functions for a subscriber→ sectionH Subscriber section

requesting open or
NIL.

← ioRefNum Reference number for
use by I/O routine.
Not the same as
EditionRefNum.

← ioProc I/O routine to call to
read formats.

← Return value A noErr code or
appropriate error code.

eoClose → info Edition container to be
closed for reading.

CloseEdition and
GetStandardFormats
functions for a subscriber→ sectionH Subscriber section

requesting close or NIL.

→ ioRefNum Value returned by
eoOpen.

→ ioProc Value returned by
eoOpen.

→ success Success value passed
to the CloseEdition
function.

← Return value A noErr code or
appropriate error code.

continued
Subscribing to Non-Edition Files 2-65

C H A P T E R 2

Edition Manager
As Listing 2-9 demonstrates, you install your own edition opener function by first saving
the current opener and then installing your own opener. The listing also shows an
edition opener, the MyEditionOpener function. When it receives the
eoCanSubscribe opener verb, the MyEditionOpener function calls another
application-defined routine, MyCanSubscribe. The Edition Manager sends your
edition opener this verb to help it build the list of files displayed by the
NewSubscriber function. The MyCanSubscribe function returns noErr if it can
subscribe to the file; otherwise, it calls the original edition opener to handle the request.

eoOpenNew → info Edition container to
open for writing.

OpenNewEdition
function for a publisher

→ sectionH Publisher section
requesting open or
NIL.

→ document Document pointer
passed into the
OpenNewEdition
function.

→ fdCreator The fdCreator
passed into the
OpenNewEdition
function.

← ioRefNum Reference number for
use by I/O routine.
Not the same as
EditionRefNum.

← ioProc I/O routine to call to
write formats.

← Return value A noErr code or
appropriate error code.

eoCloseNew → info Edition container to be
closed after writing.

CloseEdition
function for a publisher

→ sectionH Publisher section
requesting close or NIL.

→ ioRefNum Value returned by
eoOpenNew.

→ ioProc Value returned by
eoOpenNew.

→ success Success value passed
to the CloseEdition
function.

← Return value A noErr code or
appropriate error code.

Opener verb Field Description Called by (continued)
2-66 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Listing 2-9 Using your own edition opener function

VAR

gOriginalOpener: EditionOpenerProcPtr;{global variable}

PROCEDURE MyInstallMyOpener;

BEGIN

FailOSErr(GetEditionOpenerProc(gOriginalOpener));

FailOSErr(SetEditionOpenerProc(@MyEditionOpener));

END; {MyInstallMyOpener}

FUNCTION MyEditionOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock)

: OSErr;

BEGIN

WITH PB DO

BEGIN

CASE selector OF

eoCanSubscribe:

MyEditionOpener := MyCanSubscribe(PB);

eoOpen:

MyEditionOpener := MyEditionOpen(PB);

eoClose:

MyEditionOpener := MyEditionClose(PB);

OTHERWISE

{call the original edition opener}

MyEditionOpener

:= CallEditionOpenerProc(selector, PB,

gOriginalOpener);

END; {of CASE}

END; {of WITH}

END; {MyEditionOpener}

FUNCTION MyCanSubscribe (VAR PB: EditionOpenerParamBlock): OSErr;

BEGIN

{check file type to see if it is a file you can emulate as an }

{ edition}

IF PB.info.fdType = {for example}'PICT' THEN

MyCanSubscribe := noErr

ELSE {otherwise, let the saved edition opener decide}

MyCanSubscribe := CallEditionOpenerProc(eoCanSubscribe,

 PB, gOriginalOpener);

END; {MyCanSubscribe}
Subscribing to Non-Edition Files 2-67

C H A P T E R 2

Edition Manager
Opening and Closing Editions 2
Each time the Edition Manager opens or closes an edition container, it calls the current
edition opener procedure and passes it an opener verb and a parameter block.

Your opener must be careful when closing documents since a document may already
have been opened by another application. Be sure to use the Open/Deny modes
whenever possible. Do not close a document if it was already open when your
application opened it.

Listing Files That Can Be Subscribed To 2
The NewSubscriberDialog function calls the edition opener function and passes the
eoCanSubscribe opener verb in the selector parameter to build the list of files that
can be subscribed to. The preview in the subscriber dialog box is generated by calling the
GetStandardFormats function (described in “Edition Container Formats” on
page 2-101), which calls the format I/O procedure with the verbs eoOpen,
ioHasFormat, ioRead, and then eoClose. See “Calling a Format I/O Function” on
this page for detailed information on format I/O verbs.

Reading From and Writing to Files 2
The I/O procedure is a routine that actually reads and writes the data. It too has an
interface of a selector and a parameter block.

To override the standard reading and writing functions, create an I/O function. Note
that you also need to provide your own opener function to call your I/O function. See
“Calling an Edition Opener” on page 2-64.

FUNCTION MyIO (selector: FormatIOVerb;

VAR PB: FormatIOParamBlock): OSErr;

Calling a Format I/O Function 2
To indicate to the Edition Manager which format I/O function to use, use the
CallFormatIOProc function.

err := CallFormatIOProc (selector, PB, routine);
2-68 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Set the selector parameter to one of the format I/O verbs. The format I/O verbs
include

■ ioHasFormat

■ ioReadFormat

■ ioNewFormat

■ ioWriteFormat

The PB parameter of the CallFormatIOProc function contains a format I/O parameter
block.

TYPE FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;

The routine parameter of the CallFormatIOProc function is a pointer to a format
I/O function.

The following list shows which fields of FormatIOParamBlock are used by the
format I/O verbs:

Format I/O verb Parameter Description Called by

ioHasFormat → ioRefNum I/O reference number
returned by opener.

EditionHasFormat,
GetStandardFormats,
and ReadEdition
functions→ format Check for this format.

← formatIndex An optional
enumeration of the
supplied format.

← buffLen If found, return the
length size or –1 if size
is unknown.

← Return value A noErr or
noTypeErr code.

continued
Subscribing to Non-Edition Files 2-69

C H A P T E R 2

Edition Manager
The marks for each format are kept by the Edition Manager. The format I/O function
only needs to be able to read or write, beginning at any offset. If you know that your
application always reads an entire format sequentially, you can ignore the offset.

ioReadFormat → ioRefNum I/O reference number
returned by opener.

ReadEdition and
GetStandardFormats
functions→ format Get this format.

→ formatIndex Value returned by
ioHasFormat.

→ offset Read format beginning
from this offset.

→ buffPtr Put data beginning here.

↔ buffLen Specify buffer length to
read, and return actual
amount received.

← Return value A noErr code, or
appropriate error code.

ioNewFormat → ioRefNum I/O reference number
returned by opener.

SetEditionFormatMark
and WriteEdition
functions→ format Create this format.

← formatIndex An optional
enumeration of the
supplied format.

← Return value A noErr code, or
appropriate error code.

ioWriteFormat → ioRefNum I/O reference number
returned by opener.

WriteEdition function

→ format Get this format.

→ formatIndex Value returned by
ioNewFormat.

→ offset Write format beginning
from this offset.

→ buffPtr Get data beginning here.

↔ buffLen Specify buffer length to
write.

← Return value A noErr code or
appropriate error code.

Format I/O verb Parameter Description Called by (continued)
2-70 Subscribing to Non-Edition Files

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Edition Manager Reference 2

This section describes the data structures and routines that are specific to the
Edition Manager. The “Data Structures” section describes the edition container
record and the section record. The “Edition Manager Routines” section describes the
routines your application can use to implement publish and subscribe features in
your application.

Data Structures 2
This section describes the edition container record and the section record. See page 2-91
for a description of the new subscriber reply record, page 2-93 for a description of the
new publisher reply record, page 2-95 for a description of the section options record, and
page 2-99 for a description of the edition info record. For information on the edition
opener parameter block and format I/O parameter block, see page 2-103 and page 2-104,
respectively.

The Edition Container Record 2

An edition container record identifies a specific edition file. Many Edition Manager
routines require an edition container record as a parameter. The
EditionContainerSpec data type defines an edition container record.

TYPE EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}

thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

Field descriptions

theFile A file specificiation record that identifies the name and location of
the edition file. Specify the file using the standard conventions for
file specification records as described in the chapter “Introduction to
File Management” in Inside Macintosh: Files.

theFileScript A script code that identifies the script in which the name of the
document is to be displayed in the Finder. A script code of
smSystemScript represents the default system script.
Edition Manager Reference 2-71

C H A P T E R 2

Edition Manager
thePart A value that must always be set to kPartsNotUsed in System 7.
thePartName Reserved.
thePartScript Reserved.

The Section Record 2

A section record identifies a specific publisher or subscriber section. It contains
information to identify the section as a publisher or a subscriber, a time stamp to record
the last modification of the section, and unique identification for each section. Many
Edition Manager routines require a handle to a section record as a parameter. The
SectionRecord data type defines a section record.

TYPE SectionRecord =

RECORD

version: SignedByte; {always 1 in 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change in document}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function. Do not modify the private }

{ fields.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private, do not use as a }

{ linked list}

controlBlock: Handle; {may be used for comparison }

{ only}

refNum: EditionRefNum; {private}

END;

Field descriptions

version Indicates the version of the section record, currently $01.
kind Defines the section type as either publisher or subscriber with the

stPublisher or stSubscriber constant.
mode Indicates if editions are updated automatically or manually.
2-72 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
mdDate Indicates which version (modification date) of the section’s contents
is contained within the publisher or subscriber. The mdDate field is
set to 0 when you create a new subscriber section and to the current
time when you create a new publisher. Be sure to update this field
each time publisher data is modified. The section’s modification
date is compared to the edition’s modification date to determine
whether the section and the edition contain the same data. The
section modification date is displayed in the publisher and
subscriber options dialog boxes. See “Closing an Edition” on
page 2-28 for detailed information.

sectionID Provides a unique number for each section within a document.
A simple way to implement this is to create a counter for each
document that is saved to disk with the document. The counter
should start at 1. The section ID is currently used as a tie breaker in
the GoToPublisherSection function when there are multiple
publishers to the same edition in a single document. The section ID
should not be 0 or –1. See “Duplicating Publishers and Subscribers”
on page 2-58 for information on multiple publishers.

refCon Reference constant available for application-specific use.
alias Contains a handle to the alias record for a particular section within

a document.

Whenever the user creates a publisher or subscriber, call the NewSection function
(described on page 2-75) to create a section record and alias record.

Edition Manager Routines 2
This section describes the routines you use to

■ initialize the Edition Manager

■ create and register a section

■ create and delete an edition container

■ set and locate a format mark

■ read in edition data

■ write out edition data

■ close an edition after reading or writing

■ display dialog boxes

■ locate a publisher and edition from a subscriber

■ read and write non-edition files

Result codes appear at the end of each function where applicable. In addition to the
specific result codes listed, you may receive errors generated by the Alias Manager,
File Manager, and Memory Manager.
Edition Manager Reference 2-73

C H A P T E R 2

Edition Manager
Initializing the Edition Manager 2

You use the InitEditionPack function to initialize the Edition Manager. Note
that you should call this function only once.

InitEditionPack 2

Before calling the InitEditionPack function, be sure to determine whether the
Edition Manager is available on your system by using the Gestalt function with the
gestaltEditionMgrAttr ('edtn') selector.

FUNCTION InitEditionPack: OSErr;

DESCRIPTION

The InitEditionPack function returns an error if the package could not be loaded
into the system heap and properly initialized.

RESULT CODES

Creating and Registering a Section 2

You use the NewSection function to create a new section (either publisher or
subscriber) and alias record (which is a reference to the edition container from the
document containing the publisher or subscriber section).

The NewSection function registers a section much as the RegisterSection function
informs the Edition Manager about a section (except that the NewSection function does
not resolve an alias to find the edition container).

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegisterSection function before disposing of the section.

Using the IsRegisteredSection function, your application must verify that each
event received is for a registered section. This is necessary because your application may
have just called UnRegisterSection while the event was already being held in the
event queue.

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
AssociateSection function to update the section’s alias record.

noErr 0 No error
memFullErr –108 Could not load package
2-74 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
NewSection 2

Use the NewSection function to create a new section record and alias record for a new
publisher or subscriber.

FUNCTION NewSection (container: EditionContainerSpec;

sectionDocument: FSSpecPtr;

kind: SectionType; sectionID: LongInt;

initialMode: UpdateMode;

VAR sectionH: SectionHandle): OSErr;

container The edition you want to publish or subscribe to.

sectionDocument
The volume reference number, directory ID, and filename of the
document that contains a section. The sectionDocument parameter
can be NIL if your current document has never been saved. If so,
when the user finally saves the document, remember to call the
AssociateSection function for each section to update its alias record.

kind The type of section (publisher or subscriber) being created.

sectionID A unique number for a section within a document. The NewSection
function initializes the sectionID field of the new section record with
the specified value. Do not use 0 or –1 for an ID number; these numbers
are reserved. If your application copies a section, you need to specify a
unique number for the copied section.

initialMode
The update mode for the section. For publishers this is either the
pumOnSave or pumManual constant, and for subscribers it is
either sumAutomatic or sumManual. A subscriber created with
sumAutomatic mode automatically receives a Section Read event. To
prevent this initial Section Read event, you should set the initialMode
parameter to sumManual and then, when NewSection returns, set the
mode field of the section record to sumAutomatic.

sectionH The NewSection function returns a handle to the allocated section
record in this parameter. If an error occurs, NewSection returns NIL in
this parameter.

DESCRIPTION

The NewSection function allocates two handles in the current zone: one handle for the
section record and another handle for the alias record. Note that you are responsible for
unregistering handles created by the Edition Manager.

Your application receives the multiplePublisherWrn result code if there is
another registered publisher to the same edition. Your application receives the
notThePublisherWrn result code if another publisher (to the same edition) was the
last section to write to the edition. The multiplePublisherWrn result code takes
priority over the notThePublisherWrn result code.
Edition Manager Reference 2-75

C H A P T E R 2

Edition Manager
RESULT CODES

SEE ALSO

For information on the edition container record, see page 2-71. For information on the
section record, see “The Section Record” beginning on page 2-72. For information on file
specification records, see Inside Macintosh: Files. See Listing 2-4 on page 2-33 for an
example that uses NewSection to create a publisher and Listing 2-6 on page 2-40 for
an example that creates a subscriber using NewSection.

RegisterSection 2

When opening a document that contains sections, register each section using the
RegisterSection function.

FUNCTION RegisterSection (sectionDocument: FSSpec;

 sectionH: SectionHandle;

 VAR aliasWasUpdated: Boolean): OSErr;

sectionDocument
The volume reference number, directory ID, and filename of the
document that contains a section.

sectionH A handle to the section record for a given section.

aliasWasUpdated
A Boolean value that returns TRUE if the alias for the edition container
subscribed to was out of date and was updated. This may occur if the
edition file was moved to a new location or was renamed.

DESCRIPTION

The RegisterSection function adds the section record to the Edition Manager’s list of
registered sections and tries to allocate a control block. After calling the
RegisterSection function, the controlBlock field of the section record contains
either NIL or a valid control block.

For a subscriber, the controlBlock field contains NIL if the RegisterSection
function could not locate the edition container being subscribed to. The
RegisterSection function then returns either the containerNotFoundWrn or the
userCanceledErr result code. For a publisher, if the RegisterSection function
could not locate its corresponding edition container, the Edition Manager creates an

noErr 0 No error
editionMgrInitErr –450 Manager not initialized
badSectionErr –451 Not a valid section type
badSubPartErr –454 Bad edition container spec
multiplePublisherWrn –460 Already is a publisher
notThePublisherWrn –463 Not the publisher
2-76 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
edition container in the last place the edition was located and creates a control block for
it. If the RegisterSection function could not locate a publisher’s corresponding
edition container or its volume, the controlBlock field contains NIL. You should
never re-register a section that is already registered.

Note that you can compare control blocks for individual sections. If two sections contain
the same control block value, these sections publish or subscribe to the same edition
(unless the control block is NIL). The Edition Manager keeps track of how many sections
are referencing a control block to know when it can be deallocated. The control block
maintains a count of how many sections are referencing it. Each time you use the
UnRegisterSection function, the control block subtracts 1 from the number of
sections. When the number of sections reaches 0, the control block is deallocated.

Your application receives the multiplePublisherWrn result code if there is
another registered publisher to the same edition. Your application receives the
notThePublisherWrn result code if another publisher (to the same edition) was
the last section to write to the edition. The multiplePublisherWrn result code
takes priority over the notThePublisherWrn result code.

RESULT CODES

SEE ALSO

For information on the section record, see “The Section Record” beginning on
page 2-72. For information on file specification records, see Inside Macintosh: Files.
For additional information and an example of the use of RegisterSection, see
“Opening and Closing a Document Containing Sections” beginning on page 2-22.

UnRegisterSection 2

When a section needs to be disposed of because the document containing the section is
being closed or because the user has canceled the section, you need to call the
UnRegisterSection function before disposing of the section.

FUNCTION UnRegisterSection (sectionH: SectionHandle): OSErr;

sectionH A handle to the section record for a given section.

noErr 0 No error
userCanceledErr –128 User clicked Cancel in dialog box
editionMgrInitErr –450 Manager not initialized
badSectionErr –451 Not valid section type
multiplePublisherWrn –460 Already is a publisher
containerNotFoundWrn –461 Alias was not resolved
notThePublisherWrn –463 Not the publisher
Edition Manager Reference 2-77

C H A P T E R 2

Edition Manager
DESCRIPTION

The UnRegisterSection function removes the section from the Edition Manager’s list
of registered sections. You can then dispose of the section record and alias record with
standard Memory Manager and Resource Manager calls. Once unregistered, a section
does not receive any events and cannot read or write any data. Depending on your
Clipboard strategy, you may want to unregister sections that have been cut into
the Clipboard.

RESULT CODES

IsRegisteredSection 2

Upon receiving a section event, your application must call the IsRegisteredSection
function to verify that the event received is for a registered section. You must call
IsRegisteredSection before handling a section event because your application may
have just called UnRegisterSection while the event was already being held in the
event queue.

FUNCTION IsRegisteredSection (sectionH: SectionHandle): OSErr;

sectionH A handle to the section record for a given section.

DESCRIPTION

The IsRegisteredSection function returns a result code (not a Boolean value)
indicating whether the section is registered. A noErr result code indicates that a section
is registered.

RESULT CODES

SEE ALSO

For an example of the use of IsRegisteredSection, see Listing 2-1 on page 2-14.

noErr 0 No error
fBsyErr –47 Section doing I/O
editionMgrInitErr –450 Manager not initialized
notRegisteredSectionErr –452 Not registered

noErr 0 No error
notRegisteredSectionErr –452 Not registered
2-78 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
AssociateSection 2

If a user saves a document that contains sections under another name (using Save As) or
pastes a portion of a document that contains a section into another document, use the
AssociateSection function to update the section’s alias record.

FUNCTION AssociateSection (sectionH: SectionHandle;

newSectionDocument: FSSpecPtr): OSErr;

sectionH A handle to the section record for a given section.

newSectionDocument
The volume reference number, directory ID, and filename of the new
document.

DESCRIPTION

The AssociateSection function calls UpdateAlias on the section’s alias record.

RESULT CODES

SEE ALSO

For information on the UpdateAlias function, see the chapter “Alias Manager” in
Inside Macintosh: Files.

Creating and Deleting an Edition Container 2

Each time a user creates a new publisher section within a document to an edition that
does not already exist, you use the CreateEditionContainerFile function to create
an empty edition container.

To remove the edition container, use the DeleteEditionContainerFile function.

CreateEditionContainerFile 2

You use the CreateEditionContainerFile function to create an empty edition
container.

FUNCTION CreateEditionContainerFile

(editionFile: FSSpec; fdCreator: OSType;

 editionFileNameScript: ScriptCode): OSErr;

noErr 0 No error
paramErr –50 Invalid parameter
Edition Manager Reference 2-79

C H A P T E R 2

Edition Manager
editionFile
The volume reference number, directory ID, and filename for the edition
container being created.

fdCreator The creator type for the edition.

editionFileNameScript
The script of the filename. (You can get this value from the
theFileScript field of an edition container specification record.)

DESCRIPTION

The CreateEditionContainerFile function creates an empty edition container file
(it does not contain any formats). This function sets the file type of the edition to
'edtu'. As soon as you write data to the edition, the Edition Manager updates the type
(to 'edtp' for graphics, 'edtt' for text, or 'edts' for sound). If your application
writes both 'TEXT' and 'PICT' formats to the edition, the Edition Manager sets the file
type to the type that was written first. If your application has a bundle, you should
designate an icon for the appropriate edition types that you can write.

RESULT CODES

SEE ALSO

For information on file specification records, see Inside Macintosh: Files. For an example of
the use of CreateEditionContainerFile, see Listing 2-4 on page 2-33.

DeleteEditionContainerFile 2

If a user cancels a publisher section within a document or closes a document containing
a newly created publisher without saving, you need to remove the edition container.

To locate the appropriate edition container to be deleted, use the GetEditionInfo
function. You use the UnRegisterSection function (only after using the
GetEditionInfo function) to unregister the section record and alias record of the
publisher being canceled.

noErr 0 No error
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
dirNFErr –120 Directory not found
editionMgrInitErr –450 Manager not initialized
2-80 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
To remove the edition container, use the DeleteEditionContainerFile function.

FUNCTION DeleteEditionContainerFile (editionFile: FSSpec): OSErr;

editionFile
The volume reference number, directory ID, and filename for the edition
container being deleted.

DESCRIPTION

If the user cancels a publisher, do not call the DeleteEditionContainerFile
function until the user saves the document. This allows the user to undo changes and
revert to the last saved version of the document.

The DeleteEditionContainerFile function deletes the edition container only if
there is no registered publisher. You need to unregister a publisher before you can delete
its corresponding edition container.

You should use the DeleteEditionContainerFile function even if there are
subscribers to the edition. When a subscriber section tries to read in data, it receives
an error if the edition container has been deleted.

RESULT CODES

SEE ALSO

See page 2-98 for detailed information on the GetEditionInfo function. See page 2-77
for information on the UnRegisterSection function. For information on file
specification records, see Inside Macintosh: Files.

Setting and Getting a Format Mark 2

Use the SetEditionFormatMark function to set the current mark for a section
format and the GetEditionFormatMark function to get the current mark for a
particular format.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
dirNFErr –120 Directory not found
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-81

C H A P T E R 2

Edition Manager
SetEditionFormatMark 2

A format mark indicates the next position of a read or write operation. Initially, a mark
defaults to 0. After reading or writing data, the format mark is set past the last position
written to or read from. To set the current mark for a given format, use the
SetEditionFormatMark function.

FUNCTION SetEditionFormatMark (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 setMarkTo: LongInt): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type for the edition.

setMarkTo The offset for the next read or write for this format.

DESCRIPTION

The SetEditionFormatMark function sets the current mark for the specified format
type according to the value of the setMarkTo parameter.

RESULT CODES

GetEditionFormatMark 2

Use the GetEditionFormatMark function to get the current mark for a particular
format.

FUNCTION GetEditionFormatMark (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 VAR currentMark: LongInt): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type whose mark you want to get.

currentMark
The GetEditionFormatMark function returns the mark for the
specified format in this parameter.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Unknown format (subscriber only)
editionMgrInitErr –450 Manager not initialized
2-82 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
DESCRIPTION

If the edition does not support the format specified in the whichFormat parameter, you
receive a noTypeErr result code.

RESULT CODES

Reading in Edition Data 2

To initiate the reading of data from an edition (for a subscriber), use the OpenEdition
function.

Use the EditionHasFormat function to learn in which formats the edition data is
available.

Use the ReadEdition function to read data from an edition. This function reads from
the current mark for the specified format.

OpenEdition 2

To initiate the reading of data from an edition (for a subscriber), use the OpenEdition
function.

FUNCTION OpenEdition (subscriberSectionH: SectionHandle;

 VAR refNum: EditionRefNum): OSErr;

subscriberSectionH
A handle to the section record for a given section.

refNum The OpenEdition function returns the reference number for the edition
in this parameter.

DESCRIPTION

The OpenEdition function opens an edition for reading and returns a reference
number that your application can use to refer to this edition in other Edition Manager
routines. Multiple subscribers can each call the OpenEdition function simultaneously
(each call returns a different reference number) and read data from a single edition. If a
publisher (located on a different machine) is writing to an edition when you use the
OpenEdition function, you receive an flLckedErr result code.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Unknown format
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-83

C H A P T E R 2

Edition Manager
RESULT CODES

SEE ALSO

For an example of the use of OpenEdition, see Listing 2-7 on page 2-42.

EditionHasFormat 2

Use the EditionHasFormat function to learn in which formats the edition data is
available.

FUNCTION EditionHasFormat (whichEdition: EditionRefNum;

whichFormat: FormatType;

VAR formatSize: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you are requesting. For the whichFormat
parameter, you should decide which formats to read in the same way that
you do when reading data from the scrap. You can also get a list of all the
available formats and their respective lengths by reading the
kFormatListFormat ('fmts') format.

formatSize
The EditionHasFormat function returns the format length in this
parameter.

DESCRIPTION

If the requested format is available, the EditionHasFormat function returns noErr,
and the formatSize parameter returns the size of the data in the specified format or
kFormatLengthUnknown (–1), which signifies that the size is unknown. You should
therefore continue to read the format until there is no more data.

noErr 0 No error
fnfErr –43 File not found
flLckedErr –45 Publisher writing to an edition
permErr –54 Not a subscriber
editionMgrInitErr –450 Manager not initialized
2-84 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Note
The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

RESULT CODES

SEE ALSO

For an example of the use of EditionHasFormat, see Listing 2-7 beginning on
page 2-42. For information about the Translation Manager and Scrap Manager, see
Inside Macintosh: More Macintosh Toolbox.

ReadEdition 2

Use the ReadEdition function to read data from an edition. This function reads from
the current mark for the specified format.

FUNCTION ReadEdition (whichEdition: EditionRefNum;

 whichFormat: FormatType; buffPtr: UNIV Ptr;

 VAR buffLen: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you want to read.

buffPtr A pointer to the buffer into which you want to read the data.

buffLen The number of bytes that you want to read into the buffer. The
ReadEdition function returns the actual number of bytes read in the
buffLen parameter.

noErr 0 No error
rfNumErr –51 Bad edition reference number
noTypeErr –102 Format not available
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-85

C H A P T E R 2

Edition Manager
DESCRIPTION

The ReadEdition function reads data from the edition into the specified buffer.
ReadEdition returns in the buffLen parameter the total number of bytes read into the
buffer. If the buffLen parameter returns a value smaller than the value you have
specified, there is no additional data to read, and the ReadEdition function returns a
noErr result code. If you use the ReadEdition function after all data is read in, the
ReadEdition function returns an eofErr result code.

You can read data from an edition while a publisher on the same machine is writing data
to the same edition. The data that you are reading is the old edition (not the data that the
publisher is writing). If the publisher finishes writing data before you are through
reading the old edition data, the ReadEdition function returns an abortErr result
code. If the ReadEdition function returns an abortErr result code, you should stop
trying to read data and use the CloseEdition function with the successful
parameter set to FALSE.

Note
The Translation Manager (if it is available) attempts implicit
translation under certain circumstances. For instance, it does so when
your application attempts to read from an edition a format type that is
not in the edition. In this case, the Translation Manager attempts to
translate the data into the requested format. For more information,
see the chapter “Translation Manager” in Inside Macintosh:
More Macintosh Toolbox. ◆

RESULT CODES

SEE ALSO

For an example of the use of ReadEdition, see Listing 2-7 beginning on page 2-42.

Writing out Edition Data 2

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdition function. (To create an edition container, use the
CreateEditionContainerFile function, as described on page 2-79.)

Use the WriteEdition function to write data to an edition.

noErr 0 No error
abortErr –27 Publisher has written a new edition
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 No more data of that format
rfNumErr –51 Bad edition reference number
noTypeErr –102 Format not available
editionMgrInitErr –450 Manager not initialized
2-86 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
OpenNewEdition 2

To initiate the writing of data from a publisher to its edition container, use the
OpenNewEdition function.

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle;

 fdCreator: OSType;

 publisherSectionDocument: FSSpecPtr;

 VAR refNum: EditionRefNum): OSErr;

publisherSectionH
The publisher section that is writing to the edition.

fdCreator The Finder creator type of the new edition icon.

publisherSectionDocument
The document that contains the publisher. This parameter is used to
create an alias from the edition to the publisher’s document. If you pass
NIL for publisherSectionDocument, an alias is not made in the
edition file.

refNum The OpenNewEdition function returns the reference number
for the edition in this parameter. You specify this reference
number as a parameter for subsequent calls to WriteEdition,
SetEditionFormatMark, and CloseEdition to specify which
publisher is writing its data to an edition. If the edition cannot be opened
for writing because there is another publisher writing to it, or because the
file system does not allow writing, an error is returned and
OpenNewEdition sets refNum to NIL.

DESCRIPTION

The OpenNewEdition function opens an edition for writing. The function returns an
flLckdErr result code if there is a subscriber on another machine reading data from the
same edition. The OpenNewEdition function returns a permErr result code if there is a
registered publisher to that edition on another machine.

The Edition Manager allows two registered publishers that are located on the same
machine to write to the same edition. Note that multiple publishers cannot write to the
same edition simultaneously—only one publisher can write to an edition at a given time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
flLckdErr –45 Edition in use by another section
permErr –54 Registered publisher on another machine
wrPermErr –61 Not a publisher
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-87

C H A P T E R 2

Edition Manager
SEE ALSO

For an example of the use of OpenNewEdition, see Listing 2-5 beginning on
page 2-36.

WriteEdition 2

Use the WriteEdition function to write data to an edition. This function begins
writing at the current mark for the specified format.

FUNCTION WriteEdition (whichEdition: EditionRefNum;

 whichFormat: FormatType;

 buffPtr: UNIV Ptr; buffLen: Size): OSErr;

whichEdition
The reference number for the edition.

whichFormat
The format type that you want to write.

buffPtr A pointer to the buffer containing the data to write to the edition.

buffLen The number of bytes that you want to write to the edition.

DESCRIPTION

The WriteEdition function writes the specified number of bytes to the edition. If
the data cannot be entirely written to the edition, the WriteEdition function returns
an error.

RESULT CODES

SEE ALSO

For an example that writes data to an edition, see Listing 2-5 beginning on page 2-36.

Closing an Edition After Reading or Writing 2

After finishing reading from or writing to an edition, use the CloseEdition function to
close the edition.

noErr 0 No error
dskFulErr –34 Disk is full
ioErr –36 I/O error
rfNumErr –51 Bad edition reference number
editionMgrInitErr –450 Manager not initialized
2-88 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
CloseEdition 2

Use the CloseEdition function to close an edition after you finish reading from or
writing to it.

FUNCTION CloseEdition (whichEdition: EditionRefNum;

 successful: Boolean): OSErr;

whichEdition
The reference number for the edition.

successful
A value that indicates whether your application was successful (TRUE) or
unsuccessful (FALSE) in reading from or writing data to the edition.

DESCRIPTION

When a subscriber successfully finishes reading data from the edition, the
CloseEdition function takes the modification date of the edition file that you have
read and puts it in the mdDate field of the subscriber’s section record. This indicates that
the data contained in the edition and the subscriber section within the document
are the same.

When a subscriber is unsuccessful in reading data from an edition (because there is not
enough memory, or you didn’t find a format that you can read), set the successful
parameter to FALSE. The CloseEdition function then closes the edition, but does not
set the mdDate field. This implies that the subscriber is not updated with the latest
edition.

When a publisher successfully finishes writing data to an edition, the CloseEdition
function makes the data that the publisher has written to the edition available to any
subscribers and sets the corresponding edition file’s modification date (ioFlMdDat) to
the mdDate field of the publisher’s section record. The Edition Manager then sends a
Section Read event to all current subscribers set to automatic update mode. At this point,
the file type of the edition file is set based on the first known format that the publisher
wrote.

When a publisher is unsuccessful in writing data to an edition, the CloseEdition
function discards what the publisher has written to the edition. The data contained in the
edition prior to writing remains unchanged, and Section Read events are not sent to
subscribers.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad edition reference number
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-89

C H A P T E R 2

Edition Manager
SEE ALSO

For an example of the use of CloseEdition, see Listing 2-5 beginning on
page 2-36.

Displaying Dialog Boxes 2

The Edition Manager supports three dialog boxes: publisher, subscriber, and options
dialog boxes. Your application can display simple dialog boxes that appear centered on
the user’s screen, or you can customize your dialog boxes.

Use the GetLastEditionContainerUsed function to get the default edition to
display.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen and use the NewPublisherDialog function to display the publisher
dialog box on the user’s screen. Unlike the Standard File Package routines, the
NewPublisherDialog and the NewSubscriberDialog functions allow you to
specify the initial volume reference number and directory ID so that there can be one
default location for editions for all applications.

You use the SectionOptionsDialog function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions are the same as the simple dialog functions but
have five additional parameters.

GetLastEditionContainerUsed 2

Use the GetLastEditionContainerUsed function to get the default edition to
display. This function allows a user to easily subscribe to the data recently published.

FUNCTION GetLastEditionContainerUsed

(VAR container: EditionContainerSpec): OSErr;

container If the GetLastEditionContainerUsed function locates the last
edition for which a section was created, the container parameter
contains its volume reference number, directory ID, filename, and part,
and returns a noErr result code. (The last edition created is associated
with the last time that your application or another application located on
the same machine used the NewSection function.)

DESCRIPTION

If the last edition used is missing, the GetLastEditionContainerUsed function
returns an fnfErr result code, but still returns the correct volume reference number and
directory ID that you should use for the NewSubscriberDialog function.
2-90 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Pass the information from the GetLastEditionContainerUsed function to the
NewSubscriberDialog function.

RESULT CODES

SEE ALSO

For an example of the use of GetLastEditionContainerUsed, see Listing 2-6
beginning on page 2-40. For a description of the edition container record, see page 2-71.
The NewSubscriberDialog function is described next.

NewSubscriberDialog 2

When a user chooses the Subscribe To menu command, your application should call the
NewSubscriberDialog function to allow the user to choose an edition to subscribe to.

FUNCTION NewSubscriberDialog

(VAR reply: NewSubscriberReply): OSErr;

reply The new subscriber reply record. You specify a location to use as the
default edition container in the container field of this record. You also
specify in the formatsMask field which edition format types
NewSubscriberDialog should display. The NewSubscriberDialog
function returns information concerning the user’s choice in the
canceled and container fields of this record.

TYPE NewSubscriberReply =

RECORD

canceled: Boolean; {user canceled }

{ dialog box}

formatsMask: SignedByte; {formats required}

container: EditionContainerSpec;{edition selected}

END;

Field descriptions

canceled The NewSubscriberDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field
and returns in the container field the edition container for the
new subscriber.

noErr 0 No error
fnfErr –43 Edition container not found
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-91

C H A P T E R 2

Edition Manager
formatsMask The formatsMask field indicates which edition format type (text,
graphics, and sound) to display within the subscriber dialog box.
You can set the formatsMask field to the following constants:
kTEXTformatMask (1), kPICTformatMask (2), or
ksndFormatMask (4). To support a combination of formats, add
the constants together. For example, a formatsMask of 3 displays
both graphics and text edition format types in the subscriber
dialog box.

container The edition container of the last edition published or subscribed to.
You provide in this parameter the location and filename to use as
the default edition to subscribe to. If the user clicks the Subscribe
button, NewSubscriberDialog returns FALSE in the canceled
field and returns the selected edition container for the new
subscriber in the container field.

DESCRIPTION

The NewSubscriberDialog function displays the subscriber dialog box on the user’s
screen. The NewSubscriberDialog function (which is based on the CustomGetFile
procedure described in the chapter “Standard File Package” in Inside Macintosh: Files)
switches to the volume reference number and directory ID and selects the filename of the
edition container that you specified in the container field of the reply parameter. Use
the GetLastEditionContainerUsed function to get the edition container of the last
edition that was either published or subscribed to, then set the container field to this
edition container. This allows the user to publish and then easily subscribe.

Note that if an edition does not contain either 'PICT', 'TEXT', or 'snd ' data, the
NewSubscriberDialog function does not list the edition file in the new subscriber
dialog box (unless you install an opener that can recognize the edition’s data in response
to the eoCanSubscribe verb).

RESULT CODES

SEE ALSO

For an illustration of the new subscriber dialog box, see Figure 2-12 on page 2-37. For an
example of the use of NewSubscriberDialog, see Listing 2-6 beginning on page 2-40.
For a description of the edition container record, see page 2-71. For information on
edition openers, see “Subscribing to Non-Edition Files” beginning on page 2-62.

noErr 0 No error
editionMgrInitErr –450 Manager not initialized or could not load package
badSubPartErr –454 Bad edition container spec
2-92 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
NewPublisherDialog 2

When a user selects a portion of a document and then chooses the Create Publisher
menu command, your application should call the NewPublisherDialog function to
allow the user to choose a name and location of the edition to which your application
writes the publisher data. Your application specifies a location and name to use as the
default edition and provides a preview of the publisher data to the
NewPublisherDialog function.

FUNCTION NewPublisherDialog

(VAR reply: NewPublisherReply): OSErr;

reply A new publisher reply record. You specify a location to use as the default
edition container in the container field of this record. You also specify
information in the usePart, preview, and previewFormat fields. The
NewPublisherDialog function returns information concerning the
user’s choice in the canceled, replacing, and container fields of
this record.

TYPE NewPublisherReply =

RECORD

canceled: Boolean; {user canceled dialog box}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always false in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT', }

{ 'TEXT', or 'snd ' data}

previewFormat: FormatType; {type of preview}

container: EditionContainerSpec;

{edition chosen}

END;

Field descriptions

canceled The NewPublisherDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. The function returns FALSE in this field if the user
clicked the Publish button and returns in the container field the
edition container for the new publisher.

replacing The NewPublisherDialog function returns TRUE in the
replacing field if the user chose an existing filename from the list
of available editions and confirmed this replacement. If the value of
the replacing field is TRUE, do not call the
CreateEditionContainerFile function. If the value of this
field and the canceled field is FALSE, you can call
CreateEditionContainerFile to create a new edition
container.
Edition Manager Reference 2-93

C H A P T E R 2

Edition Manager
usePart A value that must be set to FALSE before calling the
NewPublisherDialog function.

preview A handle to 'prvw', 'PICT', 'TEXT', or 'snd ' data. The
NewPublisherDialog function displays this data in the preview
area of the dialog box.

previewFormat A value that indicates which type of data the handle in the
preview field references.

container An edition container record that specifies the volume reference
number, directory ID, and filename to use as the default edition to
publish the data to. The NewPublisherDialog function returns in
this field the edition container that the user selected.

DESCRIPTION

The NewPublisherDialog function displays the new publisher dialog box on
the user’s screen. The NewPublisherDialog function (which is based on the
CustomPutFile procedure described in the chapter “Standard File Package” in
Inside Macintosh: Files) switches to the volume reference number and directory ID
specified by the edition container, sets the editable text item to the filename specified by
the edition container, and displays a preview of the publisher data in the new publisher
dialog box. The NewPublisherDialog function handles all user interaction until the
user clicks the Cancel or Publish button.

You should deallocate the handle referenced by the preview field to free up memory.

RESULT CODES

SEE ALSO

For an illustration of the new publisher dialog box, see Figure 2-11 on page 2-29. For an
example of the use of NewPublisherDialog, see Listing 2-4 beginning on page 2-33.
For a description of the edition container record, see page 2-71.

SectionOptionsDialog 2

Use the SectionOptionsDialog function to display the publisher options and
subscriber options dialog boxes on the user’s screen.

FUNCTION SectionOptionsDialog

(VAR reply: SectionOptionsReply): OSErr;

noErr 0 No error
editionMgrInitErr –450 Manager not initialized or could not load package
badSubPartErr –454 Bad edition container spec
2-94 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
reply The reply parameter contains a section options reply record. You specify
a handle to the publisher’s or subscriber’s section record in the
sectionH field of this record. The SectionOptionsDialog function
returns information concerning the user’s actions in the canceled,
changed, and action fields.

TYPE SectionOptionsReply =

RECORD

canceled: Boolean; {user canceled dialog box}

changed: Boolean; {changed the section record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

Field descriptions

canceled The SectionOptionsDialog function returns in this field a value
that indicates whether the user canceled the dialog box. The
function returns TRUE in the canceled field if the user canceled
the dialog box. Otherwise, the function returns FALSE in this field.

changed The SectionOptionsDialog function returns TRUE in this field if
the user changed the section record. For example, the update mode
may have changed. Otherwise, the function returns FALSE in this
field.

sectionH A handle to the section record for the section the user selected.
action The SectionOptionsDialog function returns in this field the

code for one of five user actions: action code 'read' for user
selection of the Get Edition Now button, action code 'writ' for
user selection of the Send Edition Now button, action code 'goto'
for user selection of the Open Publisher button, action code
'cncl' for user selection of the Cancel Publisher or Cancel
Subscriber button, or action code ' ' ($20202020) for user
selection of the OK button.

DESCRIPTION

The SectionOptionsDialog function displays the appropriate options dialog box for
the specified section record. The function displays information about the subscriber or
publisher, such as its latest edition and current update mode setting, and allows the user
to perform various actions. The SectionOptionsDialog function handles all user
interaction until the user selects a button. The function returns the user’s action in the
action field of the reply parameter; your application should then perform the
corresponding action.

RESULT CODES

noErr 0 No error
memFullErr –108 Memory full
Edition Manager Reference 2-95

C H A P T E R 2

Edition Manager
SEE ALSO

For illustrations of the section options dialog box, see Figure 2-13 through Figure 2-16
beginning on page 2-43. For an example of the use of SectionOptionsDialog, see
Listing 2-8 beginning on page 2-46. For a description of the section record, see page 2-72.

NewSubscriberExpDialog, NewPublisherExpDialog, SectionOptionsExpDialog 2

The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions are the same as the simple dialog functions but
have five additional parameters. These additional parameters allow you to add items to
the bottom of the dialog boxes, apply alternate mapping of events to item hits, apply
alternate meanings to the item hits, and choose the location of the dialog boxes.

FUNCTION NewSubscriberExpDialog

(VAR reply: NewSubscriberReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

FUNCTION NewPublisherExpDialog

(VAR reply: NewPublisherReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

FUNCTION SectionOptionsExpDialog

(VAR reply: SectionOptionsReply; where: Point;

 expansionDITLresID: Integer;

 dlgHook: ExpDlgHookProcPtr;

 filterProc: ExpModalFilterProcPtr;

 yourDataPtr: UNIV Ptr): OSErr;

reply A new subscriber reply, new publisher reply, or section options
reply record. You specify information in the fields of this record
just as you do in the the corresponding fields of records used by
NewSubscriberDialog, NewPublisherDialog, and
SectionOptionsDialog.

where A point that specifies a location on the screen where the function displays
the dialog box. You can automatically center the dialog box by passing
(–1, –1) in the where parameter.
2-96 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
expansionDITLresID
A value of 0 or a valid item list ('DITL') resource ID. This integer is
the ID of a dialog item list whose items are appended to the end of the
standard dialog item list. The dialog items keep their relative positions,
but they are moved as a group to the bottom of the dialog box.

dlgHook A pointer to an expandable dialog hook function or NIL. An expandable
dialog hook function is similar to a dialog hook function except that an
expandable dialog hook function accepts an additional parameter.
The NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog functions call your expandable dialog
hook function after each call to the ModalDialog procedure. The
expandable dialog hook function should take the appropriate action, such
as filling in a checkbox. The itemOffset parameter to the expandable
dialog hook function is the number of items in the item list before your
expansion dialog items. You need to subtract the item offset from the item
hit to get the relative item number in the expansion item list. The
expandable dialog hook function should return as its function result the
absolute item number.

filterProc
A pointer to an expandable modal-dialog filter function or NIL. An
expandable modal-dialog filter function is similar to a modal-dialog
filter function or event filter function except that an expandable
modal-dialog filter function accepts two extra parameters. The
ModalDialog procedure calls the expandable modal-dialog filter
function you provide in this parameter. An expandable modal-dialog
filter function allows you to map real events (such as a mouse-down
event) to an item hit (such as clicking a Cancel button). For instance, you
may want to map a keyboard equivalent to an item hit.

yourDataPtr
Reserved for your use. It is passed back to your hook and event filter
function. This parameter does not have to be of type Ptr—it can be any
32-bit quantity that you want. In Pascal, you can pass yourDataPtr in
register A6, and declare your dialog hook and event filter as local
functions without the last parameter. The stack frame is set up properly
for these functions to access their parent local variables.

DESCRIPTION

The NewPublisherExpDialog, NewSubscriberExpDialog, and
SectionOptionsExpDialog functions display the appropriate dialog box, handle
user interaction, and call any functions you have provided in the dlgHook and
filterProc parameters.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all
the pseudo-items for the Standard File Package such as hookFirstCall(–1),
hookNullEvent(100), hookRebuildList(101), and hookLastCall(–2) can be used,
as well as hookRedrawPreview(150).
Edition Manager Reference 2-97

C H A P T E R 2

Edition Manager
For the SectionOptionsExpDialog function, the only valid pseudo-items are
hookFirstCall(–1), hookNullEvent(100), hookLastCall(–2),
emHookRedrawPreview(150), emHookCancelSection(160),
emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(164).

If you provide an expandable dialog hook function, it must contain the following
parameters:

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer;

theDialog: DialogPtr;

 yourDataPtr: Ptr): Integer;

If you provide an expandable modal-dialog filter function, it must contain the following
parameters.

FUNCTION MyExpModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

itemOffset: Integer;

VAR itemHit: Integer;

yourDataPtr: Ptr): Boolean;

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
additional information on item lists. See the chapter “Standard File Package” in
Inside Macintosh: Files for information on dialog hook and modal-dialog filter functions.

Locating a Publisher and Edition From a Subscriber 2

The GetEditionInfo function returns information about a section’s edition such as its
location, last modification date, creator, and type.

Once you locate a section’s edition, you can use the GoToPublisherSection function
to find the document containing the publisher.

GetEditionInfo 2

Use the GetEditionInfo function to obtain information about a section’s edition, such
as its location, last modification date, creator, and type.

FUNCTION GetEditionInfo

(sectionH: SectionHandle;

 VAR editionInfo: EditionInfoRecord): OSErr;
2-98 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
sectionH A handle to the section record for a given section.

editionInfo
An edition information record. The GetEditionInfo function returns
the public information contained in the section’s control block.

DESCRIPTION

The Edition Manager ensures that the existing edition name corresponds to the Finder’s
existing edition name. If the controlBlock field of the section record is set to NIL or
the edition cannot be located, the GetEditionInfo function returns an fnfErr
result code.

The GetEditionInfo function returns information about the section’s edition in a data
structure of type EditionInfoRecord.

TYPE EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;{the edition}

END;

Field descriptions

crDate The creation date of the edition.
mdDate The modification date of the edition.
fdCreator The creator of the edition file.
fdType The file type of the edition file.
container An edition container record, which specifies the volume reference

number, directory ID, filename, script, and part number for the
edition.

RESULT CODES

SEE ALSO

For an example of the use of GetEditionInfo, see Listing 2-8 beginning on page 2-46.
For another use of this function, see “Canceling Sections Within Documents” beginning
on page 2-48. For a description of the edition container record, see page 2-71.

noErr 0 No error
fnfErr –43 Not registered or file moved
editionMgrInitErr –450 Manager not initialized
Edition Manager Reference 2-99

C H A P T E R 2

Edition Manager
GoToPublisherSection 2

When the user wants to locate the publisher for a particular subscriber (by clicking
Open Publisher in the subscriber options dialog box), the SectionOptionsDialog
function returns the action code 'goto' in the action field of the section options reply
record. When you receive this action code, you should open the document containing
the publisher.

First, use the GetEditionInfo function to find the edition container. Then use the
GoToPublisherSection function to open the document containing the publisher.

FUNCTION GoToPublisherSection

(container: EditionContainerSpec): OSErr;

container An edition container record, which specifies volume reference number,
directory ID, and filename of the subscriber’s edition. You obtain the
edition container by calling the GetEditionInfo function.

DESCRIPTION

The GoToPublisherSection function resolves the alias in the edition to find
the document containing its publisher. In general, this function internally uses the
GetStandardFormats function to get the alias to the publisher document and then
resolves the alias. It next sends the Finder an Apple event to open the document (which
launches its application if necessary) and, after the publisher is registered, sends a
Section Scroll event to the publisher.

As an optimization, if there is a registered publisher, the GoToPublisherSection
function simply sends a Section Scroll event to the publisher.

If the edition does not contain an alias and there are no registered publishers, then the
GoToPublisherSection function sends an Open Documents event to open the edition
to the creating application.

If the edition container is not an edition file (as is the case when you are using
bottlenecks to subscribe to non-edition files), the GoToPublisherSection function
sends the Finder an Apple event to open that file.

RESULT CODES

noErr 0 No error
fnfErr –43 File not found
editionMgrInitErr –450 Manager not initialized
badSubPartErr –454 Invalid edition container
2-100 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
SEE ALSO

For illustrations of the section options dialog box for subscribers, see Figure 2-15 on
page 2-44 and Figure 2-16 on page 2-45. For an example of responding to the action code
'goto', see Listing 2-8 beginning on page 2-46. For a description of the edition
container record, see page 2-71.

Edition Container Formats 2

The Edition Manager calls the GetStandardFormats function to get the alias used in
the GoToPublisherSection function and to get the preview shown in the subscriber
dialog box. You probably do not need to call this function directly.

GetStandardFormats 2

You probably do not need to call the GetStandardFormats function directly because
the Edition Manager calls this function.

FUNCTION GetStandardFormats

(container: EditionContainerSpec;

 VAR previewFormat: FormatType;

 preview, publisherAlias, formats: Handle): OSErr;

container An edition container record that specifies the edition volume reference
number, directory ID, filename, and part.

previewFormat
The GetStandardFormats function returns in this parameter a handle
to the first format of the requested format type that it finds in the edition.

preview A format type. The GetStandardFormats function looks for a format of
the type specified in this parameter and returns in this parameter the
format type of the first format that it finds. The function tries to find one
of four formats: 'prvw', 'PICT', 'TEXT', or 'snd '.

publisherAlias
The publisherAlias parameter reads the format
kPublisherDocAliasFormat ('alis').

formats The formats parameter reads the virtual format kFormatListFormat
('fmts').

DESCRIPTION

You should pass in valid handles for the formats that you want and NIL for the formats
that you don’t want. The handles are resized to the size of the data.

If one of the requested formats cannot be found, GetStandardFormats returns a
noTypeErr result code.
Edition Manager Reference 2-101

C H A P T E R 2

Edition Manager
RESULT CODES

Reading and Writing Non-Edition Files 2

The Edition Manager never opens or closes an edition container directly—it calls the
current edition opener. See “Subscribing to Non-Edition Files” beginning on page 2-62
for additional information.

To override the standard opener function, create an opener function that contains the
following parameters:

FUNCTION MyOpener (selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock): OSErr;

When this function is called by the Edition Manager, the selector parameter is set to
one of the edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew,
eoCanSubscribe). The PB parameter contains an edition opener parameter block
record.

Use the GetEditionOpenerProc function to locate the current edition opener and use
the SetEditionOpenerProc function to provide your own edition opener.

Use the CallEditionOpenerProc function to call an edition opener and use the
CallFormatIOProc function to call a format I/O function.

GetEditionOpenerProc 2

Use the GetEditionOpenerProc function to locate the current edition opener.

FUNCTION GetEditionOpenerProc

(VAR opener: EditionOpenerProcPtr): OSErr;

opener The GetEditionOpenerProc function returns a pointer to the current
edition opener function in this parameter.

SetEditionOpenerProc 2

Use the SetEditionOpenerProc function to provide your own edition opener.

FUNCTION SetEditionOpenerProc

(opener: EditionOpenerProcPtr): OSErr;

noErr 0 No error
noTypeErr –102 Edition container not found
editionMgrInitErr –450 Manager not initialized
2-102 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
opener A pointer to the edition opener function that you are providing.

CallEditionOpenerProc 2

Use the CallEditionOpenerProc function to call an edition opener.

FUNCTION CallEditionOpenerProc

(selector: EditionOpenerVerb;

 VAR PB: EditionOpenerParamBlock;

 routine: EditionOpenerProcPtr): OSErr;

selector An edition opener verb. When the CallEditionOpenerProc function
is called by the Edition Manager, the selector parameter is set to one of
the edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew,
eoCanSubscribe).

PB An edition opener parameter block.

routine A pointer to an edition opener function.

DESCRIPTION

The Edition Manager calls an edition opener function whenever it needs to open or close
an edition. The Edition Manager passes an edition opener parameter block as one of the
parameters to an edition opener function. The edition opener parameter block is defined
by this structure:

TYPE EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or }

{ subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read }

{ formats}

success: Boolean; {reading or writing }

{ was successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;
Edition Manager Reference 2-103

C H A P T E R 2

Edition Manager
To override the standard reading and writing functions, you should create an I/O
function that contains the following parameters.

FUNCTION MyIO (selector: FormatIOVerb;

VAR PB: FormatIOParamBlock): OSErr;

Set the selector parameter to one of the format I/O verbs (ioHasFormat,
ioReadFormat, ioNewFormat, ioWriteFormat). The PB parameter contains a format
I/O parameter block record.

SEE ALSO

See “Calling an Edition Opener” beginning on page 2-64 for additional information.

CallFormatIOProc 2

Use the CallFormatIOProc function to call a format I/O function.

FUNCTION CallFormatIOProc (selector: FormatIOVerb;

VAR PB:FormatIOParamBlock;

routine: FormatIOProcPtr): OSErr;

selector A format I/O verb (ioHasFormat, ioReadFormat, ioNewFormat,
ioWriteFormat).

PB A format I/O parameter block record.

routine A pointer to a format I/O function.

DESCRIPTION

The Edition Manager calls a format I/O function whenever it needs to read from or write
to an edition. The Edition Manager passes a format I/O parameter block as one of the
parameters to a format I/O procedure. The format I/O parameter block is defined by
this structure:

TYPE FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;
2-104 Edition Manager Reference

C H A P T E R 2

Edition Manager

2
E

dition M
anager
SEE ALSO

See “Calling a Format I/O Function” beginning on page 2-68 for additional information.

Application-Defined Routines 2
Your application can provide an edition opener function, format I/O function,
expandable dialog hook function, and expandable modal-dialog filter function. For the
routine declarations of the edition opener and format I/O functions, see “Reading and
Writing Non-Edition Files” beginning on page 2-102. For the routine declarations of the
expandable dialog hook and expandable modal-dialog filter functions, see the
description of NewSubscriberExpDialog, NewPublisherExpDialog, and
SectionOptionsExpDialog beginning on page 2-96.
Edition Manager Reference 2-105

C H A P T E R 2

Edition Manager
Summary of the Edition Manager 2

Pascal Summary 2

Constants 2

CONST

{resource types}

rSectionType = 'sect'; {resource type for a }

{ section}

{section types}

stSubscriber = $01; {subscriber section type}

stPublisher = $0A; {publisher section type}

{update modes}

sumAutomatic = 0; {subscriber receives new }

{ editions automatically}

sumManual = 1; {subscriber receives new }

{ editions manually}

pumOnSave = 0; {publisher sends new }

{ editions on save}

pumManual = 1; {publisher does not send }

{ new editions until user }

{ request}

{edition container subpart number}

kPartsNotUsed = 0; {edition is the whole file}

kPartNumberUnknown = -1; {not used in version 7.0}

{preview size}

kPreviewWidth = 120; {preview width}

kPreviewHeight = 120; {preview height}

{special formats}

kPublisherDocAliasFormat = 'alis'; {alias record from the }

{ edition to publisher}

kPreviewFormat = 'prvw'; {'PICT' thumbnail sketch}

kFormatListFormat = 'fmts'; {list of all available }

{ formats and their sizes}
2-106 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
{bits for formatMask}

kPICTformatMask = 1; {graphics format}

kTEXTformatMask = 2; {text format}

ksndFormatMask = 4; {sound format}

{Finder types for edition files}

kPICTEditionFileType = 'edtp'; {contains 'PICT', }

kTEXTEditionFileType = 'edtt'; { 'TEXT', and }

ksndEditionFileType = 'edts'; { 'snd ' file types}

kUnknownEditionFileType = 'edtu'; {unknown file type}

{miscellaneous}

kFormatLengthUnknown = -1; {length of format unknown}

{message IDs for Apple events sent by the Edition Manager}

sectionEventMsgClass = 'sect'; {Apple events sent by the }

{ Edition Manager}

sectionReadMsgID = 'read'; {Section Read events}

sectionWriteMsgID = 'writ'; {Section Write events}

sectionScrollMsgID = 'scrl'; {Section Scroll events}

sectionCancelMsgID = 'cncl'; {Section Cancel events}

{refCon field when displaying stacked dialog boxes}

sfMainDialogRefCon = 'stdf'; {new publisher and }

{ new subscriber}

sfNewFolderDialogRefCon = 'nfdr'; {new folder}

sfReplaceDialogRefCon = 'rplc'; {replace dialog}

sfStatWarnDialogRefCon = 'stat'; {warning dialog}

sfErrorDialogRefCon = 'err '; {error dialog}

emOptionsDialogRefCon = 'optn'; {options dialog}

emCancelSectionDialogRefCon = 'cncl'; {cancel section}

emGotoPubErrDialogRefCon = 'gerr'; {locate publisher}

{pseudo-item hits for dialogHooks}

emHookRedrawPreview = 150; {for NewPublisher or }

{ NewSubscriber dialogs}

emHookCancelSection = 160; {for SectionOptions dialog}

emHookGoToPublisher = 161; {for SectionOptions dialog}

emHookGetEditionNow = 162; {for SectionOptions dialog}

emHookSendEditionNow = 162; {for SectionOptions dialog}

emHookManualUpdateMode = 163; {for SectionOptions dialog}

emHookAutoUpdateMode = 164; {for SectionOptions dialog}
Summary of the Edition Manager 2-107

C H A P T E R 2

Edition Manager
Data Types 2

TYPE TimeStamp = LongInt; {seconds since 1904}

EditionRefNum = Handle; {for use in Edition I/O}

UpdateMode = Integer; {sumAutomatic, }

{ sumManual, }

{ pumOnSave, pumManual}

SectionType = SignedByte; {stSubscriber or }

{ stPublisher}

FormatType = PACKED ARRAY[1..4] OF CHAR;

{similar to ResType used }

{ by the Scrap Manager}

SectionHandle = ^SectionPtr;

SectionPtr = ^SectionRecord;

SectionRecord =

RECORD

version: SignedByte; {always 1 in version 7.0}

kind: SectionType; {publisher or subscriber}

mode: UpdateMode; {automatic or manual}

mdDate: TimeStamp; {last change to section}

sectionID: LongInt; {application-specific, }

{ unique per document}

refCon: LongInt; {application-specific}

alias: AliasHandle; {handle to alias record}

{The following fields are private and are set up by the }

{ RegisterSection function.}

subPart: LongInt; {private}

nextSection: SectionHandle; {private}

controlBlock: Handle; {private}

refNum: EditionRefNum; {private}

END;

EditionContainerSpecPtr =^EditionContainerSpec;

EditionContainerSpec =

RECORD

theFile: FSSpec; {file containing edition }

{ data}

theFileScript: ScriptCode; {script code of filename}

thePart: LongInt; {which part of file, }

{ always kPartsNotUsed}
2-108 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
thePartName: Str31; {reserved}

thePartScript: ScriptCode; {reserved}

END;

FormatsAvailable = ARRAY[0..0] OF

RECORD

theType: FormatType; {format type for an }

{ edition}

theLength: LongInt; {length of edition format }

{ type}

END;

EditionInfoRecord =

RECORD

crDate: TimeStamp; {date edition container }

{ was created}

mdDate: TimeStamp; {date of last change}

fdCreator: OSType; {file creator}

fdType: OSType; {file type}

container: EditionContainerSpec;

{the edition}

END;

NewPublisherReply =

RECORD

canceled: Boolean; {user canceled dialog box}

replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: Boolean; {always FALSE in version 7.0}

preview: Handle; {handle to 'prvw', 'PICT',}

{ 'TEXT', or 'snd ' data}

previewFormat: FormatType; {type of preview}

container: EditionContainerSpec;

{edition chosen}

END;

NewSubscriberReply =

RECORD

canceled: Boolean; {user canceled dialog box}

formatsMask: SignedByte; {formats required}

container: EditionContainerSpec;

{edition selected}

END;
Summary of the Edition Manager 2-109

C H A P T E R 2

Edition Manager
SectionOptionsReply =

RECORD

canceled: Boolean; {user canceled dialog box}

changed: Boolean; {changed the section }

{ record}

sectionH: SectionHandle; {handle to the specified }

{ section record}

action: ResType; {action codes}

END;

EditionOpenerVerb= (eoOpen, eoClose, eoOpenNew, eoCloseNew,

eoCanSubscribe);

EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }

{ be subscribed to}

sectionH: SectionHandle; {publisher or subscriber }

{ requesting open}

document: FSSpecPtr; {document passed}

fdCreator: OSType; {Finder creator type}

ioRefNum: LongInt; {reference number}

ioProc: FormatIOProcPtr; {routine to read formats}

success: Boolean; {reading or writing was }

{ successful}

formatsMask: SignedByte; {formats required to }

{ subscribe}

END;

FormatIOVerb = (ioHasFormat, ioReadFormat, ioNewFormat, ioWriteFormat);

FormatIOParamBlock =

RECORD

ioRefNum: LongInt; {reference number}

format: FormatType; {edition format type}

formatIndex: LongInt; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}

buffPtr: Ptr; {data starts here}

buffLen: LongInt; {length of data}

END;
2-110 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Edition Manager Routines 2

Initializing the Edition Manager

FUNCTION InitEditionPack : OSErr;

Creating and Registering a Section

FUNCTION NewSection (container: EditionContainerSpec;
sectionDocument: FSSpecPtr; kind: SectionType;
sectionID: LongInt; initialMode: UpdateMode;
VAR sectionH: SectionHandle): OSErr;

FUNCTION RegisterSection (sectionDocument: FSSpec;
sectionH: SectionHandle;
VAR aliasWasUpdated: Boolean)
: OSErr;

FUNCTION UnRegisterSection (sectionH: SectionHandle): OSErr;

FUNCTION IsRegisteredSection
(sectionH: SectionHandle): OSErr;

FUNCTION AssociateSection (sectionH: SectionHandle;
newSectionDocument: FSSpecPtr): OSErr;

Creating and Deleting an Edition Container

FUNCTION CreateEditionContainerFile
(editionFile: FSSpec; fdCreator: OSType;
editionFileNameScript: ScriptCode): OSErr;

FUNCTION DeleteEditionContainerFile
(editionFile: FSSpec): OSErr;

Setting and Getting a Format Mark

FUNCTION SetEditionFormatMark
(whichEdition: EditionRefNum;
whichFormat: FormatType;
setMarkTo: LongInt): OSErr;

FUNCTION GetEditionFormatMark
(whichEdition: EditionRefNum;
whichFormat: FormatType;
VAR currentMark: LongInt): OSErr;
Summary of the Edition Manager 2-111

C H A P T E R 2

Edition Manager
Reading in Edition Data

FUNCTION OpenEdition (subscriberSectionH: SectionHandle;
VAR refNum: EditionRefNum): OSErr;

FUNCTION EditionHasFormat (whichEdition: EditionRefNum;
whichFormat: FormatType;
VAR formatSize: Size): OSErr;

FUNCTION ReadEdition (whichEdition: EditionRefNum;
whichFormat: FormatType; buffPtr: UNIV Ptr;
VAR buffLen: Size): OSErr;

Writing out Edition Data

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle;
fdCreator: OSType;
publisherSectionDocument: FSSpecPtr;
VAR refNum: EditionRefNum): OSErr;

FUNCTION WriteEdition (whichEdition: EditionRefNum;
whichFormat: FormatType; buffPtr: UNIV Ptr;
buffLen: Size): OSErr;

Closing an Edition After Reading or Writing

FUNCTION CloseEdition (whichEdition: EditionRefNum;
successful: Boolean): OSErr;

Displaying Dialog Boxes

FUNCTION GetLastEditionContainerUsed
(VAR container: EditionContainerSpec): OSErr;

FUNCTION NewSubscriberDialog
(VAR reply: NewSubscriberReply): OSErr;

FUNCTION NewPublisherDialog (VAR reply: NewPublisherReply): OSErr;

FUNCTION SectionOptionsDialog
(VAR reply: SectionOptionsReply): OSErr;

FUNCTION NewSubscriberExpDialog
(VAR reply: NewSubscriberReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;
2-112 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
FUNCTION NewPublisherExpDialog
(VAR reply: NewPublisherReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTION SectionOptionsExpDialog
(VAR reply: SectionOptionsReply; where: Point;
expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

Locating a Publisher and Edition From a Subscriber

FUNCTION GetEditionInfo (sectionH: SectionHandle;
VAR editionInfo: EditionInfoRecord): OSErr;

FUNCTION GoToPublisherSection
(container: EditionContainerSpec): OSErr;

Edition Container Formats

FUNCTION GetStandardFormats (container: EditionContainerSpec;
VAR previewFormat: FormatType;
preview, publisherAlias,
formats: Handle): OSErr;

Reading and Writing Non-Edition files

FUNCTION GetEditionOpenerProc
(VAR opener: EditionOpenerProcPtr): OSErr;

FUNCTION SetEditionOpenerProc
(opener: EditionOpenerProcPtr): OSErr;

FUNCTION CallEditionOpenerProc
(selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock;
routine: EditionOpenerProcPtr): OSErr;

FUNCTION CallFormatIOProc (selector: FormatIOVerb;
VAR PB: FormatIOParamBlock;
routine: FormatIOProcPtr): OSErr;

Application-Defined Routines 2

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer;
theDialog: DialogPtr;
yourDataPtr: Ptr): Integer;
Summary of the Edition Manager 2-113

C H A P T E R 2

Edition Manager
FUNCTION MyExpModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord;
itemOffset: Integer; VAR itemHit: Integer;
yourDataPtr: Ptr): Boolean;

FUNCTION MyOpener (selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock): OSErr;

FUNCTION MyIO (selector: FormatIOVerb;
VAR PB: FormatIOParamBlock): OSErr;

C Summary 2

Constants 2

CONST

enum {

/*resource types*/

#define rSectionType 'sect' /*resource type for a */

/* section*/

/*section types*/

stSubscriber = 0x01, /*subscriber section type*/

stPublisher = 0x0A, /*publisher section type*/

/*update modes*/

sumAutomatic = 0, /*subscriber receives new */

/* editions automatically*/

sumManual = 1, /*subscriber receives new */

/* editions manually*/

pumOnSave = 0, /*publisher sends new */

/* editions on save*/

pumManual = 1, /*publisher does not send */

/* new editions until user */

/* request*/

/*edition container subpart number*/

kPartsNotUsed = 0, /*edition is the whole file*/

kPartNumberUnknown = -1, /*not used in version 7.0*/

/*preview size*/

kPreviewWidth = 120, /*preview width*/

kPreviewHeight = 120, /*preview height*/
2-114 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
/*special formats*/

#define kPublisherDocAliasFormat 'alis' /*alias record from the */

/* edition to publisher*/

#define kPreviewFormat 'prvw' /*'PICT' thumbnail sketch*/

#define kFormatListFormat 'fmts' /*list of all available */

/* formats and their sizes*/

/*bits for formatMask*/

kPICTformatMask = 1, /*graphics format*/

kTEXTformatMask = 2, /*text format*/

ksndFormatMask = 4, /*sound format*/

/*Finder types for edition files*/

#define kPICTEditionFileType 'edtp' /*contains 'PICT', */

#define kTEXTEditionFileType 'edtt' /* 'TEXT', and */

#define ksndEditionFileType 'edts' /* 'snd ' file types*/

#define kUnknownEditionFileType 'edtu' /*unknown file type*/

/*pseudo-item hits for dialogHooks*/

emHookRedrawPreview = 150, /*for NewPublisher or */

/* NewSubscriber dialogs*/

emHookCancelSection = 160, /*for SectionOptions dialog*/

emHookGoToPublisher = 161, /*for SectionOptions dialog*/

emHookGetEditionNow = 162, /*for SectionOptions dialog*/

emHookSendEditionNow = 162, /*for SectionOptions dialog*/

emHookManualUpdateMode = 163, /*for SectionOptions dialog*/

emHookAutoUpdateMode = 164 /*for SectionOptions dialog*/

};

/*edition opener verbs*/

enum {eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe};

enum {

/*refCon field when displaying stacked dialog boxes*/

#define emOptionsDialogRefCon 'optn' /*options dialog*/

#define emCancelSectionDialogRefCon 'cncl' /*cancel section*/

#define emGotoPubErrDialogRefCon 'gerr' /*locate publisher*/

kFormatLengthUnknown = -1 /*length of format unknown*/

};

/*refCon field when displaying stacked dialog boxes*/

#define sfMainDialogRefCon 'stdf' {new publisher and }

{ new subscriber}

#define sfNewFolderDialogRefCon'nfdr' {new folder}
Summary of the Edition Manager 2-115

C H A P T E R 2

Edition Manager
#define sfReplaceDialogRefCon 'rplc' {replace dialog}

#define sfStatWarnDialogRefCon 'stat' {warning dialog}

#define sfErrorDialogRefCon 'err ' {error dialog}

/*message IDs for Apple events sent by the Edition Manager*/

#define sectionEventMsgClass 'sect' /*Apple events sent by the */

/* Edition Manager*/

#define sectionReadMsgID 'read' /*Section Read events*/

#define sectionWriteMsgID 'writ' /*Section Write events*/

#define sectionScrollMsgID 'scrl' /*Section Scroll events*/

#define sectionCancelMsgID 'cncl' /*Section Cancel events*/

Data Types 2

typedef unsigned long TimeStamp; /*seconds since 1904*/

typedef Handle EditionRefNum;` /*used in Edition I/O*/

typedef short UpdateMode; /*update mode: sumAutomatic, */

/* sumManual, */

/* pumOnSave, pumManual*/

typedef char SectionType; /*one byte, stSubscriber */

/* or stPublisher*/

typedef unsigned long FormatType; /*similar to ResType*/

struct SectionRecord {

SignedByte version; /*always 1x01 in version 7.0*/

SectionType kind; /*stPublisher or */

/* stSubscriber*/

UpdateMode mode; /*automatic or manual*/

TimeStamp mdDate; /*last change to section*/

long sectionID; /*application-specific, */

/* unique per document*/

long refCon; /*application-specific*/

AliasHandle alias; /*handle to alias record*/

long subPart; /*private*/

struct SectionRecord **nextSection; /*private*/

Handle controlBlock; /*private*/

EditionRefNum refNum; /*private*/

};

typedef struct SectionRecord SectionRecord;

typedef SectionRecord *SectionPtr, **SectionHandle;
2-116 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
struct EditionContainerSpec {

FSSpec theFile; /*file containing */

/* edition data*/

ScriptCode theFileScript; /*script code of filename*/

long thePart; /*which part of file, */

/* always kPartsNotUsed*/

Str31 thePartName; /*reserved*/

ScriptCode thePartScript; /*reserved*/

};

typedef struct EditionContainerSpec EditionContainerSpec;

typedef EditionContainerSpec *EditionContainerSpecPtr;

struct EditionInfoRecord {

TimeStamp crDate; /*date edition container */

/* was created*/

TimeStamp mdDate; /*date of last change*/

OSType fdCreator; /*file creator*/

OSType fdType; /*file type*/

EditionContainerSpec container; /*the edition*/

};

typedef struct EditionInfoRecord EditionInfoRecord;

struct NewPublisherReply {

Boolean canceled; /*user canceled dialog box*/

Boolean replacing; /*user chose existing */

/* filename for an edition*/

Boolean usePart; /*always FALSE in version */

/* 7.0*/

Handle preview; /*handle to 'prvw', 'PICT',*/

/* 'TEXT', or 'snd ' data*/

FormatType previewFormat; /*type of preview*/

EditionContainerSpec container; /*edition chosen*/

};

typedef struct NewPublisherReply NewPublisherReply;

struct NewSubscriberReply {

Boolean canceled; /*user canceled dialog box*/

unsigned char formatsMask; /*formats required*/

EditionContainerSpec container; /*edition selected*/

};

typedef struct NewSubscriberReply NewSubscriberReply;
Summary of the Edition Manager 2-117

C H A P T E R 2

Edition Manager
struct SectionOptionsReply {

Boolean canceled; /*user canceled dialog box*/

Boolean changed; /*changed the section */

/* record*/

SectionHandle sectionH; /*handle to the specified */

/* section record*/

ResType action; /*action codes*/

};

typedef struct SectionOptionsReply SectionOptionsReply;

typedef pascal Boolean (*ExpModalFilterProcPtr) (DialogPtr theDialog,

EventRecord *theEvent, short itemOffset,

short *itemHit, Ptr yourDataPtr);

typedef pascal short (*ExpDlgHookProcPtr) (short itemOffset, short itemHit,

 DialogPtr theDialog, Ptr yourDataPtr);

typedef unsigned char EditionOpenerVerb;

struct EditionOpenerParamBlock {

EditionInfoRecord info; /*edition container to */

/* be subscribed to*/

SectionHandle sectionH; /*publisher or subscriber */

/* requesting open*/

FSSpecPtr document; /*document passed*/

OSType fdCreator; /*Finder creator type*/

long ioRefNum; /*reference number*/

FormatIOProcPtr ioProc; /*routine to read formats*/

Boolean success; /*reading or writing was */

/* successful*/

unsigned char formatsMask; /*formats required to */

/* subscribe*/

};

typedef struct EditionOpenerParamBlock EditionOpenerParamBlock;

typedef pascal short (*EditionOpenerProcPtr) (EditionOpenerVerb selector,

FormatIOParamBlock *PB);

enum {ioHasFormat, ioReadFormat, ioNewFormat, ioWriteFormat};

typedef unsigned char FormatIOVerb;
2-118 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
struct FormatIOParamBlock {

long ioRefNum; /*reference number*/

FormatType format; /*edition format type*/

long formatIndex; /* opener-specific */

/* enumeration */

/* of formats*/

unsigned long offset; /*offset into format*/

Ptr buffPtr; /*data starts here*/

unsigned long buffLen; /*length of data*/

};

typedef struct FormatIOParamBlock FormatIOParamBlock;

typedef pascal short (*FormatIOProcPtr) (FormatIOVerb selector,

FormatIOParamBlock *PB);

Edition Manager Routines 2

Initializing the Edition Manager

pascal OSErr InitEditionPack (void)

Creating and Registering a Section

pascal OSErr NewSection (const EditionContainerSpec *container,
const FSSpec *sectionDocument,
SectionType kind, long sectionID,
UpdateMode initialMode,
SectionHandle *sectionH);

pascal OSErr RegisterSection
(const FSSpec *sectionDocument,
SectionHandle sectionH,
Boolean *aliasWasUpdated);

pascal OSErr UnRegisterSection
(SectionHandle sectionH);

pascal OSErr IsRegisteredSection
(SectionHandle sectionH);

pascal OSErr AssociateSection
(SectionHandle sectionH,
const FSSpec *newSectionDocument);
Summary of the Edition Manager 2-119

C H A P T E R 2

Edition Manager
Creating and Deleting an Edition Container

pascal OSErr CreateEditionContainerFile
(const FSSpec *editionFile, OSType fdCreator,
ScriptCode editionFileNameScript);

pascal OSErr DeleteEditionContainerFile
(const FSSpec *editionFile);

Setting and Getting a Format Mark

pascal OSErr SetEditionFormatMark
(EditionRefNum whichEdition,
FormatType whichFormat,
unsigned long setMarkTo);

pascal OSErr GetEditionFormatMark
(EditionRefNum whichEdition,
FormatType whichFormat,
unsigned long *currentMark);

Reading in Edition Data

pascal OSErr OpenEdition (SectionHandle subscriberSectionH,
EditionRefNum *refNum);

pascal OSErr EditionHasFormat
(EditionRefNum whichEdition,
FormatType whichFormat,
Size *formatSize);

pascal OSErr ReadEdition (EditionRefNum whichEdition,
FormatType whichFormat, void *buffPtr,
Size *buffLen);

Writing out Edition Data

pascal OSErr OpenNewEdition (SectionHandle publisherSectionH,
OSType fdCreator,
const FSSpec *publisherSectionDocument,
EditionRefNum *refNum);

pascal OSErr WriteEdition (EditionRefNum whichEdition,
FormatType whichFormat, const void *buffPtr,
Size *buffLen);

Closing an Edition After Reading or Writing

pascal OSErr CloseEdition (EditionRefNum whichEdition,
Boolean successful);
2-120 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
Displaying Dialog Boxes

pascal OSErr GetLastEditionContainerUsed
(EditionContainerSpec *container);

pascal OSErr NewSubscriberDialog
(NewSubscriberReply *reply);

pascal OSErr NewPublisherDialog
(NewPublisherReply *reply);

pascal OSErr SectionOptionsDialog
(SectionOptionsReply *reply);

pascal OSErr NewSubscriberExpDialog
(NewSubscriberReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

pascal OSErr NewPublisherExpDialog
(NewPublisherReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

pascal OSErr SectionOptionsExpDialog
(SectionOptionsReply *reply, Point where,
short expansionDITLresID,
ExpDlgHookProcPtr dlgHook,
ExpModalFilterProcPtr filterProc,
void *yourDataPtr);

Locating a Publisher and Edition From a Subscriber

pascal OSErr GetEditionInfo (const SectionHandle sectionH,
EditionInfoRecord *editionInfo);

pascal OSErr GoToPublisherSection
(const EditionContainerSpec *container);

Edition Container Formats

pascal OSErr GetStandardFormats
(const EditionContainerSpec *container,
FormatType *previewFormat,
Handle preview, Handle publisherAlias,
Handle formats);
Summary of the Edition Manager 2-121

C H A P T E R 2

Edition Manager
Reading and Writing Non-Edition files

pascal OSErr GetEditionOpenerProc
(EditionOpenerProcPtr *opener);

pascal OSErr SetEditionOpenerProc
(EditionOpenerProcPtr opener);

pascal OSErr CallEditionOpenerProc
(EditionOpenerVerb selector,
EditionOpenerParamBlock *PB,
EditionOpenerProcPtr routine);

pascal OSErr CallFormatIOProc
(FormatIOVerb selector,
FormatIOParamBlock *PB,
FormatIOProcPtr routine);

Application-Defined Routines 2

pascal OSErr MyExpDlgHook (short itemOffset, short itemHit,
DialogPtr theDialog,
Ptr yourDataPtr);

pascal OSErr MyExpModalFilter
(DialogPtr theDialog,
EventRecord *theEvent,
short itemOffset, short *itemHit,
Ptr yourDataPtr);

pascal OSErr MyOpener (EditionOpenerVerb selector,
EditionOpenerParamBlock *PB);

pascal OSErr MyIO (FormatIOVerb selector,
FormatIOParamBlock *PB);

Result Codes 2
noErr 0 No error
abortErr –27 Publisher has written a new edition
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnOpnErr –38 File not open
eofErr –39 No additional data in the format
fnfErr –43 Edition container not found
flLckedErr –45 Publisher writing to an edition
fBsyErr –47 Section doing I/O
paramErr –50 Invalid parameter
rfNumErr –51 Bad edition reference number
permErr –54 Not a subscriber
2-122 Summary of the Edition Manager

C H A P T E R 2

Edition Manager

2
E

dition M
anager
wrPermErr –61 Not a publisher
noTypeErr –102 Format not available
memFullErr –108 Memory full
dirNFErr –120 Directory not found
userCanceledErr –128 User clicked Cancel in dialog box
editionMgrInitErr –450 Manager not initialized or could not load package
badSectionErr –451 Not a valid section type
notRegisteredSectionErr –452 Not registered
badSubPartErr –454 Bad edition container spec or invalid edition container
multiplePublisherWrn –460 Already is a publisher
containerNotFoundWrn –461 Alias was not resolved
notThePublisherWrn –463 Not the publisher
Summary of the Edition Manager 2-123

C H A P T E R 3

3

Figure 3-0
Listing 3-0
Table 3-0

Contents

3 Introduction to Apple Events

About Apple Events 3-3
Apple Events and Apple Event Objects 3-6
Apple Event Attributes and Parameters 3-7

Apple Event Attributes 3-8
Apple Event Parameters 3-9
Interpreting Apple Event Attributes and Parameters 3-10

Data Structures Within Apple Events 3-12
Descriptor Records 3-12
Keyword-Specified Descriptor Records 3-15
Descriptor Lists 3-16

Responding to Apple Events 3-20
Accepting and Processing Apple Events 3-20
About Apple Event Handlers 3-23

Extracting and Checking Data 3-23
Interacting With the User 3-25
Performing the Requested Action and Returning a Result 3-25

Creating and Sending Apple Events 3-28
Creating an Apple Event Record 3-29
Adding Apple Event Attributes and Parameters 3-29
Sending an Apple Event and Handling the Reply 3-30

Working With Object Specifier Records 3-32
Data Structures Within an Object Specifier Record 3-34
The Classification of Apple Event Objects 3-39

Object Classes 3-39
Properties and Elements 3-42

Finding Apple Event Objects 3-46
Contents 3-1

C H A P T E R 3

About the Apple Event Manager 3-48
Supporting Apple Events as a Server Application 3-48
Supporting Apple Events as a Client Application 3-49
Supporting Apple Event Objects 3-49
Supporting Apple Event Recording 3-50
3-2 Contents

C H A P T E R 3

3

Introduction to A
pple E

vents

Introduction to Apple Events 3

This chapter introduces Apple events and the Apple Event Manager. Later chapters
describe how your application can use the Apple Event Manager to respond to and send
Apple events, locate Apple event objects, and record Apple events.

The interapplication communication (IAC) architecture for Macintosh computers
consists of five parts: the Edition Manager, the Open Scripting Architecture (OSA),
the Apple Event Manager, the Event Manager, and the Program-to-Program
Communications (PPC) Toolbox. The chapter “Introduction to Interapplication
Communication” in this book provides an overview of the relationships among
these parts.

The Apple Event Registry: Standard Suites defines both the actions performed by the
standard Apple events, or “verbs,” and the standard Apple event object classes, which
can be used to create “noun phrases” describing objects on which Apple events act. If
your application uses the Apple Event Manager to respond to some of these standard
Apple events, you can make it scriptable—that is, capable of responding to scripts
written in a scripting language such as AppleScript. In addition, your application can
use the Apple Event Manager to create and send Apple events and to allow user actions
in your application to be recorded as Apple events.

Before you use this chapter or any of the other chapters about the Apple Event Manager,
you should be familiar with the chapters “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials and “Process Manager” in Inside Macintosh: Processes.

This chapter begins by describing Apple events and some of the data structures they
contain. The rest of the chapter introduces the use of the Apple Event Manager to

■ respond to Apple events

■ send Apple events to request services or information

■ work with object specifier records

■ classify Apple event objects

■ locate Apple event objects

Finally, this chapter summarizes the tasks you can perform with the Apple Event
Manager and explains where to locate information you need to perform those tasks.

About Apple Events 3

An Apple event is a high-level event that conforms to the Apple Event Interprocess
Messaging Protocol. The Apple Event Manager uses the services of the Event Manager to
send Apple events between applications on the same computer, between applications on
remote computers, or from an application to itself.
About Apple Events 3-3

C H A P T E R 3

Introduction to Apple Events

Applications typically use Apple events to request services and information from other
applications or to provide services and information in response to such requests.
Communication between two applications that support Apple events is initiated by a
client application, which sends an Apple event to request a service or information.
The application providing the service or the requested information is called a server
application. The client and server applications can reside on the same local computer or
on remote computers connected to a network. An application can also send Apple events
to itself, thus acting as both client and server.

Figure 3-1 shows a common Apple event, the Open Documents event. The Finder is
the client; it requests that the SurfWriter application open the documents named
“Dec. Invoice” and “Nov. Invoice.” The SurfWriter application responds to the Finder’s
request by opening windows for the specified documents.

Figure 3-1 An Open Documents event

The Finder is considered the client application for the Open Documents event shown in
Figure 3-1 because the Finder initiates the request for a service. The Finder can also be
considered the source application for the same Open Documents event. A source
application for an Apple event is one that sends an Apple event to another application
or to itself. Similarly, the SurfWriter application can be described as either the server
application or the target application for the Open Documents event shown in Figure 3-1.
A target application for an Apple event is the one addressed to receive the Apple event.
The terms client application and source application are not always synonymous, nor are the
terms server application and target application. Typically, an Apple event client application
sends an Apple event requesting a service to an Apple event server application;

Dec. Invoice

Server
application

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900
3-4 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

in this case, the server application is the target application for the Apple event. A server
application may return information to the client in a reply Apple event—in which case,
the client application is the target application for the reply.

To perform the requested service—that is, to open the specified documents—the
SurfWriter application shown in Figure 3-1 first uses the Apple Event Manager to
identify the event (the Open Documents event) and to dispatch the event to SurfWriter’s
handler for that Apple event. An Apple event handler is an application-defined function
that extracts pertinent data from an Apple event, performs the requested action, and
(usually) returns a result. In this case, SurfWriter’s Open Documents event handler
examines the Apple event to determine which documents to open (Dec. Invoice and
Nov. Invoice), then opens them as requested.

To identify Apple events and respond appropriately, every application can rely on a
vocabulary of standard Apple events that developers and Apple have established for all
applications to use. These events are defined in the Apple Event Registry: Standard Suites.
The standard suites, or groups of related Apple events that are usually implemented
together, include the Required suite, the Core suite, and functional-area suites such as
the Text suite and the Database suite. To function as a server application, your
application should be able to respond to all the Apple events in the Required suite and
any of those in the Core and functional-area suites that it is likely to receive. For
example, most word-processing applications should be capable of responding to the
Apple events in the Text suite, and most database applications should be capable of
responding to those in the Database suite.

If necessary, you can extend the definitions of the standard Apple events to
match specific capabilities of your application. You can also define your own custom
Apple events; however, before defining custom events, you should check with
the Apple Event Registrar to find out whether you can adapt existing Apple event
definitions or definitions still under development to the needs of your application.

By supporting the standard Apple events in your application, you ensure that your
application can communicate effectively with other applications that also support them.
Instead of supporting many different custom events for a limited number of
applications, you can support a relatively small number of standard Apple events that
can be used by any number of applications.

You can begin supporting Apple events by making your application a reliable server
application: first for the required Apple events, then for the core and functional-area
Apple events as appropriate. Once your application can respond to the appropriate
standard Apple events, you can make it scriptable, or capable of responding to
instructions written in a system-wide scripting language such as AppleScript. If
necessary, your application can also send Apple events to itself or to other applications.

“About the Apple Event Manager,” which begins on page 3-48, provides more
information about the steps you need to take to support Apple events in your
application.
About Apple Events 3-5

C H A P T E R 3

Introduction to Apple Events

The next section, “Apple Events and Apple Event Objects,” describes how Apple events
can describe data and other items within an application or its documents. Subsequent
sections describe the basic organization of Apple events and the data structures from
which they are constructed.

Apple Events and Apple Event Objects 3
The Open Documents event shown in Figure 3-1, like the other three required events,
specifies an action and the applications or documents to which that action applies.
The Apple Event Registry: Standard Suites provides a vocabulary of actions for use by
all applications. In addition to a vocabulary of actions, effective communication between
applications requires a method of referring to windows, data (such as words or graphic
elements), files, folders, volumes, zones, and other discrete items on which actions can
be performed. The Apple Event Manager includes routines that allow any application to
construct or interpret “noun phrases” that describe the objects on which Apple events act.

Most of the Apple event definitions in the Apple Event Registry: Standard Suites include
definitions of Apple event object classes, which are simply names for objects that can be
acted upon by each kind of Apple event. An Apple event object is any distinct item
supported by an application that can be described within an Apple event. Apple event
objects can be anything that an application can locate on the basis of such a description,
including items that a user can differentiate and manipulate while using an application,
such as words, paragraphs, shapes, windows, or style formats.

The definition for each Apple event object class in the Apple Event Registry:
Standard Suites determines only how that kind of Apple event object should be
described within an Apple event, not how it should be represented internally by an
individual application. You do not have to write your application in an object-oriented
programming language to support Apple event objects. Instead, you need to organize
your application so that it can interpret a request for specific Apple event objects, locate
the objects, and perform the requested action on them.

Figure 3-2 shows a common Apple event, the Get Data event from the Core suite. In this
example, the SurfCharter application is the client application; it requests data contained
in a specific table in a SurfWriter document. To obtain the data it wants, the SurfCharter
application must include a description of the data in the Get Data event it sends to
SurfWriter. This description identifies the requested data as an Apple event object called
a table. The table is named “Summary of Sales” and is located in a document named
“Sales Report.”

The SurfWriter application’s Get Data handler extracts information about the request,
locates the specified table, and returns a result. The Apple Event Manager provides a
reply Apple event to which the SurfWriter application adds the requested information in
the form requested by the Get Data event. The Apple Event Manager sends the reply
event back to the SurfCharter application, which can use the requested data in whatever
way is appropriate—in this case, displaying it as a pie chart.
3-6 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

Figure 3-2 A Get Data event

Apple Event Attributes and Parameters 3
When an application creates and sends an Apple event, the Apple Event Manager uses
arguments passed to Apple Event Manager routines to construct the data structures that
make up the Apple event. An Apple event consists of attributes (which identify the
Apple event and denote its task) and, often, parameters (which contain information to be
used by the target application).

An Apple event attribute is a record that identifies the event class, event ID, target
application, or some other characteristic of an Apple event. Taken together, the attributes
of an Apple event denote the task to be performed on any data specified in the Apple
event’s parameters. A client application can use Apple Event Manager routines to add
attributes to an Apple event. After receiving an Apple event, a server application can use
Apple Event Manager routines to extract and examine its attributes.

Apple event

Get Data

The table named
“Summary of Sales”
in the document named
“Sales Report”

Apple event

Reply

Summary of Sales
300 788 500 825

Apple event
object

Server
application

SurfWriter

Sales Report

This table
shows the
sales data:

Summary of
Sales

788

825

Client
application

Data retrieved
from Apple
event object

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

SurfCharter

300

500
About Apple Events 3-7

C H A P T E R 3

Introduction to Apple Events

An Apple event parameter is a record containing data that the target application uses.
Unlike Apple event attributes (which contain information that can be used by both the
Apple Event Manager and the target application), Apple event parameters contain data
used only by the target application. For example, the Apple Event Manager uses the
event class and event ID attributes to identify the server application’s handler for a
specific Apple event, and the server application must have a handler to process the event
identified by those attributes. By comparison, the list of documents contained in a
parameter to an Open Documents event is used only by the server application. As with
attributes, a client application can use Apple Event Manager routines to add parameters
to an Apple event, and a server application can use Apple Event Manager routines to
extract and examine the parameters of an Apple event it has received.

Note that Apple event parameters are different from the parameters of Apple
Event Manager functions. Apple event parameters are records used by the Apple Event
Manager; function parameters are arguments you pass to the function or that the
function returns to you. You can specify both Apple event parameters and Apple event
attributes in parameters to Apple Event Manager functions. For example, the
AEGetParamPtr function uses a buffer to return the data contained in an Apple event
parameter. You can specify the Apple event parameter whose data you want in one of
the parameters of the AEGetParamPtr function.

Apple Event Attributes 3

Apple events are identified by their event class and event ID attributes. The event class
is the attribute that identifies a group of related Apple events. The event class appears in
the message field of the event record for an Apple event. For example, the four required
Apple events have the value 'aevt' in the message fields of their event records. The
value 'aevt' can also be represented by the kCoreEventClass constant. Several
event classes are shown here:

The event ID is the attribute that identifies the particular Apple event within its event
class. In conjunction with the event class, the event ID uniquely identifies the Apple
event and communicates what action the Apple event should perform. (The event IDs
appear in the where field of the event record for an Apple event. For more information
about event records, see the chapter “Event Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.) For example, the event ID of an Open Documents event has the value
'odoc' (which can also be represented by the kAEOpenDocuments constant). The
kCoreEventClass constant in combination with the kAEOpenDocuments constant
identifies the Open Documents event to the Apple Event Manager.

Event class Value Description

kCoreEventClass 'aevt' A required Apple event

kAECoreSuite 'core' A core Apple event

kAEFinderEvents 'FNDR' An event that the Finder accepts

kSectionEventMsgClass 'sect' An event sent by the Edition Manager
3-8 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

Here are the event IDs for the four required Apple events:

In addition to the event class and event ID attributes, every Apple event must include an
attribute that specifies the target application’s address. Remember that the target
application is the one addressed to receive the Apple event. Your application can send an
Apple event to itself or to another application (on the same computer or on a remote
computer connected to the network).

Every Apple event must include event class, event ID, and target address attributes.
Some Apple events can include other attributes; see “Keyword-Specified Descriptor
Records,” which begins on page 3-15, for a complete list.

Apple Event Parameters 3

As with attributes, there are various kinds of Apple event parameters. A direct
parameter usually specifies the data to be acted upon by the target application. For
example, the direct parameter of the Print Documents event contains a list of documents.
Some Apple events also take additional parameters, which the target application uses in
addition to the data specified in the direct parameter. Thus, an Apple event for
arithmetic operations might include additional parameters that specify operands in an
equation.

The Apple Event Registry: Standard Suites describes all parameters as either required or
optional. A required parameter is one that must be present for the target application to
carry out the task denoted by the Apple event. An optional parameter is a supplemental
Apple Event parameter that also can be used to specify data to the target application.
Optional parameters need not be included in an Apple event; default values for optional
parameters are part of the event definition. The target application that handles the event
must supply default values if the optional parameters are omitted.

Direct parameters are usually defined as required parameters in the Apple Event Registry:
Standard Suites; additional parameters may be defined as either required or optional.
However, the Apple Event Manager does not enforce the definitions of required and
optional events. Instead, the source application specifies, when it sends the event, which
Apple event parameters the target can treat as if they were optional.

For more information about optional parameters, see “Specifying Optional Parameters
for an Apple Event,” which begins on page 5-7.

Event ID Value Description

kAEOpenApplication 'oapp' Perform tasks required when a user opens your
application without opening or printing any
documents

kAEOpenDocuments 'odoc' Open documents

kAEPrintDocuments 'pdoc' Print documents

kAEQuitApplication 'quit' Quit your application
About Apple Events 3-9

C H A P T E R 3

Introduction to Apple Events

Interpreting Apple Event Attributes and Parameters 3

Figure 3-3 shows the major Apple event attributes and direct parameter for the
Open Documents event introduced in Figure 3-1.

Figure 3-3 Major attributes and direct parameter of an Open Documents event

When the SurfWriter application receives any high-level event, it calls the
AEProcessAppleEvent function to process the event. For an Apple event such as the
Open Documents event shown in Figure 3-3, the AEProcessAppleEvent function uses
the event class and event ID attributes to dispatch the event to the SurfWriter
application’s Open Documents handler. In response, the Open Documents handler opens
the documents specified in the direct parameter.

The definition of a given Apple event in the Apple Event Registry: Standard Suites suggests
how the source application can organize the data in the Apple event’s parameters
and how the target application interprets that data. The data in an Apple event
parameter may use standard or private data types and may include a description of an
Apple event object. Each Apple event handler provided by an application should be
written with the format of the expected data in mind.

Apple events can use standard data types, such as strings of text, long integers,
Boolean values, and alias records, for the corresponding data in Apple event parameters.
For example, the Get Data event can contain an optional parameter specifying the form
in which the requested data should be returned. This optional parameter always consists
of a list of four-character codes denoting desired descriptor types in order of preference.
Apple events can also use special data types defined by the Apple Event Manager.

Apple event parameters often contain descriptions of Apple event objects. These
descriptions make use of a standard classification scheme summarized in “The
Classification of Apple Event Objects,” which begins on page 3-39.

Server
application

Apple event

Open Documents

Event class attribute:
kCoreEventClass

SurfWriter
Event ID attribute:
kAEOpenDocument

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
list of files
(Dec. Invoice
 Nov. Invoice)

Dec. Invoice

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900

Client
application

Finder
3-10 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

For example, every Get Data event includes a required parameter that describes the
Apple event object containing the data requested by the client application. Thus, one
application can send a Get Data event to another application, requesting, for instance,
one paragraph of a document, the first and last paragraphs of a document, all pictures in
the document, all paragraphs containing the word “sales,” or pages 10 through 12 of the
document.

Figure 3-4 shows the Apple event attributes and direct parameter for the Get Data event
introduced in Figure 3-2. The direct parameter for the Get Data event sent by the
SurfCharter application describes the requested Apple event object as a table called
“Summary of Sales” in the document “Sales Report.” Both the table and the document
are Apple event objects. The description of an Apple event object always includes a
description of its location. In most cases, Apple event objects are located inside other
Apple event objects.

Figure 3-4 Major attributes and direct parameter of a Get Data event

Apple event

Get Data

Event class attribute:
kAECoreSuite

Apple event

Reply

Summary of Sales
300 788 500 825

Table
object

Data retrieved
from table object

Event ID attribute:
kAEGetData

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
a description of
an Apple event object:
a table named
“Summary of Sales”
in the document named
“Sales Report”

Paragraph
object

Document
object

Sales Report

This table
shows the
sales data:

Summary of
Sales

300

500

788

825

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

Client
application

SurfCharter

Server
application

SurfWriter
About Apple Events 3-11

C H A P T E R 3

Introduction to Apple Events

To process the information in the Get Data event, the SurfWriter application calls the
AEProcessAppleEvent function. The AEProcessAppleEvent function uses the
event class and event ID attributes to dispatch the event to the SurfWriter application’s
handler for the Get Data Apple event. The SurfWriter application responds to the Get
Data event by resolving the description of the Apple event object—that is, by using the
AEResolve function, other Apple Event Manager routines, and its own
application-defined functions to locate the table named “Summary of Sales.” After
locating the table, SurfWriter adds a copy of the table’s data to the reply event, which the
Apple Event Manager then sends to the SurfCharter application. The SurfCharter
application then displays the data in its active window.

The next section, “Data Structures Within Apple Events,” describes the data structures
the Apple Event Manager uses for Apple event attributes and parameters.

Data Structures Within Apple Events 3
The Apple Event Manager constructs its own internal data structures to contain the
information in an Apple event. Neither the sender nor the receiver of an Apple event
should manipulate data directly after it has been added to an Apple event; each should
rely on Apple Event Manager functions to do so.

This section describes the most important data structures used by the Apple event
Manager to construct Apple events. The first structure described is the descriptor record,
a data structure of type AEDesc. Applications may access the data in an individual
descriptor record directly if it is not part of another Apple Event Manager data structure.

In some cases it is convenient for the Apple Event Manager to describe descriptor
records by data types that indicate their contents; thus, it also defines data structures
such as type AEAddressDesc, AEDescList, and AERecord, which are descriptor
records used to hold addresses, lists of other descriptor records, and Apple event
parameters, respectively. These and most of the other data structures described in this
section are formally defined as data structures of type AEDesc; they differ only in the
purposes for which they are used.

Descriptor Records 3

Descriptor records are the building blocks used by the Apple Event Manager to construct
Apple event attributes and parameters. A descriptor record is a data structure of type
AEDesc; it consists of a handle to data and a descriptor type that identifies the type of
the data to which the handle refers.

TYPE AEDesc =

RECORD {descriptor record}

descriptorType: DescType; {type of data}

dataHandle: Handle; {handle to data}

END;
3-12 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
If a descriptor record exists separately from other Apple Event Manager data structures,
it is possible to retrieve the data associated with its handle by dereferencing the handle
twice. After a descriptor record has been added to any other Apple Event Manager data
structure, you must use Apple Event Manager routines to extract data from the
descriptor record.

The descriptor type is a structure of type DescType, which in turn is of data type
ResType—that is, a four-character code. Constants are usually used in place of these
four-character codes when referring to descriptor types. Descriptor types represent
various data types. Here are some of the major descriptor type constants, their values,
and the kinds of data they identify.

For a complete list of the basic descriptor types used by the Apple Event Manager, see
Table 4-2 on page 4-57.

Figure 3-5 illustrates the logical arrangement of a descriptor record with a descriptor
type of typeChar, which specifies that the data handle refers to an unterminated string
(in this case, the text “Summary of Sales”).

Figure 3-5 A descriptor record whose data handle refers to an unterminated string

Descriptor type Value Description of data

typeBoolean 'bool' 1-byte Boolean value

typeChar 'TEXT' Unterminated string

typeLongInteger 'long' 32-bit integer

typeShortInteger 'shor' 16-bit integer

typeMagnitude 'magn' Unsigned 32-bit integer

typeAEList 'list' List of descriptor records

typeAERecord 'reco' List of keyword-specified descriptor records

typeAppleEvent 'aevt' Apple event record

typeEnumerated 'enum' Enumerated data

typeType 'type' Four-character code

typeFSS 'fss ' File system specification

typeKeyword 'keyw' Apple event keyword

typeNull 'null' Nonexistent data (handle whose value is NIL)

Data type AEDesc

Descriptor type: typeChar

Data: "Summary of Sales"
About Apple Events 3-13

C H A P T E R 3

Introduction to Apple Events
Figure 3-6 illustrates the logical arrangement of a descriptor record with a descriptor
type of typeType, which specifies that the data handle refers to a four-character code
(in this case the constant kCoreEventClass, whose value is 'aevt'). This descriptor
record can be used in an Apple event attribute that identifies the event class for any
Apple event in the Core suite.

Figure 3-6 A descriptor record whose data handle refers to event class data

Every Apple event includes an attribute specifying the address of the target application.
A descriptor record that contains an application’s address is called an address descriptor
record.

TYPE AEAddressDesc = AEDesc; {address descriptor record}

The address in an address descriptor record can be specified as one of these four basic
types (or as any other descriptor type you define that can be coerced to one of
these types):

Like several of the other data structures defined by the Apple Event Manager for use in
Apple event attributes and Apple event parameters, an address descriptor record is
identical to a descriptor record of data type AEDesc; the only difference is that the data
for an address descriptor record must always consist of an application’s address.

Descriptor type Value Description

typeApplSignature 'sign' Application signature

typeSessionID 'ssid' Session reference number

typeTargetID 'targ' Target ID record

typeProcessSerialNumber 'psn ' Process serial number

Data type AEDesc

Descriptor type: typeType

Data: Event class
(kCoreEventClass)
3-14 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Keyword-Specified Descriptor Records 3

After the Apple Event Manager has assembled the necessary descriptor records as the
attributes and parameters of an Apple event, your application cannot examine the
contents of the Apple event directly. Instead, your application must use Apple Event
Manager routines to request each attribute and parameter by keyword. Keywords are
arbitrary names used by the Apple Event Manager to keep track of various descriptor
records. The AEKeyword data type is defined as a four-character code.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char; {keyword for a }

 { descriptor record}

Constants are typically used for keywords. Here is a list of the keyword constants for
Apple event attributes:

Here is a list of the keyword constants for commonly used Apple event parameters:

Attribute keyword Value Description

keyAddressAttr 'addr' Address of target or client application

keyEventClassAttr 'evcl' Event class of Apple event

keyEventIDAttr 'evid' Event ID of Apple event

keyEventSourceAttr 'esrc' Nature of the source application

keyInteractLevelAttr 'inte' Settings for allowing the Apple Event
Manager to bring a server application to
the foreground, if necessary, to interact
with the user

keyMissedKeywordAttr 'miss' Keyword for first required parameter
remaining in an Apple event

keyOptionalKeywordAttr 'optk' List of keywords for parameters of the
Apple event that should be treated as
optional by the target application

keyOriginalAddressAttr 'from' Address of original source of Apple event
if the event has been forwarded (available
only in version 1.01 or later versions of
the Apple Event Manager)

keyReturnIDAttr 'rtid' Return ID for reply Apple event

keyTimeoutAttr 'timo' Length of time, in ticks, that the client
will wait for a reply or a result from the
server

keyTransactionIDAttr 'tran' Transaction ID identifying a series of
Apple events

Parameter keyword Value Description

keyDirectObject '----' Direct parameter

keyErrorNumber 'errn' Error number parameter

keyErrorString 'errs' Error string parameter
About Apple Events 3-15

C H A P T E R 3

Introduction to Apple Events
The Apple Event Registry: Standard Suites defines additional keyword constants for
Apple event parameters that can be used with specific Apple events.

The Apple Event Manager associates keywords with specific descriptor records by
means of a keyword-specified descriptor record, a data structure of type AEKeyDesc
that consists of a keyword and a descriptor record.

TYPE AEKeyDesc = {keyword-specified descriptor record}

RECORD

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

Figure 3-7 illustrates a keyword-specified descriptor record with the keyword
keyEventClassAttr—the keyword that identifies an event class attribute. The figure
shows the logical arrangement of the event class attribute for the Open Documents
event shown in Figure 3-3 on page 3-10. The descriptor record in Figure 3-7 is identical to
the one in Figure 3-6; its descriptor type is typeType, and the data to which its handle
refers identifies the event class as kCoreEventClass.

Figure 3-7 A keyword-specified descriptor record for the event class attribute of an
Open Documents event

Descriptor Lists 3

When extracting data from an Apple event, you use Apple Event Manager functions to
copy data to a buffer specified by a pointer, or to return a descriptor record whose data
handle refers to a copy of the data, or to return lists of descriptor records (called
descriptor lists).

Data type AEKeyDesc

Descriptor type: typeType

Data: Event class
(kCoreEventClass)

Descriptor record:

Keyword: keyEventClassAttr
3-16 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
As previously noted, the descriptor record (of data type AEDesc) is the fundamental
structure in Apple events, and it consists of a descriptor type and a handle to data. A
descriptor list is a data structure of type AEDescList defined by the data type
AEDesc—that is, a descriptor list is a descriptor record whose data handle refers to a list
of other descriptor records (unless it is an empty list).

TYPE AEDescList = AEDesc; {list of descriptor records}

Like several other Apple Event Manager data structures, a descriptor list is identical to a
descriptor record of data type AEDesc; the only difference is that the data in a descriptor
list must always consist of a list of other descriptor records.

Figure 3-8 illustrates the logical arrangement of the descriptor list that specifies the direct
parameter of the Open Documents event shown in Figure 3-3 on page 3-10. This
descriptor list consists of a list of descriptor records that contain alias records to
filenames. (See the chapter “Alias Manager” in Inside Macintosh: Files for a detailed
description of alias records.)

Figure 3-8 A descriptor list for a list of aliases

The descriptor list in Figure 3-8 provides the data for a keyword-specified descriptor
record. Keyword-specified descriptor records for Apple event parameters can in turn be
combined in an AE record, which is a descriptor list of data type AERecord.

TYPE AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

List of descriptor records:

Data type AEDescList

Descriptor type:

Data:

Descriptor type: typeAlias

Data: Alias record for filename
(Nov. Invoice)

Descriptor type: typeAlias

Data: Alias record for filename
(Dec. Invoice)

typeAEList
About Apple Events 3-17

C H A P T E R 3

Introduction to Apple Events
The handle for a descriptor list of data type AERecord refers to a list of
keyword-specified descriptor records that can be used to construct Apple event
parameters. The Apple Event Manager provides routines that allow your application
to create AE records and extract data from them when creating or responding to
Apple events.

An AE record has the descriptor type typeAERecord and can be coerced to several
other descriptor types. An Apple event record , which is different from an AE record,
is another special descriptor list of data type AppleEvent and descriptor type
typeAppleEvent.

TYPE AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

An Apple event record describes a full-fledged Apple event. Like the data for an
AE record, the data for an Apple event record consists of a list of keyword-specified
descriptor records. Unlike an AE record, the data for an Apple event record is divided
into two parts, one for attributes and one for parameters. This division within the Apple
event record allows the Apple Event Manager to distinguish between an Apple event’s
attributes and its parameters.

Descriptor lists, AE records, and Apple event records are all descriptor records whose
handles refer to a nested list of other descriptor records. The data associated with each
data type may be organized differently and is used by the Apple Event Manager
for different purposes. In each case, however, the data is identified by a handle in a
descriptor record. This means that you can pass an Apple event record to any
Apple Event Manager function that expects an AE record. Similarly, you can pass Apple
event records and AE records, as well as descriptor lists and descriptor records, to any
Apple Event Manager functions that expect records of data type AEDesc.

When you use the AECreateAppleEvent function, the Apple Event Manager creates
an Apple event record containing the attributes for an Apple event’s event class,
event ID, target address, return ID, and transaction ID. You then use Apple Event
Manager functions such as AEPutParamDesc and AEPutAttributeDesc to add or
modify attributes and to add any necessary parameters to the Apple event.

Figure 3-9 shows an example of a complete Apple event—a data structure of type
AppleEvent containing a list of keyword-specified descriptor records that name the
attributes and parameters of an Open Documents event. The figure includes the event
class attribute shown in Figure 3-7 and the descriptor list shown in Figure 3-8, which
forms the direct parameter—the keyword-specified descriptor record with the keyword
keyDirectObject. The entire figure corresponds to the Open Documents event shown
in Figure 3-3 on page 3-10.

The next two sections, “Responding to Apple Events” and “Creating and Sending Apple
Events,” provide a quick overview of the steps your application must take to respond to
and send Apple events.
3-18 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Figure 3-9 Data structures within an Open Documents event

List of attributes and parameters

Data type AppleEvent

Descriptor type:

Data:

typeAppleEvent

Event class attribute

Event ID attribute

Direct parameter

Descriptor type: typeAlias

Data: Alias record for filename
(Nov. Invoice)

Descriptor type: typeAlias

Data: Alias record for filename
(Dec. Invoice)

Keyword:

Descriptor type: typeAEList

Data: List of descriptor
records:

keyDirectObject

Target application attribute

Descriptor type: typeApplSignature

Data: Target application’s
address ('Wave')

Keyword: keyAddressAttr

Data: Event ID
(kAEOpenDocuments)

Keyword: keyEventIDAttr

Descriptor type: typeType

Descriptor type: typeType

Data: Event class
(kCoreEventClass)

Keyword: keyEventClassAttr
About Apple Events 3-19

C H A P T E R 3

Introduction to Apple Events
Responding to Apple Events 3

A client application typically uses the Apple Event Manager to create and send an Apple
event requesting a service or information. A server application responds by using the
Apple Event Manager to process the Apple event, extract data from the attributes and
parameters of the Apple event, and if necessary add requested data to the reply event
returned by the Apple Event Manager to the client application. The server usually
provides its own Apple event handler for performing the action requested by the client’s
Apple event.

As its first step in supporting Apple events, your application should support the
required Apple events sent by the Finder. If you plan to implement publish and
subscribe capabilities, your application must also respond to the Apple events sent by
the Edition Manager. Your application should also be able to respond to the standard
Apple events that other applications are likely to send to it or that it can send to itself.
This section provides a quick overview of the tasks your application must perform in
responding to Apple events.

To respond to Apple events, your application must

■ set the appropriate flags in its 'SIZE' resource

■ test for high-level events in its event loop

■ provide Apple event handlers for the Apple events it supports

■ use the AEInstallEventHandler function to install its Apple event handlers

■ use the AEProcessAppleEvent function to process Apple events

Before your application can respond to Apple events sent from remote computers, the
user of your application must allow network users to link to your application. To do this,
the user selects your application in the Finder, chooses Sharing from the File menu, and
then clicks the Allow Remote Program Linking checkbox. If the user has not yet started
program linking, the Sharing command offers to display the Sharing Setup control panel
so that the user can start program linking. The user must also authorize remote users for
program linking by using the Users & Groups control panel. Program linking and setting
up authenticated sessions are described in the chapter “Program-to-Program
Communications Toolbox” in this book.

Accepting and Processing Apple Events 3
To accept or send Apple events (or any other high-level events), you must set the
appropriate flags in your application’s 'SIZE' resource and include code to handle
high-level events in your application’s main event loop.
3-20 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Two flags in the 'SIZE' resource determine whether an application receives high-level
events:

■ The isHighLevelEventAware flag must be set for your application to receive any
high-level events.

■ The localAndRemoteHLEvents flag must be set for your application to receive
high-level events sent from another computer on the network.

An Apple event (like all high-level events) is identified by a message class of
kHighLevelEvent in the what field of the event record. You test the what field of
the event record to determine whether it contains the value represented by the
kHighLevelEvent constant; if your application defines any high-level events other
than Apple events, you should also test the message field of the event record to
determine whether the high-level event is something other than an Apple event. If the
high-level event is not one that you’ve defined for your application, assume that it is an
Apple event. (You are encouraged to use Apple events instead of defining your own
high-level events whenever possible.)

After determining that an event is an Apple event, use the AEProcessAppleEvent
function to let the Apple Event Manager identify the event. Figure 3-10 shows how the
SurfWriter application accepts and begins to process an Apple event sent by the Finder.

Figure 3-10 Accepting and processing an Open Documents event

DoHighLevelEvent(event)

CASE event.message OF
 myHighLevelEvent1: . . .
 myHighLevelEvent2: . . .
OTHERWISE
 AEProcessAppleEvent(event)

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Apple Event Manager

Event loop

CASE event.what OF
 kHighLevelEvent:
 DoHighLevelEvent(event)

Server
application
Responding to Apple Events 3-21

C H A P T E R 3

Introduction to Apple Events
The AEProcessAppleEvent function first identifies the Apple event by examining the
data in the event class and event ID attributes. The function then uses that data to call
the Apple event handler that your application provides for that event. The Apple event
handler extracts the pertinent data from the Apple event, performs the requested action,
and returns a result. For example, if the event has an event class of kCoreEventClass
and an event ID of kAEOpenDocuments, the AEProcessAppleEvent function calls
your application’s handler for the Open Documents event.

Before your application attempts to accept or process any Apple events, it must use the
AEInstallEventHandler function to install Apple event handlers. This function
installs handlers in an Apple event dispatch table for your application; the Apple Event
Manager uses this table to map Apple events to handlers in your application. When your
application calls the AEProcessAppleEvent function to process an Apple event, the
Apple Event Manager checks the Apple event dispatch table and, if your application has
installed a handler for that Apple event, calls that handler. Figure 3-11 shows how the
flow of control passes from your application to the Apple Event Manager and back to
your application.

Figure 3-11 The Apple Event Manager calling the handler for an Open Documents event

Apple event dispatch table

@MyHandleODoc

@MyHandlePDoc

Handler

MyHandleODoc (anAppleEvent)

Extract list of documents
from direct parameter
Open each document in a
window
Return function result and,
if appropriate, error string

•

•

•

Open Documents

Print Documents

Apple Event Manager

AEProcessAppleEvent

Call handler for Open Documents
event

•

AEProcessAppleEvent (event)

SurfWriter

Server
application

Event
3-22 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
About Apple Event Handlers 3
Your Apple event handlers must generally perform the following tasks:

■ extract the parameters and attributes from the Apple event

■ check that all the required parameters have been extracted

■ locate any Apple event objects specified by object specifier records in the Apple event
parameters

■ if your application needs to interact with the user, use the AEInteractWithUser
function to bring it to the foreground

■ perform the action requested by the Apple event

■ dispose of any copies of descriptor records that have been created

■ add information to the reply Apple event if requested

This section describes how your application’s Apple event handlers can use
the Apple Event Manager to accomplish some of these tasks. The chapter
“Responding to Apple Events” in this book provides detailed information
about handling Apple events and interacting with the user.

Extracting and Checking Data 3

You must use Apple Event Manager functions to extract the data from Apple events.
You can also use Apple Event Manager functions to extract data from descriptor records,
descriptor lists, and AE records. Most of these routines are available in two forms: they
either return a copy of the data in a buffer or return a copy of the descriptor record for
the data, including a copy of the data.

The following list shows the main functions you can use to access the data of an
Apple event:

Function Description

AEGetParamPtr Uses a buffer to return a copy of the data contained in an
Apple event parameter. Usually used to extract data of fixed
length or known maximum length; for example, to extract
the result code from the keyErrorNumber parameter of a
reply Apple event.

AEGetParamDesc Returns a copy of the descriptor record or descriptor list for
an Apple event parameter. Usually used to extract data of
variable length; for example, to extract the descriptor list for
a list of alias records specified in the direct parameter of the
Open Documents event.

AEGetAttributePtr Uses a buffer to return a copy of the data contained in an
Apple event attribute. Used to extract data of fixed length or
known maximum length; for example, to determine the
source of an Apple event by extracting the data from the
keyEventSourceAttr attribute.

continued
Responding to Apple Events 3-23

C H A P T E R 3

Introduction to Apple Events
You can specify the descriptor type of the resulting data for these functions; if this type is
different from the descriptor type of the attribute or parameter, the Apple Event
Manager attempts to coerce it to the specified type. In the direct parameter of the
Open Documents event, for example, each descriptor record in the descriptor list is an
alias record; each alias record specifies a document to be opened. As explained in the
chapter “Introduction to File Management” of Inside Macintosh: Files, all your application
usually needs is the file system specification (FSSpec) record of the document. When
you extract the descriptor record from the descriptor list, you can request that the Apple
Event Manager return the data to your application as a file system specification record
instead of an alias record.

After extracting all known Apple event parameters, your handler should check that it
retrieved all the parameters that the source application considered to be required. To do
so, determine whether the keyMissedKeywordAttr attribute exists. If so, your handler
has not retrieved all the required parameters, and it should return an error.

Although the Apple Event Registry: Standard Suites defines Apple event parameters as
either required or optional, the Apple Event Manager does not enforce the definitions of
required and optional events. Instead, the source application specifies, when it sends the
event, which Apple event parameters the target can treat as if they were optional. For
more information about optional parameters, see “Specifying Optional Parameters for an
Apple Event,” which begins on page 5-7.

If any of the Apple event parameters include object specifier records, your handler
should use the AEResolve function, other Apple Event Manager routines, and your
own application-defined functions to locate the corresponding Apple event objects. For
more information about locating Apple event objects, see “Working With Object Specifier
Records,” which begins on page 3-32.

AEGetAttributeDesc Returns a copy of the descriptor record for an attribute.
Used to extract data of variable length; for example, to make
a copy of a descriptor record containing the address of an
application.

AECountItems Returns the number of descriptor records in a descriptor list.
Used, for example, to determine the number of alias records
for documents specified in the direct parameter of the
Open Documents event.

AEGetNthPtr Uses a buffer to return a copy of the data for a descriptor
record contained in a descriptor list. Used to extract data of
fixed length or known maximum length; for example, to
extract the name and location of a document from the
descriptor list specified in the direct parameter of the
Open Documents event.

AEGetNthDesc Returns a copy of a descriptor record from a descriptor list.
Used to extract data of variable length; for example, to get
the descriptor record containing an alias record from the list
specified in the direct parameter of the Open Documents
event.

Function Description (continued)
3-24 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Interacting With the User 3

In some cases, the server may need to interact with the user when it handles an Apple
event. For example, your handler for the Print Documents event may need to display a
print options dialog box and get settings from the user before printing. By specifying
flags to the AESetInteractionAllowed function, you can set preferences to allow
user interaction with your application (a) only when your application is sending the
Apple event to itself, (b) only when the client application is on the same computer as
your application, or (c) for any event sent by any client application on any computer. In
addition, your handler should always use the AEInteractWithUser function before
displaying a dialog box or alert box or otherwise interacting with the user. The
AEInteractWithUser function determines whether user interaction can occur and
takes appropriate action depending on the circumstances.

Both the client and server specify their preferences for user interaction: the client
specifies whether the server should be allowed to interact with the user, and the
server specifies when it allows user interaction while processing an Apple event.
The Apple Event Manager does not allow a server application to interact with the user in
response to a client application’s Apple event unless at least two conditions are met:
First, the client application must set flags in the sendMode parameter of the AESend
function indicating that user interaction is allowed. Second, the server application must
either set no user interaction preferences, in which case AEInteractWithUser
assumes that only interaction with a client on the local computer is allowed; or it must
set flags to the AESetInteractionAllowed function indicating that user interaction
is allowed.

If these two conditions are met and if AEInteractWithUser determines that both the
client and server applications allow user interaction under the current circumstances,
AEInteractWithUser brings your application to the foreground if it isn’t already in
the foreground. Your application can then display its dialog box or alert box or otherwise
interact with the user. The AEInteractWithUser function brings your server
application to the front either directly or after the user responds to a notification request.

For detailed information about how to specify flags to the
AESetInteractionAllowed function and how the Apple Event Manager
determines whether user interaction is allowed, see the section
“Interacting With the User,” which begins on page 4-45.

Performing the Requested Action and Returning a Result 3

When your application responds to an Apple event, it should perform the standard
action requested by that event. For example, your application should respond to the
Open Documents event by opening the specified documents in titled windows just as if
the user had selected each document from the Finder and then chosen Open from the
File menu.
Responding to Apple Events 3-25

C H A P T E R 3

Introduction to Apple Events
Many Apple events can ask your application to return data. For instance, if your
application is a spelling checker, the client application might expect your application to
return data in the form of a list of misspelled words. Figure 3-14 on page 3-38 shows a
similar example: a Get Data event that asks the server application to locate a specific
Apple event object and return the data associated with it.

If the client application requests a reply, the Apple Event Manager prepares a reply
Apple event by passing a default reply Apple event to your handler. If the client
application does not request a reply, the Apple Event Manager passes a null descriptor
record—that is, a descriptor record of type typeNull whose data handle has the value
NIL—to your handler instead of a default reply Apple event. The default reply Apple
event has no parameters when it is passed to your handler, but your handler can add
parameters to it. If your application is a spelling checker, for example, you can return a
list of misspelled words in a parameter. However, your handler should check whether
the reply Apple event exists before attempting to add any attributes or parameters to it.
Any attempt to add an Apple event attribute or parameter to a null descriptor record
generates an error.

When you extract a descriptor record using the AEGetParamDesc,
AEGetAttributeDesc, AEGetNthDesc, or AEGetKeyDesc function, the Apple Event
Manager creates a copy of the descriptor record for you to use. When your handler is
finished using a copy of a descriptor record, you should dispose of it—and thereby
deallocate the memory used by its data—by calling the AEDisposeDesc function.

Note
Outputs from functions such as AEGetKeyPtr and other routines
whose names end in -Ptr use a buffer rather than a descriptor record to
return data. Because these functions don’t require the use of
AEDisposeDesc, it is preferable to use them for any data that is not
identified by a handle. ◆

Your Apple event handler should always set its function result either to noErr if it
successfully handles the Apple event or to a nonzero result code if an error occurs.
If your handler returns a nonzero result code, the Apple Event Manager adds a
keyErrorNumber parameter to the reply Apple event (unless you have already
added a keyErrorNumber parameter). This parameter contains the result code that
your handler returns. The client should check whether the keyErrorNumber parameter
exists to determine whether your handler performed the requested action. In addition to
returning a result code, your handler can also return an error string in the
keyErrorString parameter of the reply Apple event. The client can use this string in
an error message to the user.

If the client application requested a reply, the Apple Event Manager returns the reply
Apple event, which is identified by the event class kCoreEventClass and by the event
ID kAEAnswer. When the client has finished using the reply Apple event, it should
dispose of both the reply event and the original event—and thereby deallocate the
memory they use—by calling the AEDisposeDesc function. The Apple Event Manager
takes care of disposing both the Apple event and the reply Apple event after a server
3-26 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
application’s handler returns to AEProcessAppleEvent, but a server application is
responsible for disposing of any Apple event data structures it creates while extracting
data from the Apple event.

Figure 3-12 shows the entire process of responding to an Apple event.

Figure 3-12 Responding to an Open Documents event

DoHighLevelEvent(event)

CASE event.message OF
 myHighLevelEvent1: . . .
 myHighLevelEvent2: . . .
OTHERWISE
 AEProcessAppleEvent(event)

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Event loop

CASE event.what OF
 kHighLevelEvent:
 DoHighLevelEvent(event)

MyHandleODoc (anAppleEvent)

Extract list of documents
from direct parameter
Open each document in a
window
Return function result and,
if appropriate, error string

•

•

•

Dec. Invoice

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900

Apple event

Reply

keyErrorNumber parameter
keyErrorString parameter

Server
application

AEProcessAppleEvent

•

Apple event dispatch table

@MyHandleODoc

@MyHandlePDoc

Handler

Open Documents

Print Documents

Call handler for Open Documents
event
If handler returns nonzero function
result, add keyErrorNumber
parameter to the reply Apple event
If requested, return reply Apple
event

•

•

Apple Event Manager

Event
Responding to Apple Events 3-27

C H A P T E R 3

Introduction to Apple Events
When your handler returns a result code to the Apple Event Manager, you have finished
your response to the client application’s Apple event.

Creating and Sending Apple Events 3

Your application can use Apple events to request services or information from other
applications, send information to other applications, or trigger actions within your
application. For example, you can use the core Apple event Get Data to request specific
data from another application’s documents. Similarly, you can use other Apple events to
request services—for example, asking a spell-checking application to check the text in a
document created by your application. Consult the Apple Event Registry: Standard Suites
for the format and function of the standard Apple events that you want your application
to send.

To communicate with another application by sending an Apple event, your
application must

■ set the appropriate flags in its 'SIZE' resource

■ create an Apple event record by calling the AECreateAppleEvent function

■ use Apple Event Manager functions to add parameters and any additional attributes
to the Apple event

■ call the AESend function to send the Apple event

■ dispose of any copies of descriptor records that you have created

■ handle the reply Apple event (if necessary)

The sections that follow describe how your application can use the Apple Event
Manager to accomplish these tasks. The chapter “Creating and Sending Apple Events” in
this book provides detailed information about creating and sending Apple events.

To act as a server for your application, the target application must support high-level
events and must be running. The server can be your own application, another
application running on the user’s computer, or an application running on another user’s
computer connected to the network.

Your application should also allow the user to choose among the various applications
available as servers. The PPCBrowser function allows users to select target applications
on their own computers or on computers connected to the network. The PPCBrowser
function presents a standard user interface for choosing a target application, much as the
Standard File Package provides a standard user interface for opening and saving files.
See the chapter “Program-to-Program Communications Toolbox” in this book for details
on using the PPCBrowser function.
3-28 Creating and Sending Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
If the server application is on a remote computer on a network, the user of that computer
must allow program linking to the server application. The user of the server application
does this by selecting the application icon in the Finder, choosing Sharing from the
File menu, then clicking the Allow Remote Program Linking checkbox. If the user has
not yet started program linking, the Sharing command offers to display the
Sharing Setup control panel so that the user can start program linking. The user must
also authorize remote users for program linking by using the Users & Groups control
panel. Program linking and setting up authenticated sessions are described in the
chapter “Program-to-Program Communications Toolbox” in this book.

Creating an Apple Event Record 3
Use the AECreateAppleEvent function to create an Apple event record. Using the
arguments you pass to the AECreateAppleEvent function, the Apple Event Manager
constructs the data structures describing the event class, the event ID, and the target
address attributes of an Apple event. The event class and event ID, of course, identify the
particular event you wish to send. The target address identifies the intended recipient of
the Apple event.

You can specify two other attributes with the AECreateAppleEvent function: the
reply ID and the transaction ID. For the reply ID attribute, you usually specify the
kAutoGenerateReturnID constant to the AECreateAppleEvent function. This
constant ensures that the Apple Event Manager generates a unique return ID for the
reply Apple event returned from the server. For the transaction ID attribute, you usually
specify the kAnyTransactionID constant, which indicates that this Apple event is not
one of a series of interdependent Apple events.

Adding Apple Event Attributes and Parameters 3

The Apple event record created with the AECreateAppleEvent function serves as a
foundation for the Apple event you want to send. Descriptor records and descriptor lists
are the building blocks from which the complete Apple event record is constructed. To
create descriptor records and descriptor lists and add items to a descriptor list, use the
following functions:

Function Description

AECreateDesc Takes a descriptor type and a pointer to data and converts them into
a descriptor record

AECreateList Creates an empty descriptor list or AE record.

AEPutPtr Takes a descriptor type and a pointer to data and adds the data
to a descriptor list as a descriptor record; used, for example, to
add to a descriptor list a number used as the parameter of an Apple
event requesting a calculation.

AEPutDesc Adds a descriptor record to a descriptor list; used, for example,
to add to a descriptor list an alias record used as the direct
parameter of an Apple event requesting file manipulation.
Creating and Sending Apple Events 3-29

C H A P T E R 3

Introduction to Apple Events
To add the remaining attributes and parameters necessary for your Apple event to the
Apple event record, you can use these additional Apple Event Manager functions:

Apple event parameters for core events and functional-area events can include
descriptions of Apple event objects in special descriptor records called object specifier
records. For an overview of object specifier records, see “Working With Object Specifier
Records,” which begins on page 3-32.

Sending an Apple Event and Handling the Reply 3
After you add all the attributes and parameters required for the Apple event, use the
AESend function to send the Apple event. The Apple Event Manager uses the
Event Manager to transmit the Apple event to the server application.

The AESend function requires that you specify whether your application should wait for
a reply from the server. If you specify that you want a reply, the Apple Event Manager
prepares a reply Apple event for your application by passing a default reply Apple event
to the server. The Apple Event Manager returns any nonzero result code from the
server’s handler in the keyErrorNumber parameter of the reply Apple event.
The server can return an error string in the keyErrorString parameter of the reply
Apple event. The server can also use the reply Apple event to return any data you
requested—for example, the results of a numeric calculation or a list of misspelled words.

Function Description

AEPutParamPtr Takes a keyword, descriptor type, and pointer to data and
adds the data to an Apple event record as a parameter with
the specified keyword (replacing any existing parameter
with the same keyword); used, for example, to put
numbers into the parameters of an Apple event that asks
the server to perform a calculation.

AEPutParamDesc Takes a keyword and a descriptor record and adds the
descriptor record to an Apple event record as a parameter
with the specified keyword (replacing any existing
parameter with the same keyword); used, for example, to
place a descriptor list containing alias records into the
direct parameter of an Apple event that requests a server to
manipulate files.

AEPutAttributePtr Takes a keyword, descriptor type, and pointer to data and
adds the descriptor record to an Apple event record as
an attribute with the specified keyword (replacing any
existing attribute with the same keyword); used, for
example, to change the transaction ID of an Apple event
record that is waiting to be sent.

AEPutAttributeDesc Takes a keyword and a descriptor record and adds
the descriptor record to an Apple event record as an
attribute with the specified keyword (replacing any
existing attribute with the same keyword); used, for
example, to replace the descriptor record used for the target
address attribute in an Apple event record waiting to be
sent.
3-30 Creating and Sending Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
You specify how your application should wait for a reply by using one of these flags in
the sendMode parameter of the AESend function:

If you specify the kAEWaitReply flag, you should provide an idle function. This
function should process any non-high-level events that occur while your application is
waiting for a reply. You supply a pointer to your idle function as a parameter to the
AESend function. So that your application can process other Apple events while it is
waiting for a reply, you can also specify an optional filter function to the AESend
function.

If you specify the kAENoReply flag, the reply Apple event prepared by the Apple Event
Manager for the server application consists of a null descriptor record.

If your Apple event may require the user to interact with the server application
(for example, to specify print or file options), you can communicate your user interaction
preferences to the server by specifying additional flags in the sendMode parameter of
the AESend function. These flags specify the conditions, if any, under which the server
application can interact with the user and, if interaction is allowed, whether the
server should come directly to the foreground or post a notification request.

The server application specifies its own preferences for user interaction by specifying
flags to the AESetInteractionAllowed function, as described in the previous section.
The interaction of the client and server applications’ preferences is explained in detail in
“Interacting With the User,” which begins on page 4-45.

After you send an Apple event, your application is responsible for disposing of
the Apple event record—and thereby deallocating the memory its data uses—by
calling the AEDisposeDesc function. If you create one descriptor record and add it to
another, the Apple Event Manager adds a copy of the newly created one to the existing
one and also makes a copy of the associated data. For example, you might use the
AECreateDesc function to create a descriptor record that you wish to add to an Apple
event. When you use the AEPutParamDesc function, it adds a copy of your newly
created descriptor record, including its data, as a parameter to an existing Apple event.
When you no longer need the original descriptor record, you should call
AEDisposeDesc to dispose of it.

Flag Description

kAENoReply Your application does not want a reply Apple event.

kAEQueueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

kAEWaitReply Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event.
Creating and Sending Apple Events 3-31

C H A P T E R 3

Introduction to Apple Events
Your application should dispose of all the descriptor records that are created for the
purposes of adding parameters and attributes to an Apple event. You normally dispose
of your Apple event and its reply after you receive a result from the AESend function.
You should dispose of these even if AESend returns an error result.

If you specify the kAEWaitReply flag, the reply Apple event is returned in a parameter
you pass to the AESend function. If you specify the kAEQueueReply flag to the AESend
function, the reply Apple event is returned in the event queue. In this case, the reply
is identified by the event class kCoreEventClass and the event ID kAEAnswer.
Your application processes reply events in its event queue in the same way that server
applications process Apple events.

Your application should check for the existence of the keyErrorNumber parameter of
the reply Apple event to ensure that the server performed the requested action. The
server can also return, in the keyErrorString parameter, any error messages you need
to display to the user.

Whenever a server application provides an error string, it should also provide an error
number. However, you can’t count on all server applications to do so. The absence of the
keyErrorNumber parameter doesn’t necessarily mean that there won’t an error string
provided in the keyErrorString parameter. A client application should therefore
check for both the keyErrorNumber and keyErrorString parameters before
assuming that no error has occurred. If a string has been provided without an error
number, an error has occurred.

After extracting the information it needs from the reply event, your handler should
dispose of the reply by calling the AEDisposeDesc function. Similarly, when your
handler no longer needs descriptor records it has extracted from the reply, it should call
AEDisposeDesc to dispose of them.

The next section provides an overview of the way a source application identifies Apple
event objects supported by a target application. If you are starting by supporting only
the Required suite and the Apple events sent by the Edition Manager, you can skip the
next section and go directly to “About the Apple Event Manager,” which begins on
page 3-48.

Working With Object Specifier Records 3

Most of the standard Apple events allow the source application to refer, in an Apple
event parameter, to Apple event objects within the target application or its documents.
The Apple Event Manager allows applications to construct and interpret such references
by means of a standard classification system for Apple event objects. This system,
described in detail in the Apple Event Registry: Standard Suites, is summarized in “The
Classification of Apple Event Objects,” which begins on page 3-39. A description in an
Apple event parameter that uses this classification system takes the form of an object
specifier record.
3-32 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
An object specifier record is a descriptor record of descriptor type
typeObjectSpecifier that describes the location of one or more Apple event objects:
for example, the table “Summary of Sales” in the document “Sales Report,” or the third
row in that table, or the last row of the column “Totals.” With the aid of
application-defined functions, the Apple Event Manager can conduct a step-by-step
search according to such instructions in an object specifier record, locating first the
document, then the table, then other objects, and so on until the requested object has
been identified. Object specifier records can specify many combinations of identifying
characteristics that cannot be specified using one of the simple data types.

This section introduces object specifier records and the organization of their data. You
need to read this section (a) if you plan to support the Core suite or any of the standard
functional-area suites and (b) if you want to make your application scriptable—that is,
capable of responding to scripts written in a scripting language.

IMPORTANT

An object specifier record identifies one or more Apple event objects
among many; it contains a description of each object, not the object
itself. An Apple event object described by an object specifier record
exists only in the server application’s document or in the server
application itself. ▲

A client application cannot retrieve an Apple event object from a server application
unless the server application can accurately locate it. Thus, to locate characters of a
specific color, a server application must be able to identify a single character’s color; to
locate a character in a cell, a server application must be able to locate both the table and
the cell.

A client application can create object specifier records for use as Apple event
parameters. Scripting components can also create object specifier records as Apple
event parameters for the Apple events they generate in the course of executing a script.
A server application that receives an Apple event containing an object specifier record
should resolve the object specifier record—that is, locate the requested Apple event
objects.

To respond to core and functional-area Apple events received by your application, you
must first define a hierarchy of Apple event objects for your application that you want
other applications or scripting languages to be able to describe. The Apple event objects
for your application should be based as closely as possible on the standard object classes
described by the Apple Event Registry: Standard Suites. After you have decided which of
the standard Apple event objects make sense for your application, you can write
functions that locate objects on the basis of information in an object specifier record. If
you want your application to send specific Apple events to other applications, you must
also write functions that can create object specifier records and add them to Apple
events. Your application does not need to create object specifier records in order to be
scriptable. However, to write functions that can help the Apple Event Manager resolve
object specifier records, you need to know how they are constructed.
Working With Object Specifier Records 3-33

C H A P T E R 3

Introduction to Apple Events
“Finding Apple Event Objects,” which begins on page 3-46, provides an overview of the
way the Apple Event Manager works with your application-defined functions to locate
the Apple event objects described in an object specifier record. The chapter “Resolving
and Creating Object Specifier Records” in this book describes in detail how to support
object specifier records as a server or client application.

Data Structures Within an Object Specifier Record 3
The organization of the data for an object specifier record is nearly identical to that of the
data for an AE record. An object specifier record is a structure of data type AEDesc
whose data handle usually refers to four keyword-specified descriptor records
describing one or more Apple event objects. An AE record is a structure of data type
AERecord whose data handle refers to one or more Apple event parameters.

The four keyword-specified descriptor records for an object specifier record provide
information about the requested Apple event object or objects.

For example, the data for an object specifier record identifying a table named “Summary
of Sales” in a document named “Sales Report” consists of four keyword-specified
descriptor records that provide the following information:

■ the object class ID for a table

■ another object specifier record identifying the document “Sales Report” as the
container for the table

■ a key form constant indicating that the key data contains a name

■ key data that consists of the string “Summary of Sales”

Keyword Description of data

keyAEDesiredClass Four-character code indicating the object class ID

keyAEContainer A description of the container for the requested object,
usually in the form of another object specifier record

keyAEKeyForm Four-character code for the key form, which indicates how to
interpret the key data

keyAEKeyData Key data, used to distinguish the desired Apple event object
from other objects of the same object class in the same
container
3-34 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The object class ID specifies the Apple event object class to which the object belongs.
An Apple event object class is a category for Apple event objects that share
specific characteristics (see “Apple Events and Apple Event Objects” on page 3-6). The
characteristics of each object class are listed in the Apple Event Registry: Standard Suites.
For example, the Core suite defines object classes for documents, paragraphs, words,
windows, and floating windows. The first keyword-specified descriptor record in an
object specifier record uses a four-character code or a constant to specify the object class
ID. The object class for words, for example, can be identified by either the object class ID
'cwor' or the constant cWord.

Note
The object class ID identifies the object class of an Apple event object
described in an object specifier record, whereas the event class and event
ID identify an Apple event. ◆

The container for an Apple event object is usually another Apple event object. For
example, the container for a document might be a window, and the container for
characters, delimited items, or a word might be another word, a paragraph, or a
document. The container is identified by the second keyword-specified descriptor record
in an object specifier record; usually this is another object specifier record. The container
can also be specified by a null descriptor record, which indicates a default container or a
container already known to the Apple Event Manager.

The descriptor record in an object specifier record that identifies an Apple event
object’s container can in turn use another object specifier record to identify the
container’s container, and so on until the Apple event object is fully specified.
For example, an object specifier record identifying a paragraph might specify the
paragraph’s container with another object specifier record that identifies a page. That
object specifier record might in turn specify the page’s container with another object
specifier record identifying a document. The ability to nest one object specifier record
within another in this way makes it possible to identify elements such as “the first row in
the table named ‘Summary of Sales’ in the document named ‘Sales Report.’”
Working With Object Specifier Records 3-35

C H A P T E R 3

Introduction to Apple Events
The key form and key data distinguish the desired Apple event object from other Apple
event objects of the same object class. The key form describes the form the key data
takes. The third keyword-specified descriptor record in an object specifier record usually
specifies the key form with one of seven standard constants:

A key form of formPropertyID indicates key data that specifies a property. A property
of an Apple event object is a specific characteristic of that object that can be identified by
a constant. The properties associated with the object class for documents include the
name of the document and a flag indicating whether the document has been modified
since the last save. The properties associated with the object class for words include
color, font, point size, and style.

Figure 3-13 shows the structure of a typical object specifier record: four
keyword-specified descriptor records that specify the class ID, the container, the key
form, and the key data. These four keyword-specified descriptor records are the data for
a descriptor record (AEDesc) of descriptor type typeObjectSpecifier. Note the
similarities between the object specifier record shown in Figure 3-13 and the Apple event
record shown in Figure 3-9 on page 3-19. Like an Apple event record or an AE record, an
object specifier record consists of a list of keyword-specified descriptor records.

Figure 3-13 shows the structure of a simple object specifier record that specifies the key
form formPropertyID, formName, or formAbsolutePosition. For detailed
information about the structure of object specifier records that specify the other key
forms, see the chapter “Resolving and Creating Object Specifier Records” in this book.

Key form Value Corresponding key data

formPropertyID 'prop' Property ID for an element’s property

formName 'name' Element’s name

formUniqueID 'ID ' A value that uniquely identifies an object within its
container or across an application

formAbsolutePosition 'indx' An integer or other constant indicating the position of one
or more elements in relation to the beginning or end of
their container

formRelativePosition 'rele' A constant that specifies the element just before or after
the container

formTest 'test' Descriptor records that specify a test

formRange 'rang' Descriptor records that specify a group of elements
between two other elements
3-36 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Figure 3-13 Data structures within a simple object specifier record

Object specifier data

Data type AEDesc

Descriptor type:

Data:

typeObjectSpecifier

Descriptor type: typeType

Data: Class ID

Keyword: keyAEDesiredClass

Descriptor type: typeObjectSpecifier

Data:

Keyword: keyAEContainer

Descriptor type: typeEnumerated

Data: formPropertyID or formName
or formAbsolutePosition

Keyword: keyAEKeyForm

Descriptor type: typeType or typeText
or typeLongInteger

Data: Property ID or element
name or offset

Keyword: keyAEKeyData

Object specifier data

keyAEContainer

keyAEKeyForm

keyAEKeyData

keyAEDesiredClass
Working With Object Specifier Records 3-37

C H A P T E R 3

Introduction to Apple Events
Figure 3-14 shows the object specifier record for the Get Data event previously illustrated
in Figure 3-4 on page 3-11. The object class ID tells the SurfWriter application that the
requested data is an element of class cTable. The container for the table is the document
“Sales Report.” The key form is formName, which tells the server application that the
key data identifies the Apple event object by name. The key data is the name of the table.

Figure 3-14 An object specifier record in a Get Data event

Apple event

Get Data

Event class attribute:
kAECoreSuite

Apple event

Reply

Summary of Sales
300 788 500 825

Event ID attribute:
kAEGetData

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
An object specifier record:
Class: cTable
Container:

Key form: formName
Key data: “Summary of Sales”

Sales Report

This table
shows the
sales data:

Summary of
Sales

300

500

788

825

Chart of sales
by product area:

300

788

Sales Chart

500 825

Apple event
object of

object class
cTable with the

specified name

Data retrieved
from table object

Container

Client
application

SurfCharter

Server
application

SurfWriter

Summary of
Sales

Specified by object
specifier record for document
“Sales Report”
3-38 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
To add an object specifier record to an Apple event as one of its parameters, your
application must first create the object specifier record. “Creating Object Specifier
Records,” which begins on page 6-55, describes the Apple Event Manager routines for
creating object specifier records.

To respond to Apple events that include object specifier records, your application should
use the standard classification system for Apple event objects and provide functions that
can locate those objects within your application or its documents. The next section
summarizes the classification of Apple event objects as defined in the Apple Event
Registry: Standard Suites.

The Classification of Apple Event Objects 3
To create or resolve object specifier records, your application should use the classification
of Apple event objects defined by the Apple Event Registry: Standard Suites. This section
summarizes the concepts that underlie that classification system. You should have a copy
of the Apple Event Registry: Standard Suites available for reference purposes while you
read this section.

You do not need to write your application in an object-oriented programming language
in order to support Apple event objects in your application. However, you must
understand the classification system described in this section in order to classify Apple
event objects in your application and to write routines that can locate them on the basis
of information contained in object specifier records.

Object Classes 3

Except for the concept of inheritance, Apple event objects are different from the objects
used in object-oriented programming languages. Apple event objects are distinct items in
a server application or any of its documents that can be specified by an object specifier
record in an Apple event sent by a client application. Apple event objects are often, but
not always, items that a user can differentiate and manipulate within an application,
such as words, paragraphs, shapes, windows, or style formats. Every Apple event object
can be classified according to its object class, which defines both its characteristics and its
behavior. The object classes listed in the Apple Event Registry: Standard Suites provide a
method of describing Apple event objects that all applications can understand. Object
classes permit more flexibility than simple descriptor types; for example, a word can be
defined as a simple string, or it can be defined as an Apple event object with specific
characteristics such as font or style.

Note
The definition of an object class only specifies conventions that
determine how applications should handle Apple event objects that
belong to that class. Your application must make sure that it uses the
conventions correctly; they are not enforced by the Apple Event
Manager. ◆
Working With Object Specifier Records 3-39

C H A P T E R 3

Introduction to Apple Events
Each object class is identified by a four-character object class ID, which can also be
represented by a constant. Constants for object classes always begin with the letter c.

The definition of an object class specifies its superclass , which is the object class from
which a subclass (the class being defined) inherits some of its characteristics.
Characteristics can also be inherited from special object classes, called abstract
superclasses, that are used only in definitions of object classes and do not refer to real
Apple event objects. The pattern of inheritance among object classes is called the
object class inheritance hierarchy. Figure 3-15 shows a portion of this hierarchy. The
abstract superclass cObject is at the top of the hierarchy and is therefore the only object
class that has no superclass. At the next level are cText, which is a regular object class,
and cOpenableObject, which is an abstract superclass. Both are subclasses of
cObject and superclasses for their own subclasses. The object classes cWord, cItem,
and cChar are all subclasses of cText. Similarly, cWindow, cDocument, and cFile are
subclasses of cOpenableObject. Every object class inherits all the characteristics of
its superclass and can also add characteristics of its own.

Figure 3-15 Superclasses and subclasses

Here are some of the object classes defined for the Core suite:

Class Class ID Description

cChar 'cha ' Text characters

cDocument 'docu' Macintosh documents

cFile 'cfil' Macintosh files

cSelection 'csel' User or application selections

cText 'ctxt' Series of characters

cWindow 'cwin' Standard Macintosh windows

cObject

cText cOpenableObject

cWord cItem cChar cWindow cDocument cFile
3-40 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Here are some of the object classes defined for the Text suite:

As you can see, some object classes, such as cChar and cText, are defined in more than
one suite. For example, the definition of the cText object class in the Text suite is an
extension of the cText object class defined in the Core suite; it duplicates all the
characteristics of the Core suite object class and adds some of its own. Like a word in a
dictionary, one object class ID can have several related definitions. You can choose to
support the definition that best suits your application; or, if necessary, you can create
extensions of your own. The extension of an object class is different from inheritance
between object classes. An extension of a standard object class provides additional ways
of describing an Apple event object of that class, whereas the object class inheritance
hierarchy determines the pattern of characteristics shared by different object classes.

The definition of an object class always specifies a default descriptor type. Suppose, for
example, that a client application sends a Get Data, Cut, or Copy event that specifies an
Apple event object but does not specify a descriptor type for the returned data. In this
case, the server application returns a descriptor record of the default descriptor type for
the object class of the specified Apple event object. For example, the default descriptor
type for Apple event objects of class cWord is typeIntlText, a descriptor type that
specifies an undelimited string of characters in a specific language and script system.
The client application can also request that the data be returned in a descriptor record of
some other data type.

The definition of an object class includes three lists of characteristics: properties, element
classes, and Apple events that support the object class. (The next section describes
properties and element classes.) Any or all of these characteristics may be inherited from
a superclass. An Apple event is listed for an object class if its parameters can specify
objects of that class. The definition for cWindow, for example, lists 12 Apple events,
including the Open, Close, and Move events, whose parameters can include object
specifier records that specify windows. The cWindow class inherits all of these Apple
events from its abstract superclass, cOpenableObject.

The Apple Event Registry: Standard Suites also defines primitive object classes, which
describe Apple event objects that contain a single value. For example, the cBoolean,
cLongInteger, and cAlias object classes are all primitive object classes. The object
class ID for a primitive object class is the same as the four-character value of its
descriptor type. Primitive object classes contain no properties; they contain only the
value of the data.

Class Class ID Description

cChar 'cha ' Text characters

cLine 'clin' Lines of text

cParagraph 'cpar' Paragraphs

cText 'ctxt' Series of characters

cTextFlow 'cflo' Text flows

cWord 'cwor' Words
Working With Object Specifier Records 3-41

C H A P T E R 3

Introduction to Apple Events
Properties and Elements 3

The properties listed for an object class can be used to identify characteristics of Apple
event objects that belong to that class. Each property is identified by a four-character
property ID, which can also be represented by a constant. Constants for properties
always begin with the letter p.

Here are constants and property IDs for some properties:

The property of an Apple event object is itself defined as a single Apple event object
whose container is the object to which the property belongs. For example, the pFont
property of a word is defined by the name of a font, such as New York; the string that
identifies the font is an Apple event object of class cText.

The constant cProperty specifies the object class for any object specifier record that
identifies a property.

CONST cProperty = 'prop';

An object specifier record for a property specifies cProperty as the object class ID, the
Apple event object to which the property belongs as the container, formPropertyID as
the key form, and a constant such as pFont as the key data.

The elements of a specific Apple event object are the other Apple event objects it
contains, excluding those that define its properties. An object specifier record for an
element specifies the Apple event object in which the element is located as the container
and can specify any key form except formPropertyID. Each object class definition in
the Apple Event Registry: Standard Suites includes a list of element classes, which are the
object classes of the elements that an Apple event object can contain.

Property Property ID Description

pName 'pnam' Name of an Apple event object

pBounds 'pbnd' Coordinates of a window

pVisible 'pvis' Indicates whether a window is visible

pIsModal 'pmod' Indicates whether a window is modal

pClass 'pcls' Class ID of an Apple event object

pFont 'font' Font

pTextStyle 'txst' Text style

pColor 'colr' Text color

pTextPointSize 'ptps' Point size

pScriptTag 'psct' Script system identifier

pFillColor 'flcl' Fill color
3-42 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
An Apple event object contains exactly one of each of its properties, whereas it can
contain no elements or many elements of the same element class. In general, a property
of an object describes something about that object; a property can be examined or
changed but never deleted. An element can be one or more discrete objects contained in
another object and can usually be deleted.

For example, because a paragraph can contain one or more words, one of the element
classes listed for the object class cParagraph is the object class cWord. Individual
words can be deleted from a paragraph. However, even though a word in a paragraph
can be in a different font from the words around it, a paragraph can have only one
pFont property. This property is defined as the font of the first character in the
paragraph and consists of the name of a font. The paragraph’s pFont property can be
changed but not removed.

The properties and element classes listed for each object class definition in the
Apple Event Registry: Standard Suites can be inherited from a superclass, or they can
originate with a subclass. Figure 3-16 illustrates the object class inheritance hierarchy for
the object class cWindow in the Core suite. Boldface terms in the figure represent those
properties, element classes, or Apple events that are not inherited. The object class
cWindow includes all the properties and Apple events of its superclass,
cOpenableObject, which in turn includes all the properties and Apple events of its
superclass, cObject. The object class cWindow also includes 11 properties and one
element class that originate with cWindow and are not inherited.

The pClass property—the property that specifies the four-character class ID—
originates with cObject. Because the definitions of all object classes are ultimately
derived from cObject, pClass is inherited by all object classes. The definition for
cObject also lists ten Apple events, which include common events such as Get Data,
Move, and Delete Element. Because cObject is at the top of the object class inheritance
hierarchy, these ten Apple events can use object specifier records that describe Apple
event objects of any object class as a direct parameter. Like all abstract superclasses,
cObject does not correspond to a real Apple event object, so its definition does not list
any element classes. Unlike any other object class, cObject is at the top of the object
class inheritance hierarchy and therefore does not have a superclass.
Working With Object Specifier Records 3-43

C H A P T E R 3

Introduction to Apple Events
Figure 3-16 The object class inheritance hierarchy for the object class cWindow

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType

None

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType
pName

None

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data
Close
Open

cObject

cOpenableObject

cObject

cText cOpenableObject

cWord cItem cChar cWindow cDocument cFile

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType
pName
pBounds
pHasCloseBox
pHasTitleBar
pIndex
pIsFloating
pIsModal
pIsResizable
pIsZoomable
pIsZoomed
pSelection
pVisible

cDocument

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data
Close
Open

cWindow
3-44 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The chain of containers that determine the location of one or more Apple event objects is
called the container hierarchy. The container hierarchy, which specifies the location of
real Apple event objects, is different from the object class inheritance hierarchy, which is
an abstract concept that determines which properties, element classes, and Apple events
an object class inherits from its superclass. For example, the container hierarchy for an
Apple event object of class cWord can vary from one word to another, because various
combinations of other Apple event objects, such as a document, a paragraph, a delimited
string, or another word, can contain a word.

Applications that support Apple event objects must be able to identify the order of
several elements of the same class that are contained within another Apple event object.
For example, each word in a paragraph should have an identifiable order, such as the
5th word or the 12th word. This allows other applications to identify Apple event objects
by describing their absolute position within a container.

Figure 3-17 shows an Apple event object of object class cWord—the word “Sales”—
contained in another Apple event object of object class cParagraph. (Both these object
classes are defined in the Text suite.) The figure shows only a portion of the container
hierarchy for the word, since a complete description of the word would also include the
containers that specify the location of the paragraph.

Your application must take account of the definitions in the Apple Event Registry:
Standard Suites for any object classes you want to support. For example, the definition for
the object class cText lists paragraphs, lines, words, and characters as Apple event
objects that can be contained in Apple event objects of class cText. To support Apple
events that refer to elements of object class cText, your application should associate the
cText object class with paragraphs, lines, words, and characters in its documents. The
list of properties defined for class cText includes the properties pColor, pFont,
pPointSize, pScriptTag, and pTextStyles. If you want to support Apple events
that distinguish a boldface 12-point word of object class cText from an italic 14-point
word, for example, your application must associate the point size and style of text in its
documents with the properties pPointSize and pTextStyles defined for class cText.
Working With Object Specifier Records 3-45

C H A P T E R 3

Introduction to Apple Events
Figure 3-17 An Apple event object of class cWord contained in an Apple event object of
class cParagraph

Finding Apple Event Objects 3
Most of the Apple events in the Core suite and the functional-area suites defined in the
Apple Event Registry: Standard Suites can include parameters that consist of object
specifier records. Your application’s handlers for these events can use the AEResolve
function to resolve object specifier records: that is, to locate the Apple event objects they
describe.

The AEResolve function parses an object specifier record and performs related tasks
that are the same for all object specifier records. When necessary, the AEResolve
function calls application-defined functions to perform tasks that are unique to the
application, such as locating a specific Apple event object in the application’s data
structures.

The sales figures for 1991 indicate
substantial growth in three areas.

The
sales
figures
for
1991
indicate
substantial
growth
in
three
areas
.

1st word
2nd word
3rd word
4th word
5th word
6th word
7th word
8th word
9th word
10th word
11th word
12th word

pClass = cParagraph
pFont = "Palatino"
pJustification = kAELeftJustified
pPointSize = 10
pTextStyles = "Plain"

Properties
of this
paragraph

Elements of
this paragraph
that belong to
class cWord

Apple event object of object class cParagraph

pClass = cWord
pFont = "Palatino"
pPointSize = 10
pUniformStyles = "Italic"

Properties
of this
word

s
a
l
e
s

1st character
2nd character
3rd character
4th character
5th character

Elements of
this word that
belong to class
cChar

Apple event object of object class cWord
3-46 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Your application can provide two kinds of application-defined functions for use by
AEResolve. Object accessor functions locate Apple event objects. Every application
that supports simple object specifier records must provide one or more object accessor
functions. Object callback functions perform other tasks that only an application can
perform, such as counting, comparing, or marking Apple event objects.

Each time AEResolve calls one of your application’s object accessor functions
successfully, the object accessor function returns a special descriptor record, called a
token, that identifies either an element in a specified container or a property of a
specified Apple event object. The token can be of any descriptor type, including
descriptor types you define yourself.

You install object accessor functions by using the AEInstallObjectAccessor
function. Much like the AEInstallEventHandler function,
AEInstallObjectAccessor uses an object accessor dispatch table to map
requests for Apple event objects to the appropriate object accessor functions in
your application. These requests refer to objects of a specified object class in
containers identified by a token of a specified descriptor type.

Responding to an Apple event that includes an object specifier record typically involves
these steps:

1. After determining that the event is an Apple event, your application calls
AEProcessAppleEvent.

2. The AEProcessAppleEvent function uses the Apple event dispatch table to
dispatch the event to the your application’s handler for that event.

3. The Apple event handler extracts the Apple event parameters, and passes the object
specifier records they contain to AEResolve.

4. The AEResolve function uses the object accessor dispatch table to call one or more
object accessor functions, one at a time, that can identify the nested Apple event
objects described by each object specifier record. Each object accessor function returns
a token for the object it finds, which in turn helps to determine which object accessor
function the AEResolve function will use to locate the next Apple event object.

5. The AEResolve function returns the final token for the requested object to the
application’s handler.

The resolution of an object specifier record always begins with the outermost container it
specifies. For example, to locate a table named “Summary of Sales” in the document
named “Sales Report,” the AEResolve function first calls an object accessor function
that can locate the document, then uses the token returned by that function to identify an
object accessor function that can locate the table. It then returns the token for the table to
the Apple event handler that called AEResolve.

The chapter “Resolving and Creating Object Specifier Records” in this book describes in
detail how to resolve object specifier records and how to write and install object accessor
and object callback functions.
Working With Object Specifier Records 3-47

C H A P T E R 3

Introduction to Apple Events
About the Apple Event Manager 3

You can use the Apple Event Manager to

■ respond to Apple events as a server application

■ create and send Apple events as a client application

■ resolve and create object specifier records

■ support Apple event recording

This section briefly summarizes the steps involved in providing each kind of support
and tells where to find the relevant information in this book.

Supporting Apple Events as a Server Application 3
You do not need to implement all Apple events at once. You can begin by supporting just
the required events and, if necessary, the events sent by the Edition Manager. The
beginning of the section “Handling Apple Events” on page 4-4 describes how to provide
this minimal level of support.

It is relatively easy to respond to the required events and the events sent by the
Edition Manager. If, however, your application cannot respond to any other Apple
events, other applications will not be able to request services that involve locating
specific Apple event objects within your application or its documents, and users will not
be able to control your application by executing scripts. To respond to Apple events it is
likely to receive from other applications or from scripting components, your application
must be able to respond to the appropriate core and functional-area Apple events.

Once you have provided the basic level of support for the Required suite and for events
sent by the Edition Manager, you should

■ decide which other Apple event suites you want to support

■ define the hierarchy of Apple event objects within your application that you want
scripting components or other applications to be able to identify—that is, which
Apple event objects can be contained by other Apple event objects in your application

■ write handlers for the Apple events you support, and install corresponding entries in
your application’s Apple event dispatch table

To decide which Apple event suites you want to support and how to define the
hierarchy of Apple event objects in your application, consult the Apple Event Registry:
Standard Suites and evaluate which Apple events and Apple event object classes make
sense for your application. If necessary, you can extend the definitions of the standard
Apple events and Apple events objects to cover special requirements of your application.
It is better to extend the standard definitions rather than to define your own custom
Apple events, because only those applications that choose to support your custom Apple
events explicitly will be able to make use of them.
3-48 About the Apple Event Manager

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The chapter “Responding to Apple Events” in this book describes how to write Apple
event handlers and related routines. The chapter “Resolving and Creating Object
Specifier Records” describes how to resolve object specifiers in an Apple event that
describes Apple event objects in your application or its documents.

If your application can respond to Apple events, you can make it scriptable simply by
adding an 'aete' resource. Scripting components use your application’s 'aete'
resource to obtain information about the Apple events and corresponding
human-language terminology that your application supports. The chapter “Apple Event
Terminology Resources” in this book describes how to optimize your implementation of
Apple events for use by scripting components and how to create an 'aete' resource.

Supporting Apple Events as a Client Application 3
Because users can send Apple events to a variety of applications simply by executing a
script, many applications have no need to send Apple events. However, if you want to
factor your application for recording, or if you want your application to send Apple
events directly to other applications, you can use Apple Event Manager routines to
create and send Apple events.

To send an Apple event, you must

■ create the Apple event

■ add parameters and attributes

■ use the AESend function to send the event

The chapter “Creating and Sending Apple Events” in this book describes how to perform
these tasks.

Supporting Apple Event Objects 3
If your application responds to core and functional-area Apple events, it must also be
able to resolve object specifier records that describe the objects on which those Apple
events can act. In addition to the tasks described in the chapter “Responding to
Apple Events,” you must perform the following tasks to handle Apple events that
contain object specifier records:

■ Write object accessor functions that can locate the Apple event objects you support,
and install corresponding entries in your application’s object accessor dispatch table.

■ Write any object callback functions that you decide to provide. To handle object
specifier records that specify a test, your application must provide at least two object
callback functions: one that counts objects and one that compares them.

■ Call AEResolve from your Apple event handlers whenever an Apple event
parameter includes an object specifier record.

The chapter “Resolving and Creating Object Specifier Records” describes how to
perform these tasks. It also describes how applications that send Apple events to
themselves or directly to other applications can create object specifier records.
About the Apple Event Manager 3-49

C H A P T E R 3

Introduction to Apple Events
Supporting Apple Event Recording 3
If you make your application scriptable, you may also want to make it recordable. Users
of recordable applications can record their actions in the form of Apple events that a
scripting component translates into a script. When a user executes a recorded script,
the scripting component sends the same Apple events to the application in which they
were recorded.

To make your application recordable, you should use Apple events to report user actions
to the Apple Event Manager in terms of Apple events. One way to do this is to separate
the code that implements your application’s user interface from the code that actually
performs work when the user manipulates the interface. This is called factoring your
application. A factored application acts as both the client and server application for
Apple events it sends to itself in response to user actions. When recording is turned on,
the Apple Event Manager sends a copy of every event than an application sends to itself
to the scripting component or other process that turned recording on.

The chapter “Introduction to Scripting” in this book provides an overview of how to
make your application both scriptable and recordable. The chapter “Recording Apple
Events” describes how to factor your application for recording and explains the
Apple Event Manager’s recording mechanism.
3-50 About the Apple Event Manager

C H A P T E R 4

4

Figure 4-0
Listing 4-0
Table 4-0

Contents

4 Responding to Apple Events

Handling Apple Events 4-4
Accepting an Apple Event 4-5
Installing Entries in the Apple Event Dispatch Tables 4-7

Installing Entries for the Required Apple Events 4-8
Installing Entries for Apple Events Sent by the Edition Manager 4-9
How Apple Event Dispatching Works 4-9

Handling the Required Apple Events 4-11
Required Apple Events 4-11
Handling the Open Application Event 4-14
Handling the Open Documents Event 4-15
Handling the Print Documents Event 4-17
Handling the Quit Application Event 4-19

Handling Apple Events Sent by the Edition Manager 4-20
The Section Read, Section Write, and Section Scroll Events 4-21
Handling the Create Publisher Event 4-22

Getting Data Out of an Apple Event 4-25
Getting Data Out of an Apple Event Parameter 4-26
Getting Data Out of an Attribute 4-28
Getting Data Out of a Descriptor List 4-31

Writing Apple Event Handlers 4-33
Replying to an Apple Event 4-36
Disposing of Apple Event Data Structures 4-39
Writing and Installing Coercion Handlers 4-41

Interacting With the User 4-45
Setting the Client Application’s User Interaction Preferences 4-46
Setting the Server Application’s User Interaction Preferences 4-48
Requesting User Interaction 4-49
Contents 4-1

C H A P T E R 4

Reference to Responding to Apple Events 4-56
Data Structures Used by the Apple Event Manager 4-56

Descriptor Records and Related Data Structures 4-56
Apple Event Array Data Types 4-60

Routines for Responding to Apple Events 4-61
Creating and Managing the Apple Event Dispatch Tables 4-61
Dispatching Apple Events 4-66
Getting Data or Descriptor Records Out of Apple Event Parameters and
Attributes 4-68
Counting the Items in Descriptor Lists 4-74
Getting Items From Descriptor Lists 4-74
Getting Data and Keyword-Specified Descriptor Records Out of AE
Records 4-78
Requesting User Interaction 4-81
Requesting More Time to Respond to Apple Events 4-84
Suspending and Resuming Apple Event Handling 4-85
Getting the Sizes and Descriptor Types of Descriptor Records 4-89
Deleting Descriptor Records 4-92
Deallocating Memory for Descriptor Records 4-93
Coercing Descriptor Types 4-94
Creating and Managing the Coercion Handler Dispatch Tables 4-96
Creating and Managing the Special Handler Dispatch Tables 4-99
Getting Information About the Apple Event Manager 4-103

Application-Defined Routines 4-104
Summary of Responding to Apple Events 4-108

Pascal Summary 4-108
Constants 4-108
Data Types 4-112
Routines for Responding to Apple Events 4-114
Application-Defined Routines 4-118

C Summary 4-118
Constants 4-118
Data Types 4-123
Routines for Responding to Apple Events 4-124
Application-Defined Routines 4-128

Assembly-Language Summary 4-128
Trap Macros 4-128

Result Codes 4-129
4-2 Contents

C H A P T E R 4

4

R
esponding to A

pple E
vents

Responding to Apple Events 4

This chapter describes how your application can use the Apple Event Manager to
respond to Apple events. Your application must be able to respond to the four required
Apple events to take advantage of the launching and terminating mechanisms that are
part of System 7 and later versions of system software. If your application provides
publish and subscribe capabilities, it should also handle the events sent by the Edition
Manager. To be scriptable, or capable of responding to Apple events sent by scripting
components, your application should handle the appropriate core and functional-area
Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication” and “Introduction to Apple Events” in this book. You
should also have a copy of the Apple Event Registry: Standard Suites available for reference.

Although the Apple events used by the Edition Manager are discussed in this chapter,
you must refer to the chapter “Edition Manager” in this book for a full discussion of how
to implement the Edition Manager’s publish and subscribe features.

This chapter provides the basic information you need to make your application capable
of responding to Apple events. To respond to core and functional-area Apple events,
your application must also be able to resolve object specifier records. You should
read the chapter “Resolving and Creating Object Specifier Records” before you write
Apple event handlers for events that can contain object specifier records.

The section “Handling Apple Events,” which begins on page 4-4, describes how to

■ accept and process Apple events

■ install entries in the Apple event dispatch tables

■ handle the required events

■ handle events sent by the Edition Manager

■ get data out of an Apple event

■ write handlers that perform the action requested by an Apple event

■ reply to an Apple event

■ dispose of Apple event data structures

■ write and install coercion handlers

The section “Interacting With the User,” which begins on page 4-45, describes

■ how a server application can interact with the user when processing an Apple event

■ how client applications set user interaction preferences

■ how the client application’s preferences and the server application’s preferences affect
user interaction
4-3

C H A P T E R 4

Responding to Apple Events

Handling Apple Events 4

You do not need to implement all Apple events at once. If you want to begin by
supporting only the required Apple events, you must

■ set bits in the 'SIZE' resource to indicate that your application supports high-level
events

■ include code to handle high-level events in your main event loop

■ write routines that handle the required events

■ install entries for the required Apple events in your application’s Apple event
dispatch table

The following sections explain how to perform these tasks: “Accepting an Apple Event,”
which begins on page 4-5, “Installing Entries in the Apple Event Dispatch Tables,” which
begins on page 4-7, and “Handling the Required Apple Events,” which begins on
page 4-11.

To respond to the Apple events sent by the Edition Manager in addition to the required
events, you must install entries for the Section Read, Section Write, Section Scroll, and
Create Publisher events in your application’s Apple event dispatch table and write the
corresponding handlers, as described in “Handling Apple Events Sent by the Edition
Manager” on page 4-20.

To respond to core and functional-area Apple events, you must install entries and write
handlers for those events. You must also make sure that your application can locate
Apple event objects with the aid of the Apple Event Manager routines described in the
chapter “Resolving and Creating Object Specifier Records.” These routines are currently
available as the Object Support Library (OSL), which you must link with your
application when you build it.

The Apple Event Manager (excluding the OSL) is available only in System 7
and later versions of system software. Use the Gestalt function with the
gestaltAppleEventsAttr selector to determine whether the Apple Event
Manager is available. In the response parameter, the bit defined by the constant
gestaltAppleEventsPresent is set if the Apple Event Manager is available.

CONST gestaltAppleEventsAttr = 'evnt'; {Gestalt selector}

gestaltAppleEventsPresent = 0; {if this bit is set, }

{ then the Apple Event }

{ Manager is available}

To find out which version of the Apple Event Manager is available, you can use the
AEManagerInfo function; for more information, see page 4-104.
4-4 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

Accepting an Apple Event 4
To accept or send Apple events (or any other high-level events), you must set the
appropriate flags in your application’s 'SIZE' resource and include code to handle
high-level events in your application’s main event loop.

Two flags in the 'SIZE' resource determine whether an application receives high-level
events:

■ The isHighLevelEventAware flag must be set for your application to receive any
high-level events.

■ The localAndRemoteHLEvents flag must be set for your application to receive
high-level events sent from another computer on the network.

Note that in order for your application to respond to Apple events sent from remote
computers, the user of your application must also allow network users to link to your
application. The user does this by selecting your application in the Finder, choosing
Sharing from the File menu, and clicking the Allow Remote Program Linking checkbox.
If the user has not yet started program linking, the Sharing command offers to display
the Sharing Setup control panel so that the user can start program linking. The user must
also authorize remote users for program linking by using the Users & Groups control
panel. Program linking and setting up authenticated sessions are described in the
chapter “Program-to-Program Communications Toolbox” in this book.

For a complete description of the 'SIZE' resource, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Apple events (and other high-level events) are identified by a message class of
kHighLevelEvent in the what field of the event record. You can test the what field of
the event record to determine whether the event is a high-level event.

Listing 4-1 is an example of a procedure called from an application’s main event loop to
handle events, including high-level events. The procedure determines the type of event
received and then calls another routine to take the appropriate action.

Listing 4-1 A DoEvent procedure

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF {determine the type of event}

mouseDown:

DoMouseDown (event);

.

. {handle other kinds of events}

.

{handle high-level events, including Apple events}

kHighLevelEvent: DoHighLevelEvent (event);

END;

END;
Handling Apple Events 4-5

C H A P T E R 4

Responding to Apple Events

Listing 4-2 is an example of a procedure that handles both Apple events and the
high-level event identified by the event class mySpecialHLEventClass and the event
ID mySpecialHLEventID. Note that, in most cases, you should use Apple events to
communicate with other applications.

Listing 4-2 A DoHighLevelEvent procedure for handling Apple events and other high-level
events

PROCEDURE DoHighLevelEvent (event: EventRecord);

VAR

myErr: OSErr;

BEGIN

IF (event.message = LongInt(mySpecialHLEventClass)) AND

(LongInt(event.where) = LongInt(mySpecialHLEventID))

THEN

{it's a high-level event that doesn't use AEIMP}

myErr := HandleMySpecialHLEvent(event)

ELSE

{otherwise, assume that the event is an Apple event}

myErr := AEProcessAppleEvent(event);

{check and handle error}

IF myErr <> noErr THEN DoError(myErr);

END;

If your application accepts high-level events that do not follow the Apple Event
Interprocess Messaging Protocol (AEIMP), you must dispatch these high-level events
before calling AEProcessAppleEvent. To dispatch high-level events that do not follow
AEIMP, you should check the event class, the event ID, or both for each event to see
whether your application can handle the event.

After receiving a high-level event (and, if appropriate, checking whether it is a
high-level event other than an Apple event), your application typically calls the
AEProcessAppleEvent function. The AEProcessAppleEvent function determines
the type of Apple event received, gets the event buffer that contains the parameters and
attributes of the Apple event, and calls the corresponding Apple event handler in your
application.

You should provide an Apple event handler for each Apple event that your application
supports. This handler is responsible for performing the action requested by the
Apple event and if necessary can return data in the reply Apple event.
4-6 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

If the client application requests a reply, the Apple Event Manager passes a default reply
Apple event to your handler. If the client application does not request a reply, the Apple
Event Manager passes a null descriptor record (a descriptor record of descriptor type
typeNull and a data handle whose value is NIL) to your handler instead of a default
reply Apple event.

After your handler finishes processing the Apple event and adds any parameters to the
reply Apple event, it must return a result code to AEProcessAppleEvent. If the
client application is waiting for a reply, the Apple Event Manager returns the reply
Apple event to the client.

Installing Entries in the Apple Event Dispatch Tables 4
When your application receives an Apple event, use the AEProcessAppleEvent
function to retrieve the data buffer of the event and to route the Apple event to the
appropriate Apple event handler in your application. Your application supplies an
Apple event dispatch table to map the Apple events your application supports to
the Apple event handlers provided by your application.

To install entries in your application’s Apple event dispatch table, use the
AEInstallEventHandler function. You usually install entries for all of the Apple
events that your application accepts into your application’s Apple event dispatch table.

To install an Apple event handler in your Apple event dispatch table, you must specify

■ the event class of the Apple event

■ the event ID of the Apple event

■ the address of the Apple event handler for the Apple event

■ a reference constant

You provide this information to the AEInstallEventHandler function. In addition,
you indicate whether the entry should be added to your application’s Apple event
dispatch table or to the system Apple event dispatch table.

The system Apple event dispatch table is a table in the system heap that contains
system Apple event handlers—handlers that are available to all applications and
processes running on the same computer. The handlers in your application’s Apple
event dispatch table are available only to your application. If AEProcessAppleEvent
cannot find a handler for the Apple event in your application’s Apple event
dispatch table, it looks in the system Apple event dispatch table for a handler (see
“How Apple Event Dispatching Works” on page 4-9 for details). If it doesn’t find a
handler for the event, it returns the errAEEventNotHandled result code.

If you add a handler to the system Apple event dispatch table, the handler should reside
in the system heap. If there was already an entry in the system Apple event dispatch
table for the same event class and event ID, it is replaced unless you chain it to your
system handler. See “Creating and Managing the Apple Event Dispatch Tables” on
page 4-61 for details.
Handling Apple Events 4-7

C H A P T E R 4

Responding to Apple Events

Installing Entries for the Required Apple Events 4

Listing 4-3 illustrates how to add entries for the required Apple events to your
application’s Apple event dispatch table.

Listing 4-3 Adding entries for the required Apple events to an application’s Apple event
dispatch table

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEOpenApplication,

 @MyHandleOApp, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEOpenDocuments,

 @MyHandleODoc,0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEPrintDocuments,

 @MyHandlePDoc, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(kCoreEventClass,

 kAEQuitApplication,

 @MyHandleQuit, 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

The code in Listing 4-3 creates entries for all four required Apple events in the Apple
event dispatch table. (For examples of handlers that correspond to these entries, see
“Handling the Required Apple Events,” which begins on page 4-11.) The first entry
creates an entry for the Open Application event. The entry indicates the event class and
event ID of the Open Application event, supplies the address of the handler for
that event, and specifies 0 as the reference constant.

The Apple Event Manager passes the reference constant to your handler each time your
handler is called. Your application can use this reference constant for any purpose. If
your application doesn’t use the reference constant, use 0 as the value.

The last parameter to the AEInstallEventHandler function is a Boolean value that
determines whether the entry is added to the system Apple event dispatch table or to
your application’s Apple event dispatch table. To add the entry to your application’s
Apple event dispatch table, use FALSE as the value of this parameter. If you specify
TRUE, the entry is added to the system Apple event dispatch table. The code shown in
Listing 4-3 adds entries to the application’s Apple event dispatch table.
4-8 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4

R
esponding to A

pple E
vents

Installing Entries for Apple Events Sent by the Edition Manager 4

If your application supports the Edition Manager, you should also add entries to your
application’s Apple event dispatch table for the Apple events that your application
receives from the Edition Manager. Listing 4-4 shows how to add these entries.

Listing 4-4 Adding entries for Apple events sent by the Edition Manager to an application’s
Apple event dispatch table

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionReadMsgID,

 @MyHandleSectionReadEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionWriteMsgID,

 @MyHandleSectionWriteEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallEventHandler(sectionEventMsgClass,

 sectionScrollMsgID,

 @MyHandleSectionScrollEvent,

 0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

See “Handling Apple Events Sent by the Edition Manager” on page 4-20 for the
parameters associated with these events. See the chapter “Edition Manager” in this book
for information on how your application should respond to the Apple events sent by the
Edition Manager.

How Apple Event Dispatching Works 4

In addition to the Apple event handler dispatch tables, applications can add entries to a
special handler dispatch table in either the application heap or the system heap. These
dispatch tables are used for various specialized handlers; for more information, see
“Creating and Managing the Special Handler Dispatch Tables,” which begins on
page 4-99.

When an application calls AEProcessAppleEvent, the function looks first in the
application’s special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the application’s special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the application’s Apple event dispatch table for an entry that matches the event
class and event ID of the specified Apple event.
Handling Apple Events 4-9

C H A P T E R 4

Responding to Apple Events

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the AEProcessAppleEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the system special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code errAEEventNotHandled to the server
application and, if the client application is waiting for a reply, to the client application.

▲ W A R N I N G

Before an application calls a system Apple event handler, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system Apple event handler, it should never use
A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash. ▲

For any entry in your Apple event dispatch table, you can specify a wildcard value
for the event class, event ID, or both. You specify a wildcard by supplying the
typeWildCard constant when installing an entry into the Apple event dispatch table.
A wildcard value matches all possible values. Wildcards make it possible to supply
one Apple event handler that dispatches several related Apple events.

For example, if you specify an entry with the typeWildCard event class and the
kAEOpenDocuments event ID, the Apple Event Manager dispatches Apple events of
any event class with an event ID of kAEOpenDocuments to the handler for that entry.

If you specify an entry with the kCoreEventClass event class and the
typeWildCard event ID, the Apple Event Manager dispatches Apple events of
the kCoreEventClass event class with any event ID to the handler for that entry.

If you specify an entry with the typeWildCard event class and the typeWildCard
event ID, the Apple Event Manager dispatches all Apple events of any event class and
any event ID to the handler for that entry.

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as kAECoreSuite and the event ID as kAEDelete, and
another entry that specifies the event class as kAECoreSuite and the event ID as
typeWildCard, the Apple Event Manager will dispatch the Apple event handler
associated with the entry that specifies the event ID as kAEDelete.
4-10 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
IMPORTANT

If your application sends Apple events to itself using a
typeProcessSerialNumber address descriptor record with the
lowLongOfPSN field set to kCurrentProcess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. ▲

Handling the Required Apple Events 4
This section describes the required Apple events—the Apple events your application
must support to be compatible with System 7 and later versions of system software—
and the descriptor types for all parameters of the required Apple events. It also describes
how to write the handlers for these events, and it provides sample code.

To support the required Apple events, you must set the necessary flags in the 'SIZE'
resource of your application, install entries in your application’s Apple event dispatch
table, add code to the event loop of your application to recognize high-level events,
and call the AEProcessAppleEvent function, as described in “Accepting an Apple
Event,” which begins on page 4-5, and “Installing Entries in the Apple Event Dispatch
Tables,” which begins on page 4-7. You must also write handlers for each Apple event;
this section describes how to write these handlers.

Required Apple Events 4

When a user opens or prints a file from the Finder, the Finder sets up the information
your application uses to determine which files to open or print. In System 7 and later
versions, if your application supports high-level events, the Finder communicates this
information to your application through the required Apple events.

The Finder sends these required Apple events to your application to request the
corresponding actions:

Apple event Requested action

Open Application Perform tasks your application normally performs when a user
opens your application without opening or printing any
documents

Open Documents Open the specified documents

Print Documents Print the specified documents

Quit Application Perform tasks—such as releasing memory, requesting the user to
save documents, and so on—associated with quitting before the
Finder terminates your application
Handling Apple Events 4-11

C H A P T E R 4

Responding to Apple Events
In System 7 and later versions, the Finder uses these events as part of the mechanisms
for launching and terminating applications. When the Finder launches your application,
the application receives the Open Application, Open Documents, or Print Documents
event. When the Finder terminates your application, the application receives the
Quit Application event. This method of communicating Finder information to your
application replaces the mechanisms used in earlier versions of system software.

Applications that do not support high-level events can still use the CountAppFiles,
GetAppFiles, and ClrAppFiles procedures (or the GetAppParms procedure) to get
the Finder information. See the chapter “Introduction to File Management” in
Inside Macintosh: Files for information on these routines. To make your application
compatible with System 7 and with earlier and later versions, you must support both the
old and new mechanisms.

Use the Gestalt function to determine whether the Apple Event Manager is present.
If it is and the isHighLevelEventAware flag is set in your application’s 'SIZE'
resource, your application receives the Finder information through the required
Apple events.

If your application accepts high-level events, it must be able to process the four required
Apple events. Your application receives the required Apple events from the Finder in
these situations:

■ If your application is not open and the user opens your application from the Finder
without opening or printing any documents, the Finder launches your application
and sends it the Open Application event.

■ If your application is not open and the user opens one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Open Documents event.

■ If your application is not open and the user prints one of your application’s
documents from the Finder, the Finder launches your application and sends it the
Print Documents event. Your application should print the selected documents and
remain open until it receives a Quit Application event from the Finder.

■ If your application is open and the user opens or prints any of your application’s
documents from the Finder, the Finder sends your application the Open Documents
or Print Documents event.

■ If your application is open and the user chooses Restart or Shut Down from the
Finder’s Special menu, the Finder sends your application the Quit Application event.
4-12 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Upon receiving any of the required Apple events, your application should perform the
action requested by the event. Here is a summary of the contents of the required events
and the actions they request applications to perform:

Open Application—perform tasks associated with opening an application

Event class kCoreEventClass

Event ID kAEOpenApplication

Parameters None

Requested action Perform any tasks—such as opening an untitled document
window—that you would normally perform when a user opens
your application without opening or printing any documents.

Open Documents—open the specified documents

Event class kCoreEventClass

Event ID kAEOpenDocuments

Required parameter

Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be opened

Requested action Open the documents specified in the keyDirectObject
parameter.

Print Documents—print the specified documents

Event class kCoreEventClass

Event ID kAEPrintDocuments

Required parameter

Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be printed

Requested action Print the documents specified in the keyDirectObject
parameter without opening windows for the documents.

Quit Application—perform tasks associated with quitting

Event class kCoreEventClass

Event ID kAEQuitApplication

Parameters None
Handling Apple Events 4-13

C H A P T E R 4

Responding to Apple Events
Your application needs to recognize only two descriptor types to handle the required
Apple events: descriptor lists and alias records. The Open Documents event and Print
Documents event use descriptor lists to store a list of documents to open. Each document
is specified as an alias record in the descriptor list.

You can retrieve the data that specifies the document to open as an alias record, or you
can request that the Apple Event Manager coerce the alias record to a file system
specification (FSSpec) record. The file system specification record provides a standard
method of identifying files in System 7 and later versions. See Inside Macintosh: Files for a
complete description of how to specify files using file system specification records.

Handling the Open Application Event 4

When the user opens your application, the Finder uses the Process Manager to launch
your application. On startup, your application typically performs any needed
initialization, and then begins to process events. If your application supports high-level
events, and if the user opens your application without selecting any documents to open
or print, your application receives the Open Application event.

To handle the Open Application event, your application should do just what the user
expects it to do when it is opened. For example, your application might open a new
untitled window in response to an Open Application event.

Listing 4-5 shows a handler that processes the Open Application event. This handler first
calls an application-defined function called MyGotRequiredParams, which checks
whether the Apple event contains any required parameters. If so, the handler returns an
error, because by definition, the Open Application event should not contain any required
parameters. Otherwise, the handler opens a new document window.

Requested action Perform any tasks that your application would
normally perform when the user chooses Quit. Such tasks
typically include asking the user whether to save documents
that have been changed. When appropriate, the Finder sends
this event to an application immediately after sending it a Print
Documents event (unless the application was already open) or
if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Quit Application—perform tasks associated with quitting (continued)
4-14 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-5 A handler for the Open Application event

FUNCTION MyHandleOApp (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

BEGIN

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

DoNew;

MyHandleOApp := myErr;

END;

For a description of the MyGotRequiredParams function, see Listing 4-11 on page 4-35.
For information about the reply and handlerRefcon parameters for an Apple event
handler, see “Writing Apple Event Handlers” on page 4-33.

Handling the Open Documents Event 4

To handle the Open Documents event, your application should open the documents that
the Open Documents event specifies in its direct parameter. Your application extracts this
information and then opens the specified documents. Listing 4-6 shows a handler for the
Open Documents event.

Listing 4-6 A handler for the Open Documents event

FUNCTION MyHandleODoc (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myFSS: FSSpec;

docList: AEDescList;

myErr, ignoreErr: OSErr;

index, itemsInList: LongInt;

actualSize: Size;

keywd: AEKeyword;

returnedType: DescType;

BEGIN

{get the direct parameter--a descriptor list--and put it }

{ into docList}

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);
Handling Apple Events 4-15

C H A P T E R 4

Responding to Apple Events
IF myErr = noErr THEN

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{count the number of descriptor records in the list}

myErr := AECountItems (docList, itemsInList);

IF myErr = noErr THEN

{now get each descriptor record from the list, }

{ coerce the returned data to an FSSpec record, and }

{ open the associated file}

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS,

keywd, returnedType, @myFSS,

Sizeof(myFSS),actualSize);

IF myErr = noErr THEN

BEGIN

myErr := MyOpenFile(@myFSS);

IF myErr <> noErr THEN

; {handle error from MyOpenFile}

END

ELSE

; {handle error from AEGetNthPtr}

END; {of For index Do}

END

ELSE

; {handle error from MyGotRequiredParams}

ignoreErr := AEDisposeDesc(docList);

END

ELSE

; {failed to get direct parameter, handle error}

MyHandleODoc := myErr;

END;

The handler in Listing 4-6 first uses the AEGetParamDesc function to get the direct
parameter (specified by the keyDirectObject keyword) out of the Apple event.
The handler requests that AEGetParamDesc return a descriptor list in the docList
variable. The handler then checks that it has retrieved all of the required parameters by
calling the MyGotRequiredParams function. (See Listing 4-11 on page 4-35 for a
description of this function.)
4-16 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Once the handler has retrieved the descriptor list from the Apple event, it uses
AECountItems to count the number of descriptors in the list. Using the returned
number as an index, the handler can get the data of each descriptor record in the list.
This handler requests that the AEGetNthPtr function coerce the data in the descriptor
record to a file system specification record. The handler can then use the file system
specification record as a parameter to its own routine for opening files.

For more information on the AEGetParamDesc function, see page 4-69. For more
information on the AEGetNthPtr and AECountItems functions, see “Getting Data Out
of a Descriptor List” on page 4-31.

After extracting the file system specification record that describes the document to open,
your application can use this record to open the file. For example, in Listing 4-6, the code
passes the file system specification record to its routine for opening files, the
MyOpenFile function.

The MyOpenFile function should be designed so that it can be called in response to
both the Open Documents event and to events generated by the user. For example,
when the user chooses Open from the File menu, the code that handles the mouse-down
event uses the StandardGetFile procedure to let the user choose a file; it then
calls MyOpenFile, passing the file system specification record returned by
StandardGetFile. By isolating code that performs a requested action from code that
interacts with the user, you can easily adapt your application to handle Apple events
that request the same action.

Note the use of the AEDisposeDesc function to dispose of the descriptor list when your
handler no longer requires the data in it. Your handler should also return a result code.

Handling the Print Documents Event 4

To handle the Print Documents event, your application should extract information about
the documents to be printed from the direct parameter, then print the specified
documents.

If your application can interact with the user, it should open windows for the
documents, display a Print dialog box for the first document, and use the settings
entered by the user for the first document to print all the documents. If user interaction is
not allowed, your application may either return the error errAENoUserInteraction
or print the documents using default settings. See “Interacting With the User,” which
begins on page 4-45, for information about using the AEInteractWithUser function to
interact with the user.

Note that your application can remain open after processing the Print Documents event;
when appropriate, the Finder sends your application a Quit Application event
immediately after sending it a Print Documents event.

The handler for the Print Documents event shown in Listing 4-7 is similar to the handler
for the Open Documents event, except that it prints the documents referred to in the
direct parameter.
Handling Apple Events 4-17

C H A P T E R 4

Responding to Apple Events
Listing 4-7 A handler for the Print Documents event

FUNCTION MyHandlePDoc (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myFSS: FSSpec;

docList: AEDescList;

myErr, ignoreErr: OSErr;

index, itemsInList: LongInt;

actualSize: Size;

keywd: AEKeyword;

returnedType: DescType;

BEGIN

{get the direct parameter--a descriptor list--and put it }

{ into docList}

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

IF myErr = noErr THEN

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{count the number of descriptor records in the list}

myErr := AECountItems (docList, itemsInList);

IF myErr = noErr THEN

{now get each descriptor record from the list, }

{ coerce the returned data to an FSSpec record, and }

{ print the associated file}

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS,

keywd, returnedType, @myFSS,

Sizeof(myFSS), actualSize);

IF myErr = noErr THEN

BEGIN

myErr := MyPrintFile(@myFSS);

IF myErr <> noErr THEN

; {handle error from MyOpenFile}

END

ELSE

; {handle error from AEGetNthPtr}

END; {of For index Do}

END
4-18 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
ELSE

; {handle error from MyGotRequiredParams}

ignoreErr := AEDisposeDesc(docList);

END

ELSE

; {failed to get direct parameter, handle error}

MyHandlePDoc := myErr;

END;

Handling the Quit Application Event 4

To handle the Quit Application event, your application should take any actions that are
necessary before it is terminated (such as saving any open documents). Listing 4-8 shows
an example of a handler for the Quit Application event.

When appropriate, the Finder sends your application a Quit Application event
immediately after a Print Documents event. The Finder also sends your application a
Quit Application event if the user chooses Restart or Shut Down from the Finder’s
Special menu.

Listing 4-8 A handler for the Quit Application event

FUNCTION MyHandleQuit (theAppleEvent, reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

userCanceled: Boolean;

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

userCanceled := MyPrepareToTerminate;

IF userCanceled THEN

MyHandleQuit := kUserCanceled

ELSE

MyHandleQuit := noErr;

END

ELSE

MyHandleQuit := myErr;

END;
Handling Apple Events 4-19

C H A P T E R 4

Responding to Apple Events
The handler in Listing 4-8 calls another function supplied by the application,
the MyPrepareToTerminate function. This function saves the documents for any
open windows and returns a Boolean value that indicates whether the user canceled the
Quit operation. This is another example of isolating code for interacting with the user
from the code that performs the requested action. By structuring your application in this
way, you can use the same routine to respond to a user action (such as choosing the
Quit command from the File menu) or to the corresponding Apple event. (For a
description of the MyGotRequiredParams function, see “Writing Apple Event
Handlers” on page 4-33.)

IMPORTANT

When your application is ready to quit, it should call the ExitToShell
procedure from the main event loop, not from your handler for the Quit
Application event. Your application should quit only after the handler
returns noErr as its function result. ▲

Handling Apple Events Sent by the Edition Manager 4
If your application provides publish and subscribe capabilities, it should handle the
Apple events sent by the Edition Manager in addition to the required Apple events. Your
application should also handle the Create Publisher event, which is described in the
“Handling the Create Publisher Event” section on page 4-22.

The Edition Manager sends your application Apple events to communicate information
about the publishers and subscribers in your application’s documents. Specifically, the
Edition Manager uses Apple events to notify your application

■ when the information in an edition is updated

■ when your application needs to write the data from a publisher to an edition

■ when your application should locate a particular publisher and scroll through the
document to that location
4-20 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The Section Read, Section Write, and Section Scroll Events 4

The following descriptions identify the three Apple events sent by the Edition Manager—
Section Read, Section Write, and Section Scroll—and the actions they tell applications to
perform.

See the chapter “Edition Manager” in this book for details on how your application
should respond to these events.

Section Read—read information into the specified section

Event class SectionEventMsgClass

Event ID SectionReadMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the subscriber whose edition
contains updated information

Requested action Update the subscriber with the new information from the
edition.

Section Write—write the specified section to an edition

Event class SectionEventMsgClass

Event ID SectionWriteMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the publisher

Requested action Write the publisher’s data to its edition.

Section Scroll—scroll through the document to the specified section

Event class SectionEventMsgClass

Event ID SectionScrollMsgID

Required parameter

Keyword: keyDirectObject

Descriptor type: typeSectionH

Data: A handle to the section record of the publisher to scroll to

Requested action Scroll through the document to the publisher identified by the
specified section record.
Handling Apple Events 4-21

C H A P T E R 4

Responding to Apple Events
Handling the Create Publisher Event 4

If your application supports publish and subscribe capabilities, it should also handle the
Create Publisher event.

When your application receives the Create Publisher event, it should create a
publisher and write the publisher’s data to an edition. The data of the publisher, and the
location and name of the edition, are defined by the Apple event. If the Create Publisher
event includes a keyDirectObject parameter, then your application should publish
the data contained in the parameter. If the keyDirectObject parameter is missing,
then your application should publish the current selection. If the document doesn’t have
a current selection, your handler for the event should return a nonzero result code.

If the Create Publisher event includes a keyAEEditionFileLoc parameter, your
application should use the location and name contained in the parameter as the default
location and name of the edition. If the keyAEEditionFileLoc parameter is missing,
your application should use the default location and name your application normally
uses to specify the edition container.

Listing 4-9 shows a handler for the Create Publisher event. This handler checks for the
keyDirectObject parameter and the keyAEEditionFileLoc parameter. If either of
these is not specified, the handler uses default values. The handler uses the
application-defined function DoNewPublisher to create the publisher and its edition,
create a section record, and update other data structures associated with the document.
See the chapter “Edition Manager” in this book for an example of the DoNewPublisher
function.

Create Publisher—create a publisher

Event class kAEMiscStdSuite

Event ID kAECreatePublisher

Required parameter None

Optional parameter

Keyword: keyDirectObject

Descriptor type: typeObjectSpecifier

Data: An object specifier record that specifies the Apple event object
or objects to publish. If this parameter is omitted, publish the
current selection.

Optional parameter

Keyword: keyAEEditionFileLoc

Descriptor type: typeAlias

Data: An alias record that contains the location of the edition
container to create. If this parameter is omitted, use the default
edition container.

Requested action Create a publisher for the specified data using the specified loca-
tion for the edition container. If the data isn’t specified, publish
the current selection. If the location of the edition isn’t specified,
use the default location.
4-22 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-9 A handler for the Create Publisher event

FUNCTION MyHandleCreatePublisherEvent (theAppleEvent,

reply: AppleEvent;

handlerRefcon: LongInt)

: OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

thePublisherDataDesc: AEDesc;

actualSize: LongInt;

promptForDialog: Boolean;

thisDocument: MyDocumentInfoPtr;

preview: Handle;

previewFormat: FormatType;

defaultLocation: EditionContainerSpec;

BEGIN

MyGetDocumentPtr(thisDocument);

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeObjectSpecifier,

thePublisherDataDesc);

CASE myErr OF

errAEDescNotFound:

BEGIN

{use the current selection as the publisher and set up }

{ info for later when DoNewPublisher displays preview}

preview := MyGetPreviewForSelection(thisDocument);

previewFormat := 'TEXT';

END;

noErr:

{use the data in keyDirectObject parameter as the }

{ publisher (which is returned in the }

{ thePublisherDataDesc variable), and set up info for }

{ later when DoNewPublisher displays preview}

MySetInfoForPreview(thePublisherDataDesc, thisDocument,

 preview, previewFormat);

OTHERWISE

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

END;

myErr := AEDisposeDesc(thePublisherDataDesc);
Handling Apple Events 4-23

C H A P T E R 4

Responding to Apple Events
myErr := AEGetParamPtr(theAppleEvent, keyAEEditionFileLoc,

 typeFSS, returnedType,

 @defaultLocation.theFile,

 SizeOf(FSSpec), actualSize);

CASE myErr OF

errAEDescNotFound:

{use the default location as the edition container}

myErr := MyGetDefaultEditionSpec(thisDocument,

defaultLocation);

noErr:

BEGIN {the keyAEEditionFileLoc parameter }

{ contains a default location}

defaultLocation.thePart := kPartsNotUsed;

defaultLocation.theFileScript := smSystemScript;

END;

OTHERWISE

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

END;

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr <> noErr THEN

BEGIN

MyHandleCreatePublisherEvent := myErr;

Exit(MyHandleCreatePublisherEvent);

END;

myErr := AEInteractWithUser(kAEDefaultTimeout, gMyNotifyRecPtr,

@MyIdleFunction);

IF myErr = noErr THEN promptForDialog := TRUE

 ELSE promptForDialog := FALSE;

myErr := DoNewPublisher(thisDocument, promptForDialog,

preview, previewFormat,

defaultLocation);

{add keyErrorNumber and keyErrorString parameters if desired}

END;

Note that the MyHandleCreatePublisherEvent handler in Listing 4-9 uses the
AEInteractWithUser function to determine whether user interaction is allowed.
If so, the handler sets the promptForDialog variable to TRUE, indicating that the
DoNewPublisher function should display the publisher dialog box. If not,
4-24 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
the handler sets the promptForDialog variable to FALSE, and the DoNewPublisher
function does not prompt the user for the location or name of the edition. For more
information about AEInteractWithUser, see “Interacting With the User,” which
begins on page 4-45.

Getting Data Out of an Apple Event 4
The Apple Event Manager stores the parameters and attributes of an Apple event in a
format that is internal to the Apple Event Manager. You use Apple Event Manager
functions to retrieve the data from an Apple event and return it to your application in
a format your application can use.

Most of the functions that retrieve data from Apple event parameters and attributes are
available in two forms: one that returns the desired data in a specified buffer and one
that returns a descriptor record containing the same data. For example, the
AEGetParamPtr function uses a specified buffer to return the data contained in an
Apple event parameter, and the AEGetParamDesc function returns the descriptor
record for a specified parameter.

You can also use Apple Event Manager functions to get data out of descriptor records,
descriptor lists, and AE records. You use similar functions to put data into descriptor
records, descriptor lists, and AE records.

When your handler receives an Apple event, you typically use the AEGetParamPtr,
AEGetAttributePtr, AEGetParamDesc, or AEGetAttributeDesc function to get
the data out of the Apple event.

Some Apple Event Manager functions let your application request that the data be
returned using any descriptor type, even if it is different from the original descriptor
type. If the original data is of a different descriptor type, the Apple Event Manager
attempts to coerce the data to the requested descriptor type.

For example, the AEGetParamPtr function lets you specify the desired descriptor type
of the resulting data as follows:

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

multResult: LongInt;

actualSize: Size;

myErr: OSErr;

myErr := AEGetParamPtr(theAppleEvent, keyMultResult,

 typeLongInteger, returnedType,

 @multResult, SizeOf(multResult),

 actualSize);
Handling Apple Events 4-25

C H A P T E R 4

Responding to Apple Events
In this example, the desired type is specified in the third parameter by the
typeLongInteger descriptor type. This requests that the Apple Event Manager
coerce the data to a long integer if it is not already of this type. To prevent coercion and
ensure that the descriptor type of the result is of the same type as the original, specify
typeWildCard for the third parameter.

The Apple Event Manager returns, in the returnedType parameter, the descriptor type
of the resulting data. This is useful information when you specify typeWildCard as the
desired descriptor type; you can determine the descriptor type of the resulting data by
examining this parameter.

The Apple Event Manager can coerce many different types of data. For example, the
Apple Event Manager can convert alias records to file system specification records,
integers to Boolean data types, and characters to numeric data types, in addition to other
data type conversions. For a complete list of the data types for which the Apple Event
Manager provides coercion handling, see Table 4-1 on page 4-43.

To perform data coercions that the Apple Event Manager doesn’t perform, you can
provide your own coercion handlers. See “Writing and Installing Coercion Handlers,”
which begins on page 4-41, for information on providing your own coercion handlers.

Apple event parameters are keyword-specified descriptor records. You can
use AEGetParamDesc to get the descriptor record of a parameter, or you can use
AEGetParamPtr to get the data out of the descriptor record of a parameter. If an Apple
event parameter consists of an object specifier record, you can use AEResolve and your
own object accessor functions to resolve the object specifier record—that is, to locate the
Apple event object it describes. For more information about AEResolve and object
accessor functions, see “Writing Object Accessor Functions,” which begins on page 6-28.
Attributes are also keyword-specified descriptor records, and you can use similar
routines to get the descriptor record of an attribute or to get the data out of an attribute.

The following sections show how to use the AEGetParamPtr, AEGetAttributePtr,
AEGetParamDesc, or AEGetAttributeDesc function to get the data out of an
Apple event.

Getting Data Out of an Apple Event Parameter 4

You can use the AEGetParamPtr or AEGetParamDesc function to get the data out of
an Apple event parameter. Use the AEGetParamPtr function (or the AEGetKeyPtr
function, which works the same way) to return the data contained in a parameter. Use
the AEGetParamDesc function when you need to get the descriptor record of a
parameter or to extract the descriptor list from a parameter.

For example, suppose you need to get the data out of a Section Read event. The Edition
Manager sends your application a Section Read event to tell your application to read
updated information from an edition into the specified subscriber. The direct parameter
of the Apple event contains a handle to the section record of the subscriber. You can use
the AEGetParamPtr function to get the data out of the Apple event.
4-26 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
You specify the Apple event that contains the desired parameter, the keyword of the
desired parameter, the descriptor type the function should use to return the data, a
buffer to store the data, and the size of this buffer as parameters to the AEGetParamPtr
function. The AEGetParamPtr function returns the descriptor type of the resulting data
and the actual size of the data, and it places the requested data in the specified buffer.

VAR

sectionH: SectionHandle;

theAppleEvent: AppleEvent;

returnedType: DescType;

actualSize: Size;

myErr: OSErr;

myErr := AEGetParamPtr(theAppleEvent, keyDirectObject,

 typeSectionH, returnedType, @sectionH,

 SizeOf(sectionH), actualSize);

In this example, the keyDirectObject keyword specifies that the AEGetParamPtr
function should extract information from the direct parameter; AEGetParamPtr returns
the data in the buffer specified by the sectionH variable.

You can request that the Apple Event Manager return the data using the descriptor type
of the original data or you can request that the Apple Event Manager coerce the data into
a descriptor type that is different from the original. To prevent coercion, specify the
desired descriptor type as typeWildCard.

The typeSectionH descriptor type specifies that the returned data should be coerced to
a handle to a section record. You can use the information returned in the sectionH
variable to identify the subscriber and read in the information from the edition.

In this example, the AEGetParamPtr function returns, in the returnedType variable,
the descriptor type of the resulting data. The descriptor type of the resulting data
matches the requested descriptor type unless the Apple Event Manager wasn’t able to
coerce the data to the specified descriptor type or you specified the desired descriptor
type as typeWildCard. If the coercion fails, the Apple Event Manager returns the
errAECoercionFail result code.

The AEGetParamPtr function returns, in the actualSize variable, the actual size of
the data (that is, the size of coerced data, if any coercion was performed). If the value
returned in this variable is greater than the amount your application allocated for the
buffer to hold the returned data, your application can increase the size of its buffer to this
amount, and get the data again. You can also choose to use the AEGetParamDesc
function when your application doesn’t know the size of the data.

In general, use the AEGetParamPtr function to extract data that is of fixed length or
known maximum length, and the AEGetParamDesc function to extract data that is of
variable length. The AEGetParamDesc function returns the descriptor record for an
Apple event parameter. This function is useful, for example, for extracting a descriptor
list from a parameter.
Handling Apple Events 4-27

C H A P T E R 4

Responding to Apple Events
You specify, as parameters to AEGetParamDesc, the Apple event that contains the
desired parameter, the keyword of the desired parameter, the descriptor type the
function should use to return the descriptor record, and a buffer to store the returned
descriptor record. The AEGetParamDesc function returns the descriptor record using
the specified descriptor type.

For example, the direct parameter of the Open Documents event contains a descriptor
list that specifies the documents to open. You can use the AEGetParamDesc function to
get the descriptor list out of the direct parameter.

VAR

docList: AEDescList;

theAppleEvent: AppleEvent;

myErr: OSErr;

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

In this example, the Apple event specified by the variable theAppleEvent
contains the desired parameter. The keyDirectObject keyword specifies that the
AEGetParamDesc function should get the descriptor record of the direct parameter.
The typeAEList descriptor type specifies that the descriptor record should be returned
as a descriptor list. In this example, the AEGetParamDesc function returns a descriptor
list in the docList variable.

The descriptor list contains a list of descriptor records. To get the descriptor records and
their data out of a descriptor list, use the AECountItems function to find the number of
descriptor records in the list and then make repetitive calls to the AEGetNthPtr
function to get the data out of each descriptor record. See “Getting Data Out of a
Descriptor List” on page 4-31 for more information.

Note that the AEGetParamDesc function copies the descriptor record from the
parameter. When you’re done with a descriptor record that you obtained from
AEGetParamDesc, you must dispose of it by calling the AEDisposeDesc function.

If an Apple event parameter consists of an object specifier record, you can use
AEResolve to resolve the object specifier record (that is, locate the Apple event object it
describes), as explained in “Finding Apple Event Objects” on page 3-46.

Getting Data Out of an Attribute 4

You can use the AEGetAttributePtr or AEGetAttributeDesc function to get the
data out of the attributes of an Apple event.
4-28 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
You specify, as parameters to AEGetAttributePtr, the Apple event that contains the
desired attribute, the keyword of the desired attribute, the descriptor type the function
should use to return the data, a buffer to store the data, and the size of this buffer. The
AEGetAttributePtr function returns the descriptor type of the returned data and the
actual size of the data and places the requested data in the specified buffer.

For example, this code gets the data out of the keyEventSourceAttr attribute of an
Apple event.

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

sourceOfAE: Integer;

actualSize: Size;

myErr: OSErr;

myErr := AEGetAttributePtr(theAppleEvent, keyEventSourceAttr,

 typeShortInteger, returnedType,

@sourceOfAE, SizeOf(sourceOfAE),

actualSize);

The keyEventSourceAttr keyword specifies the attribute from which to get the data.
The typeShortInteger descriptor type specifies that the data should be returned as a
short integer; the returnedType variable contains the actual descriptor type that is
returned. You also must specify a buffer to hold the returned data and specify the size of
this buffer. If the data is not already a short integer, the Apple Event Manager coerces it
as necessary before returning it. The AEGetAttributePtr function returns, in the
actualSize variable, the actual size of the returned data after coercion has taken place.
You can check this value to make sure you got all the data.

As with the AEGetParamPtr function, you can request that AEGetAttributePtr
return the data using the descriptor type of the original data, or you can request that the
Apple Event Manager coerce the data into a descriptor type that is different from the
original.

In this example, the AEGetAttributePtr function returns the requested data as a
short integer in the sourceOfAE variable, and you can get information about the source
of the Apple event by examining this value. You can test the returned value against the
values defined by the data type AEEventSource.

TYPE AEEventSource = (kAEUnknownSource, kAEDirectCall,

 kAESameProcess, kAELocalProcess,

 kAERemoteProcess);
Handling Apple Events 4-29

C H A P T E R 4

Responding to Apple Events
The constants defined by the data type AEEventSource have the following meanings:

The next example shows how to use the AEGetAttributePtr function to get data out
of the keyMissedKeywordAttr attribute. After your handler extracts all known
parameters from an Apple event, it should check whether the keyMissedKeywordAttr
attribute exists. If it does, then your handler did not get all of the required parameters.

Note that if AEGetAttributePtr returns the errAEDescNotFound result code, then
the keyMissedKeywordAttr attribute does not exist—that is, your application has
extracted all of the required parameters. If AEGetAttributePtr returns noErr, then
the keyMissedKeywordAttr attribute does exist—that is, your handler did not get all
of the required parameters.

myErr := AEGetAttributePtr(theAppleEvent, keyMissedKeywordAttr,

typeWildCard, returnedType, NIL, 0,

actualSize);

The data in the keyMissedKeywordAttr attribute contains the keyword of the
first required parameter, if any, that your handler didn’t retrieve. If you want this data
returned, specify a buffer to hold it and specify the buffer size. Otherwise, as in this
example, specify NIL as the buffer and 0 as the size of the buffer.

This example shows how to use the AEGetAttributePtr function to get the address of
the sender of an Apple event from the keyAddressAttr attribute of the Apple event:

VAR

theAppleEvent: AppleEvent;

returnedType: DescType;

addressOfAE: TargetID;

actualSize: Size;

myErr: OSErr;

myErr := AEGetAttributePtr(theAppleEvent, keyAddressAttr,

typeTargetID, returnedType,

@addressOfAE, SizeOf(addressOfAE),

actualSize);

Constant Meaning

kAEUnknownSource Source of Apple event unknown

kAEDirectCall A direct call that bypassed the PPC Toolbox

kAESameProcess Target application is also the source application

kAELocalProcess Source application is another process on the same computer as
the target application

kAERemoteProcess Source application is a process on a remote computer on the
network
4-30 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The keyAddressAttr keyword specifies the attribute to get the data from. The
typeTargetID descriptor type specifies that the data should be returned as a target ID
record; the returnedType variable contains the actual descriptor type that is returned.
You can examine the address returned in the addressOfAE variable to determine the
sender of the Apple event.

The target ID record returned in the addressOfAE variable contains the sender’s port
name, port location, and session reference number. To get the process serial number for a
process on the local machine, pass the port name returned in the target ID record to the
GetProcessSerialNumberFromPortName function. You can then pass the process
serial number to the GetProcessInformation function to find the creator signature
for a given process. (For more information about these functions, see the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

For more information about target addresses, see “Specifying a Target Address” on
page 5-10.

Getting Data Out of a Descriptor List 4

You can use the AECountItems function to count the number of items in a descriptor
list, and you can use AEGetNthDesc or AEGetNthPtr to get a descriptor record or its
data out of a descriptor list.

The Open Documents event contains a direct parameter that specifies the list of
documents to open. The list of documents is contained in a descriptor list. After
extracting the descriptor list from the parameter, you can determine the number of items
in the list and then extract each descriptor record from the descriptor list. See Figure 3-9
on page 3-19 for a depiction of the Open Documents event.

For example, when your handler receives an Open Documents event, you can use the
AEGetParamDesc function to return the direct parameter as a descriptor list. You can
then use AECountItems to return the number of descriptor records in the list.

VAR

theAppleEvent: AppleEvent;

docList: AEDescList;

itemsInList: LongInt;

myErr: OSErr;

myErr := AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, docList);

myErr := AECountItems(docList, itemsInList);

The AEGetParamDesc function returns, in the docList variable, a copy of the
descriptor list from the direct parameter of the Open Documents event. You specify this
list to the AECountItems function.
Handling Apple Events 4-31

C H A P T E R 4

Responding to Apple Events
You specify the descriptor list whose items you want to count in the first parameter to
AECountItems. The Apple Event Manager returns, in the second parameter, the
number of items in the list. When extracting the descriptor records from a list, you often
use the number of items as a loop index. Here’s an example:

FOR index := 1 TO itemsInList DO

BEGIN

{for each descriptor record in the list, get its data}

END;

The format of the descriptor records in a descriptor list is private to the Apple Event
Manager. You must use the AEGetNthPtr or AEGetNthDesc function to extract
descriptor records from a descriptor list.

You specify the descriptor list that contains the desired descriptor records and an index
as parameters to the AEGetNthPtr function. The index represents a specific descriptor
record in the descriptor list. The AEGetNthPtr function returns the data for the
descriptor record represented by the specified index.

You also specify the descriptor type the function should use to return the data, a buffer
to store the data, and the size of this buffer. If the specified descriptor record exists, the
AEGetNthPtr function returns the keyword of the parameter, the descriptor type of the
returned data, and the actual size of the data, and it places the requested data in the
specified buffer.

Here’s an example that uses the AEGetNthPtr function to extract an item from the
descriptor list in the direct parameter of the Open Documents event:

myErr := AEGetNthPtr(docList, index, typeFSS, keywd,

returnedType, @myFSS, Sizeof(myFSS),

actualSize);

The docList variable specifies the descriptor list from the direct parameter of the
Open Documents event. The index variable specifies the index of the descriptor record
to extract. You can use the typeFSS descriptor type, as in this example, to specify that
the data be returned as a file system specification record. The Apple Event Manager
automatically coerces the original data type of the descriptor record from an alias
record to a file system specification record. The AEGetNthPtr function returns the
keyword of the parameter and the descriptor type of the resulting data in the keywd
and returnedType variables, respectively.

You also specify a buffer to hold the desired data and the size (in bytes) of the buffer. In
this example, the myFSS variable specifies the buffer. The function returns the actual size
of the data in the actualSize variable. If this size is larger than the size of the buffer
you provided, you know that you didn’t get all of the data for the descriptor record.

Listing 4-10 shows a more complete example of extracting the items from a descriptor
list in the Open Documents event.
4-32 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-10 Extracting items from a descriptor list

VAR

index: LongInt;

itemsInList: LongInt;

docList: AEDescList;

keywd: AEKeyword;

returnedType: DescType;

myFSS: FSSpec;

actualSize: Size;

myErr: OSErr;

FOR index := 1 TO itemsInList DO

BEGIN

myErr := AEGetNthPtr(docList, index, typeFSS, keywd,

returnedType, @myFSS, Sizeof(myFSS),

actualSize);

IF myErr <> noErr THEN DoError(myErr);

myErr := MyOpenFile(@myFSS);

IF myErr <> noErr THEN DoError(myErr);

END;

myErr := AEDisposeDesc(docList);

Writing Apple Event Handlers 4
For each Apple event your application supports, you must provide a function called
an Apple event handler. The AEProcessAppleEvent function calls one of your Apple
event handlers when it processes an Apple event. Your Apple event handlers should
perform any action requested by the Apple event, add parameters to the reply Apple
event if appropriate, and return a result code.

The Apple Event Manager uses dispatch tables to route Apple events to the appropriate
Apple event handler. You must supply an Apple event handler for each entry in your
application’s Apple event dispatch table. Each handler must be a function that uses
this syntax:

FUNCTION MyEventHandler (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

The parameter theAppleEvent is the Apple event to handle. Your handler uses Apple
Event Manager functions to extract any parameters and attributes from the Apple event
and then performs the necessary processing. If any of the parameters include object
specifier records, your handler should call AEResolve to resolve them—that is, to locate
the Apple event objects they describe. For more information, see the chapter “Resolving
and Creating Object Specifier Records” in this book.
Handling Apple Events 4-33

C H A P T E R 4

Responding to Apple Events
The reply parameter is the default reply provided by the Apple Event Manager.
(“Replying to an Apple Event,” which begins on page 4-36, describes how to add
parameters to the default reply.) The handlerRefcon parameter is the reference
constant stored in the Apple event dispatch table entry for the Apple event. Your handler
can check the reference constant, if necessary, for information about the Apple event.

You can use the reference constant for anything you wish. For example, if you want to
use the same handler for several Apple events, you can install entries for each event in
your application’s Apple event dispatch table that specify the same handler but different
reference constants. Your handler can then use the reference constant to distinguish the
different Apple events it handles.

To provide an Apple event handler in C, be sure to include the Pascal declaration before
the handler declaration. This is the syntax for an Apple event handler in C:

pascal OSErr MyEventHandler (const AppleEvent *theAppleEvent,

 const AppleEvent *reply,

 long handlerRefcon);

After extracting all known parameters from the Apple event, every handler should
determine whether the Apple event contains any further required parameters. Your
handler can determine whether it retrieved all the required parameters by checking
whether the keyMissedKeywordAttr attribute exists. If the attribute exists, then your
handler has not retrieved all the required parameters and should immediately return an
error. If the attribute does not exist, then the Apple event does not contain any more
required parameters, although it may contain additional optional parameters.

The Apple Event Manager determines which parameters are optional according to the
keywords listed in the keyOptionalKeywordAttr attribute. The source application is
responsible for adding these keywords to the keyOptionalKeywordAttr attribute,
but is not required to do so, even if that parameter is listed in the Apple Event Registry:
Standard Suites as an optional parameter. If the source application does not add the
necessary keyword to the keyOptionalKeywordAttr attribute, the target application
treats the parameter as required for that Apple event. If the target application supports
the parameter, it should handle the Apple event as the source application expects. If the
target application does not support the parameter and checks whether it has received all
the required parameters, it finds that there’s another parameter that the client
application considered required, and should return the result code errAEParamMissed
without attempting to handle the event.

Listing 4-11 shows a function that checks for a keyMissedKeywordAttr attribute. A
handler calls this function after getting all the required parameters it knows about from
an Apple event.
4-34 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-11 A function that checks for a keyMissedKeywordAttr attribute

FUNCTION MyGotRequiredParams (theAppleEvent: AppleEvent): OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

actualSize: Size;

BEGIN

myErr := AEGetAttributePtr(theAppleEvent,

 keyMissedKeywordAttr,

 typeWildCard, returnedType,

 NIL, 0, actualSize);

IF myErr = errAEDescNotFound THEN

{you got all the required parameters}

MyGotRequiredParams := noErr

ELSE IF myErr = noErr THEN

{you missed a required parameter}

MyGotRequiredParams := errAEParamMissed;

END;

The code in Listing 4-11 uses the AEGetAttributePtr function to get the
keyMissedKeywordAttr attribute. This attribute contains the first required parameter,
if any, that your handler didn’t retrieve. If AEGetAttributePtr returns the
errAEDescNotFound result code, the Apple event doesn’t contain a
keyMissedKeywordAttr attribute. If the Apple event doesn’t contain this attribute,
then your handler has extracted all of the parameters that the client application
considered required.

If the AEGetAttributePtr function returns noErr as the result code, then the
attribute does exist, meaning that your handler has not extracted all of the required
parameters. In this case, your handler should return an error and not process the
Apple event.

The first remaining required parameter is specified by the data of the
keyMissedKeywordAttr attribute. If you want this data returned, specify a buffer to
hold the data. Otherwise, specify NIL as the buffer and 0 as the size of the buffer. If you
specify a buffer to hold the data, you can check the value of the actualSize parameter
to see if the data is larger than the buffer you allocated.

For more information about specifying Apple event parameters as optional or required,
see “Specifying Optional Parameters for an Apple Event” beginning on page 5-7.
Handling Apple Events 4-35

C H A P T E R 4

Responding to Apple Events
Replying to an Apple Event 4
Your handler routine for a particular Apple event is responsible for performing the
action requested by the Apple event, and can optionally return data in a reply Apple
event. The Apple Event Manager passes a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add parameters to the reply Apple event. If the client application requested
a reply, the Apple Event Manager returns the reply Apple event to the client.

The reply Apple event is identified by the kCoreEventClass event class and by the
kAEAnswer event ID. If the client application specified the kAENoReply flag in the
reply parameter of the AESend function, the Apple Event Manager passes a null
descriptor record (a descriptor record of type typeNull whose data handle has the
value NIL) to your handler instead of a default reply Apple event. Your handler should
check the descriptor type of the reply Apple event before attempting to add any
attributes or parameters to it. An attempt to add an Apple event attribute or parameter
to a null descriptor record generates an error.

If the client application requests a reply, the Apple Event Manager prepares a reply
Apple event for the client by passing a default reply Apple event to your handler. The
default reply Apple event has no parameters when it is passed to your handler. Your
handler can add any parameters to the reply Apple event. If your application is a
spelling checker, for example, you can return a list of misspelled words in a parameter.

When your handler finishes processing an Apple event, it returns a result code to
AEProcessAppleEvent, which returns this result code as its function result. If your
handler returns a nonzero result code, and if you have not added your own
keyErrorNumber parameter, the Apple Event Manager also returns this result code
to the client application by putting the result code into a keyErrorNumber parameter
for the reply Apple event. The client can check for the existence of this parameter to
determine whether the handler performed the requested action.

The client application specifies whether it wants a reply Apple event or not by specifying
flags (represented by constants) in the sendMode parameter of the AESend function.

If the client specifies the kAEWaitReply flag in the sendMode parameter, the AESend
function does not return until the timeout specified by the timeoutInTicks parameter
expires or the server application returns a reply. When the server application returns a
reply, the reply parameter to AESend contains the reply Apple event that your handler
returned to the AEProcessAppleEvent function. When the client application no longer
needs the original Apple event and the reply event, it must dispose of them, but the
Apple Event Manager disposes of both the Apple event and the reply event for the
server application when the server’s handler returns to AEProcessAppleEvent.
4-36 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
If the client specified the kAEQueueReply flag, the client receives the reply event at a
later time during its normal processing of other events.

Your handler should always set its function result to noErr if it successfully
handles the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. If the error
occurs because your application cannot understand the event, return
errAEEventNotHandled. This allows the Apple Event Manager to look for a handler
in the system special handler or system Apple event dispatch tables that might be able
to handle the event. If the error occurs because the event is impossible to handle as
specified, return the result code returned by whatever function caused the failure, or
whatever other result code is appropriate.

For example, suppose your application receives a Get Data event requesting the name of
the current printer, and your application cannot handle such an event. In this situation,
you should return errAEEventNotHandled in case another handler available to the
Apple Event Manager can handle the Get Data event. This strategy allows users to take
advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResolve function and AEResolve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code errAEUnknownObjectType.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token. For more information, see
“Installing Entries in the Object Accessor Dispatch Tables,” which begins on page 6-21.

The Apple Event Manager automatically adds any nonzero result code that your handler
returns to a keyErrorNumber parameter in the reply Apple event. In addition to
returning a result code, your handler can also return an error string in the
keyErrorString parameter of the reply Apple event. Your handler should provide
meaningful text in the keyErrorString parameter, so that the client can display this
string to the user if desired.

Listing 4-12 shows how to add the keyErrorString parameter to the reply Apple
event. See “Adding Parameters to an Apple Event” on page 5-5 for a description of the
AEPutParamPtr function.
Handling Apple Events 4-37

C H A P T E R 4

Responding to Apple Events
Listing 4-12 Adding the keyErrorString parameter to the reply Apple event

FUNCTION MyHandler (theAppleEvent: AppleEvent; reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

errStr: Str255;

BEGIN

{handle your Apple event here}

{if an error occurs when handling an Apple event, set the }

{ function result and error string accordingly}

IF myErr <> noErr THEN

BEGIN

MyHandler := myErr; {result code to be returned--the }

{ Apple Event Manager adds this }

{ result code to the reply Apple }

{ event as the keyErrorNumber }

{ parameter}

IF (reply.dataHandle <> NIL) THEN

{add error string parameter to the default reply}

BEGIN

{strings should normally be stored in resources}

errStr := 'Why error occurred';

myErr := AEPutParamPtr(reply, keyErrorString,

typeIntlText, @errStr[1],

length(errStr));

END;

END

ELSE

MyHandler := noErr;

END;

If your handler needs to return data to the client, it can add parameters to the
reply Apple event. Listing 4-13 shows how a handler for the Multiply event
(an imaginary Apple event that asks the server to multiply two numbers) might
return the results of the multiplication to the client.
4-38 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Listing 4-13 Adding parameters to the reply Apple event

FUNCTION MyMultHandler (theAppleEvent: AppleEvent;

reply: AppleEvent;

handlerRefcon: LongInt): OSErr;

VAR

myErr: OSErr;

number1,number2: LongInt;

replyResult: LongInt;

actualSize: Size;

returnedType: DescType;

BEGIN

{get the numbers to multiply from the parameters of the }

{ Apple event; put the numbers in the number1 and number2 }

{ variables and then perform the requested multiplication}

myErr := MyDoMultiply(theAppleEvent, number1,

number2, replyResult);

IF myErr = noErr THEN

IF (reply.dataHandle <> NIL) THEN

{return result of the multiplication in the reply Apple }

{ event}

myErr := AEPutParamPtr(reply, keyDirectObject,

typeLongInteger, @replyResult,

SizeOf(replyResult));

MyMultHandler := myErr;

{if an error occurs, set the error string }

{ accordingly, as shown in Listing 4-12}

END;

Disposing of Apple Event Data Structures 4
Whenever a client application uses Apple Event Manager functions to create a descriptor
record, descriptor list, or Apple event record, the Apple Event Manager allocates
memory for these data structures in the client’s application heap. Likewise, when a
server application extracts a descriptor record from an Apple event by using Apple
Event Manager functions, the Apple Event Manager creates a copy of the descriptor
record, including the data to which its handle refers, in the server’s application heap.

Whenever you finish using a descriptor record or descriptor list that you have created or
extracted from an Apple event, you should dispose of the descriptor record—and
thereby deallocate the memory it uses—by calling the AEDisposeDesc function. If the
descriptor record you pass to AEDisposeDesc (such as an Apple event record or an
AE record) includes other nested descriptor records, one call to AEDisposeDesc will
dispose of them all.
Handling Apple Events 4-39

C H A P T E R 4

Responding to Apple Events
When a client application adds a descriptor record to an Apple event (for example, when
it creates a descriptor record by calling AECreateDesc and then puts a copy of it into a
parameter of an Apple event by calling AEPutParamDesc), it is still responsible for
disposing of the original descriptor record. After a client application has finished using
both the Apple event specified in the AESend function and the reply Apple event, it
should dispose of their descriptor records by calling AEDisposeDesc. The client
application should dispose of them even if AESend returns a nonzero result code.

The Apple event that a server application’s handler receives is a copy of the original
event created by the client application. When a server application’s handler returns to
AEProcessAppleEvent, the Apple Event Manager disposes of the server’s copy (in the
server’s application heap) of both the Apple event and the reply event. The server
application is responsible for disposing of any descriptor records created while
extracting data from the Apple event or adding data to the reply event.

In general, outputs from Apple Event Manager functions are your application’s
responsibility. Once you finish using them, you should use AEDisposeDesc to dispose
of any Apple event data structures created or returned by these functions:

If you attempt to dispose of descriptor records returned by successful calls to these
functions without using AEDisposeDesc, your application may not be compatible
with future versions of the Apple Event Manager. However, if any of these functions
return a nonzero result code, they return a null descriptor record, which does not need to
be disposed of.

Outputs from functions, such as AEGetKeyPtr, that use a buffer rather than a descriptor
record to return data do not require the use of AEDisposeDesc. It is therefore preferable
to use these functions for any data that is not identified by a handle.

Some of the functions described in the chapter “Resolving and Creating Object Specifier
Records” in this book also create descriptor records. If you set the disposeInputs
parameter to FALSE for any of the following functions, you should dispose of any
Apple event data structures that they create or return:

Your application is also responsible for disposing of some of the tokens it creates in the
process of resolving an object specifier record. For information about token disposal, see
“Defining Tokens” on page 6-39.

AECoerceDesc AEDuplicateDesc

AECoercePtr AEGetAttributeDesc

AECreateAppleEvent AEGetKeyDesc

AECreateDesc AEGetNthDesc

AECreateList AEGetParamDesc

CreateCompDescriptor CreateObjSpecifier

CreateLogicalDescriptor CreateRangeDescriptor
4-40 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Writing and Installing Coercion Handlers 4
When your application extracts data from a parameter, it can request that the Apple
Event Manager return the data using a descriptor type that is different from the original
descriptor type. For example, when extracting data from the direct parameter of the
Open Documents event, you can request that the alias records be returned as file system
specification records. The Apple Event Manager can automatically coerce many different
types of data from one to another. Table 4-1 on page 4-43 shows descriptor types and the
kinds of coercion that the Apple Event Manager can perform.

You can also provide your own routines, referred to as coercion handlers, to coerce data
into any other descriptor type. To install your own coercion handlers, use the
AEInstallCoercionHandler function. You specify as parameters to this function

■ the descriptor type of the data coerced by the handler

■ the descriptor type of the resulting data

■ the address of the coercion handler for this descriptor type

■ a reference constant

■ a Boolean value that indicates whether your coercion handler expects the data to be
specified as a descriptor record or as a pointer to the actual data

■ a Boolean value that indicates whether your coercion handler should be added to
your application’s coercion dispatch table or the system coercion dispatch table

The system coercion dispatch table is a table in the system heap that contains coercion
handlers available to all applications and processes running on the same computer. The
coercion handlers in your application’s coercion dispatch table are available only to your
application. When attempting to coerce data, the Apple Event Manager first looks for a
coercion handler in your application’s coercion dispatch table. If it cannot find a handler
for the descriptor type, it looks in the system coercion dispatch table for a handler. If it
doesn’t find a handler there, it attempts to use the default coercion handling described
by Table 4-1 on page 4-43. If it can’t find an appropriate default coercion handler, it
returns the errAECoercionFail result code.

Any handler that you add to the system coercion dispatch table should reside in the
system heap. If there was already an entry in the system coercion dispatch table for
the same descriptor type, it is replaced. Therefore, if there is an entry in the system
coercion dispatch table for the same descriptor type, you should chain it to your
system coercion handler as explained in “Creating and Managing the Coercion Handler
Dispatch Tables,” which begins on page 4-96.

▲ W A R N I N G

Before an application calls a system coercion handler, system software
has set up the A5 register for the calling application. For this reason, if
you provide a system coercion handler, it should never use A5 global
variables or anything that depends on a particular context; otherwise,
the application that calls the system coercion handler may crash. ▲
Handling Apple Events 4-41

C H A P T E R 4

Responding to Apple Events
You can provide a coercion handler that expects to receive the data in a descriptor record
or a buffer referred to by a pointer. When you install your coercion handler, you specify
how your handler wishes to receive the data. Whenever possible, you should write your
coercion handler so that it can accept a pointer to the data, because it’s more efficient for
the Apple Event Manager to provide your coercion handler with a pointer to the data.

A coercion handler that accepts a pointer to data must be a function with the following
syntax:

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

The typeCode parameter is the descriptor type of the original data. The dataPtr
parameter is a pointer to the data to coerce; the dataSize parameter is the length, in
bytes, of the data. The toType parameter is the desired descriptor type of the resulting
data. The handlerRefcon parameter is a reference constant stored in the coercion table
entry for the handler and passed to the handler by the Apple Event Manager whenever
the handler is called. The result parameter is the descriptor record returned by your
coercion handler.

Your coercion handler should coerce the data to the desired descriptor type and return
the data in the descriptor record specified by the result parameter. If your handler
successfully performs the coercion, it should return the noErr result code; otherwise,
it should return a nonzero result code.

A coercion handler that accepts a descriptor record must be a function with the
following syntax:

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

The parameter theAEDesc is the descriptor record that contains the data to be coerced.
The toType parameter is the descriptor type of the resulting data. The handlerRefcon
parameter is a reference constant stored in the coercion table entry for the handler and
passed to the handler by the Apple Event Manager whenever the handler is called. The
result parameter is the resulting descriptor record.

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the data in the descriptor record specified by the result
parameter. Your handler should return an appropriate result code.

Note
To ensure that no coercion is performed and that the descriptor type of
the result is of the same descriptor type as the original, specify
typeWildCard for the desired type. ◆
4-42 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Table 4-1 lists the descriptor types for which the Apple Event Manager provides
coercion.

Table 4-1 Coercion handling provided by the Apple Event Manager

Original descriptor
type of data to be
coerced Desired descriptor type Description

typeChar typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

Any string that is a valid
representation of a number can be
coerced into an equivalent
numeric value.

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeChar Any numeric descriptor type can
be coerced into the equivalent text
string.

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

typeInteger
typeLongInteger
typeSMInt
typeSMFloat
typeShortInteger
typeFloat
typeLongFloat
typeShortFloat
typeExtended
typeComp
typeMagnitude

Any numeric descriptor type can
be coerced into any other numeric
descriptor type.

typeChar typeType
typeEnumerated
typeKeyword
typeProperty

Any four-character string can be
coerced to one of these descriptor
types.

typeEnumerated
typeKeyword
typeProperty
typeType

typeChar Any of these descriptor types can
be coerced to the equivalent text
string.

continued
Handling Apple Events 4-43

C H A P T E R 4

Responding to Apple Events
NOTE Some of the descriptor types listed in this table are synonyms; for example, the constants
typeSMInt and typeShortInteger have the same four-character code, 'shor'.

typeIntlText typeChar The result contains text only,
without the script code or
language code from the original
descriptor record.

typeTrue typeBoolean The result is the Boolean value
TRUE.

typeFalse typeBoolean The result is the Boolean value
FALSE.

typeEnumerated typeBoolean The enumerated value 'true'
becomes the Boolean value TRUE.
The enumerated value 'fals'
becomes the Boolean value FALSE.

typeBoolean typeEnumerated The Boolean value FALSE
becomes the enumerated value
'fals'. The Boolean value TRUE
becomes the enumerated value
'true'.

typeShortInteger
typeSMInt

typeBoolean A value of 1 becomes the Boolean
value TRUE. A value of 0 becomes
the Boolean value FALSE.

typeBoolean typeShortInteger
typeSMInt

A value of FALSE becomes 0. A
value of TRUE becomes 1.

typeAlias typeFSS An alias record is coerced into a
file system specification record.

typeAppleEvent typeAppParameters An Apple event is coerced into a
list of application parameters for
the LaunchParamBlockRec
parameter block.

any descriptor type typeAEList A descriptor record is coerced into
a descriptor list containing a single
item.

typeAEList type of list item A descriptor list containing a
single descriptor record is coerced
into a descriptor record.

Table 4-1 Coercion handling provided by the Apple Event Manager (continued)

Original descriptor
type of data to be
coerced Desired descriptor type Description
4-44 Handling Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Interacting With the User 4

When your application receives an Apple event, it may need to interact with the user.
For example, it may need to display a dialog box asking the user for additional
information or confirmation. You must use the AEInteractWithUser function to make
sure your application is in the foreground before it actually interacts with the user.

Both the client application and the server application specify their preferences for user
interaction. The AEInteractWithUser function checks the user interaction preferences
set by each application. If both the client and the server allow user interaction,
AEInteractWithUser usually posts a notification request, and the Notification
Manager brings the server to the foreground after the user responds to the notification
request.

The AEInteractWithUser function can also bring the server application directly to the
foreground, but only if the client application is the active application on the same
computer and has set two flags in the sendMode parameter of the AESend function:
the kAEWaitReply flag, which indicates that it is waiting for a reply, and the
kAECanSwitchLayer flag, which indicates that it wants the server application to
come directly to the foreground rather than posting a notification request.

To specify its preferences for how the server application should interact with the user,
the client application sets various flags in the sendMode parameter to AESend. The
Apple Event Manager sets the corresponding flags in the keyInteractLevelAttr
attribute of the Apple event.

The server application sets its preferences with the AESetInteractionAllowed
function. This function lets your application specify whether it allows interaction with
the user as a result of receiving an Apple event from itself; from itself and other
processes on the local computer; or from itself, local processes, and processes from
another computer on the network.

Your application calls the AEInteractWithUser function before interacting with the
user. If AEInteractWithUser returns the noErr result code, then your application is
currently in the front and free to interact with the user. If AEInteractWithUser
returns the errAENoUserInteraction result code, the conditions didn’t allow user
interaction and your application should not interact with the user.

The rest of this section explains how to set user interactions for the client and server
applications and the practical effect these settings have when a server needs to interact
with a user.
Interacting With the User 4-45

C H A P T E R 4

Responding to Apple Events
Setting the Client Application’s User Interaction Preferences 4
The client application sets its user interaction preferences by setting flags in the
sendMode parameter to the AESend function. The Apple Event Manager automatically
adds the specified flags to the keyInteractLevelAttr attribute of the Apple event.
These flags are represented by the following constants:

For example, suppose a client application sends a Set Data event to a database
application to change a customer’s address. The database application is configured to
request user confirmation of changes to a customer’s record. In this case the client sets
the kAECanInteract flag before sending the event. Thus, the database application
attempts to interact with the user if interaction is allowed. If interaction is not allowed,
the database makes the correction anyway without consulting the user. However, if the
client application sends a Delete event to delete a customer’s record entirely and sets the
kAEAlwaysInteract flag, the database application deletes the specified record only if
it can interact with the user first and receives confirmation of the decision to delete a
record. If interaction with the user is not allowed, the database application returns an
error. By setting the kAEAlwaysInteract flag, the client application ensures that the
entire record won’t be lost if the user sends the Delete event by mistake.

If the client application doesn’t specify any of the three user interaction flags, the
Apple Event Manager sets either the kAENeverInteract or the kAECanInteract flag
in the keyInteractLevelAttr attribute of the Apple event, depending on the
location of the server application. If the server application is on a remote computer,

Flag Description

kAENeverInteract The server application should never interact
with the user in response to the Apple event. If
this flag is set, AEInteractWithUser returns the
errAENoUserInteraction result code. This flag is the
default when an Apple event is sent to a remote application.

kAECanInteract The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEInteractWithUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

kAEAlwaysInteract The server application can interact with the user in response
to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEInteractWithUser either brings the server
application to the foreground or posts a notification request.
4-46 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
the Apple Event Manager sets the kAENeverInteract flag as the default. If the
server application is on the local computer, the Apple Event Manager sets the
kAECanInteract flag as the default.

In addition to the three user interaction flags, the client application can set another flag
in the sendMode parameter to AESend to request that the Apple Event Manager
immediately bring the server application directly to the foreground instead of posting a
notification request:

Note that although the kAECanSwitchLayer flag must be set for the Apple Event
Manager to bring the server application directly to the foreground, setting it does not
guarantee that the Apple Event Manager will bypass the notification request if user
interaction is permitted. Another flag, the kAEWaitReply flag, must also be set in the
sendMode parameter, and the client application must provide an idle function.

The kAEWaitReply flag is one of three flags in the sendMode parameter that a client
application can set to specify whether and how the client should wait for a reply.
(For a description of these flags, see “Sending an Apple Event and Handling the Reply”
on page 3-30.) If the client application is not waiting for a reply, the user may have
continued with other work. An application switch at this point might be unexpected
and would thus violate the principle of user control as described in Macintosh Human
Interface Guidelines.

If the client application sets the kAEWaitReply flag, it should also provide an idle
function when it calls AESend so that it can handle events such as update events that it
receives while waiting for the reply. Idle functions are described in “Writing an Idle
Function,” which begins on page 5-22.

When a server application calls AEInteractWithUser, the function first checks
whether the kAENeverInteract flag in the keyInteractLevelAttr attribute of the
Apple event is set. (The Apple Event Manager sets this attribute according to the flags
specified in the sendMode parameter of AESend.) If the kAENeverInteract flag is set,
AEInteractWithUser immediately returns the errAENoUserInteraction result
code. If the client specified kAECanInteract or kAEAlwaysInteract,
AEInteractWithUser checks the server’s preferences for user interaction.

Flag Description

kAECanSwitchLayer If both the client and server allow interaction, and if the client
application is the active application on the local computer
and is waiting for a reply (that is, it has set the
kAEWaitReply flag), AEInteractWithUser brings the
server directly to the foreground. Otherwise,
AEInteractWithUser uses the Notification Manager to
request that the user bring the server application to the
foreground.
Interacting With the User 4-47

C H A P T E R 4

Responding to Apple Events
Setting the Server Application’s User Interaction Preferences 4
The server sets its user interaction preferences by using the
AESetInteractionAllowed function. This function specifies the conditions
under which your application is willing to interact with the user.

myErr := AESetInteractionAllowed(level);

The level parameter is of type AEInteractAllowed.

TYPE AEInteractAllowed = (kAEInteractWithSelf,

kAEInteractWithLocal,

kAEInteractWithAll);

You can specify one of these values for the interaction level:

If the server application does not set the user interaction level, AEInteractWithUser
uses kAEInteractWithLocal as the value.

If the application sends itself an Apple event (that is, if the application is both the client
and the server) without setting the kAENeverInteract flag, AEInteractWithUser
always allows user interaction. If the client application is a process on the local computer
and specifies kAECanInteract or kAEAlwaysInteract, and if the server has set the
interaction level to kAEInteractWithLocal or kAEInteractWithAll, then
AEInteractWithUser allows user interaction. If the client is a process on a remote
computer on the network and specifies kAECanInteract or kAEAlwaysInteract,
AEInteractWithUser allows user interaction only if the server specified
the kAEInteractWithAll flag for the interaction level. In all other cases,
AEInteractWithUser does not allow user interaction.

Flag Description

kAEInteractWithSelf Your server application can interact with the user in
response to an Apple event only when your application is
also the client application—that is, only when your
application is sending the Apple event to itself.

kAEInteractWithLocal Your server application can interact with the user in
response to an Apple event only if the client application
is on the same computer as your application. This is the
default if the server application does not call the function
AESetInteractionAllowed.

kAEInteractWithAll Your server application can interact with the user in
response to an Apple event sent by any client application
on any computer.
4-48 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Requesting User Interaction 4
If your server application needs to interact with the user for any reason, it must call the
AEInteractWithUser function to make sure it is in the foreground before it actually
interacts with the user. When AEInteractWithUser allows user interaction (based on
the client’s and server’s preferences), AEInteractWithUser brings the server
application to the foreground—either directly or after the user responds to a notification
request—and then returns a noErr result code. If AEInteractWithUser brings the
server to the foreground directly, the client returns to the foreground immediately after
the server has finished interacting with the user. If AEInteractWithUser brings the
server to the foreground after the user responds to a notification request, the server
remains in the foreground after completing the user interaction.

The AEInteractWithUser function specifies how long your handler is willing to wait
for a response from the user. For example, if the timeout value is 900 ticks (15 seconds)
and the Apple Event Manager posts a notification request, the Notification Manager
begins to display a blinking icon in the upper-right corner of the screen, then removes
the notification request (and the blinking icon) if the user does not respond within
15 seconds. (The discussion that follows describes some restrictions on the icons that can
be displayed in this situation.)

Note that the timeout value passed to the AEInteractWithUser function is separate
from the timeout value passed to the AESend function, which specifies how long the
client application is willing to wait for the reply or return receipt from the server
application. If AEInteractWithUser does not receive a response from the user within
the specified time, AEInteractWithUser returns errAETimeout.

You may want to give the user a method of setting the interaction level. For example,
some users may not want to be interrupted while background processing of an Apple
event occurs, or they may not want to respond to dialog boxes when your application is
handling Apple events sent from another computer.
Interacting With the User 4-49

C H A P T E R 4

Responding to Apple Events
Listing 4-14 illustrates the use of the AEInteractWithUser function. You call this
function before your application displays a dialog box or otherwise interacts with the
user when processing an Apple event. You specify a timeout value, a pointer to a
Notification Manager record, and the address of an idle function as parameters to
AEInteractWithUser.

Listing 4-14 Using the AEInteractWithUser function

myErr := AEInteractWithUser(kAEDefaultTimeout, gMyNotifyRecPtr,

 @MyIdleFunction);

IF myErr <> noErr THEN

{the attempt to interact failed; do any error handling}

DoError(myErr)

ELSE

{interact with the user by displaying a dialog box }

{ or by interacting in any other way that is necessary}

DisplayMyDialogBox;

You can set a timeout value, in ticks, in the first parameter to AEInteractWithUser.
Use the kAEDefaultTimeout constant if you want the Apple Event Manager to use a
default value for the timeout value. The Apple Event Manager uses a timeout value of
about one minute if you specify this constant. You can also specify the kNoTimeOut
constant if your application is willing to wait an indefinite amount of time for a response
from the user. Usually you should provide a timeout value, so that your application can
complete processing of the Apple event in a reasonable amount of time.

If you specify NIL instead of a Notification Manager record in the second parameter of
AEInteractWithUser, the Apple Event Manager looks for an application icon with the
ID specified by the application’s bundle ('BNDL') resource and the application’s file
reference ('FREF') resource. The Apple Event Manager first looks for an 'SICN'
resource with the specified ID; if it can’t find an 'SICN' resource, it looks for the
'ICN#' resource and compresses the icon to fit in the menu bar. The Apple Event
Manager won’t look for any members of an icon family other than the icon specified in
the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes NIL to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type 'SICN' or 'ICN#', you must specify a
notification record as the second parameter to the AEInteractWithUser function.

Note
If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifies a 'cicn' resource. ◆
4-50 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
The AEInteractWithUser function posts a notification request only when user
interaction is allowed and the kAECanSwitchLayer flag in the
keyInteractLevelAttr attribute is not set.

The last parameter to AEInteractWithUser specifies an idle function provided by
your application. Your idle function should handle any update events, null events,
operating-system events, or activate events while your application is waiting to be
brought to the front. See “Writing an Idle Function” on page 5-22 for more information.

Figure 4-1 illustrates a situation in which a client application (a forms application) might
request a service from a server application (a database application). To perform this
service, the server application must interact with the user.

Figure 4-1 A document with a button that triggers a Get Data event

Figure 4-1 shows part of an electronic form used to enter information about an order
received by telephone. If the customer has ordered from the company before, the user
can quickly retrieve the customer’s address and telephone number by clicking the
Retrieve Customer Info button. In response, the forms application sends a Get Data
event to a database application (SurfDB) currently open on the same computer. The
Get Data event sent by the forms application (the client application for the ensuing
transaction) asks SurfDB (the server) to locate the customer’s name in a table of
addresses and return the customer’s address. When the forms application receives the
reply Apple event, it can add the address data to the appropriate fields in the order form.

Order Form
Acme Dot Company
14 Ocean View Drive
Santa Cruz, CA

Order Date:
Order Number:

1/16/92
917563

Type the name of the customer:

If the customer has ordered before, click this button
to retrieve the customer info from the Addresses database:

If this is the customer’s first order, fill in the customer info.

Street Address:

City:

State:

Zip Code:

Telephone:

John Chapman

Retrieve Customer Info
Interacting With the User 4-51

C H A P T E R 4

Responding to Apple Events
If SurfDB, as the server application, locates more than one entry for the specified
customer name, it needs to interact with the user to determine which data to return in
the reply Apple event. To interact with the user, the server application must be in the
foreground, so that it can display a dialog box like the one shown in Figure 4-2.

Figure 4-2 A server application displaying a dialog box that requests information from the user

Figure 4-3, Figure 4-4, and Figure 4-5 illustrate two methods of dealing with this
situation. Figure 4-3 shows the behavior of the server application that is common to both
methods. In both cases, the server uses AESetInteractionAllowed to set its own
interaction level to kAEInteractWithLocal. After calling AEResolve to locate the
requested data, the server application discovers that two addresses match the name the
user typed into the electronic form. The server then calls AEInteractWithUser with a
timeout value of kAEDefaultTimeout so it can find out which address the user wants.

Order Form
Acme Dot Company
14 Ocean View Drive
Santa Cruz, CA

Order Date:
Order Number:

1/16/92
917563

Type the name of the customer:

If the customer has ordered before, click this button
to retrieve the customer info from the Addresses database:

If this is the customer’s first order, fill in the customer info.

Street Address:

City:

State:

Zip Code:

Telephone:

John Chapman

Retrieve Customer Info
4-52 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Figure 4-3 Handling user interaction

SurfDB

Server
application

Apple event

John Chapman
1774 Broadway
Los Angeles, CA

John Chapman
1809 Mason St.
Seattle, WA

MyHandleGetData

AEInteractWithUser(kAEDefaultTimeout,
 gMyNotifyRec,
																			@MyIdle)

DisplayMyDialogBox

Call AEResolve to locate requested data

If there is more than one address for the
specified customer name, interact with user:

•

If user makes choice, continue processing event
Add address user selected or an error, such as
“duplicate name,” to reply Apple event

•
•

•

MyInitialize

Sets interaction level:•
AESetInteractAllowed(kAEInteractWithLocal)

AEInteractWithUser

Apple Event Manager

Determines that user interaction
is allowed
Brings SurfDB directly to the
foreground or posts a notification
request, depending on sendMode
flags
Returns noErr after SurfDB is in the
foreground

•

•

•

See Figures 4-4 and 4-5 for
examples of flags set in the
sendMode parameter of the
AESend function.

Object specifier record specifying
the address for “John Chapman”
in the table “MyAddresses”

Get Data
Interacting With the User 4-53

C H A P T E R 4

Responding to Apple Events
Figure 4-4 shows the circumstances in which the server application’s call to
AEInteractWithUser shown in Figure 4-3 will cause the Apple Event Manager to
bring the server application directly to the foreground. The client application sets the
kAECanInteract, kAECanSwitchLayer, and kAEWaitReply flags in the sendMode
parameter of the AESend function when it sends the Get Data event shown in the figure.
These flags indicate that the client application expects the user to wait until the address
appears in the appropriate fields of the electronic form before continuing with any other
work. In this case, an automatic layer switch will not surprise the user and will avoid
the additional user action required to respond to a notification request, so
AEInteractWithUser brings the server application directly to the foreground
and returns a noErr result code. The server application then displays the dialog box
requesting that the user select the desired customer.

After the user selects the desired customer and clicks OK, the server application’s
Get Data event handler returns. The Apple Event Manager immediately brings the client
application to the foreground, and the client application displays the requested customer
information in the appropriate fields.

Figure 4-4 Handling user interaction with the kAEWaitReply flag set

SurfDB

Apple event

Get Data

sendMode flags:

kAECanInteract
kAECanSwitchLayer
KAEWaitReply

AEInteractWithUser

•

•
•

Determines that user interaction
is allowed
Brings SurfDB directly to foreground
Returns noErr

Apple Event Manager brings client to the
foreground as soon as the Apple event handler
returns.
4-54 Interacting With the User

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Figure 4-5 shows the circumstances in which the server application’s call to
AEInteractWithUser in Figure 4-3 will cause the Apple Event Manager to post a
notification request rather than bringing the server application directly to the foreground.

Figure 4-5 Handling user interaction with the kAEQueueReply flag set

SurfDB

Apple event

Get Data

sendMode flags:

kAECanInteract
KAEQueueReply

AEInteractWithUser

•

•
•

Determines that user interaction
is allowed
Posts notification request
Returns noErr after user brings
SurfDB to the front

Server remains in the foreground after the
Apple event handler returns.
Interacting With the User 4-55

C H A P T E R 4

Responding to Apple Events
The only difference between the Get Data event shown in Figure 4-4 and the Get Data
event shown in Figure 4-5 is that the client application has set the kAEQueueReply flag
instead of the kAEWaitReply flag in the sendMode parameter of AESend and has not
set the kAECanSwitchLayer flag. This combination of flags indicates that the client
application expects the user to continue filling in other parts of the form, such as the
items being ordered; the address will just appear after a while, provided there is no
duplicate name. In this case, an automatic layer switch would disrupt the user’s work.
Instead of bringing the server application directly to the foreground,
AEInteractWithUser uses the Notification Manager to post a notification request.

After the user has responded to the request and has brought the server application to the
foreground, AEInteractWithUser returns a noErr result code, and the server
application displays the dialog box requesting that the user select the desired customer.
When the user selects a customer and clicks OK, the server application’s Get Data event
handler returns. Because the user brought the server to the foreground manually, the
server remains in the foreground after the handler returns.

Reference to Responding to Apple Events 4

This section describes the basic Apple Event Manager data structures and routines that
your application can use to respond to Apple events. It also describes the syntax for
application-defined Apple event handlers and coercion handlers that your application
can provide for use by the Apple Event Manager.

For information about routines used to create and send Apple events, see the chapter
“Creating and Sending Apple Events” in this book. For information about routines and
data structures used with object specifier records, see the chapter “Resolving and
Creating Object Specifier Records” in this book.

Data Structures Used by the Apple Event Manager 4
This section summarizes the major data structures used by the Apple Event Manager.
For an overview of the relationships among these data structures, see “Data Structures
Within Apple Events,” which begins on page 3-12.

Descriptor Records and Related Data Structures 4

Descriptor records are the fundamental data structures from which Apple events are
constructed. A descriptor record is a data structure of type AEDesc.
4-56 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
TYPE AEDesc =

RECORD {descriptor record}

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

Field descriptions

descriptorType
A four-character string of type DescType that indicates the type of
data being passed.

dataHandle A handle to the data being passed.

The descriptor type is a structure of type DescType, which in turn is of data type
ResType—that is, a four-character code. Constants, rather than these four-character
codes, are usually used to refer to descriptor types. Table 4-2 lists the constants for the
basic descriptor types used by the Apple Event Manager.

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records)

Descriptor type Value Description

typeBoolean 'bool' Boolean value

typeChar 'TEXT' Unterminated string

typeLongInteger 'long' 32-bit integer

typeInteger 'long' 32-bit integer

typeShortInteger 'shor' 16-bit integer

typeSMInt 'shor' 16-bit integer

typeLongFloat 'doub' SANE double

typeFloat 'doub' SANE double

typeShortFloat 'sing' SANE single

typeSMFloat 'sing' SANE single

typeExtended 'exte' SANE extended

typeComp 'comp' SANE comp

typeMagnitude 'magn' Unsigned 32-bit integer

typeAEList 'list' List of descriptor records

typeAERecord 'reco' List of keyword-specified descriptor
records

typeAppleEvent 'aevt' Apple event record

typeTrue 'true' TRUE Boolean value

continued
Reference to Responding to Apple Events 4-57

C H A P T E R 4

Responding to Apple Events
For information about descriptor records and descriptor types used with object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

Apple event attributes, Apple event parameters, object specifier records, tokens, and
most of the other data structures used by the Apple Event Manager are constructed from
one or more descriptor records. The Apple Event Manager identifies the various parts of
an Apple event by means of keywords associated with the corresponding descriptor
records. The AEKeyword data type is defined as a four-character code.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

Constants are typically used for keywords. A keyword combined with a descriptor
record forms a keyword-specified descriptor record, which is defined by a data structure
of type AEKeyDesc.

TYPE AEKeyDesc =

RECORD

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

typeFalse 'fals' FALSE Boolean value

typeAlias 'alis' Alias record

typeEnumerated 'enum' Enumerated data

typeType 'type' Four-character code for event class or
event ID

typeAppParameters 'appa' Process Manager launch parameters

typeProperty 'prop' Apple event property

typeFSS 'fss ' File system specification

typeKeyword 'keyw' Apple event keyword

typeSectionH 'sect' Handle to a section record

typeWildCard '****' Matches any type

typeApplSignature 'sign' Application signature

typeSessionID 'ssid' Session reference number

typeTargetID 'targ' Target ID record

typeProcessSerialNumber 'psn ' Process serial number

typeNull 'null' Nonexistent data (data handle is NIL)

Table 4-2 Descriptor types used by the Apple Event Manager (excluding those used with
object specifier records) (continued)

Descriptor type Value Description
4-58 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Field descriptions

descKey A four-character code of type AEKeyword that identifies the data in
the descContent field.

descContent A descriptor record of type AEDesc.

Every Apple event includes an attribute that contains the address of the target
application. A descriptor record that contains an application’s address is called an
address descriptor record.

TYPE AEAddressDesc = AEDesc; {address descriptor record}

Many Apple Event Manager functions take or return lists of descriptor records in a
special descriptor record called a descriptor list. A descriptor list is a structure of data
type AEDescList whose data consists of a list of other descriptor records.

TYPE AEDescList = AEDesc; {list of descriptor records}

Other Apple Event Manager functions take or return lists of keyword-specified
descriptor records in the form of an AE record. An AE record is a structure of data type
AERecord whose data handle refers to a list of keyword-specified descriptor records.

TYPE AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

The handle for a descriptor list of data type AERecord refers to a list of
keyword-specified descriptor records that specify Apple event parameters; they cannot
specify Apple event attributes.

Finally, a full-fledged Apple event, including both attributes and parameters, is an
Apple event record, which is a structure of data type AppleEvent.

TYPE AppleEvent = AERecord; {list of attributes and }

{ parameters for an Apple }

{ event}

The event class and event ID of an Apple event are specified in Apple Event Manager
routines by structures of data types AEEventClass and AEEventID, respectively.

TYPE AEEventClass = PACKED ARRAY[1..4] OF Char;

TYPE AEEventID = PACKED ARRAY[1..4] OF Char;

For more information about descriptor records and the other data structures described in
this section, see “Data Structures Within Apple Events,” which begins on page 3-12.

With the exception of array data records, which are described in the next section, the
other Apple Event Manager data structures used in responding to Apple events are
described in “Routines for Responding to Apple Events,” beginning on page 4-61, under
the descriptions of the routines that use them.
Reference to Responding to Apple Events 4-59

C H A P T E R 4

Responding to Apple Events
Apple Event Array Data Types 4

The AEGetArray function (see page 4-77) creates a Pascal or C array that corresponds to
an Apple event array in a descriptor list, and the AEPutArray function (see page 5-32)
adds data specified in a buffer to a descriptor list as an Apple event array.

You can use the data type AEArrayType to define the type of Apple event array you
want to add to or obtain from a descriptor list.

TYPE AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

When your application adds an Apple event array to a descriptor list, it provides the
data for an Apple event array in an array data record, which is defined by the data type
AEArrayData.

TYPE AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: PACKED ARRAY[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: ARRAY[0..0] OF Handle);

kAEDescArray:

(AEDescArray: ARRAY[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: ARRAY[0..0] OF AEKeyDesc);

END;

The type of array depends on the data for the array:

Array type Description of Apple event array

kAEDataArray Array items consist of data of the same size and same type, and
are aligned on word boundaries.

kAEPackedArray Array items consist of data of the same size and same type, and
are packed without regard for word boundaries.

kAEHandleArray Array items consist of handles to data of variable size and the
same type.

kAEDescArray Array items consist of descriptor records of different descriptor
types with data of variable size.

kAEKeyDescArray Array items consist of keyword-specified descriptor records
with different keywords, different descriptor types, and data of
variable size.
4-60 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray must be factored—that is, contained in a factored descriptor list.
Before adding array items to a factored descriptor list, you should provide both a pointer
to the data that is common to all array items and the size of that common data when you
first call AECreateList to create a factored descriptor list. When you call AEPutArray
to add the array data to such a descriptor list, the Apple Event Manager automatically
isolates the common data you specified in the call to AECreateList.

When you call AEGetArray or AEPutArray, you specify a pointer of data type
AEArrayDataPointer that points to a buffer containing the data for the array.

TYPE AEArrayDataPointer = ^AEArrayData;

For more information about using AECreateList to create factored descriptor lists for
arrays, see page 5-29. For information about using AEGetArray and AEPutArray, see
page 4-77 and page 5-32, respectively.

Routines for Responding to Apple Events 4
This section describes the Apple Event Manager routines you can use to create and
manage the Apple event dispatch tables, dispatch Apple events, extract information
from Apple events, request user interaction, request more time to respond to Apple
events, suspend and resume Apple event handling, delete descriptor records, deallocate
memory for descriptor records, create and manage the coercion handler and special
handler dispatch tables, and get information about the Apple Event Manager.

Because the Apple Event Manager uses the services of the Event Manager, which in turn
uses the services of the PPC Toolbox, the routines described in this section may return
Event Manager and PPC Toolbox result codes in addition to the Apple Event Manager
result codes listed.

Creating and Managing the Apple Event Dispatch Tables 4

An Apple event dispatch table contains entries that specify the event class and event ID
that refer to one or more Apple events, the address of the handler routine that
handles those Apple events, and a reference constant. You can use the
AEInstallEventHandler function to add entries to the Apple event dispatch table.
This function sets up the initial mapping between the handlers in your application and
the Apple events that they handle.

To get the address of a handler currently in the Apple event dispatch table, use the
AEGetEventHandler function. If you need to remove any of your Apple event
handlers after the mapping between handlers and Apple events is established, you can
use the AERemoveEventHandler function.
Reference to Responding to Apple Events 4-61

C H A P T E R 4

Responding to Apple Events
AEInstallEventHandler 4

You can use the AEInstallEventHandler function to add an entry to either your
application’s Apple event dispatch table or the system Apple event dispatch table.

FUNCTION AEInstallEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 handler: EventHandlerProcPtr;

 handlerRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The event class for the Apple event or events to be dispatched for this
entry. The AEEventClass data type is defined as a four-character code:

TYPE AEEventClass = PACKED ARRAY[1..4] OF Char;

theAEEventID
The event ID for the Apple event or events to be dispatched for this entry.
The AEEventID data type is defined as a four-character code:

TYPE AEEventID = PACKED ARRAY[1..4] OF Char;

handler A pointer to an Apple event handler for this dispatch table entry. Note
that a handler in the system dispatch table must reside in the system
heap; this means that if the value of the isSysHandler parameter is
TRUE, the handler parameter should point to a location in the system
heap. Otherwise, if you put your system handler code in your application
heap, you must use AERemoveEventHandler to remove the handler
before your application terminates.

handlerRefcon
A reference constant that is passed by the Apple Event Manager to the
handler each time the handler is called. If your handler doesn’t use a
reference constant, use 0 as the value of this parameter.

isSysHandler
Specifies the dispatch table to which you want to add the handler. If the
value of isSysHandler is TRUE, the Apple Event Manager adds the
handler to the system Apple event dispatch table. Entries in the system
dispatch table are available to all applications. If the value of
isSysHandler is FALSE, the Apple Event Manager adds the handler to
your application’s Apple event dispatch table. The application’s dispatch
table is searched first; the system dispatch table is searched only if the
necessary handler is not found in your application’s dispatch table.
4-62 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AEInstallEventHandler function creates an entry in the Apple event dispatch
table. You must supply parameters that specify the event class, the event ID, the address
of the handler that handles Apple events of the specified event class and event ID, and
whether the handler is to be added to the system Apple event dispatch table or your
application’s Apple event dispatch table. You can also specify a reference constant that
the Apple Event Manager passes to your handler whenever your handler processes an
Apple event.

The parameters theAEEventClass and theAEEventID specify the event class and
event ID of the Apple events to be handled by the handler for this dispatch table entry.
For these parameters, you must provide one of the following combinations:

■ the event class and event ID of a single Apple event to be dispatched to the handler

■ the typeWildCard constant for theAEEventClass and an event ID for
theAEEventID, which indicate that Apple events from all event classes whose event
IDs match theAEEventID should be dispatched to the handler

■ an event class for theAEEventClass and the typeWildCard constant for
theAEEventID, which indicate that all events from the specified event class should
be dispatched to the handler

■ the typeWildCard constant for both the theAEEventClass and theAEEventID
parameters, which indicates that all Apple events should be dispatched to the handler

IMPORTANT

If you use the typeWildCard constant for either the
theAEEventClass or the theAEEventID parameter (or for both
parameters), the corresponding handler must return the error
errAEEventNotHandled if it does not handle a particular event. ▲

If there was already an entry in the specified dispatch table for the same event class and
event ID, it is replaced. Therefore, before installing a handler for a particular Apple event
in the system dispatch table, use the AEGetEventHandler function (described next) to
determine whether the table already contains a handler for that event. If an entry exists,
AEGetEventHandler returns a reference constant and a pointer to that event handler.
Chain the existing handler to your handler by providing pointers to the previous
handler and its reference constant in the handlerRefcon parameter of
AEInstallEventHandler. When your handler is done, use these pointers to call the
previous handler. If you remove your system Apple event handler, be sure to reinstall
the chained handler.
Reference to Responding to Apple Events 4-63

C H A P T E R 4

Responding to Apple Events
SPECIAL CONSIDERATIONS

Before an application calls a system Apple event handler, system software has set up the
A5 register for the calling application. For this reason, if you provide a system Apple
event handler, it should never use A5 global variables or anything that depends on a
particular context; otherwise, the application that calls the system handler may crash.

RESULT CODES

SEE ALSO

For more information about installing Apple event handlers, see “Installing Entries in
the Apple Event Dispatch Tables,” which begins on page 4-7.

AEGetEventHandler 4

You can use the AEGetEventHandler function to get an entry from an Apple event
dispatch table.

FUNCTION AEGetEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 VAR handler: EventHandlerProcPtr;

 VAR handlerRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The value of the event class field of the dispatch table entry for the
desired handler.

theAEEventID
The value of the event ID field of the dispatch table entry for the desired
handler.

handler The AEGetEventHandler function returns, in this parameter, a pointer
to the specified handler.

handlerRefcon
The AEGetEventHandler function returns, in this parameter, the
reference constant from the dispatch table entry for the specified handler.

noErr 0 No error
paramErr –50 Parameter error (handler pointer is NIL or odd)
memFullErr –108 Not enough room in heap zone
4-64 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
isSysHandler
Specifies the Apple event dispatch table from which to get the handler. If
the value of isSysHandler is TRUE, the AEGetEventHandler function
returns the handler from the system dispatch table. If the value is FALSE,
AEGetEventHandler returns the handler from your application’s
dispatch table.

DESCRIPTION

The AEGetEventHandler function returns, in the handler parameter, a pointer to the
handler for the Apple event dispatch table entry you specify in the parameters
theAEEventClass and theAEEventID. You can use the typeWildCard constant for
either or both of these parameters; however, AEGetEventHandler returns an error
unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and
the theAEEventID parameter, the Apple Event Manager will not return the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type typeWildCard for both the event class and the
event ID.

RESULT CODES

SEE ALSO

For an explanation of wildcard values, see the description of the
AEInstallEventHandler function on page 4-62.

AERemoveEventHandler 4

You can use the AERemoveEventHandler function to remove an entry from an Apple
event dispatch table.

FUNCTION AERemoveEventHandler (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 handler: EventHandlerProcPtr;

 isSysHandler: Boolean): OSErr;

theAEEventClass
The event class for the handler whose entry you want to remove from the
dispatch table.

noErr 0 No error
errAEHandlerNotFound –1717 No handler found for an Apple event
Reference to Responding to Apple Events 4-65

C H A P T E R 4

Responding to Apple Events
theAEEventID
The event ID for the handler whose entry you want to remove from the
Apple event dispatch table.

handler A pointer to the handler to be removed. Although the parameters
theAEEventClass and theAEEventID would be sufficient to identify
the handler to be removed, providing the handler parameter is a
recommended safeguard that ensures that you remove the correct
handler. If the value of this parameter is NIL, the Apple Event Manager
relies solely on the event class and event ID to identify the handler to be
removed.

isSysHandler
Specifies the dispatch table from which to remove the handler. If the value
of isSysHandler is TRUE, AERemoveEventHandler removes the
handler from the system dispatch table. If the value is FALSE,
AERemoveEventHandler removes the handler from your application’s
dispatch table.

DESCRIPTION

The AERemoveEventHandler function removes the Apple event dispatch table entry
you specify in the parameters theAEEventClass, theAEEventID, and handler. You
can use the typeWildCard constant for the theAEEventClass or the theAEEventID
parameter, or for both parameters; however, AERemoveEventHandler returns an error
unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and
the theAEEventID parameter, the Apple Event Manager will not remove the first
handler for any event class and event ID in the dispatch table; instead, the dispatch table
must contain an entry that specifies type typeWildCard for both the event class and the
event ID.

RESULT CODES

SEE ALSO

For an explanation of wildcard values, see the description of the
AEInstallEventHandler function on page 4-62.

Dispatching Apple Events 4

After receiving a high-level event (and optionally determining whether it is a type of
high-level event other than an Apple event that your application might support), your
application typically calls the AEProcessAppleEvent function to determine the type
of Apple event received and call the corresponding handler.

noErr 0 No error
errAEHandlerNotFound –1717 No handler found for an Apple event
4-66 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEProcessAppleEvent 4

You can use the AEProcessAppleEvent function to call the appropriate handler for a
specified Apple event.

FUNCTION AEProcessAppleEvent

(theEventRecord: EventRecord): OSErr;

theEventRecord
The event record for the Apple event.

DESCRIPTION

The AEProcessAppleEvent function looks first in the application’s special handler
dispatch table for an entry that was installed with the constant keyPreDispatch. If the
application’s special handler dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the function looks in the application’s Apple
event dispatch table for an entry that matches the event class and event ID of the
specified Apple event.

If the application’s Apple event dispatch table does not include such a handler or if the
handler returns errAEEventNotHandled, the AEProcessAppleEvent function looks
in the system special handler dispatch table for an entry that was installed with the
constant keyPreDispatch. If the system special handler dispatch table does not
include such a handler or if the handler returns errAEEventNotHandled, the function
looks in the system Apple event dispatch table for an entry that matches the event class
and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple
Event Manager returns the result code errAEEventNotHandled to the server
application and, if the client application is waiting for a reply, to the client application.

If AEProcessAppleEvent finds an entry in one of the dispatch tables that matches the
event class and event ID of the specified Apple event, it calls the corresponding handler.

SPECIAL CONSIDERATIONS

If an Apple event dispatch table contains one entry for an event class and a specific event
ID, and also contains another entry that is identical except that it specifies a wildcard
value for either the event class or the event ID, the Apple Event Manager dispatches the
more specific entry. For example, if an Apple event dispatch table includes one entry that
specifies the event class as kAECoreSuite and the event ID as kAEDelete, and another
entry that specifies the event class as kAECoreSuite and the event ID as
typeWildCard, the Apple Event Manager dispatches the Apple event handler
associated with the entry that specifies the event ID as kAEDelete.
Reference to Responding to Apple Events 4-67

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For an example of the use of AEProcessAppleEvent, see Listing 4-2 on page 4-6.

For a description of an Apple event handler, see page 4-105.

For more information about event processing, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes 4

The Apple Event Manager provides four functions that allow you to get data from Apple
event parameters and attributes. The AEGetParamPtr and AEGetParamDesc functions
get data from a specified Apple event parameter. The AEGetAttributePtr and
AEGetAttributeDesc functions get data from a specified Apple event attribute.

AEGetParamPtr 4

You can use the AEGetParamPtr function to get a pointer to a buffer that contains the
data from a specified Apple event parameter.

FUNCTION AEGetParamPtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

desiredType: DescType;

VAR typeCode: DescType; dataPtr: Ptr;

maximumSize: Size;

VAR actualSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired parameter.

theAEKeyword
The keyword that specifies the desired parameter.

desiredType
The desired descriptor type for the data to be returned; if the requested
Apple event parameter is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType

noErr 0 No error
memFullErr –108 Not enough room in heap zone
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
errAECorruptData –1702 Data in an Apple event could not be read
errAENewerVersion –1706 Need a newer version of the Apple Event

Manager
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event

handler
4-68 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
is typeWildCard, no coercion is performed, and the descriptor type of
the returned data is the same as the descriptor type of the Apple event
parameter.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer in which the returned data is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified Apple event parameter.
If this value is larger than the value of the maximumSize parameter, not
all of the data for the parameter was returned.

DESCRIPTION

The AEGetParamPtr function uses a buffer to return the data from a specified Apple
event parameter, which it attempts to coerce to the descriptor type specified by the
desiredType parameter.

RESULT CODES

SEE ALSO

For examples of the use of AEGetParamPtr, see “Getting Data Out of an Apple Event,”
which begins on page 4-25.

AEGetParamDesc 4

You can use the AEGetParamDesc function to get the descriptor record for a specified
Apple event parameter.

FUNCTION AEGetParamDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-69

C H A P T E R 4

Responding to Apple Events
theAppleEvent
The Apple event containing the desired parameter.

theAEKeyword
The keyword that specifies the desired parameter.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event parameter is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
parameter.

result The descriptor record from the desired Apple event parameter coerced to
the descriptor type specified in desiredType.

DESCRIPTION

The AEGetParamDesc function returns, in the result parameter, the descriptor record
for a specified Apple event parameter, which it attempts to coerce to the descriptor type
specified by the desiredType parameter. Your application should call the
AEDisposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGetParamDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For an example of the use of AEGetParamDesc, see “Getting Data Out of an Apple
Event Parameter,” which begins on page 4-26.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-70 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetAttributePtr 4

You can use the AEGetAttributePtr function to get a pointer to a buffer that contains
the data from a specified Apple event attribute.

FUNCTION AEGetAttributePtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR typeCode: DescType; dataPtr: Ptr;

 maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

theAEKeyword
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows.

desiredType
The desired descriptor type for the data to be returned; if the requested
Apple event attribute is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer in which the returned data is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified Apple event attribute. If
this value is larger than the value of the maximumSize parameter, not all
of the data for the attribute was returned.

DESCRIPTION

The AEGetAttributePtr function uses a buffer to return the data from an Apple event
attribute with the specified keyword, which it attempts to coerce to the descriptor type
specified by the desiredType parameter. You can specify the parameter
theAEKeyWord using any of these constants:
Reference to Responding to Apple Events 4-71

C H A P T E R 4

Responding to Apple Events
CONST

keyAddressAttr = 'addr'; {address of target or }

 { client application}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyEventSourceAttr = 'esrc'; {nature of source }

 { application}

keyInteractLevelAttr = 'inte'; {settings to allow the }

 { Apple Event Manager to }

 { bring server application }

 { to the foreground}

keyMissedKeywordAttr = 'miss'; {first required parameter }

 { remaining in Apple event}

keyOptionalKeywordAttr = 'optk'; {list of optional }

 { parameters for Apple }

 { event}

keyOriginalAddressAttr = 'from'; {address of original source }

 { of Apple event; available }

 { beginning with version }

 { 1.01 of Apple Event }

 { Manager}

keyReturnIDAttr = 'rtid'; {return ID for reply Apple }

 { event}

keyTimeoutAttr = 'timo'; {length of time in ticks }

 { that client will wait }

 { for reply or result from }

 { the server}

keyTransactionIDAttr = 'tran'; {transaction ID identifying }

 { a series of Apple events}

RESULT CODES

SEE ALSO

For an example of the use of the AEGetAttributePtr function, see “Getting Data Out
of an Attribute” and “Writing Apple Event Handlers,” which begin on page 4-28 and
page 4-33, respectively.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-72 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetAttributeDesc 4

You can use the AEGetAttributeDesc function to get the descriptor record for a
specified Apple event attribute.

FUNCTION AEGetAttributeDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

theAEKeyword
The keyword that specifies the desired attribute.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description of
AEGetAttributePtr on page 4-71.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested Apple event attribute is not of this type, the Apple Event
Manager attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of the
returned data is the same as the descriptor type of the Apple event
attribute.

result A copy of the descriptor record from the desired attribute coerced to the
descriptor type specified by the desiredType parameter.

DESCRIPTION

The AEGetAttributeDesc function returns, in the result parameter, the descriptor
record for the Apple event attribute with the specified keyword. Your application should
call the AEDisposeDesc function to dispose of the resulting descriptor record after your
application has finished using it.

If AEGetAttributeDesc returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-73

C H A P T E R 4

Responding to Apple Events
Counting the Items in Descriptor Lists 4

The AECountItems function counts the number of descriptor records in any descriptor
list, including an Apple event record.

AECountItems 4

You can use the AECountItems function to count the number of descriptor records in
any descriptor list.

FUNCTION AECountItems (theAEDescList: AEDescList;

 VAR theCount: LongInt): OSErr;

theAEDescList
The descriptor list to be counted.

theCount The AECountItems function returns the number of descriptor records in
the specified descriptor list in this parameter.

RESULT CODES

SEE ALSO

For an example of the use of AECountItems, see “Getting Data Out of a Descriptor
List,” which begins on page 4-31.

Getting Items From Descriptor Lists 4

The Apple Event Manager provides three functions that allow you to get items from any
descriptor list, including an Apple event record. The AEGetNthPtr and AEGetNthDesc
functions give you access to the data in a descriptor list. The AEGetArray function gets
data from an array contained in a descriptor list.

noErr 0 No error
errAENotAEDesc –1704 Not a valid descriptor record
4-74 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetNthPtr 4

You can use the AEGetNthPtr function to get a pointer to a buffer that contains a copy
of a descriptor record from any descriptor list.

FUNCTION AEGetNthPtr (theAEDescList: AEDescList; index: LongInt;

 desiredType: DescType;

 VAR theAEKeyword: AEKeyword;

 VAR typeCode: DescType; dataPtr: Ptr;

 maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAEDescList
The descriptor list containing the desired descriptor record.

index The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desiredType is typeWildCard, no coercion is performed, and
the descriptor type of the copied descriptor record is the same as the
descriptor type of the original descriptor record.

theAEKeyword
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGetNthPtr returns the value typeWildCard.

typeCode The descriptor type of the returned descriptor record.

dataPtr A pointer to the buffer in which the returned descriptor record is stored.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the specified descriptor record. If this
value is larger than the value of the maximumSize parameter, not all of
the data for the descriptor record was returned.

DESCRIPTION

The AEGetNthPtr function uses a buffer to return a specified descriptor record from a
specified descriptor list; the function attempts to coerce the descriptor record to the
descriptor type specified by the desiredType parameter.
Reference to Responding to Apple Events 4-75

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For an example of the use of AEGetNthPtr, see Listing 4-10 on page 4-33.

AEGetNthDesc 4

You can use the AEGetNthDesc function to get a copy of a descriptor record from any
descriptor list.

FUNCTION AEGetNthDesc (theAEDescList: AEDescList; index: LongInt;

 desiredType: DescType;

 VAR theAEKeyword: AEKeyword;

 VAR result: AEDesc): OSErr;

theAEDescList
The descriptor list containing the desired descriptor record.

index The position of the desired descriptor record in the list (for example, 2
specifies the second descriptor record).

desiredType
The desired descriptor type for the copy of the descriptor record to be
returned; if the desired descriptor record is not of this type, the Apple
Event Manager attempts to coerce it to this type. If the value of
desiredType is typeWildCard, no coercion is performed, and the
descriptor type of the copied descriptor record is the same as
the descriptor type of the original descriptor record.

theAEKeyword
The keyword of the specified descriptor record, if you are getting data
from a list of keyword-specified descriptor records; otherwise,
AEGetNthDesc returns the value typeWildCard.

result A copy of the desired descriptor record coerced to the descriptor type
specified by the desiredType parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-76 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AEGetNthDesc function returns a specified descriptor record from a specified
descriptor list.Your application should call the AEDisposeDesc function to dispose of
the resulting descriptor record after your application has finished using it.

If AEGetNthDesc returns a nonzero result code, it returns a descriptor record of
descriptor type typeNull. A descriptor record of this type does not contain any data.

RESULT CODES

AEGetArray 4

You can use the AEGetArray function to convert an Apple event array (an array created
with the AEPutArray function and stored in a descriptor list) to the corresponding
Pascal or C array and place the converted array in a buffer for which you have provided
a pointer.

FUNCTION AEGetArray (theAEDescList: AEDescList;

arrayType: AEArrayType;

arrayPtr: AEArrayDataPointer;

maximumSize: Size;

VAR itemType: DescType; VAR itemSize: Size;

VAR itemCount: LongInt): OSErr;

theAEDescList
A descriptor list containing the desired array. If the array is of type
kAEDataArray, kAEPackedArray, or kAEHandleArray, the descriptor
list must be factored.

arrayType The Apple event array type to be converted. This is specified by one of the
following constants: kAEDataArray, kAEPackedArray,
kAEHandleArray, kAEDescArray, or kAEKeyDescArray.

arrayPtr A pointer to the buffer for storing the array.

maximumSize
The maximum length, in bytes, of the buffer for storing the array.

itemType For arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the AEGetArray function returns the descriptor type
of the returned array items in this parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-77

C H A P T E R 4

Responding to Apple Events
itemSize For arrays of type kAEDataArray or kAEPackedArray, the
AEGetArray function returns the size (in bytes) of the returned array
items in this parameter.

itemCount The AEGetArray function returns the number of items in the resulting
array in this parameter.

DESCRIPTION

The AEGetArray function uses a buffer identified by the pointer in the arrayPtr
parameter to return the converted data for the Apple event array specified by the
theAEDescList parameter. Even if the descriptor list that contains the array is
factored, the converted data for each array item includes the data common to all the
descriptor records in the list. The Apple Event Manager automatically reconstructs
the common data for each item when you call AEGetArray.

RESULT CODES

SEE ALSO

For more information about data types and constants used with AEGetArray, see
“Apple Event Array Data Types” on page 4-60.

For information about creating and factoring descriptor lists for Apple event arrays, see
the description of AECreateList on page 5-29. For information about adding an Apple
event array to a descriptor list, see the description of AEPutArray on page 5-32.

Getting Data and Keyword-Specified Descriptor Records Out of AE Records 4

The Apple Event Manager provides two functions, AEGetKeyPtr and AEGetKeyDesc,
that allow you to get data and descriptor records out of an AE record or an Apple event
record.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-78 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetKeyPtr 4

You can use the AEGetKeyPtr function to get a pointer to a buffer that contains the data
from a keyword-specified descriptor record. You can use this function to get data from
an AE record or an Apple event record.

FUNCTION AEGetKeyPtr (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR typeCode: DescType;

 dataPtr: Ptr; maximumSize: Size;

 VAR actualSize: Size): OSErr;

theAERecord
The AE record containing the desired data.

theAEKeyword
The keyword that specifies the desired descriptor record.

desiredType
The desired descriptor type for the data to be returned; if the requested
data is not of this type, the Apple Event Manager attempts to coerce it to
this type. If the value of desiredType is typeWildCard, no coercion is
performed, and the descriptor type of returned data is the same as the
descriptor type of the original data.

typeCode The descriptor type of the returned data.

dataPtr A pointer to the buffer for storing the data.

maximumSize
The maximum length, in bytes, of the data to be returned. You must
allocate at least this amount of storage for the buffer specified by the
dataPtr parameter.

actualSize
The length, in bytes, of the data for the keyword-specified descriptor
record. If this value is larger than the value of the maximumSize
parameter, not all of the data for the parameter was returned.

DESCRIPTION

The AEGetKeyPtr function uses a buffer to return the data from a keyword-specified
Apple event parameter, which the function attempts to coerce to the descriptor type
specified by the desiredType parameter.
Reference to Responding to Apple Events 4-79

C H A P T E R 4

Responding to Apple Events
RESULT CODES

AEGetKeyDesc 4

You can use the AEGetKeyDesc function to get the descriptor record for a
keyword-specified descriptor record. You can use this function to get a descriptor record
out of an AE record or an Apple event record.

FUNCTION AEGetKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 desiredType: DescType;

 VAR result: AEDesc): OSErr;

theAERecord
The AE record containing the desired descriptor record.

theAEKeyword
The keyword that specifies the desired descriptor record.

desiredType
The desired descriptor type for the descriptor record to be returned; if the
requested descriptor record is not of this type, the Apple Event Manager
attempts to coerce it to this type. If the value of desiredType is
typeWildCard, no coercion is performed, and the descriptor type of
the returned descriptor record is the same as the descriptor type of the
original descriptor record.

result A copy of the keyword-specified descriptor record, coerced to the
descriptor type specified in the desiredType parameter.

DESCRIPTION

The AEGetKeyDesc function returns a copy of the descriptor record for a
keyword-specified descriptor record. Your application should call the AEDisposeDesc
function to dispose of the resulting descriptor record after your application has finished
using it.

If AEGetKeyDesc returns a nonzero result code, it returns a descriptor record of
descriptor type typeNull. A descriptor record of this type does not contain any data.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
4-80 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
RESULT CODES

Requesting User Interaction 4

The Apple Event Manager provides three functions that allow you to set or request user
interaction levels and to initiate user interaction when your application is the server
application. The AESetInteractionAllowed and AEGetInteractionAllowed
functions specify and return, respectively, the current user interaction preferences. Your
application should call the AEInteractWithUser function before actually interacting
with the user in response to an Apple event.

AESetInteractionAllowed 4

You can use the AESetInteractionAllowed function to specify your application’s
user interaction preferences for responding to an Apple event.

FUNCTION AESetInteractionAllowed

(level: AEInteractAllowed): OSErr;

level The user interaction level to be set.

DESCRIPTION

The AESetInteractionAllowed function sets the user interaction level for a server
application’s response to an Apple event. The level parameter must be one of three
flags: kAEInteractWithSelf, kAEInteractWithLocal, or kAEInteractWithAll.

Specifying the kAEInteractWithSelf flag allows the server application to interact
with the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

Specifying the kAEInteractWithLocal flag allows the server application to
interact with the user in response to an Apple event only if the client application
is on the same computer as the server application; this is the default if the
AESetInteractionAllowed function is not used.

Specifying the kAEInteractWithAll flag allows the server application to interact with
the user in response to an Apple event sent from any client application on any computer.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-81

C H A P T E R 4

Responding to Apple Events
RESULT CODE

SEE ALSO

For more information about setting user preferences for a server application, see “Setting
the Server Application’s User Interaction Preferences” on page 4-48.

AEGetInteractionAllowed 4

You can use the AEGetInteractionAllowed function to get the current user
interaction preferences for responding to an Apple event.

FUNCTION AEGetInteractionAllowed

(VAR level: AEInteractAllowed): OSErr;

level The current user interaction level, using the data type
AEInteractAllowed.

TYPE AEInteractAllowed = (kAEInteractWithSelf,
 kAEInteractWithLocal,
 kAEInteractWithAll);

DESCRIPTION

The AEGetInteractionAllowed function returns, in the level parameter, a value
that indicates the user interaction preferences for responding to an Apple event. The
value, set by a previous call to AESetInteractionAllowed, is one of the following
flags: kAEInteractWithSelf, kAEInteractWithLocal, or kAEInteractWithAll.
The default value of kAEInteractWithLocal is returned if your application has not
used AESetInteractionAllowed to set the interaction level explicitly.

The kAEInteractWithSelf flag indicates that the server application may interact with
the user in response to an Apple event only when the client application and server
application are the same—that is, only when the application is sending the Apple event
to itself.

The kAEInteractWithLocal flag indicates that the server application may interact
with the user in response to an Apple event only if the client application is on the same
computer as the server application. This is the default if your application has not used
the AESetInteractionAllowed function to set the interaction level explicitly.

The kAEInteractWithAll flag indicates that the server application may interact with
the user in response to an Apple event sent from any client application on any computer.

RESULT CODE

noErr 0 No error

noErr 0 No error
4-82 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEInteractWithUser 4

You can use the AEInteractWithUser function to initiate interaction with the user
when your application is a server application responding to an Apple event.

FUNCTION AEInteractWithUser (timeOutInTicks: LongInt;

 nmReqPtr: NMRecPtr;

 idleProc: IdleProcPtr): OSErr;

timeOutInTicks
The amount of time (in ticks) that your handler is willing to wait for a
response from the user. You can specify a number of ticks or use one of
the following constants:

CONST kAEDefaultTimeout = -1; {value determined }
 { by AEM}
 kNoTimeOut = -2; {wait until reply }
 { comes back}

nmReqPtr A pointer to a Notification Manager record provided by your application.
You can specify NIL for this parameter to get the default notification
handling provided by the Apple Event Manager.

idleProc A pointer to your application’s idle function, which handles events while
waiting for the Apple Event Manager to return control.

DESCRIPTION

Your application should call the AEInteractWithUser function before displaying a
dialog box or alert box or otherwise interacting with the user in response to an Apple
event. If the user interaction preference settings permit the application to come to the
foreground, this function brings your application to the front, either directly or by
posting a notification request.

Your application should normally pass a notification record in the nmReqPtr parameter
rather than specifying NIL for default notification handling. If you specify NIL, the
Apple Event Manager looks for an application icon with the ID specified by the
application’s bundle ('BNDL') resource and the application’s file reference ('FREF')
resource. The Apple Event Manager first looks for an 'SICN' resource with the
specified ID; if it can’t find an 'SICN' resource, it looks for the 'ICN#' resource and
compresses the icon to fit in the menu bar. The Apple Event Manager won’t look for any
members of an icon family other than the icon specified in the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file
reference resource, the Apple Event Manager passes NIL to the Notification Manager,
and no icon appears in the upper-right corner of the screen. Therefore, if you want to
display any icon other than those of type 'SICN' or 'ICN#', you must specify a
notification record as the second parameter to the AEInteractWithUser function.
Reference to Responding to Apple Events 4-83

C H A P T E R 4

Responding to Apple Events
Note
If you want the Notification Manager to use a color icon when it posts a
notification request, you should provide a Notification Manager record
that specifies a 'cicn' resource. ◆

The AEInteractWithUser function checks whether the client application set the
kAENeverInteract flag for the Apple event and, if so, returns an error. If not, then
the AEInteractWithUser function checks the server application’s preference set
by the AESetInteractionAllowed function and compares it against the source of the
Apple event—that is, whether it came from the same application, another process on the
same computer, or a process running on another computer. The AEInteractWithUser
function returns the errAENoUserInteraction result code if the user interaction
preferences don’t allow user interaction. If user interaction is allowed, the Apple Event
Manager brings your application to the front, either directly or by posting a notification
request. If AEInteractWithUser returns the noErr result code, then your application
is in the foreground and is free to interact with the user.

RESULT CODES

SEE ALSO

For information about idle functions, see “Writing an Idle Function” on page 5-22.

For examples of the use of the AEInteractWithUser function, see “Interacting With
the User,” which begins on page 4-45.

Requesting More Time to Respond to Apple Events 4

The AEResetTimer function resets the timeout value for an Apple event to its starting
value. A server application can call this function when it knows it cannot fulfill a client
application’s request (either by returning a result or by sending back a reply Apple
event) before the client application is due to time out.

AEResetTimer 4

You can use the AEResetTimer function to reset the timeout value for an Apple event
to its starting value.

FUNCTION AEResetTimer (reply: AppleEvent): OSErr;

noErr 0 No error
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
4-84 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
reply The default reply for an Apple event, provided by the Apple Event
Manager.

DESCRIPTION

When your application calls AEResetTimer, the Apple Event Manager for the server
application uses the default reply to send a Reset Timer event to the client application;
the Apple Event Manager for the client application’s computer intercepts this Apple
event and resets the client application’s timer for the Apple event. (The Reset Timer
event is never dispatched to a handler, so the client application does not need a handler
for it.)

RESULT CODE

Suspending and Resuming Apple Event Handling 4

When your application calls AEProcessAppleEvent and one of your event handlers is
invoked, the Apple Event Manager normally assumes that your application has finished
handling the event when the event handler returns. At this point, the Apple Event
Manager disposes of the event. However, some applications, such as multi-session
servers or any applications that implement their own internal event queueing, may need
to defer handling of the event.

The AESuspendTheCurrentEvent, AEResumeTheCurrentEvent,
AESetTheCurrentEvent, and AEGetTheCurrentEvent functions described in this
section allow you to suspend and resume Apple event handling, specify the Apple event
to be handled, and identify an Apple event that is currently being handled.

AESuspendTheCurrentEvent 4

You can use the AESuspendTheCurrentEvent function to suspend the processing of
the Apple event that is currently being handled.

FUNCTION AESuspendTheCurrentEvent

(theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event whose handling is to be suspended. Although the Apple
Event Manager doesn’t need this parameter to identify the Apple event
currently being handled, providing it is a safeguard that you are
suspending the correct Apple event.

noErr 0 No error
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
Reference to Responding to Apple Events 4-85

C H A P T E R 4

Responding to Apple Events
DESCRIPTION

After a server application makes a successful call to the AESuspendTheCurrentEvent
function, it is no longer required to return a result or a reply for the Apple event
that was being handled. It can, however, return a result if it later calls the
AEResumeTheCurrentEvent function to resume event processing.

The Apple Event Manager does not automatically dispose of Apple events that have
been suspended or their default replies. (The Apple Event Manager does, however,
automatically dispose of a previously suspended Apple event and its default reply
if the server later resumes processing of the Apple event by calling the
AEResumeTheCurrentEvent function.) If your server application does not resume
processing of a suspended Apple event, it is responsible for using the AEDisposeDesc
function to dispose of both the Apple event and its default reply when your application
has finished using them.

SPECIAL CONSIDERATIONS

If your application suspends handling of an Apple event it sends to itself, the Apple
Event Manager immediately returns from the AESend call with the error code
errAETimeout, regardless of whether the kAEQueueReply, kAEWaitReply, or
kAENoReply flags were set, even if the timeout parameter is set to kNoTimeOut.
The routine calling AESend should take the timeout error as confirmation that the event
was sent.

As with other calls to AESend that return a timeout error, the handler continues to
process the event nevertheless. The handler’s reply, if any, is provided in the reply event
when the handling is completed. The Apple Event Manager provides no notification that
the reply is ready. If no data has yet been placed in the reply event, the Apple Event
Manager returns errAEReplyNotArrived when your application attempts to extract
data from the reply.

RESULT CODE

AEResumeTheCurrentEvent 4

You can use the AEResumeTheCurrentEvent function to inform the Apple Event
Manager that your application wants to resume the handling of a previously suspended
Apple event or that it has completed the handling of the Apple event.

FUNCTION AEResumeTheCurrentEvent

(theAppleEvent, reply: AppleEvent;

 dispatcher: EventHandlerProcPtr;

 handlerRefcon: LongInt): OSErr;

noErr 0 No error
4-86 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
theAppleEvent
The Apple event to be resumed.

reply The default reply provided by the Apple Event Manager for the
Apple event.

dispatcher
One of the following:

■ a pointer to a routine for handling the event

■ the kAEUseStandardDispatch constant, which tells the Apple
Event Manager to dispatch the resumed event using the standard
dispatching scheme it uses for other Apple events

■ the kAENoDispatch constant, which tells the Apple Event Manager
that the Apple event has been completely processed and need not be
dispatched

handlerRefcon
If the value of the dispatcher parameter is not
kAEUseStandardDispatch, this parameter is the reference
constant passed to the handler when the handler is called. If the
value of the dispatcher parameter is kAEUseStandardDispatch,
the Apple Event Manager ignores the handlerRefcon parameter
and instead passes the reference constant stored in the Apple event
dispatch table entry for the Apple event. (You may wish to pass the
same reference constant that is stored in the Apple event dispatch
table. If so, call the AEGetEventHandler function.)

DESCRIPTION

When your application calls the AEResumeTheCurrentEvent function, the Apple
Event Manager resumes handling the specified Apple event using the handler specified
in the dispatcher parameter, if any. If kAENoDispatch is specified in the
dispatcher parameter, AEResumeTheCurrentEvent simply informs the Apple
Event Manager that the specified event has been handled.

SPECIAL CONSIDERATIONS

An Apple event handler that suspends an event should not immediately call
AEResumeTheCurrentEvent, or else the handler will generate an error. Instead, the
handler should return just after suspending the event.

When your application calls AEResumeTheCurrentEvent for an event that was not
directly dispatched, the Apple Event Manager disposes of the event and the reply,
just as it normally does, after the event handler returns to AEProcessAppleEvent.
Make sure all processing involving the event or the reply has been completed
before your application calls AEResumeTheCurrentEvent. Do not call
AEResumeTheCurrentEvent for an event that was not suspended.
Reference to Responding to Apple Events 4-87

C H A P T E R 4

Responding to Apple Events
When your application calls AEResumeTheCurrentEvent for an event that was
directly dispatched, your application is responsible for disposing of the original event
and the reply, since it is acts as both the server and the client.

RESULT CODE

AESetTheCurrentEvent 4

You can use the AESetTheCurrentEvent function to specify the Apple event to be
handled.

FUNCTION AESetTheCurrentEvent (theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event to be handled.

DESCRIPTION

There is usually no reason for your application to use the AESetTheCurrentEvent
function. Instead of calling this function, your application should let the Apple Event
Manager set the current Apple event through the dispatch tables.

If you need to avoid the dispatch tables, you must use the AESetTheCurrentEvent
function only in the following way:

1. Your application suspends handling of an Apple event by calling the
AESuspendTheCurrentEvent function.

2. Your application calls the AESetTheCurrentEvent function. This informs the Apple
Event Manager that your application is handling the suspended Apple event. In this
way, any routines that call the AEGetTheCurrentEvent function can ascertain
which event is currently being handled.

3. When your application finishes handling the Apple event, it calls the
AEResumeTheCurrentEvent function with the value kAENoDispatch to tell the
Apple Event Manager that the event has been processed and need not be dispatched.

RESULT CODE

noErr 0 No error

noErr 0 No error
4-88 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEGetTheCurrentEvent 4

You can use the AEGetTheCurrentEvent function to get the Apple event that is
currently being handled.

FUNCTION AEGetTheCurrentEvent

(VAR theAppleEvent: AppleEvent): OSErr;

theAppleEvent
The Apple event that is currently being handled; if no Apple event is
currently being handled, AEGetTheCurrentEvent returns a null
descriptor record in this parameter.

DESCRIPTION

In many applications, the handling of an Apple event involves one or more long chains
of calls to internal routines. The AEGetTheCurrentEvent function makes it
unnecessary for these calls to include the current Apple event as a parameter; the
routines can simply call AEGetTheCurrentEvent to get the current Apple event when
it is needed.

You can also use the AEGetTheCurrentEvent function to make sure that no
Apple event is currently being handled. For example, suppose your application
always uses an application-defined routine to delete a file. That routine can first call
AEGetTheCurrentEvent and delete the file only if AEGetTheCurrentEvent returns
a null descriptor record (that is, only if no Apple event is currently being handled).

RESULT CODE

Getting the Sizes and Descriptor Types of Descriptor Records 4

The Apple Event Manager provides four routines that allow you to get the sizes and
descriptor types of descriptor records that are not part of an Apple event record. The
AESizeOfNthItem function returns the size and descriptor type of a descriptor record
in a descriptor list.The AESizeOfKeyDesc function returns the size and descriptor type
of a keyword-specified descriptor record in an AE record. You can get the size and
descriptor type of an Apple event parameter or Apple event attribute using the
AESizeOfParam and AESizeOfAttribute functions.

noErr 0 No error
Reference to Responding to Apple Events 4-89

C H A P T E R 4

Responding to Apple Events
AESizeOfNthItem 4

You can use the AESizeOfNthItem function to get the size and descriptor type of a
descriptor record in a descriptor list.

FUNCTION AESizeOfNthItem (theAEDescList: AEDescList;

 index: LongInt; VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAEDescList
The descriptor list containing the descriptor record.

index The position of the descriptor record in the list (for example, 2 specifies
the second descriptor record).

typeCode The descriptor type of the descriptor record.

dataSize The length (in bytes) of the data in the descriptor record.

RESULT CODES

AESizeOfKeyDesc 4

You can use the AESizeOfKeyDesc function to get the size and descriptor type of a
keyword-specified descriptor record in an AE record.

FUNCTION AESizeOfKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAERecord
The AE record containing the desired keyword-specified descriptor
record.

theAEKeyword
The keyword that specifies the desired descriptor record.

typeCode The descriptor type of the keyword-specified descriptor record.

dataSize The length, in bytes of the data in the keyword-specified descriptor record.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAEReplyNotArrived –1718 Reply has not yet arrived
4-90 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
RESULT CODES

AESizeOfParam 4

You can use the AESizeOfParam function to get the size and descriptor type of an
Apple event parameter.

FUNCTION AESizeOfParam (theAppleEvent: AppleEvent; theAEKeyword:

AEKeyword; VAR typeCode: DescType;

VAR dataSize: Size): OSErr;

theAppleEvent
The Apple event containing the parameter.

theAEKeyword
The keyword that specifies the desired parameter.

typeCode The descriptor type of the Apple event parameter.

dataSize The length, in bytes, of the data in the Apple event parameter.

RESULT CODES

AESizeOfAttribute 4

You can use the AESizeOfAttribute function to get the size and descriptor type of an
Apple event attribute.

FUNCTION AESizeOfAttribute (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 VAR typeCode: DescType;

 VAR dataSize: Size): OSErr;

theAppleEvent
The Apple event containing the desired attribute.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived
Reference to Responding to Apple Events 4-91

C H A P T E R 4

Responding to Apple Events
theAEKeyword
The keyword that specifies the attribute.

typeCode The descriptor type of the attribute.

dataSize The length, in bytes, of the data in the attribute.

RESULT CODES

Deleting Descriptor Records 4

The Apple Event Manager provides three functions that allow you to delete descriptor
records. The AEDeleteItem, AEDeleteKeyDesc, and AEDeleteParam functions
allow you to delete descriptor records from a descriptor list, an AE record, and an
Apple event parameter, respectively.

AEDeleteItem 4

You can use the AEDeleteItem function to delete a descriptor record from a descriptor
list. All subsequent descriptor records will then move up one place.

FUNCTION AEDeleteItem (theAEDescList: AEDescList;

 index: LongInt): OSErr;

theAEDescList
The descriptor list containing the descriptor record to be deleted.

index The position of the descriptor record to delete (for example, 2 specifies the
second item).

RESULT CODES

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEReplyNotArrived –1718 Reply has not yet arrived

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
4-92 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEDeleteKeyDesc 4

You can use the AEDeleteKeyDesc function to delete a keyword-specified descriptor
record from an AE record.

FUNCTION AEDeleteKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword): OSErr;

theAERecord
The AE record containing the keyword-specified descriptor record to be
deleted.

theAEKeyword
The keyword that specifies the descriptor record to be deleted.

RESULT CODES

AEDeleteParam 4

You can use the AEDeleteParam function to delete an Apple event parameter.

FUNCTION AEDeleteParam (theAppleEvent: AppleEvent;

theAEKeyword: AEKeyword): OSErr;

theAppleEvent
The Apple event containing the parameter to be deleted.

theAEKeyword
The keyword that specifies the parameter to be deleted.

RESULT CODES

Deallocating Memory for Descriptor Records 4

The AEDisposeDesc function deallocates the memory used by a descriptor record.
Because all Apple event structures (except for keyword-specified descriptor records) are
descriptor records, you can use AEDisposeDesc for any of them.

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed

noErr 0 No error
errAEDescNotFound –1701 Descriptor record was not found
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Responding to Apple Events 4-93

C H A P T E R 4

Responding to Apple Events
AEDisposeDesc 4

You can use the AEDisposeDesc function to deallocate the memory used by a
descriptor record.

FUNCTION AEDisposeDesc (VAR theAEDesc: AEDesc): OSErr;

theAEDesc The descriptor record to deallocate. The function returns a null descriptor
record in this parameter. If you pass a null descriptor record in this
parameter, AEDisposeDesc returns noErr.

RESULT CODE

SEE ALSO

For more information about using AEDisposeDesc, see “Disposing of Apple Event
Data Structures,” which begins on page 4-39.

Coercing Descriptor Types 4

The Apple Event Manager provides two functions that allow you to coerce descriptor
types. The AECoercePtr function takes a pointer to data and a desired descriptor type
and attempts to coerce the data to a descriptor record of the desired descriptor type. The
AECoerceDesc function attempts to coerce the data in an existing descriptor record to
another descriptor type.

AECoercePtr 4

You can use the AECoercePtr function to coerce data to a desired descriptor type. If
successful, it creates a descriptor record containing the newly coerced data.

FUNCTION AECoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 VAR result: AEDesc): OSErr;

typeCode The descriptor type of the source data.

dataPtr A pointer to the data to be coerced.

dataSize The length, in bytes, of the data to be coerced.

toType The desired descriptor type of the resulting descriptor record.

result The resulting descriptor record.

noErr 0 No error
4-94 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

The AECoercePtr function creates a new descriptor record by coercing the specified
data to a descriptor record of the specified descriptor type. You should use the
AEDisposeDesc function to dispose of the resulting descriptor record once you are
finished using it.

If AECoercePtr returns a nonzero result code, it returns a null descriptor record unless
the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For a description of the AEDisposeDesc function, see page 4-94.

AECoerceDesc 4

You can use the AECoerceDesc function to coerce the data in a descriptor record to
another descriptor type.

FUNCTION AECoerceDesc (theAEDesc: AEDesc; toType: DescType;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record whose data is to be coerced.

toType The desired descriptor type of the resulting descriptor record.

result The resulting descriptor record.

DESCRIPTION

The AECoerceDesc function attempts to create a new descriptor record by coercing
the specified descriptor record. Your application is responsible for using the
AEDisposeDesc function to dispose of the resulting descriptor record once you are
finished using it.

If AECoerceDesc returns a nonzero result code, it returns a null descriptor record
(a descriptor record of type typeNull, which does not contain any data) unless the
Apple Event Manager is not available because of limited memory.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
Reference to Responding to Apple Events 4-95

C H A P T E R 4

Responding to Apple Events
RESULT CODES

SEE ALSO

For a list of the descriptor types for which the Apple Event Manager provides coercions,
see Table 4-1, which begins on page 4-43.

Creating and Managing the Coercion Handler Dispatch Tables 4

The Apple Event Manager provides three functions that allow you to create and manage
the coercion handler dispatch tables. The AEInstallCoercionHandler function
installs a coercion handler routine in either the application or system coercion dispatch
table. The AEGetCoercionHandler function returns the handler for a specified
descriptor type coercion. The AERemoveCoercionHandler function removes a
coercion handler from either the application or system coercion table.

AEInstallCoercionHandler 4

You can use the AEInstallCoercionHandler function to install a coercion handler
routine in either the application or system coercion handler dispatch table.

FUNCTION AEInstallCoercionHandler (fromType: DescType;

 toType: DescType;

 handler: ProcPtr;

 handlerRefcon: LongInt;

 fromTypeIsDesc: Boolean;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data. If there was already an entry in
the specified coercion handler table for the same source descriptor type
and result descriptor type, the existing entry is replaced.

handler A pointer to the coercion handler. Note that a handler in the system
coercion table must reside in the system heap; thus, if the value of the
isSysHandler parameter is TRUE, the handler parameter should point
to a location in the system heap. Otherwise, if you put your system
handler code in your application heap, you should use
AERemoveCoercionHandler to remove the handler when your
application quits.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to requested descriptor

type
4-96 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
handlerRefcon
A reference constant passed by the Apple Event Manager to the handler
each time the handler is called. If your handler doesn’t expect a reference
constant, use 0 as the value of this parameter.

fromTypeIsDesc
Specifies the form of the data to be coerced. If the value of this parameter
is TRUE, the coercion handler expects the data to be passed as a descriptor
record. If the value is FALSE, the coercion handler expects a pointer to the
data. Because it is more efficient for the Apple Event Manager to provide
a pointer to data than to a descriptor record, all coercion routines should
accept a pointer to data if possible.

isSysHandler
Specifies the coercion table to which the handler is added. If the value of
this parameter is TRUE, the handler is added to the system coercion table
and made available to all applications. If the value is FALSE, the handler
is added to the application coercion table. Note that a handler in the
system coercion table must reside in the system heap; thus, if the value of
the isSysHandler parameter is TRUE, the handler parameter must point
to a location in the system heap.

DESCRIPTION

Before using AEInstallCoercionHandler to install a handler for a particular
descriptor type into the system coercion handler dispatch table, use the
AEGetCoercionHandler function to determine whether the table already contains a
coercion handler for that descriptor type. If an entry exists, AEGetCoercionHandler
returns a reference constant and a pointer to that handler. Chain these to your
coercion handler by providing, in the handlerRefcon parameter of
AEInstallCoercionHandler, pointers to the previous handler and its reference
constant. If your coercion handler returns the error errAECoercionFail, use these
pointers to call the previous handler. If you remove your system coercion handler,
be sure to reinstall the chained handlers.

SPECIAL CONSIDERATIONS

Before an application calls a system coercion handler, system software has set up the
A5 register for the calling application. For this reason, if you provide a system coercion
handler, it should never use A5 global variables or anything that depends on a particular
context; otherwise, the application that calls the system handler may crash.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Responding to Apple Events 4-97

C H A P T E R 4

Responding to Apple Events
AEGetCoercionHandler 4

You can use the AEGetCoercionHandler function to get the handler for a specified
descriptor type coercion.

FUNCTION AEGetCoercionHandler (fromType: DescType;

 toType: DescType;

 VAR handler: ProcPtr;

 VAR handlerRefcon: LongInt;

 VAR fromTypeIsDesc: Boolean;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data.

handler A pointer to the desired coercion handler.

handlerRefcon
The reference constant for the desired handler. The Apple Event Manager
passes this reference constant to the handler each time the handler
is called.

fromTypeIsDesc
If the AEGetCoercionHandler function returns TRUE in this parameter,
the coercion handler expects the data to be passed as a descriptor record.
If the function returns FALSE, the coercion handler expects a pointer to
the data.

isSysHandler
Specifies the coercion table from which to get the handler. If the value of
this parameter is TRUE, the handler is taken from the system coercion
table. If the value is FALSE, the handler is taken from the application
coercion table.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEHandlerNotFound –1717 No coercion handler found
4-98 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AERemoveCoercionHandler 4

You can use the AERemoveCoercionHandler function to remove a coercion handler
from either the application or system coercion handler dispatch table.

FUNCTION AERemoveCoercionHandler (fromType: DescType;

 toType: DescType;

 handler: ProcPtr;

 isSysHandler: Boolean): OSErr;

fromType The descriptor type of the data coerced by the handler.

toType The descriptor type of the resulting data.

handler A pointer to the coercion handler. Although the fromType and toType
parameters would be sufficient to identify the handler to be removed,
providing the handler parameter is a safeguard to ensure that you
remove the correct handler.

isSysHandler
The coercion table from which to remove the handler. If the value of this
parameter is TRUE, the handler is removed from the system coercion
table. If the value is FALSE, the handler is removed from the application
coercion dispatch table.

RESULT CODES

Creating and Managing the Special Handler Dispatch Tables 4

The Apple Event Manager provides three functions that allow you to create and manage
the special handler dispatch tables. The AEInstallSpecialHandler function installs
an entry for a special handler in either the application or system special handler dispatch
table. The AEGetSpecialHandler function returns the handler for a specified special
handler. The AERemoveSpecialHandler function removes a special handler from
either the application or system special handler dispatch table.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEHandlerNotFound –1717 No coercion handler found
Reference to Responding to Apple Events 4-99

C H A P T E R 4

Responding to Apple Events
You can also use the AEInstallSpecialHandler, AEGetSpecialHandler, and
AERemoveSpecialHandler functions to install, get, and remove object callback
functions—including system object callback functions, which cannot be installed with
the AESetObjectCallbacks function. When calling any of these three functions, use
one of the following constants as the value of the functionClass parameter to specify
the object callback function:

You can also use the AERemoveSpecialHandler function to disable all the Apple
Event Manager routines that support object specifier records. To do this, specify the
constant keySelectProc in the functionClass parameter as described on
page 4-102.

AEInstallSpecialHandler 4

You can use the AEInstallSpecialHandler function to install a special handler in
either the application or system special handler dispatch table.

FUNCTION AEInstallSpecialHandler (functionClass: AEKeyword;

 handler: ProcPtr;

 isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler that is installed. The
keyPreDispatch constant identifies a handler with the same
parameters as an Apple event handler called immediately before the
Apple Event Manager dispatches an Apple event. Any of the constants for
object callback functions listed above can also be specified in this
parameter. If there was already an entry in the specified special handler
dispatch table for the same value of functionClass, it is replaced.

handler A pointer to the special handler. Note that a handler in the system special
handler dispatch table must reside in the system heap; thus, if the value
of the isSysHandler parameter is TRUE, the handler parameter
should point to a location in the system heap. Otherwise, if you put
your system handler code in your application heap, use
AERemoveSpecialHandler to remove the handler when your
application quits.

Object callback function Constant

Object-counting function keyAECountProc

Object-comparison function keyAECompareProc

Token disposal function keyDiposeTokenProc

Error callback function keyAEGetErrDescProc

Mark token function keyAEMarkTokenProc

Object-marking function keyAEMarkProc

Mark-adjusting function keyAEAdjustMarksProc
4-100 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
isSysHandler
The special handler dispatch table to which to add the handler. If the
value of this parameter is TRUE, the handler is added to the system
handler dispatch table and made available to all applications. If the value
is FALSE, the handler is added to the application handler table.

DESCRIPTION

The AEInstallSpecialHandler function creates an entry in either your application’s
special handler dispatch table or the system special handler dispatch table. You must
supply parameters that specify the keyword for the special handler that is installed, the
handler routine, and whether the handler is to be added to the system special handler
dispatch table or your application’s special handler dispatch table.

SPECIAL CONSIDERATIONS

Before an application calls a system special handler, system software has set up the
A5 register for the calling application. For this reason, a system special handler should
never use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system handler may crash.

RESULT CODES

AEGetSpecialHandler 4

You can use the AEGetSpecialHandler function to get a specified special handler.

FUNCTION AEGetSpecialHandler (functionClass: AEKeyword;

VAR handler: ProcPtr;

isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler that is installed. The
keyPreDispatch constant identifies a handler with the same
parameters as an Apple event handler that is called immediately before
the Apple Event Manager dispatches an Apple event. Any of the
constants for object callback functions listed on page 4-100 can also be
specified in this parameter.

handler A pointer to the special handler.

noErr 0 No error
paramErr –50 Parameter error (handler pointer is NIL

or odd)
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special function
Reference to Responding to Apple Events 4-101

C H A P T E R 4

Responding to Apple Events
isSysHandler
Specifies the special handler dispatch table from which to get the handler.
If the value of this parameter is TRUE, the handler is taken from the
system special handler dispatch table. If the value is FALSE, the handler is
taken from the application’s special handler dispatch table.

RESULT CODES

AERemoveSpecialHandler 4

You can use the AERemoveSpecialHandler function to remove a handler from a
special handler table.

FUNCTION AERemoveSpecialHandler (functionClass: AEKeyword;

handler: ProcPtr;

isSysHandler: Boolean): OSErr;

functionClass
The keyword for the special handler to be removed. In addition to the
constants for object callback functions listed on page 4-100, two other
values are allowed for the functionClass parameter:
keyPreDispatch and keySelectProc. The keyPreDispatch
constant identifies a handler with the same parameters as an Apple event
handler that is called immediately before the Apple Event Manager
dispatches an Apple event. The keySelectProc constant indicates that
you want to disable the Object Support Library—that is, all the routines
described in the chapter “Resolving and Creating Object Specifier
Records” in this book (see the description that follows for more
information).

handler A pointer to the special handler to be removed. Although the
functionClass parameter would be sufficient to identify the handler to
be removed, providing the handler parameter is a safeguard that you
remove the correct handler.

isSysHandler
Specifies the special handler dispatch table from which to remove the
handler. If the value of this parameter is TRUE, the handler is taken from
the system special handler dispatch table. If the value is FALSE, the
handler is removed from the application special handler dispatch table.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special handler
4-102 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
DESCRIPTION

In addition to using the AERemoveSpecialHandler function to remove specific special
handlers, you can use the function to disable, within your application only, all Apple
Event Manager routines that support Apple event objects—that is, all the routines
available to your application as a result of linking the Object Support Library (OSL) and
calling the AEObjectInit function.

An application that expects its copy of the OSL to move after it is installed—for
example, an application that keeps it in a stand-alone code resource—would need to do
this. When an application calls AEObjectInit to initialize the OSL, the OSL installs the
addresses of its routines as extensions to the pack. If those routines move, the addresses
become invalid.

To disable the OSL, you should pass the keyword keySelectProc in the
functionClass parameter, NIL in the handler parameter, and FALSE in the
isSysHandler parameter. Once you have called the AERemoveSpecialHandler
function with these parameters, subsequent calls by your application to any of the Apple
Event Manager routines that support Apple event objects will return errors. To initialize
the OSL after disabling it with the AERemoveSpecialHandler function, your
application must call AEObjectInit again.

If you expect to initialize the OSL and disable it several times, you should call
AERemoveObjectAccessor to remove your application’s object accessor functions
from your application’s object accessor dispatch table before you call
AERemoveSpecialHandler.

RESULT CODES

Getting Information About the Apple Event Manager 4

The AEManagerInfo routine allows you to get two kinds of information related
to Apple events on the current computer: the number of processes currently recording
Apple events and the version of the Apple Event Manager. If you decide to make your
application recordable, this information may be useful when your application is
responding to Apple events that it sends to itself.

You can find out whether the Apple Event Manager is available in system software by
using the Gestalt function. See page 4-4 for details.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAENotASpecialFunction –1714 Wrong keyword for a special function
Reference to Responding to Apple Events 4-103

C H A P T E R 4

Responding to Apple Events
AEManagerInfo 4

You can use the AEManagerInfo function to obtain information about the version of the
Apple Event Manager currently available or the number of processes that are currently
recording Apple events. This function is available only in version 1.01 and later versions
of the Apple Event Manager.

FUNCTION AEManagerInfo (keyword: AEKeyword;

VAR result: LongInt): OSErr;

keyword A value that determines what kind of information AEManagerInfo
returns. The value can be represented by one of these constants:

CONST keyAERecorderCount = 'recr';
 keyAEVersion = 'vers';

result If the value of the keyword parameter is keyAERecorderCount, this
parameter is an integer that indicates the number of processes that are
currently recording Apple events. If the value of the keyword parameter
is keyAEVersion, this parameter is an integer that provides information
about the version of the Apple Event Manager available on the current
computer, using the same format as a 'vers' resource.

RESULT CODE

SEE ALSO

For information about using the AEManagerInfo function to check whether Apple
event recording is on or not, see the chapter “Recording Apple Events” in this book.

For information about using Gestalt to determine whether the Apple Event Manager
is available, see “Handling Apple Events” on page 4-4.

For information about the 'vers' resource, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines 4
For each Apple event your application supports, you must provide an Apple event
handler. The AEProcessAppleEvent function calls one of your Apple event handlers
when it processes an Apple event. An Apple event handler (MyEventHandler)
should perform any action described by the Apple event, add parameters to the reply
Apple event if appropriate, and return a result code.

You can also provide your own coercion handlers to coerce data to descriptor types other
than those for which the Apple Event Manager provides coercion handling. The
MyCoercePtr function accepts a pointer to data and returns a descriptor record, and
the MyCoerceDesc function accepts a descriptor record and returns a descriptor record.

noErr 0 No error
4-104 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
MyEventHandler 4

An Apple event handler has the following syntax:

FUNCTION MyEventHandler (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefcon: LongInt): OSErr;

theAppleEvent
The Apple event to handle.

reply The default reply Apple event provided by the Apple Event Manager.

handlerRefcon
The reference constant stored in the Apple event dispatch table for the
Apple event.

DESCRIPTION

An Apple event handler should extract any parameters and attributes from the Apple
event, perform the requested action, and add parameters to the reply Apple event if
appropriate.

Your handler should always set its function result to noErr if it successfully
handles the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. If the error
occurs because your application cannot understand the event, return
errAEEventNotHandled, in case a handler in the system special handler or system
Apple event dispatch tables might be able to handle the event. If the error occurs because
the event is impossible to handle as specified, return the result code returned
by whatever function caused the failure, or whatever other result code is appropriate.

For example, suppose your application receives a Get Data event that requests the name
of the current printer, and your application cannot handle such an event. In this
situation, you should return errAEEventNotHandled in case another handler
available to the Apple Event Manager can handle the event. This strategy allows users to
take advantage of system capabilities from within your application via system handlers.

However, if your application cannot handle a Get Data event that requests the fifth
paragraph in a document because the document contains only four paragraphs, you
should return some other nonzero error, because further attempts to handle the event are
pointless.

If your Apple event handler calls the AEResolve function and AEResolve calls an
object accessor function in the system object accessor dispatch table, your Apple event
handler may not recognize the descriptor type of the token returned by the function. In
this case, your handler should return the result code errAEUnknownObjectType.
When your handler returns this result code, the Apple Event Manager attempts to locate
a system Apple event handler that can recognize the token.
Reference to Responding to Apple Events 4-105

C H A P T E R 4

Responding to Apple Events
SEE ALSO

For more information about Apple event handlers, see “Writing Apple Event Handlers”
on page 4-33.

For a discussion of the dispatching of object accessor functions and the use of the result
code errAEUnknownObjectType, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

MyCoercePtr 4

A coercion handler that accepts a pointer to data has the following syntax:

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

typeCode The descriptor type of the original data.

dataPtr A pointer to the data to coerce.

dataSize The length, in bytes, of the data to coerce.

toType The desired descriptor type for the resulting descriptor record.

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

result The resulting descriptor record.

DESCRIPTION

Your coercion handler should coerce the data to the desired descriptor type and return
the resulting data in the descriptor record specified by the result parameter. Your
handler should return the noErr result code if your handler successfully performs the
coercion, and a nonzero result code otherwise.

SEE ALSO

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.
4-106 Reference to Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
MyCoerceDesc 4

A coercion handler that accepts a descriptor record has the following syntax:

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;

 handlerRefcon: LongInt;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record that contains the data to be coerced.

toType The desired descriptor type for the resulting descriptor record.

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for
the handler and passed to the handler by the Apple Event Manager
whenever the handler is called.

result The resulting descriptor record.

DESCRIPTION

Your coercion handler should coerce the data in the descriptor record to the desired
descriptor type and return the resulting data in the descriptor record specified by the
result parameter. Your handler should return an appropriate result code.

SEE ALSO

For more information, see “Writing and Installing Coercion Handlers” on page 4-41.
Reference to Responding to Apple Events 4-107

C H A P T E R 4

Responding to Apple Events
Summary of Responding to Apple Events 4

Pascal Summary 4

Constants 4

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, then Apple }

{ Event Manager is available}

{Apple event descriptor types}

typeBoolean = 'bool'; {1-byte Boolean value}

typeChar = 'TEXT'; {unterminated string}

typeSMInt = 'shor'; {16-bit integer}

typeInteger = 'long'; {32-bit integer}

typeSMFloat = 'sing'; {SANE single}

typeFloat = 'doub'; {SANE double}

typeLongInteger = 'long'; {32-bit integer}

typeShortInteger = 'shor'; {16-bit integer}

typeLongFloat = 'doub'; {SANE double}

typeShortFloat = 'sing'; {SANE single}

typeExtended = 'exte'; {SANE extended}

typeComp = 'comp'; {SANE comp}

typeMagnitude = 'magn'; {unsigned 32-bit integer}

typeAEList = 'list'; {list of descriptor records}

typeAERecord = 'reco'; {list of keyword-specified }

{ descriptor records}

typeAppleEvent = 'aevt'; {Apple event record}

typeTrue = 'true'; {TRUE Boolean value}

typeFalse = 'fals'; {FALSE Boolean value}

typeAlias = 'alis'; {alias record}

typeEnumerated = 'enum'; {enumerated data}

typeType = 'type'; {four-character code for }

{ event class or event ID}

typeAppParameters = 'appa'; {Process Manager launch parameters}

typeProperty = 'prop'; {Apple event property}

typeFSS = 'fss '; {file system specification}
4-108 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
typeKeyword = 'keyw'; {Apple event keyword}

typeSectionH = 'sect'; {handle to a section record}

typeWildCard = '****'; {matches any type}

typeApplSignature = 'sign'; {application signature}

typeSessionID = 'ssid'; {session reference number}

typeTargetID = 'targ'; {target ID record}

typeProcessSerialNumber = 'psn '; {process serial number}

typeNull = 'null'; {NULL or nonexistent data}

{keywords for Apple event parameters}

keyDirectObject = '----'; {direct parameter}

keyErrorNumber = 'errn'; {error number parameter}

keyErrorString = 'errs'; {error string parameter}

keyProcessSerialNumber = 'psn '; {process serial number param}

{keywords for Apple event attributes}

keyTransactionIDAttr = 'tran'; {transaction ID}

keyReturnIDAttr = 'rtid'; {return ID}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyAddressAttr = 'addr'; {address of target or }

{ client application}

keyOptionalKeywordAttr = 'optk'; {list of optional parameters }

{ for the Apple event}

keyTimeoutAttr = 'timo'; {number of ticks the client }

{ will wait}

keyInteractLevelAttr = 'inte'; {settings to allow Apple Event }

{ Manager to bring server }

{ to foreground}

keyEventSourceAttr = 'esrc'; {nature of source }

{ application}

keyMissedKeywordAttr = 'miss'; {first required parameter }

{ remaining in an Apple event}

keyOriginalAddressAttr = 'from'; {address of original source; }

{ available only in version }

{ 1.01 and later versions of }

{ the Apple Event Manager}

{keywords for special handlers}

keyPreDispatch = 'phac'; {identifies a handler routine }

{ called immediately before the }

{ Apple Event Manager dispatches }

{ an Apple event}
Summary of Responding to Apple Events 4-109

C H A P T E R 4

Responding to Apple Events
keySelectProc = 'selh'; {selector used with }

{ AERemoveSpecialHandler to }

{ disable the OSL}

{keywords for use with AEManagerInfo; available only in version }

{ 1.0.1 and later versions of the Apple Event Manager}

keyAERecorderCount = 'recr'; {keyword for recording info}

keyAEVersion = 'vers'; {keyword for version info}

{event class}

kCoreEventClass = 'aevt'; {event class for required Apple }

{ events}

{event IDs for required Apple events}

kAEOpenApplication = 'oapp'; {event ID for Open }

{ Application event}

kAEOpenDocuments = 'odoc'; {event ID for Open Documents event}

kAEPrintDocuments = 'pdoc'; {event ID for Print Documents }

{ event}

kAEQuitApplication = 'quit'; {event ID for Quit Application }

{ event}

kAEAnswer = 'ansr'; {event ID for Apple event replies}

kAEApplicationDied = 'obit'; {event ID for Application Died }

{ event}

{constants for setting the sendMode parameter of AESend}

kAENoReply = $00000001; {client doesn't want reply}

kAEQueueReply = $00000002; {client wants server to }

{ reply in event queue}

kAEWaitReply = $00000003; {client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010; {server application should }

{ not interact with user }

{ for this Apple event}

kAECanInteract = $00000020; {server may interact with }

{ user for this Apple event }

{ to supply information}

kAEAlwaysInteract = $00000030; {server may interact with user }

{ for this Apple event even if }

{ no information is required}

kAECanSwitchLayer = $00000040; {server should come directly }

{ to foreground when appropriate}
4-110 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
kAEDontReconnect = $00000080; {don't reconnect if there }

{ is a PPC session closed error}

kAEWantReceipt = nReturnReceipt; {client wants return }

{ receipt}

kAEDontRecord = $00001000; {don't record this event}

kAEDontExecute = $00002000; {don't excecute this event}

{constants for setting the sendPriority parameter of AESend}

kAENormalPriority = $00000000; {put event at the back of }

{ event queue}

kAEHighPriority = nAttnMsg; {put event at the front of }

{ the event queue}

{event IDs for recording events; available only in version 1.01 and }

{ later versions of the Apple Event Manager}

kAEStartRecording = 'reca'; {event ID for Start Recording }

{ event}

kAEStopRecording = 'recc'; {event ID for Stop Recording }

{ event}

kAENotifyStartRecording = 'rec1'; {event ID for Recording On event}

kAENotifyStopRecording = 'rec0'; {event ID for Recording Off event}

kAENotifyRecording = 'recr'; {event ID for Receive Recordable }

{ Event event}

{constant for the returnID parameter of AECreateAppleEvent}

kAutoGenerateReturnID = -1; {tells Apple Event Manager to }

{ generate a unique return ID}

{constant for transaction IDs}

kAnyTransactionID = 0; {the Apple event is not }

{ part of a transaction}

{constants for timeout durations}

kAEDefaultTimeout = -1; {use default timeout value}

kNoTimeOut = -2; {never time out}

{constants for the dispatcher parameter of AEResumeTheCurrentEvent}

kAENoDispatch = 0; {don't redispatch the Apple event}

kAEUseStandardDispatch = -1; {redispatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch table}
Summary of Responding to Apple Events 4-111

C H A P T E R 4

Responding to Apple Events
Data Types 4

TYPE

AEEventClass =

PACKED ARRAY[1..4] OF Char; {event class for a high-level }

{ event}

AEEventID =

PACKED ARRAY[1..4] OF Char; {event ID for a high-level }

{ event}

AEKeyword =

PACKED ARRAY[1..4] OF Char; {keyword for a descriptor }

{ record}

DescType = ResType; {descriptor type}

AEDesc = {descriptor record}

RECORD

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

AEKeyDesc = {keyword-specified }

RECORD { descriptor record}

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

AEAddressDesc = AEDesc; {address descriptor record}

AEDescList = AEDesc; {list of descriptor records}

AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

AESendMode = LongInt; {flags that determine how }

{ an Apple event is sent}

AESendPriority = Integer; {send priority of an Apple }

{ event}
4-112 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
AEInteractAllowed = (kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll); {what processes may }

{ interact with the user}

AEEventSource = (kAEUnknownSource, kAEDirectCall, kAESameProcess,

 kAELocalProcess, kAERemoteProcess);

{the source of an Apple }

{ event}

AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

{type of an Apple event array}

AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: PACKED ARRAY[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: ARRAY[0..0] OF Handle);

kAEDescArray:

(AEDescArray: ARRAY[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: ARRAY[0..0] OF AEKeyDesc);

END;

AEArrayDataPointer = ^AEArrayData;

EventHandlerProcPtr = ProcPtr; {pointer to an Apple event }

{ handler}

IdleProcPtr = ProcPtr; {pointer to an application's }

{ idle function}

EventFilterProcPtr = ProcPtr; {pointer to an application's }

{ filter function}
Summary of Responding to Apple Events 4-113

C H A P T E R 4

Responding to Apple Events
Routines for Responding to Apple Events 4

Creating and Managing the Apple Event Dispatch Tables

FUNCTION AEInstallEventHandler
(theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
handler: EventHandlerProcPtr;
handlerRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetEventHandler (theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
VAR handler: EventHandlerProcPtr;
VAR handlerRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveEventHandler
(theAEEventClass: AEEventClass; theAEEventID:
AEEventID; handler: EventHandlerProcPtr;
isSysHandler: Boolean): OSErr;

Dispatching Apple Events

FUNCTION AEProcessAppleEvent
(theEventRecord: EventRecord): OSErr;

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

FUNCTION AEGetParamPtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
desiredType: DescType;
VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetParamDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR result: AEDesc): OSErr;

FUNCTION AEGetAttributePtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetAttributeDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; desiredType: DescType;
VAR result: AEDesc): OSErr;
4-114 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Counting the Items in Descriptor Lists

FUNCTION AECountItems (theAEDescList: AEDescList;
VAR theCount: LongInt): OSErr;

Getting Items From Descriptor Lists

FUNCTION AEGetNthPtr (theAEDescList: AEDescList; index: LongInt;
desiredType: DescType;
VAR theAEKeyword: AEKeyword;
VAR typeCode: DescType; dataPtr: Ptr;
maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetNthDesc (theAEDescList: AEDescList; index: LongInt;
desiredType: DescType;
VAR theAEKeyword: AEKeyword;
VAR result: AEDesc): OSErr;

FUNCTION AEGetArray (theAEDescList: AEDescList;
arrayType: AEArrayType;
arrayPtr: AEArrayDataPointer;
maximumSize: Size;
VAR itemType: DescType; VAR itemSize: Size;
VAR itemCount: LongInt): OSErr;

Getting Data and Keyword-Specified Descriptor Records Out of AE Records

FUNCTION AEGetKeyPtr (theAERecord: AERecord;
theAEKeyword: AEKeyword;
desiredType: DescType; VAR typeCode: DescType;
dataPtr: Ptr; maximumSize: Size;
VAR actualSize: Size): OSErr;

FUNCTION AEGetKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
desiredType: DescType;
VAR result: AEDesc): OSErr;

Requesting User Interaction

FUNCTION AESetInteractionAllowed
(level: AEInteractAllowed): OSErr;

FUNCTION AEGetInteractionAllowed
(VAR level: AEInteractAllowed): OSErr;

FUNCTION AEInteractWithUser (timeOutInTicks: LongInt; nmReqPtr: NMRecPtr;
idleProc: IdleProcPtr): OSErr;
Summary of Responding to Apple Events 4-115

C H A P T E R 4

Responding to Apple Events
Requesting More Time to Respond to Apple Events

FUNCTION AEResetTimer (reply: AppleEvent): OSErr;

Suspending and Resuming Apple Event Handling

FUNCTION AESuspendTheCurrentEvent
(theAppleEvent: AppleEvent): OSErr;

FUNCTION AEResumeTheCurrentEvent
(theAppleEvent, reply: AppleEvent;
dispatcher: EventHandlerProcPtr;
handlerRefcon: LongInt): OSErr;

FUNCTION AESetTheCurrentEvent
(theAppleEvent: AppleEvent): OSErr;

FUNCTION AEGetTheCurrentEvent
(VAR theAppleEvent: AppleEvent): OSErr;

Getting the Sizes and Descriptor Types of Descriptor Records

FUNCTION AESizeOfNthItem (theAEDescList: AEDescList; index: LongInt;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfParam (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

FUNCTION AESizeOfAttribute (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
VAR typeCode: DescType;
VAR dataSize: Size): OSErr;

Deleting Descriptor Records

FUNCTION AEDeleteItem (theAEDescList: AEDescList;
index: LongInt): OSErr;

FUNCTION AEDeleteKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword): OSErr;

FUNCTION AEDeleteParam (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword): OSErr;
4-116 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Deallocating Memory for Descriptor Records

FUNCTION AEDisposeDesc (VAR theAEDesc: AEDesc): OSErr;

Coercing Descriptor Types

FUNCTION AECoercePtr (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; toType: DescType;
VAR result: AEDesc): OSErr;

FUNCTION AECoerceDesc (theAEDesc: AEDesc; toType: DescType;
VAR result: AEDesc): OSErr;

Creating and Managing the Coercion Handler Dispatch Tables

FUNCTION AEInstallCoercionHandler
(fromType: DescType; toType: DescType;
handler: ProcPtr; handlerRefcon: LongInt;
fromTypeIsDesc: Boolean;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetCoercionHandler
(fromType: DescType; toType: DescType;
VAR handler: ProcPtr;
VAR handlerRefcon: LongInt;
VAR fromTypeIsDesc: Boolean;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveCoercionHandler
(fromType: DescType; toType: DescType;
handler: ProcPtr;
isSysHandler: Boolean): OSErr;

Creating and Managing the Special Handler Dispatch Tables

FUNCTION AEInstallSpecialHandler
(functionClass: AEKeyword; handler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION AEGetSpecialHandler
(functionClass: AEKeyword;
VAR handler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION AERemoveSpecialHandler
(functionClass: AEKeyword; handler: ProcPtr;
isSysHandler: Boolean): OSErr;
Summary of Responding to Apple Events 4-117

C H A P T E R 4

Responding to Apple Events
Getting Information About the Apple Event Manager

{available only in version 1.01 and later versions of Apple Event Manager}

FUNCTION AEManagerInfo (keyword: AEKeyword;
VAR result: LongInt): OSErr;

Application-Defined Routines 4

FUNCTION MyEventHandler (theAppleEvent: AppleEvent; reply: AppleEvent;
handlerRefcon: LongInt): OSErr;

FUNCTION MyCoercePtr (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; toType: DescType;
handlerRefcon: LongInt;
VAR result: AEDesc): OSErr;

FUNCTION MyCoerceDesc (theAEDesc: AEDesc; toType: DescType;
handlerRefcon: LongInt;
VAR result: AEDesc): OSErr;

C Summary 4

Constants 4

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/

/*Apple event descriptor types*/

enum {

typeBoolean = 'bool', /*1-byte Boolean value*/

typeChar = 'TEXT', /*unterminated string*/

typeSMInt = 'shor', /*16-bit integer*/

typeInteger = 'long', /*32-bit integer*/

typeSMFloat = 'sing', /*SANE single*/

typeFloat = 'doub', /*SANE double*/

typeLongInteger = 'long', /*32-bit integer*/

typeShortInteger = 'shor', /*16-bit integer*/

typeLongFloat = 'doub', /*SANE double*/

typeShortFloat = 'sing', /*SANE single*/

typeExtended = 'exte', /*SANE extended*/
4-118 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
typeComp = 'comp', /*SANE comp*/

typeMagnitude = 'magn', /*unsigned 32-bit integer*/

typeAEList = 'list', /*list of descriptor records*/

typeAERecord = 'reco', /*list of keyword-specified */

/* descriptor records*/

typeAppleEvent = 'aevt', /*Apple event record*/

typeTrue = 'true', /*TRUE Boolean value*/

typeFalse = 'fals', /*FALSE Boolean value*/

typeAlias = 'alis', /*alias record*/

typeEnumerated = 'enum' /*enumerated data*/

};

enum {

typeType = 'type', /*four-character code for */

/* event class or event ID*/

typeAppParameters = 'appa', /*Process Manager launch */

/* parameters*/

typeProperty = 'prop', /*Apple event property*/

typeFSS = 'fss ', /*file system specification*/

typeKeyword = 'keyw', /*Apple event keyword*/

typeSectionH = 'sect', /*handle to a section record*/

typeWildCard = '****', /*matches any type*/

typeApplSignature = 'sign', /*application signature*/

typeSessionID = 'ssid', /*session ID*/

typeTargetID = 'targ', /*target ID record*/

typeProcessSerialNumber = 'psn ', /*process serial number*/

typeNull = 'null' /*NULL or nonexistent data*/

};

/*keywords for Apple event parameters*/

enum {

keyDirectObject = '----', /*direct parameter*/

keyErrorNumber = 'errn', /*error number parameter*/

keyErrorString = 'errs', /*error string parameter*/

keyProcessSerialNumber = 'psn ' /*process serial number param*/

};

/*keywords for Apple event attributes*/

enum {

keyTransactionIDAttr = 'tran', /*transaction ID*/

keyReturnIDAttr = 'rtid', /*return ID*/

keyEventClassAttr = 'evcl', /*event class*/
Summary of Responding to Apple Events 4-119

C H A P T E R 4

Responding to Apple Events
keyEventIDAttr = 'evid', /*event ID*/

keyAddressAttr = 'addr', /*address of target or */

/* client application*/

keyOptionalKeywordAttr = 'optk', /*list of optional parameters */

/* for the Apple event*/

keyTimeoutAttr = 'timo', /*number of ticks the client */

/* will wait*/

keyInteractLevelAttr = 'inte', /*settings to allow Apple */

/* Event Mgr to bring */

/* server to foreground*/

keyEventSourceAttr = 'esrc', /*nature of source */

/* application*/

keyMissedKeywordAttr = 'miss', /*first required parameter */

/* remaining in an Apple */

/* event*/

keyOriginalAddressAttr = 'from' /*address of original source; */

/* available only in version */

/* 1.01 and later versions of */

/* the Apple Event Manager*/

};

/*keywords for special handlers*/

enum {

keyPreDispatch = 'phac', /*identifies a handler */

/* routine that is called */

/* immediately before the */

/* Apple Event Manager */

/* dispatches an Apple event*/

keySelectProc = 'selh', /*selector used with */

/* AERemoveSpecialHandler to */

/* disable the OSL*/

/*keywords for use with AEManagerInfo, available only in version */

/* 1.0.1 and later versions of the Apple Event Manager*/

keyAERecorderCount = 'recr', /*keyword for recording info*/

keyAEVersion = 'vers', /*keyword for version info*/

/*event class*/

kCoreEventClass = 'aevt' /*event class for required */

/* Apple events*/

};
4-120 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
/*event IDs for required Apple events*/

enum {

kAEOpenApplication = 'oapp', /*event ID for Open */

/* Application event*/

kAEOpenDocuments = 'odoc', /*event ID for Open */

/* Documents event*/

kAEPrintDocuments = 'pdoc', /*event ID for Print */

/* Documents event*/

kAEQuitApplication = 'quit', /*event ID for Quit */

/* Application event*/

kAEAnswer = 'ansr', /*event ID for Apple event */

/* replies*/

kAEApplicationDied = 'obit' /*event ID for Application */

/* Died event*/

};

/*constants for setting the sendMode parameter of AESend*/

enum {

kAENoReply = 0x00000001, /*client doesn't want reply*/

kAEQueueReply = 0x00000002, /*client wants server to */

/* reply in event queue*/

kAEWaitReply = 0x00000003, /*client wants a reply and */

/* will give up processor*/

kAENeverInteract = 0x00000010, /*server application should */

/* not interact with user */

/* for this Apple event*/

kAECanInteract = 0x00000020, /*server may interact with */

/* user for this Apple event */

/* to supply information*/

kAEAlwaysInteract = 0x00000030, /*server may interact with */

/* user for this Apple event */

/* even if no information */

/* is required*/

kAECanSwitchLayer = 0x00000040, /*server should come */

/* directly to foreground */

/* when appropriate*/

kAEDontReconnect = 0x00000080, /*don't reconnect if there */

/* is a PPC session closed */

/* error*/

kAEWantReceipt = nReturnReceipt, /*client wants return */

/* receipt*/

kAEDontRecord = 0x00001000, /*don't record this event*/

kAEDontExecute = 0x00002000, /*don't excecute this event*/
Summary of Responding to Apple Events 4-121

C H A P T E R 4

Responding to Apple Events
/*constants for setting the sendPriority parameter of AESend*/

kAENormalPriority = 0x00000000, /*post message at end of */

/* event queue*/

kAEHighPriority = nAttnMsg /*post message at front of */

/* event queue*/

};

/*event IDs for recording events; available only in version 1.01 and */

/* later versions of the Apple Event Manager*/

enum {

kAEStartRecording = 'reca', /*event ID for Start */

/* Recording event*/

kAEStopRecording = 'recc', /*event ID for Stop */

/* Recording event*/

kAENotifyStartRecording = 'rec1', /*event ID for Recording On*/

/* event*/

kAENotifyStopRecording = 'rec0', /*event ID for Recording Off */

/* event*/

kAENotifyRecording = 'recr' /*event ID for Receive */

/* Recordable Event event*/

};

enum {

/*constant for the returnID parameter of AECreateAppleEvent*/

kAutoGenerateReturnID = -1, /*tells Apple Event Manager */

/* to generate a unique */

/* return ID*/

/*constant for transaction IDs*/

kAnyTransactionID = 0, /*the Apple event is not */

/* part of a transaction*/

/*constants for timeout durations*/

kAEDefaultTimeout = -1, /*use default timeout value*/

kNoTimeOut = -2, /*never time out*/

/*constants for the dispatcher parameter of AEResumeTheCurrentEvent*/

kAENoDispatch = 0, /*don't redispatch the */

/* Apple event*/

kAEUseStandardDispatch = -1 /*redispatch the Apple event */

/* by using its entry in the */

/* Apple event dispatch table*/

};
4-122 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Data Types 4

typedef unsigned long AEEventClass; /*event class for a */

/* high-level event*/

typedef unsigned long AEEventID; /*event ID for a high-level */

/* event*/

typedef unsigned long AEKeyword; /*keyword for a descriptor */

/* record*/

typedef ResType DescType; /*descriptor type*/

struct AEDesc { /*descriptor record*/

DescType descriptorType; /*type of data being passed*/

Handle dataHandle; /*handle to data being passed*/

};

typedef struct AEDesc AEDesc;

struct AEKeyDesc { /*keyword-specified */

/* descriptor record*/

AEKeyword descKey; /*keyword*/

AEDesc descContent; /*descriptor record*/

};

typedef struct AEKeyDesc AEKeyDesc;

typedef AEDesc AEAddressDesc; /*address descriptor record*/

typedef AEDesc AEDescList; /*list of descriptor records*/

typedef AEDescList AERecord; /*list of keyword-specified */

/* descriptor records*/

typedef AERecord AppleEvent; /*list of attributes and */

/* parameters necessary for */

/* an Apple event*/

typedef long AESendMode; /*flags that determine how */

/* an Apple event is sent*/

typedef short AESendPriority; /*send priority of an Apple */

/* event*/

enum { kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll }; /*what processes may */

typedef unsigned char AEInteractAllowed; /* interact with the user*/
Summary of Responding to Apple Events 4-123

C H A P T E R 4

Responding to Apple Events
enum { kAEUnknownSource, kAEDirectCall, kAESameProcess, kAELocalProcess,

 kAERemoteProcess }; /*the source of an Apple */

typedef unsigned char AEEventSource; /* event*/

enum { kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */

typedef unsigned char AEArrayType; /* array*/

union AEArrayData { /*data for an Apple event */

short kAEDataArray[1]; /* array*/

char kAEPackedArray[1];

Handle kAEHandleArray[1];

AEDesc kAEDescArray[1];

AEKeyDesc kAEKeyDescArray[1];

};

typedef union AEArrayData AEArrayData;

typedef AEArrayData *AEArrayDataPointer;

typedef ProcPtr EventHandlerProcPtr; /*pointer to an Apple event */

/* handler*/

typedef ProcPtr IdleProcPtr; /*pointer to an application's */

/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Responding to Apple Events 4

Creating and Managing the Apple Event Dispatch Tables

pascal OSErr AEInstallEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr handler,
long handlerRefcon, Boolean isSysHandler);

pascal OSErr AEGetEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr *handler,
long *handlerRefcon, Boolean isSysHandler);

pascal OSErr AERemoveEventHandler
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
EventHandlerProcPtr handler,
Boolean isSysHandler);
4-124 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Dispatching Apple Events

pascal OSErr AEProcessAppleEvent

(const EventRecord *theEventRecord);

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

pascal OSErr AEGetParamPtr (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetParamDesc (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

pascal OSErr AEGetAttributePtr
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetAttributeDesc
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

Counting the Items in Descriptor Lists

pascal OSErr AECountItems (const AEDescList *theAEDescList,
long *theCount);

Getting Items From Descriptor Lists

pascal OSErr AEGetNthPtr (const AEDescList *theAEDescList, long index,
DescType desiredType, AEKeyword *theAEKeyword,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetNthDesc (const AEDescList *theAEDescList, long index,
DescType desiredType, AEKeyword *theAEKeyword,
AEDesc *result);

pascal OSErr AEGetArray (const AEDescList *theAEDescList,
AEArrayType arrayType,
AEArrayDataPointer arrayPtr, Size maximumSize,
DescType *itemType, Size *itemSize,
long *itemCount);
Summary of Responding to Apple Events 4-125

C H A P T E R 4

Responding to Apple Events
Getting Data and Keyword-Specified Descriptor Records Out of AE Records

pascal OSErr AEGetKeyPtr (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType desiredType,
DescType *typeCode, void* dataPtr,
Size maximumSize, Size *actualSize);

pascal OSErr AEGetKeyDesc (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType desiredType,
AEDesc *result);

Requesting User Interaction

pascal OSErr AESetInteractionAllowed
(AEInteractAllowed level);

pascal OSErr AEGetInteractionAllowed
(AEInteractAllowed *level);

pascal OSErr AEInteractWithUser
(long timeOutInTicks, NMRecPtr nmReqPtr,
IdleProcPtr idleProc);

Requesting More Time to Respond to Apple Events

pascal OSErr AEResetTimer (const AppleEvent *reply);

Suspending and Resuming Apple Event Handling

pascal OSErr AESuspendTheCurrentEvent
(const AppleEvent *theAppleEvent);

pascal OSErr AEResumeTheCurrentEvent
(const AppleEvent *theAppleEvent,
const AppleEvent *reply,
EventHandlerProcPtr dispatcher,
long handlerRefcon);

pascal OSErr AESetTheCurrentEvent
(const AppleEvent *theAppleEvent);

pascal OSErr AEGetTheCurrentEvent
(AppleEvent *theAppleEvent);

Getting the Sizes and Descriptor Types of Descriptor Records

pascal OSErr AESizeOfNthItem
(const AEDescList *theAEDescList, long index,
DescType *typeCode, Size *dataSize);

pascal OSErr AESizeOfKeyDesc
(const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);
4-126 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
pascal OSErr AESizeOfParam (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);

pascal OSErr AESizeOfAttribute
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType *typeCode,
Size *dataSize);

Deleting Descriptor Records

pascal OSErr AEDeleteItem (const AEDescList *theAEDescList, long index);

pascal OSErr AEDeleteKeyDesc
(const AERecord *theAERecord,
AEKeyword theAEKeyword);

pascal OSErr AEDeleteParam (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword);

Deallocating Memory for Descriptor Records

pascal OSErr AEDisposeDesc (AEDesc *theAEDesc);

Coercing Descriptor Types

pascal OSErr AECoercePtr (DescType typeCode, const void* dataPtr,
Size dataSize, DescType toType,
AEDesc *result);

pascal OSErr AECoerceDesc (const AEDesc *theAEDesc, DescType toType,
AEDesc *result);

Creating and Managing the Coercion Handler Dispatch Tables

pascal OSErr AEInstallCoercionHandler
(DescType fromType, DescType toType,
ProcPtr handler, long handlerRefcon,
Boolean fromTypeIsDesc, Boolean isSysHandler);

pascal OSErr AEGetCoercionHandler
(DescType fromType, DescType toType,
ProcPtr *handler, long *handlerRefcon,
Boolean *fromTypeIsDesc,
Boolean isSysHandler);

pascal OSErr AERemoveCoercionHandler
(DescType fromType, DescType toType,
ProcPtr handler, Boolean isSysHandler);
Summary of Responding to Apple Events 4-127

C H A P T E R 4

Responding to Apple Events
Creating and Managing the Special Handler Dispatch Tables

pascal OSErr AEInstallSpecialHandler
(AEKeyword functionClass, ProcPtr handler,
Boolean isSysHandler);

pascal OSErr AEGetSpecialHandler
(AEKeyword functionClass, ProcPtr *handler,
Boolean isSysHandler);

pascal OSErr AERemoveSpecialHandler
(AEKeyword functionClass, ProcPtr handler,
Boolean isSysHandler);

Getting Information About the Apple Event Manager
/*available only in version 1.01 and later versions of Apple Event Manager*/

pascal OSErr AEManagerInfo (AEKeyword keyword, long *result);

Application-Defined Routines 4

pascal OSErr MyEventHandler (const AppleEvent *theAppleEvent,
const AppleEvent *reply, long handlerRefcon);

pascal OSErr MyCoercePtr (DescType typeCode, const void* dataPtr,
Size dataSize, DescType toType,
long handlerRefcon, AEDesc *result);

pascal OSErr MyCoerceDesc (const AEDesc *theAEDesc, DescType toType, long
handlerRefcon, AEDesc *result);

Assembly-Language Summary 4

Trap Macros 4

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$011E AESetInteractionAllowed

$0204 AEDisposeDesc

$0219 AEResetTimer

$021A AEGetTheCurrentEvent

$021B AEProcessAppleEvent
4-128 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
Result Codes 4

$021D AEGetInteractionAllowed

$022B AESuspendTheCurrentEvent

$022C AESetTheCurrentEvent

$0407 AECountItems

$040E AEDeleteItem

$0413 AEDeleteKeyDesc

$0413 AEDeleteParam

$0441 AEManagerInfo

$0500 AEInstallSpecialHandler

$0501 AERemoveSpecialHandler

$052D AEGetSpecialHandler

$0603 AECoerceDesc

$061C AEInteractWithUser

$0720 AERemoveEventHandler

$0723 AERemoveCoercionHandler

$0812 AEGetKeyDesc

$0812 AEGetParamDesc

$0818 AEResumeTheCurrentEvent

$0826 AEGetAttributeDesc

$0828 AESizeOfAttribute

$0829 AESizeOfKeyDesc

$0829 AESizeOfParam

$082A AESizeOfNthItem

$091F AEInstallEventHandler

$0921 AEGetEventHandler

$0A02 AECoercePtr

$0A22 AEInstallCoercionHandler

$0A0B AEGetNthDesc

$0B24 AEGetCoercionHandler

$0D0C AEGetArray

$0E11 AEGetKeyPtr

$0E11 AEGetParamPtr

$0E15 AEGetAttributePtr

$100A AEGetNthPtr

Selector Routine
Summary of Responding to Apple Events 4-129

C H A P T E R 4

Responding to Apple Events
noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type
errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or

no object callback function found
errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENot
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type
4-130 Summary of Responding to Apple Events

C H A P T E R 4

Responding to Apple Events

4
R

esponding to A
pple E

vents
errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAnd, kAEOr, or kAENot

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on
Summary of Responding to Apple Events 4-131

C H A P T E R 5

5

Figure 5-0
Listing 5-0
Table 5-0

5 Creating and Sending Apple

Contents

Events

Creating an Apple Event 5-3
Adding Parameters to an Apple Event 5-5
Specifying Optional Parameters for an Apple Event 5-7
Specifying a Target Address 5-10

Creating an Address Descriptor Record 5-11
Addressing an Apple Event for Direct Dispatching 5-13

Sending an Apple Event 5-13
Dealing With Timeouts 5-21
Writing an Idle Function 5-22
Writing a Reply Filter Function 5-24

Reference to Creating and Sending Apple Events 5-25
Routines for Creating and Sending Apple Events 5-25

Creating Apple Events 5-26
Creating and Duplicating Descriptor Records 5-27
Creating Descriptor Lists and AE Records 5-29
Adding Items to Descriptor Lists 5-30
Adding Data and Descriptor Records to AE Records 5-33
Adding Parameters and Attributes to Apple Events 5-34
Sending Apple Events 5-38

Application-Defined Routines 5-42
Summary of Creating and Sending Apple Events 5-45

Pascal Summary 5-45
Constants 5-45
Data Types 5-49
Routines for Creating and Sending Apple Events 5-51
Application-Defined Routines 5-52
Contents 5-1

C H A P T E R 5

C Summary 5-52
Constants 5-52
Data Types 5-57
Routines for Creating and Sending Apple Events 5-58
Application-Defined Routines 5-60

Assembly-Language Summary 5-60
Trap Macros 5-60

Result Codes 5-61
5-2 Contents

C H A P T E R 5

5

C
reating and S

ending A
pple E

vents

Creating and Sending Apple Events 5

This chapter describes how your application can use the Apple Event Manager to create
and send Apple events. If you want to factor your application for recording, or if you
want your application to send Apple events directly to other applications, you can use
Apple Event Manager routines to create and send Apple events.

Before you read this chapter, you should be familiar with the chapters “Introduction to
Interapplication Communication,” “Introduction to Apple Events,” and “Responding to
Apple Events” in this book. If you are factoring your application, you should also be
familiar with the chapter “Recording Apple Events” in this book.

This chapter provides the basic information you need to create and send Apple events
from your application. To send core and functional-area Apple events, your application
must also be able to create object specifier records. For information about object specifier
records, see the chapter “Resolving and Creating Object Specifier Records” in this book.

To allow your application to send Apple events to applications on other computers, you
may wish to use the PPCBrowser function, which is described in the chapter
“Program-to-Program Communications Toolbox” in this book.

The first section in this chapter, “Creating an Apple Event,” describes how to

■ create an Apple event

■ add parameters to an Apple event

■ specify optional Apple event parameters

■ specify a target address

The section “Sending an Apple Event” describes how to

■ send an Apple event

■ deal with timeouts

■ write an idle function

■ write a reply filter function

Creating an Apple Event 5

You create an Apple event by using the AECreateAppleEvent function. You supply
parameters that specify the event class and event ID, the target address, the return ID,
and the transaction ID, and a buffer for the returned Apple event. The
AECreateAppleEvent function creates and returns, in the buffer you specify, an Apple
event with the attributes set as your application requested. You should not directly
manipulate the contents of the Apple event; rather, use Apple Event Manager functions
to add additional attributes or parameters to it.
Creating an Apple Event 5-3

C H A P T E R 5

Creating and Sending Apple Events

The example that follows creates an imaginary Multiply event using the
AECreateAppleEvent function.

myErr := AECreateAppleEvent(kArithmeticClass, kMultEventID,

 targetAddress, kAutoGenerateReturnID,

 kAnyTransactionID, theAppleEvent);

The event class, specified by the kArithmeticClass constant, identifies this event as
belonging to a class of Apple events for arithmetic operations. The event ID specifies the
particular Apple event within the class—in this case, an Apple event that performs
multiplication.

You specify the target of the Apple event in the third parameter to
AECreateAppleEvent. The target address can identify an application on the local
computer or another computer on the network. You can specify the address using a
target ID record or session reference number. For processes on the local computer, you
can also use a process serial number or application signature to specify the address. See
“Specifying a Target Address” on page 5-10 for more information.

In the fourth parameter, you specify the return ID of the Apple event, which associates
this Apple event with the server’s reply. The AECreateAppleEvent function assigns
the specified return ID value to the keyReturnIDAttr attribute of the Apple event. If a
server returns a standard reply Apple event (that is, an event of event class 'aevt'
and event ID 'ansr') in response to this event, the Apple Event Manager assigns the
reply event the same return ID. When you receive a reply Apple event, you can check the
keyReturnIDAttr attribute to determine which outstanding Apple event the reply is
responding to. You can use the kAutoGenerateReturnID constant to request that the
Apple Event Manager generate a return ID that is unique to this session for the Apple
event. Otherwise, you are responsible for making it unique.

The fifth parameter specifies the transaction ID attribute of the Apple event. A
transaction is a sequence of Apple events that are sent back and forth between the client
and server applications, beginning with the client’s initial request for a service. All Apple
events that are part of one transaction must have the same transaction ID.

You can use a transaction ID to indicate that an Apple event is one of a sequence of
Apple events related to a single transaction. The kAnyTransactionID constant
indicates that the Apple event is not part of a transaction.

The AECreateAppleEvent function creates an Apple event with only the specified
attributes and no parameters. To add parameters or additional attributes, you can use
other Apple Event Manager functions.
5-4 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5

C
reating and S

ending A
pple E

vents

Adding Parameters to an Apple Event 5
You can use the AEPutParamPtr or AEPutParamDesc function to add parameters to
an Apple event. When you use either of these functions, the Apple Event Manager adds
the specified parameter to the Apple event.

Use the AEPutParamPtr function when you want to add data specified in a buffer as
the parameter of an Apple event. You specify the Apple event, the keyword of the
parameter to add, the descriptor type, a buffer that contains the data, and the size of this
buffer as parameters to the AEPutParamPtr function. The AEPutParamPtr function
adds the data to the Apple event as a parameter with the specified keyword.

For example, this code adds a parameter to the Multiply event using the
AEPutParamPtr function:

CONST keyOperand1 = 'OPN1';

VAR

number1: LongInt;

theAppleEvent: AppleEvent;

myErr: OSErr;

number1 := 10;

myErr := AEPutParamPtr(theAppleEvent, keyOperand1,

 typeLongInteger, @number1,

 SizeOf(number1));

In this example, the Apple Event Manager adds the parameter containing the first
number to the specified Apple event.

Use the AEPutParamDesc function to add a descriptor record to an Apple event. The
descriptor record you specify must already exist. To create or get a descriptor record, you
can use the AECreateDesc, AEDuplicateDesc, and other Apple Event Manager
functions that return a descriptor record.

When you create a descriptor record using the AECreateDesc function, you specify the
descriptor type, a buffer that contains the data, and the size of this buffer as parameters.
The AECreateDesc function returns the descriptor record that describes the data.
Creating an Apple Event 5-5

C H A P T E R 5

Creating and Sending Apple Events

This example creates a descriptor record for the second parameter of the Multiply event:

VAR

number2: LongInt;

multParam2Desc: AEDesc;

myErr: OSErr;

number2 := 8;

myErr := AECreateDesc(typeLongInteger, @number2, SizeOf(number2),

 multParam2Desc);

In this example, the AECreateDesc function creates a descriptor record with the
typeLongInteger descriptor type and the data identified in the number2 variable.

Once you have created a descriptor record, you can use AEPutParamDesc to add the
data to an Apple event parameter. You specify the Apple event to add the parameter to,
the keyword of the parameter, and the descriptor record of the parameter as parameters
to the AEPutParamDesc function.

This example adds a second parameter to the Multiply event using the
AEPutParamDesc function:

CONST keyOperand2 = 'OPN2';

myErr := AEPutParamDesc(theAppleEvent, keyOperand2,

multParam2Desc);

This example adds the keyOperand2 keyword and the descriptor record created in the
previous example as the second parameter to the specified Apple event.

You can also create a descriptor record without using Apple Event Manager routines. For
example, this example generates an alias descriptor record from an existing alias handle:

WITH myAliasDesc DO

BEGIN

descriptorType := typeAlias;

dataHandle := myAliasHandle;

END;
5-6 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5

C
reating and S

ending A
pple E

vents

Whatever method you use to create a descriptor record, you can add it to an Apple event
parameter by using AEPutParamDesc.

After adding parameters to an Apple event, you can send the Apple event using the
AESend function. See “Sending an Apple Event,” which begins on page 5-13, for
information about using this function.

Specifying Optional Parameters for an Apple Event 5
The parameters for a given Apple event are listed in the Apple Event Registry: Standard
Suites as either required or optional. Your application does not usually have to include
Apple event parameters that are listed as optional; the target application uses default
values for parameters that are listed as optional if your application does not provide
them. The Apple Event Registry: Standard Suites defines the default value a target
application should use for each optional parameter of a specific Apple event.

The guidelines listed in the Apple Event Registry: Standard Suites for which parameters
should be considered optional and which should be considered required are not
enforced by the Apple Event Manager. Instead, the source application indicates which
Apple event parameters it considers optional by listing the keywords for those
parameters in the keyOptionalKeywordAttr attribute.

The keyOptionalKeywordAttr attribute does not contain the optional parameters;
it simply lists the keywords of any parameters for the Apple event that the source
application wants to identify as optional. Although the source application is responsible
for providing this information in the keyOptionalKeywordAttr attribute of an Apple
event, it is not required to provide this attribute.

If a keyword for an Apple event parameter is not included in the
keyOptionalKeywordAttr attribute, the source application expects the target
application to understand the Apple event parameter identified by that keyword. If a
target application cannot understand the parameter, it should return the result code
errAEParamMissed and should not attempt to handle the event.

If a keyword for an Apple event parameter is included in the
keyOptionalKeywordAttr attribute, the source application does not
require the target application to understand the Apple event parameter identified
by that keyword. If the target application cannot understand a parameter whose
keyword is included in the keyOptionalKeywordAttr attribute, it should ignore
that parameter and attempt to handle the Apple event as it normally does.
Creating an Apple Event 5-7

C H A P T E R 5

Creating and Sending Apple Events

A source application can choose not to list the keyword for an Apple event parameter in
the keyOptionalKeywordAttr attribute even if that parameter is listed in the
Apple Event Registry: Standard Suites as an optional parameter. This has the effect of
forcing the target application to treat the parameter as required for a particular Apple
event. If the target application supports the parameter, it should handle the Apple event
as the client application expects. If the target application does not support the parameter
and calls an application-defined routine such as MyGotRequiredParams to check
whether it has received all the required parameters, it finds that there’s another
parameter that the client application considered required, and should return the result
code errAEParamMissed.

If a source application wants a target application to attempt to handle an Apple event
regardless of whether the target application supports a particular Apple event parameter
included in that Apple event, the source application should list the keyword for that
parameter in the keyOptionalKeywordAttr attribute.

It is up to the source application to decide whether to list a parameter that is described as
optional in the Apple Event Registry: Standard Suites in the keyOptionalKeywordAttr
attribute of an Apple event. For example, suppose a source application has extended the
definition of the Print event to include an optional keyColorOrGrayscale parameter
that specifies printing in color or gray scale rather than black and white. The source
application might decide whether or not to list the keyword keyColorOrGrayscale in
the keyOptionalKeywordAttr attribute according to the characteristics of the print
request. If the source application requires the target application to print a document
in color, the source application could choose not to add the keyword
keyColorOrGrayscale to the keyOptionalKeywordAttr attribute; in this case,
only target applications that supported the keyColorOrGrayscale parameter would
attempt to handle the event. If the source application does not require the document
printed in color, it could choose to add the keyword keyColorOrGrayscale to the
keyOptionalKeywordAttr attribute; in this case, the target application will attempt to
handle the event regardless of whether it supports the keyColorOrGrayscale
parameter.

Your application can add optional parameters to an Apple event the same way
it adds required parameters, using the AECreateDesc, AEPutParamPtr,
and AEPutParamDesc functions as described in the previous section, “Adding
Parameters to an Apple Event.” If your application chooses to provide the
keyOptionalKeywordAttr attribute for an Apple event, it should first create a
descriptor list that specifies the keywords of the optional parameters, then add it to
the Apple event as a keyOptionalKeywordAttr attribute.
5-8 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Listing 5-1 shows an application-defined routine, MyCreateOptionalKeyword, that
creates the keyOptionalKeywordAttr attribute for the Create Publisher event.

Listing 5-1 Creating the optional keyword for the Create Publisher event

FUNCTION MyCreateOptionalKeyword

(VAR createPubAppleEvent: AppleEvent)

 : OSErr;

VAR

optionalList: AEDescList;

myOptKeyword1: AEKeyword;

myOptKeyword2: AEKeyword;

myErr: OSErr;

ignoreErr: OSErr;

BEGIN

myOptKeyword1 := keyDirectObject;

{create an empty descriptor list}

myErr := AECreateList(NIL, 0, FALSE, optionalList);

IF myErr = noErr THEN

BEGIN

{add the keyword of the first optional parameter}

myErr := AEPutPtr(optionalList, 1, typeKeyword,

@myOptKeyword1, SizeOf(myOptKeyword1));

IF myErr = noErr THEN

BEGIN

{add the keyword of the next optional parameter}

myOptKeyword2 := keyAEEditionFileLoc;

myErr := AEPutPtr(optionalList, 2, typeKeyword,

@myOptKeyword2, SizeOf(myOptKeyword2));

END;

IF myErr = noErr THEN

{create the keyOptionalKeywordAttr attribute and add it }

{ to the Create Publisher event}

myErr := AEPutAttributeDesc(createPubAppleEvent,

 keyOptionalKeywordAttr,

 optionalList);

END;

ignoreErr := AEDisposeDesc(optionalList);

MyCreateOptionalKeyword := myErr;

END;
Creating an Apple Event 5-9

C H A P T E R 5

Creating and Sending Apple Events
The MyCreateOptionalKeyword function shown in Listing 5-1 adds to a descriptor
list the keyword of each parameter that the source application considers optional. Each
keyword is added as a descriptor record with the descriptor type typeKeyword. The
function specifies that the target application can handle the Create Publisher event
without supporting parameters identified by the keywords keyDirectObject and
keyAEEditionFileLoc. (These are the parameters that specify the Apple event object
to publish and the location of the edition container; if these parameters are missing, the
target application creates a publisher for the current selection using the application’s
default edition container.) After adding these keywords to the descriptor list, the
function creates the keyOptionalKeywordAttr attribute using the
AEPutAttributeDesc function.

Typically a target application does not examine the keyOptionalKeywordAttr
attribute directly. Instead, a target application that supports a parameter listed as
optional in the Apple Event Registry: Standard Suites attempts to extract it from the
Apple event (using AEGetParamDesc, for example). If it can’t extract the parameter, the
target application uses the default value, if any, listed in the Apple Event Registry. A target
application can use the keyMissedKeywordAttr attribute to return the first required
parameter (that is, considered required by the source application), if any, that it did not
retrieve from the Apple event. The keyMissedKeywordAttr attribute does not return
any parameters whose keywords are listed in the keyOptionalKeywordAttr attribute
of the Apple event.

Specifying a Target Address 5
When you create an Apple event, you must specify the address of the target. The
target address identifies the particular application or process to which you want to send
the Apple event. You can send Apple events to applications on the local computer or on
remote computers on the network.

These are the descriptor types that identify the four methods of addressing an
Apple event:

To address an Apple event to a target on a remote computer on the network, you must
use either the typeSessionID or typeTargetID descriptor type.

If your application sends an Apple event to itself, it should address the Apple event
using a process serial number of kCurrentProcess. This is the fastest way for your
application to send an Apple event to itself. For more information, see “Addressing an
Apple Event for Direct Dispatching” on page 5-13.

You can use any of the four address types when sending an Apple event to another
application on the local computer. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes all four types of addresses. Your application can

typeApplSignature The application signature of the target

typeSessionID The session reference number of the target

typeTargetID The target ID record of the target

typeProcessSerialNumber The process serial number of the target
5-10 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
also use another address type if it provides a coercion handler that coerces the address
type into one of the four address types that the Apple Event Manager recognizes. See
“Writing and Installing Coercion Handlers,” which begins on page 4-41, for more
information.

To allow the user to choose the target of an Apple event, use the PPCBrowser function.
This function presents a standard user interface for choosing a target application, much
as the Standard File Package provides a standard user interface for opening and saving
files. The PPCBrowser function returns, in a target ID record, information about the
application the user chose. Listing 5-3 on page 5-12 shows how to use the PPCBrowser
function to let the user choose a target.

Creating an Address Descriptor Record 5

You specify the address using an address descriptor record (a descriptor record of data
type AEAddressDesc). You must create a descriptor record of this type and then add it
to the Apple event using the AECreateAppleEvent function.

You can use the AECreateDesc function to create address descriptor records for any of
the four types of target addresses. Listing 5-2 shows four possible ways to create an
address, each using a different address type.

Listing 5-2 Creating a target address

PROCEDURE MySetTargetAddresses(VAR targetAddress1,

 targetAddress2, targetAddress3,

 targetAddress4: AEAddressDesc;

 toTargetID: TargetID;

 thePSN: ProcessSerialNumber;

 theSignature: OSType;

 theSessionRef: PPCSessRefNum);

VAR

myErr: OSErr;

BEGIN

myErr := AECreateDesc(typeTargetID, @toTargetID,

 SizeOf(toTargetID), targetAddress1);

myErr := AECreateDesc(typeProcessSerialNumber, @thePSN,

 SizeOf(thePSN), targetAddress2);

myErr := AECreateDesc(typeApplSignature, @theSignature,

 SizeOf(theSignature), targetAddress3);

myErr := AECreateDesc(typeSessionID, @theSessionRef,

 SizeOf(theSessionRef), targetAddress4);

{add your own error checking}

END;
Creating an Apple Event 5-11

C H A P T E R 5

Creating and Sending Apple Events
To create an address descriptor record, specify the following as parameters to
AECreateDesc: the descriptor type for the address, a pointer to the buffer containing
the address, and the size of the buffer. The AECreateDesc function returns an address
descriptor record with the specified characteristics.

After creating an address, you can specify it as a parameter to the
AECreateAppleEvent function. See “Creating an Apple Event,” which begins on
page 5-3, for an example using the AECreateAppleEvent function.

When you specify an address to the AECreateAppleEvent function, the Apple Event
Manager stores the address in the keyAddressAttr attribute of the Apple event.

If you use the PPCBrowser function to allow the user to choose an Apple event’s target,
your application must create a target ID record based on the user’s choice. Listing 5-3
shows how to create a target ID record using the information returned from the
PPCBrowser function and create an address descriptor record using the
AECreateDesc function.

Listing 5-3 Specifying a target address in an Apple event by using the PPCBrowser function

FUNCTION MyGetTargetAddress (myPrompt: Str255; myAppStr: Str255;

VAR myPortInfo: PortInfoRec;

VAR targetAddress: AEAddressDesc;

VAR toTargetID: targetID): OSErr;

VAR

myErr: OSErr;

BEGIN

{use PPCBrowser to let user choose the target}

myErr := PPCBrowser(myPrompt, myAppStr, FALSE,

toTargetID.location,

myPortInfo, NIL, '');

MyGetTargetAddress := myErr;

IF myErr <> noErr THEN Exit(MyGetTargetAddress);

toTargetID.name := myPortInfo.name;

{create the descriptor record for the target address}

MyGetTargetAddress := AECreateDesc(typeTargetID, @toTargetID,

 SizeOf(toTargetID),

targetAddress);

END;

See the chapter “Program-to-Program Communications Toolbox” in this book for more
information on using the PPCBrowser function.
5-12 Creating an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Addressing an Apple Event for Direct Dispatching 5

As described in the chapter “Recording Apple Events” in this book, a recordable
application must send itself Apple events in response to user actions. Your application
can send itself Apple events by using an address descriptor record of descriptor type
typeProcessSerialNumber with the lowLongOfPSN field set to kCurrentProcess
and the highLongOfPSN set to 0. The Apple Event Manager processes such Apple
events immediately, executing the appropriate Apple event handler directly without
going through the normal event-processing sequence. For this reason, your application
will not appear to run more slowly when it sends Apple events to itself.

Apple events your application sends to itself this way do not appear in your
application’s high-level event queue. This not only speeds up delivery of the event but
also avoids situations in which an Apple event sent in response to a user action arrives in
the event queue after some other event that really occurred later than the user action. For
example, suppose a user chooses Cut from the Edit menu and then clicks in another
window. If the Cut event arrives in the queue after the window activate event, a selection
in the wrong window might be cut.

Your application can send events to itself using other forms of addressing, such as the
true process serial number returned by GetCurrentProcess. Because direct
dispatching avoids event sequence problems, applications should generally send events
to themselves by using an address descriptor record of descriptor type
typeProcessSerialNumber with the kCurrentProcess constant rather than using
a true process serial number or an application signature.

IMPORTANT

When Apple event recording has been turned on, the Apple Event
Manager records every event that your application sends to itself unless
you specify the kAEDontRecord flag in the sendMode parameter of the
AESend function. ▲

Sending an Apple Event 5

To send an Apple event, you first create an Apple event, add parameters and attributes
to it, and then use the AESend function to send it.

When you send an Apple event, you specify various options to indicate how the server
should handle the Apple event. You request a user interaction level from the server and
specify whether the server can switch directly to the foreground if user interaction is
needed, whether your application is willing to wait for a reply Apple event, whether
reconnection is allowed, and whether your application wants a return receipt for the
Apple event.
Sending an Apple Event 5-13

C H A P T E R 5

Creating and Sending Apple Events
You specify these options by setting flags in the sendMode parameter for AESend. Here
are the constants that represent these flags:

CONST kAENoReply = $00000001;{client doesn't want reply}

kAEQueueReply = $00000002;{client wants Apple Event }

{ Manager to return }

{ reply in event queue}

kAEWaitReply = $00000003;{client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010;{server application }

{ should not interact }

{ with user for this }

{ Apple event}

kAECanInteract = $00000020;{server may interact with }

{ user for this Apple }

{ event to supply }

{ information}

kAEAlwaysInteract = $00000030;{server may interact with }

{ user for this Apple }

{ event even if no }

{ information is required}

kAECanSwitchLayer = $00000040;{server should come }

{ directly to foreground }

{ when appropriate}

kAEDontReconnect = $00000080;{don't reconnect if there }

{ is a PPC session closed }

{ error}

kAEWantReceipt = nReturnReceipt;{client wants return }

 { receipt}

kAEDontRecord = $00001000;{don’t record this event}

kAEDontExecute = $00002000;{don’t execute this event}

If you want your application to receive a reply Apple event, specify the
kAEQueueReply or kAEWaitReply flag. If you want your application to receive
the reply Apple event in its event queue, use kAEQueueReply. If you want your
application to receive the reply Apple event in the reply parameter for AESend
and you are willing to give up the processor while it is waiting for the reply, use
kAEWaitReply. If you don’t want your application to receive a reply Apple event and
your application doesn’t need to wait for the server to handle the Apple event, specify
kAENoReply.
5-14 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Note
Before the Apple Event Manager sends a reply event back to the client
application, the keyAddressAttr attribute contains the address of the
client application. After the client receives the reply event, the
keyAddressAttr attribute contains the address of the server
application. ◆

If you specify kAENoReply or kAEQueueReply, the AESend function returns
immediately after using the Event Manager to send the event. In this case, a noErr
result code from AESend indicates that the Event Manager sent the Apple event; it does
not mean that the server accepted or handled the Apple event.

When AESend returns, the reply parameter does not contain valid data if your
application specifies kAENoReply or kAEQueueReply. The kAENoReply flag indicates
that the Apple Event Manager will not return the reply Apple event to your application.
The kAEQueueReply flag indicates that you want your application to receive the reply
via its event queue rather than the reply parameter of AESend. If you specify
kAEQueueReply, you must install a handler for the reply Apple event (event class
kCoreEventClass and event ID kAEAnswer).

If you specify kAEWaitReply, the Apple Event Manager uses the Event Manager to
send the event. The Apple Event Manager then calls the WaitNextEvent function on
behalf of your application, causing your application to yield the processor and giving the
server application a chance to receive and handle the Apple event. Your application
continues to yield the processor until the server handles the Apple event or the request
times out.

If you specify kAEWaitReply, you must provide an idle function. This function should
process any update events, null events, operating-system events, or activate events that
occur while your application is waiting for a reply. See “Writing an Idle Function,” which
begins on page 5-22, for sample code that shows an idle function.

You use one of the three flags—kAENeverInteract, kAECanInteract, and
kAEAlwaysInteract—to specify whether the server should interact with the user
when handling the Apple event. Specify kAENeverInteract if the server should not
interact with the user when handling the Apple event. You might specify this constant if
you don’t want the user to be interrupted while the server is handling the Apple event.

Use the kAECanInteract flag if the server should interact with the user when the user
needs to supply information to the server. Use the kAEAlwaysInteract flag if the
server should interact with the user whenever the server normally asks a user to confirm
a decision or interact in any other way, even if no additional information is needed from
the user. Note that it is the responsibility of the server and client applications to agree on
how to interpret the kAEAlwaysInteract flag.

If the client application does not set any one of the user interaction flags, the Apple Event
Manager sets a default, depending on the location of the target of the Apple event. If the
server application is on a remote computer, the Apple Event Manager sets the
kAENeverInteract flag as the default. If the target of the Apple event is on the local
computer, the Apple Event Manager sets the kAECanInteract flag as the default.
Sending an Apple Event 5-15

C H A P T E R 5

Creating and Sending Apple Events
The server application should call AEInteractWithUser if it needs to interact with the
user. If both the client and the server allow user interaction, the Apple Event Manager
attempts to bring the server to the foreground if it is not already the foreground process.
If both the kAECanSwitchLayer and the kAEWaitReply flags are set, and if the client
application is the active application on the local computer, the Apple Event Manager
brings the server application directly to the front. Otherwise, the Apple Event Manager
posts a notification request asking the user to bring the server application to the front,
regardless of whether the kAECanSwitchLayer flag is set. This ensures that the user
will not be interrupted by an unexpected application switch.

You should specify the kAECanSwitchLayer flag only when the client and server
applications reside on the same computer. In general, you should not set this flag if it
would be confusing or inconvenient to the user for the server application to come to the
front unexpectedly. This flag is ignored if you are sending an Apple event to a remote
computer.

Specify the kAEDontReconnect flag if the Apple Event Manager should not reconnect
if it receives a session closed error from the PPC Toolbox. If you don’t set this flag, the
Apple Event Manager automatically attempts to reconnect and reestablish the session.

Specify the kAEWantReceipt flag if your application wants notification that the server
application has accepted the Apple event. If you specify this flag, your application
receives a return receipt as a high-level event.

If you specify the kAEWantReceipt flag and the server application does not accept the
Apple event within the time specified by the timeOutInTicks parameter to AESend,
the AESend function returns a timeout error. Note that AESend also returns a timeout
error if your application sets the kAEWaitReply flag and does not receive the reply
Apple event within the time specified by the timeOutInTicks parameter.

Specify the kAEDontRecord flag if your application is sending an Apple event to itself
that you don’t want to be recorded. When Apple event recording has been turned on,
every event that your application sends to itself will be automatically recorded by the
Apple Event Manager except those sent with the kAEDontRecord flag set.

Specify the kAEDontExecute flag if your application is sending an Apple event to itself
for recording purposes only—that is, if you want the Apple Event Manager to send a
copy of the event to the recording process but you do not want your application actually
to receive the event. (For more information about when to use the kAEDontExecute
flag, see the chapter “Recording Apple Events” in this book.)

Listing 5-4 illustrates how to send a Multiply event (an imaginary Apple event for
multiplying two long integers). It first creates an Apple event, adds parameters
containing the numbers to multiply, then sends it, specifying various options. It also
illustrates how to handle the reply Apple event that contains the result.
5-16 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Note
If you want to send Apple events, your application must set flags in its
'SIZE' resource indicating that it can handle high-level events, and it
must provide handlers for the required Apple events. See “Accepting an
Apple Event” on page 4-5 for information on setting the appropriate
flags in the 'SIZE' resource and “Handling the Required Apple
Events” on page 4-11 for information on supporting the required
Apple events. ◆
Sending an Apple Event 5-17

C H A P T E R 5

Creating and Sending Apple Events
Listing 5-4 Sending an Apple event

FUNCTION MySendMultiplyEvent (serverAddress: AEAddressDesc;

firstOperand: LongInt; secondOperand: LongInt;

VAR replyResultLongInt: LongInt): OSErr;

CONST

kArithmeticClass = 'ARTH'; {event class for arithmetic }

{ Apple events}

kMultiplyEventID = 'MULT'; {event ID for Multiply event}

keyMultOperand1 = 'OPN1'; {keyword for first parameter}

keyMultOperand2 = 'OPN2'; {keyword for second parameter}

VAR

theAppleEvent: AppleEvent;

reply: AppleEvent;

returnedType: DescType;

actualSize: LongInt;

myErr: OSErr;

ignoreErr: OSErr;

errStr: Str255;

errNumber: LongInt;

BEGIN

myErr := AECreateAppleEvent(kArithmeticClass, kMultiplyEventID,

 serverAddress, kAutoGenerateReturnID,

 kAnyTransactionID, theAppleEvent);

IF myErr = noErr THEN

{add the first operand}

myErr := AEPutParamPtr(theAppleEvent, keyMultOperand1,

 typeLongInteger, @firstOperand,

 SizeOf(firstOperand));

{add the second operand with the proper keyword}

IF myErr = noErr THEN

myErr := AEPutParamPtr(theAppleEvent, keyMultOperand2,

 typeLongInteger, @secondOperand,

 SizeOf(secondOperand));

IF myErr = noErr THEN

myErr := AESend(theAppleEvent, reply, kAEWaitReply + kAENeverInteract,

 kAENormalPriority, 120, @MyIdleFunction, NIL);

IF myErr = noErr THEN {Apple event successfully sent}

BEGIN {Check whether it was successfully handled-- }

 { get result code returned by the server's handler}

myErr := AEGetParamPtr(reply, keyErrorNumber, typeLongInteger,

 returnedType, @errNumber, SizeOf(errNumber),

 actualSize);
5-18 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
IF (myErr = errAEDescNotFound) OR (errNumber = noErr) THEN

{if keyErrorNumber doesn't exist or server returned noErr }

{ then the Apple event was successfully handled--the reply Apple }

{ event contains the result in the direct parameter}

myErr := AEGetParamPtr(reply, keyDirectObject, typeLongInteger,

 returnedType, @replyResultLongInt,

 SizeOf(replyResultLongInt), actualSize)

ELSE

BEGIN {server returned an error, so get error string}

myErr := AEGetParamPtr(reply, keyErrorString, typeChar,

 returnedType, @errStr[1], SizeOf(errStr)-1,

 actualSize);

IF myErr = noErr THEN

BEGIN

IF actualSize > 255 THEN

actualSize := 255;

errStr[0] := chr(actualSize);

MyDisplayError(errStr);

END;

END;

ignoreErr := AEDisposeDesc(reply);

END

ELSE

BEGIN

{the Apple event wasn't successfully dispatched, }

{ the request timed out, the user canceled, or other error}

END;

ignoreErr := AEDisposeDesc(theAppleEvent);

MySendMultiplyEvent := myErr;

END;

The code in Listing 5-4 first creates an Apple event with kArithmeticClass as the
event class and kMultiplyEventID as the event ID. It also specifies the server of the
Apple event. See “Specifying a Target Address” on page 5-10 for information on
specifying a target address and “Creating an Apple Event,” which begins on page 5-3,
for more information on creating an Apple event.

The Multiply event shown in Listing 5-4 contains two parameters, each specifying a
number to multiply. See “Adding Parameters to an Apple Event” on page 5-5 for
examples of how to specify the parameters for the AEPutParamPtr function.

After adding the parameters to the event, the code uses AESend to send the event.
The first parameter to AESend specifies the Apple event to send—in this example, the
Multiply event. The next parameter specifies the reply Apple event.
Sending an Apple Event 5-19

C H A P T E R 5

Creating and Sending Apple Events
This example specifies kAEWaitReply in the third parameter, indicating that the client
is willing to yield the processor for the specified timeout value (120 ticks, or 2 seconds).
The kAENeverInteract flag indicates that the server should not interact with the user
when processing the Apple event. The fourth parameter specifies that the Multiply event
is to be sent using normal priority (that is, placed at the end of the event queue). You can
specify the kAEHighPriority flag to place the event in the front of the event queue,
but this is not usually recommended.

The next to last parameter specifies the address of an idle function. If you specify
kAEWaitReply, you must provide an idle function. This function should process any
update events, null events, operating-system events, or activate events that occur while
your application is waiting for a reply. See “Writing an Idle Function,” which begins on
page 5-22, for sample code that shows an idle function.

The last parameter to AESend specifies a filter function. You can supply a filter function
to filter high-level events that your application may receive while waiting for a reply
Apple event. You can specify NIL for this parameter if you do not need to filter
high-level events while waiting for a reply. See “Writing a Reply Filter Function” on
page 5-24 for more information.

If you specify kAEWaitReply, a noErr result code from AESend indicates that the
Apple event was sent successfully, not that the server has completed the requested action
successfully. Therefore, you should find out whether a result code was returned from the
handler by checking the reply Apple event for the existence of either the
keyErrorNumber or keyErrorString parameter. If the keyErrorNumber parameter
does not exist or contains the noErr result code, you can use AEGetParamPtr to get the
parameter you’re interested in from the reply Apple event.

The MySendMultiplyEvent function in Listing 5-4 checks the function result of
AESend. If it is noErr, MySendMultiplyEvent checks the keyErrorNumber
parameter of the reply Apple event to determine whether the server successfully
handled the Apple event. If this parameter exists and indicates that an error occurred,
MySendMultiplyEvent gets the error string out of the keyErrorString parameter.
Otherwise, the server performed the request, and the reply Apple event contains the
answer to the multiplication request.

When you have finished using the Apple event specified in the AESend function and no
longer need the reply Apple event, you must dispose of both the original event and the
reply by calling the AEDisposeDesc function.

IMPORTANT

If your application sends Apple events to itself using a
typeProcessSerialNumber address descriptor record with the
lowLongOfPSN field set to kCurrentProcess, the Apple Event
Manager jumps directly to the appropriate Apple event handler without
going through the normal event-processing sequence. For this reason,
your application will not appear to run more slowly when it sends
Apple events to itself. For more information, see “Addressing an Apple
Event for Direct Dispatching” on page 5-13. ▲
5-20 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Dealing With Timeouts 5
When your application calls AESend and chooses to wait for the server application to
handle the Apple event, it can also specify the maximum amount of time it is willing to
wait for a response. You can specify a timeout value in the timeOutInTicks parameter
to AESend. You can either specify a particular length of time, in ticks, that your
application is willing to wait, or you can specify the kNoTimeOut constant or the
kAEDefaultTimeout constant.

Use the kNoTimeOut constant to indicate that your application is willing to wait forever
for a response from the server. You should use this value only if you are sure that the
server will respond in a reasonable amount of time. You should also implement a
method of checking whether the user wants to cancel. The idle function that you specify
as a parameter to AESend should check the event queue for any instances of
Command-period and immediately return TRUE as its function result if it finds a
request to cancel in the event queue.

Use the kAEDefaultTimeout constant if you want the Apple Event Manager to use a
default timeout value. The Apple Event Manager uses a timeout value of about one
minute if you specify this constant.

If you set the kAEWaitReply flag and the server doesn’t have a handler for the Apple
event, the server immediately returns the errAEEventNotHandled result code. If the
server doesn’t respond within the length of time specified by the timeout value, AESend
returns the errAETimeout result code and a reply Apple event that contains no data.
This result code does not necessarily mean that the server failed to perform the
requested action; it means only that the server did not complete processing within the
specified time. The server might still be processing the Apple event, and it might still
send a reply.

If the server finishes processing the Apple event sometime after the time specified in the
keyTimeoutAttr attribute has expired, it returns a reply Apple event to
AEProcessAppleEvent. The Apple Event Manager then adds the actual data to the
reply. Thus, your application can continue to check the reply Apple event to see if the
server has responded, even after the time expires. If the server has not yet sent the reply
when the client attempts to extract data from the reply Apple event, the Apple Event
Manager functions return the errAEReplyNotArrived result code. After the reply
Apple event returns from the server, the client can extract the data in the reply.

Additionally, the server can examine the keyTimeoutAttr attribute of the Apple event
to determine the timeout value specified by the client. You can use the value of this
attribute as a rough estimate of how much time your handler has to respond. You can
assume that your handler has less time to respond than the timeout value, because
transmitting the Apple event uses some of the available time, as does transmitting the
reply Apple event back to the client, and the event may have been in the queue for a
while already.
Sending an Apple Event 5-21

C H A P T E R 5

Creating and Sending Apple Events
If you set the kAENoReply or kAEQueueReply flag, the Apple Event Manager ignores
any timeout value you specify, because your application is not waiting for the reply. An
attempt by the server to examine the keyTimeoutAttr attribute in this situation
generates the error errAEDescNotFound.

If your handler needs more time than is specified in the keyTimeoutAttr attribute, you
can reset the timer by using the AEResetTimer function. This function resets the
timeout value of an Apple event to its starting value.

Writing an Idle Function 5
This section describes how to write an idle function for use with the AESend or
AEInteractWithUser function.

When your application sends an Apple event, you can set one of three flags in the
sendMode parameter to AESend that specify how you want to deal with the reply:
kAENoReply if you don’t want your application to receive a reply, kAEQueueReply if
you want it to receive the reply in its event queue, or kAEWaitReply if you want the
reply returned in the reply parameter of AESend and you are willing to give up
the processor while your application is waiting for the reply.

If you specify kAENoReply or kAEQueueReply, the AESend function returns
immediately after using the Event Manager to send the event. If you specify
kAEWaitReply, the AESend function does not return until either the server application
finishes handling the Apple event or a specified amount of time expires. In this case the
AESend function calls WaitNextEvent on behalf of your application. This yields the
processor to other processes, so that the server has an opportunity to receive and process
the Apple event sent by your application. While your application is waiting for a reply, it
cannot receive events unless it provides an idle function.

If you provide a pointer to an idle function as a parameter to the AESend function,
AESend calls your idle function whenever an update event, null event, operating-system
event, or activate event is received for your application. To allow your application to
process high-level events that it receives while waiting for a reply, provide a reply filter
function. See the next section, “Writing a Reply Filter Function,” for more information.

Your application can yield the processor in a similar manner when it calls the
AEInteractWithUser function. If AEInteractWithUser needs to post a notification
request to bring your application to the front, your application yields the processor until
the user brings your application to the front. To receive events while waiting for the user
to bring your application to the front, you must provide an idle function.

If you provide a pointer to an idle function as a parameter to the
AEInteractWithUser function, AEInteractWithUser calls your idle function
whenever an update event, null event, operating-system event, or activate event is
received for your application.
5-22 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
An idle function must use this syntax:

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleepTime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

The event parameter is the event record of the event to process. The sleepTime
parameter and mouseRgn parameter are values that your idle function sets the first time
it is called; thereafter they contain the values your function set. Your idle function should
return a Boolean value that indicates whether your application wishes to continue
waiting. Set the function result to TRUE if your application is no longer willing to wait
for a reply from the server or for the user to bring the application to the front. Set the
function result to FALSE if your application is still willing to wait.

You use the sleepTime and mouseRgn parameters in the same way as the sleep and
mouseRgn parameters of the WaitNextEvent function. Specify in the sleepTime
parameter the amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending for it.

In the mouseRgn parameter, you specify a screen region that determines the conditions
under which your application is to receive notice of mouse-moved events. Your idle
function receives mouse-moved events only if your application is the front application
and the cursor strays outside the region you specify.

Your idle function receives only update events, null events, operating-system events, and
activate events. When your idle function receives a null event, it can use the idle time to
update a status dialog box, animate cursors, or perform similar tasks. If your idle
function receives any of the other events, it should handle the event as it normally would
if received in its event loop.

Listing 5-5 shows an example of an idle function for use with AESend or
AEInteractWithUser. The idle function processes update events, null events,
operating-system events, and activate events. The first time the function is called it
receives a null event. At this time, it sets the sleepTime and mouseRgn parameters. The
function continues to process events until the server finishes handling the Apple event or
the user brings the application to the front.

Your application should implement a method of checking whether the user wants to
cancel. The MyCancelInQueue function in Listing 5-5 checks the event queue for any
instances of Command-period and immediately returns TRUE as its function result if it
finds a request to cancel in the event queue.

Listing 5-5 An idle function

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleeptime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

BEGIN

MyIdleFunction := FALSE;
Sending an Apple Event 5-23

C H A P T E R 5

Creating and Sending Apple Events
{the MyCancelInQueue function checks for Command-period}

IF MyCancelInQueue THEN

BEGIN

MyIdleFunction := TRUE;

Exit(MyIdleFunction);

END;

CASE event.what OF

updateEvt,

activateEvt, {every idle function should handle }

osEvt: { these kinds of events}

BEGIN

MyAdjustCursor(event.where, gCursorRgn);

DoEvent(event);

END;

nullEvent:

BEGIN

{set the sleepTime and mouseRgn parameters}

mouseRgn := gCursorRgn;

sleeptime := 10; {use the correct value for your }

{ app}

DoIdle; {the application's idle handling}

END;

END; {of CASE}

END;

Writing a Reply Filter Function 5
If your application calls AESend and chooses to yield the processor to other processes
while waiting for a reply, you can provide an idle function to process update, null,
operating-system, and activate events, and you can provide a reply filter function to
process high-level events. The previous section describes how an idle function processes
events.

Your reply filter function can process any high-level events that it is willing to handle
while waiting for a reply Apple event. For example, your application can choose to
handle Apple events from other processes while waiting. Note, however, that your
application must maintain any necessary state information. Your reply filter function
must not accept any Apple events that can change the state of your application and make
it impossible to return to its previous state.

A reply filter function must use this syntax:

FUNCTION MyReplyFilter (VAR event: EventRecord;

 returnID: LongInt;

transactionID: LongInt;

sender: AEAddressDesc): Boolean;
5-24 Sending an Apple Event

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
The event parameter is the event record for a high-level event. The next three
parameters contain valid information only if the event is an Apple event. The
returnID parameter is the return ID for the Apple event. The transactionID
parameter is the transaction ID for the Apple event. The sender parameter contains
the address of the application or process that sent the Apple event.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE. If your filter function returns
TRUE, the Apple Event Manager calls the AEProcessAppleEvent function on behalf of
your application, and your handler routine is called to process the Apple event. In this
case, make sure your handler is not called while it is still being used by an earlier call.

Reference to Creating and Sending Apple Events 5

This section describes the basic Apple Event Manager routines that your application
can use to create and send Apple events. It also describes application-defined idle
functions and reply filter functions that your application can provide for use by the
Apple Event Manager.

For information about data structures used with the routines described in this chapter,
see the section “Data Structures Used by the Apple Event Manager,” which begins on
page 4-56.

Routines for Creating and Sending Apple Events 5
This section describes the Apple Event Manager routines you can use to create Apple
events, create and duplicate descriptor records, create and add items to descriptor lists
and AE records, add parameters and attributes to Apple events, and send Apple events.
The section “Routines for Responding to Apple Events,” which begins on page 4-61,
describes other Apple Event Manager routines used for both responding to and creating
Apple events.
Reference to Creating and Sending Apple Events 5-25

C H A P T E R 5

Creating and Sending Apple Events
Creating Apple Events 5

The AECreateAppleEvent function allows you to create an Apple event.

AECreateAppleEvent 5

You can use the AECreateAppleEvent function to create an Apple event with several
important attributes but no parameters. You add parameters to the Apple event after you
create it.

FUNCTION AECreateAppleEvent (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent): OSErr;

theAEEventClass
The event class of the Apple event to be created.

theAEEventID
The event ID of the Apple event to be created.

target The address of the server application.

returnID The return ID for the Apple event; if you specify
kAutoGenerateReturnID, the Apple Event Manager assigns
a return ID that is unique to the current session.

transactionID
The transaction ID for this Apple event. A transaction is a sequence of
Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service.
All Apple events that are part of a transaction must have the same
transaction ID.

result The AECreateAppleEvent function returns, in this parameter, the
Apple event that it creates.

DESCRIPTION

The AECreateAppleEvent function creates an Apple event.Your application is
responsible for using the AEDisposeDesc function to dispose of the Apple event when
you no longer need it.

If AECreateAppleEvent returns a nonzero result code, it returns a null descriptor
record unless the Apple Event Manager is not available because of limited memory.
5-26 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

SEE ALSO

See “Creating an Apple Event,” which begins on page 5-3, for more information on how
to create an Apple event.

See “Specifying a Target Address” on page 5-10 for information on how to address an
Apple event.

Creating and Duplicating Descriptor Records 5

The AECreateDesc function converts data into a descriptor record, and the
AEDuplicateDesc function makes a copy of a descriptor record.

AECreateDesc 5

You can use the AECreateDesc function to convert data into a descriptor record.

FUNCTION AECreateDesc (typeCode: DescType; dataPtr: Ptr;

 dataSize: Size; VAR result: AEDesc): OSErr;

typeCode The descriptor type for the descriptor record.

dataPtr A pointer to the data for the descriptor record.

dataSize The length, in bytes, of the data for the descriptor record.

result The descriptor record that the AECreateDesc function creates.

DESCRIPTION

The AECreateDesc function creates a new descriptor record that incorporates the
specified data. Your application is responsible for using the AEDisposeDesc function to
dispose of the resulting descriptor record when you no longer need it. You normally do
this after receiving a result code from the AESend function.

If AECreateDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Creating and Sending Apple Events 5-27

C H A P T E R 5

Creating and Sending Apple Events
RESULT CODES

SEE ALSO

For examples of the use of AECreateDesc, see “Adding Parameters to an Apple Event,”
which begins on page 5-5, and Listing 5-2 on page 5-11.

AEDuplicateDesc 5

You can use the AEDuplicateDesc function to make a copy of a descriptor record.

FUNCTION AEDuplicateDesc (theAEDesc: AEDesc;

 VAR result: AEDesc): OSErr;

theAEDesc The descriptor record to be duplicated.

result The duplicate descriptor record.

DESCRIPTION

The AEDuplicateDesc function creates a new descriptor record by copying the
descriptor record from the parameter theAEDesc. Your application is responsible for
using the AEDisposeDesc function to dispose of the resulting descriptor record when
you no longer need it. You normally do this after receiving a result code from the
AESend function.

If AEDuplicateDesc returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

It is common for applications to send Apple events that have one or more attributes or
parameters in common. For example, if you send a series of Apple events to the same
application, the address attribute is the same. In these cases, the most efficient way to
create the necessary Apple events is to make a template Apple event that you can then
copy—by calling the AEDuplicateDesc function—as needed. You then fill in or change
the remaining parameters and attributes of the copy, send the copy by calling AESend,
and dispose of the copy—by calling AEDisposeDesc—after AESend returns a result
code.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
5-28 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

Creating Descriptor Lists and AE Records 5

The AECreateList function allows you to create an empty descriptor list or AE record.

AECreateList 5

You can use the AECreateList function to create an empty descriptor list or AE record.

FUNCTION AECreateList (factoringPtr: Ptr; factoredSize: Size;

 isRecord: Boolean;

 VAR resultList: AEDescList): OSErr;

factoringPtr
A pointer to the data at the beginning of each descriptor that is the same
for all descriptor records in the list. If there is no common data, or if you
decide not to isolate the common data, specify NIL as the value of this
parameter.

factoredSize
The size of the common data. If there is no common data, or if you decide
not to isolate the common data, the value of factoredSize must be 0.
(See the description that follows for more information.)

isRecord A Boolean value that specifies the kind of list to create. If you set
it to TRUE, the Apple Event Manager creates an AE record. If you set it to
FALSE, the Apple Event Manager creates a descriptor list.

resultList
The descriptor list or AE record that the AECreateList function creates.

DESCRIPTION

The AECreateList function creates an empty descriptor list or AE record. Your
application is responsible for using the AEDisposeDesc function to dispose of the
resulting descriptor record when you no longer need it. You normally do this after
receiving a result code from the AESend function.

If you intend to use a descriptor list for a factored Apple event array, you must provide,
in the factoringPtr parameter, a pointer to the data shared by all items in the array
and, in the factoredSize parameter, the size of the common data. The common data
must be 4, 8, or more than 8 bytes in length because it always consists of (a) the
descriptor type (4 bytes); (b) the descriptor type (4 bytes) and the size of each item’s data
(4 bytes); or (c) the descriptor type (4 bytes), the size of each item’s data (4 bytes), and
some portion of the data itself (1 or more bytes).

noErr 0 No error
memFullErr –108 Not enough room in heap zone
Reference to Creating and Sending Apple Events 5-29

C H A P T E R 5

Creating and Sending Apple Events
If AECreateList returns a nonzero result code, it returns a null descriptor record
unless the Apple Event Manager is not available because of limited memory.

RESULT CODES

SEE ALSO

For an example of the use of AECreateList, see Listing 5-1 on page 5-9.

For information about data types used with Apple event arrays, see “Apple Event Array
Data Types” on page 4-60.

Adding Items to Descriptor Lists 5

The Apple Event Manager provides three routines that allow you to add descriptor
records to any descriptor list, including an Apple event record. The AEPutPtr function
converts data specified in a buffer to a descriptor record and adds the descriptor
record to a descriptor list. The AEPutDesc function adds a descriptor record to a
descriptor list. The AEPutArray function puts the data for an Apple event array
into a descriptor list.

AEPutPtr 5

You can use the AEPutPtr routine to add data specified in a buffer to any descriptor list
as a descriptor record.

FUNCTION AEPutPtr (theAEDescList: AEDescList; index: LongInt;

 typeCode: DescType; dataPtr: Ptr;

 dataSize: Size): OSErr;

theAEDescList
The descriptor list to which to add a descriptor record.

index The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of index is 0, the descriptor record is added to the end of the list.

typeCode The descriptor type for the resulting descriptor record.

dataPtr A pointer to the data for the descriptor record.

dataSize The length, in bytes, of the data for the descriptor record.

noErr 0 No error
paramErr –50 Parameter error (value of handler pointer is NIL or odd)
memFullErr –108 Not enough room in heap zone
5-30 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
RESULT CODES

SEE ALSO

For an example of the use of AEPutPtr, see Listing 5-1 on page 5-9.

AEPutDesc 5

You can use the AEPutDesc function to add a descriptor record to any descriptor list.

FUNCTION AEPutDesc (theAEDescList: AEDescList; index: LongInt;

 theAEDesc: AEDesc): OSErr;

theAEDescList
The descriptor list to which to add a descriptor record.

index The position of the descriptor record in the descriptor list. (For example,
the value 2 specifies the second descriptor record in the list.) If there is
already a descriptor record in the specified position, it is replaced. If the
value of index is 0, the descriptor record is added to the end of the list.

theAEDesc The descriptor record to be added to the list.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAEIllegalIndex –1719 Not a valid list index

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAEIllegalIndex –1719 Not a valid list index
Reference to Creating and Sending Apple Events 5-31

C H A P T E R 5

Creating and Sending Apple Events
AEPutArray 5

You can use the AEPutArray function to put the data for an Apple event array into any
descriptor list.

FUNCTION AEPutArray (theAEDescList: AEDescList;

arrayType: AEArrayType;

 arrayPtr: AEArrayDataPointer;

itemType: DescType;

 itemSize: Size; itemCount: LongInt): OSErr;

theAEDescList
The descriptor list into which to put the Apple event array. If there are
any items already in the descriptor list, they are replaced.

arrayType The Apple event array type to be created. This is specified by one of the
following constants: kAEDataArray, kAEPackedArray,
kAEHandleArray, kAEDescArray, or kAEKeyDescArray.

arrayPtr A pointer to the buffer containing the array.

itemType For arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the descriptor type of array items to be created.

itemSize For arrays of type kAEDataArray or kAEPackedArray, the size (in
bytes) of the array items to be created.

itemCount The number of elements in the array.

DESCRIPTION

When you use AEPutArray to put an array into a factored descriptor list, each array
item must include the data that is common to all the descriptor records in the list. The
Apple Event Manager automatically isolates the data you specified in the call to
AECreateList that is common to all the elements of the array.

RESULT CODES

SEE ALSO

For information about data types and constants used with AEPutArray, see “Apple
Event Array Data Types” on page 4-60.

For more information about creating descriptor lists for Apple event arrays, see the
description of AECreateList on page 5-29.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
5-32 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Adding Data and Descriptor Records to AE Records 5

The Apple Event Manager provides two routines that allow you to add data and
descriptor records to AE records. The AEPutKeyPtr function takes a pointer
to data, a descriptor type, and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record. The AEPutKeyDesc function takes
a descriptor record and a keyword and converts them into a keyword-specified
descriptor record that it adds to an AE record.

AEPutKeyPtr 5

You can use the AEPutKeyPtr function to add a pointer to data, a descriptor type, and a
keyword to an AE record as a keyword-specified descriptor record.

FUNCTION AEPutKeyPtr (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 typeCode: DescType; dataPtr: Ptr;

 dataSize: Size): OSErr;

theAERecord
The AE record to which to add a keyword-specified
descriptor record.

theAEKeyword
The keyword that identifies the descriptor record. If the AE record already
includes a descriptor record with this keyword, it is replaced.

typeCode The descriptor type for the keyword-specified descriptor record.

dataPtr A pointer to the data for the keyword-specified descriptor record.

dataSize The length, in bytes, of the data for the keyword-specified descriptor
record.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Creating and Sending Apple Events 5-33

C H A P T E R 5

Creating and Sending Apple Events
AEPutKeyDesc 5

You can use the AEPutKeyDesc function to add a descriptor record and a keyword to an
AE record as a keyword-specified descriptor record.

FUNCTION AEPutKeyDesc (theAERecord: AERecord;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAERecord
The AE record to which to add the keyword-specified descriptor record.

theAEKeyword
The keyword specifying the descriptor record. If there was already a
keyword-specified descriptor record with this keyword, it is replaced.

theAEDesc The descriptor record for the keyword-specified descriptor record.

RESULT CODES

Adding Parameters and Attributes to Apple Events 5

The Apple Event Manager provides four functions that allow you to add Apple
event parameters and attributes to an Apple event. The AEPutParamPtr and
AEPutParamDesc functions add parameters to a specified Apple event.
The AEPutAttributePtr and AEPutAttributeDesc functions add attributes to a
specified Apple event.

AEPutParamPtr 5

You can use the AEPutParamPtr function to add a pointer to data, a descriptor type,
and a keyword to an Apple event as an Apple event parameter.

FUNCTION AEPutParamPtr (theAppleEvent: AppleEvent;

theAEKeyword: AEKeyword;

typeCode: DescType; dataPtr: Ptr;

dataSize: Size): OSErr;

theAppleEvent
The Apple event to which to add a parameter.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
5-34 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
theAEKeyword
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

typeCode The descriptor type for the parameter.

dataPtr A pointer to the data for the parameter.

dataSize The length, in bytes, of the data for the parameter.

RESULT CODES

SEE ALSO

For an example of the use of AEPutParamPtr, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutParamDesc 5

You can use the AEPutParamDesc function to add a descriptor record and a keyword to
an Apple event as an Apple event parameter.

FUNCTION AEPutParamDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAppleEvent
The Apple event to which to add a parameter.

theAEKeyword
The keyword for the parameter to be added. If the Apple event already
included a parameter with this keyword, the parameter is replaced.

theAEDesc The descriptor record for the parameter.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Creating and Sending Apple Events 5-35

C H A P T E R 5

Creating and Sending Apple Events
SEE ALSO

For an example of the use of AEPutParamDesc, see “Adding Parameters to an Apple
Event,” which begins on page 5-5.

AEPutAttributePtr 5

You can use the AEPutAttributePtr function to add a pointer to data, a descriptor
type, and a keyword to an Apple event as an attribute.

FUNCTION AEPutAttributePtr (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 typeCode: DescType;

 dataPtr: Ptr; dataSize: Size): OSErr;

theAppleEvent
The Apple event to which to add an attribute.

theAEKeyword
The keyword for the attribute to be added.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description that
follows. If the Apple event already included an attribute with this
keyword, the attribute is replaced.

typeCode The descriptor type for the attribute.

dataPtr A pointer to the buffer containing the data to be assigned to the attribute.

dataSize The length, in bytes, of the data to be assigned to the attribute.

DESCRIPTION

The AEPutAttributePtr function adds the specified pointer to data, descriptor type,
and keyword to the specified Apple event as an attribute. You can specify the parameter
theAEKeyWord using any of the following constants:

CONST

keyAddressAttr = 'addr'; {address of target }

 { application}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyEventSourceAttr = 'esrc'; {source application}

keyInteractLevelAttr = 'inte'; {settings to allow the }

 { Apple Event Manager to }

 { bring server application }

 { to the foreground}
5-36 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
keyMissedKeywordAttr = 'miss'; {first required parameter }

 { remaining in Apple event}

keyOptionalKeywordAttr = 'optk'; {list of optional }

 { parameters for Apple }

 { event}

keyOriginalAddressAttr = 'from'; {address of original source }

 { of Apple event}

keyReturnIDAttr = 'rtid'; {return ID for reply Apple }

 { event}

keyTimeoutAttr = 'timo'; {length of time in ticks }

 { that client will wait }

 { for reply or result from }

 { the server}

keyTransactionIDAttr = 'tran'; {transaction ID identifying }

 { a series of Apple events}

RESULT CODES

AEPutAttributeDesc 5

You can use the AEPutAttributeDesc function to add a descriptor record and a
keyword to an Apple event as an attribute.

FUNCTION AEPutAttributeDesc (theAppleEvent: AppleEvent;

 theAEKeyword: AEKeyword;

 theAEDesc: AEDesc): OSErr;

theAppleEvent
The Apple event to which you are adding an attribute.

theAEKeyword
The keyword for the attribute to be added.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char;

The keyword can be any of the constants listed in the description of
AEPutAttributePtr on page 5-36. If the Apple event already included
an attribute with this keyword, the attribute is replaced.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
Reference to Creating and Sending Apple Events 5-37

C H A P T E R 5

Creating and Sending Apple Events
theAEDesc The descriptor record to be assigned to the attribute. The descriptor type
of the specified descriptor record should match the defined descriptor
type for that attribute. For example, the keyEventSourceAttr attribute
has the typeShortInteger descriptor type.

DESCRIPTION

The AEPutAttributeDesc function takes a descriptor record and a keyword and adds
them to an Apple event as an attribute. If the descriptor type required for the attribute is
different from the descriptor type of the descriptor record, the Apple Event Manager
attempts to coerce the descriptor record into the required type, with one exception: the
Apple Event Manager does not attempt to coerce the data for an address attribute,
thereby allowing applications to use their own address types.

RESULT CODES

SEE ALSO

For an example of the use of AEPutAttributeDesc, see Listing 5-1 on page 5-9.

Sending Apple Events 5

The AESend function allows you to send an Apple event that you have previously
created with the AECreateAppleEvent function.

AESend 5

You can use the AESend function to send an Apple event.

FUNCTION AESend (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent; sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt; idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr): OSErr;

theAppleEvent
The Apple event to be sent.

noErr 0 No error
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested

descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
5-38 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
reply The reply Apple event returned by the AESend function if you specify
the kAEWaitReply flag in the sendMode parameter. (If you specify the
kAEQueueReply flag in the sendMode parameter, you receive the reply
Apple event in your event queue.) If you specify kAENoReply flag, the
reply Apple event returned by this function is a null descriptor record. If
you specify kAEWaitReply in the sendMode parameter, your
application is responsible for using the AEDisposeDesc function to
dispose of the descriptor record returned in the reply parameter.

sendMode Specifies the following: the reply mode for the Apple event (set with one
of the constants kAENoReply, kAEQueueReply, or kAEWaitReply);
the interaction level (set with one of the constants kAENeverInteract,
kAECanInteract, or kAEAlwaysInteract, which represent flags in
the keyInteractLevelAttr attribute); the application switch mode
(set with the kAECanSwitchLayer constant); the reconnection mode (set
with the kAEDontReconnect constant); and the return receipt
mode (set with the kAEWantReceipt constant). You obtain the value
for this parameter by adding the appropriate constants. (The description
that follows provides more details about the sendMode flags.)

sendPriority
An integer of data type AESendPriority that specifies whether the
Apple event is put at the back of the event queue (indicated by the
kAENormalPriority flag) or at the front of the queue (indicated by
the kAEHighPriority flag).

timeOutInTicks
If the reply mode specified in the sendMode parameter is
kAEWaitReply, or if a return receipt is requested, this parameter
specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before
timing out. Most applications should use the kAEDefaultTimeout
constant, which tells the Apple Event Manager to provide an appropriate
timeout duration. If the value of this parameter is kNoTimeOut, the
Apple event never times out.

idleProc A pointer to a function that handles events (such as update,
operating-system, activate, and null events) that your application receives
while waiting for a reply. Your application can also perform other tasks
(such as displaying a wristwatch or spinning beachball cursor) while
waiting for a reply or a return receipt. Your application must provide an
idle function if it specifies the kAEWaitReply flag in the sendMode
parameter.

filterProc
A pointer to a function that accepts certain incoming Apple events that
are received while the handler waits for a reply or a return receipt and
filters out the rest.
Reference to Creating and Sending Apple Events 5-39

C H A P T E R 5

Creating and Sending Apple Events
DESCRIPTION

You can use one of the following flags in the sendMode parameter to specify the reply
mode for an Apple event. Only one of these flags may be set.

You can communicate your user interaction preferences to the server application by
specifying one of the following flags in the sendMode parameter. Only one of these flags
may be set.

Flag Description

kAENoReply Your application does not want a reply Apple event; the server
processes your Apple event as soon as it has the opportunity.

kAEQueueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

kAEWaitReply Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event. If you specify kAEWaitReply, you
should provide an idle function.

Flag Description

kAENeverInteract The server application should never interact with
the user in response to the Apple event. If this flag
is set, AEInteractWithUser returns the
errAENoUserInteraction result code. This flag is the
default when an Apple event is sent to a remote application.

kAECanInteract The server application can interact with the user in response
to the Apple event—by convention, if the user needs to
supply information to the server. If this flag is set and the
server allows interaction, AEInteractWithUser either
brings the server application to the foreground or posts a
notification request. This flag is the default when an Apple
event is sent to a local application.

kAEAlwaysInteract The server application can interact with the user in response
to the Apple event—by convention, whenever the server
application normally asks a user to confirm a decision or
interact in any other way, even if no additional information is
needed from the user. If this flag is set and the server allows
interaction, AEInteractWithUser either brings the server
application to the foreground or posts a notification request.
5-40 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
The flags in the following list specify the application switch mode, the reconnection
mode, and the return receipt mode. Any of these flags may be set.

If the Apple Event Manager cannot find a handler for an Apple event in either
the application or system Apple event dispatch table, it returns the result code
errAEEventNotHandled to the server application (as the result of the
AEProcessAppleEvent function). If the client application is waiting for a reply,
the Apple Event Manager also returns this result code to the client.

The AESend function returns noErr as its function result if the Apple event was
successfully sent by the Event Manager. A noErr result from AESend does not indicate
that the Apple event was handled successfully; it indicates only that the Apple event was
successfully sent by the Event Manager. If the handler returns a result code other than
noErr, and if the client is waiting for a reply, it is returned in the keyErrorNumber
parameter of the reply Apple event.

If your application is sending an event to itself, you can set one of these flags to prevent
the event from being recorded or to ask the Apple Event Manager to record the event
without your application actually receiving it. Only one of these flags may be set.

Flag Description

kAECanSwitchLayer If both the client and server allow interaction, and if the
client application is the active application on the local
computer and is waiting for a reply (that is, it has set the
kAEWaitReply flag), AEInteractWithUser brings
the server directly to the foreground. Otherwise,
AEInteractWithUser uses the Notification Manager to
request that the user bring the server application to the
foreground.

kAEDontReconnect The Apple Event Manager must not automatically try to
reconnect if it receives a sessClosedErr result code from
the PPC Toolbox.

kAEWantReceipt The sender wants to receive a return receipt for this Apple
event from the Event Manager. (A return receipt means only
that the receiving application accepted the Apple event; the
Apple event may or may not be handled successfully after it
is accepted.) If the receiving application does not send a
return receipt before the request times out, AESend returns
errAETimeout as its function result.

Flag Description

kAEDontRecord Your application is sending an event to itself but does not want
the event recorded. When Apple event recording is on, the Apple
Event Manager records a copy of every event your application
sends to itself except for those events for which this flag is set.

kAEDontExecute Your application is sending an Apple event to itself for recording
purposes only—that is, you want the Apple Event Manager to
send a copy of the event to the recording process but you do not
want your application actually to receive the event.
Reference to Creating and Sending Apple Events 5-41

C H A P T E R 5

Creating and Sending Apple Events
RESULT CODES

SEE ALSO

For more information on sending Apple events, see “Sending an Apple Event,” which
begins on page 5-13.

For information on writing an idle function, see “Writing an Idle Function,” which
begins on page 5-22.

For information on writing a reply filter function, see “Writing a Reply Filter Function,”
which begins on page 5-24.

For information on when to use the kAEDontExecute flag, see the chapter “Recording
Apple Events” in this book.

Application-Defined Routines 5
If your application sends an Apple event using AESend and is waiting for a reply, or if it
calls AEInteractWithUser, you can provide an idle function to handle update events,
null events, operating-system events, and activate events. You can also provide a reply
filter function that can handle any high-level events that you want your application to
handle while it is waiting for a reply or for user interaction.

noErr 0 No error
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process

serial number
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event

requiring authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to

indicate awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to

indicate awareness of high-level events,
or else is not present

sessClosedErr –917 The kAEDontReconnect flag in the
sendMode parameter was set and the
server quit, then restarted

errAEEventNotHandled –1708 Event wasn’t handled by an Apple event
handler

errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply

or receipt
errAETimeout –1712 Apple event timed out
errAEUnknownAddressType –1716 Unknown Apple event address type
5-42 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
MyIdleFunction 5

An idle function has the following syntax:

FUNCTION MyIdleFunction (VAR event: EventRecord;

 VAR sleepTime: LongInt;

 VAR mouseRgn: RgnHandle): Boolean;

event The event record of the event to process.

sleepTime Amount of time (in ticks) during which your application agrees to
relinquish the processor if no events are pending.

mouseRgn A screen region that determines the conditions under which your
application is to receive notice of mouse-moved events.

DESCRIPTION

If your application provides a pointer to an idle function (MyIdleFunction) as a
parameter to AESend or AEInteractWithUser, the Apple Event Manager will call the
idle function to handle any update event, null event, operating-system event, or activate
event received for your application while it is waiting for a reply.

Set the function result to TRUE if your application is no longer willing to wait for a reply
from the server or for the user to bring the application to the front. Set the function result
to FALSE if your application is still willing to wait.

SEE ALSO

For more information, see “Writing an Idle Function,” which begins on page 5-22.

MyReplyFilter 5

A reply filter function has the following syntax:

FUNCTION MyReplyFilter (VAR event: EventRecord;

returnID: LongInt;

transactionID: LongInt;

sender: AEAddressDesc): Boolean;

event The event record for a high-level event. The next three parameters contain
valid information only if the event is an Apple event.

returnID Return ID for the Apple event.

transactionID
Transaction ID for the Apple event.

sender Address of process that sent the Apple event.
Reference to Creating and Sending Apple Events 5-43

C H A P T E R 5

Creating and Sending Apple Events
DESCRIPTION

If your application provides a pointer to a reply filter function as a parameter to the
AESend function, the reply filter function can process any high-level events that it is
willing to handle while your application is waiting for a reply.

Your reply filter function should return TRUE as the function result if you want to accept
the Apple event; otherwise, it should return FALSE.

SEE ALSO

For more information, see “Writing a Reply Filter Function” on page 5-24.
5-44 Reference to Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Summary of Creating and Sending Apple Events 5

Pascal Summary 5

Constants 5

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, then Apple }

{ Event Manager is available}

{Apple event descriptor types}

typeBoolean = 'bool'; {1-byte Boolean value}

typeChar = 'TEXT'; {unterminated string}

typeSMInt = 'shor'; {16-bit integer}

typeInteger = 'long'; {32-bit integer}

typeSMFloat = 'sing'; {SANE single}

typeFloat = 'doub'; {SANE double}

typeLongInteger = 'long'; {32-bit integer}

typeShortInteger = 'shor'; {16-bit integer}

typeLongFloat = 'doub'; {SANE double}

typeShortFloat = 'sing'; {SANE single}

typeExtended = 'exte'; {SANE extended}

typeComp = 'comp'; {SANE comp}

typeMagnitude = 'magn'; {unsigned 32-bit integer}

typeAEList = 'list'; {list of descriptor records}

typeAERecord = 'reco'; {list of keyword-specified }

{ descriptor records}

typeAppleEvent = 'aevt'; {Apple event record}

typeTrue = 'true'; {TRUE Boolean value}

typeFalse = 'fals'; {FALSE Boolean value}

typeAlias = 'alis'; {alias record}

typeEnumerated = 'enum'; {enumerated data}

typeType = 'type'; {four-character code for }

{ event class or event ID}

typeAppParameters = 'appa'; {Process Manager launch parameters}

typeProperty = 'prop'; {Apple event property}

typeFSS = 'fss '; {file system specification}
Summary of Creating and Sending Apple Events 5-45

C H A P T E R 5

Creating and Sending Apple Events
typeKeyword = 'keyw'; {Apple event keyword}

typeSectionH = 'sect'; {handle to a section record}

typeWildCard = '****'; {matches any type}

typeApplSignature = 'sign'; {application signature}

typeSessionID = 'ssid'; {session reference number}

typeTargetID = 'targ'; {target ID record}

typeProcessSerialNumber = 'psn '; {process serial number}

typeNull = 'null'; {NULL or nonexistent data}

{keywords for Apple event parameters}

keyDirectObject = '----'; {direct parameter}

keyErrorNumber = 'errn'; {error number parameter}

keyErrorString = 'errs'; {error string parameter}

keyProcessSerialNumber = 'psn '; {process serial number param}

{keywords for Apple event attributes}

keyTransactionIDAttr = 'tran'; {transaction ID}

keyReturnIDAttr = 'rtid'; {return ID}

keyEventClassAttr = 'evcl'; {event class}

keyEventIDAttr = 'evid'; {event ID}

keyAddressAttr = 'addr'; {address of target or }

{ client application}

keyOptionalKeywordAttr = 'optk'; {list of optional parameters }

{ for the Apple event}

keyTimeoutAttr = 'timo'; {number of ticks the client }

{ will wait}

keyInteractLevelAttr = 'inte'; {settings to allow Apple Event }

{ Manager to bring server }

{ to foreground}

keyEventSourceAttr = 'esrc'; {nature of source }

{ application}

keyMissedKeywordAttr = 'miss'; {first required parameter }

{ remaining in an Apple event}

keyOriginalAddressAttr = 'from'; {address of original source; }

{ available only in version }

{ 1.01 and later versions of }

{ the Apple Event Manager}

{keywords for special handlers}

keyPreDispatch = 'phac'; {identifies a handler routine }

{ called immediately before the }

{ Apple Event Manager dispatches }

{ an Apple event}
5-46 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
keySelectProc = 'selh'; {selector used with }

{ AERemoveSpecialHandler to }

{ disable the OSL}

{keywords for use with AEManagerInfo; available only in version }

{ 1.0.1 and later versions of the Apple Event Manager}

keyAERecorderCount = 'recr'; {keyword for recording info}

keyAEVersion = 'vers'; {keyword for version info}

{event class}

kCoreEventClass = 'aevt'; {event class for required Apple }

{ events}

{event IDs for required Apple events}

kAEOpenApplication = 'oapp'; {event ID for Open }

{ Application event}

kAEOpenDocuments = 'odoc'; {event ID for Open Documents event}

kAEPrintDocuments = 'pdoc'; {event ID for Print Documents }

{ event}

kAEQuitApplication = 'quit'; {event ID for Quit Application }

{ event}

kAEAnswer = 'ansr'; {event ID for Apple event replies}

kAEApplicationDied = 'obit'; {event ID for Application Died }

{ event}

{constants for setting the sendMode parameter of AESend}

kAENoReply = $00000001; {client doesn't want reply}

kAEQueueReply = $00000002; {client wants server to }

{ reply in event queue}

kAEWaitReply = $00000003; {client wants a reply and }

{ will give up processor}

kAENeverInteract = $00000010; {server application should }

{ not interact with user }

{ for this Apple event}

kAECanInteract = $00000020; {server may interact with }

{ user for this Apple event }

{ to supply information}

kAEAlwaysInteract = $00000030; {server may interact with user }

{ for this Apple event even if }

{ no information is required}
Summary of Creating and Sending Apple Events 5-47

C H A P T E R 5

Creating and Sending Apple Events
kAECanSwitchLayer = $00000040; {server should come directly }

{ to foreground when appropriate}

kAEDontReconnect = $00000080; {don't reconnect if there }

{ is a PPC session closed error}

kAEWantReceipt = nReturnReceipt; {client wants return }

{ receipt}

kAEDontRecord = $00001000; {don't record this event}

kAEDontExecute = $00002000; {don't excecute this event}

{constants for setting the sendPriority parameter of AESend}

kAENormalPriority = $00000000; {put event at back of }

{ event queue}

kAEHighPriority = nAttnMsg; {put event at front of }

{ the event queue}

{event IDs for recording events; available only in version 1.01 and }

{ later versions of the Apple Event Manager}

kAEStartRecording = 'reca'; {event ID for Start Recording }

{ event}

kAEStopRecording = 'recc'; {event ID for Stop Recording }

{ event}

kAENotifyStartRecording = 'rec1'; {event ID for Recording On event}

kAENotifyStopRecording = 'rec0'; {event ID for Recording Off event}

kAENotifyRecording = 'recr'; {event ID for Receive Recordable }

{ Event event}

{constant for the returnID parameter of AECreateAppleEvent}

kAutoGenerateReturnID = -1; {tells Apple Event Manager to }

{ generate a unique return ID}

{constant for transaction IDs}

kAnyTransactionID = 0; {the Apple event is not }

{ part of a transaction}

{constants for timeout durations}

kAEDefaultTimeout = -1; {use default timeout value}

kNoTimeOut = -2; {never time out}

{constants for the dispatcher parameter of AEResumeTheCurrentEvent}

kAENoDispatch = 0; {don't redispatch the Apple event}

kAEUseStandardDispatch = -1; {redispatch the Apple event }

{ by using its entry in the }

{ Apple event dispatch table}
5-48 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Data Types 5

TYPE

AEEventClass =

PACKED ARRAY[1..4] OF Char; {event class for a high-level }

{ event}

AEEventID =

PACKED ARRAY[1..4] OF Char; {event ID for a high-level }

{ event}

AEKeyword =

PACKED ARRAY[1..4] OF Char; {keyword for a descriptor }

{ record}

DescType = ResType; {descriptor type}

AEDesc = {descriptor record}

RECORD

descriptorType: DescType; {type of data being passed}

dataHandle: Handle; {handle to data being passed}

END;

AEKeyDesc = {keyword-specified }

RECORD { descriptor record}

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

AEAddressDesc = AEDesc; {address descriptor record}

AEDescList = AEDesc; {list of descriptor records}

AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

AESendMode = LongInt; {flags that determine how }

{ an Apple event is sent}

AESendPriority = Integer; {send priority of an Apple }

{ event}
Summary of Creating and Sending Apple Events 5-49

C H A P T E R 5

Creating and Sending Apple Events
AEInteractAllowed = (kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll); {what processes may }

{ interact with the user}

AEEventSource = (kAEUnknownSource, kAEDirectCall, kAESameProcess,

 kAELocalProcess, kAERemoteProcess);

{the source of an Apple }

{ event}

AEArrayType = (kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray);

{type of an Apple event array}

AEArrayData =

RECORD {data for an Apple event array}

CASE AEArrayType OF

kAEDataArray:

(AEDataArray: ARRAY[0..0] OF Integer);

kAEPackedArray:

(AEPackedArray: Packed Array[0..0] OF Char);

kAEHandleArray:

(AEHandleArray: Array[0..0] OF Handle);

kAEDescArray:

(AEDescArray: Array[0..0] OF AEDesc);

kAEKeyDescArray:

(AEKeyDescArray: Array[0..0] OF AEKeyDesc);

END;

AEArrayDataPointer = ^AEArrayData;

EventHandlerProcPtr = ProcPtr; {pointer to an Apple event }

{ handler}

IdleProcPtr = ProcPtr; {pointer to an application's }

{ idle function}

EventFilterProcPtr = ProcPtr; {pointer to an application's }

{ filter function}
5-50 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Routines for Creating and Sending Apple Events 5

Creating Apple Events

FUNCTION AECreateAppleEvent (theAEEventClass: AEEventClass;
theAEEventID: AEEventID;
target: AEAddressDesc; returnID: Integer;
transactionID: LongInt;
VAR result: AppleEvent): OSErr;

Creating and Duplicating Descriptor Records

FUNCTION AECreateDesc (typeCode: DescType; dataPtr: Ptr;
dataSize: Size; VAR result: AEDesc): OSErr;

FUNCTION AEDuplicateDesc (theAEDesc: AEDesc; VAR result: AEDesc): OSErr;

Creating Descriptor Lists and AE Records

FUNCTION AECreateList (factoringPtr: Ptr; factoredSize: Size;
isRecord: Boolean;
VAR resultList: AEDescList): OSErr;

Adding Items to Descriptor Lists

FUNCTION AEPutPtr (theAEDescList: AEDescList; index: LongInt;
typeCode: DescType; dataPtr: Ptr;
dataSize: Size): OSErr;

FUNCTION AEPutDesc (theAEDescList: AEDescList; index: LongInt;
theAEDesc: AEDesc): OSErr;

FUNCTION AEPutArray (theAEDescList: AEDescList;
arrayType: AEArrayType;
arrayPtr: AEArrayDataPointer;
itemType: DescType; itemSize: Size;
itemCount: LongInt): OSErr;

Adding Data and Descriptor Records to AE Records

FUNCTION AEPutKeyPtr (theAERecord: AERecord;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutKeyDesc (theAERecord: AERecord;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;
Summary of Creating and Sending Apple Events 5-51

C H A P T E R 5

Creating and Sending Apple Events
Adding Parameters and Attributes to Apple Events

FUNCTION AEPutParamPtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutParamDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;

FUNCTION AEPutAttributePtr (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword; typeCode: DescType;
dataPtr: Ptr; dataSize: Size): OSErr;

FUNCTION AEPutAttributeDesc (theAppleEvent: AppleEvent;
theAEKeyword: AEKeyword;
theAEDesc: AEDesc): OSErr;

Sending Apple Events

FUNCTION AESend (theAppleEvent: AppleEvent;
VAR reply: AppleEvent; sendMode: AESendMode;
sendPriority: AESendPriority;
timeOutInTicks: LongInt;
idleProc: IdleProcPtr;
filterProc: EventFilterProcPtr): OSErr;

Application-Defined Routines 5

FUNCTION MyIdleFunction (VAR event: EventRecord;
VAR sleepTime: LongInt;
VAR mouseRgn: RgnHandle): Boolean;

FUNCTION MyReplyFilter (VAR event: EventRecord;
returnID: LongInt; transactionID: LongInt;
sender: AEAddressDesc): Boolean;

C Summary 5

Constants 5

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/
5-52 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*Apple event descriptor types*/

enum {

typeBoolean = 'bool', /*1-byte Boolean value*/

typeChar = 'TEXT', /*unterminated string*/

typeSMInt = 'shor', /*16-bit integer*/

typeInteger = 'long', /*32-bit integer*/

typeSMFloat = 'sing', /*SANE single*/

typeFloat = 'doub', /*SANE double*/

typeLongInteger = 'long', /*32-bit integer*/

typeShortInteger = 'shor', /*16-bit integer*/

typeLongFloat = 'doub', /*SANE double*/

typeShortFloat = 'sing', /*SANE single*/

typeExtended = 'exte', /*SANE extended*/

typeComp = 'comp', /*SANE comp*/

typeMagnitude = 'magn', /*unsigned 32-bit integer*/

typeAEList = 'list', /*list of descriptor records*/

typeAERecord = 'reco', /*list of keyword-specified */

/* descriptor records*/

typeAppleEvent = 'aevt', /*Apple event record*/

typeTrue = 'true', /*TRUE Boolean value*/

typeFalse = 'fals', /*FALSE Boolean value*/

typeAlias = 'alis', /*alias record*/

typeEnumerated = 'enum' /*enumerated data*/

};

enum {

typeType = 'type', /*four-character code for */

/* event class or event ID*/

typeAppParameters = 'appa', /*Process Manager launch */

/* parameters*/

typeProperty = 'prop', /*Apple event property*/

typeFSS = 'fss ', /*file system specification*/

typeKeyword = 'keyw', /*Apple event keyword*/

typeSectionH = 'sect', /*handle to a section record*/

typeWildCard = '****', /*matches any type*/

typeApplSignature = 'sign', /*application signature*/

typeSessionID = 'ssid', /*session ID*/

typeTargetID = 'targ', /*target ID record*/

typeProcessSerialNumber = 'psn ', /*process serial number*/

typeNull = 'null' /*NULL or nonexistent data*/

};
Summary of Creating and Sending Apple Events 5-53

C H A P T E R 5

Creating and Sending Apple Events
/*keywords for Apple event parameters*/

enum {

keyDirectObject = '----', /*direct parameter*/

keyErrorNumber = 'errn', /*error number parameter*/

keyErrorString = 'errs', /*error string parameter*/

keyProcessSerialNumber = 'psn ' /*process serial number param*/

};

/*keywords for Apple event attributes*/

enum {

keyTransactionIDAttr = 'tran', /*transaction ID*/

keyReturnIDAttr = 'rtid', /*return ID*/

keyEventClassAttr = 'evcl', /*event class*/

keyEventIDAttr = 'evid', /*event ID*/

keyAddressAttr = 'addr', /*address of target or */

/* client application*/

keyOptionalKeywordAttr = 'optk', /*list of optional parameters */

/* for the Apple event*/

keyTimeoutAttr = 'timo', /*number of ticks the client */

/* will wait*/

keyInteractLevelAttr = 'inte', /*settings to allow Apple */

/* Event Mgr to bring */

/* server to foreground*/

keyEventSourceAttr = 'esrc', /*nature of source */

/* application*/

keyMissedKeywordAttr = 'miss', /*first required parameter */

/* remaining in an Apple */

/* event*/

keyOriginalAddressAttr = 'from' /*address of original source; */

/* available only in version */

/* 1.01 and later versions of */

/* the Apple Event Manager*/

};

/*keywords for special handlers*/

enum {

keyPreDispatch = 'phac', /*identifies a handler */

/* routine that is called */

/* immediately before the */

/* Apple Event Manager */

/* dispatches an Apple event*/

keySelectProc = 'selh', /*selector used with */

/* AERemoveSpecialHandler to */

/* disable the OSL*/
5-54 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*keywords for use with AEManagerInfo, available only in version */

/* 1.0.1 and later versions of the Apple Event Manager*/

keyAERecorderCount = 'recr', /*keyword for recording info*/

keyAEVersion = 'vers', /*keyword for version info*/

/*event class*/

kCoreEventClass = 'aevt' /*event class for required */

/* Apple events*/

};

/*event IDs for required Apple events*/

enum {

kAEOpenApplication = 'oapp', /*event ID for Open */

/* Application event*/

kAEOpenDocuments = 'odoc', /*event ID for Open */

/* Documents event*/

kAEPrintDocuments = 'pdoc', /*event ID for Print */

/* Documents event*/

kAEQuitApplication = 'quit', /*event ID for Quit */

/* Application event*/

kAEAnswer = 'ansr', /*event ID for Apple event */

/* replies*/

kAEApplicationDied = 'obit' /*event ID for Application */

/* Died event*/

};

/*constants for setting the sendMode parameter of AESend*/

enum {

kAENoReply = 0x00000001, /*client doesn't want reply*/

kAEQueueReply = 0x00000002, /*client wants server to */

/* reply in event queue*/

kAEWaitReply = 0x00000003, /*client wants a reply and */

/* will give up processor*/

kAENeverInteract = 0x00000010, /*server application should */

/* not interact with user */

/* for this Apple event*/

kAECanInteract = 0x00000020, /*server may interact with */

/* user for this Apple event */

/* to supply information*/

kAEAlwaysInteract = 0x00000030, /*server may interact with */

/* user for this Apple event */

/* even if no information */

/* is required*/
Summary of Creating and Sending Apple Events 5-55

C H A P T E R 5

Creating and Sending Apple Events
kAECanSwitchLayer = 0x00000040, /*server should come */

/* directly to foreground */

/* when appropriate*/

kAEDontReconnect = 0x00000080, /*don't reconnect if there */

/* is a PPC session closed */

/* error*/

kAEWantReceipt = nReturnReceipt, /*client wants return */

/* receipt*/

kAEDontRecord = 0x00001000, /*don't record this event*/

kAEDontExecute = 0x00002000, /*don't excecute this event*/

/*constants for setting the sendPriority parameter of AESend*/

kAENormalPriority = 0x00000000, /*post message at end of */

/* event queue*/

kAEHighPriority = nAttnMsg /*post message at front of */

/* event queue*/

};

/*event IDs for recording events; available only in version 1.01 and */

/* later versions of the Apple Event Manager*/

enum {

kAEStartRecording = 'reca', /*event ID for Start */

/* Recording event*/

kAEStopRecording = 'recc', /*event ID for Stop */

/* Recording event*/

kAENotifyStartRecording = 'rec1', /*event ID for Recording On */

/* event*/

kAENotifyStopRecording = 'rec0', /*event ID for Recording Off */

/* event*/

kAENotifyRecording = 'recr' /*event ID for Receive */

/* Recordable Event event*/

};

enum {

/*constant for the returnID parameter of AECreateAppleEvent*/

kAutoGenerateReturnID = -1, /*tells Apple Event Manager */

/* to generate a unique */

/* return ID*/

/*constant for transaction IDs*/

kAnyTransactionID = 0, /*the Apple event is not */

/* part of a transaction*/

/*constants for timeout durations*/

kAEDefaultTimeout = -1, /*use default timeout value*/

kNoTimeOut = -2, /*never time out*/
5-56 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
/*constants for the dispatcher parameter of AEResumeTheCurrentEvent*/

kAENoDispatch = 0, /*don't redispatch the */

/* Apple event*/

kAEUseStandardDispatch = -1 /*redispatch the Apple event */

/* by using its entry in the */

/* Apple event dispatch table*/

};

Data Types 5

typedef unsigned long AEEventClass; /*event class for a */

/* high-level event*/

typedef unsigned long AEEventID; /*event ID for a high-level */

/* event*/

typedef unsigned long AEKeyword; /*keyword for a descriptor */

/* record*/

typedef ResType DescType; /*descriptor type*/

struct AEDesc { /*descriptor record*/

DescType descriptorType; /*type of data being passed*/

Handle dataHandle; /*handle to data being passed*/

};

typedef struct AEDesc AEDesc;

struct AEKeyDesc { /*keyword-specified */

/* descriptor record*/

AEKeyword descKey; /*keyword*/

AEDesc descContent; /*descriptor record*/

};

typedef struct AEKeyDesc AEKeyDesc;

typedef AEDesc AEAddressDesc; /*address descriptor record*/

typedef AEDesc AEDescList; /*list of descriptor records*/

typedef AEDescList AERecord; /*list of keyword-specified */

/* descriptor records*/

typedef AERecord AppleEvent; /*list of attributes and */

/* parameters necessary for */

/* an Apple event*/

typedef long AESendMode; /*flags that determine how */

/* an Apple event is sent*/
Summary of Creating and Sending Apple Events 5-57

C H A P T E R 5

Creating and Sending Apple Events
typedef short AESendPriority; /*send priority of an Apple */

/* event*/

enum { kAEInteractWithSelf, kAEInteractWithLocal,

 kAEInteractWithAll }; /*what processes may */

typedef unsigned char AEInteractAllowed; /* interact with the user*/

enum { kAEUnknownSource, kAEDirectCall, kAESameProcess, kAELocalProcess,

 kAERemoteProcess }; /*the source of an Apple */

typedef unsigned char AEEventSource; /* event*/

enum { kAEDataArray, kAEPackedArray, kAEHandleArray,

 kAEDescArray, kAEKeyDescArray }; /*type of an Apple event */

typedef unsigned char AEArrayType; /* array*/

union AEArrayData { /*data for an Apple event */

short kAEDataArray[1]; /* array*/

char kAEPackedArray[1];

Handle kAEHandleArray[1];

AEDesc kAEDescArray[1];

AEKeyDesc kAEKeyDescArray[1];

};

typedef union AEArrayData AEArrayData;

typedef AEArrayData *AEArrayDataPointer;

typedef ProcPtr EventHandlerProcPtr; /*pointer to an Apple event */

/* handler*/

typedef ProcPtr IdleProcPtr; /*pointer to an application's */

/* idle function*/

typedef ProcPtr EventFilterProcPtr; /*pointer to an application's */

/* filter function*/

Routines for Creating and Sending Apple Events 5

Creating Apple Events

pascal OSErr AECreateAppleEvent
(AEEventClass theAEEventClass,
AEEventID theAEEventID,
const AEAddressDesc *target, short returnID,
long transactionID, AppleEvent *result);
5-58 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Creating and Duplicating Descriptor Records

pascal OSErr AECreateDesc (DescType typeCode, const void* dataPtr,
Size dataSize, AEDesc *result);

pascal OSErr AEDuplicateDesc
(const AEDesc *theAEDesc, AEDesc *result);

Creating Descriptor Lists and AE Records

pascal OSErr AECreateList (const void* factoringPtr, Size factoredSize,
Boolean isRecord, AEDescList *resultList);

Adding Items to Descriptor Lists

pascal OSErr AEPutPtr (const AEDescList *theAEDescList, long index,
DescType typeCode, const void* dataPtr,
Size dataSize);

pascal OSErr AEPutDesc (const AEDescList *theAEDescList, long index,
const AEDesc *theAEDesc);

pascal OSErr AEPutArray (const AEDescList *theAEDescList,
AEArrayType arrayType,
const AEArrayDataPointer *arrayPtr,
DescType itemType, Size itemSize,
long itemCount);

Adding Data and Descriptor Records to AE Records

pascal OSErr AEPutKeyPtr (const AERecord *theAERecord,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPutKeyDesc (const AERecord *theAERecord,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

Adding Parameters and Attributes to Apple Events

pascal OSErr AEPutParamPtr (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);

pascal OSErr AEPutParamDesc (const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

pascal OSErr AEPutAttributePtr
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword, DescType typeCode,
const void* dataPtr, Size dataSize);
Summary of Creating and Sending Apple Events 5-59

C H A P T E R 5

Creating and Sending Apple Events
pascal OSErr AEPutAttributeDesc
(const AppleEvent *theAppleEvent,
AEKeyword theAEKeyword,
const AEDesc *theAEDesc);

Sending Apple Events

pascal OSErr AESend (const AppleEvent *theAppleEvent,
AppleEvent *reply, AESendMode sendMode,
AESendPriority sendPriority,
long timeOutInTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc);

Application-Defined Routines 5

pascal Boolean MyIdleFunction
(const EventRecord *event,
long *sleepTime, RgnHandle *mouseRgn);

pascal Boolean MyReplyFilter
(const EventRecord *event,
long returnID, long transactionID,
AEAddressDesc sender);

Assembly-Language Summary 5

Trap Macros 5

Trap Macros Requiring Routine Selectors

_Pack8

Selector Routine

$0405 AEDuplicateDesc

$0609 AEPutDesc

$0610 AEPutKeyDesc

$0610 AEPutParamDesc

$0627 AEPutAttributeDesc

$0706 AECreateList

$0825 AECreateDesc

$0A08 AEPutPtr

$0A0F AEPutKeyPtr
5-60 Summary of Creating and Sending Apple Events

C H A P T E R 5

Creating and Sending Apple Events

5
C

reating and S
ending A

pple E
vents
Result Codes 5

$0A0F AEPutParamPtr

$0A16 AEPutAttributePtr

$0B0D AEPutArray

$0B14 AECreateAppleEvent

$0D17 AESend

noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type

Selector Routine
Summary of Creating and Sending Apple Events 5-61

errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or
no object callback function found

errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last
object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENot
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type

errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAnd, kAEOr, or kAENot

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only two

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on

C H A P T E R 6

6

Figure 6-0
Listing 6-0
Table 6-0

6 Resolving and Creating

Contents

Object Specifier Records

Resolving Object Specifier Records 6-4
Descriptor Records Used in Object Specifier Records 6-8

Object Class 6-9
Container 6-9
Key Form 6-11
Key Data 6-12

Key Data for a Property ID 6-13
Key Data for an Object’s Name 6-14

Key Data for a Unique ID 6-14
Key Data for Absolute Position 6-14
Key Data for Relative Position 6-15
Key Data for a Test 6-15
Key Data for a Range 6-20

Installing Entries in the Object Accessor Dispatch Tables 6-21
Installing Object Accessor Functions That Find Apple Event Objects 6-23
Installing Object Accessor Functions That Find Properties 6-27

Writing Object Accessor Functions 6-28
Writing Object Accessor Functions That Find Apple Event Objects 6-29
Writing Object Accessor Functions That Find Properties 6-37
Defining Tokens 6-39
Handling Whose Tests 6-41

Writing Object Callback Functions 6-45
Writing an Object-Counting Function 6-48
Writing an Object-Comparison Function 6-50
Writing Marking Callback Functions 6-53
Contents 6-1

C H A P T E R 6

Creating Object Specifier Records 6-55
Creating a Simple Object Specifier Record 6-57

Specifying the Container Hierarchy 6-61
Specifying a Property 6-63
Specifying a Relative Position 6-64

Creating a Complex Object Specifier Record 6-64
Specifying a Test 6-64
Specifying a Range 6-72

Reference to Resolving and Creating Object Specifier Records 6-75
Data Structures Used in Object Specifier Records 6-75
Routines for Resolving and Creating Object Specifier Records 6-77

Initializing the Object Support Library 6-77
Setting Object Accessor Functions and Object Callback Functions 6-77
Getting, Calling, and Removing Object Accessor Functions 6-81
Resolving Object Specifier Records 6-85
Deallocating Memory for Tokens 6-87
Creating Object Specifier Records 6-88

Application-Defined Routines 6-94
Object Accessor Functions 6-94
Object Callback Functions 6-96

Summary of Resolving and Creating Object Specifier Records 6-104
Pascal Summary 6-104

Constants 6-104
Data Types 6-106
Routines for Resolving and Creating Object Specifier Records 6-106
Application-Defined Routines 6-108

C Summary 6-109
Constants 6-109
Data Types 6-111
Routines for Resolving and Creating Object Specifier Records 6-112
Application-Defined Routines 6-114

Assembly-Language Summary 6-115
Trap Macros 6-115

Result Codes 6-115
6-2 Contents

C H A P T E R 6

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

Resolving and Creating Object Specifier Records 6

This chapter describes how your application can use the Apple Event Manager and
application-defined functions to resolve object specifier records. Your application must
be able to resolve object specifier records to respond to core and functional-area Apple
events defined in the Apple Event Registry: Standard Suites.

For example, after receiving a Get Data event that requests a table in a document, your
application can use the Apple Event Manager and application-defined functions to parse
the object specifier record in the direct parameter, locate the requested table, and send a
reply Apple event containing the table’s data back to the application that requested it.

This chapter also describes how your application can use the Apple Event Manager to
create object specifier records. If you want to factor your application for Apple event
recording, or if you want to send Apple events directly to other applications, you need to
know how to create object specifier records.

To use this chapter, you should be familiar with the chapters “Introduction to Apple
Events” and “Responding to Apple Events” in this book. The section “Working With
Object Specifier Records,” which begins on page 3-32, provides a general introduction to
the subject.

If you plan to create object specifier records, you should also be familiar with the chapter
“Creating and Sending Apple Events.” If you are factoring your application, you should
read the chapter “Recording Apple Events” before you write code for resolving or
creating object specifier records.

This chapter begins with an overview of the way your application works with the
Apple Event Manager to resolve object specifier records. It then describes

■ how the data in an object specifier record is organized

■ how to install entries in the object accessor tables

■ how to write object accessor and object callback functions

■ how to create an object specifier record

IMPORTANT

Versions 1.0 and 1.01 of the Apple Event Manager do not include the
routines for resolving and creating object specifier records described in
this chapter. To use these routines with those versions of the Apple
Event Manager, you must link the Object Support Library (OSL) with
your application when you build it, and call the AEObjectInit
function before calling any of the routines. ▲
6-3

C H A P T E R 6

Resolving and Creating Object Specifier Records

Resolving Object Specifier Records 6

If an Apple event parameter consists of an object specifier record, your handler for the
Apple event should resolve the object specifier record: that is, locate the Apple event
objects it describes. The first step is to call the AEResolve function with the object
specifier record as a parameter.

The AEResolve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResolve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

Note
Object specifier records are only valid while the Apple event that
contains them is being handled. For example, if an application receives
an Apple event asking it to cut row 5 of a table, what was row 6 then
becomes row 5, and the original object specifier record that referred to
row 5 no longer refers to the same row. ◆

The AEResolve function can call two kinds of application-defined functions. Object
accessor functions locate Apple event objects. Object callback functions perform other
tasks that only an application can perform, such as counting, comparing, or marking
Apple event objects. This section provides an overview of the way AEResolve calls
object accessor and object callback functions when it resolves object specifier records.

Each time AEResolve calls one of your application’s object accessor functions
successfully, the object accessor function should return a special descriptor record
created by your application, called a token, that identifies either an element in a
specified container or a property of a specified Apple event object. The Apple Event
Manager examines the token’s descriptor type but does nothing with the token’s data.
When it needs to refer to the object the token identifies, the Apple Event Manager simply
passes the token back to your application.

Each object accessor function provided by your application should either find elements
of a given object class in a container identified by a token of a given descriptor type, or
find properties of an Apple event object identified by a token of a specified descriptor
type. The Apple Event Manager uses the object class ID and the descriptor type of the
token that identifies the object’s container to determine which object accessor function
to call.
6-4 Resolving Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

It is up to you to decide how many object accessor functions you need to write for your
application. You can write one object accessor function that locates Apple event objects of
several different object classes, or you can write separate object accessor functions for
certain object classes. Similarly, you may want to use only one descriptor type for all the
tokens returned by your object accessor functions, or you may want to use several
descriptor types. The way you define your tokens depends on the needs of your
application.

You can use the AEInstallObjectAccessor function to create an object accessor
dispatch table that the Apple Event Manager uses to map requests for Apple event
objects to the appropriate object accessor function in your application. The Apple Event
Manager uses the object class of each requested object and the descriptor type of the
token that identifies the object’s container to determine which object accessor function to
call. Depending on the container hierarchy for a given object specifier record and the
way your application defines its object accessor functions, the Apple Event Manager
may need to call a series of object accessor functions to resolve the nested object specifier
records that describe an Apple event object’s container. For information about creating
and using the object accessor dispatch table, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

Figure 6-1 illustrates the major steps involved in resolving an object specifier record. The
SurfWriter application shown in Figure 6-1 receives a Get Data event whose direct
parameter is an object specifier record for a table named “Summary of Sales” in a
document named “Sales Report.” The SurfWriter application’s handler for the Get Data
event calls the AEResolve function with the object specifier record as a parameter. The
AEResolve function begins to parse the object specifier record. The first object accessor
function that AEResolve calls is usually the function that can identify the Apple event
object in the application’s default container— the outermost container in the container
hierarchy. In Figure 6-1, the object specifier record for the document “Sales Report”
specifies the default container, so the Apple Event Manager calls the object accessor
function in the SurfWriter application that can locate a document in a container
identified by a descriptor record of descriptor type typeNull.
Resolving Object Specifier Records 6-5

C H A P T E R 6

Resolving and Creating Object Specifier Records

Figure 6-1 Resolving an object specifier record for a table in a document

AEProcessAppleEvent(event)

Apple event

Get Data

Object specifier record

Class ID:

Container:

cTable

 Object specifier record

Class ID:

Container:

Key form:

Key data:

cDocument

Default container

formName

"Sales Report"

Key form:

Key data:

AEProcessAppleEvent

Object accessor dispatch table

Object class Token type

cTable

cDocument

cDocument

typeMyDocToken

typeNull

typeFile

@MyGetTable

@MyGetDoc

@MyGetDocFile

MyHandleGetData(anAppleEvent)

AEResolve(anObjectSpecRec)

 •

 •

 •

AEDisposeToken(token)

MyGetDoc(objSpecRec, token)

• Locate document named “Sales Report”
• Return token for document

MyDisposeToken(token)

• Dispose of token for document

MyGetTable(objSpecRec, token)

• Locate table named “Summary of Sales”
 in “Sales Report”
• Return token for table

AEResolve

Call object accessor function
for object class cDocument
and token type typeNull
 •
 •
 •
Call object accessor function
for object class cTable and
token type typeMyDocToken
 •
 •
 •

Call token disposal function
 •
 •
 •
Return token for table
as result of AEResolve

•

•

•

•

• Call handler for Get Data event

Handler

Server
application

SurfWriter

Apple Event Manager

Apple event dispatch table

 •
 •
 •

formName

"Summary of Sales"

6-6 Resolving Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

After locating the document named “Sales Report,” the SurfWriter application returns a
token to the Apple Event Manager—that is, a descriptor record that SurfWriter uses to
identify the document. The Apple Event Manager examines the descriptor type of the
token but does not need to know anything about the token’s data to continue parsing the
object specifier record. Next, the Apple Event Manager calls the object accessor function
that can identify a table in a container identified by a token of descriptor type
typeMyDocToken. When the Apple Event Manager calls this object accessor function, it
uses the token that describes the document to identify the table’s container. After the
SurfWriter application has located the table named “Summary of Sales” in the document
named “Sales Report,” it returns a token describing that table to the Apple Event
Manager.

After your application has successfully located an Apple event object, the Apple Event
Manager disposes of all previous tokens returned during resolution of the object
specifier record for the object. The Apple Event Manager disposes of tokens by calling
either the AEDisposeDesc function or your application’s token disposal function, if
you have provided one, which is an object callback function that disposes of a token. In
Figure 6-1, the AEResolve function calls the SurfWriter application’s token disposal
function to dispose of the token for the document after AEResolve receives the token
for the table. After the SurfWriter application has disposed of the token for the
document, the AEResolve function returns the result of the resolution—that is, the
token for the requested table—to the handler in the SurfWriter application that originally
called AEResolve.

The Apple Event Manager can complete the cycle of parsing the object specifier record
and calling the appropriate object accessor function to obtain a token as many times as
necessary to identify every container in the container hierarchy and finish resolving an
object specifier record, including disposing of the tokens for the containers. However,
one token will always be left over—the token that identifies the requested Apple event
object. After AEResolve returns this final token and your application performs the
action requested by the Apple event, it is up to your application to dispose of the token.
Your application can do so by calling the AEDisposeToken function, which in turn calls
either AEDisposeDesc or your application’s token disposal function.

You need to provide a token disposal function only if a call to AEDisposeDesc is not
sufficient by itself to dispose of a token or if you provide marking callback functions,
which are three object callback functions that allow your application to use its own
marking scheme rather than tokens when identifying large groups of Apple event
objects. Your application is not required to provide marking callback functions.

To handle object specifier records that specify a test, your application must provide two
object callback functions: (a) an object-counting function, which counts the number of
elements of a given object class in a given container so that the Apple Event Manager can
determine how many elements it must test to find the element or elements that meet a
specified condition, and (b) an object-comparison function, which compares one
element to another element or to a descriptor record and returns TRUE or FALSE.
Resolving Object Specifier Records 6-7

C H A P T E R 6

Resolving and Creating Object Specifier Records

Your application may also provide an error callback function that can identify which
descriptor record caused the resolution of an object specifier record to fail. Your
application is not required to provide an error callback function.

If your application resolves object specifier records without the help of the Apple Event
Manager, it must extract the equivalent descriptor records and coerce them as necessary
to get access to their data. The Apple Event Manager includes coercion handlers for these
coercions; for information about this default coercion handling, see Table 4-1 on
page 4-43.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28. For more information about object
callback functions, see “Writing Object Callback Functions,” which begins on page 6-45.

The next section, “Descriptor Records Used in Object Specifier Records,” describes how
the data in an object specifier record is interpreted by the Apple Event Manager.

Descriptor Records Used in Object Specifier Records 6

An object specifier record is a coerced AE record of descriptor type
typeObjectSpecifier. The data to which its data handle refers consists of four
keyword-specified descriptor records:

This section describes the descriptor types and data associated with each of these
keywords. You need this information if your application resolves or creates object
specifier records.

For a summary of the descriptor types and key forms discussed in this section, see
Table 6-11 on page 6-76. For an overview of object specifier records, see “Working With
Object Specifier Records,” which begins on page 3-32.

Keyword Value Description of data

keyAEDesiredClass 'want' A four-character code for the object class

keyAEContainer 'from' An object specifier record (or in some cases a
descriptor record with a handle whose value is
NIL) that identifies the container for the
requested objects

keyAEKeyForm 'form' A four-character code for the key form

keyAEKeyData 'seld' Data or nested descriptor records that specify a
property, name, position, range, or test,
depending on the key form
6-8 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

Object Class 6
The object class of the requested objects is identified by an object class ID. The
corresponding keyword-specified descriptor record takes this form:

The Apple Event Registry: Standard Suites defines constants for the standard object
class IDs.

Container 6
The container for the requested objects is usually the object in which they are located. It
can be identified in one of four ways:

The data that describes a container usually consists of another object specifier record.
The ability to nest one object specifier record within another in this way makes it
possible to identify a chain of containers that fully describes the location of one or more
Apple event objects.

Keyword Descriptor type Data

keyAEDesiredClass typeType Object class ID

Keyword Descriptor type Data

keyAEContainer typeObjectSpecifier Object specifier record.

typeNull Value of data handle is NIL.
Specifies the default
container at the top of the
container hierarchy.

typeObjectBeingExamined Value of data handle is NIL.
Specifies the container for
elements that are tested one
at a time; used only within
key data for key form
formTest.

typeCurrentContainer Value of data handle is NIL.
Specifies a container for an
element that demarcates one
boundary in a range. Used
only within key data for key
form formRange.
Descriptor Records Used in Object Specifier Records 6-9

C H A P T E R 6

Resolving and Creating Object Specifier Records

For example, Figure 6-2 shows nested object specifier records that specify the first row of
a table named “Summary of Sales” in a document named “Sales Report.” The container
specified by the object specifier record at the bottom of the figure describes the outermost
container in the container hierarchy—the container for the document “Sales Report.”

Because a container must be specified for each Apple event object in a container
hierarchy, a null descriptor record (that is, a descriptor record whose descriptor type is
typeNull and whose data handle has the value NIL) is used to specify the application’s
default container—the outermost container for any container hierarchy in that
application.

Figure 6-2 Nested object specifier records that specify a container hierarchy

Note
The format used in Figure 6-2 and similar figures throughout this
chapter does not show the structure of the nested object specifier records
as they exist within an Apple event. Instead, these figures show what
you would obtain after calling AEGetKeyDesc repeatedly to extract the
object specifier records from an Apple event record.

When you call AEGetKeyDesc to extract a null descriptor record, the
function returns a descriptor record of type AEDesc with a descriptor
type of typeNull and a data handle whose value is 0. ◆

Object specifier data for row

Object specifier data for table

Object specifier data for document

typeType

cTable

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of table (“Summary of Sales”)

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeLongInteger

1

keyAEKeyDatakeyAEKeyForm

typeEnumerated

keyAEContainer

typeType

cDocument

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

typeNull

Data handle is NIL

formAbsolutePosition

Name of document (“Sales Report”)
6-10 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The object specifier data at the bottom of Figure 6-2 uses a null descriptor record to
specify the document’s container—that is, the default container for the application. The
object specifier record for the document identifies the document named “Sales Report”;
the object specifier record for the table identifies the table named “Summary of Sales” in
the document “Sales Report”; and the object specifier record for the row identifies the
first row of the table named “Summary of Sales” in the document “Sales Report.”

An object specifier record in an Apple event parameter almost always includes
nested object specifier records that specify the container hierarchy for the requested
Apple event object. For the nested object specifier records shown in Figure 6-2, the
relationship between each Apple event object and its container is always simple
containment: it is located inside its container.

In other cases, the specified container may not actually contain the requested Apple
event object. Instead, the relationship between a “container” and a specified object can be
defined differently, depending on the key form. For example, the key form
formRelativePosition indicates that the requested object is before or after its
container.

Object specifier records that specify the key form formTest or formRange require key
data that consists of several nested descriptor records, including additional object
specifier records that identify either a group of elements to be tested or the boundary
elements that demarcate a range. These object specifier records use two special
descriptor types to specify containers: typeObjectBeingExamined (see page 6-19),
which specifies a container that changes as a group of elements are tested one at a time,
and typeCurrentContainer (see page 6-20), which specifies the container for a
boundary element in a range. Both of these descriptor types require a data handle whose
value is NIL, since they act much like variables whose value is supplied by the Apple
Event Manager according to other information provided in the container hierarchy.

Key Form 6
The key form indicates how the key data should be interpreted. It can be specified by
one of eight constants:

The next section describes the key data that corresponds to each key form.

Keyword Descriptor type Data

keyAEKeyForm typeEnumerated formPropertyID
formName
formUniqueID
formAbsolutePosition
formRelativePosition
formTest
formWhose
formRange
Descriptor Records Used in Object Specifier Records 6-11

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data 6
The nature of the information provided by the key data depends both on the specified
key form and on the descriptor type of the descriptor record for the key data. Table 6-1
summarizes these relationships for the standard key forms.

Most applications that resolve object specifier records need to support only the key
forms formPropertyID, formName, formUniqueID, formAbsolutePosition,
formRelativePosition, and formRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return errAEEventNotHandled if they receive a request for a
word by name.

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle formTest automatically.

Table 6-1 Standard descriptor types used with keyAEKeyData

Key form Descriptor type Data

formPropertyID typeType Property ID for an element’s property

formName typeChar or other text type Element’s name

formUniqueID Any appropriate type A value that uniquely identifies an
object within its container or across an
application

formAbsolutePosition typeLongInteger Offset from beginning (positive) or end
(negative) of container

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

formRelativePosition typeEnumerated kAENext
kAEPrevious

formTest typeCompDescriptor (see Table 6-2 on page 6-16)

typeLogicalDescriptor (see Table 6-3 on page 6-17)

formRange typeRangeDescriptor (see Table 6-4 on page 6-20)

formWhose typeWhoseDescriptor (see Table 6-5 on page 6-42)
6-12 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The Apple Event Manager uses the key form formWhose internally to optimize
resolution of object specifier records that specify formTest. Applications that translate
tests into their own query languages need to support formWhose explicitly. “Handling
Whose Tests,” which begins on page 6-41, describes formWhose in detail.

You can define custom key forms and the format for corresponding data for use by
your own application if necessary. If you think you need to do this, check with the
Apple Event Registrar first to find out whether existing key forms or others still under
development can be adapted to the needs of your application.

One simple kind of key form involves identifying an object on the basis of a specified
property. For example, the corresponding data for key form formUniqueID (defined in
the Apple Event Registry: Standard Suites) always consists of a unique ID for the requested
object. This ID is stored as a property identified by the constant pID. The four-character
code that corresponds to both formUniqueID and pID is 'ID '.

If you discover that you do need to define a custom key form based on a property, use
the same four-character code for both the key form and the associated property.

The rest of this section describes how the key data for the other key forms shown in
Table 6-1 identifies Apple event objects.

Key Data for a Property ID 6

The key data for formPropertyID is specified by a descriptor record of descriptor type
typeType. The Apple Event Registry: Standard Suites defines constants for the standard
property IDs.

An object specifier record for a property specifies cProperty as the object class ID, an
object specifier record for the object that contains the property as the container,
formPropertyID as the key form, and a constant such as pFont as the key data. For
example, if you were sending a Set Data event to change the font of a word to Palatino®,
you could specify the data for the object specifier record in the direct parameter as
follows:

In this example, the Set Data Apple event parameter identified by the keyword
keyAETheData would specify Palatino as the value to which to set the specified
property. The reply Apple event for a subsequent Get Data event that included an object
specifier record for the same property would return Palatino in the parameter
identified by the keyword keyAEResult.

Keyword Descriptor type Data

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier Object specifier record for
word to which property
belongs

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pFont
Descriptor Records Used in Object Specifier Records 6-13

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data for an Object’s Name 6

The key data for formName is specified by a descriptor record whose data consists of
text, with a descriptor type such as typeChar or typeIntlText.

Figure 6-2 on page 6-10 includes two object specifier records that specify formName.

Key Data for a Unique ID 6
The key data for formUniqueID consists of a value that identifies an object. This ID
must be unique either within the container, at a minimum, or unique across the
application. A unique ID can be specified by a descriptor record of any appropriate type;
for example, type typeInteger.

Key Data for Absolute Position 6

The key data for formAbsolutePosition consists of an integer that specifies either an
offset or an ordinal position. For descriptor type typeLongInteger, the data is either a
positive integer, indicating the offset of the requested element from the beginning of the
container, or a negative integer, indicating its offset from the end of the container.
The first object specifier record shown in Figure 6-2 on page 6-10 specifies
formAbsolutePosition with key data that consists of the positive integer 1.

For descriptor type typeAbsoluteOrdinal, the data consists of one of these constants:

If an object specifier record specifies kAEMiddle and the number of elements in the
container is even, the Apple Event Manager rounds down; for example, the second word
would be the “middle” word in a range of four words.

Constant Meaning

kAEFirst The first element in the specified container

kAEMiddle The element in the middle of the specified container

kAELast The last element in the specified container

kAEAny A single element chosen at random from the specified container

kAEAll All the elements in the specified container
6-14 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Key Data for Relative Position 6

The key data for formRelativePosition is specified by a descriptor record of type
typeEnumerated whose data consists of one of these constants:

The “container” can be a single Apple event object or a group of Apple event objects; the
requested elements are located immediately before or immediately after it, not inside it.

If your application can locate objects of the same class by absolute position, it can easily
locate the same objects by relative position. For example, all applications that support
formAbsolutePosition can easily locate the table immediately after a container
specified as another table named “Summary of Sales.”

Some applications may also be able to locate an object of one class before or after an
object of another class. For example, a word processor might be able to locate the
paragraph immediately after a container specified as a table named “Summary of Sales.”

Key Data for a Test 6

The key data for formTest is specified by either a comparison descriptor record or a
logical descriptor record. If your application provides an object-counting function and an
object-comparison function in addition to the appropriate object accessor functions, the
Apple Event Manager can handle formTest for you. Some applications may perform
tests more efficiently by translating them into the application’s own query language. For
information about handling tests yourself, see “Handling Whose Tests,” which begins on
page 6-41.

The container for objects that pass a test can be one or more Apple event objects. The
objects specified are those in the container that pass the test specified by the key data.
For example, an object specifier record can describe “the first row in which the First
Name column equals ‘John’ and the Last Name column equals ‘Chapman’ in the table
‘MyAddresses’ of the database ‘SurfDB.’” To resolve such an object specifier record, the
Apple Event Manager must evaluate a logical expression that applies the logical
operator AND to two separate comparisons for each row: a comparison of the First Name
column to the word “John” and a comparison of the Last Name column to the word
“Chapman.”

Constant Meaning

kAENext The Apple event object after the specified container

kAEPrevious The Apple event object before the specified container
Descriptor Records Used in Object Specifier Records 6-15

C H A P T E R 6

Resolving and Creating Object Specifier Records
The Apple Event Manager evaluates comparisons and logical expressions on the
basis of the information in comparison descriptor records and logical descriptor records.
A comparison descriptor record is a coerced AE record of type typeCompDescriptor
that specifies an Apple event object and either another Apple event object or data for the
Apple Event Manager to compare to the first object. The Apple Event Manager can also
use the information in a comparison descriptor record to compare elements in a
container, one at a time, either to an Apple event object or to data. The data for a
comparison descriptor record consists of three keyword-specified descriptor records
with the descriptor types and data shown in Table 6-2.

The keyword keyAEObject1 identifies a descriptor record for the element that is
currently being compared to the object or data specified by the descriptor record
for the keyword keyAEObject2. Either object can be described by a descriptor record of
type typeObjectSpecifier or typeObjectBeingExamined. A descriptor record
of typeObjectBeingExamined acts as a placeholder for each of the successive
elements in a container when the Apple Event Manager tests those elements one at a
time. The keyword keyAEObject2 can also be used with a descriptor record of any
other descriptor type whose data is to be compared to each element in a container.

You don’t have to support all the available comparison operators for all Apple event
objects; for example, the “begins with” operator probably doesn’t make sense for objects
of type cRectangle. It is up to you to decide which comparison operators are
appropriate for your application to support, and how to interpret them.

Table 6-2 Keyword-specified descriptor records for typeCompDescriptor

Keyword Descriptor type Data

keyAECompOperator typeType kAEGreaterThan
kAEGreaterThanEquals
kAEEquals
kAELessThan
kAELessThanEquals
kAEBeginsWith
kAEEndsWith
kAEContains

keyAEObject1 typeObjectSpecifier Object specifier data

typeObjectBeingExamined Value of data handle is NIL

keyAEObject2 typeObjectSpecifier Object specifier data for object to be
compared

typeObjectBeingExamined Value of data handle is NIL

any other type (AEDesc) Data to be compared
6-16 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If necessary, you can define your own custom comparison operators. If you think you
need to do this, check with the Apple Event Registrar first to find out whether existing
definitions of comparison operators or definitions still under development can be
adapted to the needs of your application.

A logical descriptor record is a coerced AE record of type typeLogicalDescriptor
that specifies a logical expression—that is, an expression that the Apple Event Manager
evaluates to either TRUE or FALSE. The logical expression is constructed from a logical
operator (one of the Boolean operators AND, OR, or NOT) and a list of logical terms to
which the operator is applied. Each logical term in the list can be either another logical
descriptor record or a comparison descriptor record. The Apple Event Manager
short-circuits its evaluation of a logical expression as soon as one part of the expression
fails a test. For example, if while testing a logical expression such as A AND B AND C the
Apple Event Manager discovers that A AND B is not true, it will evaluate the expression
to FALSE without testing C.

The data for a logical descriptor record consists of two keyword-specified descriptor
records with the descriptor types and data shown in Table 6-3.

If the logical operator is AND or OR, the list can contain any number of logical terms, and
the logical operator is applied to all the terms in the list. For example, the logical
descriptor data shown in Figure 6-4 on page 6-19 consists of the logical operator AND and
a list of logical terms that contains two comparison descriptor records. The entire logical
descriptor record corresponds to the logical expression “the First Name column equals
‘John’ AND the Last Name column equals ‘Chapman.’” If the logical operator is NOT, the
list must contain a single term.

Figure 6-3 shows four object specifier records that specify the container hierarchy for the
first row in the table “MyAddresses” of the database “SurfDB” that meets a test. The
object specifier record at the top of Figure 6-3 specifies the first row contained in the set
of rows that form its container. The container for the first row is specified by an object
specifier record for a set of rows that meet a test. The two object specifier records at the
bottom of Figure 6-3 specify the table named “MyAddresses,” which contains the rows
to be tested, in the database named “SurfDB.”

Table 6-3 Keyword-specified descriptor records for typeLogicalDescriptor

Keyword Descriptor type Data

keyAELogicalOperator typeEnumerated kAEAND
kAEOR
kAENOT

keyAELogicalTerms typeAEList One or more comparison or
logical descriptor records
Descriptor Records Used in Object Specifier Records 6-17

C H A P T E R 6

Resolving and Creating Object Specifier Records
Figure 6-3 The container hierarchy for the first row in a table that meets a test

The object specifier record in Figure 6-3 for a set of rows that meet a test specifies
formTest. The corresponding key data consists of the logical descriptor record shown
in Figure 6-4, which applies the logical operator AND to two logical terms: a comparison
descriptor record that specifies all the rows in the container (the table “MyAddresses”)
in which the column named “First Name” equals “John,” and another comparison
descriptor record that specifies all the rows in which the column named “Last Name”
equals “Chapman.” A row in the table “MyAddresses” passes the test only if both
comparison descriptor records evaluate as TRUE.

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeLongInteger

1

keyAEKeyDatakeyAEKeyForm

formAbsolutePosition

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formTest

typeLogicalDescriptor

keyAEKeyData

Data shown in Figure 6-4

typeObjectSpecifier

keyAEContainer

Data shown below

typeType

cTable

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

typeNull

keyAEContainer

Data handle is NIL

typeType

cDatabase

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of database (“SurfDB”)

Name of table (“MyAddresses”)

typeEnumerated

Object specifier data for the first row in a container

Object specifier data for a set of rows that meet a test

Object specifier data for a table

Object specifier data for a database
6-18 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Figure 6-4 A logical descriptor record that specifies a test

The keyword-specified descriptor records with the keyword keyAEObject1 in
Figure 6-4 each consist of an object specifier record that identifies a column
by name. The row for each column is specified by a descriptor record of
typeObjectBeingExamined, which acts as a placeholder for each row as the Apple
Event Manager tests successive rows in the table. The Apple event object specified by
each of these object specifier records consists of a column in the row. The Apple Event
Manager (with the help of an object-comparison function) compares the contents of the
column in successive rows to the string identified by the keyword keyAEObject2 using
the comparison operator identified by the keyword keyAECompOperator.

typeEnumerated

kAEAnd

keyAELogicalOperator

typeAEList

keyAELogicalTerms

Data shown below

typeCompDescriptor

Data shown to right

Data shown to right

typeCompDescriptor

Logical descriptor data
for Figure 6-3

Logical terms data

typeType

kAEEquals

keyAECompOperator

typeObjectSpecifier

keyAEObject1

Data for first
logical term

typeChar

keyAEObject2

typeType

kAEEquals

keyAECompOperator

typeObjectSpecifier

keyAEObject1

Data for second
logical term

typeChar

keyAEObject2

First name (“John”)

Last name (“Chapman”)

typeType

cColumn

keyAEDesiredClass

typeObjectBeingExamined

keyAEContainer

Object specifier data for
first logical term

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of column (“First Name”)

typeType

cColumn

keyAEDesiredClass

typeObjectBeingExamined

keyAEContainer

Object specifier data for
second logical term

typEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of column (“Last Name”)

Data handle is NIL

Data handle is NIL

Data shown to right

Data shown to right
Descriptor Records Used in Object Specifier Records 6-19

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data for a Range 6

The key data for formRange is specified by a range descriptor record, which is a
coerced AE record of type typeRangeDescriptor that identifies two Apple event
objects marking the beginning and end of a range of elements. The data for a range
descriptor record consists of two keyword-specified descriptor records with
the descriptor types and data shown in Table 6-4.

The elements that identify the beginning and end of the range, which are known as
boundary objects, do not have to belong to the same object class as the elements in the
range itself. If the boundary objects belong to the same object class as the elements in
the range, the boundary objects are included in the range. For example, the range of
tables specified by boundary elements that are also tables would include the two
boundary tables.

The container for boundary objects is usually the same as the container for the entire
range, in which case the container for a boundary object can be specified by a
placeholder—that is, a descriptor record of type typeCurrentContainer whose data
handle has the value NIL.

When AEResolve calls an object accessor function to locate a range of objects, the
Apple Event Manager replaces the descriptor record of type typeCurrentContainer
with a token for the container of each boundary object. When using AEResolve to
resolve the object specifier record, your application doesn’t need to examine the contents
of this token, because the Apple Event Manager keeps track of it. If your application
attempts to resolve some or all of the object specifier record without calling AEResolve,
the application may need to examine the token before it can locate the boundary objects.
The token provided by the Apple Event Manager for a boundary object’s container is a
descriptor record of type typeToken whose data handle refers to a structure of type
ccntTokenRecord.

Table 6-4 Keyword-specified descriptor records in a descriptor record of type
typeRangeDescriptor

Keyword Descriptor type Data

keyAERangeStart typeObjectSpecifier An object specifier record for the
first Apple event object in the
desired range

keyAERangeStop typeObjectSpecifier An object specifier record for the
last Apple event object in the
desired range
6-20 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
TYPE ccntTokenRecord =

RECORD

tokenClass: DescType; {class ID of container }

{ represented by token}

token: AEDesc; {token for current container}

END;

This data type is of interest only if you attempt to resolve an object specifier record for a
range without calling AEResolve. Otherwise, the Apple Event Manager keeps track of
the container.

Installing Entries in the Object Accessor Dispatch Tables 6

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResolve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describes. The AEResolve
function resolves the object specifier record with the help of object accessor functions
provided by your application. Your application installs entries for its object accessor
functions in an object accessor dispatch table, which is used by the Apple Event Manager
to map requests for Apple event objects or their properties to the appropriate object
accessor functions.

After being called by AEResolve, an object accessor function should return a token that
identifies (in whatever manner is appropriate for your application) the specified
Apple event object or property. An object accessor function also returns a result code that
indicates whether it found the Apple event object or property. The token, which is
a descriptor record of data type AEDesc, can be of any descriptor type, including
descriptor types you define yourself. For an overview of the way AEResolve works
with your application’s object accessor functions to locate Apple event objects, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Each object accessor function provided by your application should either find elements
of a specified object class contained in an Apple event object identified by a token of a
specified descriptor type, or find properties of an Apple event object identified by a
token of a specified descriptor type. To determine which object accessor function to
dispatch, the Apple Event Manager uses the object class ID specified in an object
specifier record and the descriptor type of the token that identifies the requested object’s
container. For object accessor functions that find properties, you should specify the
object class ID as the constant cProperty.
Installing Entries in the Object Accessor Dispatch Tables 6-21

C H A P T E R 6

Resolving and Creating Object Specifier Records
To install entries in your application’s object accessor dispatch table, use the
AEInstallObjectAccessor function. For each object class and property your
application supports, you should install entries that specify

■ the object class of the requested Apple event object or property

■ the descriptor type of the token used to identify the container for the requested
Apple event object or property

■ the address of the object accessor function that finds objects or properties of the
specified object class in containers described by tokens of the specified descriptor type

■ a reference constant

You provide this information in the first four parameters to the
AEInstallObjectAccessor function. The fifth parameter allows you to
indicate whether the entry should be added to your application’s object accessor
dispatch table or the system object accessor dispatch table.

The system object accessor dispatch table is a table in the system heap that contains
object accessor functions available to all processes running on the same computer.
The object accessor functions in your application’s object accessor dispatch table are
available only to your application. If AEResolve cannot find an object accessor function
for the Apple event object class in your application’s object accessor dispatch table, it
looks in the system object accessor dispatch table. If it doesn’t find an object accessor
function there either, it returns the result code errAEAccessorNotFound.

If AEResolve successfully calls the appropriate object accessor function in either the
application object accessor dispatch table or the system object accessor dispatch table,
the object accessor function returns a token and result code. The AEResolve function
uses the token and result code to continue resolving the object specifier record. If,
however, the token identifies the final Apple event object or property in the container
hierarchy, AEResolve returns the token for the final resolution in the theToken
parameter.

If the AEResolve function calls an object accessor function in the system object accessor
dispatch table, your Apple event handler may not recognize the descriptor type of the
token returned by the function. If this happens, your handler should attempt to coerce
the token to an appropriate descriptor type. If coercion fails, return the result code
errAEUnknownObjectType. When your handler returns this result code, the
Apple Event Manager attempts to locate a system Apple event handler that can
recognize the token.
6-22 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
It is up to you to decide how many object accessor functions you need to write and
install for your application. You can install one object accessor function that locates
Apple event objects of several different object classes, or you can write separate object
accessor functions for certain object classes. Similarly, you may want to use only one
descriptor type for all the tokens returned by your object accessor functions, or you may
want to use several descriptor types. The sections that follow provide examples of
alternative approaches.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Installing Object Accessor Functions That Find Apple Event
Objects 6
Listing 6-1 demonstrates how to add entries to your application’s object accessor
dispatch table for the object class cText and three of its element classes: the object
classes cWord, cItem, and cChar. In this example, the container for each of these
object classes is identified by a token that consists of a descriptor record of descriptor
type typeMyText.

Listing 6-1 Installing object accessor functions that find elements of different classes for
container tokens of the same type

myErr := AEInstallObjectAccessor(cText, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyText,

@MyFindWordObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cItem, typeMyText,

@MyFindItemObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cChar, typeMyText,

@MyFindCharObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);
Installing Entries in the Object Accessor Dispatch Tables 6-23

C H A P T E R 6

Resolving and Creating Object Specifier Records
The first call to AEInstallObjectAccessor in Listing 6-1 adds an entry to the
application’s object accessor dispatch table. This entry indicates that the AEResolve
function should call the MyFindTextObjectAccessor function when resolving any
Apple event object with the cText object class and a container identified by a token of
descriptor type typeMyText. The other calls to AEInstallObjectAccessor in
Listing 6-1 add entries for Apple event objects of object classes cWord, cItem, and
cChar in a container identified by a token of descriptor type typeMyText. For example,
because all the entries created by the code in Listing 6-1 specify the descriptor type
typeMyText for the token that identifies the container, the AEResolve function calls
the MyFindWordObjectAccessor function to locate a requested word regardless of
whether the container for the word is a run of text, another word, a paragraph,
or an item.

The fourth parameter for the AEInstallObjectAccessor function specifies a
reference constant passed to your handler by the Apple Event Manager each time
AEResolve calls your object accessor function. Your application can use this reference
constant for any purpose. If your application doesn’t use the reference constant, you can
use 0 as the value, as shown in Listing 6-1.

The last parameter for the AEInstallObjectAccessor function is a Boolean value
that determines whether the entry is added to the system object accessor dispatch table
(TRUE) or to your application’s object accessor dispatch table (FALSE).

If you add an object accessor function to the system object accessor dispatch table, the
function that you specify must reside in the system heap. If there was already an entry in
the system object accessor dispatch table for the same object class and container
descriptor type, that entry is replaced unless you chain it to your system handler. You
can do this the same way you chain a previously installed system Apple event handler to
your own system handler. See the description of AEInstallEventHandler on
page 4-62 for details.

▲ W A R N I N G

Before an application calls a system object accessor function, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system object accessor function, it should never
use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system object accessor function
may crash. ▲

The code shown in Listing 6-1 installs a separate object accessor function for each object
class, even though the code specifies the same descriptor type for tokens that identify the
containers for Apple event objects of each class. Most word-processing applications can
specify the same object accessor function as well as the same token descriptor type for
Apple event objects of these four classes, in which case the code shown in Listing 6-1 can
be altered as shown in Listing 6-2.
6-24 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-2 Installing one object accessor function that finds elements of different classes for
container tokens of one type

myErr := AEInstallObjectAccessor(cText, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cItem, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cChar, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

In some situations you may want to write different object accessor functions to locate
Apple event objects of the same object class in containers identified by tokens of different
descriptor types. For example, the code in Listing 6-3 installs two different object
accessor functions: one that finds a word in a container identified by a token of type
typeMyTextToken, and one that finds a word in a container identified by a token
of typeMyGraphicTextToken.

Listing 6-3 Installing object accessor functions that find elements of the same class for
container tokens of different types

myErr := AEInstallObjectAccessor(cWord, typeMyTextToken,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyGraphicTextToken,

@MyFindGrphcTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);
Installing Entries in the Object Accessor Dispatch Tables 6-25

C H A P T E R 6

Resolving and Creating Object Specifier Records
Every application must provide one or more object accessor functions that can find
Apple event objects in the default container, which is always identified by a token of
descriptor type typeNull. Listing 6-4 demonstrates how to add entries to your
application’s object accessor dispatch table for the object classes cWindow and
cDocument. The container for each of these classes is identified by a token of descriptor
type typeNull, which specifies an application’s default container.

Listing 6-4 Installing object accessor functions that locate elements of different classes in the
default container

myErr := AEInstallObjectAccessor(cWindow, typeNull,

@MyFindWindowObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cDocument, typeNull,

@MyFindDocumentObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

For any entry in your object accessor dispatch table, you can specify a wildcard value for
the object class, for the descriptor type of the token used to identify the container, or for
both. You specify a wildcard by supplying the typeWildCard constant when installing
an entry into the object accessor dispatch table. A wildcard value matches all possible
values.

If an object accessor dispatch table contains one entry for a specific object class and a
specific token descriptor type, and another entry that is identical except that it specifies a
wildcard value for either the object class or the token descriptor type, the Apple Event
Manager dispatches the more specific entry. For example, if an object accessor dispatch
table includes one entry that specifies the object class as cWord and the token descriptor
type as typeMyTextToken, and another entry that specifies the object class as cWord
and the token descriptor type as typeWildCard, the Apple Event Manager dispatches
the object accessor function associated with the entry that specifies typeMyTextToken.

If you specify typeWildCard as the first parameter and typeMyToken as the second
parameter for the AEInstallObjectAccessor function and no other entry in the
dispatch table matches more exactly, the Apple Event Manager calls the object accessor
function that you specify in the third parameter when resolving Apple event objects of
any object class in containers identified by tokens of the typeMyToken descriptor type.
6-26 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If you specify cText as the first parameter and typeWildCard as the second parameter
for the AEInstallObjectAccessor function and no other entry in the dispatch table
matches more exactly, the Apple Event Manager calls the object accessor function that
you specify in the third parameter when resolving Apple event objects of the object class
cText in containers identified by tokens of any descriptor type.

If you specify typeWildCard for both the first and second parameters of the
AEInstallObjectAccessor function and no other entry in the dispatch table matches
more exactly, the Apple Event Manager calls the object accessor function that you specify
in the third parameter when resolving Apple event objects of any object class in
containers identified by tokens of any descriptor type.

Once the Apple Event Manager finds a matching entry, whether exact or involving type
typeWildCard, that is the only object accessor function it calls for that object class and
token descriptor type. If that function fails, the Apple Event Manager won’t look for
another matching entry in the same table.

Installing Object Accessor Functions That Find Properties 6
The Apple event object to which a property belongs is that property’s container. You
should add entries to your application’s object accessor dispatch table that specify object
accessor functions for finding properties in containers identified by tokens of various
descriptor types. Object specifier records do not specify a property’s specific object class;
instead, they specify the constant cProperty as the class ID for any property.
Similarly, you should specify the constant cProperty as the object class for an object
accessor function that can find any property of a container identified by a token of a
given descriptor type. If you need to install different object accessor routines for finding
properties of Apple event objects that belong to different object classes, you must use
different descriptor types for the tokens that represent those Apple event objects.

For example, to specify an object accessor function that locates properties of Apple event
objects identified by tokens of descriptor type typeMyToken, you can add a single entry
to the object accessor dispatch table:

myErr := AEInstallObjectAccessor(cProperty, typeMyToken,

@MyFindPropertyObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

The code in this example adds an object accessor function to the application’s object
accessor dispatch table that can find any property of any container identified by a token
of descriptor type typeMyToken. If the second parameter were specified as
typeWildCard, the MyFindPropertyObjectAccessor function would have to be
capable of finding any property of any Apple event object in your application except for
those found by handlers with more specific entries in the object accessor dispatch table.
Installing Entries in the Object Accessor Dispatch Tables 6-27

C H A P T E R 6

Resolving and Creating Object Specifier Records
Writing Object Accessor Functions 6

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResolve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describe. The AEResolve
function resolves object specifier records with the help of object accessor functions
provided by your application. For an overview of the way AEResolve works with your
application’s object accessor functions to locate Apple event objects, see “Resolving
Object Specifier Records,” which begins on page 6-4.

This section describes how to write object accessor functions. You need to read this
section if your application supports the Core suite or any of the functional-area suites in
the Apple Event Registry: Standard Suites.

Your application should provide object accessor functions that can find Apple event
objects and their properties for all object classes supported by your application,
including their corresponding properties and element classes. Because the Apple Event
Manager dispatches object accessor functions according to the class ID of the requested
Apple event object and the descriptor type of the token that identifies its container, you
have a great deal of flexibility in deciding what object accessor functions you need to
write for your application. The installation and dispatching of object accessor functions
are described in “Installing Entries in the Object Accessor Dispatch Tables,” which begins
on page 6-21.

For example, if your application is a word processor, one object accessor function will
probably work equally well for Apple event objects of object classes cParagraph,
cItem, and cWord located in containers identified by tokens of descriptor type
myTextToken. If you use a single descriptor type for tokens that identify any containers
in which objects of these three object classes can be found, you can dispatch requests for
all such elements to the same object accessor function. However, the same word
processor might use one descriptor type for tokens identifying containers of class cCell
and another descriptor type for tokens identifying containers of class cColumn—in
which case it would need an object accessor function for each descriptor type.

For each object class that your application supports, your application should also
provide one object accessor function that can find all the properties of that object class, or
one object accessor function that can find all the properties of several object classes.

Here’s the declaration for a sample object accessor function:

FUNCTION MyObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR theToken: AEDesc;

theRefCon: LongInt): OSErr;
6-28 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The AEResolve function passes the following information to your object accessor
function: the object class ID of the requested Apple event objects, the object class of their
container, a token that identifies the specific container in which to look for them, the key
form and key data that specify how to locate them, and the reference constant associated
with the object accessor function. Your object accessor function uses this information to
locate the requested objects.

Most applications that resolve object specifier records need to support only the
key forms formPropertyID, formName, formUniqueID, formAbsolutePosition,
formRelativePosition, and formRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return errAEEventNotHandled if they receive a request for a
word by name.

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle formTest automatically.

The Apple Event Manager uses the key form formWhose internally to optimize
resolution of object specifier records that specify formTest. Only applications that
translate tests into their own query languages need to support formWhose explicitly.
“Handling Whose Tests,” which begins on page 6-41, describes formWhose in detail.

If your object accessor function successfully locates the requested Apple event objects,
your application should return the noErr result code and a token that identifies them.
The token can be of any descriptor type, as long as it is a descriptor record. For example,
to identify a file, your application might use a descriptor record of descriptor type
typeAlias or typeFSS. To identify an open document, your application might define
its own descriptor type, such as typeMyDocToken, for a descriptor record whose data
handle refers to a pointer to a document record. For more information about tokens, see
“Defining Tokens” on page 6-39.

IMPORTANT

Object accessor functions must not have side effects that change the
number or order of elements in a container while an object specifier
record is being resolved. If the number of elements in a container is
changed during the resolution of an object specifier record, the Apple
Event Manager may not be able to locate all the elements. ▲

Writing Object Accessor Functions That Find
Apple Event Objects 6
The first three listings in this section demonstrate how to write three object accessor
functions that might be called in the following situation: An application receives a
Get Data event with a direct parameter that consists of an object specifier record for the
first word in the third paragraph of a document. The application’s handler for the
Get Data event calls the AEResolve function to resolve the object specifier record.
The AEResolve function first calls the application’s object accessor function for objects
of class cDocument in containers identified by a token of descriptor type typeNull.
Writing Object Accessor Functions 6-29

C H A P T E R 6

Resolving and Creating Object Specifier Records
The AEResolve function passes these values to the
MyFindDocumentObjectAccessor function shown in Listing 6-5:
in the desiredClass parameter, the constant cDocument; in the containerToken
parameter, a descriptor record of descriptor type typeNull with a data handle
whose value is NIL; in the containerClass parameter, the constant typeNull;
in the keyForm parameter, the constant formName; in the keyData parameter, a
descriptor record of descriptor type typeText whose data consists of the string
"MyDoc"; and the reference constant specified in the application’s object accessor
dispatch table.

Listing 6-5 An object accessor function that locates Apple event objects of object class
cDocument

FUNCTION MyFindDocumentObjectAccessor

(desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType; keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

docName: Str255;

actSize: Size;

foundDoc: Boolean;

foundDocRecPtr: MyDocumentRecordPtr;

BEGIN

IF keyform = formName THEN

BEGIN

{get the name of the document from the key data}

MyGetStringFromDesc(keyData, docName, actSize);

{look for a document with the given name by }

{ searching all document records}

MySearchDocRecs(docName, foundDocRecPtr, foundDoc);

IF NOT foundDoc THEN

MyFindDocumentObjectAccessor := kObjectNotFound

ELSE {create token that identifies the document}

MyFindDocumentObjectAccessor :=

AECreateDesc(typeMyDocToken, @foundDocRecPtr,

SizeOf(foundDocRecPtr), token);

END

{handle the other key forms you support}

ELSE

MyFindDocumentObjectAccessor := kKeyFormNotSupported;

END;
6-30 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindDocumentObjectAccessor function uses the information in the
keyForm and keyData parameters to find the specified document. If it finds
the Apple event object, MyFindDocumentObjectAccessor returns a token of
descriptor type typeMyDocToken to AEResolve. The data handle for this token
refers to a pointer to a document record (see Figure 6-5 on page 6-39). The
MyFindDocumentObjectAccessor function returns this token and the noErr
result code to the AEResolve function.

In the Get Data example, the token returned to AEResolve by the
MyFindDocumentObjectAccessor function identifies the document “MyDoc.”
The AEResolve function then calls the application’s object accessor function for objects
of class cParagraph in containers identified by a token of descriptor type
typeMyDocToken.

In this case, AEResolve passes these values to the MyFindParaObjectAccessor
function shown in Listing 6-6: in the desiredClass parameter, the constant
cParagraph; in the containerToken parameter, the token returned by the
MyFindDocumentObjectAccessor function; in the containerClass parameter,
the constant cDocument; in the keyForm parameter, the constant
formAbsolutePosition; in the keyData parameter, a descriptor record with the
typeLongInteger descriptor type and data that consists of the value 3 (indicating the
third paragraph); and the reference constant specified in the application’s object accessor
dispatch table.
Writing Object Accessor Functions 6-31

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-6 An object accessor function that locates Apple event objects of object class
cParagraph

FUNCTION MyFindParaObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType;

keyData: AEDesc;

VAR token: AEDesc;

theRefCon: LongInt): OSErr;

VAR

index: LongInt;

{MyFoundTextRecord is an application-defined data type }

{ consisting of three fields: start, ending, and docPtr}

foundParaRec: MyFoundTextRecord;

foundParaStart: LongInt;

foundParaEnd: LongInt;

foundDocRecPtr: MyDocumentRecordPtr;

success: Boolean;

BEGIN

IF keyForm = formAbsolutePosition THEN

BEGIN

{get the index of the paragraph from the key data}

MyGetIndexFromDesc(keyData, index);

{get the desired paragraph by index}

success := MyGetPara(index, containerToken, foundParaStart,

foundParaEnd, foundDocRecPtr);

IF NOT success THEN

MyFindParaObjectAccessor := kObjectNotFound

ELSE {create token that identifies the paragraph}

BEGIN

foundParaRec.start := foundParaStart;

foundParaRec.ending := foundParaEnd;

foundParaRec.docPtr := foundDocRecPtr;

MyFindParaObjectAccessor :=

AECreateDesc(typeMyTextToken, @foundParaRec,

SizeOf(foundParaRec), token);

END;

END

{handle the other key forms you support}

ELSE

MyFindParaObjectAccessor := kKeyFormNotSupported;

END;
6-32 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindParaObjectAccessor function uses another application-defined function,
MyGetPara, to search the data structures associated with the document and find the
desired paragraph. If it finds the paragraph, MyGetPara returns a value that identifies
the beginning of the paragraph, a value that identifies the end of the paragraph, and a
pointer to the document (which MyGetPara gets from the containerToken
parameter). The MyFindParaObjectAccessor function returns an
application-defined token that contains this information. This token is of descriptor type
typeMyTextToken; it describes a range of characters that can be used to identify any
range of text, including a paragraph or a word. The MyFindParaObjectAccessor
function returns this token and the noErr result code to the AEResolve function.

In the Get Data example, the token returned to AEResolve by the
MyFindParaObjectAccessor function identifies the third paragraph in the
document “MyDoc.” The AEResolve function then calls the application’s
object accessor function for objects of class cWord in containers identified by
a token of descriptor type typeMyTextToken.

In this case, the AEResolve function passes these values to the
MyFindWordObjectAccessor function shown in Listing 6-7: in the desiredClass
parameter, the constant cWord; in the containerToken parameter, the token
returned by the MyFindParaObjectAccessor function (a token of descriptor
type typeMyTextToken that identifies a paragraph); in the containerClass
parameter, the constant cParagraph; in the keyForm parameter, the constant
formAbsolutePosition; in the keyData parameter, a descriptor record with
the typeLongInteger descriptor type and data that consists of the value 1
(indicating the first word); and the reference constant specified in the application’s
object accessor dispatch table.

The MyFindWordObjectAccessor function uses another application-defined
function, MyGetWord, to search the paragraph to find the desired word. If it finds the
word, MyGetWord returns a value that identifies the beginning of the word, a value that
identifies the end of the word, and a pointer to the document (which MyGetWord gets
from the containerToken parameter). The MyFindWordObjectAccessor function
returns a token that contains this information. This token is also of descriptor type
typeMyTextToken; in this case, the token identifies a specific word. The
MyFindWordObjectAccessor function returns this token and the noErr result code
to the AEResolve function, which in turn returns the token to the Get Data event
handler that originally called AEResolve.
Writing Object Accessor Functions 6-33

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-7 An object accessor function that locates Apple event objects of object class
cWord

FUNCTION MyFindWordObjectAccessor

(desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType; keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

index: LongInt;

foundWordRec: MyFoundTextRecord;

foundWordStart: LongInt;

foundWordEnd: LongInt;

foundDocRecPtr: MyDocumentRecPtr;

success: Boolean;

BEGIN

IF keyForm = formAbsolutePosition THEN

BEGIN

{get the index of the word from the key data}

MyGetIndexFromDesc(keyData, index);

{get the desired word by index}

success := MyGetWord(index, containerToken, foundWordStart,

foundWordEnd, foundDocRecPtr);

IF NOT success THEN

MyFindWordObjectAccessor := kObjectNotFound

ELSE {create token that identifies the paragraph}

BEGIN

foundWordRec.start := foundWordStart;

foundWordRec.ending := foundWordEnd;

foundWordRec.docPtr := foundDocRecPtr;

MyFindWordObjectAccessor :=

AECreateDesc(typeMyTextToken, @foundWordRec,

SizeOf(foundWordRec), token);

END;

END

{handle the other key forms you support}

ELSE

MyFindWordObjectAccessor := kKeyFormNotSupported;

END;
6-34 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-5 on page 6-30 shows an object accessor function that locates a document in the
default container. Every application must provide one or more object accessor functions
that can find Apple event objects in the default container, which is always identified by a
descriptor record of descriptor type typeNull. Listing 6-8 provides another example of
an object accessor function that locates an Apple event object in the default container. If
the MyFindWindowObjectAccessor function shown in Listing 6-8 were installed in
an application’s object accessor dispatch table, the AEResolve function would call it as
necessary to locate an object of class cWindow in a container identified by a token of
descriptor type typeNull.

Listing 6-8 An object accessor function that locates Apple event objects of object class
cWindow

FUNCTION MyFindWindowObjectAccessor (desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType;

 keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

windowName: Str255;

actSize: Size;

windTitle: Str255;

window: WindowPtr;

index, iLoop: Integer;

found: Boolean;

BEGIN

IF keyForm = formName THEN

BEGIN

{get the name of the window to find from the keyData }

{ parameter. MyGetStringFromDesc gets data out of an }

{ AEDesc and returns a string and the string's size}

MyGetStringFromDesc(keyData, windowName, actSize);

{look for a window with the given name}

window := FrontWindow;

found := FALSE;

WHILE ((window <> NIL) AND (found = FALSE)) DO

BEGIN

GetWTitle(window, windTitle);

found := EqualString(windTitle, windowName, FALSE, TRUE);

IF NOT found THEN

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}
Writing Object Accessor Functions 6-35

C H A P T E R 6

Resolving and Creating Object Specifier Records
END {of formName}

ELSE

IF keyForm = formAbsolutePosition THEN

{find the window given an index in key data}

BEGIN {get the index from the key data}

MyGetIndexFromDesc(keyData, index);

found := FALSE;

iLoop := 0;

window := FrontWindow;

WHILE (window <> NIL) AND (found <> TRUE) DO

BEGIN

iLoop := iLoop +1;

IF iLoop = index THEN

found := TRUE

ELSE

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}

END {of formAbsolutePosition}

{handle the other key forms you support}

ELSE

BEGIN

MyFindWindowObjectAccessor := kKeyFormNotSupported;

Exit(MyFindWindowObjectAccessor);

END;

IF window = NIL THEN

MyFindWindowObjectAccessor := kObjectNotFound

ELSE {create token that identifies the window}

MyFindWindowObjectAccessor :=

AECreateDesc(typeMyWindow, @window,

SizeOf(window), token);

END;
6-36 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The keyForm parameter of the MyFindWindowObjectAccessor function describes
how the function should interpret the keyData parameter. If the key form is formName,
then the key data contains the name of the window to locate. If the key form is
formAbsolutePosition, the key data contains the position of the window to locate
in the window list; for example, a value of 1 identifies the frontmost window.

The MyFindWindowObjectAccessor function supports only the formName and
formAbsolutePosition key forms. Your object accessor functions should support all
key forms that make sense for the kinds of objects the functions can locate.

For the formName keyword, the MyFindWindowObjectAccessor function starts with
the frontmost window and compares the window’s title to the name specified by the
keyData parameter. It continues this search until it reaches either the end of the
window list or finds a match. If the MyFindWindowObjectAccessor function finds a
match, it uses the AECreateDesc function to create a descriptor record for the token,
specifying the application-defined typeMyWindow descriptor type and the data for
this descriptor type as a window pointer.

The MyFindWindowObjectAccessor function then sets its function result
appropriately, and the AEResolve function either returns this function result and token,
or uses the returned token to request the next Apple event object in the container
hierarchy, such as a document in the window.

Writing Object Accessor Functions That Find Properties 6
The Apple event object to which a property belongs is that property’s container. Your
application should provide an object accessor function for finding properties in
containers identified by tokens of various descriptor types. Your application does not
need to be given a property’s specific object class in order to find that property; instead,
you can specify the object class ID for any property with the constant cProperty. Thus,
you can write a single object accessor function that can find any property of an object
identified by a token of a given descriptor type.

To install such an object accessor function, you can add a single entry to the object
accessor dispatch table that specifies the desired object class as cProperty for a given
token descriptor type. For example, Listing 6-9 shows an object accessor function that
identifies any property of a window.
Writing Object Accessor Functions 6-37

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-9 An object accessor function that identifies any property of a window

FUNCTION MyFindPropertyOfWindowObjectAccessor

(desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR token: AEDesc;

theRefCon: LongInt): OSErr;

VAR

theProperty: DescType;

BEGIN

MyFindPropertyOfWindowObjectAccessor := noErr;

MyGetPropFromKeyData(keyData, theProperty);

IF keyForm = formPropertyID THEN

BEGIN

IF theProperty = pName THEN

{create token that identifies name property of the }

{ window}

MyCreateToken(typeMyWindowProp, containerToken, pName,

token)

ELSE

IF theProperty = pBounds THEN

{create token that identifies bounds property of the }

{ window}

MyCreateToken(typeMyWindowProp, containerToken, pBounds,

token)

{create tokens for other properties as appropriate}

ELSE

MyFindPropertyOfWindowObjectAccessor :=

kErrorPropNotFound;

END

ELSE

MyFindPropertyOfWindowObjectAccessor :=

kKeyFormNotSupported;

END;
6-38 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindPropertyOfWindowObjectAccessor function takes a token that
identifies a window and creates a token that identifies the requested property of that
window. See Figure 6-6 on page 6-40 for an illustration of the logical organization of a
token of descriptor type typeMyWindowProp.

This simplified example merely translates information about the requested property and
the window to which it belongs into the form of a token of type typeMyWindowProp.
This token can then be used by Apple event handlers to identify the corresponding
window and its property, so that a handler can either retrieve the value of the property
(for example, a Get Data handler) or change the value of the property (for example, a
Set Data handler). Like other tokens, a token that identifies a property should always
contain a reference to the corresponding property and the object to which it belongs—
not a copy of the data for that object’s property.

Defining Tokens 6
It is up to you to decide how many token descriptor types you need to define for your
application. In many cases you may be able to define one token that can identify
Apple event objects of several different object classes, such as a token of type
typeMyTextToken that identifies Apple event objects of object classes cText, cWord,
cItem, and cChar. In other cases you may need to define specific token descriptor types
for specific object classes.

For example, the MyFindDocumentObjectAccessor routine shown in Listing 6-5 on
page 6-30 returns a token of descriptor type typeMyDocToken, which identifies a
document record.

CONST {application-defined token}

typeMyDocToken = 'docr'; {identifies a document record}

Figure 6-5 shows the logical arrangement of a descriptor record of descriptor type
typeMyDocToken whose data is specified by a pointer to a document record.

Figure 6-5 Descriptor record for an application-defined token that identifies a document

Data type AEDesc

Descriptor type: typeMyDocToken

Data: Pointer to a document record
Writing Object Accessor Functions 6-39

C H A P T E R 6

Resolving and Creating Object Specifier Records
The MyFindPropertyOfWindowObjectAccessor routine shown in Listing 6-9
returns a token of descriptor type typeMyWindowProp for every property that it
can locate.

CONST {application-defined token}

typeMyWindowProp = 'wprp'; {a window pointer and a }

 { property ID}

Figure 6-6 shows the logical arrangement of a descriptor record of descriptor type
typeMyWindowProp that identifies the bounds property of a window. Its data consists
of a window pointer and the constant pBounds. The application can use this token
either to return or to change the window’s bounds setting, depending on the Apple
event that specified the property. If the token specified pName instead, the application
could use it either to return the window’s name as a string or to change the window’s
name.

Figure 6-6 Descriptor record for an application-defined token that identifies the pbounds
property of a window

A token’s data should always contain a reference to the corresponding Apple event
objects—not a copy of the data for those objects. This allows the same token to be used
for both reading and writing tokens.

It’s often possible to use the same token type for objects of several object classes, or for
both an object of a given class and one of its properties. A token’s data is private to your
application and can be organized in any way that is convenient.

When an object accessor function that supports key form formRange locates a range of
Apple event objects, it should normally return a descriptor list (AEDescList) of tokens
for the individual objects. A typical exception is an object accessor function that returns a
range of objects of class cText, which should return a single token representing the
entire range. For example, an object accessor function that finds “all the characters from
char 1 to char 1024” should return a token that consists of a list of 1024 objects, each
of class cChar, whereas an object specifier function that finds “all the text from char 1
to char 1024” should return a single token for a single item of class cText that is
1024 characters long.

Data type AEDesc

Descriptor type: typeMyWindowProp

Data: Window pointer

pBounds
6-40 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
A token is valid only until the Apple Event Manager has located the requested element
in the container the token represents and returned another token for the element. The
Apple Event Manager disposes of intermediate tokens after it finishes resolving an object
specifier record, but one token is always left over—the token that identifies the specified
Apple event object or objects. Your application should dispose of this final token by
calling the AEDisposeToken function, which in turn calls your application’s token
disposal function (if one exists), an optional object callback function that disposes of a
token. See page 6-99 for the declaration of a token disposal function.

If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDisposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide a custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to memory for the Apple event object referred to by the token. In
this case, the application should provide a token disposal function that performs the
tasks required to dispose of the token and any associated structures.

Handling Whose Tests 6
If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can resolve object specifier records that specify formTest without any other
assistance from your application. The Apple Event Manager translates object specifier
records of key form formTest into object specifier records of key form formWhose.
This involves collapsing the key form and key data from two object specifier records in a
container hierarchy into one object specifier record with the key form formWhose.

Some applications may find it more efficient to translate whose tests into their own
query languages rather than letting the Apple Event Manager handle the tests. This is
useful only for applications that can make use of a test combined with either an absolute
position or a range to locate objects. If you want the Apple Event Manager to let your
application handle whose tests, set the kAEIDoWhose flag in the callbackFlags
parameter of the AEResolve function. If for any reason one of your application’s object
accessor functions chooses not to handle a particular whose descriptor record, it should
return errAEEventNotHandled as the result code, and the Apple Event Manager will
try again using the original object specifier records, just as if the kAEIDoWhose flag were
not set.
Writing Object Accessor Functions 6-41

C H A P T E R 6

Resolving and Creating Object Specifier Records
The key data for formWhose is specified by a whose descriptor record, which is a
coerced AE record of descriptor type typeWhoseDescriptor. The data for a whose
descriptor record consists of the two keyword-specified descriptor records shown in
Table 6-5.

A whose descriptor record is never created directly by an application. The Apple Event
Manager creates a whose descriptor record whenever an object specifier record of key
form formTest is used to describe the container for elements described by an object
specifier record of key form formAbsolutePosition or formRange, with some
exceptions as noted in this section.

For example, Figure 6-3 on page 6-18 shows four object specifier records that show the
container hierarchy for the first row that meets a test in the table “MyAddresses” of the
database “SurfDB.” The top two object specifier records in that figure use the key forms
formAbsolutePosition and formTest to describe elements in a container. When it
receives these two object specifier records, the Apple Event Manager collapses them into
one, as shown in Figure 6-7. It then calls the application’s object-counting function to
find out how many objects of class cRow the table contains and the object-comparison
function to test the rows in the table until it finds the first row that passes the test.

Table 6-5 Keyword-specified descriptor records for typeWhoseDescriptor

Keyword Descriptor type Data

keyAEIndex typeLongInteger Offset of requested element in group
of elements that pass a test

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

typeWhoseRange Whose range descriptor record

keyAETest typeCompDescriptor Comparison descriptor record

typeLogicalDescriptor Logical descriptor record
6-42 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Figure 6-7 A container hierarchy created by the Apple Event Manager using a whose
descriptor record

If the elements to be tested are described by an object specifier record of key form
formAbsolutePosition or formRange but are not of the same object class as their
container, the Apple Event Manager cannot collapse the existing object specifier records
into a whose descriptor record. Instead, the Apple Event Manager creates a
whose descriptor record as if a third object specifier record of key form
formAbsolutePosition and kAEAll were inserted between the object specifier
record for the container and that for the tested elements. For example, the Apple Event
Manager would interpret a request for “character 1 of word whose first letter = ‘a’” as
“character 1 of every word whose first letter = ‘a’”.

typeNull

keyAEContainer

typeType

cDatabase

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of database (“SurfDB”)

Object specifier data for a set of rows that meet a test

Object specifier data for a table

Object specifier data for a database

Data handle is NIL

typeType

cRow

keyAEDesiredClass keyAEKeyForm

typeEnumerated

Whose descriptor data

formWhose

typeObjectSpecifier

keyAEContainer

Data shown below

typeLogicalDescriptor

Data shown in Figure 6-4

keyAETest

typeLongInteger

1

keyAEKeyIndex

typeWhoseDescriptor

Data shown below

keyAEKeyData

typeType

cTable

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of table (“MyAddresses”)
Writing Object Accessor Functions 6-43

C H A P T E R 6

Resolving and Creating Object Specifier Records
When an object specifier record of key form formTest is used to describe the container
for elements described by an object specifier record of key form formRange, the
Apple Event Manager will, under certain conditions, coerce the corresponding range
descriptor record to a whose range descriptor record, which is a coerced AE record of
typeWhoseRange. The data for a whose range descriptor record consists of
two keyword-specified descriptor records with the descriptor types and data shown in
Table 6-6.

A whose range descriptor record describes the absolute position of the boundary
elements, within the set of all elements that pass a test, that identify the beginning and
end of the desired range.

The Apple Event Manager coerces a range descriptor record to a whose range descriptor
record if the specified container and its elements are of the same class, if the container for
the specified range of elements is a group of Apple event objects that pass a test, and if
the boundary objects in the original range descriptor record meet these conditions:

■ Both boundary objects are of the same object class as the Apple event objects in the
range they specify.

■ The object specifier record for each boundary object specifies its container with a
descriptor record of descriptor type typeCurrentContainer.

■ The object specifier record for each boundary object specifies a key form of
formAbsolutePosition.

Table 6-6 Keyword-specified descriptor records for typeWhoseRange

Keyword Descriptor type Data

keyAEWhoseRangeStart typeLongInteger Offset of beginning of
range

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

keyAEWhoseRangeStop typeLongInteger Offset of end of range

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll
6-44 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If these conditions are not met, the Apple Event Manager doesn’t create a whose range
descriptor record. Instead, as described earlier in this section, the Apple Event Manager
creates a whose descriptor record as if the original request specified every element that
passed the test.

If your application sets the kAEIDoWhose flag in the callbackFlags parameter
of AEResolve, you should provide object accessor functions that can handle
formWhose. These functions should coerce the whose descriptor record specified as
key data for an object specifier record to an AE record and extract the data from the
AE record by calling the AEGetKeyPtr and AEGetKeyDesc functions. If the
keyword-specified descriptor record with the keyword keyAEIndex specifies descriptor
type typeWhoseRange, your object accessor function must also coerce that descriptor
record to an AE record and extract the data. Your object accessor function should then
attempt to locate the requested objects and, if successful, return a token that identifies
them.

If your application sets the kAEIDoWhose flag and attempts to resolve every whose
descriptor record it receives, the Apple Event Manager does not attempt to resolve object
specifier records of any key form. The object-counting and object-comparison functions
are never called, and your application is solely responsible for determining the formats
and types of all tokens.

Writing Object Callback Functions 6

If an Apple event parameter consists of an object specifier record, your handler for
the Apple event typically calls AEResolve to begin the process of locating the requested
Apple event object or objects. In turn, AEResolve calls object accessor functions and,
if necessary, object callback functions provided by your application.

Every application that supports Apple event objects should provide object accessor
functions that can locate Apple event objects belonging to any of the supported object
classes. For an overview of the way AEResolve calls object accessor functions to locate
Apple event objects described by object specifier records, see “Resolving Object Specifier
Records,” which begins on page 6-4.

In addition to object accessor functions, your application can provide up to seven object
callback functions:

■ An object-counting function counts the number of elements of a specified class in a
specified container, so that the Apple Event Manager can determine how many
elements it must examine to find the element or elements that pass a test. Your
application must provide one object-counting function to handle object specifier
records that specify tests. (See “Writing an Object-Counting Function,” which begins
on page 6-48.)
Writing Object Callback Functions 6-45

C H A P T E R 6

Resolving and Creating Object Specifier Records
■ An object-comparison function compares one element either to another element or to a
descriptor record and returns either TRUE or FALSE. Your application must provide
one object-comparison function to handle object specifier records that specify tests.
(See “Writing an Object-Comparison Function” on page 6-50.)

■ A token disposal function disposes of a token after your application calls the
AEDisposeToken function. If your application doesn’t provide a token disposal
function, the Apple Event Manager uses the AEDisposeDesc function instead. Your
application must provide a token disposal function if it requires more than a call to
AEDisposeDesc to dispose of one of its tokens. This is true, for example, if your
application supports marking by modifying its own data structures. (See page 6-99 for
the declaration of a token disposal function.)

■ An error callback function gives the Apple Event Manager an address to which to write
the descriptor record it is currently working with if an error occurs while AEResolve
is attempting to resolve an object specifier record. Your application is not required to
provide an error callback function. (See page 6-100 for the declaration of an error
callback function.)

■ Three marking callback functions are used by the Apple Event Manager to get a mark
token from your application, to mark specific Apple event objects, and to pare down a
group of marked Apple event objects. Your application must provide all three
marking functions if it supports marking. (See “Writing Marking Callback Functions”
on page 6-53.)

To make your object callback functions available to the Apple Event Manager, use the
AESetObjectCallbacks function:

myErr := AESetObjectCallbacks (@MyCompareObjects,

 @MyCountObjects, @MyDisposeToken,

 @MyGetMarkToken, @MyMark,

 @MyAdjustMarks, @MyGetErrDesc);

Each parameter to the AESetObjectCallbacks function consists of either a pointer
to the corresponding application-defined function or NIL if no function is provided.
The AESetObjectCallbacks function sets object callback functions that are available
only to your application. To set system object callback functions, which are available
to all applications and processes running on the same computer, use the
AEInstallSpecialHandler function as described on page 4-100.

To handle object specifier records that specify tests, your application must provide an
object-counting function and an object-comparison function. The Apple Event Manager
calls your application’s object-counting function to determine the number of Apple event
objects in a specified container that need to be tested. The Apple Event Manager calls
your application’s object-comparison function when it needs to compare one Apple
event object to either another Apple event object or to a value in a descriptor record.
6-46 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDisposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to storage for the Apple event object referred to by the token. In
this case, the application can provide a token disposal function that performs the tasks
required to dispose of the token and any associated structures.

Whenever more than one Apple event object passes a test, AEResolve can either return
a list of tokens or make use of a target application’s ability to mark its own objects.
Sometimes a list of tokens can become unmanageably large. For example, if a Get Data
event asks for the names and addresses of all customers with a specified zip code who
have purchased a specified product, the object accessor function that locates all the
customers with the specified zip code might return a list of many thousands of tokens;
the elements identified by those tokens would then have to be tested for the specified
product. However, if your application uses some method of marking objects, you can
choose simply to mark the requested objects rather than returning a list of tokens.
“Writing Marking Callback Functions” on page 6-53 describes how to do this. If your
application supports marking by modifying its own data structures, you must provide a
token disposal function.

When one of your application’s Apple event handlers calls the AEResolve function, the
handler should pass a value in the callbackFlags parameter that specifies whether
your application supports whose descriptor records or provides marking callback
functions. You can add the following constants, as appropriate, to provide a value for the
callbackFlags parameter:

CONST kAEIDoMinimum = $0000; {does not handle whose tests or }

{ provide marking callbacks}

kAEIDoWhose = $0001; {supports key form formWhose}

kAEIDoMarking = $0004; {provides marking functions}

For example, this code instructs the Apple Event Manager to call any marking functions
previously set with the AESetObjectCallbacks function while resolving the object
specifier record in the objectSpecifier parameter:

VAR

objectSpecifier: AEDesc;

resultToken: AEDesc;

myErr: OSErr;

myErr := AEResolve(objectSpecifier, kAEIDoMarking, resultToken);
Writing Object Callback Functions 6-47

C H A P T E R 6

Resolving and Creating Object Specifier Records
If any of the marking callback functions are not installed, AEResolve returns the error
errAEHandlerNotFound.

IMPORTANT

If your application doesn’t specify kAEIDoWhose, the Apple Event
Manager attempts to resolve all object specifier records of key form
formTest. To do so, the Apple Event Manager uses your application’s
object-counting and object-comparison functions, and returns a token of
type typeAEList.

If your application does specify kAEIDoWhose, the Apple Event
Manager does not attempt to resolve object specifier records of any key
form. In this case, the object-counting and object-comparison functions
are never called; your application determines the formats and types of
all tokens; and your application must interpret whose descriptor records
created by the Apple Event Manager during the resolution of object
specifier records. For more information, see “Handling Whose Tests,”
which begins on page 6-41. ▲

Writing an Object-Counting Function 6
To handle object specifier records that specify tests, your application should provide
an object-counting function (unless it specifies kAEIDoWhose as just described).
Your object-counting function should be able to count the number of elements of a given
object class in a given container. For example, if your application supports Apple
event objects that belong to the object class cText in the Text suite, your application
should provide an object-counting function that can count Apple event objects of each
element class listed in the definition of cText in the Apple Event Registry: Standard Suites.
In this case, your application should provide an object-counting function that can count
the number of words, items, or characters in a text object.

You specify your object-counting function with the AESetObjectCallbacks function.
Whenever it is resolving an object specifier record and it requires a count of the number
of elements in a given container, the Apple Event Manager calls your object-counting
function.

Here’s the declaration for a sample object-counting function:

FUNCTION MyCountObjects (desiredClass: DescType;

 containerClass: DescType;

 containerToken: AEDesc;

 VAR result: LongInt): OSErr;

The Apple Event Manager passes the following information to your object-counting
function: the object class ID of the Apple event objects to count, the object class of their
container, and a token identifying their container. (The container class can be useful if
you want to use one token type for several object classes.) Your object-counting function
uses this information to count the number of Apple event objects of the specified object
6-48 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
class in the specified container. After counting the Apple event objects, your application
should return the noErr result code and, in the result parameter, the number of Apple
event objects counted.

Listing 6-10 shows an application-defined function, MyCountObjects, that counts the
number of objects for any object class supported by the application.

Listing 6-10 An object-counting function

FUNCTION MyCountObjects (desiredClass: DescType; containerClass: DescType;

 containerToken: AEDesc; VAR result: LongInt): OSErr;

VAR

window: WindowPtr;

BEGIN

result := 0;

IF desiredClass = cWindow THEN

BEGIN

IF containerClass = typeNull THEN

BEGIN

{count the number of windows}

window := FrontWindow;

WHILE window <> NIL DO

BEGIN

result := result + 1;

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}

END;

MyCountObjects := noErr;

END {of cWindow}

ELSE

IF desiredClass = cWord THEN

{count the number of words in the container}

MyCountObjects := MyCountWords(containerClass, containerToken,

result)

ELSE

IF desiredClass = cParagraph THEN

{count the number of paragraphs in the container}

MyCountObjects := MyCountParas(containerClass, containerToken,

result)

ELSE

{this app does not support any other object classes}

MyCountObjects := kObjectClassNotFound;

END;
Writing Object Callback Functions 6-49

C H A P T E R 6

Resolving and Creating Object Specifier Records
Writing an Object-Comparison Function 6
To handle object specifier records that specify tests, your application should provide an
object-comparison function (unless it specifies kAEIDoWhose as described on page 6-48).
Your object-comparison function should be able to compare one Apple event object to
another Apple event object or to another descriptor record.

You specify your object-comparison function with the AESetObjectCallbacks
function. Whenever it is resolving object specifier records and needs to compare the
value of an Apple event object with another object or with data, the Apple Event
Manager calls your object-comparison function.

Here’s the declaration for a sample object-comparison function:

FUNCTION MyCompareObjects (comparisonOperator: DescType;

object: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

The Apple Event Manager passes the following information to your object-comparison
function: a comparison operator that specifies how the two objects should be compared,
a token for the first Apple event object, and either a token that describes the Apple event
object to compare or a descriptor record.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes. After successfully
comparing the Apple event objects, your object-comparison function should return the
noErr result code and, in the result parameter, a Boolean value specifying TRUE if the
result of the comparison is true and FALSE otherwise. If for any reason your comparison
function is unable to compare the specified Apple event objects, it should return the
result code errAEEventNotHandled; then the Apple Event Manager will try an
alternative method of comparing the Apple event objects, such as calling the equivalent
system object-comparison function, if one exists.

Your object-comparison function should be able to compare an Apple event object
belonging to any object class with another Apple event object. Your function should also
be able to compare two Apple event objects with different object classes, if appropriate.
For example, an object-comparison function for a word-processing application might be
asked to compare the First Name column of a specified row in a table with the first word
on a specified page—that is, to compare an Apple event object of object class cColumn
with an Apple event object of object class cWord. You must decide what kinds of
comparisons make sense for your application.
6-50 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The Apple Event Registry: Standard Suites defines standard comparison operators. Here is
a list of the constants that correspond to these comparison operators:

CONST

kAEGreaterThan = '> ';

kAEGreaterThanEquals = '>= ';

kAEEquals = '= ';

kAELessThan = '< ';

kAELessThanEquals = '<= ';

kAEBeginsWith = 'bgwt';

kAEEndsWith = 'ends';

kAEContains = 'cont';

The comparison operators always relate the first operand to the second. For example,
the constant kAEGreaterThan means that the object-comparison function should
determine whether or not the value of the first operand is greater than the value of the
second operand. For more information, see page 6-90.

Listing 6-11 shows an application-defined function, MyCompareObjects, that compares
two Apple event objects of any object class supported by the application.
Writing Object Callback Functions 6-51

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-11 Object-comparison function that compares two Apple event objects

FUNCTION MyCompareObjects (comparisonOperator: DescType;

theObject: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

BEGIN

result := FALSE;

{compare two objects for equivalence}

IF comparisonOperator = kAEEquals THEN

MyCompareObjects := MyCompEquals(theObject,

objectOrDescToCompare,

result)

ELSE

{compare two objects for greater than}

IF comparisonOperator = kAEGreaterThan THEN

MyCompareObjects := MyCompGreaterThan(theObject,

objectOrDescToCompare,

result)

ELSE

{compare two objects for less than}

IF comparisonOperator = kAELessThan THEN

MyCompareObjects := MyCompLessThan(theObject,

objectOrDescToCompare,

result)

ELSE

{this app does not support any other comparison operators}

MyCompareObjects := errAEEventNotHandled;

END;

The MyCompareObjects function calls a separate application-defined routine for each
comparison operator. In each case, the application-defined routine that actually performs
the comparison can compare an Apple event object with either another Apple event
object or with a descriptor record’s data. If for any reason the comparison cannot be
performed, the MyCompareObjects function returns the result code
errAEEventNotHandled.
6-52 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Writing Marking Callback Functions 6
Marking callback functions allow applications such as databases that can mark their own
objects to take advantage of that capability when resolving object specifier records.
Instead of returning a list of tokens for a group of Apple event objects that pass a test,
your application can simply mark the Apple event objects and return a token that
identifies how they have been marked. In this way, you can speed the resolution of
complex object specifier records and reduce the amount of memory you need to allocate
for tokens.

The use of marking callback functions is optional and usually makes sense if (a) you can
reasonably expect that the tokens created in the process of resolving some object specifier
records might not all fit in memory at once or (b) your application already uses a
marking mechanism. If you want the Apple Event Manager to use marking callback
functions provided by your application, you must add the kAEIDoMarking constant to
the value of the callbackFlags parameter for the AEResolve function. If for any
reason your application cannot mark a requested set of Apple event objects, it should
return errAEEventNotHandled as the result code, and the Apple Event Manager will
attempt to continue resolving the object specifier record by some other method, such as
using a system marking function, if one exists.

If your application supports marking callback functions, it must provide three functions
with declarations that match these examples:

FUNCTION MyGetMarkToken (containerToken: AEDesc;

 containerClass: DescType;

 VAR Result: AEDesc): OSErr;

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;

 markCount: LongInt): OSErr;

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;

markToken: AEDesc): OSErr;

For more detailed information about these sample declarations, see “Object Callback
Functions,” which begins on page 6-96.

To resolve a given object specifier record with the aid of the marking callback functions
provided by your application, the Apple Event Manager first calls your application’s
mark token function (MyGetMarkToken), passing a token that identifies the container
of the elements to be marked in the containerToken parameter and the container’s
object class in the containerClass parameter. The mark token function returns a mark
token. A mark token, like other tokens, can be a descriptor record of any type; however,
unlike other tokens, it identifies the way your application marks Apple event objects
during the current session while resolving a single test. A mark token does not identify a
specific Apple event object; rather, it allows your application to associate a group of
objects with a marked set.
Writing Object Callback Functions 6-53

C H A P T E R 6

Resolving and Creating Object Specifier Records
After it receives the mark token, the Apple Event Manager can call your application’s
object-marking function (MyMark) repeatedly to mark specific Apple event objects. The
Apple Event Manager passes the following information to your marking function: in the
theToken parameter, a token for the object to be marked (obtained from the appropriate
object accessor function); in the markToken parameter, the current mark token; and in
the markCount parameter, the mark count. The mark count indicates the number of
times the Apple Event Manager has called the marking function for the current mark
token. Your application should associate the mark count with each Apple event object it
marks.

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function (MyAdjustMarks) to unmark objects
that it has previously marked. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.’” The
Apple Event Manager first uses the appropriate object accessor routine to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the mark-adjusting function 5 in both the newStart
parameter and the newStop parameter, and the current mark token in the markToken
parameter. The newStart and newStop parameters identify the beginning and end of
the new set of marked objects that the mark-adjusting function will create by unmarking
those previously marked objects not included in the new set.

When the Apple Event Manager calls your mark-adjusting function, your application
must dispose of any data structures that it may have created to mark the previously
marked objects. The Apple Event Manager calls your mark-adjusting function only once
for a given mark token.

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDisposeToken) or returns it as the result of the AEResolve function. If the final
result of a call to the AEResolve function is a mark token, the Apple event objects
currently marked for that mark token are those specified by the object specifier record
passed to AEResolve, and your application can proceed to do whatever the Apple event
has requested. Note that your application is responsible for disposing of a final mark
token with a call to AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function.
When the Apple Event Manager calls AEDisposeToken to dispose of a mark token that
is not the final result of a call to AEResolve, the subsequent call to your token disposal
function lets you know that you can unmark the Apple event objects marked with that
mark token. A call to AEDisposeDesc to dispose of a mark token (which would occur if
you did not provide a token disposal function) would leave the objects marked.
6-54 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Creating Object Specifier Records 6

If your application creates and sends Apple events that require the target application to
locate Apple event objects, your application must create object specifier records for those
events. This section describes how to use the four keyword-specified descriptor records
described in “Descriptor Records Used in Object Specifier Records,” which begins on
page 6-8, to specify the object class ID, container, key form, and key data for an object
specifier record.

Because the internal structure of an object specifier record is nearly identical to the
internal structure of an AE record, it is possible to use AECreateList, AEPutPtr,
and AEPutKeyDesc to add the four keyword-specified descriptor records to an
AE record, then use AECoerceDesc to coerce the AE record to a descriptor record
of type typeObjectSpecifier. However, it is usually preferable to use
the CreateObjSpecifier function to accomplish the same goal. The
CreateObjSpecifier function adds the keyword-specified descriptor records
directly to an object specifier record, thus eliminating several steps that are required
if you create an AE record first. The instructions that follow make use of
CreateObjSpecifier.

To specify the class ID for an object specifier record, your application can specify
the appropriate class ID value as the desiredClass parameter for the
CreateObjSpecifier function, which uses it to create a keyword-specified descriptor
record with the keyword keyAEDesiredClass as part of an object specifier record.

To specify the container for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword keyAEContainer that fully
describes the container of the Apple event object. Because this container is usually
another Apple event object, the container is usually specified by another object specifier
record.

To specify the complete container hierarchy of an Apple event object, your application
must create a series of nested object specifier records, starting with the object specifier
record for the Apple event object whose container is outermost. With the exception of
this first object specifier record, each object specifier record specifies another object
specifier record in the chain as a container.
Creating Object Specifier Records 6-55

C H A P T E R 6

Resolving and Creating Object Specifier Records
For example, Figure 6-2 on page 6-10 shows a series of nested object specifier records
that specify the first row of a table named “Summary of Sales” in a document named
“Sales Report.” The logical organization of the same object specifier records is
summarized in Table 6-7.

Note
The format used in Table 6-7 and similar tables throughout this chapter
does not show the structure of nested object specifier records as they
exist within an Apple event. Instead, this format shows what you would
obtain after calling AEGetKeyDesc repeatedly to extract the object
specifier records from an Apple event record.

When you call AEGetKeyDesc to extract a null descriptor record,
AEGetKeyDesc returns a descriptor record of type AEDesc with a
descriptor type of typeNull and a data handle whose value is 0. ◆

To specify the default container for an object specifier record (such as the container for
the document in Table 6-7), you can use AECreateDesc to create a null descriptor
record, which you can then pass in the theContainer parameter of the
CreateObjSpecifier function. The CreateObjSpecifier function uses the null
descriptor record to create a keyword-specified descriptor record with the keyword
keyAEContainer as part of an object specifier record.

Table 6-7 Nested object specifier records that describe a container hierarchy

Keyword Descriptor type Data

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Sales Report"

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Summary of Sales"

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
6-56 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The object specifier record that specifies the default container is always the first record
you create in a series of nested object specifier records that specifies the complete
container hierarchy for an Apple event object. Each one in the series uses the previously
created object specifier record to specify its container. As with the null descriptor
record, you can pass an object specifier record as the second parameter to the
CreateObjSpecifier function, which uses it to create a keyword-specified descriptor
record with the keyword keyAEContainer.

To specify the key form for an object specifier record, your application can specify a key
form constant as the third parameter to the CreateObjSpecifier function,
which uses it to create a keyword-specified descriptor record with the keyword
keyAEKeyForm as part of an object specifier record. The standard key forms for object
specifier records are summarized in Table 6-1 on page 6-12.

For example, the key form for the object specifier records in Table 6-7 that specify
the document and the table is formName. In other words, the key data identifies the
document and the table by their names. Similarly, the key form for the object specifier
record in Table 6-7 that specifies the first row in the table is formAbsolutePosition.
In other words, the key data identifies the position of the row compared to other rows in
the same container.

To specify the key data for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword keyAEKeyData whose data
handle refers to the appropriate data for the specified key form. You can use
AECreateDesc, CreateCompDescriptor, CreateLogicalDescriptor, and related
functions to create the descriptor record, which you can then pass in the fourth
parameter of the CreateObjSpecifier function. The CreateObjSpecifier
function uses this descriptor record to create a keyword-specified descriptor record with
the keyword keyAEKeyData as part of an object specifier record.

Creating a Simple Object Specifier Record 6
This section shows how to use the CreateObjSpecifier function to create the object
specifier record shown in Table 6-7. The CreateObjSpecifier function creates the
necessary keyword-specified descriptor records for the class ID, container, key form, and
key data and returns the resulting object specifier record as a descriptor record of type
typeObjectSpecifier.
Creating Object Specifier Records 6-57

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-12 shows how the CreateObjSpecifier function creates an object specifier
record from parameters that an application specifies.

Listing 6-12 Creating an object specifier record using CreateObjSpecifier

VAR

desiredClass: DescType;

myObjectContainer: AEDesc;

myKeyForm: DescType;

myKeyDataDesc: AEDesc;

disposeInputs: Boolean;

myObjSpecRec: AEDesc;

myErr: OSErr;

desiredClass := cRow;

myObjectContainer := MyGetContainer;

myKeyForm := formAbsolutePosition;

myKeyDataDesc := MyGetKeyData;

disposeInputs := TRUE;

{create an object specifier record}

myErr := CreateObjSpecifier(desiredClass, myObjectContainer,

myKeyForm, myKeyDataDesc,

disposeInputs, myObjSpecRec);

The code shown in Listing 6-12 demonstrates how an application might use
the CreateObjSpecifier function to create four keyword-specified descriptor
records as part of a descriptor record of type typeObjectSpecifier. The
CreateObjSpecifier function returns a result code of noErr if the object
specifier record was successfully created. The object specifier record returned
in the myObjSpecRec parameter describes an Apple event object of the class
specified by the desiredClass parameter, located in the container specified by the
myObjectContainer parameter, with the key form specified by the myKeyForm
parameter and key data specified by the myKeyDataDesc parameter.

You can specify TRUE in the disposeInputs parameter if you want the
CreateObjSpecifier function to dispose of the descriptor records you created for the
myObjectContainer and myKeyDataDesc parameters. If you specify FALSE, then
your application is responsible for disposing of these leftover descriptor records.

Listing 6-13 shows an application-defined function that uses CreateObjSpecifier to
create an object specifier record for the first row in the table named “Summary of Sales”
in the document “Sales Report,” then uses the object specifier record returned in the
myObjSpecRec parameter as the direct parameter for a Get Data event.
6-58 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-13 Using CreateObjSpecifier in an application-defined function

FUNCTION MyRequestRowFromTarget (targetAddress: AEAddressDesc;

VAR reply: AppleEvent): OSErr;

VAR

desiredClass: DescType;

myKeyForm: DescType;

myObjectContainer: AEDesc;

myObjSpecRec: AEDesc;

myKeyDataDesc: AEDesc;

keyData: LongInt;

theAppleEvent: AppleEvent;

myErr: OSErr;

ignoreErr: OSErr;

BEGIN

{initialize (set to null descriptor records) the two descriptor records }

{ that must eventually be disposed of}

MyInit2DescRecs(myObjSpecRec, theAppleEvent);

desiredClass := cRow; {specify the class}

{specify container for the row}

myErr := MyCreateTableContainer(myObjectContainer,

'Summary of Sales', 'Sales Report');

IF myErr = noErr THEN

BEGIN

myKeyForm := formAbsolutePosition; {specify the key form}

keyData := 1; {specify the key data for row}

myErr := AECreateDesc(typeLongInteger, @keyData, Sizeof(keyData),

myKeyDataDesc);

IF myErr = noErr THEN

{create the object specifier record}

myErr := CreateObjSpecifier(desiredClass, myObjectContainer,

myKeyForm, myKeyDataDesc,

TRUE, myObjSpecRec);

IF myErr = noErr THEN

{myObjSpecRec now describes an Apple event object, and will become }

{ direct parameter of a Get Data event; first create Get Data event}

myErr := AECreateAppleEvent(kAECoreSuite, kAEGetData, targetAddress,

kAutoGenerateReturnID,

kAnyTransactionID, theAppleEvent);
Creating Object Specifier Records 6-59

C H A P T E R 6

Resolving and Creating Object Specifier Records
IF myErr = noErr THEN

{add myObjSpecRec as the direct parameter of the Get Data event}

myErr := AEPutParamDesc(theAppleEvent, keyDirectObject,

myObjSpecRec);

IF myErr = noErr THEN

myErr := AESend(theAppleEvent, reply, kAEWaitReply +

 kAENeverInteract, kAENormalPriority, 120,

 @MyIdleFunction, NIL);

END;

ignoreErr := AEDisposeDesc(myObjSpecRec);

ignoreErr := AEDisposeDesc(theAppleEvent);

MyRequestRowFromTarget := myErr;

END;

The MyRequestRowFromTarget function shown in Listing 6-13 specifies the class ID as
cRow, indicating that the desired Apple event object is a row in a table. It uses the
application-defined function MyCreateTableContainer to create an object specifier
record for the table that contains the row, passing “Summary of Sales” and “Sales
Report” as the second and third parameters to identify the name of the table and the
name of the document that contains the table. (The next section, “Specifying the
Container Hierarchy,” explains how to construct the MyCreateTableContainer
function.) It then specifies the key form as the constant formAbsolutePosition,
which indicates that the key data specifies the position of the row within its container;
sets the keyData variable to 1, indicating the first row, and uses AECreateDesc to
create a descriptor record for the key data; and uses CreateObjSpecifier to
create the object specifier record that describes the desired word.

The desired row is now fully described by the myObjSpecRec variable, which contains
a descriptor record of type typeObjectSpecifier that contains the three nested
object specifier records shown in Table 6-7 on page 6-56. After using
AECreateAppleEvent to create a Get Data event, the MyRequestRowFromTarget
function uses the AEPutParamDesc function to add the myObjSpecRec variable to the
Get Data event as a direct parameter, then uses AESend to send the Get Data event.

Note that the MyRequestRowFromTarget function begins by using the
application-defined function MyInit2DescRecs to set myObjSpecRec and
theAppleEvent to null descriptor records. These two functions must be disposed of
whether the function is successful or not. By setting them to null descriptor records, the
function can dispose of them at the end regardless of where an error may have occurred.
6-60 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Specifying the Container Hierarchy 6

Because the container for an object specifier record usually consists of a chain of other
object specifier records that specify the container hierarchy, your application must create
all the object specifier records in the chain, starting with the record for the
outermost container. Listing 6-14 and Listing 6-15 demonstrate how to use the
CreateObjSpecifier function to create the first two object specifier records in such
a chain: the records for a document and a table.

Listing 6-14 Specifying a document container

FUNCTION MyCreateDocContainer (VAR myDocContainer: AEDesc;

 docName: Str255): OSErr;

VAR

myDocDescRec: AEDesc;

nullDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create a descriptor record for the name of the document}

myErr := AECreateDesc(typeChar, @docName[1],

 Length(docName), myDocDescRec);

IF myErr = noErr THEN

{create a null descriptor record}

myErr := AECreateDesc(typeNull, NIL, 0, nullDescRec);

IF myErr = noErr THEN

{create an object specifier record to specify the }

{ document object}

myErr := CreateObjSpecifier(cDocument, nullDescRec,

 formName, myDocDescRec, TRUE,

 myDocContainer);

MyCreateDocContainer := myErr;

END;
Creating Object Specifier Records 6-61

C H A P T E R 6

Resolving and Creating Object Specifier Records
The function MyCreateDocContainer in Listing 6-14 creates an object specifier record
that identifies a document by name. It starts by using the AECreateDesc function to
create two descriptor records: one of type typeChar for the name of the document, and
one of type typeNull for the null descriptor record that specifies the default container
(because the document is not contained in any other Apple event object). These two
descriptor records can then be used as parameters for the CreateObjSpecifier
function, which returns an object specifier record (that is, a descriptor record of type
typeObjectSpecifier) in the myDocContainer variable. The object specifier record
specifies an Apple event object of the object class cDocument in the container specified
by the nullDescRec variable with a key form of formName and the key data specified
by the myDocDescRec variable. This object specifier can be used by itself to specify a
document, or it can be used to specify the container for another Apple event object.

Listing 6-15 shows an application-defined function, MyCreateTableContainer, that
creates an object specifier record describing a table contained in a document.

Listing 6-15 Specifying a table container

FUNCTION MyCreateTableContainer (VAR myTableContainer: AEDesc;

tableName: Str255;

docName: Str255): OSErr;

VAR

myDocDescRec: AEDesc;

myTableDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create a container for the document}

myErr := MyCreateDocContainer(myDocDescRec, docName);

IF myErr = noErr THEN

BEGIN

{create the table container, }

{ first specify the descriptor record for the key data}

myErr := AECreateDesc(typeChar, @tableName[1],

Length(tableName), myTableDescRec);

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cTable, myDocDescRec,

formName, myTableDescRec,

TRUE, myTableContainer);

END;

MyCreateTableContainer := myErr;

END;
6-62 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The function MyCreateTableContainer in Listing 6-15 starts by using the function
MyCreateDocContainer from Listing 6-14 to create an object specifier record that
identifies the table’s container—the document in which the table is located. Then it uses
the AECreateDesc function to create a descriptor record for the key data—a name that,
when combined with the key form formName, will identify the table in the document.
The object specifier record for the document and the descriptor record specifying the
table’s name are passed to the function CreateObjSpecifier. It returns an object
specifier record in the myTableContainer parameter that specifies an Apple event
object of the object class cTable in the container specified by the MyDocDescRec
variable with a key form of formName and the key data specified by the
myTableDescRec variable. This object specifier record can be used by itself to specify a
table, or it can be used to specify the container for another Apple event object.

Listing 6-13 uses the MyCreateTableContainer function shown in Listing 6-15 to
specify the container hierarchy illustrated in Table 6-7 on page 6-56. The nested
object specifier records shown in Table 6-7 use the key forms formName
and formRelativePosition. You can create key data for the key forms
formPropertyID, formUniqueID, and formRelativePosition using similar
techniques.

Specifying a Property 6

The key form formPropertyID allows your application to specify key data identifying
a property of the object specified as a container. For example, an object specifier record
that identifies the font property of a word specifies cProperty as the class ID, an object
specifier record for the word as the property’s container, formPropertyID as the key
form, and the constant pFont as the key data.

Note that an object specifier record that identifies a property does not include a value for
the property, such as Palatino. The value of a property is returned or set as a
parameter of an Apple event. For example, an application that sends a Get Data event to
get the pFont property of a word receives a value such as Palatino in the
keyAEResult parameter of the reply event, and an application that sends a Set Data
event to change the pFont property of a word specifies a font in the keyAEData
parameter of the Set Data event.

To specify the key data for a key form of formPropertyID, your application must
create a descriptor record of typeType whose data consists of a constant specifying a
property. You can use AECreateDesc to create a descriptor record that specifies the
constant for a property, then use CreateObjSpecifier to add the descriptor record to
an object specifier record as a keyword-specified descriptor record with the keyword
keyAEKeyData.

For more information about object specifier records that specify a property, see “Key
Data for a Property ID” on page 6-13.
Creating Object Specifier Records 6-63

C H A P T E R 6

Resolving and Creating Object Specifier Records
Specifying a Relative Position 6

The key form formRelativePosition allows your application to specify key data
identifying an element or a set of elements that are immediately before or after the
specified container. For example, if the container is a table, you could use a key form of
formRelativePosition to specify the paragraph before or after the table.

To specify the key data for a key form of formRelativePosition, your application
must create a descriptor record of typeEnumerated whose data consists of a constant
specifying either the element after (kAENext) or the element before (kAEPrevious)
the specified container.

You can use AECreateDesc to create a descriptor record that specifies one of these
constants, then use CreateObjectSpecifier to add it to an object specifier record as
a keyword-specified descriptor record with the keyword keyAEKeyData.

For more information about object specifier records that specify a relative position, see
“Key Data for Relative Position” on page 6-15.

Creating a Complex Object Specifier Record 6
This section describes how to create object specifier records that specify a test or a range.
You can specify the object class ID for these object specifier records the same way you
would for any other object specifier record. When you create the other three
keyword-specified descriptor records, however, you can use additional Apple Event
Manager routines and descriptor types to specify any combination of Apple event
objects.

Specifying a Test 6

The key form formTest allows your application to specify key data that identifies one
or more elements in the specified container that pass a test. To do so, your application
must construct several interconnected descriptor records that specify comparisons and, if
necessary, logical expressions.

For example, to specify “the first row in which the First Name column equals ‘John’ and
the Last Name column equals ‘Chapman’ in the table ‘MyAddresses’ of the database
‘SurfDB,’” your application must construct an object specifier record whose key data
describes a logical expression that applies the logical operator AND to two separate
comparisons for each row: a comparison of the First Name column to the word “John”
and a comparison of the Last Name column to the word “Chapman.”
6-64 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The logical organization of the data for the object specifier record that specifies this test is
summarized in Table 6-8 and Table 6-9. (It is also illustrated in Figure 6-3 and Figure 6-4,
beginning on page 6-18.) The listings in the remainder of this section demonstrate how to
create this object specifier record. For general information about the organization of key
data for a test, see “Key Data for a Test,” which begins on page 6-15.

Table 6-8 Object specifier record for the first row that meets a test in the table named
“MyAddresses”

Keyword Descriptor type Data

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDatabase

keyAEContainer typeNull Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "SurfDB"

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "MyAddresses"

keyAEKeyForm typeEnumerated formTest

keyAEKeyData typeLogicalDescriptor (see Table 6-9)

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
Creating Object Specifier Records 6-65

C H A P T E R 6

Resolving and Creating Object Specifier Records
Because both the database and the table shown in Table 6-8 are specified by name,
it would be convenient to have an application-defined routine that creates
an object specifier record that uses the key form formName. The
MyCreateFormNameObjSpecifier function shown in Listing 6-16 can be used for
this purpose.

Table 6-9 Logical descriptor record that specifies a test

Keyword Descriptor type Data

keyAELogicalOperator typeEnumerated kAEAnd

keyAELogicalTerms typeAEList (see indented records)

typeCompDescriptor (see indented record)

keyAECompOperator typeType kAEEquals

keyAEObject1 typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeObjectBeingExamined Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "First Name"

keyAEObject2 typeChar "John"

typeCompDescriptor (see indented record)

keyAECompOperator typeType kAEEquals

keyAEObject1 typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeObjectBeingExamined Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Last Name"

keyAEObject2 typeChar "Chapman"
6-66 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-16 Creating an object specifier record with the key form formName

FUNCTION MyCreateFormNameObjSpecifier

(class: DescType; container: AEDesc;

 keyDataName: str255;

 VAR resultObjSpecRec: AEDesc): OSErr;

VAR

keyDataDescRec: AEDesc;

myErr: OSErr;

BEGIN

myErr := AECreateDesc(typeChar, @keyDataName[1],

 Length(keyDataName), keyDataDescRec);

IF myErr = noErr THEN

myErr := CreateObjSpecifier(class, container, formName,

keyDataDescRec, TRUE,

resultObjSpecRec);

MyCreateFormNameObjSpecifier := myErr;

END;

The MyCreateFormNameObjSpecifier function shown in Listing 6-16 returns, in the
resultObjSpecRec parameter, an object specifier record that describes an Apple event
object of the class specified by the class parameter, located in the container specified by
the container parameter, with the key form formName and key data specified by
the keyDataName parameter. This function is used in Listing 6-19 on page 6-70 to create
object specifier records that use the key form formName for the database and the table.

The nested object specifier records shown in Table 6-9 specify “the rows in which the
First Name column equals ‘John’ and the Last Name column equals ‘Chapman.’” To
identify the rows that pass this test, the Apple Event Manager needs to evaluate two
comparisons: the comparison of each row of the First Name column to the word “John,”
and the comparison of each row of the Last Name column to the word “Chapman.”

The Apple Event Manager uses the information in comparison descriptor records to
compare the specified elements in a container, one at a time, either to another Apple
event object or to the data associated with a descriptor record. The two comparison
descriptor records you need to create for this example are summarized in Table 6-9 on
page 6-66.
Creating Object Specifier Records 6-67

C H A P T E R 6

Resolving and Creating Object Specifier Records
You can use the CreateCompDescriptor function to create a comparison descriptor
record, or you can create an AE record and use AECoerceDesc to coerce it to a
comparison descriptor record. Listing 6-17 shows an example of an application-defined
routine that creates an object specifier record and a descriptor record of typeChar, then
uses the CreateCompDescriptor function to add them to a comparison descriptor
record.

Listing 6-17 Creating a comparison descriptor record

FUNCTION MyCreateComparisonDescRec (VAR compDesc: AEDesc;

colName: str255;

name: str255): OSErr;

VAR

logicalContainer, colNameDesc, nameDesc: AEDesc;

myObjectExaminedContainer: AEDesc;

myErr: OSErr;

BEGIN

{create the object specifier record for keyAEObject1; }

{ first create container}

myErr := AECreateDesc(typeObjectBeingExamined, NIL, 0,

myObjectExaminedContainer);

{create key data}

IF myErr = noErr THEN

myErr := AECreateDesc(typeChar, @colName[1],

 Length(colName), colNameDesc);

{now create the object specifier record}

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cColumn,

 myObjectExaminedContainer,

 formName, colNameDesc, TRUE,

 logicalContainer);

{create the descriptor record for keyAEObject2}

IF myErr = noErr THEN

myErr := AECreateDesc(typeChar, @name[1], Length(name),

 nameDesc);

{create the first logical term (comp descriptor record)}

IF myErr = noErr THEN

myErr := CreateCompDescriptor(kAEEquals, logicalContainer,

nameDesc, TRUE, compDesc);

MyCreateComparisonDescRec := myErr;

END;
6-68 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyCreateComparisonDescRec function takes two strings and uses them to create
a comparison descriptor record. The string passed in the second parameter specifies the
name of the column whose contents should be compared to the string passed in the third
parameter. First, the MyCreateComparisonDescRec function uses AECreateDesc to
create a descriptor record of typeObjectBeingExamined, which is returned in the
variable myObjectExaminedContainer. Next, AECreateDesc creates a descriptor
record of descriptor type typeChar, whose data consists of the string in the variable
colName, and which is returned in the variable colNameDesc. The code then
passes the variables myObjectExaminedContainer and colNameDesc to the
CreateObjSpecifier function, which uses them to create an object specifier record,
returned in the logicalContainer variable, that becomes the keyword-specified
descriptor record with the keyword keyAEObject1.

Next, the MyCreateComparisonDescRec function uses AECreateDesc and the name
parameter to create the descriptor record for keyAEObject2, which AECreateDesc
returns in the nameDesc variable. Finally, the code passes the constant kAEEquals, the
variable logicalContainer, and the variable nameDesc to the
CreateCompDescriptor function, which creates a comparison descriptor record that
allows the Apple Event Manager (with the help of object-comparison functions provided
by the server application) to determine whether the specified column in the row
currently being checked equals the specified string.

You can use the MyCreateComparisonDescRec function to create both the
descriptor records of type typeCompDescriptor shown in Table 6-9 on page 6-66.
These descriptor records provide two logical terms for a logical descriptor record.
The entire logical descriptor record corresponds to the logical expression “the First
Name column equals ‘John’ AND the Last Name column equals ‘Chapman.’”

You can use the CreateLogicalDescriptor function to create a logical descriptor
record, or you can create an AE record and use the AECoerceDesc function to coerce it
to a comparison descriptor record. Listing 6-18 shows an application-defined function
that adds two comparison descriptor records to a descriptor list, then uses the
CreateLogicalDescriptor function to create a logical descriptor record whose
logical terms are the two comparison descriptor records.
Creating Object Specifier Records 6-69

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-18 Creating a logical descriptor record

FUNCTION MyCreateLogicalDescRec (VAR compDesc1, compDesc2: AEDesc;

logicalOperator: DescType;

VAR logicalDesc: AEDesc): OSErr;

VAR

logicalTermsList: AEDescList;

myErr: OSErr;

BEGIN

{create a logical descriptor record that contains two }

{ comparison descriptor records}

{first create a list}

myErr := AECreateList(NIL, 0, FALSE, logicalTermsList);

IF myErr = noErr THEN

myErr := AEPutDesc(logicalTermsList, 1, compDesc1);

IF myErr = noErr THEN

myErr := AEPutDesc(logicalTermsList, 2, compDesc2);

IF myErr = noErr THEN

myErr := AEDisposeDesc(compDesc1);

IF myErr = noErr THEN

myErr := AEDisposeDesc(compDesc2);

IF myErr = noErr THEN

myErr := CreateLogicalDescriptor(logicalTermsList,

logicalOperator, TRUE,

logicalDesc);

MyCreateLogicalDescRec := myErr;

END;

Listing 6-19 uses the application-defined functions shown in Listing 6-16, Listing 6-17,
and Listing 6-18 to build the object specifier record illustrated in Table 6-8 and Table 6-9.

Listing 6-19 Creating a complex object specifier record

FUNCTION MyCreateObjSpecRec (VAR theResultObj: AEDesc): OSErr;

VAR

nullContainer, databaseContainer, tableContainer: AEDesc;

compDesc1, compDesc2: AEDesc;

logicalTestDesc, rowTestContainer, rowOffset: AEDesc;

myErr: OSErr;
6-70 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
BEGIN

{create a null container}

myErr := AECreateDesc(typeNull, NIL, 0, nullContainer);

{create a container for the database}

IF myErr = noErr THEN

myErr := MyCreateFormNameObjSpecifier(cDatabase, nullContainer,

 'SurfDB', databaseContainer);

{create a container for the table}

IF myErr = noErr THEN

myErr := MyCreateFormNameObjSpecifier(cTable, databaseContainer,

 'MyAddresses', tableContainer);

{create a container for the row--an object specifier record that }

{ specifies a test (the row whose First Name column = 'John' and }

{ Last Name column = 'Chapman')}

{create the first comparison descriptor record}

IF myErr = noErr THEN

myErr := MyCreateComparisonDescRec(compDesc1, 'First Name', 'John');

{create the second comparison descriptor record}

IF myErr = noErr THEN

myErr := MyCreateComparisonDescRec(compDesc2, 'Last Name', 'Chapman');

{create the logical descriptor record}

IF myErr = noErr THEN

myErr := MyCreateLogicalDescRec(compDesc1, compDesc2, kAEAND,

logicalTestDesc);

{now create the object specifier record that specifies the test}

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cRow, tableContainer, formTest,

 logicalTestDesc, TRUE, rowTestContainer);

{create the object specifier record for the Apple event object}

{first, create the descriptor record for the key data}

IF myErr = noErr THEN

myErr := CreateOffsetDescriptor (1, rowOffset);

{now create the object specifier record}

IF myErr = noErr THEN

myErr := CreateObjSpecifier (cRow, rowTestContainer,

formAbsolutePosition, rowOffset,

TRUE, theResultObj);

MyCreateObjSpecRec := myErr;

END;
Creating Object Specifier Records 6-71

C H A P T E R 6

Resolving and Creating Object Specifier Records
The MyCreateObjSpecRec function shown in Listing 6-19 begins by
using AECreateDesc to create a null descriptor record, then uses the
MyCreateFormNameObjSpecifier function (shown in Listing 6-16) to specify
the default container for the database named “SurfDB.” The code then calls the
MyCreateFormNameObjSpecifier function again, this time passing the object
specifier record for SurfDB to specify the container for the table “MyAddresses.” The
next two calls are both to the MyCreateComparisonDescRec function (shown in
Listing 6-17), which creates the comparison descriptor records that allow the Apple
Event Manager to compare the First Name column and Last Name column to the names
“John” and “Chapman,” respectively. The next call passes these two comparison
descriptor records to the MyCreateLogicalDescRec function (shown in Listing 6-18)
in the compDesc1 and compDesc2 variables.

Now all the components of the logical descriptor record are ready to assemble. The
next call, to CreateObjSpecifier, specifies the logical descriptor record in
the logicalTestDesc variable as the key data for the object specifier record
that specifies the test. A call to the Apple Event Manager routine
CreateOffsetDescriptor then creates an offset descriptor record that contains
the integer 1. Finally, the code passes the offset descriptor record to the
CreateObjSpecifier function in the rowOffset variable to create the final object
specifier record, which describes the requested row as the first row that passes the test.

The CreateOffsetDescriptor function creates a descriptor record of type
typeLongInteger that can be used as the key data with a key form of
formAbsolutePosition to indicate an element’s offset within its container. A positive
integer indicates an offset from the beginning of the container (the first element has an
offset of 1), and a negative integer indicates an offset from the end of the container (the
last element has an offset of –1). Using CreateOffsetDescriptor accomplishes the
same thing as setting a variable to an integer and passing the variable to AECreateDesc
to create a descriptor record of type typeLongInteger.

Specifying a Range 6

The key form formRange allows your application to specify key data that identifies a
range of elements in the specified container. To do so, your application must first create a
range descriptor record. The Apple Event Manager uses a range descriptor record to
identify the two Apple event objects that specify the beginning and end of a range of
elements.

For example, an object specifier record for a range of text in a document could specify
the table named “Summary of Sales” as the first boundary object and the figure named
“Best-Selling Widgets for 1991” as the second boundary object for a range that consists of
all the text between the table and the figure. Any word processor that keeps track of the
relative positions of text, tables, and figures should be capable of supporting such a
request.
6-72 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Table 6-10 summarizes the logical organization of the data for the object specifier record
that specifies this range. For general information about the organization of data within a
range descriptor record, see “Key Data for a Range” on page 6-20.

You can use the CreateRangeDescriptor function to create a range descriptor record,
or you can create an AE record and use AECoerceDesc to coerce it to a range descriptor
record. Listing 6-20 provides an example of an application-defined routine that creates
two object specifier records, then uses the CreateRangeDescriptor function to add
them to a range descriptor record.

The container for the boundary objects in the range descriptor record created by
Listing 6-20 is the same as the container for the range itself. The object specifier record
for the range’s container is added to an object specifier record of key form formRange at
the same time that the range descriptor record is added as key data. The container for the
two boundary objects can therefore be specified in the range descriptor record by a
descriptor record of type typeCurrentContainer whose data handle has the value
NIL. The Apple Event Manager interprets this as a placeholder for the range’s container
when it is resolving the range descriptor record.

Table 6-10 A range descriptor record

Keyword Descriptor type Data

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeCurrentContainer Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Summary of Sales"

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cFigure

keyAEContainer typeCurrentContainer Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Best-Selling Widgets
for 1991"
Creating Object Specifier Records 6-73

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-20 Creating a range descriptor record

FUNCTION MyCreateRangeDescriptor (VAR rangeDescRec: AEDesc): OSErr;

VAR

rangeStart: AEDesc;

rangeEnd: AEDesc;

currentContainer: AEDesc;

tableNameDescRec: AEDesc;

figureNameDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create the object specifier record for the start of the range }

{ (the table named 'Summary of Sales' in 'MyDoc' document)}

{create a descriptor record of type typeCurrentContainer}

myErr := AECreateDesc(typeCurrentContainer, NIL, 0, currentContainer);

{create the object specifier record}

IF myErr = noErr THEN

myErr := MyCreateNameDescRec(tableNameDescRec,

'Summary of Sales');

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cTable, currentContainer, formName,

 tableNameDescRec, FALSE, rangeStart);

myErr := AEDisposeDesc(tableNameDescRec);

{create the object specifier record for the end of the range }

{ (the figure named 'Best-Selling Widgets...' in 'MyDoc') }

IF myErr = noErr THEN

myErr := MyCreateNameDescRec(figureNameDescRec,

'Best-Selling Widgets for 1991');

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cFigure, currentContainer, formName,

 figureNameDescRec, TRUE, rangeEnd);

{now create the range descriptor record}

IF myErr = noErr THEN

myErr := CreateRangeDescriptor(rangeStart, rangeEnd, TRUE,

rangeDescRec);

MyCreateRangeDescriptor := myErr;

END;
6-74 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
After creating a descriptor record of type typeCurrentContainer and a descriptor
record for the first table’s name, Listing 6-20 uses the CreateObjSpecifier function
to create an object specifier record that identifies the beginning of the range. The
parameters to CreateObjSpecifier specify that the beginning of the range is an
Apple event object of the object class cTable in the current container, with a key form of
formName and key data that identifies the table by name. A second call to
CreateObjSpecifier creates the object specifier record that identifies the end of the
range—an Apple event object of the cFigure object class in the current container, with a
key form of formName and key data that identifies the figure by name. Finally, the code
in Listing 6-20 uses the CreateRangeDescriptor function to create the range
descriptor record, using the two previously created object specifier records to specify the
beginning and end of the range.

Reference to Resolving and Creating Object Specifier Records 6

This section describes the Apple Event Manager routines your application can use to
resolve and create object specifier records. It also describes application-defined object
accessor functions and object callback functions that your application can provide for use
by the Apple Event Manager in resolving object specifier records.

The first section, “Data Structures Used in Object Specifier Records,” summarizes the
descriptor types and associated data that can be used in an object specifier record.
“Routines for Resolving and Creating Object Specifier Records,” which begins on
page 6-77, describes the Apple Event Manager routines you use to initialize the
Object Support Library, resolve object specifier records, set and manipulate object
accessor functions, deallocate memory for tokens, and create object specifier records.
“Application-Defined Routines,” which begins on page 6-94, describes the object
accessor functions and object callback functions that a server application can provide.

Data Structures Used in Object Specifier Records 6
The data for object specifier records can be specified using a variety of descriptor records
and descriptor types. These are described in detail in “Descriptor Records Used in Object
Specifier Records,” which begins on page 6-8, and summarized in Table 6-11.
Reference to Resolving and Creating Object Specifier Records 6-75

C H A P T E R 6

Resolving and Creating Object Specifier Records
Table 6-11 Keyword-specified descriptor records for typeObjectSpecifier

Keyword Descriptor type Data

keyAEDesiredClass typeType Object class ID

keyAEContainer typeObjectSpecifier Object specifier record

typeNull Data handle is NIL. Specifies
the default container at the top
of the container hierarchy.

typeObjectBeingExamined Data handle is NIL. Specifies
the container for elements that
are tested one at a time; used
only with formTest.

typeCurrentContainer Data handle is NIL. Specifies a
container for an element that
demarcates one boundary in a
range. Used only with
formRange.

keyAEKeyForm typeEnumerated formPropertyID
formName
formUniqueID
formAbsolutePosition
formRelativePosition
formTest
formRange
formWhose

keyAEKeyData (See indented key forms)

for formPropertyID typeType Property ID for an element’s
property

for formName typeChar or other text type Element’s name

for formUniqueID Any appropriate type Element’s unique ID

for formAbsolutePosition typeLongInteger Offset from beginning
(positive) or end (negative) of
container

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

for formRelativePosition typeEnumerated kAENext
kAEPrevious

for formTest typeCompDescriptor (See Table 6-2 on page 6-16)

typeLogicalDescriptor (See Table 6-3 on page 6-17)

for formRange typeRangeDescriptor (See Table 6-4 on page 6-20)

for formWhose typeWhoseDescriptor (See Table 6-5 on page 6-42)
6-76 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Routines for Resolving and Creating Object Specifier Records 6
This section describes routines for initializing the Object Support Library, resolving
object specifier records, setting and manipulating object accessor functions, deallocating
memory for tokens, and creating object specifier records.

Initializing the Object Support Library 6

You should call the AEObjectInit function to initialize the Apple Event Manager
routines that handle object specifier records and Apple event objects. To make
these routines available to your application with version 1.01 and earlier versions of the
Apple Event Manager, you must also link the Apple Event Object Support Library with
your application when you build it.

AEObjectInit 6

You use the AEObjectInit function to initialize the Object Support Library.

FUNCTION AEObjectInit: OSErr;

DESCRIPTION

You must call this function before calling any of the Apple Event Manager routines that
describe or manipulate Apple event objects.

RESULT CODES

Setting Object Accessor Functions and Object Callback Functions 6

The Apple Event Manager provides two routines that allow you to specify the object
accessor functions and object callback functions provided by your application. The
AEInstallObjectAccessor function adds an entry for an object accessor function
to either the application’s object accessor dispatch table or the system object accessor
dispatch table. The AESetObjectCallbacks function allows you to specify the object
callback functions to be called for your application.

noErr 0 No error occurred
memFullErr –108 Not enough room in heap zone
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
Reference to Resolving and Creating Object Specifier Records 6-77

C H A P T E R 6

Resolving and Creating Object Specifier Records
AEInstallObjectAccessor 6

You can use the AEInstallObjectAccessor function to add an entry for an object
accessor function to either the application’s object accessor dispatch table or the system
object accessor dispatch table.

FUNCTION AEInstallObjectAccessor (desiredClass: DescType;

 containerType: DescType;

 theAccessor: AccessorProcPtr;

 accessorRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects to be located by the object
accessor function for this table entry.

containerType
The descriptor type of the token used to specify the container for the
desired objects. The object accessor function finds objects in containers
specified by tokens of this type.

theAccessor
A pointer to the object accessor function for this table entry. Note that an
object accessor function listed in the system dispatch table must reside in
the system heap; thus, if the value of the isSysHandler parameter is
TRUE, the theAccessor parameter should point to a location in the
system heap. Otherwise, if you put your system object accessor function
in your application heap, you must call AERemoveObjectAccessor to
remove the function before your application terminates.

accessorRefcon
A reference constant passed by the Apple Event Manager to the object
accessor function whenever the function is called. If your object accessor
function doesn’t use a reference constant, use 0 as the value of this
parameter. To change the value of the reference constant, you must call
AEInstallObjectAccessor again.

isSysHandler
A value that specifies the object accessor dispatch table to which the entry
is added. If the value of isSysHandler is TRUE, the Apple Event
Manager adds the entry to the system object accessor dispatch table.
Entries in the system object accessor dispatch table are available to all
applications running on the same computer. If the value is FALSE, the
Apple Event Manager adds the entry to your application’s object accessor
table. When searching for object accessor functions, the Apple Event
Manager searches the application’s object accessor dispatch table first; it
searches the system object accessor dispatch table only if the necessary
function is not found in your application’s object accessor dispatch table.
6-78 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
DESCRIPTION

The AEInstallObjectAccessor function adds an entry to either the application or
system object accessor dispatch table. You must supply parameters that specify the object
class of the Apple event objects that the object accessor function can locate, the descriptor
type of tokens for containers in which the object accessor function can locate objects, the
address of the object accessor function for which you are adding an entry, and whether
the entry is to be added to the system object accessor dispatch table or your application’s
object accessor dispatch table. You can also specify a reference constant that the Apple
Event Manager passes to your object accessor function each time the Apple Event
Manager calls the function.

RESULT CODES

SEE ALSO

For more information about installing object accessor functions, see “Installing Entries in
the Object Accessor Dispatch Tables,” which begins on page 6-21.

For a description of the AERemoveObjectAccessor function, see page 6-84.

AESetObjectCallbacks 6

You can use the AESetObjectCallbacks function to specify the object callback
functions to be called for your application.

FUNCTION AESetObjectCallbacks (myCompareProc, myCountProc,

 myDisposeTokenProc,

 myGetMarkTokenProc, myMarkProc,

 myAdjustMarksProc,

 myGetErrDescProc: ProcPtr): OSErr;

myCompareProc
Either a pointer to the object-comparison function provided by your
application or NIL if no function is provided.

myCountProc
Either a pointer to the object-counting function provided by your
application or NIL if no function is provided.

myDisposeTokenProc
Either a pointer to the token disposal function provided by your
application or NIL if no function is provided.

noErr 0 No error occurred
paramErr –50 The handler pointer is NIL or odd, or AEObjectInit was not

called before this function
Reference to Resolving and Creating Object Specifier Records 6-79

C H A P T E R 6

Resolving and Creating Object Specifier Records
myGetMarkTokenProc
Either a pointer to the function for returning a mark token provided by
your application or NIL if no function is provided.

myMarkProc Either a pointer to the object-marking function provided by your
application or NIL if no function is provided.

myAdjustMarksProc
Either a pointer to the mark-adjusting function provided by your
application or NIL if no function is provided.

myGetErrDescProc
Either a pointer to the error callback function provided by your
application or NIL if no function is provided.

DESCRIPTION

Your application can provide only one each of the object callback functions specified by
AESetObjectCallbacks: one object-comparison function, one object-counting
function, and so on. As a result, each of these callback functions must perform the
requested task (comparing, counting, and so on) for all the object classes that your
application supports. In contrast, your application may provide many different object
accessor functions if necessary, depending on the object classes and token types your
application supports.

To replace object callback routines that have been previously installed, you can
make another call to AESetObjectCallbacks. Each additional call to
AESetObjectCallbacks replaces any object callback functions installed by previous
calls to AESetObjectCallbacks. You cannot use AESetObjectCallbacks to replace
system object callback routines or object accessor functions. Only those routines you
specify are replaced; to avoid replacing existing callback functions, specify a value of
NIL for the functions you don’t want to replace.

RESULT CODES

SEE ALSO

For information about writing object callback functions, see “Application-Defined
Routines,” which begins on page 6-94.

To install system object callback functions, use the AEInstallSpecialHandler
function described on page 4-100.

noErr 0 No error occurred
paramErr –50 The handler pointer is NIL or odd, or

AEObjectInit was not called before
this function

memFullErr –108 There is not enough room in heap zone
errAENotASpecialFunction –1714 The keyword is not valid for a special

function
6-80 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Getting, Calling, and Removing Object Accessor Functions 6

The Apple Event Manager provides three functions that allow you to get, call, and
remove object accessor functions that you have installed in either the system or
application object accessor dispatch table with the AEInstallObjectAccessor
function. The AEGetObjectAccessor and AECallObjectAccessor functions get
and call object accessor functions installed in the dispatch table you specify, and
AERemoveObjectAccessor removes an installed function.

AEGetObjectAccessor 6

You can use the AEGetObjectAccessor function to get a pointer to an object accessor
function and the value of its reference constant.

FUNCTION AEGetObjectAccessor (desiredClass: DescType;

containerType: DescType;

VAR theAccessor: AccessorProcPtr;

VAR accessorRefcon: LongInt;

isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects located by the requested object
accessor function. This parameter can also contain the constant
typeWildCard or the constant cProperty.

containerType
The descriptor type of the token that identifies the container for the
objects located by the requested object accessor function. This parameter
can also contain the constant typeWildCard.

theAccessor
The AEGetObjectAccessor function returns a pointer to the requested
object accessor function in this parameter.

accessorRefcon
The AEGetObjectAccessor function returns the reference constant
from the object accessor dispatch table entry for the specified object
accessor function in this parameter.

isSysHandler
A value that specifies the object accessor table from which to get the
object accessor function and its reference constant. If the value of
isSysHandler is TRUE, AEGetObjectAccessor gets the function from
the system object accessor dispatch table. If the value of isSysHandler
is FALSE, AEGetObjectAccessor gets the function from the
application’s object accessor dispatch table.
Reference to Resolving and Creating Object Specifier Records 6-81

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The AEGetObjectAccessor function returns a pointer to the object accessor function
installed for the object class specified in the desiredClass parameter and the
descriptor type specified in the containerType parameter. It also returns the reference
constant associated with the specified function. You must supply a value in the
isSysHandler parameter that specifies which object accessor dispatch table you want
to get the function from.

Calling AEGetObjectAccessor does not remove the object accessor function from an
object accessor dispatch table.

To get an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter. Similarly, to get an object accessor function
whose entry in an object accessor dispatch table specifies typeWildCard as the
descriptor type of the token used to specify the container, you must specify
typeWildCard as the value of the containerType parameter.

To get an object accessor function whose entry in an object accessor dispatch table
specifies cProperty (a constant used to specify a property of any object class), you
must specify cProperty as the desiredClass parameter.

RESULT CODES

AECallObjectAccessor 6

You can use the AECallObjectAccessor function to invoke one of your application’s
object accessor functions.

FUNCTION AECallObjectAccessor (desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType;

 keyData: AEDesc;

 VAR theToken: AEDesc): OSErr;

desiredClass
The object class of the desired Apple event objects.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 There is no object accessor function for the

specified object class and container type
6-82 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
containerToken
The token that identifies the container for the desired objects.

containerClass
The object class of the container for the desired objects.

keyForm The key form specified by the object specifier record for the object or
objects to be located.

keyData The key data specified by the object specifier record for the object or
objects to be located.

theToken The object accessor function that is invoked returns a token specifying the
desired object or objects in this parameter.

DESCRIPTION

If you want your application to do some of the Apple event object resolution normally
performed by the AEResolve function, you can use AECallObjectAccessor to
invoke an object accessor function. This might be useful, for example, if you
have installed an object accessor function using typeWildCard for the
AEInstallObjectAccessor function’s desiredClass parameter and typeAEList
for the containerType parameter. To return a list of tokens for a request like “every
line that ends in a period,” the object accessor function can create an empty list, then call
AECallObjectAccessor for each requested element, adding tokens for each element
to the list one at a time.

The parameters of AECallObjectAccessor are identical to the parameters of an object
accessor function, with one exception: the parameter that specifies the reference constant
passed to the object accessor function whenever it is called is added by the Apple Event
Manager when it calls the object accessor function.

To call an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter.

To call an object accessor function whose entry in an object accessor dispatch table
specifies cProperty, you must specify cProperty as the desiredClass parameter.

RESULT CODES

In addition to the following result codes, AECallObjectAccessor returns any other
result codes returned by the object accessor function that is called.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 No object accessor was found
Reference to Resolving and Creating Object Specifier Records 6-83

C H A P T E R 6

Resolving and Creating Object Specifier Records
AERemoveObjectAccessor 6

You can use the AERemoveObjectAccessor function to remove an object accessor
function from an object accessor dispatch table.

FUNCTION AERemoveObjectAccessor (desiredClass: DescType;

containerType: DescType;

theAccessor: AccessorProcPtr;

isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects located by the object accessor
function. The desiredClass parameter can also contain the constant
typeWildCard or the constant cProperty.

containerType
The descriptor type of the token that identifies the container for the
objects located by the object accessor function. The containerType
parameter can also contain the constant typeWildCard.

theAccessor
A pointer to the object accessor function you want to remove. Although
the parameters desiredClass and containerType would be
sufficient to identify the function to be removed, providing the parameter
theAccessor guarantees that you remove the correct function. If this
parameter does not contain a pointer to the object accessor function you
want to remove, its value should be NIL.

isSysHandler
A value that specifies the object accessor dispatch table from which to
remove the object accessor function. If the value of isSysHandler is
TRUE, AEGetObjectAccessor removes the routine from the system
object accessor dispatch table. If the value is FALSE,
AEGetObjectAccessor removes the routine from the application object
accessor dispatch table.

DESCRIPTION

The AERemoveObjectAccessor function removes the object accessor function you
have installed for the object class specified in the desiredClass parameter and the
descriptor type specified in the containerType parameter.

To remove an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter. Similarly, to remove an object accessor function
whose entry in an object accessor dispatch table specifies typeWildCard as the
descriptor type of the token used to specify the container for the desired objects, you
must specify typeWildCard as the value of the containerType parameter.
6-84 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
To remove an object accessor function whose entry in an object accessor dispatch table
specifies cProperty (a constant used to specify a property of any object class), you
must specify cProperty as the desiredClass parameter.

RESULT CODES

Resolving Object Specifier Records 6

If an Apple event parameter consists of an object specifier record, your handler for the
event typically calls the AEResolve function to begin the process of resolving the object
specifier record.

AEResolve 6

You can use the AEResolve function to resolve an object specifier record in an Apple
event parameter.

FUNCTION AEResolve (objectSpecifier: AEDesc;

 callbackFlags: Integer;

 VAR theToken: AEDesc): OSErr;

objectSpecifier
The object specifier record to be resolved.

callbackFlags
A value that determines what additional assistance, if any, your
application can give the Apple Event Manager when it parses the object
specifier record. The value is specified by adding the following constants,
as appropriate:

CONST kAEIDoMinimum = $0000; {supports minimum }

{ callbacks only}

kAEIDoWhose = $0001; {supports formWhose}

kAEIDoMarking = $0004; {provides marking }

{ functions}

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 There is no object accessor function for the

specified object class and container type
Reference to Resolving and Creating Object Specifier Records 6-85

C H A P T E R 6

Resolving and Creating Object Specifier Records
theToken The AEResolve function returns, in this parameter, a token that identifies
the Apple event objects specified by the objectSpecifier parameter.
Your object accessor functions may need to create many tokens to resolve
a single object specifier record; this parameter contains only the final
token that identifies the requested Apple event object. If an error occurs,
AEResolve returns a null descriptor record.

DESCRIPTION

The AEResolve function resolves the object specifier record passed in the
objectSpecifier parameter with the help of the object accessor functions and object
callback functions provided by your application.

RESULT CODES

In addition to the result codes listed here, AEResolve also returns any result code
returned by one of your application’s object accessor functions or object callback
functions. For example, an object accessor function can return errAENoSuchObject
(–1728) when it can’t find an Apple event object, or it can return more specific result
codes.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before

this function was called
errAEHandlerNotFound –1717 The necessary object callback function was

not found (this result is returned only for
object callback functions;
errAEAccessorNotFound [–1723] is
returned when an object accessor function
is not found)

errAEImpossibleRange –1720 The range is not valid because it is
impossible for a range to include the first
and last objects that were specified; an
example is a range in which the offset of
the first object is greater than the offset of
the last object

errAEWrongNumberArgs –1721 The number of operands provided for the
kAENOT logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the
specified object class and token descriptor
type

errAENoSuchLogical –1725 The logical operator in a logical descriptor
record is not kAEAND, kAEOR, or kAENOT

errAEBadTestKey –1726 The descriptor record in a test key is
neither a comparison descriptor record nor
a logical descriptor record

errAENotAnObjectSpec –1727 The objSpecifier parameter of
AEResolve is not an object specifier record

errAENegativeCount –1729 An object-counting function returned a
negative result

errAEEmptyListContainer –1730 The container for an Apple event object is
specified by an empty list
6-86 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If any object accessor function or object callback function returns a result code other than
noErr or errAEEventNotHandled, AEResolve immediately disposes of any existing
tokens and returns. The result code it returns in this case is the result code returned by
the object accessor function or the object callback function.

SEE ALSO

For an overview of the way AEResolve works with object accessor functions, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Deallocating Memory for Tokens 6

Whenever the AEResolve function returns a final token to your event handler as the
result of the resolution of an object specifier record passed to AEResolve, your
application can call the AEDisposeToken function to deallocate the memory used by
the token.

AEDisposeToken 6

You can use the AEDisposeToken function to deallocate the memory used by a token.

FUNCTION AEDisposeToken (VAR theToken: AEDesc): OSErr;

theToken The token to be disposed of.

DESCRIPTION

When your application calls the AEDisposeToken function, the Apple Event Manager
first calls your application’s token disposal function, if you have provided one. If you
haven’t provided a token disposal function, or if your application’s token disposal
function returns errAEEventNotHandled as the function result, the Apple Event
Manager calls the system token disposal function if one is available. If there is no system
token disposal function or the function returns errAEEventNotHandled as the
function result, the Apple Event Manager calls the AEDisposeDesc function to dispose
of the token.

RESULT CODES

In addition to the following result codes, AEDisposeToken also returns result codes
returned by the token disposal function that disposed of the token.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
notASpecialFunction –1714 The keyword is not valid for a special function
Reference to Resolving and Creating Object Specifier Records 6-87

C H A P T E R 6

Resolving and Creating Object Specifier Records
SEE ALSO

For information about writing a token disposal function, see page 6-99.

Creating Object Specifier Records 6

The Apple Event Manager provides five functions that you can use to create some of the
components of an object specifier record or to assemble an object specifier record:

■ The CreateOffsetDescriptor function creates an offset descriptor record, which
specifies the position of an element in relation to the beginning or end of its container.

■ The CreateCompDescriptor function creates a comparison descriptor record,
which specifies how to compare one or more Apple event objects with either another
Apple event object or a descriptor record.

■ The CreateLogicalDescriptor function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event
Manager to evaluate.

■ The CreateRangeDescriptor function creates a range descriptor record, which
specifies a series of consecutive elements in the same container.

■ The CreateObjSpecifier function assembles an object specifier record, which
identifies one or more Apple event objects, from other descriptor records.

Instead of using these functions, you can create the corresponding descriptor records
yourself using the AECreateDesc function, add them to an AE record using other
Apple Event Manager routines, and coerce the AE record to a descriptor record of type
typeObjectSpecifier. However, in most cases it is easier to use the functions listed
in this section.

All of these functions except for CreateOffsetDescriptor include a
disposeInputs parameter. If the value of this parameter is TRUE, the function
automatically disposes of any descriptor records you have provided as parameters to the
function. If the value is FALSE, the application must dispose of the records itself. A value
of FALSE may be more efficient for some applications because it allows them to reuse
descriptor records.

For more information about these functions and examples of their use, see “Creating
Object Specifier Records,” which begins on page 6-55.

CreateOffsetDescriptor 6

You can use the CreateOffsetDescriptor function to create an offset descriptor
record.

FUNCTION CreateOffsetDescriptor (theOffset: LongInt;

VAR theDescriptor: AEDesc)

: OSErr;
6-88 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
theOffset A positive integer that specifies the offset from the beginning of the
container (the first element has an offset of 1), or a negative integer that
specifies the offset from the end (the last element has an offset of –1).

theDescriptor
The offset descriptor record created by CreateOffsetDescriptor.

DESCRIPTION

The CreateOffsetDescriptor function creates an offset descriptor record that
specifies the position of an element in relation to the beginning or end of its container.

RESULT CODES

CreateCompDescriptor 6

You can use the CreateCompDescriptor function to create a comparison descriptor
record.

FUNCTION CreateCompDescriptor (comparisonOperator: DescType;

 VAR operand1: AEDesc;

 VAR operand2: AEDesc;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc)

 : OSErr;

comparisonOperator
The comparison operator for comparing the descriptor records in the
operand1 and operand2 parameters. The operator is specified by the
constants listed in the description that follows.

operand1 An object specifier record.

operand2 A descriptor record (which can be an object specifier record or any other
descriptor record) whose value is to be compared to the value of
operand1.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the two
operands.

theDescriptor
The comparison descriptor record created by CreateCompDescriptor.

noErr 0 No error occurred
memFullErr –108 Not enough room in heap zone
Reference to Resolving and Creating Object Specifier Records 6-89

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The CreateCompDescriptor function creates a comparison descriptor record, which
specifies how to compare one or more Apple event objects with either another Apple
event object or a descriptor record.

The actual comparison of the two operands is performed by the object-comparison
function provided by the client application. The way a comparison operator is
interpreted is up to each application.

These are the currently defined standard comparison operators:

RESULT CODES

SEE ALSO

For an example of how to use the CreateCompDescriptor function to create a
comparison descriptor record, see “Specifying a Test,” which begins on page 6-64.

Constant Meaning

kAEGreaterThan The value of operand1 is greater than the value of
operand2.

kAEGreaterThanEquals The value of operand1 is greater than or equal to the
value of operand2.

kAEEquals The value of operand1 is equal to the value of
operand2.

kAELessThan The value of operand1 is less than the value of
operand2.

kAELessThanEquals The value of operand1 is less than or equal to the value
of operand2.

kAEBeginsWith The value of operand1 begins with the value of
operand2 (for example, the string "operand" begins
with the string "opera").

kAEEndsWith The value of operand1 ends with the value of
operand2 (for example, the string "operand" ends
with the string "and").

kAEContains The value of operand1 contains the value of operand2
(for example, the string "operand" contains the string
"era").

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-90 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
CreateLogicalDescriptor 6

You can use the CreateLogicalDescriptor function to create a logical descriptor
record.

FUNCTION CreateLogicalDescriptor

(VAR theLogicalTerms: AEDescList;

 theLogicOperator: DescType;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc): OSErr;

theLogicalTerms
A list containing comparison descriptor records, logical descriptor
records, or both. If the value of the parameter theLogicOperator is
kAEAND or kAEOR, the list can contain any number of descriptors. If the
value of the parameter theLogicOperator is kAENOT, logically this list
should contain a single descriptor record. However, the function will not
return an error if the list contains more than one descriptor record for a
logical operator of kAENOT.

theLogicOperator
A logical operator represented by one of the following constants:

CONST kAEAND = 'AND ';

kAEOR = 'OR ';

kAENOT = 'NOT ';

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records in the other
parameters.

theDescriptor
The logical descriptor record created by CreateLogicalDescriptor.

DESCRIPTION

The CreateLogicalDescriptor function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event Manager
to evaluate.
Reference to Resolving and Creating Object Specifier Records 6-91

C H A P T E R 6

Resolving and Creating Object Specifier Records
RESULT CODES

SEE ALSO

For an example of how to use the CreateLogicalDescriptor function to create a
logical descriptor record, see “Specifying a Test,” which begins on page 6-64.

CreateRangeDescriptor 6

You can use the CreateRangeDescriptor function to create a range descriptor record.

FUNCTION CreateRangeDescriptor (VAR rangeStart: AEDesc;

 VAR rangeStop: AEDesc;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc): OSErr;

rangeStart
An object specifier record that identifies the first Apple event object in the
range.

rangeStop An object specifier record that identifies the last Apple event object in the
range.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the
rangeStart and rangeStop parameters.

theDescriptor
The range descriptor record created by CreateRangeDescriptor.

DESCRIPTION

The CreateRangeDescriptor function creates a range descriptor record, which
specifies a series of consecutive elements in the same container. Although the
rangeStart and rangeStop parameters can be any object specifier records—including
object specifier records that specify more than one Apple event object—most applications
expect these parameters to specify single Apple event objects.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-92 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
RESULT CODES

SEE ALSO

For an example of how to use the CreateRangeDescriptor function to create a range
descriptor record, see “Specifying a Range” on page 6-72.

CreateObjSpecifier 6

You can use the CreateObjSpecifier function to create an object specifier record.

FUNCTION CreateObjSpecifier (desiredClass: DescType;

 VAR theContainer: AEDesc;

 keyForm: DescType;

 VAR keyData: AEDesc;

 disposeInputs: Boolean;

 VAR objSpecifier: AEDesc): OSErr;

desiredClass
The object class of the desired Apple event objects.

theContainer
A description of the container for the requested object, usually in the form
of another object specifier record.

keyForm The key form for the object specifier record.

keyData The key data for the object specifier record.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the other
parameters.

objSpecifier
The object specifier record created by the CreateObjSpecifier
function.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Resolving and Creating Object Specifier Records 6-93

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The CreateObjSpecifier function assembles an object specifier record from the
specified constants and other descriptor records.

RESULT CODES

SEE ALSO

For information about how to assemble the components of an object specifier record with
the CreateObjSpecifier function, see “Creating Object Specifier Records,” which
begins on page 6-55.

Application-Defined Routines 6
The AEResolve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResolve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

AEResolve can call two kinds of application-defined functions:

■ Object accessor functions locate Apple event objects. Every application that supports
simple object specifier records must provide one or more object accessor functions.

■ Object callback functions perform other tasks that only an application can perform, such
as counting, comparing, or marking Apple event objects. You can provide up to seven
object callback functions, depending on the needs of your application.

This section provides model declarations for the object accessor functions and object
callback functions that your application can provide.

Object Accessor Functions 6

You must provide one or more object accessor functions that can locate all the
element classes and properties listed in the Apple Event Registry: Standard Suites for the
object classes supported by your application. This section provides the routine
declaration for an object accessor function.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-94 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyObjectAccessor 6

Object accessor functions locate Apple event objects of a specified object class in a
container identified by a token of a specified descriptor type.

FUNCTION MyObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR theToken: AEDesc;

theRefcon: LongInt): OSErr;

desiredClass
The object class of the desired Apple event objects.

containerToken
A token that specifies the container of the desired Apple event objects.

containerClass
The object class of the container.

keyForm The key form specified by the object specifier record being resolved.

keyData The key data specified by the object specifier record being resolved.

theToken The token returned by the MyObjectAccessor function.

theRefcon A reference constant that the Apple Event Manager passes to the object
accessor function each time it is called.

DESCRIPTION

Each object accessor function provided by your application should either find elements
of a specified object class or find properties of an Apple event object. The AEResolve
function uses the object class ID of the specified Apple event object and the descriptor
type of the token that identifies the object’s container to determine which object accessor
function to call. To install an object accessor function either in your application’s object
accessor dispatch table or in the system object accessor dispatch table, use the
AEInstallObjectAccessor function, which is described on page 6-78.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object accessor function, it attempts to use other methods of locating the
requested objects, such as calling an equivalent system object accessor function. Thus, an
object accessor function that can’t locate a requested object should return
errAEEventNotHandled. This allows the Apple Event Manager to try other object
accessor functions that may be available.
Reference to Resolving and Creating Object Specifier Records 6-95

C H A P T E R 6

Resolving and Creating Object Specifier Records
RESULT CODES

SEE ALSO

For information about installing object accessor functions, see “Installing Entries in the
Object Accessor Dispatch Tables,” which begins on page 6-21.

For information about writing object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Object Callback Functions 6

If an Apple event parameter consists of an object specifier record, your handler for
the Apple event typically calls AEResolve to begin the process of locating the requested
Apple event objects. The AEResolve function in turn calls object accessor functions and,
if necessary, object callback functions provided by your application when it needs the
information they can provide.

This section provides declarations for the seven object callback functions that your
application can provide: the object-counting function (MyCountObjects),
object-comparison function (MyCompareObjects), token disposal function
(MyDisposeToken), error callback function (MyGetErrorDesc), mark token
function (MyGetMarkToken), object-marking function (MyMark), and
mark-adjusting function (MyAdjustMarks).

For information about writing and installing object callback functions, see “Writing
Object Callback Functions,” which begins on page 6-45.

MyCountObjects 6

If you want the Apple Event Manager to help your application resolve object specifier
records of key form formTest (and if your application doesn’t specify kAEIDoWhose
as described on page 6-48), you should provide an object-counting function and
an object-comparison function. An object-counting function counts the number of
Apple event objects of a specified class in a specified container.

FUNCTION MyCountObjects (desiredClass: DescType;

 containerClass: DescType;

 theContainer: AEDesc;

 VAR result: LongInt): OSErr;

desiredClass
The object class of the Apple event objects to be counted.

noErr 0 No error occurred
errAEEventNotHandled –1708 The object accessor function is unable to locate

the requested Apple event object or objects
6-96 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
containerClass
The object class of the container for the Apple event objects to be counted.

theContainer
A token that identifies the container for the Apple event objects to be
counted.

result Your object-counting function should return in this parameter the number
of Apple objects of the specified class in the specified container.

DESCRIPTION

The Apple Event Manager calls your object-counting function when, in the course of
resolving an object specifier record, the manager requires a count of the number of Apple
event objects of a given class in a given container.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object-counting function, it attempts to use other methods of counting the
specified objects, such as calling an equivalent system object-counting function. Thus, an
object-counting function that can’t count the specified objects should return
errAEEventNotHandled. This allows the Apple Event Manager to try other
object-counting functions that may be available.

RESULT CODES

SEE ALSO

For more information, see “Writing an Object-Counting Function” on page 6-48.

MyCompareObjects 6

If you want the Apple Event Manager to help your application resolve object specifier
records of key form formTest (and if your application doesn’t specify kAEIDoWhose as
described on page 6-48), you should provide an object-counting function and an
object-comparison function. After comparing one Apple event object to another or to the
data for a descriptor record, an object-comparison function should return TRUE or
FALSE in the result parameter.

noErr 0 No error occurred
errAEEventNotHandled –1708 The object-counting function is unable to

count the specified Apple event objects
Reference to Resolving and Creating Object Specifier Records 6-97

C H A P T E R 6

Resolving and Creating Object Specifier Records
FUNCTION MyCompareObjects (comparisonOperator: DescType;

object: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

comparisonOperator
The comparison operator. See the description of
CreateCompDescriptor on page 6-89 for standard comparison
operators at the time of publication of this book. The current version of
the Apple Event Registry: Standard Suites lists all the constants for
comparison operators.

object A token.

objectOrDescToCompare
A token or some other descriptor record that specifies either an Apple
event object or a value to compare to the Apple event object specified by
the object parameter.

result Your object-comparison function should return, in this parameter, a
Boolean value that indicates whether the values of the object and
objectOrDescToCompare parameters have the relationship specified
by the comparisonOperator parameter (TRUE) or not (FALSE).

DESCRIPTION

The Apple Event Manager calls your object-comparison function when, in the course of
resolving an object specifier record, the manager needs to compare an Apple event object
with another or with a value.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object-comparison function, it attempts to use other methods of comparison,
such as calling an equivalent system object-comparison function. Thus, an
object-comparison function that can’t perform a requested comparison should
return errAEEventNotHandled. This allows the Apple Event Manager to try other
object-comparison functions that may be available.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The object-comparison function is unable to

compare the specified Apple event objects
6-98 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
SEE ALSO

For more information, see “Writing an Object-Comparison Function” on page 6-50.

MyDisposeToken 6

If your application requires more than a call to the AEDisposeDesc function to dispose
of a token, or if it supports marking callback functions, you must provide one token
disposal function. A token disposal function disposes of a specified token.

FUNCTION MyDisposeToken (VAR unneededToken: AEDesc): OSErr;

unneededToken
The token to dispose of.

DESCRIPTION

The Apple Event Manager calls your token disposal function whenever it needs to
dispose of a token. It also calls your disposal function when your application calls the
AEDisposeToken function. If your application does not provide a token disposal
function, the Apple Event Manager calls AEDisposeDesc instead.

Your token disposal function must be able to dispose of all of the token types used by
your application.

If your application supports marking, a call to MyDisposeToken to dispose of a mark
token lets your application know that it can unmark the objects marked with that
mark token.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling a token disposal function, it attempts to dispose of the token by some other
method, such as calling an equivalent system token disposal function if one is available
or, if that fails, by calling AEDisposeDesc. Thus, a token disposal function that can’t
dispose of a token should return errAEEventNotHandled. This allows the Apple
Event Manager to try other token disposal functions that may be available.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The token disposal function is unable to

dispose of the token
Reference to Resolving and Creating Object Specifier Records 6-99

C H A P T E R 6

Resolving and Creating Object Specifier Records
MyGetErrorDesc 6

If you want to find out which descriptor record is responsible for an error that occurs
during a call to the AEResolve function, you can provide an error callback function. An
error callback function returns a pointer to an address. The Apple Event Manager uses
this address to store the descriptor record it is currently working with if an error occurs
during a call to AEResolve.

FUNCTION MyGetErrorDesc (VAR errDescPtr: DescPtr): OSErr;

errDescPtr
A pointer to an address.

DESCRIPTION

Your error callback function simply returns an address. Shortly after your application
calls AEResolve, the Apple Event Manager calls your error callback function and writes
a null descriptor record to the address returned, overwriting whatever was there
previously. If an error occurs during the resolution of the object specifier record, the
Apple Event Manager calls your error callback function again and writes the descriptor
record—often an object specifier record—to the address returned. If AEResolve returns
an error during the resolution of an object specifier record, this address contains the
descriptor record responsible for the error.

Normally you should maintain a single global variable of type AEDesc whose address
your error callback function returns no matter how many times it is called. Be careful
if you use any other method. When recovering from an error, the Apple Event Manager
never writes to the address you provide unless it already contains a null descriptor
record. Thus, if you don’t maintain a single global variable as just described, you should
write null descriptor records to any addresses passed by your error callback function
that are different from the addresses returned the first time your function is called after a
given call to AEResolve.

If the result code returned by the MyGetErrorDesc function has a nonzero value, the
Apple Event Manager continues to resolve the object specifier record as if it had never
called the error callback function.

RESULT CODE

noErr 0 No error occurred
6-100 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyGetMarkToken 6

If your application supports marking, you must provide one mark token function. A
mark token function returns a mark token.

FUNCTION MyGetMarkToken (containerToken: AEDesc;

 containerClass: DescType;

 VAR result: AEDesc): OSErr;

containerToken
The Apple event object that contains the elements to be marked with the
mark token.

containerClass
The object class of the container that contains the objects to be marked.

result Your mark token function should return a mark token in this parameter.

DESCRIPTION

To get a mark token, the Apple Event Manager calls your mark token function. Like
other tokens, the mark token returned can be a descriptor record of any type; however,
unlike other tokens, a mark token identifies the way your application will mark Apple
event objects during the current session while resolving a single object specifier record
that specifies the key form formTest.

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDisposeToken) or returns it as the result of the AEResolve function. If the final
result of a call to AEResolve is a mark token, the Apple event objects currently marked
for that mark token are those specified by the object specifier record passed to
AEResolve, and your application can proceed to do whatever the Apple event has
requested. Note that your application is responsible for disposing of a final mark token
with a call to AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function
modeled after the token disposal function described on page 6-99. When the Apple
Event Manager calls AEDisposeToken to dispose of a mark token that is not the final
result of a call to AEResolve, the subsequent call to your token disposal function lets
you know that you can unmark the Apple event objects marked with that mark token. A
call to AEDisposeDesc to dispose of a mark token (which would occur if you did not
provide a token disposal function) would go unnoticed.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The mark token function is unable to return a

mark token; if the Apple Event Manager gets
this result, it attempts to get a mark token by
calling the equivalent system marking callback
function
Reference to Resolving and Creating Object Specifier Records 6-101

C H A P T E R 6

Resolving and Creating Object Specifier Records
SEE ALSO

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

MyMark 6

If your application supports marking, you must provide one object-marking function.
An object-marking function marks a specific Apple event object.

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;

 markCount: LongInt): OSErr;

theToken The token for the Apple event object to be marked.

markToken The mark token used to mark the Apple event object.

markCount The number of times MyMark has been called for the current mark token
(that is, the number of Apple event objects that have so far passed the test,
including the element to be marked).

DESCRIPTION

To mark an Apple event object using the current mark token, the Apple Event Manager
calls the object-marking function provided by your application. In addition to marking
the specified object, your MyMark function should record the mark count for each object
that it marks. The mark count recorded for each marked object allows your application
to determine which of a set of marked tokens pass a test, as described in the next section
for the MyAdjustMarks function.

RESULT CODES

SEE ALSO

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

noErr 0 No error occurred
errAEEventNotHandled –1708 The MyMark function is unable to mark the

specified Apple event object; if the Apple Event
Manager gets this result, it attempts to mark
the object by calling the equivalent system
object-marking function
6-102 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyAdjustMarks 6

If your application supports marking, you must provide one mark-adjusting function. A
mark-adjusting function adjusts the marks made with the current mark token.

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;

markToken: AEDesc): OSErr;

newStart The mark count value (provided when the MyMark callback routine was
called to mark the object) for the first object in the new set of marked
objects.

newStop The mark count value (provided when the MyMark callback routine was
called to mark the object) for the last object in the new set of marked
objects.

markToken The mark token for the marked objects.

DESCRIPTION

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function to unmark objects previously marked by
a call to your marking function. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.’” The
Apple Event Manager first uses the appropriate object accessor function to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the value 5 to the mark-adjusting function in both the
newStart parameter and the newStop parameter, and passes the current mark token in
the markToken parameter.

When the Apple Event Manager calls your MyAdjustMarks function, your application
must dispose of any data structures that it created to mark the previously marked objects.

RESULT CODES

SEE ALSO

For more information, see “Writing Marking Callback Functions” on page 6-53.

noErr 0 No error occurred
errAEEventNotHandled –1708 The MyAdjustMarks function is unable to

adjust the marks as requested; if the Apple
Event Manager gets this result, it attempts to
adjust the marks by calling the equivalent
system mark-adjusting function
Reference to Resolving and Creating Object Specifier Records 6-103

C H A P T E R 6

Resolving and Creating Object Specifier Records
Summary of Resolving and Creating Object Specifier Records 6

Pascal Summary 6

Constants 6

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, Apple }

{ Event Manager is available}

{logical operators for descriptor records with keyword }

{ keyAELogicalOperator}

kAEAND = 'AND ';

kAEOR = 'OR ';

kAENOT = 'NOT ';

{absolute ordinals used as key data in an object specifier }

{ record with key form formAbsolutePosition}

kAEFirst = 'firs';

kAELast = 'last';

kAEMiddle = 'midd';

kAEAny = 'any ';

kAEAll = 'all ';

{relative ordinals used as key data in an object specifier record }

{ with key form formRelativePosition}

kAENext = 'next';

kAEPrevious = 'prev';

{keywords for object specifier records}

keyAEDesiredClass = 'want'; {object class ID}

keyAEContainer = 'from'; {description of container}

keyAEKeyForm = 'form'; {key form}

keyAEKeyData = 'seld'; {key data for specified key form}

{keywords for range descriptor records}

keyAERangeStart = 'star'; {beginning of range}
6-104 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
keyAERangeStop = 'stop'; {end of range}

{values for the keyAEKeyForm field of an object specifier record}

formAbsolutePosition = 'indx'; {for example, 1 = first }

{ element in container, -2 = }

{ second from end of container}

formRelativePosition = 'rele'; {key data specifies element }

{ before or after container}

formTest = 'test'; {key data specifies a test}

formRange = 'rang'; {key data specifies a range}

formPropertyID = 'prop'; {key data is property ID}

formName = 'name'; {key data is element's name}

{descriptor types used to identify Apple event objects}

typeObjectSpecifier = 'obj '; {object specifier record, often }

{ used as keyAEContainer}

typeObjectBeingExamined = 'exmn'; {used as keyAEContainer}

typeCurrentContainer = 'ccnt'; {used as keyAEContainer}

typeToken = 'toke'; {substituted for 'ccnt' }

{ before accessor called}

typeAbsoluteOrdinal = 'abso'; {formAbsolutePosition}

typeRangeDescriptor = 'rang'; {formRange}

typeLogicalDescriptor = 'logi'; {formTest}

typeCompDescriptor = 'cmpd'; {formTest}

{various relevant keywords}

keyAECompOperator = 'relo'; {operator for comparison: }

{ '=', '<=', etc.}

keyAELogicalTerms = 'term'; {an AEList of terms to be }

{ related by 'logc' below}

keyAELogicalOperator = 'logc'; {kAEAND, kAEOR, or kAENOT}

keyAEObject1 = 'obj1'; {first of two objects being }

{ compared; must be object }

{ specifier record}

keyAEObject2 = 'obj2'; {the other object; may be }

{ simple descriptor record }

{ or object specifier record}

{special handler selectors used with AESetObjectCallbacks}

keyDisposeTokenProc = 'xtok';

keyAECompareProc = 'cmpr';

keyAECountProc = 'cont';

keyAEMarkTokenProc = 'mkid';
Summary of Resolving and Creating Object Specifier Records 6-105

C H A P T E R 6

Resolving and Creating Object Specifier Records
keyAEMarkProc = 'mark';

keyAEAdjustMarksProc = 'adjm';

keyAEGetErrDescProc = 'indc';

{additive values for callbackFlags parameter to AEResolve}

kAEIDoMinimum = $0000; {server does not support whose }

{ descriptor records or marking}

kAEIDoWhose = $0001; {server supports whose }

{ descriptor records}

kAEIDoMarking = $0004; {server supports marking}

{constants for whose descriptor records}

typeWhoseDescriptor = 'whos'; {whose descriptor record}

formWhose = 'whos'; {key form for key data of descriptor }

{ type typeWhoseDescriptor}

typeWhoseRange = 'wrng'; {whose range descriptor record}

keyAEWhoseRangeStart = 'wstr'; {beginning of range}

keyAEWhoseRangeStop = 'wstp'; {end of range}

keyAEIndex = 'kidx'; {index for whose descriptor record}

keyAETest = 'ktst'; {test for whose descriptor record}

Data Types 6

TYPE

ccntTokenRecord = {used for rewriting tokens in }

RECORD { place of 'ccnt' descriptor }

tokenClass: DescType; { records; only of interest to }

token: AEDesc; { those who, when they get ranges }

END; { as key data in their object }

{ accessor functions, resolve }

ccntTokenRecPtr = ^ccntTokenRecord; { the object specifier records }

ccntTokenRecHandle = ^ccntTokenRecPtr; { for the end points manually}

DescPtr = ^AEDesc;

DescHandle = ^DescPtr;

AccessorProcPtr = ProcPtr;

Routines for Resolving and Creating Object Specifier Records 6

Initializing the Object Support Library

FUNCTION AEObjectInit : OSErr;
6-106 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Setting Object Accessor Functions and Object Callback Functions

FUNCTION AEInstallObjectAccessor
(desiredClass: DescType;
containerType: DescType;
theAccessor: AccessorProcPtr;
accessorRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AESetObjectCallbacks
(myCompareProc, myCountProc,
myDisposeTokenProc,
myGetMarkTokenProc, myMarkProc,
myAdjustMarksProc, myGetErrDescProc:
ProcPtr): OSErr;

Getting, Calling, and Removing Object Accessor Functions

FUNCTION AEGetObjectAccessor
(desiredClass: DescType;
containerType: DescType;
VAR theAccessor: AccessorProcPtr;
VAR accessorRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AECallObjectAccessor
(desiredClass: DescType;
containerToken: AEDesc;
containerClass: DescType;
keyForm: DescType;
keyData: AEDesc;
VAR theToken: AEDesc): OSErr;

FUNCTION AERemoveObjectAccessor
(desiredClass: DescType;
containerType: DescType;
theAccessor: AccessorProcPtr;
isSysHandler: Boolean): OSErr;

Resolving Object Specifier Records

FUNCTION AEResolve (objectSpecifier: AEDesc;
callbackFlags: Integer;
VAR theToken: AEDesc): OSErr;

Deallocating Memory for Tokens

FUNCTION AEDisposeToken (VAR theToken: AEDesc): OSErr;
Summary of Resolving and Creating Object Specifier Records 6-107

C H A P T E R 6

Resolving and Creating Object Specifier Records
Creating Object Specifier Records

FUNCTION CreateOffsetDescriptor
(theOffset: LongInt;
VAR theDescriptor: AEDesc):
OSErr;

FUNCTION CreateCompDescriptor
(comparisonOperator: DescType;
VAR operand1: AEDesc;
VAR operand2: AEDesc;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateLogicalDescriptor
(VAR theLogicalTerms: AEDescList;
theLogicOperator: DescType;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateRangeDescriptor
(VAR rangeStart: AEDesc;
VAR rangeStop: AEDesc;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateObjSpecifier (desiredClass: DescType;
VAR theContainer: AEDesc;
keyForm: DescType;
VAR keyData: AEDesc;
disposeInputs: Boolean;
VAR objSpecifier: AEDesc): OSErr;

Application-Defined Routines 6

Object Accessor Functions

FUNCTION MyObjectAccessor (desiredClass: DescType;
containerToken: AEDesc;
containerClass: DescType;
keyForm: DescType; keyData: AEDesc;
VAR theToken: AEDesc;
theRefcon: LongInt): OSErr;

Object Callback Functions
FUNCTION MyCountObjects (desiredClass: DescType;

containerClass: DescType;
theContainer: AEDesc;
VAR result: LongInt): OSErr;
6-108 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
FUNCTION MyCompareObjects (comparisonOperator: DescType;
theobject: AEDesc;
objectOrDescToCompare: AEDesc;
VAR result: Boolean): OSErr;

FUNCTION MyDisposeToken (VAR unneededToken: AEDesc): OSErr;

FUNCTION MyGetErrorDesc (VAR errDescPtr: DescPtr): OSErr;

FUNCTION MyGetMarkToken (containerToken: AEDesc;
containerClass: DescType;
VAR result: AEDesc): OSErr;

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;
markCount: LongInt): OSErr;

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;
markToken: AEDesc): OSErr;

C Summary 6

Constants 6

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/

/*logical operators for descriptor records with keyword */

/* keyAELogicalOperator*/

#define kAEAND 'AND '

#define kAEOR 'OR '

#define kAENOT 'NOT '

/*absolute ordinals used as key data in an object specifier */

/* record with key form formAbsolutePosition*/

#define kAEFirst 'firs'

#define kAELast 'last'

#define kAEMiddle 'midd'

#define kAEAny 'any '

#define kAEAll 'all '

/*relative ordinals used as key data in an object specifier record */

/* with key form formRelativePosition*/

#define kAENext 'next'
Summary of Resolving and Creating Object Specifier Records 6-109

C H A P T E R 6

Resolving and Creating Object Specifier Records
#define kAEPrevious 'prev'

/*keywords for object specifier records*/

#define keyAEDesiredClass 'want' /*object class ID*/

#define keyAEContainer 'from' /*description of container*/

#define keyAEKeyForm 'form' /*key form*/

#define keyAEKeyData 'seld' /*key data for specified key */

/* form*/

/*keywords for range descriptor records*/

#define keyAERangeStart 'star' /*beginning of range*/

#define keyAERangeStop 'stop' /*end of range*/

/*values for the keyAEKeyForm field of an object specifier record*/

#define formAbsolutePosition 'indx' /*for example, 1 = first */

/* element in container, -2 = */

/* second from end of */

/* container*/

#define formRelativePosition 'rele' /*key data specifies element */

/* before or after container*/

#define formTest 'test' /*key data specifies a test*/

#define formRange 'rang' /*key data specifies a range*/

#define formPropertyID 'prop' /*key data is property ID*/

#define formName 'name' /*key data is element's name*/

/* descriptor types used to identify Apple event objects*/

#define typeObjectSpecifier 'obj ' /*object specifier record, */

/* often used as */

/* keyAEContainer*/

#define typeObjectBeingExamined 'exmn' /*used as keyAEContainer*/

#define typeCurrentContainer 'ccnt' /*used as keyAEContainer*/

#define typeToken 'toke' /*substituted for 'ccnt' */

/* before accessor called*/

#define typeAbsoluteOrdinal 'abso' /*formAbsolutePosition*/

#define typeRangeDescriptor 'rang' /*formRange*/

#define typeLogicalDescriptor 'logi' /*formTest*/

#define typeCompDescriptor 'cmpd' /*formTest*/

/*various relevant keywords*/

#define keyAECompOperator 'relo' /*operator for comparison: */

/* '=', '<=', etc.*/

#define keyAELogicalTerms 'term' /*an AEList of terms to be */

/* related by 'logc' below*/

#define keyAELogicalOperator 'logc' /*kAEAND, kAEOR, or kAENOT*/
6-110 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
#define keyAEObject1 'obj1' /*first of two objects being */

/* compared; must be object */

/* specifier record*/

#define keyAEObject2 'obj2' /*the other object; may be */

/* simple descriptor record */

/* or object specifier record*/

/*special handler selectors used with AESetObjectCallbacks*/

#define keyDisposeTokenProc 'xtok'

#define keyAECompareProc 'cmpr'

#define keyAECountProc 'cont'

#define keyAEMarkTokenProc 'mkid'

#define keyAEMarkProc 'mark'

#define keyAEAdjustMarksProc 'adjm'

#define keyAEGetErrDescProc 'indc'

/*additive values for callbackFlags parameter to AEResolve*/

#define kAEIDoMinimum 0x0000 /*server does not support */

/* whose descriptor records */

/* or marking*/

#define kAEIDoWhose 0x0001 /*server supports whose */

/* descriptor records*/

#define kAEIDoMarking 0x0004 /*server supports marking*/

/*constants for whose descriptor records*/

#define typeWhoseDescriptor 'whos' /*whose descriptor record*/

#define formWhose 'whos' /*key form for key data of */

/* descriptor type */

/* typeWhoseDescriptor*/

#define typeWhoseRange 'wrng' /*whose range descriptor */

/* record*/

#define keyAEWhoseRangeStart 'wstr' /*beginning of range*/

#define keyAEWhoseRangeStop 'wstp' /*end of range*/

#define keyAEIndex 'kidx' /*index for whose descriptor */

/* record*/

#define keyAETest 'ktst' /*test for whose descriptor */

/* record*/

Data Types 6

struct ccntTokenRecord { /*used for rewriting tokens */

DescType tokenClass; /* in place of 'ccnt' */

AEDesc token; /* descriptor records; only */

}; /* of interest to those who, */
Summary of Resolving and Creating Object Specifier Records 6-111

C H A P T E R 6

Resolving and Creating Object Specifier Records
/* when they get ranges as */

typedef struct ccntTokenRecord ccntTokenRecord, /* key data in their object */

*ccntTokenRecPtr, **ccntTokenRecHandle; /* accessor functions, */

/* resolve them manually*/

typedef AEDesc *DescPtr, **DescHandle;

/*typedefs providing type checking for procedure pointers*/

typedef pascal OSErr (*accessorProcPtr) (DescType desiredClass,

const AEDesc *container,

DescType containerClass,

DescType form,

const AEDesc *selectionData,

AEDesc *value, long LongInt);

typedef pascal OSErr (*compareProcPtr)(DescType oper, const AEDesc *obj1,

const AEDesc *obj2,

Boolean *result);

typedef pascal OSErr (*countProcPtr)(DescType desiredClass,

DescType containerClass,

const AEDesc *container,

long *result);

typedef pascal OSErr (*disposeTokenProcPtr)(AEDesc *unneededToken);

typedef pascal OSErr (*getMarkTokenProcPtr)(const AEDesc *ContainerToken,

DescType containerClass,

AEDesc *result);

typedef pascal OSErr (*getErrDescProcPtr)(DescPtr *appDescPtr);

Routines for Resolving and Creating Object Specifier Records 6

Initializing the Object Support Library

pascal OSErr AEObjectInit ();

Setting Object Accessor Functions and Object Callback Functions

pascal OSErr AEInstallObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr theAccessor,
long accessorRefcon, Boolean isSysHandler);

pascal OSErr AESetObjectCallbacks
(compareProcPtr myCompareProc,
countProcPtr myCountProc,
disposeTokenProcPtr myDisposeTokenProc,
6-112 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
getMarkTokenProcPtr myGetMarkTokenProc,
markProcPtr myMarkProc,
adjustMarksProcPtr myAdjustMarksProc,
getErrDescProcPtr myGetErrDescProc);

Getting, Calling, and Removing Object Accessor Functions

pascal OSErr AEGetObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr *theAccessor,
long *accessorRefcon, Boolean isSysHandler);

pascal OSErr AECallObjectAccessor
(DescType desiredClass,
const AEDesc *containerToken,
DescType containerClass, DescType keyForm,
const AEDesc *keyData, AEDesc *theToken);

pascal OSErr AERemoveObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr theAccessor,
Boolean isSysHandler);

Resolving Object Specifier Records

pascal OSErr AEResolve (const AEDesc *objectSpecifier,
short callbackFlags, AEDesc *theToken);

Deallocating Memory for Tokens

pascal OSErr AEDisposeToken (AEDesc *theToken);

Creating Object Specifier Records

pascal OSErr CreateOffsetDescriptor
(long theOffset, AEDesc *theDescriptor);

pascal OSErr CreateCompDescriptor
(DescType comparisonOperator, AEDesc* operand1,
AEDesc* operand2, Boolean disposeInputs,
AEDesc* theDescriptor);

pascal OSErr CreateLogicalDescriptor
(AEDescList *theLogicalTerms,
DescType theLogicOperator,
Boolean disposeInputs, AEDesc *theDescriptor);

pascal OSErr CreateRangeDescriptor
(AEDesc *rangeStart, AEDesc *rangeStop,
Boolean disposeInputs, AEDesc *theDescriptor);
Summary of Resolving and Creating Object Specifier Records 6-113

C H A P T E R 6

Resolving and Creating Object Specifier Records
pascal OSErr CreateObjSpecifier
(DescType desiredClass, AEDesc *theContainer,
DescType keyForm, AEDesc *keyData,
Boolean disposeInputs, AEDesc *objSpecifier);

Application-Defined Routines 6

Object Accessor Functions

pascal OSErr MyObjectAccessor
(DescType desiredClass,
const AEDesc *containerToken,
DescType containerClass,
DescType keyForm, const AEDesc *keyData,
AEDesc *theToken, long *theRefcon);

Object Callback Functions

pascal OSErr MyCountObjects (DescType desiredClass, DescType containerClass,
const AEDesc *theContainer, long *result);

pascal OSErr MyCompareObjects
(DescType comparisonOperator,
const AEDesc *theObject,
const AEDesc *objectOrDescToCompare,
Boolean *result);

pascal OSErr MyDisposeToken (AEDesc *unneededToken);

pascal OSErr MyGetErrorDesc (DescPtr *errDescPtr);

pascal OSErr MyGetMarkToken (const AEDesc *containerToken,
DescType containerClass, AEDesc *result);

pascal OSErr MyMark (const AEDesc *theToken,
const AEDesc *markToken, long markCount);

pascal OSErr MyAdjustMarks (long newStart, long newStop,
const AEDesc *markToken);
6-114 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Assembly-Language Summary 6

Trap Macros 6

Trap Macros Requiring Routine Selectors

_Pack8

Result Codes 6

Selector Routine

$023A AEDisposeToken

$0536 AEResolve

$0738 AERemoveObjectAccessor

$0937 AEInstallObjectAccessor

$0939 AEGetObjectAccessor

$0C3B AECallObjectAccessor

$0E35 AESetObjectCallbacks

noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Summary of Resolving and Creating Object Specifier Records 6-115

C H A P T E R 6

Resolving and Creating Object Specifier Records
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type
errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or

no object callback function found
errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENOT
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type

errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAND, kAEOR, or kAENOT

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only 2.

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on
6-116 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 7

7

Figure 7-0
Listing 7-0
Table 7-0

Contents

7 Introduction to Scripting

About Scripts and Scripting Components 7-4
Script Editors and Script Files 7-6
Scripting Components and Scriptable Applications 7-8
Scripting Components and Applications That Execute Scripts 7-11

Making Your Application Scriptable 7-14
About Apple Event Terminology Resources 7-15

How AppleScript Uses Terminology Information 7-17
Dynamic Loading of Terminology Information 7-20

Making Your Application Recordable 7-20
Manipulating and Executing Scripts 7-22

Compiling, Saving, Modifying, and Executing Scripts 7-24
Using a Script Context to Handle an Apple Event 7-25
Contents 7-1

C H A P T E R 7

7

Introduction to S
cripting

Introduction to Scripting 7

This chapter provides an overview of the tasks involved in making your application
scriptable and recordable. This chapter also introduces some of the ways your
application can use the Component Manager and scripting components to manipulate
and execute scripts. The three chapters that follow provide detailed information,
including sample code, about the topics introduced in this chapter.

The chapter “Introduction to Interapplication Communication” in this book describes
the Open Scripting Architecture (OSA) and its relationship to the Apple Event Manager
and other parts of the IAC architecture. If your application supports the appropriate
core and functional-area events defined in the Apple Event Registry: Standard Suites, you
can make it scriptable (that is, capable of responding to Apple events sent by scripting
components) by providing an Apple event terminology extension ('aete') resource.
This chapter describes some of the tasks involved in making your application scriptable
and introduces the 'aete' resource. The next chapter, “Apple Event Terminology
Resources,” describes in detail how to create an 'aete' resource.

This chapter also introduces Apple event recording and the use of the standard scripting
component routines to manipulate and execute scripts. The chapter “Recording Apple
Events” describes in detail how to make your application recordable, and the chapter
“Scripting Components” describes how to use the standard scripting component
routines.

To use this chapter or any of the chapters that follow, you should be familiar with the
chapters “Introduction to Apple Events” and “Responding to Apple Events” in this
book. If you plan to make your application recordable, you should also read the chapters
“Creating and Sending Apple Events” and “Resolving and Creating Object Specifier
Records.”

The AppleScript Software Developers’ Kit (available from APDA) provides development
tools, sample applications, and information about the AppleScript language that you will
find useful when you begin to apply the information in this chapter to your application.

If you are developing a scripting component, you should provide support for the
standard scripting component routines described in the chapter “Scripting
Components,” and you should read the instructions for creating components in the
chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox.

This chapter begins with an overview of scripts and scripting components. The rest of
the chapter describes how the OSA makes it possible to

■ make your application scriptable

■ make your application recordable

■ have your application manipulate and execute scripts
7-3

C H A P T E R 7

Introduction to Scripting

About Scripts and Scripting Components 7

A script is any collection of data that, when executed by the appropriate program, causes
a corresponding action or series of actions. The Open Scripting Architecture (OSA)
provides a standard mechanism that allows users to control multiple applications with
scripts written in a variety of scripting languages. Each scripting language has a
corresponding scripting component. Each scripting component supports the standard
scripting component routines described in the chapter “Scripting Components” in
this book.

When a scripting component executes a script, it performs the actions described in the
script, including sending Apple events to applications if necessary. Like other
components that use the Component Manager, scripting components can provide their
own routines in addition to the standard routines that must be supported by all
components of the same type.

Scripting components typically implement a text-based scripting language based on
Apple events. For example, the AppleScript component implements AppleScript, the
standard user scripting language defined by Apple Computer, Inc. This book uses
AppleScript examples to demonstrate how applications can interact with scripting
components.

Other scripting components may support the standard scripting component routines in
different ways. Scripting components need not implement a text-based scripting
language, or even one that is based on Apple events. For example, specialized scripting
components can play sounds, execute XCMDs, or perform almost any other action when
they execute scripts.

This chapter describes three ways that you can take advantage of the OSA:

■ You can make your application scriptable, or capable of responding to Apple events
sent to it by a scripting component. An application is scriptable if it
n Responds to the appropriate standard Apple events as described in the chapter

“Responding to Apple Events” in this book.
n Provides an Apple event terminology extension ('aete') resource describing the

Apple events that your application supports and the user terminology that
corresponds to those events. The 'aete' resource allows scripting components to
interpret scripts correctly and send the appropriate Apple events to your
application during script execution.
7-4 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

■ You can make your application recordable— that is, capable of sending Apple events
to itself to report user actions to the Apple Event Manager for recording purposes.
After a user has turned on recording for a particular scripting component, the
scripting component receives a copy of every subsequent Apple event that any
application on the local computer sends to itself. The scripting component records
such events in the form of a script.

■ You can have your application manipulate and execute scripts with the aid of a
scripting component. To do so, your application must
n Use the Component Manager to open a connection with the appropriate

component.
n Use the standard scripting component routines described in the chapter “Scripting

Components” to record, edit, compile, save, load, or execute scripts.

Users of scriptable applications can execute scripts to perform tasks that might otherwise
be difficult to accomplish, especially repetitive or conditional tasks that involve multiple
applications. For example, a user can execute an AppleScript script to locate database
records with specific characteristics, create a series of graphs based on those records,
import the graphs into a page-layout document, and send the document to a remote
computer on the network via electronic mail. When a user executes such a script, the
AppleScript component attempts to perform the actions the script describes, including
sending Apple events when necessary.

To respond appropriately to the Apple events sent to it by the AppleScript component,
the database application in this example must be able to locate records with specific
characteristics so that it can identify and return the requested data. These characteristics
are described by an object specifier record that is part of an Apple event supported by
the application. Also, the other applications involved must support Apple events that
manipulate the data in the ways described in the script. Each application in this example
must also provide an 'aete' resource describing the Apple events that the application
supports and the user terminology that corresponds to those events, so that the
AppleScript component can interpret the script correctly.

Even with little or no knowledge of a particular scripting language, users of applications
that are recordable as well as scriptable can record simple scripts. More knowledgeable
users may also wish to record their actions as scripts with recordable applications and
then edit or combine scripts as needed.

An application that uses scripting components to manipulate and execute scripts need
not be scriptable; however, if it is scriptable, it can execute scripts that control its own
behavior. In other words, it can perform tasks by means of scripts and allow users to
modify those scripts to suit their own needs.

The next three sections provide an overview of the way scripting components can
interact with applications.
About Scripts and Scripting Components 7-5

C H A P T E R 7

Introduction to Scripting

Script Editors and Script Files 7
A script editor is an application that allows users to record, edit, save, and execute
scripts. For example, the AppleScript component uses the services of the Script Editor
application.

Figure 7-1 shows an AppleScript script displayed in a Script Editor window. The Record,
Stop, and Run buttons control a script in much the same way that the equivalent buttons
on a cassette recorder control an audio tape. A script comment at the top of the window
describes what the script does. Users with some knowledge of a text-based scripting
language such as AppleScript can use Script Editor to modify recorded scripts or write
their own scripts.

Figure 7-1 A script window in the Script Editor application

Script Editor provides entry-level scripting capabilities, but it is not intended for
intensive script development. Users who wish to write complex scripts may replace
Script Editor with more sophisticated editors that provide specialized debugging and
development tools.

t e l l application "SurfWriter"
 copy table "Summary of Sales" of document "Sales Report" to Totals
end tell

t e l l application "SurfCharter"
 copy Totals to Chart 1 of document "Sales Chart"
end tell

Updates the document "Sales Chart" with the latest sales figures from
"Sales Report"
7-6 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

A script like the one in Figure 7-1 can be stored in a script file represented by an icon in
the Finder, or it can be stored within an application or one of its documents. Figure 7-2
shows the four icons representing the files in which Script Editor stores scripts.

Figure 7-2 Script file icons in the Finder and corresponding user actions

Script Editor and similar script-editing applications allow users to store scripts using
three file types:

■ A compiled script file has the file type 'osas' and contains the script data as a
resource of type 'scpt'. Before executing the script in a compiled script file, a user
must first open the script from the Finder or from an application such as Script Editor.
After opening a compiled script in an application that supports script editing, the user
can view the script, modify it if necessary, and execute it.

■ A script application has the file type 'APPL' and contains the script data as a
resource of type 'scpt'. Its kind is “application.” A script application takes one of
two forms, each with its own icon:
n A script application with the creator signature 'aplt'. A user double-clicks the

icon to trigger the script.
n A script application with the creator signature 'dplt'. A user can drag the icon for

another file or a folder over this script application’s icon to trigger a script that acts
on that object.

Compiled script file icon

Double-click to open the script in the
script-editing application that created it.

Script application icon

Double-click to initiate execution of
the script.

Script application icon

Drag the icon for any folder or file over
this icon to trigger its script.

Script text file icon

Double-click to open the script text
in the application that created it.
About Scripts and Scripting Components 7-7

C H A P T E R 7

Introduction to Scripting

By default, when a user triggers the script in either kind of script application, a splash
screen appears that allows the user either to quit or to run the script. Users can also
save a script application in a form that bypasses the splash screen, running the script
immediately after the user double-clicks its icon.

■ A script text file contains only a plain-text version of uncompiled scripting-language
statements. This format is useful primarily as a last resort for saving a script that can’t
be compiled because of syntax errors or other problems. It is also useful for
exchanging unstyled text with other text-based applications. A user must open a
script text file in a script editor and successfully compile it before it will execute.

Like sound resources, scripts can be stored within applications and documents as well as
in distinct files that can be manipulated from the Finder. Your application can use the
standard scripting component routines to manipulate and execute both its own
internally stored scripts and scripts stored as separate files whose icons appear in the
Finder. For more information about script storage formats, see “Saving Script Data” on
page 10-12.

The next two sections describe how scripting components interact with scriptable
applications and with applications that execute scripts.

Scripting Components and Scriptable Applications 7
Scripting components control the behavior of scriptable applications by means of Apple
events. For example, when the AppleScript component executes the AppleScript script
shown in Figure 7-1, it sends the Apple events shown in Figure 7-3 to trigger the actions
described by the script. The client application in this example would most commonly be
a script editor but could also be any other application that uses standard scripting
component routines to manipulate and execute scripts.
7-8 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

Figure 7-3 How the AppleScript component executes a script

Server
application

Apple event

Get Data

Table named
“Summary of Sales”
in the document named
“Sales Report”

SurfWriter
Apple event

Reply

Summary of Sales
300 788 500 825

Sales Report

This table
shows the
sales data:

300

500

788

825

Server
application

SurfCharter

Chart of
sales by
product area:

300

788

Sales Chart

500 825

Summary of
Sales

Apple event

Set Data

Chart 1 of document
"Sales Chart"

Summary of Sales
300 788 500 825

Client
application

tell application "SurfWriter"
 copy table "Summary of Sales" of document ¬
 "Sales Report" to Totals
end tell

tell application "SurfCharter"
 copy Totals to Chart 1 of document "Sales Chart"
end tell

AppleScript
component

Component Manager

Summary of
Sales

Script
About Scripts and Scripting Components 7-9

C H A P T E R 7

Introduction to Scripting

As described in the chapter “Introduction to Apple Events” in this book, a client
application is any application that uses Apple events to request a service or information.
A client application that executes a script does not send the corresponding Apple events
itself; instead, it uses scripting component routines to manipulate and execute the script.
The scripting component sends Apple events when necessary to trigger the actions
described in the script. Similarly, a scriptable application that responds to the Apple
events sent by a scripting component can be considered the server application for those
Apple events.

When a scripting component evaluates a script, it attempts to perform all the actions
described in the script, including sending Apple events when necessary. In the example
shown in Figure 7-3, the AppleScript component first performs the action described in
the first tell statement:

tell application "SurfWriter"

copy table "Summary of Sales" of document¬

"Sales Report" to Totals

end tell

To perform this action, the AppleScript component sends a Get Data event to the
SurfWriter application requesting the data from the specified table. The SurfWriter
application returns the data to the AppleScript component in a standard reply Apple
event, and the AppleScript component sets the value of the variable Totals to the data
returned by SurfWriter.

Then the AppleScript component performs the action described in the second tell
statement:

tell application "SurfCharter"

copy Totals to Chart 1 of document "Sales Chart"

end tell

In this case, the AppleScript component sends a Set Data event to the SurfCharter
application that sets the specified chart to the value of the variable Totals.

Both SurfWriter and SurfCharter are server applications for the Apple events sent by the
AppleScript component, because they are performing services in response to requests
made by the client application via the script.

To send the appropriate Apple events to a scriptable application while executing a script,
a scripting component must obtain information about the nature of that application’s
support for Apple events and the human-language terminology to associate with those
events. A scriptable application provides this information in the form of an Apple event
terminology extension ('aete') resource. A scripting component uses both the 'aete'
resource provided by a scriptable application and the Apple event user terminology
('aeut') resource provided by the scripting component itself to obtain the information
it needs to execute a script that controls that application.
7-10 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

See “Making Your Application Scriptable,” which begins on page 7-14, for an overview
of the tasks you should perform to make your application scriptable and a more detailed
description of the 'aete' and 'aeut' resources. See “Making Your Application
Recordable” on page 7-20 for an overview of the tasks you should perform if you want
your application to be recordable as well as scriptable.

Scripting Components and Applications That Execute Scripts 7
To store and execute scripts as a client application, your application must first establish a
connection with a scripting component registered with the Component Manager on the
same computer. Each scripting component can manipulate and execute scripts written in
the corresponding scripting language when your application calls the standard scripting
component routines.

Your application can use scripting component routines to

■ obtain a handle to a script in a form that can be saved, and load the script again when
necessary

■ allow users to modify scripts that have been previously saved

■ compile and execute scripts

■ redirect Apple events to script contexts

■ supply application-defined functions for use by scripting components

■ control the recording process directly, turning recording off and on and saving the
recorded script for use by your application

Your application can perform these tasks as a client application regardless of whether it
is scriptable or recordable. If your application is scriptable, however, it can execute
scripts that control its own behavior, thus acting as both the client application and the
server application for the corresponding Apple events. For example, your application
can allow users to associate a script with a custom menu command that performs a
series of routine actions on a selected object, sets preferences, or automates other actions
within your application.

You can also use scripting component routines to execute scripts that perform tasks for
your application with the aid of other applications. For example, a user of a
word-processing application might be able to attach a script to a specific word so that the
application executes the script whenever that word is double-clicked. Such a script could
trigger Apple events that cause other applications to look up and display related
information, run a QuickTime movie, perform a calculation, play a voice annotation, and
so on.

Your application can associate a script with either Apple event objects or
application-defined objects. Almost any user action can be used to trigger such a script:
choosing a menu command, clicking a button, tabbing from one table cell to another, and
so on. The script can be executed directly by the application when it detects a triggering
action; or, if the script is associated with an Apple event object in the form of a script
context, it can be executed automatically when a specified Apple event performs an
action on that object.
About Scripts and Scripting Components 7-11

C H A P T E R 7

Introduction to Scripting

The rest of this section describes one way that an application could execute such a script.
Suppose a forms application allows users to create custom forms that can include
scripts associated with specific fields on the form. These scripts are executed when the
user presses Enter or Tab in the appropriate field. For the purposes of this example, it
doesn’t matter whether a field with which a script is associated is an Apple event object
(which can be described in an object specifier record) or some other application-defined
object (which can’t be described in an object specifier record).

A company could use the forms application to create a custom order form for taking
telephone orders. If the customer has ordered from the company before, the user can
quickly retrieve the customer’s address from the company database by typing the
customer’s name in a field and pressing the Tab key. In response, the application
executes the script associated with the field. The script might look like this in
AppleScript:

set custName to field "Customer Name"

tell application SurfDB

copy the first record in the table MyAddresses ¬

whose cell "Customer Name" = custName to Address

end tell

set field "Street" to item 2 of Address

set field "City" to item 3 of Address

set field "Zip" to item 4 of Address

To execute such a script (or to manipulate it any other way, such as when the form is first
created), the forms application must previously have established a connection with the
appropriate scripting component—in this case, the AppleScript component. When the
user enters a customer name and presses Tab, the forms application calls scripting
component routines to execute the script. As shown in Figure 7-4, the AppleScript
component first sends the forms application a Get Data event that requests the contents
of the “Customer Name” field and sets the variable custName to that value. It then
sends SurfDB a Get Data event that requests the appropriate address information and
copies it to the variable Address. (The replies to the Get Data events are not shown in
Figure 7-4.) Finally, the AppleScript component sends the forms application a Set Data
event that copies the address information from the variable Address to the appropriate
fields.

The AppleScript component needs to maintain the binding of the variables custName
and Address throughout execution of the script. Scripting components bind variables
with the aid of a script context, which is a script that maintains context information for
the execution of other scripts. An application specifies a script context when it executes a
script. The forms application in Figure 7-4 provides a context for the scripting
component to use whenever it executes a script associated with a button.
7-12 About Scripts and Scripting Components

C H A P T E R 7

Introduction to Scripting

7

Introduction to S
cripting

Figure 7-4 How an application uses the AppleScript component to execute a script

Forms application

Get Data
event handler

AppleScript
component

Get Data
Apple event

Script context provided by application

Component Manager

Set Data
event handler

Get Data
Apple event

SurfDB

Get Data
event handler

Set Data
Apple events

set custName to field "Customer Name"

tell application SurfDB
	copy the first record in the table MyAddresses ¬
		whose cell "Customer Name" = custName to Address
end tell

set field "Street" to item 2 of Address
set field "City" to item 3 of Address
set field "Zip" to item 4 of Address

Script
About Scripts and Scripting Components 7-13

C H A P T E R 7

Introduction to Scripting
In the example shown in Figure 7-4, the application executes the script directly when the
cursor is in the appropriate field and the user presses Tab or Enter. Your application can
also associate such a script with an object in the form of a script context, so that the script
context is executed whenever a specified Apple event acts on the field. The section
“Using a Script Context to Handle an Apple Event,” which begins on page 7-25,
describes this approach in more detail.

See “Manipulating and Executing Scripts,” which begins on page 7-22, for an overview
of methods your application can use to save and load script data, compile source data,
and perform other useful tasks with scripting component routines. The chapter
“Scripting Components” in this book provides full implementation details, including
sample code and human interface guidelines for associating scripts with objects.

Making Your Application Scriptable 7

To make your application scriptable, you need to

■ define a hierarchy of Apple event objects within your application that you want client
applications to be able to identify—that is, which objects can be contained by other
Apple event objects in your application, which properties each kind of object can
have, and so on

■ write Apple event handlers, object accessor functions, and other routines required to
implement the Apple events and related object classes that you want to support

■ create an 'aete' resource

The chapters “Introduction to Apple Events,” “Responding to Apple Events,” and
“Resolving and Creating Object Specifier Records” in this book describe how to perform
the first two tasks. The extent to which scripts can control your application depends
mainly on the extent of your application’s support for Apple events. For example, if your
application does not provide the Apple event handlers and object accessor functions
required to locate and manipulate windows, users will not be able to use scripts to
control your application’s windows. Although you should use the definitions in the
Apple Event Registry: Standard Suites whenever possible, you have considerable freedom
to extend or limit your implementation of the standard Apple events according to the
needs of your application.

The OSA makes it possible to design new kinds of applications that always operate in
the background and can be controlled only by means of scripts. For example, it is
possible to design a simple telecommunications program that can log on to a network,
send and receive text files created by another application, and perform other basic
operations in response to scripts without providing any other form of user interface.
Such an application would not need to support Apple events that control window
movement, the File menu, or the Edit menu; instead, it would need to support only those
Apple events that execute its basic telecommunications operations.
7-14 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
At the other extreme, some applications allow users to arrange windows, palettes, and
dialog boxes on their screen in many different ways, or to customize menus or other
aspects of the presentation of information. If such an application can respond to scripts
that control windows, dialog boxes, specialized preferences, and other aspects of the
presentation of information, it can allow users who might not otherwise explore those
capabilities to take advantage of them. For example, a naive user could execute a script
that sets up a powerful word processor with the appropriate menus, window and palette
arrangement, and formatting templates for a particular task, such as producing a
company newsletter.

Scripting components use 'aeut' and 'aete' resources to associate Apple event codes
supported by your application with corresponding human-language terms used in
scripts that control your application. Each scripting component supplies an 'aeut'
resource, and each scriptable application provides an 'aete' resource. The next section
introduces the 'aeut' and 'aete' resources.

About Apple Event Terminology Resources 7
As explained in the chapter “Introduction to Apple Events” in this book, applications
can support different combinations of the standard suites of Apple events. Applications
can also extend the definitions of individual Apple events and object classes, or define
custom Apple events and object classes. Scripting components use the Apple event user
terminology resources, 'aeut' and 'aete', to associate the IDs, keywords, and other
codes used in Apple events with the corresponding human-language terms used in
scripts that control your application.

The Apple event user terminology ('aeut') resource contains terminology information
for all the standard suites of Apple events defined in the Apple Event Registry:
Standard Suites. The resource consists of a sequence of concatenated arrays that map
human-language names to each of the following:

■ the ID defined for each suite

■ the Apple events defined for each suite

■ the parameters defined for each Apple event

■ the Apple event object classes defined for each suite

■ the properties defined for each object class

■ the elements defined for each object class

■ the key forms defined for each element class

■ the comparison operators defined for each suite

■ the values for enumerators defined for each suite
Making Your Application Scriptable 7-15

C H A P T E R 7

Introduction to Scripting
Each scripting component provides its own 'aeut' resource. A scripting component
can also provide different versions of the 'aeut' resource; for example, the user
terminology provided by the 'aeut' resource for the AppleScript Japanese dialect
component is in Japanese. The IDs, keywords, and other codes listed in the 'aeut'
resource are based on the Apple Event Registry: Standard Suites and do not vary from one
version to another.

An 'aete' resource has the same format as the 'aeut' resource but serves a different
purpose. Each scriptable application must include its own 'aete' resource describing
which of the standard suites listed in the 'aeut' resource it supports and providing
other application-specific information. Since the human-language equivalents for the
standard suites are defined in the 'aeut' resource, applications that support standard
suites without any modifications do not have to define such equivalents; instead, they
can simply list, in the 'aete' resource, the suites they support. The scripting
component associates the standard suites listed in the 'aete' resource with the
corresponding Apple event descriptions in its 'aeut' resource.

Applications can also use the 'aete' resource to describe extensions to the standard
suites, such as additional parameters for standard Apple events, additional properties
and element classes for the standard Apple event object classes, and additional key
forms for each element class. Information about such extensions must be included in the
appropriate arrays of the 'aete' resource, along with the equivalent human-language
terms. Similarly, an application can use the 'aete' resource to describe the parts of each
standard suite it supports (if it doesn’t support the entire suite) and any custom Apple
events or Apple event object classes defined by the application.

The human language in which your Apple event extensions or custom Apple events are
displayed in scripts depends on the corresponding user terminology you specify in your
application’s 'aete' resource. Therefore, if your application implements such
extensions or custom Apple events, you must provide a separate version of this resource
for each localized version of your application.

Scripting components can use the information in the 'aete' and 'aeut' resources
in a variety of ways. The next section, “How AppleScript Uses Terminology
Information,” describes how the AppleScript component uses these resources when it
executes or records a script. The next chapter, “Apple Event Terminology Resources,”
describes how to create an 'aete' resource for your application.

If you want users to be able to control your application with scripts written in the
AppleScript scripting language, you also need to know how the AppleScript component
interprets AppleScript commands that trigger Apple events. In this way, you can make
sure you support Apple events and specify the user terminology for your 'aete'
resource in a way that translates easily into AppleScript statements. The section
“Defining Terminology for Use by the AppleScript Component,” which begins on
page 8-3, discusses these issues. If you implement Apple events so that they translate
into logical and useful AppleScript scripts, your implementation will probably work well
with other scripting components that resemble AppleScript.
7-16 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
How AppleScript Uses Terminology Information 7

The manner in which the AppleScript component uses the information in 'aete'
resources depends on specific characteristics of the AppleScript scripting language. An
AppleScript expression consists of an internal compiled form and corresponding
expressions in dialects, or versions of the AppleScript scripting language that resemble
different human languages. Users can select the dialect they want to use from within the
Script Editor application. If a script is displayed in a window and the user selects a
different dialect, the AppleScript component converts the script to the new dialect. Users
can install additional dialects as necessary.

This section describes how the AppleScript component uses the information in the
'aeut' and 'aete' resources, not how it obtains that information. For a description of
the methods available to scripting components for loading information from
terminology resources, see “Dynamic Loading of Terminology Information” on
page 7-20.

Figure 7-5 shows how the AppleScript component uses information from its 'aeut'
resource and an application’s 'aete' resource to execute a script that consists of
AppleScript statements displayed in a script editor window. When a user executes the
script from the script editor (for example, by pressing the Run button in the Script Editor
application), the AppleScript component first compiles the script into the equivalent
compiled expressions, using information from its 'aeut' resource and the application’s
'aete' resource to map application-specific terms in the script with the equivalent
Apple events and Apple event parameters. The AppleScript component then evaluates
each expression and performs actions or sends Apple events as appropriate.

For example, the AppleScript component evaluates the expression

2*3

as the value 6. The AppleScript component can then decompile and display this value in
the script editor window, assign it to a variable, or otherwise manipulate it according to
the rest of the script. However, to compile the statement

print Chart 1 of document "Sales Report"

the AppleScript component uses its 'aeut' resource and the SurfWriter application’s
'aete' resource to associate the terms used in the script with the Print Apple event, the
object class for charts, and the object class for documents, so that it can describe the
event accurately in the form of a compiled expression. When the AppleScript component
evaluates the compiled expression, it creates and sends a Print event whose direct
parameter is an object specifier record that the SurfWriter application can resolve as the
specified chart. The SurfWriter application then handles the Apple event by printing the
chart as requested.
Making Your Application Scriptable 7-17

C H A P T E R 7

Introduction to Scripting
Figure 7-5 Role of the 'aete' and 'aeut' resources when the AppleScript component
compiles and executes a script

Note that although Figure 7-5 shows only one Apple event generated as a result of
executing a script, the AppleScript component could also send a series of Apple events to
several different applications, depending on the content of the script.

A recordable application generally needs to be able to send itself a subset of the
Apple events that it can handle as a scriptable application. A recordable event is
any Apple event that any recordable application sends to itself while recording is turned
on for the local computer (with the exception of events that the application explicitly
identifies as not for recording purposes). After a user turns on recording from the
Script Editor application, the Apple Event Manager sends copies of all recordable events
to Script Editor. A scripting component previously selected by the user handles each
copied event for Script Editor by translating the event and recording the translation as
part of a Script Editor script. When a scripting component executes a recorded script, it
sends the corresponding Apple events to the applications in which they were recorded.

Every scripting component must be able to handle copies of recordable events sent to a
recording process (such as Script Editor) by recording them in an appropriate form.
For example, as shown in Figure 7-6, the AppleScript component records copies of
recordable events in the form of compiled expressions. The AppleScript component can
then use information from its 'aeut' resource and the application’s 'aete' resource to

SurfWriterAppleScript component

AppleScript
statements
displayed

by script editor

Compile

Execute

'aeut' resource

Apple event
Apple event

handler

'aete' resource

Apple event
codes for

human-language
terms

Compiled
expressions
7-18 Making Your Application Scriptable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
translate the compiled expressions into the appropriate human-language terms and
display them as AppleScript statements in the script editor window. When the user
opens a recorded script in Script Editor and presses Run, the AppleScript component
recompiles the script if necessary and sends the Apple events described by the compiled
expressions to the SurfWriter application, just as in Figure 7-5.

Figure 7-6 Role of the 'aete' and 'aeut' resources when the AppleScript component
records and decompiles a script

If the user copies a chart from one document to another document and the SurfWriter
application performs this task by sending itself Apple events, the equivalent statements
in the recorded script might look something like this:

tell application "SurfWriter"

select Chart 1 of document "Sales Chart"

copy

select paragraph 3 of document "Monthly Report"

paste

end tell

SurfWriterAppleScript component

AppleScript
statements

displayed by
script editor

Decompile

Record

'aeut' resource

User action

Apple
event

Copy of
Apple event

User action
handler

'aete' resource

Apple event
handler

Human-language
terms for

Apple event
codes

Compiled
expressions
Making Your Application Scriptable 7-19

C H A P T E R 7

Introduction to Scripting
To display these statements in the script editor window, the AppleScript component first
translates the Set Data, Copy, and Paste Apple events sent by the recordable application
into compiled expressions. It then uses information from its 'aeut' resource and the
application’s 'aete' resource to decompile the compiled expressions and pass the
equivalent source data to the script editor for display to the user. After completing a
recording session, the user can edit and save the resulting script and execute it again at
any time.

As shown in Figure 7-5 and Figure 7-6, the AppleScript component uses information it
obtains from the 'aeut' and 'aete' resources when it is compiling and decompiling
scripts. Other scripting components might use the same information during execution or
recording, or in other ways that are specific to each component.

Dynamic Loading of Terminology Information 7

When a scripting component needs information about the user terminology defined
in your application’s 'aete' resource, it sends a Get AETE event to your application. If
your application does not handle the Get AETE event, the scripting component reads the
terminology information it needs directly from your application’s 'aete' resource.

Your application does not need to handle the Get AETE event unless it provides separate
'aete' resources for plug-in components. If your application does provide separate
plug-in components, the Get AETE event allows it to gather terminology information
from the 'aete' resources for the components that are currently running and add that
information to the reply event.

If your application handles the Get AETE event, you must also provide a scripting size
resource. A scripting size resource is a resource of type 'scsz' that provides
information about an application’s capabilities and preferences for use by scripting
components.

To take advantage of dynamic loading, your application must be running. Note that if
your application does not provide a handler for the Get AETE event, the scripting
component can obtain terminology information directly from your application’s 'aete'
resource even if your application is not running.

Making Your Application Recordable 7

If you decide to make your application scriptable, you can also make it recordable. A
recordable application is an application that uses Apple events to report user actions to
the Apple Event Manager for recording purposes. A recordable event is any Apple event
that a recordable application sends to itself while recording is turned on for the local
computer (with the exception of events sent with the kAEDontRecord flag set in the
sendMode parameter of AESend).
7-20 Making Your Application Recordable

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
When a user turns on recording by clicking the Record button in the Script Editor
application, the Apple Event Manager sends copies of all subsequent recordable events
to Script Editor. The AppleScript component handles each copied event for Script Editor
by translating it into compiled expressions and recording the compiled expressions as
part of a script. (Figure 7-6 on page 7-19 shows how the AppleScript component uses the
'aete' and 'aeut' resources when it records a script.) The user can view the
equivalent decompiled source data in Script Editor while the script is being recorded.
When a user executes a recorded script, the AppleScript component sends the
corresponding Apple events to the applications in which they were recorded.

Applications generally have two parts: the code that implements the application’s user
interface and the code that actually performs the work of the application when the user
manipulates the interface. One way to make your application recordable is to separate
these two parts of your application, using Apple events to connect user actions with the
work your application performs. This is called factoring your application. In a fully
factored application, almost all tasks are carried out in response to Apple events. The
application translates low-level events that result in significant actions into recordable
Apple events and then sends them to itself.

Factoring your application is the recommended method of making your application
recordable. However, it is also possible for your application to report user actions by
means of Apple events even though it actually performs those actions by some means
other than Apple events. You can indicate that you want the Apple Event Manager to
record events in this manner, without executing them, by adding the constant
kAEDontExecute to the sendMode parameter of AESend.

Before you decide how to map the user’s potential actions to recordable Apple events
supported by your application, you need to answer these questions:

■ What are the significant (that is, undoable) actions a user can perform with your
application that you want to record?

■ Which actions can you execute by means of Apple events, and which actions should
cause Apple events to be sent but not executed?

■ How do you want to record actions that can be described in a scripting language in
several different ways?

For example, if your application is a word processor, the user’s selection of a range of
text should probably not generate an Apple event, because users often select various
different pieces of text before deciding to do something to the selection. However, if a
user changes the font of a selection, a recordable word processor should generate a
corresponding Apple event so that the scripting component can record the change.

In general, a recordable application should generate Apple events for any user action
that the user could reverse by choosing Undo. A recordable application can usually
handle a greater variety of Apple events than it can record, because it must record the
same action the same way every time even though Apple events might be able to trigger
that action in several different ways.
Making Your Application Recordable 7-21

C H A P T E R 7

Introduction to Scripting
For more information about recordable applications, factoring, and the Apple Event
Manager’s recording mechanism, see the chapter “Recording Apple Events” in this
book. For a description of the role of the 'aete' and 'aeut' resources when the
AppleScript component records a script, see “How AppleScript Uses Terminology
Information,” which begins on page 7-17.

Manipulating and Executing Scripts 7

Your application can use scripting component routines to manipulate and execute scripts
written in any scripting language based on the OSA. This section describes how
scripting components use script data and summarizes some of the tasks your application
can perform by calling the standard scripting component routines.

Your application can manipulate and execute scripts regardless of whether it is scriptable
or recordable. However, if your application is scriptable, you can easily make it capable
of manipulating and executing scripts that control its own behavior. For example, the
forms application shown in Figure 7-4 on page 7-13 uses standard scripting component
routines to execute a script whenever the cursor is in the appropriate field and the user
presses Enter or Tab. Applications can also use scripting component routines to allow
users to edit, recompile, save, and load such scripts in order to adapt them to their own
purposes.

Before using any scripting component routines, your application must open a connection
with at least one scripting component. After opening a connection with a component,
your application receives a component instance that it can use as the first parameter for
any scripting component routine. You can use the Component Manager to establish a
connection with the generic scripting component or to establish an explicit connection
with any other scripting component. Your application can open connections with
different scripting components under different circumstances and, if necessary,
simultaneously.

To manipulate or execute scripts written in any scripting language based on the OSA,
your application can open a connection with the generic scripting component. The
generic scripting component in turn attempts to open connections dynamically with the
appropriate scripting component for a given script. If your application opens a
connection with the generic scripting component, it can load and execute scripts created
by any scripting component that is registered with the Component Manager on the
current computer. The generic scripting component also provides routines that allow
you to determine which scripting component created a particular script and to perform
other useful tasks when you are using multiple scripting components.

To manipulate and execute scripts written in a single scripting language only, your
application can open an explicit connection with the scripting component for that
language. In this case your application can load and execute only those scripts that were
created by that component; however, your application can also take advantage of
additional routines and other special capabilities provided by the component.
7-22 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
After your application has established a connection with the appropriate scripting
component for an existing script, it can use the standard scripting component routines to
execute scripts. A script that has not yet been compiled consists of source data, or
statements in a scripting language. Before executing source data, your application must
use scripting component routines to compile it so that the scripting component can keep
track of it in memory and execute it.

Scripting components can refer to at least three kinds of script data in memory:

■ A compiled script consists of compiled code that an application can decompile into
source data or execute using the standard scripting component routines.

■ A script value consists of an integer, a string, a Boolean value, constants, PICT data, or
any other fixed data returned or used by a scripting component in the course of
executing a script.

■ A script context maintains context information for the execution of other scripts. A
script context can also contain executable statements in a scripting language. Like a
compiled script, a script context can be decompiled as source data.
For example, a script context can contain user-defined handlers for specific Apple
events. In AppleScript, a script context that contains such handlers or other executable
statements is called a script object. Handlers in a script object resemble HyperTalk
message handlers. They consist of AppleScript statements and have no corresponding
entry in Apple event dispatch tables.

Scripting components keep track of script data in memory by means of script IDs of type
OSAID.

TYPE OSAID = LongInt;

A scripting component assigns a script ID to a compiled script or script context
whenever the component creates or loads the corresponding script data. The scripting
component routines that compile, load, and execute scripts all return script IDs, and you
must pass valid script IDs to many of the other routines that manipulate scripts.

Applications most commonly use scripting component routines to

■ compile source data and execute the resulting compiled script, so that a user can
create a new script and execute it immediately from within the application

■ get a handle to script data in a form that can be saved, and load and execute the script
data again when necessary

■ allow users to modify a script, then recompile and save the script

■ redirect Apple events to script contexts

The remainder of this section provides an overview of the scripting component routines
you can use to perform these tasks.

Your application can also use scripting component routines to

■ get information about scripts

■ get information about scripting components
Manipulating and Executing Scripts 7-23

C H A P T E R 7

Introduction to Scripting
■ coerce script values to descriptor records and vice versa

■ set a resume dispatch function and alternative send, create, and active functions for
use by a scripting component

■ control the recording process directly, turning recording off and on and saving the
recorded script for use by your application

The chapter “Scripting Components” in this book provides detailed information about
using all the standard scripting component routines as well as additional routines
provided by the AppleScript component and the generic scripting component.

Compiling, Saving, Modifying, and Executing Scripts 7
This section introduces some of the scripting component functions your application can
use to compile, save, modify, and execute scripts.

To create and execute a script using the Script Editor application, a user can type the
script, then press the Run button to execute it. Your application can provide similar
capabilities by using these functions to compile source data and execute the resulting
compiled script:

■ The OSACompile function takes a descriptor record with a handle to source data
(usually text) and a script ID. If you specify kOSANullScript instead of an existing
script ID, OSACompile returns a script ID for the new compiled script, which you can
then pass to the OSAExecute function.

■ The OSAExecute function takes a script ID for a compiled script and a script ID for a
script context, executes the script, and returns a script ID for the resulting script value.

The binding of any global variables in the compiled script is determined by the
script context whose script ID you pass to OSAExecute. If you pass kOSANullScript
instead of the script ID for a script context, the scripting component provides its own
default context. If you want to provide your own script context rather than using the
scripting component default context, you can use either OSACompile or
OSAMakeContext to create a script context, which you can load and store just like a
compiled script.

After creating a script and trying it out, a user may want to save it for future use. Your
application should normally save its scripts as script data rather than source data, so that
it can reload and execute the data without recompiling it. Before saving script data, you
must first call the OSAStore function to get a handle to the data in the form of a
descriptor record. You can then save the data to disk as a resource or write it to the data
fork of a document.

To allow a user to reload and execute a previously compiled and saved script, your
application can call these functions:

■ The OSALoad function takes a descriptor record that contains a handle to the saved
script data and returns a script ID for the compiled script.

■ The OSAExecute function takes a script ID for a compiled script and a script ID for a
script context, executes the script, and returns a script ID for the resulting script value.
7-24 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
In most cases you will want to allow users to modify saved scripts and save them again.
To allow a user to modify and save a compiled script, your application can call these
functions:

■ The OSAGetSource function takes a script ID and returns a descriptor record with a
handle to the equivalent source data.

■ The OSACompile function takes a descriptor record with a handle to source data and
a script ID, and returns the same script ID updated so that it refers to the modified
and recompiled script.

■ The OSAStore function takes a script ID and returns a copy of the corresponding
script data in the form of a storage descriptor record.

You can pass the script ID for the compiled script to be modified to the OSAGetSource
function, which returns a descriptor record with a handle to the equivalent source data.
Your application can then present the source data to the user for editing. When the user
has finished editing the source data, you can pass the modified source data and the
original script ID to the OSACompile function to update the script ID so that it refers to
the modified and recompiled script. Finally, to obtain a handle to the modified script
data so you can save it in a resource or write it to the data fork of a document, you can
pass the script ID for the modified compiled script to the OSAStore function.

If your application has no further use for a compiled script or a resulting script value
after successfully loading, saving, compiling, or executing a script, you can use the
OSADispose function to release the memory assigned to them. The OSADispose
function takes a script ID and releases the memory assigned to the corresponding script
data. A script ID is no longer valid after the memory associated with it has been released.
This means, for example, that a scripting component may assign a different script ID to
the same compiled script each time you load it, and that a scripting component may
reuse a script ID that is no longer associated with a specific script.

“Using Scripting Component Routines,” which begins on page 10-7, provides more
information about the standard scripting component routines described in this section.

Using a Script Context to Handle an Apple Event 7
One way to associate a script with an object is to associate a script context with a specific
Apple event object—that is, with any object in your application that can be identified by
an object specifier record. When an Apple event acts on an Apple event object with
which a script context is associated, your application attempts to use the script context to
handle the Apple event. This approach can be useful if you want to associate many
different scripts with many different kinds of objects.

Figure 7-7 illustrates one way that an application can use a script context to handle an
Apple event. This example shows how you can use a general Apple event handler to
provide initial processing for all Apple events received by your application. If an Apple
event acts on an object with which a script context is associated, the general handler
attempts to use the script context to handle the event.
Manipulating and Executing Scripts 7-25

C H A P T E R 7

Introduction to Scripting
The SurfWriter application in Figure 7-7 associates script contexts (called script objects in
AppleScript) with geometric shapes such as circles or squares. These script contexts can
contain one or more user-defined handlers for specific Apple events. For example, the
script context shown in Figure 7-7 is associated with a circle and contains this handler:

on move to {x, y}

continue move to {x, item 2 of position of this}

end move

This handler exists only as AppleScript statements in the script context and doesn’t have
an entry in SurfWriter’s Apple event dispatch table. SurfWriter does have its own
standard Apple event handlers installed in its Apple event dispatch table. When
SurfWriter receives a Move event that acts on the circle with which this script context is
associated, SurfWriter uses the handler in the script context to modify its own standard
handling of the event. The rest of this section describes how this works.

Figure 7-7 Using a handler in a script context to handle an Apple event

SurfWriter

Default Move
event handler

Apple event object
(a circle)

Script context attached to Apple event object
on move to {x, y}
 continue move to {x, item 2 of position of this}
end moveAppleScript

component

Move
Apple
event

Component Manager

Move
 Apple
event

Script
ID

Get the direct parameter for the event

If the direct parameter refers to an Apple event object with
a script context attached, get a script ID for the script context

MyGeneralAppleEventHandler

Pass the event and the script ID to OSADoEvent

Resume
dispatch function
7-26 Manipulating and Executing Scripts

C H A P T E R 7

Introduction to Scripting

7
Introduction to S

cripting
The MyGeneralAppleEventHandler function in Figure 7-7 is installed in SurfWriter’s
special handler dispatch table. Thus, MyGeneralAppleEventHandler provides initial
processing for all Apple events received by SurfWriter. When it receives an Apple event,
MyGeneralAppleEventHandler checks whether a script context is associated with the
object on which the event acts. If so, MyGeneralAppleEventHandler passes the
event and a script ID for the script context to the OSADoEvent function. If not,
MyGeneralAppleEventHandler returns errAEEventNotHandled, which causes the
Apple Event Manager to look for the appropriate handler in SurfWriter’s Apple event
dispatch table.

The OSADoEvent function looks for a handler in the specified script context that can
handle the specified event. If the script context doesn’t include an appropriate handler,
OSADoEvent returns errAEEventNotHandled. If the script context includes an
appropriate handler (in this example, a handler that begins on move), OSADoEvent
attempts to use the handler to handle the event.

When it encounters the continue statement during execution of the on move handler
shown in Figure 7-7, the AppleScript component calls SurfWriter’s resume dispatch
function. A resume dispatch function takes an Apple event and invokes the
application’s default handler for that event directly, bypassing the application’s special
handler dispatch table and the MyGeneralAppleEventHandler handler (or its
equivalent). In this case, the AppleScript component uses SurfWriter’s default Move
handler to move the circle to a different location than the one specified in the original
Move event. The location specified by {x, item 2 of position of this} has the
same horizontal coordinate as the location specified by the original event, but specifies
the circle’s original vertical coordinate (item 2 of the circle’s original position), thus
constraining motion to a horizontal direction.

The AppleScript component calls the resume dispatch function as soon as it encounters a
continue statement during script execution. For example, if the handler in Figure 7-7
contained additional indented statements after the continue statement, the AppleScript
component would proceed with the execution of those statements after calling the
resume dispatch function successfully.

A script context can modify the event and use the default Apple event handler to execute
the modified event, as in this example; or it can override the default handler completely,
performing some completely different action; or it can perform some action and then
pass the original event to the application’s default handler to be handled in the usual
way. Script contexts associated with Apple event objects thus provide a way for users to
modify or override the way an application responds to a particular Apple event that
manipulates those objects.

A general Apple event handler can use the OSAExecuteEvent function instead of
OSADoEvent to execute a script context. The main difference between these functions is
is that OSAExecuteEvent returns the script ID for the resulting script value, whereas
OSADoEvent returns a reply event.
Manipulating and Executing Scripts 7-27

C H A P T E R 7

Introduction to Scripting
To create a script context, pass the source data for the scripting-language statements you
want the script context to contain to OSACompile with the modeFlags parameter set to
kOSACompileIntoContext. The resulting script context is identical to a script context
returned by the OSAMakeContext function, except that it contains compiled statements.

“Using a Script Context to Handle an Apple Event,” which begins on page 10-19,
describes this method of executing a script in more detail.
7-28 Manipulating and Executing Scripts

C H A P T E R 8

8

Figure 8-0
Listing 8-0
Table 8-0

8 Apple Event Terminology

Contents

Resources

Defining Terminology for Use by the AppleScript Component 8-3
Structure of Apple Event Terminology Resources 8-8
Creating an Apple Event Terminology Extension Resource 8-13

Supporting Standard Suites Without Extensions 8-14
Extending the Standard Suites 8-16
Supporting Subsets of Suites 8-23
Supporting New Suites 8-23

Handling the Get AETE Event 8-23
Reference to Apple Event Terminology Resources 8-26

Header Data for an Apple Event Terminology Resource 8-27
Suite Data for an Apple Event Terminology Resource 8-27

Event Data 8-29
Object Class Data 8-36
Comparison Operator Data 8-42
Enumeration and Enumerator Data 8-43

The Scripting Size Resource 8-45
Contents 8-1

C H A P T E R 8

8

A
pple E

vent Term
inology R

esources

Apple Event Terminology Resources 8

This chapter describes the resource structure used by both the 'aeut' and 'aete'
resources and explains how to create an 'aete' resource for your application. It also
explains how applications that support additional plug-in modules, each with its own
'aete' resource, can write a handler for the Get AETE event that collects the 'aete'
resources from the modules that are currently running.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book and the chapters about the Apple Event Manager that are relevant to your
application.

The first section in this chapter describes how the AppleScript component interprets
AppleScript statements that trigger Apple events. The first section also explains how to
define both Apple events and the corresponding user terminology for your application
in a way that translates easily into AppleScript statements. If you implement Apple
events so that they translate into logical and useful AppleScript scripts, your
implementation will probably work well with other scripting components that resemble
AppleScript.

The next two sections describe how to

■ create an 'aete' resource

■ handle the Get AETE event

For details about the structure of the data in an 'aeut' resource and an 'scsz'
resource, see “Reference to Apple Event Terminology Resources,” which begins on
page 8-26.

Defining Terminology for Use by the AppleScript Component 8

You should keep two principles in mind when you are defining the Apple event object
hierarchy and corresponding terminology for your application:

■ Avoid defining new Apple events unless absolutely necessary. For example, instead of
defining a custom Find event, use the Get Data event with whose tests. (For more
information about whose tests, see the chapter “Resolving and Creating Object
Specifier Records” in this book.)

■ Use existing object classes, or if you must define your own, define them in a
general fashion.
Defining Terminology for Use by the AppleScript Component 8-3

C H A P T E R 8

Apple Event Terminology Resources

This section describes how the terms you specify in your application’s 'aete' resource
are used in AppleScript statements that control your application. Before you implement
the Apple event object hierarchy for your application, try out your proposed user
terminology in AppleScript statements that use the standard syntax forms described
here. This will help you discover some of the advantages and disadvantages of both
your proposed object hierarchy and the human-language terminology you are planning
to use.

Some AppleScript commands, such as if, repeat, and tell, are executed directly by
the AppleScript component and do not correspond to Apple events. Other commands
trigger Apple events when the AppleScript component evaluates them.

The AppleScript component interprets the terms used in scripts according to rules
defined by the AppleScript language. For example, the open command must be
followed by an argument that specifies the objects to open, and the save command must
be followed by an argument that specifies the objects to save. The AppleScript
component uses the information in an application’s 'aete' resource to map the
human-language terms used in these arguments to specific Apple event keywords and
codes, so that it can construct object specifier records that describe the objects on which
the Open and Save events act.

In general, the syntax for AppleScript commands that trigger Apple events follows
this pattern:

event name expression parameter name expression . . . parameter name expression

The underlined terms are supplied by the AppleScript component’s 'aeut' resource, by
the application’s 'aete' resource, or by the 'aeut' resource available on the current
computer. The argument that follows event name corresponds to the direct parameter for
the event, if there is one. Each subsequent argument corresponds to an additional
parameter.

AppleScript
command

Corresponding
Apple event

open Open

close Close

save Save

move Move

delete Delete

set Set Data
8-4 Defining Terminology for Use by the AppleScript Component

C H A P T E R 8

Apple Event Terminology Resources

8

A
pple E

vent Term
inology R

esources

An argument that corresponds to a direct parameter can use any of the syntax forms
shown in Table 8-1. These forms correspond to the key forms that can be used to identify
the key data in an object specifier record.

If the Apple event object hierarchy for your application requires you to specify terms in
your 'aete' resource that are not included in the 'aeut' resource, make sure those
terms read naturally when they appear in AppleScript statements that use the syntax
shown in Table 8-1. Any of the underlined terms in the table may be supplied by your
application’s 'aete' resource.

For example, in the AppleScript statement

copy name to expression

the argument name corresponds to a direct parameter that can use any of the syntax
variations shown in Table 8-1. The word to and the expression that follows it correspond
to an additional parameter that describes the location to which to copy the objects
described by the direct parameter.

Many AppleScript commands, including the copy command, take additional arguments
that correspond to insertion location descriptor records , which are descriptor
records of type typeInsertionLoc defined as part of the Core suite. An insertion
location descriptor record is a coerced AE record that consists of two keyword-specified
descriptor records with the following keywords:

Table 8-1 Syntax for AppleScript arguments that correspond to direct parameters

Syntax of argument AppleScript example Key form

property name the font formPropertyID

class name expression table "Fred"
table 4

formName
formAbsolutePosition

class name before | after expression word after table 2 formRelativePosition

class name expression thru expression words 1 thru 30 formRange

every class name whose expression every word whose¬
 font = "Palatino"

formWhose

expression of expression first row of¬
 table "Fred"

Any key form; sets container
for elements or properties

Keyword Description

keyAEObject An object specifier record that identifies a single container

keyAEPosition A constant that specifies where to put the Apple event object
described in an Apple event’s direct parameter in relation to the
container specified in the descriptor record with the keyword
keyAEObject
Defining Terminology for Use by the AppleScript Component 8-5

C H A P T E R 8

Apple Event Terminology Resources

You can specify one of these constants for the data in a descriptor record identified by
the keyword keyAEPosition:

The syntax that corresponds to an insertion descriptor record can take any of the forms
shown in Table 8-2.

For example, in the AppleScript statement

copy Chart 1 of document "Sales Chart" to before Figure 1

the term copy corresponds to a Clone event, and Chart 1 of document "Sales
Chart" corresponds to the direct parameter for the Clone event. The term to is the
human-language name specified by the 'aeut' resource for the additional parameter
identified by the keyword kAEInsertHere, which always consists of an insertion
location descriptor record. The term before corresponds to the constant kAEBefore in
the descriptor record identified by the keyword keyAEPosition, and Figure 1
corresponds to the object specifier record identified by the keyword keyAEObject.

The AppleScript component handles statements that describe the replacement of one
object with another differently from statements that specify an insertion location before,
after, at the beginning of, or at the end of an object.

Constant Meaning

kAEBefore Before the container

kAEAfter After the container

kAEBeginning In the container and before all other elements of the same class as
the object being inserted

kAEEnd In the container and after all other objects of the same class as the
object being inserted

kAEReplace Replace the container

Table 8-2 Syntax for AppleScript arguments that correspond to insertion location
descriptor records

Syntax of argument AppleScript example keyAEPosition constant

before | after expression before Figure 1 kAEBefore | kAEAfter

beginning of | end of expression end of window 2 kAEBeginning | kAEEnd

expression Figure 1 kAEReplace
8-6 Defining Terminology for Use by the AppleScript Component

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
For example, in the statement

copy Chart 1 of document "Sales Chart" to Figure 1

the term to is the human-language name for the additional parameter identified by the
keyword kAEInsertHere. When to is followed immediately by an element expression
like Figure 1, the Clone Apple event sent by the AppleScript component includes an
additional parameter that consists of an object specifier record for Figure 1. When your
application requests the parameter as an insertion location descriptor record, a system
coercion handler installed by the AppleScript component converts the object specifier
record to an insertion location descriptor record that specifies kAEReplace in the
descriptor record identified by the keyword keyAEPosition.

If your application defines any extensions to the standard Apple events or object classes
that require the use of insertion locations, use standard insertion location descriptor
records to specify them, and make sure your Apple event object hierarchy and the
corresponding human terminology in your 'aete' resource allow the AppleScript
component to translate insertion location descriptor records into meaningful statements
in an AppleScript dialect.

Unlike most other AppleScript commands, the copy command causes the AppleScript
component to send different Apple events under different circumstances. In the
examples just discussed, the copy command corresponds to a Clone event. However,
after evaluating the statements

tell application "SurfWriter"

copy table "Summary of Sales" of document¬

"Sales Report" to Totals

end tell

the AppleScript component sends a Get Data event and sets the variable Sales91 to the
value of the returned data; and the statements

tell application "SurfCharter"

copy Totals to Chart 1 of document "Sales Chart"

end tell

cause the AppleScript component to send a Set Data event that sets the data in the
specified chart to the value of the variable Totals.

All scriptable applications should support the Get Data, Set Data, and Clone events for
all Apple event objects that a user might want to manipulate from a script with the copy
command. Scriptable applications should also support the other core events and any
appropriate functional-area events.

If you find it difficult to come up with meaningful AppleScript statements based on
your proposed implementation of Apple events, you may need to rethink your
implementation.
Defining Terminology for Use by the AppleScript Component 8-7

C H A P T E R 8

Apple Event Terminology Resources
Structure of Apple Event Terminology Resources 8

Table 8-3 summarizes the resource structure used by both the 'aeut' and 'aete'
resources. Each asterisk (*) in the table indicates the beginning of an array. Each array
can contain any number of items, including both additional arrays and specific
definitions (■).

Table 8-3 Structure of the 'aeut' and 'aete' resources

■ Template version

■ Language code

* Array of suites:

 ■ Suite information

 * Array of events:

 ■ Event information (including information about the direct parameter)

 * Array of other parameters:

 ■ Parameter information

 * Array of classes:

 ■ Class description

 * Array of properties:

 ■ Property information

 * Array of elements:

 ■ Element information

 * Array of key forms:

 ■ Key form information

 * Array of comparison operators:

 ■ Comparison operator information

 * Array of enumerations:

 ■ Enumeration information

 * Array of enumerators:

 ■ Enumerator information
8-8 Structure of Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Listing 8-1 shows the resource type declaration in Rez format for the 'aeut' resource,
which can also serve as a template for an 'aete' resource. (Rez is a resource compiler
available with the MPW programming environment.) For complete descriptions of all
the fields shown in Listing 8-1, see “Reference to Apple Event Terminology Resources,”
beginning on page 8-26.

Listing 8-1 Resource type declaration for the 'aeut' resource

type 'aeut' {

hex byte; /*major version in binary-coded */

/* decimal (BCD)*/

hex byte; /*minor version in BCD*/

integer Language, english = 0, japanese = 11; /*language code*/

integer Script, roman = 0; /*script code*/

integer = $$Countof(Suites);

array Suites {

pstring; /*human-language name of suite*/

pstring; /*suite description*/

align word; /*alignment*/

literal longint; /*suite ID*/

integer; /*suite level*/

integer; /*suite version*/

integer = $$Countof(Events);

array Events {

pstring; /*human-language name of event*/

pstring; /*event description*/

align word; /*alignment*/

literal longint; /*event class*/

literal longint; /*event ID*/

literal longint noReply = 'null'; /*reply type*/

pstring; /*reply description*/

align word; /*alignment*/

boolean replyRequired, /*if the reply is */

replyOptional; /* required*/

boolean singleItem, /*if the reply must be a list*/

listOfItems;

boolean notEnumerated, /*if the type is enumerated*/

enumerated;

boolean reserved; /*these 13 bits are reserved; */

boolean reserved; /* set them to "reserved"*/

boolean reserved;

boolean reserved;

boolean reserved;
Structure of Apple Event Terminology Resources 8-9

C H A P T E R 8

Apple Event Terminology Resources
boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved, /*if event is verb event or nonverb */

nonVerbEvent; /* event; used by Japanese dialect*/

literal longint noParams = 'null'; /*direct param type*/

pstring; /*direct param description*/

align word; /*alignment*/

boolean directParamRequired, /*if the direct param is required*/

directParamOptional;

boolean singleItem, /*if the param must be a list*/

listOfItems;

boolean notEnumerated, /*if the type is enumerated*/

enumerated;

boolean doesntChangeState, /*if the event changes server's state*/

changesState;

boolean reserved; /*these 12 bits are reserved; */

boolean reserved; /* set them to "reserved"*/

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

integer = $$Countof(OtherParams);

array OtherParams {

pstring; /*human-language name for parameter*/

align word; /*alignment*/

literal longint; /*parameter keyword*/

literal longint; /*parameter type*/

pstring; /*parameter description*/

align word; /*alignment*/

boolean required, /*if param is required*/

optional;
8-10 Structure of Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
boolean singleItem, /*if the param must be a list*/

listOfItems;

boolean notEnumerated, /*if the type is enumerated*/

enumerated;

boolean isNamed, /*indicates if this should be the */

isUnnamed; /* unnamed parameter; only one */

/* parameter can be so marked; set to */

/* reserved if not required*/

boolean reserved; /*these 9 bits are reserved; */

boolean reserved; /* set them to "reserved"*/

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean notFeminine, /*feminine; set to reserved if not */

feminine; /* required*/

boolean notMasculine, /*masculine; set to reserved if not */

masculine; /* required*/

boolean singular,

plural; /*plural*/

};

};

integer = $$Countof(Classes);

array Classes {

pstring; /*human-language name for class*/

align word; /*alignment*/

literal longint; /*class ID*/

pstring; /*class description*/

align word; /*alignment*/

integer = $$Countof(Properties);

array Properties {

pstring; /*human-language name for property*/

align word; /*alignment*/

literal longint; /*property ID*/

literal longint; /*property class*/

pstring; /*property description*/

align word; /*alignment*/

boolean reserved; /*reserved*/

boolean singleItem, /*if the property must be a list*/

listOfItems;
Structure of Apple Event Terminology Resources 8-11

C H A P T E R 8

Apple Event Terminology Resources
boolean notEnumerated, /*if the type is enumerated*/

enumerated;

boolean readOnly, /*can only read it*/

readWrite; /*can read or write it*/

boolean reserved; /*these 9 bits are reserved; */

boolean reserved; /* set them to "reserved"*/

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean notFeminine, /*feminine; set to reserved if not */

feminine; /* required*/

boolean notMasculine, /*masculine; set to reserved if not */

masculine; /* required*/

boolean singular,

plural; /*plural*/

};

integer = $$Countof(Elements);

array Elements {

literal longint; /*element class*/

integer = $$Countof(KeyForms);

array KeyForms { /*list of key forms*/

literal longint

formAbsolutePosition = 'indx',

formName = 'name'; /*key form ID*/

};

};

};

integer = $$Countof(ComparisonOps);

array ComparisonOps {

pstring; /*human-language name for */

/* comparison operator*/

align word; /*alignment*/

literal longint; /*comparison operator ID*/

pstring; /*comparison operator description*/

align word; /*alignment*/

};

integer = $$Countof(Enumerations);

array Enumerations { /*list of enumerations*/

literal longint; /*enumeration ID*/
8-12 Structure of Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
integer = $$Countof(Enumerators);

array Enumerators { /*list of enumerators*/

pstring; /*human-language name for enumerator*/

align word; /*alignment*/

literal longint; /*enumerator ID*/

pstring; /*enumerator description*/

align word; /*alignment*/

};

};

};

};

Creating an Apple Event Terminology Extension Resource 8

Scriptable applications must include an Apple event terminology extension ('aete')
resource. You use an 'aete' resource to inform scripting components about the extent
of your application’s support for the standard Apple event suites, any custom Apple
events or Apple event objects defined by your application, and the corresponding
human-language terms for use in scripts that control your application.

The format of the 'aete' resource is identical to that of the 'aeut' resource, although
it serves a different purpose. The 'aeut' resource maps human-language names to IDs,
keywords, and other codes used in the Apple events described by the current edition of
the Apple Event Registry: Standard Suites. The 'aete' resource for an application uses the
same format to accomplish the following:

■ Indicate when a set of definitions for a particular suite included in the 'aeut'
resource is supported in its entirety by the application. For example, an application
can indicate that it supports all of the 'aeut' resource definitions for the Required
and Core suites simply by identifying the suite as a whole in its 'aete' resource; the
detailed information for each standard suite does not need to be repeated.

■ Describe extensions, if any, to the definitions included in the 'aeut' resource, such as
additional parameters for standard Apple events, additional properties and element
classes for standard object classes, and additional key forms for each element class.
For example, an application can indicate that it supports all of the definitions for
the Required and Core suites included in the 'aeut' resource, an additional
parameter for one of the core events defined in the 'aeut' resource, and an
additional property for one of the core object classes defined in the 'aeut' resource.

■ Describe the standard Apple events and object classes that belong to suites the
application does not support in their entirety.

■ Describe the application’s custom suite—that is, the application’s custom Apple
events and object classes, if any.
Creating an Apple Event Terminology Extension Resource 8-13

C H A P T E R 8

Apple Event Terminology Resources
By specifying a suite ID, suite level, and suite version, your application can indicate that
it supports an entire suite. Because the 'aeut' resource provided by each scripting
component lists the human-language terms for all the standard suites, you do not have
to repeat this information if you support a suite in its entirety. If you support a subset of
a standard suite, you must list all the Apple events, Apple event parameters, object
classes, and so on and equivalent human-language terms for the parts of the suite your
application does support.

You can include at most one 'aete' resource per application or per module. The
language code for this resource must match the language code of the language for which
you are developing your application. Applications that support additional modules with
their own 'aete' resources must provide an 'scsz' resource and handle the Get
AETE event as described in “Handling the Get AETE Event,” which begins on page 8-23.

IMPORTANT

Each human-language term supported by an application should
correspond to a unique Apple event ID, keyword, or other code in either
the application’s 'aete' resource or the 'aeut' resource. For example,
since the 'aeut' resource defines “size” as the human-language
equivalent for the property identified by the four-character code
'ptsz' (the pPointSize property of text objects), an application’s
'aete' resource must not define “size” as the human-language
equivalent for some other part of an Apple event or object class.
However, more than one human-language term can correspond to the
same Apple event ID or code. For example, an application’s 'aete'
resource can define a second human-language term, “point size,” that
corresponds to the Apple event identifier 'ptsz'. ▲

The AppleScript Software Developers’ Kit (available from APDA) includes a tool that allows
you to specify your application’s support for Apple events and creates the equivalent
'aete' resource. The previous section, “Structure of Apple Event Terminology
Resources,” describes the basic format used by both the 'aeut' and 'aete' resources.

The sections that follow provide examples of 'aete' resources that can be generated
with the tools in the AppleScript Software Developers’ Kit.

Supporting Standard Suites Without Extensions 8
To indicate that your application supports a standard suite in its entirety, without any
extensions, your 'aete' resource needs to provide only the information that identifies
the suite. For example, Listing 8-2 shows the Rez input for an 'aete' resource provided
by an application that supports the entire Required and Core suites with no omissions or
extensions.

Every 'aete' resource must provide the major and minor version numbers for
the content of the resource (1 and 0 in Listing 8-2) and the language code (English in
Listing 8-2). For each suite that an application supports in its entirety, without
extensions, the 'aete' resource provides only the name, suite description, suite ID,
suite level (1 for all current suites), and suite version (1 for all current suites). If the
'aete' resource provides an empty string as the human-language name for such a
8-14 Creating an Apple Event Terminology Extension Resource

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
suite, a scripting component uses the name provided for the corresponding suite by the
'aeut' resource. If an application does not extend or omit any of the definitions in a
standard suite, a scripting component can get the rest of the information about the
suite—its event and object class definitions, comparison operators, and enumerated
groups—from the 'aeut' resource. The corresponding arrays in the 'aete' resource
can therefore be left empty.

Note that the Rez input for resources does not include the align word fields shown in
the 'aeut' resource type declaration in Listing 8-1. Rez takes care of word alignment
automatically.

Listing 8-2 Rez input for an 'aete' resource for an application that supports the Required
and Core suites in their entirety

resource 'aete' (0, "JustTwoSuites") {

1, /*major version in BCD*/

0, /*minor version in BCD*/

english, /*language code*/

roman, /*script code*/

{ /*array Suites: 2 elements*/

/*[1]*/

"", /*human-language name for suite; */

/* 'aeut' supplies "Required Suite"*/

 "Events that every application should support", /*suite description*/

kAERequiredSuite, /*suite code*/

1, /*suite level*/

1, /*suite version*/

{ /*array Events: 0 elements*/

},

{ /*array Classes: 0 elements*/

},

{ /*array ComparisonOps: 0 elements*/

},

{ /*array Enumerations: 0 elements*/

},

/*[2]*/

"", /*human-language name for suite; */

/* 'aeut' supplies "Core Suite"*/

"Suite that applies to all applications", /*suite description*/

kAECoreSuite, /*suite code*/

1, /*suite level*/

1, /*suite version*/

{ /*array Events: 0 element*/

},
Creating an Apple Event Terminology Extension Resource 8-15

C H A P T E R 8

Apple Event Terminology Resources
{ /*array Classes: 0 elements*/

},

{ /*array ComparisonOps: 0 elements*/

},

{ /*array Enumerations: 0 elements*/

}

}

};

Extending the Standard Suites 8
If, like the 'aete' resource shown in Listing 8-2, your application’s 'aete' resource
indicates that you support an entire standard suite, the scripting component
automatically makes use of all the terminology for that suite provided by its 'aeut'
resource. For this reason, you can easily extend the definitions for a suite that your
application supports in its entirety: just provide arrays in the 'aete' resource for the
definitions not already included in the 'aeut' resource. For example, if you’re
extending the definition of an event to support a single additional parameter, you should
provide an array of parameters that includes one item: the description of the new
parameter. Similarly, if you’re not extending the contents of a particular array, you don’t
need to include the array in the 'aete' resource.

Although an array of descriptions in an 'aete' resource need not include descriptions
that are already provided by the 'aeut' resource, you must include information that
defines the position of the array in relation to the other information in the 'aete'
resource. As Table 8-3 on page 8-8 shows, you can nest the arrays in an 'aete' resource
within other arrays: for example, an array of parameters is part of the description of an
event, and the event description is, in turn, part of the array of event descriptions for a
suite.

To add a description of a single new parameter to the definition of an Apple event in a
suite that your application supports in its entirety, you need to provide

■ an array of parameters containing one element: the description of the new parameter

■ information that identifies the event definition to which you’re adding the parameter

■ information that identifies the suite containing the event

Listing 8-3 illustrates how this works. This Rez input adds two new parameters
(“number of copies” and “print quality”) to the Print Documents event in the Required
suite, one enumeration (three values for the “print quality” parameter of the Print
Documents event) to the Required suite, and a new property (“first indent”) to the
cParagraph class in the Text suite. It also adds a plural synonym for the cParagraph
class: the word “paragraphs.”
8-16 Creating an Apple Event Terminology Extension Resource

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Listing 8-3 Rez input for an 'aete' resource that extends the definitions of the Required,
Core, and Text suites

#define keyMyNumberOfCopies 'numc'

#define keyMyPrintQuality 'prtq'

#define typePrintQuality 'pqen'

#define kFast 'fast'

#define kNormal 'nrml'

#define kHighQuality 'hiql'

#define pFirstIndent 'indt'

resource 'aete' (0, "SuiteExtensions") {

1, /*major version in BCD*/

0, /*minor version in BCD*/

english, /*language code*/

roman, /*script code*/

{ /*array Suites: 3 elements*/

/*[1]*/

"", /*human-language name for suite; */

/* 'aeut' supplies "Required Suite"*/

"Events that every application should support", /*suite description*/

kAERequiredSuite, /*suite code*/

1, /*suite level*/

1, /*suite version*/

{ /*array Events: 1 element*/

/*[1]*/

"", /*human-language name for event; */

/* 'aeut' supplies "Print Documents"*/

"Print the specified list of documents", /*event description*/

kCoreEventClass, /*event class*/

kAEPrintDocuments, /*event ID*/

noReply, /*reply type*/

"", /*reply description*/

replyOptional, /*reply is optional*/

singleItem, /*reply must be single item*/

notEnumerated, /*type is not enumerated*/

reserved, /*these 13 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,
Creating an Apple Event Terminology Extension Resource 8-17

C H A P T E R 8

Apple Event Terminology Resources
reserved,

reserved,

reserved,

reserved,

reserved,

typeAlias, /*direct parameter type*/

"List of documents to print", /*direct parameter description*/

directParamRequired, /*direct parameter is required*/

listOfItems, /*direct parameter must be list*/

notEnumerated, /*type is not enumerated*/

doesntChangeState, /*event does not change */

/* server's state*/

reserved, /*these 12 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

{ /*array OtherParams: these fields describe the additional */

/* parameters Number of Copies and Print Quality to the */

/* standard Print Documents event*/

/*[1]*/

"number of copies", /*human-language name for parameter*/

keyMyNumberOfCopies, /*parameter keyword*/

typeShortInteger, /*parameter type*/

"Number of copies to print", /*parameter description*/

optional, /*parameter is optional*/

singleItem, /*parameter must be single item*/

notEnumerated, /*type is not enumerated*/

reserved, /*these 13 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,
8-18 Creating an Apple Event Terminology Extension Resource

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
reserved,

reserved,

reserved,

reserved,

reserved,

/*[2]*/

"print quality", /*human-language name for parameter*/

keyMyPrintQuality, /*parameter keyword*/

typePrintQuality, /*parameter type*/

"The quality of the printing",/*parameter description*/

optional, /*parameter is optional*/

singleItem, /*parameter must be single item*/

enumerated, /*type is enumerated*/

reserved, /*these 13 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved

}

},

{ /*array Classes: 0 elements*/

},

{ /*array ComparisonOps: 0 elements*/

},

{ /*array Enumerations: 1 element*/

/*these fields add the 'pqen' enumeration to the Required suite*/

/*[1]*/

typePrintQuality, /*enumeration ID*/

{ /*array Enumerators: 3 elements*/

/*[1]*/

"Fast", /*enumerator name*/

kFast, /*enumerator ID*/

"Print as quickly as possible",/*enumerator description*/

/*[2]*/

"Normal", /*enumerator name*/
Creating an Apple Event Terminology Extension Resource 8-19

C H A P T E R 8

Apple Event Terminology Resources
kNormal, /*enumerator ID*/

"Print at normal speed", /*enumerator description*/

/*[3]*/

"High-Quality", /*enumerator name*/

kHighQuality, /*enumerator ID*/

"Print at highest quality possible" /*enumerator description*/

}

},

/*[2]*/

"", /*human-language name for suite; */

/* 'aeut' supplies "Core Suite"*/

"Suite that applies to all applications", /*suite description*/

kAECoreSuite, /*suite code*/

1, /*suite level*/

1, /*suite version*/

{ /*array Events: 0 elements*/

},

{ /*array Classes: 0 elements*/

},

{ /*array ComparisonOps: 0 elements*/

},

{ /*array Enumerations: 0 elements*/

},

/*[3]*/

"", /*human-language name for suite; */

/* 'aeut' supplies "Text Suite"*/

"A set of basic classes for text processing", /*suite description*/

kAETextSuite, /*suite code*/

1, /*suite level*/

1, /*suite version*/

{ /*array Events: 0 elements*/

},

{ /*array Classes: 1 element*/

/*[1]*/

"paragraph", /*human-language name for class*/

cParagraph, /*class ID*/

"A paragraph", /*class description*/

{ /*array Properties: 1 element*/

/*[1]*/

"first indent", /*human-language name for property*/

pFirstIndent, /*property ID*/

cLongInteger, /*property class*/

"First indent of paragraph in points",/*property description*/
8-20 Creating an Apple Event Terminology Extension Resource

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
reserved, /*reserved*/

singleItem, /*property is single item*/

notEnumerated, /*type is not enumerated*/

readWrite, /*property can be modified*/

reserved, /*these 12 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved

},

{ /*array Elements: 0 elements*/

},

"paragraphs", /*human-language name for class*/

cParagraph, /*class ID*/

"Every paragraph", /*class description*/

{ /*array Special Properties: 1 element*/

/*[1]*/

"", /*human-language name for property*/

kAESpecialClassProperties, /*property ID*/

cType, /*property class*/

"", /*property description*/

reserved, /*reserved*/

singleItem, /*property is single item*/

notEnumerated, /*type is not enumerated*/

readOnly, /*property cannot be modified*/

reserved, /*these 11 bits are reserved*/

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,

reserved,
Creating an Apple Event Terminology Extension Resource 8-21

C H A P T E R 8

Apple Event Terminology Resources
plural /*human-language name is */

/* plural form*/

},

{ /*array Elements: 0 elements*/

},

},

{ /*array ComparisonOps: 0 elements*/

},

{ /*array Enumerations: 0 elements*/

}

}

};

In Listing 8-3, the possible values for the “print quality” parameter belong to an
enumeration. This is indicated by the term enumerated in the parameter description.
For this reason, the parameter type field contains the ID for the enumeration—
typePrintQuality.

Listing 8-3 also adds a plural synonym for “paragraph” to the array of classes: the word
“paragraphs.” Note that this is listed as if it were an additional class, except that it
also specifies cParagraph as the class ID. The first property listed for the synonym has
property ID kAESpecialClassProperties. This property describes characteristics
of the class as a whole; the last flag bit for this property is set to plural, indicating
that the term paragraphs is a plural term for the specified class. This property
must always be the first property listed for a class. For more information about the
kAESpecialClassProperties property, see “Property Data,” which begins on
page 8-38.

An enumeration is described only by its ID; its declaration does not include a name or
description field. However, a name, value, and description must be provided for each of
the enumerators in an enumeration.

You can use the method illustrated in Listing 8-3 only to add to the definitions of Apple
events and Apple event object classes, not to support subsets of them. For example, to
support only a subset of the parameters of an Apple event or only some of the elements
or properties of an existing object class, you must list all the definitions from that suite
that you do support. The next section, “Supporting Subsets of Suites,” provides more
information about how to do this.

Human-language names for Apple events, object classes, and so on (including
extensions) can include both uppercase and lowercase letters and spaces. For
comparison purposes, case doesn’t matter. However, note that the human-language
names defined in Listing 8-3 are all lowercase. This convention ensures that scripts in
which these terms appear won’t have capital letters in unexpected places.
8-22 Creating an Apple Event Terminology Extension Resource

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Scripting components that get identifiers or strings from user terminology resources are
free to change the identifiers or strings as necessary (eliminating spaces, converting
identifiers to all uppercase or lowercase, or changing the identifiers altogether) to meet
the requirements of a particular task.

Supporting Subsets of Suites 8
Your application is not required to support all the definitions in a suite. If you wish to
support a subset of the definitions in one or more standard suites, you can collect
individual definitions from any number of suites in a placeholder suite whose suite ID is
the application’s signature or typeWildCard ('****'). When you support a subset of
a suite, you must provide all the definitions you want to support in your 'aete'
resource.

Supporting New Suites 8
If your application defines its own custom Apple events or other Apple event constructs,
you should include a separate suite section for the suite in the 'aete' resource. You
should use your application’s signature for both the suite ID and the class ID of all
events in the suite.

Handling the Get AETE Event 8

A scripting component sends the Get AETE event to an application when it needs
information about the user terminology specified by the application. For example, the
AppleScript component sends the Get AETE event when it first attempts to compile a
tell statement that specifies a particular application. If your application does not
handle the Get AETE event, the scripting component reads the terminology information
it needs directly from your application’s 'aete' resource. Applications that support
additional plug-in modules, each with its own 'aete' resource, must provide an
'scsz' resource and a handler for the Get AETE event that collects the 'aete'
resources from the modules that are currently running.

If your application does provide separate plug-in modules, the Get AETE event allows it
to gather information from the 'aete' resources for the modules that are currently
running and return the terminology information along with your application’s built-in
terminology information to the scripting component in the reply event.
Handling the Get AETE Event 8-23

C H A P T E R 8

Apple Event Terminology Resources
Here is a summary of the structure of a Get AETE event:

Your application can’t handle the Get AETE event unless it is running. If your
application doesn’t provide a handler for the Get AETE event, the scripting component
can obtain terminology information directly from your application’s 'aete' resource
even if your application is not running.

If your application handles the Get AETE event, it must also provide a scripting size
resource. A scripting size resource is a resource of type 'scsz' that provides
information about an application’s capabilities for use by scripting components. It allows
your application to declare whether it needs the Get AETE event and to specify
preferences for the sizes of the portion of your application’s heap used by a scripting
component. For information about the 'scsz' resource, see “The Scripting Size
Resource” on page 8-45.

A handler for the Get AETE event should perform the following tasks:

■ Obtain the language code specified by the event.

■ Create a descriptor list to hold the 'aete' resources.

■ Collect the 'aete' resources from all the application’s plug-in modules that are
currently running, including the application itself, and add them to the list.

■ Add the list to the reply Apple event.

Listing 8-4 provides an example of a handler for the Get AETE event.

Get AETE—Get an application’s 'aete' resource

Event class kASAppleScriptClass

Event ID kGetAETE

Required parameter

Keyword: keyDirectObject

Descriptor type: typeInteger

Data: Language code

Required reply parameter

Keyword: keyDirectObject

Descriptor type: typeAEList or typeAETE

Data: The application’s terminologies

Description Sent by a scripting component to an application when
the scripting component needs information about the
application’s user terminology
8-24 Handling the Get AETE Event

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Listing 8-4 A handler for the Get AETE event

FUNCTION MyGetAETE (theAE: AppleEvent; theReply: AppleEvent;

refCon: LongInt): OSErr;

VAR

theList: AEDescList;

returnedType: DescType;

actualSize: Size;

languageCode: Integer;

myErr: OSErr;

BEGIN

MyGetAETE := errAEEventNotHandled;

languageCode := 0;

{if a reply was not requested, then don't handle}

IF theReply.dataHandle = NIL THEN

Exit(MyGetAETE);

{get the language code that AppleScript is requesting so that }

{ this function can return the aete of a specified language}

myErr := AEGetParamPtr(theAE, keyDirectObject,

typeLongInteger, returnedType,

@languageCode, sizeOf(LongInt),

actualSize);

IF myErr <> noErr THEN

Exit(MyGetAETE);

{create a list}

myErr := AECreateList(NIL, 0, FALSE, theList);

IF myErr <> noErr THEN

Exit(MyGetAETE);

{get the requested 'aete' resources and put in the list--the }

{ MyGrabAETE application-defined function does this}

{your code should iterate all of your installed code }

{ extensions and add the aete for each that matches the }

{ language code requested}

myErr := MyGrabAETE(languageCode, theList);

IF myErr <> noErr THEN

BEGIN

myErr := AEDisposeDesc(theList);

Exit(MyGetAETE);

END;

{add list to reply Apple event}

myErr := AEPutParamDesc(theReply, keyDirectObject, theList);

myErr := AEDisposeDesc(theList);

myGetAETE := myErr;

END;
Handling the Get AETE Event 8-25

C H A P T E R 8

Apple Event Terminology Resources
The MyGetAETE handler in Listing 8-4 begins by setting the function result to
errAEEventNotHandled. The function is set to this result if for any reason the handler
doesn’t successfully handle the event, so that a system handler provided by the scripting
component can at least read the terminology information directly from the application’s
own 'aete' resource. The handler in Listing 8-4 then checks the language code
specified by the event. After checking to make sure the reply exists, the handler creates a
list and uses the application-defined function MyGrabAETE to collect all the appropriate
terminology information and append it to the list. The MyGetAETE handler then adds
the list to the reply event.

Reference to Apple Event Terminology Resources 8

Listing 8-1 on page 8-9 shows the complete resource type declaration in Rez format for
the 'aeut' resource. The same resource structure is used by both the 'aeut' and
'aete' resources. Figure 8-1 shows the format of a compiled 'aeut' or 'aete'
resource.

Figure 8-1 Structure of an 'aeut' or 'aete' resource

An 'aeut' or 'aete' resource contains the following:

■ a header containing the version and language code of the template and a count of the
number of suites the resource describes

■ a variable number of suite descriptions

The sections that follow describe the content of the header and each suite description
in detail.

Header

'aeut' resource type Bytes

First suite

Last suite

8

Variable length

Variable length
8-26 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Header Data for an Apple Event Terminology Resource 8
The header for an 'aeut' or 'aete' resource specifies the version of its contents, the
language of the human-language equivalents contained in the resource, a script code,
and a count of the number of suites the resource describes. Figure 8-2 shows the header
format.

Figure 8-2 Structure of the header data in an 'aeut' or 'aete' resource

The header contains the following items:

■ The major version number of the content of the resource in binary-coded decimal (the
major version number for the first release of the 'aeut' resource is 1). The major and
minor versions describe the content of the resource, not its template. You can use these
fields to provide version numbers for the content of your application’s 'aete'
resource.

■ The minor version number of the template in binary-coded decimal (the minor
version number for the first release of the 'aeut' resource is 0).

■ The language code for the resource. Inside Macintosh: Text provides a list of language
codes. This code must be the same as the resource ID for the resource.

■ The script code for the resource, taken from the list of script codes provided in
Inside Macintosh: Text.

■ A count of the number of suites described by the resource.

Suite Data for an Apple Event Terminology Resource 8
Each item in the array of suites for an 'aeut' or 'aete' resource includes information
about the suite ID, level, and version and four arrays that specify the events, object
classes, comparison operators, and enumerations for that suite. Figure 8-3 shows the
format of this suite data.

Header data in an 'aeut' resource Bytes

2

1
1

2

2Count of suites

Script code

Major version in BCD

Language code

Minor version in BCD
Reference to Apple Event Terminology Resources 8-27

C H A P T E R 8

Apple Event Terminology Resources
Figure 8-3 Structure of suite data in an 'aeut' or 'aete' resource

The data for each suite consists of the following items:

■ The human-language name of the suite. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. If the 'aete'
resource specifies the name as an empty string, the scripting component looks up, in
its 'aeut' resource, the suite name and other suite data that correspond to the
specified suite ID, suite level, and suite version. This strategy simplifies specification
of an entire suite and facilitates localization, since the human-language name is
provided by the 'aeut' resource.

Human-language name of suite

Suite data in an 'aeut' resource
(for each suite) Bytes

Alignment byte

Suite ID

Suite description

1 to 256

0 or 1

4

1 to 256

Suite level 2

Suite version 2

Count of events 2

Count of classes

Array of classes

Array of events

2

Variable length

Variable length

Count of comparison operators 2

Count of enumerations

Array of enumerations

Array of comparison operators

2

Variable length

Variable length
8-28 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
If the 'aete' resource specifies a name other than the name provided by the 'aeut'
resource for the same suite ID, suite level, and suite version, the scripting component
uses the new name with the same suite data from the 'aeut' resource. Unless you
are defining a custom suite, you should specify an empty string for the name of a suite.

■ A human-language description of the suite. This is a Pascal string that can include any
characters. When the resource description is compiled, the resource compiler pads the
string and aligns the next field on a word boundary.

■ A four-character ID that distinguishes the suite from all other suites defined in either
the 'aeut' or 'aete' resources. This value is normally the same as the event class
for the Apple events in the suite.
If the 'aete' resource specifies a standard suite name but a suite ID that is different
from the suite ID for the standard suite of that name described in the 'aeut'
resource, the scripting component uses the new suite ID with the standard suite data
for the specified name. In general, you should use the standard suite ID for any
standard suite that you support.
If your application uses a custom suite, you should use your application’s signature as
the event class for the events in the suite and, in addition, as its suite ID. When you
register your application’s signature with Developer Technical Support, the
corresponding event class is automatically registered for your application, and only
you can register events that belong to that event class. For information about
registering Apple events, contact the Apple Event Registrar.

■ The level and version of the suite. For the first version of any suite, the level is usually
1 (indicating that it is the suite that contains the most basic definitions) and the
version is 1 (the version of this suite level). More advanced suites (such as a suite for
performing more sophisticated text manipulation than the current Text suite allows)
will have level numbers greater than 1. All currently defined suites have a level of 1
and a version of 1.

■ A count of the events defined for this suite and an array of event definitions.

■ A count of the object classes defined for this suite and an array of class definitions.

■ A count of the comparison operators defined for this suite and an array of comparison
operator definitions.

■ A count of the enumerations defined for this suite and an array of enumeration
definitions.

Event Data 8

Each item in the array of events for a suite specified in an 'aeut' or 'aete' resource
includes information about the event, the reply, and the direct parameter, and an array
that specifies the additional parameters for the event. Figure 8-4 shows the format of this
event data.
Reference to Apple Event Terminology Resources 8-29

C H A P T E R 8

Apple Event Terminology Resources
Figure 8-4 Structure of event data in an 'aeut' or 'aete' resource

Human-language name of event

Event data in an 'aeut' resource
(for each event) Bytes

Alignment byte

Event class

Event description

1 to 256

0 or 1

4

1 to 256

0 or 1

4

Reply flags 2

Array of additional parameters

Direct parameter type

2

Variable length

4

Event ID 4

1 to 256

Direct parameter description 1 to 256

Alignment byte 0 or 1

Direct parameter flags 2

Type of reply's direct parameter

Description of reply's direct parameter

Alignment byte

Count of additional parameters
8-30 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources

The data for each event consists of the following items:

■ The human-language name of the event. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. If the 'aete'
resource specifies the name as an empty string, the scripting component looks up,
in its 'aeut' resource, the event name and other event data that correspond to
the specified event class and event ID. This strategy facilitates localization, since the
human-language name is provided by the 'aeut' resource. In this case the scripting
component will use the standard data from the 'aeut' resource for the event plus
the data provided by the 'aete' resource for any additional parameters.
If the 'aete' resource specifies a name other than the name provided by the 'aeut'
resource for the same event class and event ID, the scripting component uses the new
name with the same suite data from the 'aeut' resource. You should specify an
empty string for the name of any standard event that your application lists explicitly
in its 'aete' resource.

■ A human-language description of the event. This is a Pascal string that can include
any characters. When the resource description is compiled, the resource compiler
pads the string and aligns the next field on a word boundary.

■ The four-character event class for the event. If the 'aete' resource specifies
a standard event name and an event class other than the event class for the equivalent
standard event, the scripting component uses the new event class with the standard
event data for the specified name. You should specify the standard event class for any
standard event that your application lists explicitly in its 'aete' resource.

■ The four-character event ID for the event. If the 'aete' resource specifies a standard
event name and an event ID other than the event ID for the equivalent standard event,
the scripting component uses the new event ID with the standard event data for the
specified name. You should specify the standard event ID for any standard event that
your application lists explicitly in its 'aete' resource.

■ A four-character descriptor type for the direct parameter of the reply. If the event
never needs a reply, or if the reply does not include a direct parameter, this value must
be typeNull. Otherwise, the meaning of this field varies according to the values of
two of the flags that follow. One flag specifies whether the parameter is a list
(singleItem or listOfItems), and the other specifies whether the values for the
parameter are enumerated (enumerated or notEnumerated):
n If the parameter is not a list and its values are not enumerated, this value is the

descriptor type for the direct parameter.
n If the parameter is a list and its values are not enumerated, this value is the

descriptor type for each of the items in the list. (If not all the items in the list are of
the same descriptor type, the flag specifying whether the value is a list must
have the value singleItem, and the value of this field must be typeAEList.)
Reference to Apple Event Terminology Resources 8-31

C H A P T E R 8

Apple Event Terminology Resources

n If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the 'aete' or 'aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the 'aete' or 'aeut'
resource, the flag specifying whether the parameter’s values are enumerated must
have the value notEnumerated, and the value of this field must be
typeEnumerated.)

n If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. All items in the list must have
one of these enumerated values.

■ A human-language description of the direct parameter of the reply. This is a Pascal
string that can include any characters. Although the reply may include other
parameters, only the direct parameter of the reply is described here. When the
resource description is compiled, the resource compiler aligns the string on a word
boundary.

■ Flags that specify the following as Boolean values:
n Whether the direct parameter of the reply is required (replyRequired) or

optional (replyOptional).
n Whether the direct parameter of the reply is a single item (singleItem) or a list of

items (listOfItems). (See the earlier description of the reply event’s
four-character descriptor type for information about how this value changes the
meaning of the reply type.)

n Whether named constants, called enumerators, are specified as the only valid
values for the direct parameter of the reply (enumerated or notEnumerated).
(See the earlier description of the four-character descriptor type for the reply
event’s direct parameter for information about how this value changes the meaning
of the direct parameter type.) For information about specifying enumerators, see
“Enumeration and Enumerator Data” on page 8-43.

n Following 5 bits are reserved for future use. The values of these bits must be set to
reserved.

n Following 7 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to reserved.

n Whether the event is a nonverb event (nonVerbEvent). This bit is used by dialects
such as the AppleScript Japanese dialect that make this distinction. For all other
dialects, set the value of this bit to reserved.

■ A four-character descriptor type for the direct parameter of the event. If the event
never has a direct parameter, this value must be typeNull. Otherwise, the meaning
of this field varies according to the values of two of the flags that follow. One flag
specifies whether the parameter is a list (singleItem or listOfItems), and the
other specifies whether the values for the parameter are enumerated (enumerated or
notEnumerated):
8-32 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources

n If the parameter is not a list and its values are not enumerated, this value is the
descriptor type for the direct parameter.

n If the parameter is a list and its values are not enumerated, this value is the
descriptor type for each of the items in the list. (If not all the items in the list are of
the same descriptor type, the flag specifying whether the value is a list must
have the value singleItem, and the value of this field must be typeAEList.)

n If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the 'aete' or 'aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the 'aete' or 'aeut'
resource, the flag specifying whether the parameter’s values are enumerated must
have the value notEnumerated, and the value of this field must be
typeEnumerated.)

n If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

■ A human-language description of the direct parameter. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

■ Flags that specify the following as Boolean values:
n Whether the direct parameter of the event is required (directParamRequired)

or optional (directParamOptional).
n Whether the direct parameter of the event is a single item (singleItem) or a list of

items (listOfItems). (See the earlier description of the direct parameter’s
four-character descriptor type for information about how this value changes the
meaning of the direct parameter type.)

n Whether named constants, called enumerators, are specified as the only valid
values for the direct parameter (enumerated or notEnumerated). (See the earlier
description of the direct parameter’s four-character descriptor type for information
about how this value changes the meaning of the direct parameter type.) For
information about specifying enumerators, see “Enumeration and Enumerator
Data” on page 8-43.

n Whether receiving this event changes (changesState) or doesn’t change
(doesntChangeState) the internal state of the receiving application. Events that
only get information do not change the state of the application, whereas events
such as Cut and Move do.

n Following 4 bits are reserved for future use. The values of these bits must be set to
reserved.

n Following 8 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to reserved.

■ A count of the additional parameters described for this event and an array of
additional parameter definitions.
Reference to Apple Event Terminology Resources 8-33

C H A P T E R 8

Apple Event Terminology Resources
Additional Parameter Data 8

Each item in the array of additional parameters for an event specified in an 'aeut'
resource includes information about a single additional parameter. Figure 8-5 shows the
format of additional parameter data in an 'aeut' or 'aete' resource.

Figure 8-5 Structure of additional parameter data in an 'aeut' or 'aete' resource

The data for each additional parameter consists of the following items:

■ The human-language name of the parameter. This is a Pascal string that can include
any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.
If the 'aete' resource specifies the name of an additional parameter as an empty
string, the scripting component looks up, in its 'aeut' resource, the parameter name
and other parameter data that correspond to the specified parameter keyword. If the
'aete' resource specifies a name other than the name provided by the 'aeut'
resource for the same parameter keyword, the scripting component uses the new
name with the same parameter data from the 'aeut' resource. You should specify an
empty string for the name of any standard additional parameter that you list
explicitly in an 'aete' resource.

Human-language name of parameter

Parameter data in an 'aeut' resource
(for each additional parameter) Bytes

Alignment byte

Parameter keyword

1 to 256

0 or 1

4

0 or 1

Additional parameter flags 2

Parameter type 4

1 to 256Parameter description

Alignment byte
8-34 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources

■ The four-character keyword for the parameter. If the 'aete' resource specifies a
standard parameter name and a parameter keyword other than the keyword for the
equivalent standard parameter, the scripting component uses the new parameter
keyword with the standard parameter data for the specified name. You should specify
the standard parameter keyword for any standard additional parameter that you list
explicitly in an 'aete' resource.

■ A four-character descriptor type for the parameter. The meaning of this field varies
according to the values of two of the flags that follow. One flag specifies whether the
parameter is a list (singleItem or listOfItems), and the other specifies whether
the values for the parameter are enumerated (enumerated or notEnumerated):
n If the parameter is not a list and its values are not enumerated, this value is the

descriptor type for the direct parameter.
n If the parameter is a list and its values are not enumerated, this value is the

descriptor type for each of the items in the list. (If not all the items in the list are
of the same descriptor type, the flag specifying whether the value is a list must
have the value singleItem, and the value of this field must be typeAEList.)

n If the parameter is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the 'aete' or 'aeut'
resource that contains the allowable values for the parameter. (If the values are
enumerated but the enumeration is not defined in either the 'aete' or 'aeut'
resource, the flag specifying whether the parameter’s values are enumerated must
have the value notEnumerated, and the value of this field must be
typeEnumerated.)

n If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

■ A human-language description of the parameter. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

■ Flags that specify the following as Boolean values:
n Whether the parameter is required (required) or optional (optional).
n Whether the parameter is a single item (singleItem) or a list of items

(listOfItems). (See the earlier description of the additional parameter’s
four-character descriptor type for information about how this value changes the
meaning of the parameter type.)

n Whether named constants, called enumerators, are specified as the only valid
values for the parameter (enumerated or notEnumerated). (See the earlier
description of the parameter’s four-character descriptor type for information about
how this value changes the meaning of the parameter type.) For information about
specifying enumerators, see “Enumeration and Enumerator Data” on page 8-43.
Reference to Apple Event Terminology Resources 8-35

C H A P T E R 8

Apple Event Terminology Resources

n Whether the parameter is the event’s only unnamed parameter (isUnNamed) or is
named (isNamed). This bit is used by dialects such as AppleScript Japanese that
make this distinction. For all other dialects, set the value of this bit to reserved.

n Following 4 bits are reserved for future use. The values of these bits must be set to
reserved.

n Following 8 bits are reserved for future use as dialect-specific flags. The values of
these bits must be set to reserved.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an 'aete' resource that adds new parameters to a standard Apple event.

Object Class Data 8

Each item in the array of object classes for a suite includes information about the class
and arrays that specify the properties and elements for that class. Figure 8-6 shows the
format of the object class data in an 'aeut' or 'aete' resource.

Figure 8-6 Structure of object class data in an 'aeut' or 'aete' resource

Human-language name of class

Object class data in an 'aeut'
resource (for each object class) Bytes

Alignment byte

Class ID

1 to 256

0 or 1

4

0 or 1

Count of properties 2

1 to 256Class description

Alignment byte

2

Variable lengthArray of properties

Count of element classes

Variable lengthArray of element classes
8-36 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
The data for each object class consists of the following items:

■ The human-language name of the object class. This is a Pascal string that can include
any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.
If the 'aete' resource specifies the name of an object class as an empty string, the
scripting component looks up, in its 'aeut' resource, the class name and other object
class data that correspond to the specified class ID. If the 'aete' resource specifies a
name other than the name provided by the 'aeut' resource for the same class ID, the
scripting component uses the new name with the same object class data from the
'aeut' resource. You should specify an empty string for the name of any standard
object class that you list explicitly in an 'aete' resource.

■ The four-character class ID for the object class. If the 'aete' resource specifies
a standard object class name and a class ID other than the class ID for the equivalent
standard object class, the scripting component uses the new class ID with the standard
object class data for the specified name. You should specify the standard class ID for
any standard object class that you list explicitly in an 'aete' resource.

■ A human-language description of the class. This is a Pascal string that can include any
characters. When the resource description is compiled, the resource compiler pads the
string and aligns the next field on a word boundary.

■ A count of the properties described for this class and an array of property definitions.

■ A count of the element classes described for this class and an array of element class
definitions.

To define characteristics of an object class (for instance, whether an object of that class is
a single item or a list of items, whether it is singular or plural, and so on), your
application’s 'aete' resource must define a special property of property ID
kAESpecialClassProperties as the first property in the array of properties. Because
object class data does not include flag bits, the flag bits of this property are used to
specify attributes for the class to which the property belongs. The next section describes
how this property is defined and used.
Reference to Apple Event Terminology Resources 8-37

C H A P T E R 8

Apple Event Terminology Resources
Property Data 8

Each item in the array of properties for an object class includes information about a
single property. Figure 8-7 shows the format of the property data in an 'aeut' or
'aete' resource.

Figure 8-7 Structure of property data in an 'aeut' or 'aete' resource

The data for each property consists of the following items:

■ The human-language name of the property. This is a Pascal string that can include any
characters, including uppercase and lowercase letters and spaces. When the resource
description is compiled, the resource compiler pads the string and aligns the next field
on a word boundary.
If the 'aete' resource specifies the name of a property as an empty string, the
scripting component looks up, in its 'aeut' resource, the property name and other
property data that correspond to the specified property ID. If the 'aete' resource
specifies a name other than the name provided by the 'aeut' resource for the same
property ID, the scripting component uses the new name with the same property data
from the 'aeut' resource. You should specify an empty string for the name of any
standard property that you list explicitly in an 'aete' resource.

Human-language name of property

Property data in an 'aeut' resource
(for each property) Bytes

Alignment byte

Property ID

1 to 256

0 or 1

4

0 or 1

Property flags 2

1 to 256

Alignment byte

Property class 4

Property description
8-38 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources

■ The four-character property ID for the property. If the 'aete' resource specifies a
standard property name and a property ID other than the property ID for the
equivalent standard property, the scripting component uses the new property ID with
the standard property data for the specified name. You should specify the standard
property ID for any standard property that you list explicitly in an 'aete' resource.

■ A four-character class ID for the object class to which the property belongs. The
meaning of this field varies according to the values of two of the flags that follow. One
flag specifies whether the property is a list (singleItem or listOfItems), and the
other specifies whether the values for the parameter are enumerated (enumerated or
notEnumerated):
n If the property is not a list and its values are not enumerated, this value is the class

ID for the property.
n If the property is a list and its values are not enumerated, this value is the class ID

for each of the items in the list. (If not all the items in the list are of the same
descriptor type, the flag specifying whether the value is a list must have the value
singleItem, and the value of this field must be cAEList.)

n If the property is not a list and its values are enumerated, this value is the
four-character code for the enumeration defined in either the 'aete' or 'aeut'
resource that contains the allowable values for the property. (If the values are
enumerated but the enumeration is not defined in either the 'aete' or 'aeut'
resource, the flag specifying whether the property’s values are enumerated must
have the value notEnumerated, and the value of this field must be
typeEnumerated.)

n If the parameter is a list and its values are enumerated, this value is the
four-character code for the enumeration defined in the same resource that contains
the allowable values for all of the items in the list. The values of the items in the list
must all be one of these enumerated values.

■ A human-language description of the property. This is a Pascal string that can include
any characters. When the resource description is compiled, the resource compiler
pads the string and aligns the next field on a word boundary.

■ Flags that specify the following as Boolean values:
n The first bit is reserved for future use. Its value must be set to reserved.
n Whether the property is a single item (singleItem) or a list of items

(listOfItems). (See the earlier description of the property’s four-character class
ID for information about how this value changes the meaning of the class ID.)

n Whether named constants, called enumerators, are specified as the only valid
values for the property (enumerated or notEnumerated). (See the earlier
description of the property’s four-character class ID for information about how this
value changes the meaning of the class ID.) For information about specifying
enumerators, see “Enumeration and Enumerator Data” on page 8-43.
Reference to Apple Event Terminology Resources 8-39

C H A P T E R 8

Apple Event Terminology Resources

n Whether the property’s value can (readWrite) or cannot (readOnly) be set by
the Set Data Apple event.

n Following 4 bits are reserved for future use.
n Following 5 bits are reserved for future use as dialect-specific flags.
n Whether the human-language name of the property is feminine (feminine) or not

(notFeminine). This bit is used by dialects such as the AppleScript French dialect
that make this distinction. For all other dialects, set the value of this bit to
reserved.

n Whether the human-language name of the property is masculine (masculine) or
not (notMasculine). This bit is used by dialects such as AppleScript French that
make this distinction. For all other dialects, set the value of this bit to reserved.

n Whether the human-language name of the property is singular (singular) or
plural (plural). This bit is used by dialects such as AppleScript French that make
this distinction. If you set this bit to reserved, the scripting component will assign
it the value singular.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an 'aete' resource that adds a new property to a standard object class.

The array of properties in an 'aeut' resource begins with a definition of a special
property that describes characteristics of the class as a whole using the flags in the
definition of that property. A property used in this way to define characteristics of a class
must be defined first in the array of properties for that class and must specify
kAESpecialClassProperties ('c@#!') as the property ID, cType as the property
class, and an empty string for the property name and property description. If you don’t
define such a property for a class in your application’s 'aete' resource, the scripting
component will assign that class the default values specified by the first constant for
each flag bit in the Rez declaration for the 'aeut' resource. (See Listing 8-1, which
begins on page 8-9, for the 'aeut' resource type declaration.)

Element Class Data 8

Each item in the array of elements for an object class includes information about a single
element class and an array of key forms for that element class. Figure 8-8 shows the
format of the object class data in an 'aeut' or 'aete' resource.
8-40 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
Figure 8-8 Structure of element class data in an 'aeut' or 'aete' resource

The following statements are included for each element class in the array of element
classes for an object class:

■ The four-character class ID for the element’s object class.

■ A count of key forms that apply to elements of this class within objects of the class for
which these element classes are defined, followed by an array of key forms. Each item
in the array must be a value from a special 'kfrm' enumeration. (The 'aeut'
resource includes enumerators for the standard key forms defined in the Apple Event
Registry: Standard Suites; an 'aete' resource can contain 'kfrm' enumerators for
additional key forms that are specific to an application. For information about
defining enumerators and enumerations, see “Enumeration and Enumerator Data” on
page 8-43.) The enumerators for a 'kfrm' enumeration can include 'indx' (for the
key form formAbsolutePosition), 'name' (for the key form formName),
'ID ' (for the key form formUniqueID), 'prop' (for the key form
formPropertyID), 'rang' (for the key form formRange), 'rele' (for the key
form formRelativePosition), and 'test' (for the key form formTest).

No names or descriptions are provided for element classes, because elements are
specified by their object classes, and the declaration of each object class includes the
name and description of the class.

Element class ID

Element class data in an 'aeut'
resource (for each element class) Bytes

Count of key forms

4

2

Variable lengthArray of key forms
Reference to Apple Event Terminology Resources 8-41

C H A P T E R 8

Apple Event Terminology Resources
Comparison Operator Data 8

Each item in the array of comparison operators for a suite includes information about a
single comparison operator. Figure 8-9 shows the format of the comparison operator
data in an 'aeut' or 'aete' resource.

Note
The AppleScript component currently doesn’t use information about
comparison operators. Other scripting components may use this
information. ◆

Figure 8-9 Structure of comparison operator data in an 'aeut' or 'aete' resource

The data for each comparison operator consists of the following items:

■ The human-language name of the comparison operator. This is a Pascal string that can
include any characters, including uppercase and lowercase letters and spaces. When
the resource description is compiled, the resource compiler pads the string and
aligns the next field on a word boundary.
If the 'aete' resource specifies the name of a comparison operator as an empty
string, the scripting component looks up, in its 'aeut' resource, the comparison
operator name and other comparison operator data that correspond to the specified
comparison operator ID. If the 'aete' resource specifies a name other than the name
provided by the 'aeut' resource for the same comparison operator ID, the scripting
component uses the new name with the same comparison operator data from the
'aeut' resource. You should specify an empty string for the name of any standard
comparison operator that you list explicitly in an 'aete' resource.

Comparison operator data in an
'aeut' resource (for each operator) Bytes

Alignment byte

Comparison operator ID

Human-language name of comparison operator

Comparison operator description

0 or 1

4

1 to 256

1 to 256

Alignment byte 0 or 1
8-42 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
■ The four-character comparison operator ID for the property. If the 'aete' resource
specifies a standard comparison operator name and a comparison operator ID other
than the comparison operator ID for the equivalent standard comparison operator,
the scripting component uses the new comparison operator ID with the
standard comparison operator data for the specified name. You should specify
the standard comparison operator ID for any standard comparison operator that
you list explicitly in an 'aete' resource.

■ A human-language description of the comparison operator. This is a Pascal string that
can include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an 'aete' resource that adds a comparison operator to a standard suite.

Enumeration and Enumerator Data 8

Each item in the array of enumerations for a suite includes information about a single
enumeration and an array of enumerators for that enumeration.

Figure 8-10 shows the format of the enumeration data in an 'aeut' or 'aete' resource.

Figure 8-10 Structure of enumeration data in an 'aeut' or 'aete' resource

The data for each enumeration consists of the following items:

■ a four-character enumeration ID

■ a count of constants, known as enumerators, that specify the allowable values for the
enumeration, and an array of enumerators

Enumeration ID

Enumeration data in an 'aeut'
resource (for each enumeration) Bytes

Count of enumerators

4

2

Variable lengthArray of enumerators
Reference to Apple Event Terminology Resources 8-43

C H A P T E R 8

Apple Event Terminology Resources
Figure 8-11 shows the format of the enumerator data.

Figure 8-11 Structure of enumerator data in an 'aeut' or 'aete' resource

The data for each enumerator consists of the following items:

■ The human-language name of the enumerator. This is a Pascal string that can include
any characters, including uppercase and lowercase letters and spaces. When the
resource description is compiled, the resource compiler pads the string and aligns the
next field on a word boundary.
If the 'aete' resource specifies the name of an enumerator as an empty string, the
scripting component looks up, in its 'aeut' resource, the enumerator name and
other enumerator data that correspond to the specified enumerator ID. If the 'aete'
resource specifies a name other than the name provided by the 'aeut' resource for
the same enumerator ID, the scripting component uses the new name with the same
enumerator data from the 'aeut' resource. You should specify an empty string for
the name of any standard enumerator that you list explicitly in an 'aete' resource.

■ The four-character enumerator ID for the enumerator. If the 'aete' resource specifies
a standard enumerator name and an enumerator ID other than the enumerator ID for
the equivalent standard enumerator, the scripting component uses the new
enumerator ID with the standard enumerator data for the specified name. You should
specify the standard enumerator ID for any standard enumerator that you list
explicitly in an 'aete' resource.

■ A human-language description of the enumerator. This is a Pascal string that can
include any characters. When the resource description is compiled, the resource
compiler pads the string and aligns the next field on a word boundary.

“Extending the Standard Suites,” which begins on page 8-16, includes sample Rez input
for an 'aete' resource that specifies an enumeration and an array of enumerators.

Enumerator data in an 'aeut'
resource (for each enumerator) Bytes

Alignment byte

Enumerator ID

Human-language name of enumerator

Enumerator description

0 or 1

4

1 to 256

1 to 256

Alignment byte 0 or 1
8-44 Reference to Apple Event Terminology Resources

C H A P T E R 8

Apple Event Terminology Resources

8
A

pple E
vent Term

inology R
esources
The Scripting Size Resource 8

If your application handles the Get AETE event, you must provide a scripting size
resource. A scripting size resource is a resource of type 'scsz' that provides
information about an application’s capabilities for use by scripting components. It also
allows your application to specify preferences for the sizes of the portion of your
application’s heap used by a scripting component for its application-specific heap and
stack.

Listing 8-5 shows the resource type declaration in Rez format for the 'scsz' resource.

Listing 8-5 Resource type declaration for the 'scsz' resource

type 'scsz' {

boolean dontReadExtensionTerms, /*if application needs */

readExtensionTerms; /* Get AETE event*/

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

boolean reserved;

/*memory sizes are in bytes; 0 means use default*/

unsigned longint minStackSize; /*minimum stack size*/

unsigned longint preferredStackSize; /*preferred stack size*/

unsigned longint maxStackSize; /*maximum stack size*/

unsigned longint minHeapSize; /*minimum heap size*/

unsigned longint preferredHeapSize; /*preferred stack size*/

unsigned longint maxHeapSize; /*maximum heap size*/

};
Reference to Apple Event Terminology Resources 8-45

C H A P T E R 8

Apple Event Terminology Resources

The data for an 'scsz' resource consists of the following items:

■ Flags that specify Boolean values:
n Whether the scripting component should (readExtensionTerms) or shouldn’t

(dontReadExtensionTerms) read the application’s terminology information
directly from its 'aete' resource. If the application is not running, this flag allows
a scripting component to determine whether it should read the application’s
terminology information without sending it a Get AETE event.

n The following 15 bits are reserved for future use. Their values must be set to
reserved.

■ The minimum size for the portion of the application’s heap used by the scripting
component’s application-specific stack

■ The preferred size for the portion of the application’s heap used by the scripting
component’s application-specific stack

■ The maximum size for the portion of the application’s heap used by the scripting
component’s application-specific stack

■ The minimum size for the portion of the application’s heap used by the scripting
component’s application-specific heap

■ The preferred size for the portion of the application’s heap used by the scripting
component’s application-specific heap

■ The maximum size for the portion of the application’s heap used by the scripting
component’s application-specific heap

If you specify 0 for any of the fields that specify memory size or number of script IDs, the
scripting component uses its own default values for those fields.

The AppleScript component provides a function, ASInit, that allows your application
to initialize the component with desired values for memory sizes or number of script
IDs. If your application doesn’t call ASInit, the AppleScript component initializes itself
using either the values specified in the application’s 'scsz' resource or, for those values
not provided by the 'scsz' resource, default values provided by the AppleScript
component. For more information about ASInit, see “Initializing AppleScript” on
page 10-80.
8-46 Reference to Apple Event Terminology Resources

C H A P T E R 9

9

Figure 9-0
Listing 9-0
Table 9-0

Contents

9 Recording Apple Events

About Recordable Applications 9-3
Factoring Your Application for Recording 9-6

Factoring the Quit Command and the New Command 9-6
Sending Apple Events Without Executing Them 9-12

What to Record 9-14
Recording User Actions 9-15
Recording the Selection of Text Objects 9-18
Recording Insertion Points 9-23
Recording Typing 9-27
Recording the Selection of Nontext Objects 9-30
Identifying Objects 9-32
Moving the Selection During Recording 9-34
Recording Interactions With Dialog Boxes 9-35

How Apple Event Recording Works 9-35
Contents 9-1

C H A P T E R 9

9

R
ecording A

pple E
vents

Recording Apple Events 9

This chapter describes the general characteristics of a recordable application and
provides some examples of how to factor your application for recording. It also provides
guidelines to help you decide which user actions to record and how to record them.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book. To factor your application, you must know how to respond to Apple events,
create and send Apple events, and resolve and create object specifier records. For
comprehensive information about implementing Apple events, see the chapters
“Introduction to Apple Events,” “Responding to Apple Events,” “Creating and Sending
Apple Events,” and “Resolving and Creating Object Specifier Records” in this book.

The first three sections in this chapter provide

■ a description of the basic requirements for recordable applications

■ examples of how to begin factoring your application

■ guidelines for what to record

The fourth section describes how Apple event recording works. You need to read it only
if you are developing a script editor, an application that can initiate recording, or a
scripting component.

About Recordable Applications 9

A recordable application is an application that uses Apple events to report user actions
to the Apple Event Manager for recording purposes. One way to do this is to separate
the code that implements your application’s user interface from the code that actually
performs work when the user manipulates the interface. This is called factoring your
application. A factored application translates low-level events generated by the user into
recordable Apple events that the application sends to itself to perform tasks.

A recordable event is any Apple event that any recordable application sends to itself
while recording is turned on for the local computer, with the exception of events that are
sent with the kAEDontRecord flag set in the sendMode parameter of AESend. A
recording process is any process (for example, the Script Editor application) that can
turn recording on and off and can receive and record recordable Apple events.

After Apple event recording has been turned on by a recording process, the Apple Event
Manager sends that process copies of all recordable Apple events on the local computer.
For example, when a user presses the Record button in the Script Editor application, it
calls a scripting component routine to turn on recording for the AppleScript component
(or any other scripting component). While recording is on, the Apple Event Manager
sends Script Editor copies of all subsequent recordable Apple events, which Script Editor
records (with the aid of the scripting component) in the form of a compiled script. After
turning off recording from Script Editor, the user can edit or execute the recorded script.
About Recordable Applications 9-3

C H A P T E R 9

Recording Apple Events

Although factoring your application is the recommended method of making your
application recordable, it is also possible to report user actions by means of Apple events
only when Apple event recording is turned on, even though the application may
respond to those actions by some means other than Apple events. In effect, the
application uses Apple events to describe user actions without actually using the events
to perform the action. To indicate that you want the Apple Event Manager to send a copy
of a recordable event to the recording process without actually sending the event to your
application, add the constant kAEDontExecute to the sendMode parameter of the
AESend function.

Even in a factored application, it may not always be possible to send an Apple event that
actually executes the task initiated by the user. For example, if the user types some text,
it is more practical to use standard TextEdit or QuickDraw routines to draw the text than
to send a separate Apple event each time the user presses a key. In this case, the
application can draw the text as it is typed in the most convenient manner available;
then, when the user finishes typing a sequence of characters—by clicking the mouse
button while the cursor is somewhere else in the document or performing some other
action—the application can create an Apple event that corresponds to the typing and
add the constant kAEDontExecute to the sendMode parameter when it sends the
Apple event.

If your application needs to know when Apple event recording is turned on and off, it
should install handlers for the Recording On and Recording Off events.

Recording On—perform actions associated with beginning of recording session

Event class kCoreEventClass

Event ID kAENotifyStartRecording

Parameters None

Description Sent by the Apple Event Manager to all running processes on the local
computer to inform them that recording has been turned on

Recording Off—perform actions associated with end of recording session

Event class kCoreEventClass

Event ID kAENotifyStopRecording

Parameters None

Description Sent by the Apple Event Manager to all running processes on the local
computer to inform them that recording has been turned off
9-4 About Recordable Applications

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

When a recording process turns on recording, the Apple Event Manager sends all
running processes on the local computer a Recording On event. When a user turns off
recording, the Apple Event Manager sends all running processes the Recording Off event
with the kAEWaitReply flag set. If an application has stored some data (for instance,
keystrokes) that needs to be recorded as an Apple event, this is the last chance to send an
event for recording purposes. If your application needs to know which recording process
has turned recording on or off, it can check the keyOriginalAddressAttr attribute of
the Recording On or Recording Off event for the address of the recording process.

Factoring your application is the recommended method of making your application
recordable because it guarantees that any action a user can perform via your
application’s user interface can also be accomplished via Apple events. Factoring also
allows you to avoid duplicating code within your application. Instead of using one piece
of code to respond to some user action within your application, and another piece of
code to respond to the equivalent Apple event, you can use the same code to respond to
the Apple event, whether it is sent by your application in response to a user action, by
some other application, or by a scripting component in the course of executing a script.

The next section, “Factoring Your Application for Recording,” provides some examples
of how to go about factoring your application. Regardless of how you factor your
application, making it recordable requires you to make decisions about the most useful
methods of recording user actions that can be described in several different ways in
scripts. If a user moves a window, for example, the window can be described in the
corresponding recorded script as window 1, or the window named Fred, or the
first window. Although the OSA permits recording at a high level and thus avoids
many of the problems users encounter with applications that record low-level events
such as keystrokes and mouse clicks, scripting components cannot predict what
information a user cares about in a given situation. Therefore, a recordable application
should send Apple events that correspond to the simplest possible statements in a
scripting language. “What to Record,” which begins on page 9-14, provides some general
guidelines for making these kinds of decisions.

“How Apple Event Recording Works,” which begins on page 9-35, describes the Apple
Event Manager’s recording mechanism in more detail, including the role of the
Recording On and Recording Off events.
About Recordable Applications 9-5

C H A P T E R 9

Recording Apple Events

Factoring Your Application for Recording 9

The recommended way to make your application recordable, or capable of sending
Apple events to itself whenever a user performs a significant action, is to factor the code
that controls your application’s user interface from the code that responds to the user’s
manipulation of the interface. A fully factored application translates user actions into
Apple events that the application sends to itself to initiate tasks.

The examples that follow demonstrate how to factor code that responds to relatively
simple user actions such as creating a new document or moving a window. They are
intended only to illustrate the general approach you should take; many of the decisions
you will need to make while factoring will be unique to your application. “What to
Record,” which begins on page 9-14, provides guidelines for deciding which user actions
to record and how to record them. For examples of factored applications, see the
AppleScript Software Developers’ Kit.

If you are factoring an existing application, it’s usually a good idea to begin with the
required Apple events and any other Apple events that you plan to send in order to
execute commands in the File menu. You can then proceed to other menu commands
and mouse actions. If you are designing a new application and want to make it
recordable, you should build factoring into every aspect of your application design.

Factoring the Quit Command and the New Command 9
This section demonstrates how to factor two File menu commands: Quit and New.

When the user chooses a menu command, an application first determines which one was
chosen and then performs the action associated with that command. For example, when
a user chooses Quit from the File menu, an application that is not factored simply calls
an application-defined DoQuit routine. Because Quit Application is one of the required
Apple events, it is relatively easy for most applications that support Apple events to
factor the code that responds to the Quit command.

After a factored application has determined that the user has chosen the Quit command,
it sends the Quit Application event to itself by calling its MyDoMenuQuit routine.

PROCEDURE MyDoMenuQuit;

VAR

myErr: OSErr;

BEGIN

myErr := MySendAEQuit(kAEAskUser);

{handle any errors}

END;
9-6 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

The MyDoMenuQuit routine in turn calls the MySendAEQuit routine shown in
Listing 9-1, which creates the Quit Application event and sends it.

Listing 9-1 A function used by a factored application to send itself a Quit Application event

FUNCTION MySendAEQuit (saveOpt: DescType): OSErr;

VAR

myAppleEvent, defReply: AppleEvent;

myErr, ignoreErr: OSErr;

BEGIN

{create Quit event}

myErr := AECreateAppleEvent(kCoreEventClass,

kAEQuitApplication,

gSelfAddrDesc,

kAutoGenerateReturnID,

kAnyTransactionID, myAppleEvent);

IF myErr = noErr THEN

{add optional parameter that specifies whether this app }

{ should prompt user if window is dirty}

myErr := AEPutParamPtr(myAppleEvent, keyAESaveOptions,

typeEnumerated, @saveOpt,

SizeOf(saveOpt));

IF myErr = noErr THEN

{send event}

myErr := AESend(myAppleEvent, defReply,

kAENoReply+kAEAlwaysInteract,

kAENormalPriority, kAEDefaultTimeOut,

NIL, NIL);

MySendAEQuit := myErr;

ignoreErr := AEDisposeDesc(myAppleEvent);

END;

The input to the MySendAEQuit routine is a constant that indicates whether to save
dirty windows without asking the user (kAEYes), quit without saving dirty windows
(kAENo), or ask the user whether each dirty window should be saved (kAEAskUser).
In this example, the constant kAEAskUser passed to the MySendAEQuit routine
indicates that the user will be asked whether each dirty window should be saved.
Factoring Your Application for Recording 9-7

C H A P T E R 9

Recording Apple Events

After the application receives the Quit Application event, the MyHandleQuit handler
shown in Listing 9-2 performs all the actions associated with that event, such as saving
any open documents. (Note that your application should call the ExitToShell
procedure from the main event loop, not from your handler for the Quit Application
event.)

Listing 9-2 A routine used by a factored application to handle a Quit Application event

FUNCTION MyHandleQuit (theAppleEvent, reply: AppleEvent;

handlerRefcon: LongInt): OSErr;

VAR

userCanceled: Boolean;

saveOpt, returnedType: DescType;

actSize: Size;

myErr: OSErr;

BEGIN

{check for missing required parameters}

myErr := MyGotRequiredParams(theAppleEvent);

IF myErr = noErr THEN

BEGIN

{pick up optional save parameter}

saveOpt := kAEAskUser; {the default}

myErr := AEGetParamPtr(theAppleEvent, keyAESaveOptions,

typeEnumerated, returnedType,

@saveOpt, SizeOf(saveOpt), actSize);

IF myErr = errAEDescNotFound THEN

myErr := noErr;

MyHandleQuit := myErr;

IF myErr = noErr THEN

BEGIN

userCanceled := MyPrepareToTerminate(saveOpt);

IF userCanceled THEN

MyHandleQuit := kUserCanceled;

END;

END

ELSE

MyHandleQuit := myErr;

END;
9-8 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

The handler in Listing 9-2 calls another function supplied by the application, the
MyPrepareToTerminate function. When the value of the optional parameter
that specifies how to deal with dirty windows equals kAEAskUser, this function
asks the user whether to save each dirty window and returns a Boolean value that
indicates whether the user canceled the Quit request. It also responds appropriately to
the other possible values of the optional parameter.

If recording has been turned on for a scripting component (for example, after a user
clicks the Record button in the Script Editor application) and the user quits the
application, the Apple Event Manager automatically sends the scripting component a
copy of the Quit Application event sent by the MySendAEQuit routine. The scripting
component records the event in a compiled script. When a user executes the recorded
script, the scripting component sends the same Quit Application event to the application,
which calls the MyHandleQuit function and responds to the event just as if the user had
chosen Quit from the File menu.

After you have factored the commands associated with required Apple events for an
existing application, you can move on to the other commands in the File menu, such as
New. After a factored application has determined that the user has chosen New, it calls
its MyDoMenuNew routine, which sends the Create Element event to the application.

PROCEDURE MyDoMenuNew;

VAR

myErr := OSErr;

BEGIN

myErr := MySendAECreateElement(gNullDesc, cDocument);

{handle any errors}

END;

The container for the new element is the application’s default container, specified by a
null descriptor record, and the desired class is cDocument. The MyDoMenuNew routine
in turn calls the MySendAECreateElement routine shown in Listing 9-3, which creates
the Apple event and sends it.
Factoring Your Application for Recording 9-9

C H A P T E R 9

Recording Apple Events

Listing 9-3 A routine used by a factored application to send itself a Create Element event

FUNCTION MySendAECreateElement (cont: AEDesc;

 elemClass: DescType): OSErr;

VAR

myAppleEvent, defReply: AppleEvent;

myErr, ignoreErr: OSErr;

BEGIN

{create Create Element event}

myErr := AECreateAppleEvent(kCoreEventClass, kAECreateElement,

gSelfAddrDesc,

kAutoGenerateReturnID,

kAnyTransactionID, myAppleEvent);

IF myErr = noErr THEN

{add parameter that specifies insertion location for the }

{ new element}

myErr := AEPutParamDesc(myAppleEvent,keyAEInsertHere,cont);

IF myErr = noErr THEN

{add parameter that specifies new element's object class}

myErr := AEPutParamPtr(myAppleEvent, keyAEObjectClass,

 typeType, @elemClass,

 SizeOf(elemClass));

IF myErr = noErr THEN

{send the event}

myErr := AESend(myAppleEvent, defReply,

kAENoReply+kAECanInteract,

kAENormalPriority, kAEDefaultTimeOut, NIL,

NIL);

MySendAECreateElement := myErr;

ignoreErr := AEDisposeDesc(myAppleEvent); {must dispose of }

{ event}

END;

For the purposes of this example, the routine shown in Listing 9-3 sends only the
required parameters and can only create a new active window with the default name.
After the application receives the Create Element event, its MyHandleCreateElement
handler performs the requested action, as shown in Listing 9-4. In this case, it creates a
new active window with a default title.
9-10 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9

R
ecording A

pple E
vents

Listing 9-4 The Create Element event handler for a factored application

FUNCTION MyHandleCreateElement (theAppleEvent: AppleEvent;

 reply: AppleEvent;

 handlerRefCon: LongInt): OSErr;

VAR

myCont: AEDesc;

returnedType, newElemClass: DescType;

actSize: Size;

contClass: DescType;

window: WindowPtr;

myErr: OSErr;

BEGIN

{get the parameters out of the event}

{first get the direct parameter, which specifies insertion }

{ location for new window--that is, frontmost window}

myCont.dataHandle := NIL;

myErr := AEGetParamDesc(theAppleEvent, keyAEInsertHere,

typeWildCard, myCont);

IF myErr = noErr THEN

{get the other required parameter, which specifies class }

{ cDocument when MyHandleCreateElement creates a new window}

myErr := AEGetParamPtr(theAppleEvent, keyAEObjectClass,

typeType, returnedType,

@newElemClass,

SizeOf(newElemClass), actSize);

IF myErr = noErr THEN

myErr := MyGotRequiredParams(theAppleEvent);

MyHandleCreateElement := myErr;

IF myErr = noErr THEN

BEGIN

{check container and class, just to make sure}

IF (myCont.descriptorType <> typeNull) OR (newElemClass <>

cDocument) THEN

MyHandleCreateElement := kWrongContainerOrElement

ELSE

{MyNewWindow creates a new window with a default name }

{ and returns a pointer to it in the window parameter}

MyHandleCreateElement := MyNewWindow(window);

END;

myErr := AEDisposeDesc(myCont);

{if your app sends a reply in response to the Create Element }

{ event, then set up the reply event as appropriate}

END;
Factoring Your Application for Recording 9-11

C H A P T E R 9

Recording Apple Events

If recording has been turned on for a scripting component (for example, after a user
clicks the Record button in the Script Editor application), the Apple Event Manager
automatically sends the scripting component a copy of the Create Element event sent by
the MySendAECreateElement routine. The scripting component records the Apple
event as a statement in a compiled script. When a user executes the recorded script, the
scripting component sends the same Create Element event to the application, which calls
its MyHandleCreateElement handler and responds to the event just as if the user had
chosen New from the File menu.

Sending Apple Events Without Executing Them 9
If an application is fully factored, it carries out almost all the tasks a user can perform by
sending itself Apple events in the manner illustrated by the listings in the preceding
sections. However, in some cases it may not be practical to send an Apple event that
actually executes a task performed by the user.

For example, if the user drags a window by its title bar from one position to another, it is
inefficient to send a series of Apple events that move the window through a series of
positions until the user releases the mouse button. Instead, your application can call the
Window Manager routine DragWindow to allow the user to drag the window to a new
position. Until the user releases the mouse button, it’s not possible to send a single Apple
event that drags the window to the new position, because the new position is not yet
known. When DragWindow returns, the window has already been dragged to its new
position, and its window record has been updated.

At this point your application can send itself the Set Data event that performs the same
action; but to avoid repeating the action that was just performed with DragWindow, you
should add the kAEDontExecute constant to the sendMode parameter of the AESend
function when you send the event. The Apple Event Manager then sends the Set Data
event to the recording process, if any, but does not send it to the application.

Listing 9-5 shows an application-defined routine, MyDoDragWindow, that illustrates this
approach. The MyDoDragWindow routine calls DragWindow in the usual way, then uses
another application-defined routine, MyCreateAESetWindowPos, and the AESend
function to create and send a Set Data Apple event that sets the window position to the
new location. However, because the window has already been moved, there is no need
to execute the Set Data event. To send the event for recording purposes without actually
executing it, the MyDoDragWindow routine adds the kAEDontExecute constant to the
sendMode parameter of the AESend function when it sends the Set Data event.
9-12 Factoring Your Application for Recording

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Listing 9-5 A routine used by a factored application to handle window movement

PROCEDURE MyDoDragWindow (theWindow: WindowPtr; startPt: Point;

 boundsRect: Rect);

VAR

newPos: Point;

index: Integer;

theAppleEvent: AppleEvent;

reply: AppleEvent;

myErr: OSErr;

BEGIN

DragWindow(theWindow, startPt, boundsRect);

newPos := WindowPeek(theWindow)^.contRgn^^.rgnBBox.topLeft;

index := MyIndexFromWndwPtr(theWindow);

MyCreateAESetWindowPos(index, newPos, theAppleEvent);

myErr := AESend(theAppleEvent, reply, kAENoReply +

kAECanInteract + kAEDontExecute,

kAENormalPriority, kAEDefaultTimeout, NIL,

NIL);

END;

If recording has been turned on and the user moves a window, the Apple Event Manager
automatically sends the scripting component a copy of the Set Data event sent by the
MyDoDragWindow routine but does not send the event to the application. The scripting
component records the event as a statement in a compiled script. When a user executes
the recorded script, the scripting component sends the same Set Data event to the
application. The application’s handler for the Set Data event then changes the position of
the window.
Factoring Your Application for Recording 9-13

C H A P T E R 9

Recording Apple Events
What to Record 9

Factoring an application involves making decisions about which user actions generate
Apple events, about the content of those events, and about when to send events for
recording purposes. For example, the preceding section, “Sending Apple Events Without
Executing Them,” describes how an application should generate an Apple event that
corresponds to a change in the position of a window. Other actions can be more
complicated to define in terms of Apple events. This section provides general guidelines
for deciding which user actions should generate Apple events and how those events
should be defined.

When the user records a series of actions as a script, playing the recorded script back
later in exactly the same circumstances must produce exactly the same result. If the
circumstances at execution time are similar but not exactly the same as when the script
was recorded, the script should also work correctly. However, certain differences will
always lead to unexpected results or cause execution to fail.

The goal of these guidelines is to help you create scripts that will work correctly in the
largest number of circumstances with the fewest post-recording changes by the user. To
accomplish this goal, a recordable application should send itself Apple events that
describe as specifically as possible the user’s actions in the application’s domain without
making guesses about the user’s intentions.

The way your application uses Apple events to record a user’s actions depends in part
on the kind of script being recorded. From the user’s perspective, there are at least three
kinds of scripts:

■ A script application. The icons for these files appear in the Finder, for example, in the
Apple Menu Items folder or the Startup Items folder.

■ A script that functions like a menu command, usually acting on the current selection
in the current application, and stored either as a compiled script file that appears in
the Finder or as a script stored within an application or one of its documents.

■ A script that is “embedded” in an application—that is, explicitly associated with
something in a document, such as a field in a form, a cell or row of a spreadsheet, or a
button.
9-14 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
The recording guidelines in the sections that follow apply to the recording of scripts that
function like menu commands and scripts that are embedded in an application. Because
such scripts are executed under a user’s direct control, the user expects their execution to
cause something to happen, possibly changing the current selection, the Clipboard, or
the active window.

The execution of a script application, however, may cause a scripting component to send
events to one or more applications intermittently without the user’s knowledge. If the
script in a script application refers to the current selection, the Clipboard, or the active
window, its execution may interfere with other tasks being performed by the user or
tasks performed during the execution of other scripts. To create a script application and
ensure that it works correctly when executed, a scripter may need to modify the script
after it has been recorded.

For example, to eliminate references to the Clipboard, a scripter can use a script variable
as a user-defined Clipboard and convert Cut, Copy, and Paste statements to appropriate
combinations of Move, Copy, New, and Delete statements, while supplying the
previously defined selection as the argument. It may also be necessary to convert a
description such as “the front document” to a specific filename or a variable.

Recording User Actions 9
Two general guidelines apply to the recording of all user actions:

■ Send Apple events that correspond to simple statements in a script rather than
compound statements.

■ Don’t record superfluous actions.

In most cases, if the user performs several related actions, your application should send
Apple events for each action rather than saving the actions and creating an event that
combines them.

For example, if the user selects some text, cuts it, and then pastes it somewhere else, your
application should send itself four events that correspond to these actions:

1. Select the text

2. Cut

3. Set the insertion point

4. Paste
What to Record 9-15

C H A P T E R 9

Recording Apple Events
Thus, if the user selects characters 5 through 20 of the frontmost document, chooses the
Cut command from the Edit menu, places the insertion point after character 72, and
chooses the Paste command, your application should send the following events.

■ A Select event (event class kAEMiscStandards, event ID kAESelect) with this
direct parameter:

■ A Cut event (event class kAEMiscStandards, event ID kAECut)

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 20
9-16 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
■ A Select event with this direct parameter:

■ A Paste event

Note
The format used for the direct parameters in this example and
throughout this chapter does not show the structure of the direct
parameters as they exist within the Apple events. Instead, this format
shows what you would obtain after calling AEGetKeyDesc repeatedly
to extract the nested descriptor records from the Apple events.

When you call AEGetKeyDesc to extract the descriptor record that
specifies an application’s default container, AEGetKeyDesc returns a
descriptor record of type AEDesc with a descriptor type of typeNull
and a data handle whose value is 0. ◆

The first Select event in this example sets the application’s pSelection property (that
is, the current selection) to the objects identified by the object specifier record in the
direct parameter—characters 5 through 20. The second Select event places the insertion
point after the object identified by the object specifier in the direct parameter—after
character 72.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 72

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEAfter
What to Record 9-17

C H A P T E R 9

Recording Apple Events
You could also interpret these four actions as a single Move event that simply moves
characters 5 through 20 to after character 72. A user could write such a statement in a
script, but for recording purposes four separate events correspond more precisely to the
user’s actions. For example, if the user performed another paste operation after the first
four actions, a Move event would not produce the correct results.

It is equally important for a recordable application not to send superfluous events. For
example, your application should not send an event every time the user makes a
selection. Instead, it should keep track of the most recent selection made. When the user
performs some action on the selection, the application should send an event that sets the
selection followed by the event that corresponds to the action taken by the user.
However, if the user doesn’t perform an action on the selection, the application should
not send an event.

IMPORTANT

If something is already selected when recording begins, your application
should not record that selection. Subsequent user actions should be
recorded assuming that there is a selection. By not recording the current
selection, you allow the user to record scripts that work, without further
modification, much like menu commands that operate on the current
selection. ▲

The example just discussed assumes that the application has multiple documents. In
such an application, document 1 is always the document in the frontmost window. The
examples that follow are simplified, as if they were generated by an application like
TeachText that can have only one document open at a time and can therefore locate
objects such as characters in the default container. For more complex applications that
locate text in cells, documents, and other containers, you must specify additional
containers as appropriate.

Recording the Selection of Text Objects 9
When your application needs to record a selection that the user has made by dragging
through a range of text, it should send itself a Select event that selects a range of
characters. For example, a Select event with this direct parameter selects characters 80
through 764:
9-18 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
It is sufficient to record such a text selection as a range of characters. However, recording
selections in other units can make the corresponding scripts easier to read. If you decide
to record text selections in other units, keep these guidelines in mind:

■ Use the largest whole unit that completely describes the selection.

■ Do not mix units.

■ Use units appropriate to the method of selection.

■ Use logical units rather than units that vary with reformatting.

■ Don’t try to guess the user’s intentions.

The rest of this section provides examples of how to apply these guidelines.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 80

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 764
What to Record 9-19

C H A P T E R 9

Recording Apple Events
If you do record text selections in units other than characters, record each selection in
terms of the largest whole unit that completely describes the selection. For example,
suppose the user selects characters 115 through 170 by dragging. Further, suppose the
selected characters are exactly the same as words 33 through 50 and also the same as
paragraph 2. In this case your application should send itself a Select event with this
direct parameter:

However, if the selected characters don’t match a larger unit exactly—for example, if
paragraph 2 is larger than the selection or the selection is a portion of two paragraphs—
use the largest unit available, in this case words.

For example, a Select event with this direct parameter selects word 33 through word 45:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cText

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 33

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 45
9-20 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Do not mix units. You should not send Apple events that define selections like character
2 of word 3 of line 5 of paragraph 2 in document “MyDocument.” Instead, define
selections as simply as possible; for example, character 45 in the document
“MyDocument.”

When the user selects text by double-clicking it, your application should send a Select
event that specifies words. For example, your application should send a Select event
with this direct parameter when the user double-clicks word 5:

If the user double-clicks word 5 and then extends the selection through word 9, your
application should send a Select event with this direct parameter:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cText

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 9
What to Record 9-21

C H A P T E R 9

Recording Apple Events
If your application supports selection of a paragraph, for example by clicking the left
margin, triple-clicking, or some other action, your application should send a Select event
that selects the paragraph. For example, a Select event with this direct parameter selects
paragraph 2:

If your application supports the selection of other units (for instance, cells, rows, and
columns in a spreadsheet; embedded graphics in a word processor; or buttons) and if
users can select a range of such units, your application should record using those units
when appropriate. For example, a Select event with this direct parameter selects row 5
through row 23:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 23
9-22 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
A Select event with this direct parameter selects the second 'PICT' image:

When the user chooses a Select All command, your application should send a Select
event with this direct parameter to select the contents of the document:

Units that vary with reformatting, such as lines and pages in a text document, are not as
useful as logical units that describe the data more precisely. Whenever possible, use
logical units such as character, word, paragraph, section, and so on.

Don’t try to guess the user’s intentions. For example, if a selection can be described as
either “word 14” or as “the third bold word in paragraph 3,” use the simpler description.
If you guess the user’s intentions, you will be wrong often enough to cause the user to
distrust the recording process.

Recording Insertion Points 9
The insertion point and a selection are synonymous in the Macintosh Operating System.
However, scripting languages need a way of specifying a zero-width selection.
Sometimes the best way to specify an insertion location is in relation to another object;
for example, “after word 5.” This section describes recommended methods of specifying
an insertion point in a recordable event.

The insertion point can be specified in Apple events by either an insertion location
descriptor record (typeInsertionLocation) or an object specifier record
(typeObjectSpecifier) that specifies the class cInsertionLoc and the key form
formRelativePosition. The Move, Clone, and Create events accept an insertion
location descriptor record; other events, including Select and Set Data, require an object
specifier record.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cPICT

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pContents
What to Record 9-23

C H A P T E R 9

Recording Apple Events
Five constants can be used to describe an insertion point in relation to an object or
container:

For more information about the way AppleScript uses insertion location descriptor
records, see “Defining Terminology for Use by the AppleScript Component,” which
begins on page 8-3, and the Apple Event Registry: Standard Suites. The rest of this section
provides examples of object specifier records used to specify insertion points.

Users usually insert objects after some other object. So, unless the insertion point is
clearly at the beginning or end of a container or identifies an object to be replaced, use
the constant kAEAfter to record the location.

For example, if the user places the insertion point after character 2, your application
should send a Select event with this direct parameter:

Constant Corresponding insertion point

kAEReplace The specified object will be replaced if not qualified by one of the
other phrases

kAEBefore Just before the specified object (either type
typeObjectSpecifier or type typeInsertionLocation)

kAEAfter Just after the specified object (either type typeObjectSpecifier
or type typeInsertionLocation)

kAEBeginning In the specified container and before all other elements of the same
class in that container (type typeInsertionLocation only)

kAEEnd In the specified container and after all other elements of the same
class in that container

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cChar

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 2

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEAfter
9-24 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
If the selection is not 0 characters wide, the user is replacing the selection with another
object, so you can specify the location simply as the object specifier record for the object
to be replaced.

If the user clicks the white space after a paragraph somewhere in the middle of the
document, defining the insertion point becomes more complex because different
applications deal with this situation in different ways. Some place the insertion point at
the end of the current paragraph, while others place the insertion point at the beginning
of the next paragraph. Depending on the way your application handles this situation,
you should use an object specifier record that specifies either kAEBeginning or kAEEnd.

Remember that the Select event requires an object specifier record. Thus, if you want to
place the insertion point at the beginning of a paragraph, use an object specifier record
that specifies a location just before the first item of the paragraph, rather than an
insertion location descriptor record.

For example, a Select event with this direct parameter places the insertion point just
before the first item of paragraph 3:

If the user clicks the left edge of the first line in a paragraph, thus setting the insertion
point before the beginning of the paragraph, you should use a similar strategy. However,
this is the only situation in which you should use kAEPrevious.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cItem

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeType formAbsolutePosition

keyAEKeyData typeLongInteger 1

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAEPrevious
What to Record 9-25

C H A P T E R 9

Recording Apple Events
When the insertion point is at the end of a document record, use an object specifier
record that specifies the location after the last item in the document.

For example, a Select event with this direct parameter places the insertion point just after
the last item in a document:

A Select event with this direct parameter places the insertion point just after the last item
in paragraph 3:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cItem

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger -1

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cParagraph

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext
9-26 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Recording Typing 9
In general, to record typing your application should send itself a Set Data event that sets
the contents of the selection. The data should be unstyled text. When your application
handles the Set Data event, it should apply the styles that prevail at the insertion point. If
your application supports styled text, you need to decide how to apply styles to new text
and how to record style changes to selected text. Follow these general guidelines for
recording typing:

■ When the user sets an insertion point and types new text, use the styles defined for
the text just before the insertion location.

■ When a user selects text and changes its style, apply the changes to the selection.

■ If a user types or pastes new text into a selection, place the insertion point after the
new text.

The rest of this section provides examples of how to apply these guidelines.

Suppose the user sets an insertion point and then types something. Your application
should use the style, font, size, and other characteristics of the text just before the
insertion point for the new text, and it should record only the new characters inserted.
For example, to place the insertion point after word 30 and insert the text “This is the
new text,” your application can send a Select event followed by a Set Data event:

■ A Select event with this direct parameter places the insertion point after word 30:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLoc

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 30

keyAEKeyForm typeEnumerated formRelativePosition

keyAEKeyData typeEnumerated kAENext
What to Record 9-27

C H A P T E R 9

Recording Apple Events
■ A Set Data event (event class kAECoreSuite, event ID kAESetData) with these
parameters (keyDirectObject and keyAEData) sets the selection to the new text:

Notice that the Select event in this example causes your application to set its
pSelection property (the current selection) to the location specified by the object
specifier record in the direct parameter—that is, after word 30. The Set Data event then
sets the contents of the selection to a text string. The pContents property specified by
the object specifier record in the direct parameter of the Set Data event represents the
contents of the selection, and the text string in the keyAEData parameter is the text to
which the selection’s contents is to be set.

At this stage, the insertion point is after word 35—the last word added by typing. If the
user now selects one of the new words, say word 34, and changes the style to boldface
and the font to Helvetica®, send a Select event and two Set Data events to record the
action:

■ A Select event with this direct parameter selects word 34:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pContents

keyAEData typeChar "This is the new text"

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWord

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 34
9-28 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
■ A Set Data event with these parameters sets the style of the selection to boldface:

■ A Set Data event with these parameters sets the font of the selection to Helvetica:

After these three events are sent, word 34 remains selected. Thus, subsequent user
actions upon the same selection do not require your application to send an additional
event to set the selection. Your application should maintain the selection as long as the
selected text is not replaced. If the user types or pastes new text into the selection, your
application should place the insertion point after the new text.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeType formPropertyID

keyAEKeyData typeType pTextStyles

keyAEData typeEnumerated kAEBold

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pFont

keyAEData typeChar "Helvetica"
What to Record 9-29

C H A P T E R 9

Recording Apple Events
Such a strategy might result in a series of events like these:

■ A Set Data event with these parameters sets the contents of a selection to “More new
text”:

■ Two Paste events paste the contents of the Clipboard twice after the new text.

Recording the Selection of Nontext Objects 9
The selection of nontext objects differs from the selection of text objects mainly in the
way a recordable application specifies the objects. For example, if the user is working in
a table or spreadsheet and selects row 5, column 3, your application can send a Select
event with this direct parameter:

When recording a range of cells, use a range of rows through a range of columns.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cProperty

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeLongInteger pSelection

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pContents

keyAEData typeChar "More new text"

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5
9-30 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
For example, if the user selects row 5 column 3 through row 6 column 4, specify columns
3 through 4 of rows 5 through 6 by sending a Select event with this direct parameter:

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 3

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 4

keyAEKeyForm typeEnumerated formRange

keyAEKeyData typeRangeDescriptor (see indented record)

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 5

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeCurrentContainer No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 6
What to Record 9-31

C H A P T E R 9

Recording Apple Events
In some drawing and layout applications, users are used to dealing with insertion points
at specific locations rather than relative to other objects. For example, setting an insertion
point in a recordable drawing application might cause the application to send itself a
Select event that places the insertion location at (235, 330)—that is, the location defined
by a vertical coordinate of 235 and a horizontal coordinate of 330. A Select event that
does this could have this direct parameter:

Notice that the key data corresponds to an application’s extension of the standard
interpretation of key form formAbsolutePosition.

To set a selection that consists of noncontiguous objects, an application should send
events that correspond to statements like these:

select {¬

row 5 thru 6 of column 3 thru 4, ¬

row 22 of column 6}

select {circle 2, rectangle 12, text frame 2}

select {file "Guidelines", file "Test Results"}

Identifying Objects 9
The way a recordable application identifies objects can involve assumptions about the
user’s criteria for selecting those objects. In general, such assumptions should be
avoided. Follow these guidelines for identifying objects:

■ If you aren’t absolutely certain of the user’s criteria for selecting an object, identify the
object by name.

■ If the object doesn’t have a name, identify it by index.

■ Determine the index based on the order in which a user would see the objects when
reading a document.

■ Identify windows and open documents on which actions are taken as the frontmost
window or document.

The rest of this section provides examples of how to apply these guidelines.

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cInsertionLocation

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeAEList (see indented record)

typeLongInteger 235

typeLongInteger 330
9-32 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Suppose a user is working with an electronic mail application that permits a variety of
sorting methods for messages received. If the user is currently looking at messages
sorted by date and then deletes the second message in the list, that message should be
identified by name rather than by date. Use an object’s name in any situation where it is
not completely clear which identifying criteria the user had in mind.

Suppose a user has used the application’s Find command to locate all messages created
on a certain date. In this case it might be appropriate to identify “every message whose
creation date . . .” in the corresponding Apple event. However, if the user did not ask for
all messages created on that date, you can’t be sure whether the user really wanted every
message or only a particular one. For instance, perhaps the user couldn’t remember the
name, but only an approximate date. In this case a recordable application should identify
the message by name.

Just as names are more specific and usually more desirable than whose tests,
names are usually more specific and more readable than identifiers or indices. However,
some objects may not have a name, only some other identifier or an index. Even though
an identifier is more specific than an index, a logically defined index of position is more
readable and is therefore recommended. For example, if a document contains unnamed
illustrations, the user is more likely to identify a figure by index (order from the
beginning of the file) than identifier (such as order created).

Suppose a document contains two figures that appear at first glance to be side by side,
except that the right one is slightly taller and therefore begins higher on the page than
the left one. In cases such as this, your application should determine the index based
on the order in which the user would see the objects when reading a document. For
Roman script systems, this means reading from left to right and from top to bottom.
In the example just described, the leftmost, shorter figure would have a lower figure
number than the rightmost, taller one.

When your application needs to refer to a window or a document, it should identify the
object with an object specifier record that corresponds to the first, or front, window:

This strategy allows users to record scripts that will work on any window, regardless
of its name. Similarly, events that act on an open document should identify it as
“document 1.”

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cWindow

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
What to Record 9-33

C H A P T E R 9

Recording Apple Events
It is usually possible to describe objects in several different ways. If an object has a
unique name, use that. For example, instead of an object specifier record that describes
“column number 7,” use one that describes “the column named ‘March’”:

It may be that such an object could also be described in a more complex manner, such as
picture 1 of paragraph 302 of chapter 2. But complex descriptions like this should be
used only as a last resort if no simpler name is available.

In general, be as specific as possible when you identify a selection in a recordable event.
The user can generalize as necessary by editing the recorded script.

Moving the Selection During Recording 9
If recording is turned on and the user makes a selection, performs some action, and then
makes a different selection, your application must make a decision: should it record the
second selection in absolute terms or relative to the first selection? That is, should the
corresponding AppleScript statement be

select insertion location before paragraph 5

or

select insertion location before paragraph after selection

Both statements may be appropriate under different conditions. But suppose that the
user had selected paragraph 3 and now selects paragraph 12 or picture 3. Relative
addressing doesn’t make sense in these situations because the distance involved is too
great or the unit is different. When you can’t be sure of the user’s intent, you should use
absolute addressing. You can safely use relative addressing only when the user moves
the selection or insertion point by only one unit, as with the arrow keys.

Even the use of the arrow keys does not guarantee that you can use relative addressing.
For example, suppose that the user has selected cell 5 of row 2 in a spreadsheet and then
presses the Left Arrow key three times. In this case, it is best to send Apple events
equivalent to the statement

Keyword Descriptor type Data

keyDirectObject typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeNull No data

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeLongInteger "March"
9-34 What to Record

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
select cell 3 of row 2

rather than the statements

select the cell before selection

select the cell before selection

select the cell before selection

Using relative addressing in certain circumstances may minimize the amount of editing
that the user must do after recording a script. However, recordable applications are not
required to use relative addressing.

Recording Interactions With Dialog Boxes 9
When executing scripts, users normally do not want to see dialog boxes. Therefore, your
application should record information specified by the user in dialog boxes rather than
sending events that would cause the dialog boxes to appear during script execution.

For example, suppose a user chooses the Close command and the standard save changes
dialog box appears. If the user then clicks Save, your application should send a Close
event that corresponds to a statement like this:

close document "MyDoc" saving Yes

Any settings in a dialog box that the user does not change (such as the range of pages to
print in a Print dialog box) should not be recorded.

How Apple Event Recording Works 9

Scripting components use the Apple Event Manager’s recording mechanism to allow a
recording process such as the Script Editor application to control recording into scripts.
Script editors and applications that provide their own recording capabilities can take
advantage of the recording mechanism via standard scripting component routines.

This section describes how scripting components use Apple event recording. You need to
read this section if you are developing a scripting component or a script-editing
application, or if you want your application to initiate and control Apple event
recording. For information about using the standard scripting component routines to
turn recording off and on, see “Recording Scripts” on page 10-26.
How Apple Event Recording Works 9-35

C H A P T E R 9

Recording Apple Events
When a user turns on recording for a recording process (for example, by clicking the
Record button in Script Editor), the recording process calls a scripting component
routine (OSAStartRecording) to turn recording on. The scripting component responds
by sending a Start Recording event to the recording process (or any running process on
the local computer).

The recording process should not handle the Start Recording event. Instead, the Apple
Event Manager handles it by sending a Recording On event to all running processes on
the local computer and sending copies of all subsequent recordable events to the
recording process. (The Recording On event is described on page 9-4.)

If an application that supports Apple events is launched on a computer for which
recording is turned on, the Apple Event Manager will also send it a Recording On event
for each recording process that is currently recording.

The recording process receives recordable events by means of a Receive Recordable
Event handler—that is, a handler installed in the Apple event dispatch table for event
class kCoreEventClass and event ID kAENotifyRecording. Scripting components
install this handler on behalf of a recording process when recording is first turned on
and remove the handler when recording is turned off. Much like a handler for event
class typeWildCard and event ID typeWildCard, the Receive Recordable Event
handler handles all recordable events sent to the recording process by the Apple Event
Manager. Any other Apple events received by the recording process are dispatched in
the usual manner. The Receive Recordable Event handler handles recordable events by
recording them in the script specified by the recording process’s call to
OSAStartRecording.

Start Recording—begin sending copies of recordable events to recording process

Event class kCoreEventClass

Event ID kAEStartRecording

Parameters None

Description Sent by a scripting component to the recording process (or to any
running process on the local computer), but handled by the Apple Event
Manager. The Apple Event Manager responds by turning on recording
and sending a Recording On event to all running processes on the local
computer.

This event must be addressed using a process serial number (PSN); it
should never be sent to an address specified as kCurrentProcess.

Receive Recordable Event—receive and record a copy of a recordable event

Event class kCoreEventClass

Event ID kAENotifyRecording

Parameters Same as Apple event being recorded

Description Wildcard event class and event ID handled by a recording process in
order to receive and record copies of recordable events sent to it by the
Apple Event Manager. Scripting components install a handler for this
event on behalf of a recording process when recording is turned on and
remove the handler when recording is turned off.
9-36 How Apple Event Recording Works

C H A P T E R 9

Recording Apple Events

9
R

ecording A
pple E

vents
Whenever the Receive Recordable Event handler receives a recordable event, the
scripting component sends your application a Recorded Text event. The Recorded Text
event contains the decompiled source data for the recorded event in the form of styled
text. For a description of the Recorded Text event, see “Recording Scripts” on page 10-26.

When a user turns off recording (for example, by clicking Script Editor’s Stop button),
the recording process calls a scripting component routine (OSAStopRecording) to turn
recording off. The scripting component responds by sending a Stop Recording event to
the recording process (or any running process on the local computer).

Like the Start Recording event, the Stop Recording event is handled by the Apple Event
Manager. The Apple Event Manager responds by sending a Recording Off event to all
running processes on the local computer. (The Recording Off event is described on
page 9-4.)

Recording continues, and the recording process may continue to receive recordable
events, until the Apple Event Manager has notified all running processes that recording
has been turned off for that recording process. The Apple Event Manager sends all
running processes the Recording Off event with the kAEWaitReply flag set. If an
application has stored some data (for instance, keystrokes) that needs to be recorded as
an Apple event, this is the last chance for the application to send the event for recording
purposes. Recording stops only after the Apple Event Manager returns a reply for the
Stop Recording event.

The Apple Event Manager supports multiple simultaneous recording processes. A Stop
Recording event sent for one of them does not affect the others. If your application needs
to know which of several recording processes has turned recording on or off, it can check
the keyOriginalAddressAttr attribute of the Recording On or Recording Off event
for the address of the recording process.

If the Apple Event Manager does not receive a Stop Recording event for a recording
process that quits unexpectedly, the applications being recorded don’t find out
immediately. When it attempts to send a copy of a recordable event to a recording
process that is no longer active, the Apple Event Manager sends a Recording Off event to
all running processes on behalf of that recording process and specifies the address for
that process in the keyOriginalAddressAttr attribute. If a recording process that
quits is the only actively recording process, recording stops completely after the Apple
Event Manager has informed all running processes that recording has been turned off.

Stop Recording—stop sending copies of recordable events to recording process

Event class kCoreEventClass

Event ID kAEStopRecording

Parameters None

Description Sent by a scripting component to the recording process (or to any
running process on the local computer), but handled by the Apple Event
Manager. The Apple Event Manager responds by sending a Recording
Off event to all running processes on the local computer.

This event must be addressed using a process serial number (PSN); it
should never be sent to an address specified as kCurrentProcess.
How Apple Event Recording Works 9-37

C H A P T E R 1 0

10

Figure 10-0
Listing 10-0
Table 10-0

Contents

10 Scripting Components

Connecting to a Scripting Component 10-3
Using Scripting Component Routines 10-7

Compiling and Executing Source Data 10-7
Saving Script Data 10-12

Storage Formats for Script Data 10-12
Resource and File Types for Script Data 10-13

Loading and Executing Script Data 10-14
Modifying and Recompiling a Compiled Script 10-17
Using a Script Context to Handle an Apple Event 10-19
Supplying a Resume Dispatch Function 10-21
Supplying an Alternative Active Function 10-23
Supplying Alternative Create and Send Functions 10-24

Alternative Create Functions 10-24
Alternative Send Functions 10-25

Recording Scripts 10-26
Writing a Scripting Component 10-27
Scripting Components Reference 10-28

Data Structures 10-29
Required Scripting Component Routines 10-30

Saving and Loading Script Data 10-30
Executing and Disposing of Scripts 10-33
Setting and Getting Script Information 10-41
Manipulating the Active Function 10-45

Optional Scripting Component Routines 10-46
Compiling Scripts 10-47
Getting Source Data 10-51
Coercing Script Values 10-52
Manipulating the Create and Send Functions 10-55
Recording Scripts 10-59
Contents 10-1

C H A P T E R 1 0

Executing Scripts in One Step 10-61
Manipulating Dialects 10-67
Using Script Contexts to Handle Apple Events 10-71

AppleScript Component Routines 10-80
Initializing AppleScript 10-80
Getting and Setting Styles for Source Data 10-82

Generic Scripting Component Routines 10-84
Getting and Setting the Default Scripting Component 10-86
Using Component-Specific Routines 10-87

Routines Used by Scripting Components 10-92
Manipulating Trailers for Generic Storage Descriptor Records 10-92

Application-Defined Routines 10-94
Summary of Scripting Components 10-99

Pascal Summary 10-99
Constants 10-99
Data Types 10-105
Required Scripting Component Routines 10-106
Optional Scripting Component Routines 10-107
AppleScript Component Routines 10-110
Generic Scripting Component Routines 10-110
Routines Used by Scripting Components 10-111
Application-Defined Routines 10-111

C Summary 10-112
Constants 10-112
Data Types 10-118
Required Scripting Component Routines 10-119
Optional Scripting Component Routines 10-120
AppleScript Component Routines 10-123
Generic Scripting Component Routines 10-123
Routines Used by Scripting Components 10-124
Application-Defined Routines 10-124

Result Codes 10-125
10-2 Contents

C H A P T E R 1 0

10

S
cripting C

om
ponents

Scripting Components 10

This chapter describes how your application can use the Component Manager and
scripting components to manipulate and execute scripts.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book and the chapters about the Apple Event Manager that are relevant to your
application.

Your application can use the standard scripting component data structures and routines
described in this chapter to manipulate scripts written in any scripting language based
on the Open Scripting Architecture (OSA). Your application need not be scriptable or
recordable to use these routines. However, if your application is scriptable, you can
easily make it capable of manipulating and executing scripts that control its own
behavior.

The first section in this chapter describes how to establish a connection with a scripting
component. The next two sections provide

■ examples of how to use the standard scripting component routines

■ information for developers of scripting components

The section “Scripting Components Reference” describes, in addition to the standard
scripting component routines, routines provided by the AppleScript component,
routines provided by the generic scripting component, and routines called by scripting
components.

If you are developing a scripting component, you should also read the instructions for
creating components in the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox.

Connecting to a Scripting Component 10

To manipulate and execute scripts written in different scripting languages, your
application can use Component Manager routines either to open a connection with each
corresponding scripting component individually or to open a single connection with the
generic scripting component. The generic scripting component, in turn, attempts to open
connections dynamically with the appropriate scripting component for each script. By
opening a connection with the generic scripting component, your application can load
and execute scripts created by any scripting component that is registered with the
Component Manager on the current computer.

In general, you should use the generic scripting component to execute and manipulate
existing scripts and a specific scripting component when you create new scripts. When
you call OSACompile or OSAStartRecording, the generic scripting component
examines the script ID to determine which scripting component to use. If instead of a
script ID you pass the constant kOSANullScript to these routines, the generic scripting
component uses its current default scripting component. Each instance of the generic
scripting component has its own default scripting component. From the user’s point of
view, the default scripting component corresponds to the scripting language selected in
the Script Editor application when the user first creates a new script.
Connecting to a Scripting Component 10-3

C H A P T E R 1 0

Scripting Components

The generic scripting component provides routines you can use to get and set the default
scripting component, determine which scripting component created a particular script,
and perform other useful tasks when you are using multiple scripting components. See
the section “Generic Scripting Component Routines,” which begins on page 10-84, for
descriptions of these routines.

You can use the Component Manager function OpenComponent to open a connection to
a scripting component you specify with the component identifier returned by the
FindNextComponent function. You can also use the OpenDefaultComponent
function to open a scripting component without calling the FindNextComponent
function.

The OpenComponent and OpenDefaultComponent functions return a component
instance. This value identifies your application’s connection to a component. You must
supply this value whenever you call a standard scripting component routine.

Note
Your application may maintain several connections to a single
component, or it may have connections to several components at the
same time. Because some scripting components (including the current
version of AppleScript) can execute only one script at a time per
component instance, a multithreaded application must provide a
separate component instance for each script that it compiles or executes
while it is simultaneously executing other scripts. ◆

The Component Manager type code for scripting components that support the routines
described in this chapter is 'osa ', and the subtype code for the generic scripting
component is 'scpt'.

CONST

kOSAComponentType = 'osa ';

kOSAGenericscriptingComponentSubtype = 'scpt';

You can open a connection to a scripting component by calling the
OpenDefaultComponent function, which returns a component instance. For example,
this code opens a connection with the generic scripting component and stores the
returned value in an application-defined variable:

VAR

gScriptingComponent: ComponentInstance;

{open connection to generic scripting component}

gScriptingComponent := OpenDefaultComponent(kOSAComponentType,

 kOSAGenericscriptingComponentSubtype);

The generic scripting component in turn opens connections with other scripting
components as necessary. The generic scripting component provides routines you can
use to get instances of other scripting components when you want to use
component-specific routines.
10-4 Connecting to a Scripting Component

C H A P T E R 1 0

Scripting Components

10

S
cripting C

om
ponents

It is also possible to open an explicit connection directly with a specific scripting
component such as AppleScript:

VAR

gScriptingComponent: ComponentInstance;

{open connection to AppleScript component}

gScriptingComponent := OpenDefaultComponent(kOSAComponentType,

kAppleScriptSubtype);

The scripting component routines described in this chapter include eight groups of
optional routines that scripting components can support. If necessary, you can use the
FindNextComponent function and other Component Manager routines to find a
scripting component that supports a specific group of routines or to determine whether a
particular scripting component supports a specific group of routines.

When you call FindNextComponent, you can provide, in a component description
record (a data structure of type ComponentDescription), information about the
scripting component you wish to find. The flag bits in the componentFlags field of a
component description record provide this information. To find a scripting component
that supports a specific group of optional routines, you can specify one or more of these
constants in the componentFlags field:

CONST

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;

kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

The routines that correspond to these constants are described in “Optional Scripting
Component Routines,” which begins on page 10-46.

Note
Although the generic scripting component supports all the scripting
component routines represented by these flags, the support it can
actually provide depends on the individual components with which it
opens connections. ◆

Listing 10-1 shows how you can use these flags and the FindNextComponent function
to locate a scripting component with specific characteristics. The componentFlags field
of the component description record passed to FindNextComponent specifies the flags
kOSASupportsCompiling and kOSASupportsGetSource. Because the
componentFlagsMask field also specifies these flags, the FindNextComponent
function locates a scripting component that supports these routines, regardless of
whether or not it supports any others. The FindNextComponent function returns a
Connecting to a Scripting Component 10-5

C H A P T E R 1 0

Scripting Components

component identifier that you can then use to get more information about
the component or to open it.

Listing 10-1 Locating a scripting component that supports specific optional routines

FUNCTION MyConnectToScripting (VAR scriptingComponent: ComponentInstance)

: OSAError;

VAR

descr, descr2: componentDescription;

comp: component;

myErr: OSErr;

BEGIN

{fill in the fields of the component description record}

{first specify component type, subtype, and manufacturer}

descr.componentType := kOSAComponentType; {must be scripting component}

descr.componentSubType := OSType(0); {any OSA component matching spec}

descr.componentManufacturer := OSType(0); {don't care about manufacturer}

{specify component flags and flags mask}

descr.componentFlags := kOSASupportsCompiling + kOSASupportsGetSource;

descr.componentFlagsMask :=

kOSASupportsCompiling + kOSASupportsGetSource;

{locate and open the specified component}

comp := FindNextComponent(Component(0), descr); {0 indicates all }

{ registered components }

{ will be searched}

{check whether the found component is the generic scripting component; }

{ if so, skip it and find the next matching component}

myErr := GetComponentInfo(comp, descr2, NIL, NIL, NIL);

IF descr2.componentSubType = kOSAGenericScriptingComponentSubtype THEN

comp := FindNextComponent(comp, descr);

IF comp = 0 THEN

MyConnectToScripting := kComponentNotFound

ELSE

BEGIN

scriptingComponent := OpenComponent(comp);

IF scriptingComponent = 0 THEN

MyConnectToScripting := kComponentNotFound

ELSE

MyConnectToScripting := noErr;

END;

END;
10-6 Connecting to a Scripting Component

C H A P T E R 1 0

Scripting Components

10

S
cripting C

om
ponents

Because the generic scripting component supports all the standard scripting component
routines, the MyConnectToScripting function in Listing 10-1 checks whether the
found component is the generic scripting component and, if so, skips it. If for any reason
FindNextComponent can’t locate and open a scripting component that supports the
specified routines, MyConnectToScripting returns the application-defined constant
kComponentNotFound.

For more information about locating and opening components with specific
characteristics, see the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox.

Using Scripting Component Routines 10

The following sections describe how to use some of the standard scripting component
routines to manipulate and execute scripts from within your application. For an
overview of these routines, see “Manipulating and Executing Scripts,” which begins on
page 7-22.

The first section describes how to compile and execute source data for a script. The
remaining sections describe how you can use scripting component routines to

■ get a handle to a compiled script and save the data as a resource

■ load and execute a previously saved and compiled script

■ load, modify, recompile, and save a compiled script

■ redirect Apple events to handlers in script contexts

■ supply a resume dispatch function

■ supply an alternative active function

■ supply alternative send and create functions

■ record Apple events in compiled scripts and display equivalent source data to the user

Compiling and Executing Source Data 10
This section describes how you can use scripting component routines to obtain source
data from users, compile the source data, and execute the compiled script. To create and
execute a script using the Script Editor application, a user can type the script, then click
the Run button to execute it. Your application can provide similar capabilities.

To allow users to write a new script and then execute it, your application must use
scripting component routines to compile and execute the source data. To compile source
data in a new script with a new script ID, pass the constant kOSANullScript (rather
than an existing script ID) in the last parameter of the OSACompile function. This causes
OSACompile to return a new script ID in the same parameter.

To execute a compiled script, your application must specify, in addition to the script ID
for the compiled script, a script context: either the corresponding scripting component’s
Using Scripting Component Routines 10-7

C H A P T E R 1 0

Scripting Components

default context or a script ID for the global context created by that scripting component.
Script contexts maintain state information for the execution of scripts. Your application
can use script contexts to control the binding of variables used in scripts that it executes.
For example, if your application saves its own global context and reuses it every time a
script is executed, the binding of variables used in the script is maintained after the user
restarts the computer. If your application does not specify a script context, the
AppleScript component uses a single default context whenever it executes the script. A
scripting component’s default context binds the variables used in the script only until
the user quits the application.

To specify a scripting component’s default context, pass the constant kOSANullScript
in the third parameter of the OSAExecute function; to specify some other global context,
pass its script ID in the third parameter.

The MyDoNewScript procedure in Listing 10-2 allows a user to type a script in the
appropriate scripting language, then compiles the script, executes the compiled script
using a global context provided by the application, and displays the result to the user.

The MyDoNewScript procedure begins by calling the OSAScriptingComponentName
function to obtain the name of the scripting component specified by
gScriptingComponent. This name is passed to the application-defined function
MyGetUserScriptText.

Note
If you are using the generic scripting component, you can use the
OSAGetDefaultComponent function to get the subtype code for the
default scripting component (that is, the scripting component used by
the generic scripting component for new scripts). You can then get an
instance of the default scripting component by passing its subtype code
to OSAGetScriptingComponent. Finally, you can pass that instance to
OSAScriptingComponentName to obtain the default scripting
component’s name. For more information about the default scripting
component and routines you can use with the generic scripting
component, see “Generic Scripting Component Routines,” which begins
on page 10-84. ◆

The MyGetUserScriptText function displays the name of the scripting language to
use in a script-editing window or message box that allows the user to type and execute a
new script. After it obtains the source data for the new script, the MyDoNewScript
procedure sets the scriptID variable to kOSANullScript. The procedure then passes
the source data and scriptID to the OSACompile function. When the script ID passed
to OSACompile is kOSANullScript, OSACompile returns, in the same parameter, a
new script ID for the resulting compiled script. The MyDoNewScript procedure then
passes the new script ID to the OSAExecute function.

In addition to a component instance and the script ID for the compiled script to be
executed, OSAExecute takes a script ID for a script context and a parameter that
contains the mode flags, if any, for script execution. In Listing 10-2, the script ID passed
to OSAExecute for the script context is gContext, a global context provided by the
application. The constant kOSAModeNull in the next parameter indicates that no mode
flags are set for script execution.
10-8 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-2 A routine that compiles and executes source data

PROCEDURE MyDoNewScript;

VAR

componentName, scriptText, resultText: AEDesc;

scriptID, resultID: OSAID;

myOSAErr, ignoreErr: OSAError;

BEGIN

{get the scripting component's name so you can show }

{ the user which scripting language to use}

myOSAErr := OSAScriptingComponentName(gScriptingComponent,

componentName);

IF myOSAErr = noErr THEN

BEGIN {get the user's script text, then compile it}

MyGetUserScriptText(componentName, scriptText);

{to create a new compiled script using the user's script }

{ text, pass kOSANullScript to OSACompile as the script ID }

{ for the script to be compiled}

scriptID := kOSANullScript;

myOSAErr := OSACompile(gScriptingComponent, scriptText,

kOSAModeNull, scriptID);

ignoreErr := AEDisposeDesc(scriptText);

END;

IF myOSAErr = noErr THEN

BEGIN

{execute the script in a global context}

myOSAErr := OSAExecute(gScriptingComponent, scriptID,

gContext, kOSAModeNull, resultID);

ignoreErr := OSADispose(gScriptingComponent, scriptID);

IF myOSAErr = noErr THEN

BEGIN

{convert the script value returned by OSAExecute to }

{ text that can be displayed to the user}

myOSAErr := OSADisplay(gScriptingComponent, resultID,

typeChar, kOSAModeNull, resultText);

ignoreErr := OSADispose(gScriptingComponent, resultID);

{show result to user}

MyShowUserResult(resultText);

ignoreErr := AEDisposeDesc(resultText);

END;

END;

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;
Using Scripting Component Routines 10-9

C H A P T E R 1 0

Scripting Components
If script execution is successful, the MyDoNewScript procedure passes the script ID
for the resulting script value to the OSADisplay function and calls the
MyShowUserResult procedure to display the script value to the user. It also disposes
of the script data for the compiled script. If OSAExecute or OSACompile returns the
result code errOSAScriptError, the MyDoNewScript procedure calls the
MyGetScriptErrorInfo procedure shown in Listing 10-3, which uses
the OSAScriptError function to obtain more information about the error.

Whenever a scripting component routine returns the result code errOSAScriptError,
you can use OSAScriptError to obtain more information about the error. The second
parameter of the OSAScriptError function is a constant that specifies the kind of error
information to be returned, and the third parameter is the descriptor type for the
descriptor record in which the additional error information will be returned.

The MyGetScriptErrorInfo procedure in Listing 10-3 calls OSAScriptError
three times: once to obtain an error number for either a system error or a scripting
component error, once to obtain a text description of the error, and once to obtain
error-range information. (For more information about specifying descriptor types for
OSAScriptError, see page 10-37.) Finally, the MyGetScriptErrorInfo procedure
extracts the starting and ending positions of the error range in the source data and calls
the application-defined procedure MyIndicateError to display the error information
to the user. Note that your application is responsible for disposing of any descriptor
records that are created.

You should use the OSACompile and OSAExecute functions as shown in Listing 10-2 if
you expect the user to execute the compiled script several times or manipulate it in some
other way. If you want to compile and execute a script just one time and don’t need to
keep the compiled script in memory after it has been executed, you can use either
OSACompileExecute or OSADoScript if these functions are supported by the
scripting component you specify.

The OSACompileExecute function takes a component instance, a descriptor record for
the source data to be compiled and executed, a context ID, and a modeFlags parameter.
It executes the resulting compiled script, disposes of the compiled script, and returns the
script ID for the resulting script value.

The OSADoScript function takes a component instance, a descriptor record for source
data, a context ID, a text descriptor type, and a modeFlags parameter. It compiles and
executes the script, returns a descriptor record for the text that corresponds to the
resulting script value, and disposes of both the compiled script and the script value.
10-10 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-3 A procedure that uses OSAScriptError to get information about an execution
error

PROCEDURE MyGetScriptErrorInfo;

TYPE

OSErrPtr = ^OSErr;

OSErrHandle = ^OSErrPtr;

VAR

errorMessage: Handle;

startPos, endPos: Integer;

desc, recordDesc: AEDesc;

actualType: DescType;

actualSize: Size;

scriptErr, myErr, ignoreErr: OSErr;

myOSAErr: OSAError;

BEGIN

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorNumber, typeShortInteger,

desc);

scriptErr := OSErrHandle(desc.dataHandle)^^;

ignoreErr := AEDisposeDesc(desc);

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorMessage, typeChar, desc);

errorMessage := desc.dataHandle;

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorRange, typeOSAErrorRange,

desc);

myErr := AECoerceDesc (desc, typeAERecord, recordDesc);

ignoreErr := AEDisposeDesc(desc);

myErr := AEGetKeyPtr(recordDesc, keySourceStart,

typeShortInteger, actualType,

Ptr(@startPos), sizeOf(startPos),

actualSize);

myErr := AEGetKeyPtr(recordDesc, keySourceEnd,

typeShortInteger, actualType,

Ptr(@endPos), sizeOf(endPos),

actualSize);

ignoreErr := AEDisposeDesc(recordDesc);

MyIndicateError(scriptErr, errorMessage, startPos, endPos);

{add your own error checking}

END;
Using Scripting Component Routines 10-11

C H A P T E R 1 0

Scripting Components
Saving Script Data 10
After creating a new script (or after modifying a previously saved script), a user may
want to save it.

IMPORTANT

Your application should usually save scripts as script data rather
than source data, so that it can reload and execute the data without
compiling it. ▲

Before saving script data, your application can use the OSAStore function to obtain a
handle to the data. The OSAStore function takes four input parameters: a component
instance that identifies a connection with a scripting component, a script ID for the script
data to be stored, a desired descriptor type for the descriptor record to be returned, and a
parameter that contains mode flags for use by individual scripting components. It
returns a descriptor record for the script data in the fifth parameter.

The sections that follow describe the storage formats used by OSAStore and the
resource and file types for script data.

Storage Formats for Script Data 10

The descriptor record returned by OSAStore can be either a generic storage descriptor
record or a component-specific storage descriptor record:

■ A generic storage descriptor record is a special kind of descriptor record of type
typeOSAGenericStorage that can be used to store script data created by any
scripting component.

■ A component-specific storage descriptor record is a descriptor record whose
descriptor type is the scripting component subtype value for the scripting component
that created the script data.

Figure 10-1 illustrates the logical arrangement of a generic storage descriptor
record. The descriptor type for a generic storage descriptor record is always
typeOSAGenericStorage, and the data referred to by the descriptor record’s
handle is always followed by a trailer containing the subtype value for the scripting
component that created the script data.

Figure 10-1 A generic storage descriptor record

Descriptor type:

Data:

typeOSAGenericStorage

Script data

Trailer
10-12 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Figure 10-2 illustrates the logical arrangement of a component-specific storage descriptor
record. The descriptor type for a component-specific storage descriptor record is
the subtype value for the scripting component that created the script data, and the data
referred to by the descriptor record’s handle consists of the script data only, with no
trailer.

Figure 10-2 A component-specific storage descriptor record

In most cases it is safest to request a handle to script data in the form of a generic storage
descriptor record, regardless of the scripting component subtype you pass to the
OSAStore function.

If the presence of the trailer in a generic storage descriptor record does not interfere with
the script data, that data may be used for a wide variety of purposes. For example, if an
application uses script IDs to refer to XCMDs, it can call OSAStore with a desired type
of typeOSAGenericStorage. The data for the resulting descriptor record consists of
the XCMD data followed by a trailer indicating that the script data was created by a
scripting component that executes XCMDs. Because the trailer does not interfere with
the use of the data, the data may actually be used as an XCMD. Thus, an application can
save XCMDs as script data and load and execute them after it has opened a connection
with the generic scripting component.

However, in some cases adding a trailer to script data may interfere with script
execution. For example, suppose the data for a generic storage descriptor record consists
of sound data. If a scripting component attempts to play the data from beginning to
end as sound data, the trailer will interfere with the resulting sound. In this case, an
application must open an explicit connection with a scripting component that can play
sounds before saving the data, and then call OSAStore with a desired type that consists
of the subtype for that scripting component.

Resource and File Types for Script Data 10

When the OSAStore function returns a descriptor record of the specified type, your
application can save the descriptor record’s data as a resource of type 'scpt' or write it
to the data fork of a document.

The generic scripting component subtype, the generic storage descriptor type, and the
resource type for stored script data all have the same value, though they serve different
purposes.

Descriptor type: Scripting component subtype
(for example, typeASStorage)

Data: Script data
Using Scripting Component Routines 10-13

C H A P T E R 1 0

Scripting Components
CONST

kOSAGenericScriptingComponentSubtype = 'scpt';

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

typeOSAGenericStorage = kOSAScriptResourceType;

If you want to save script data as a compiled script file or as a script application, save it
as a resource of type 'scpt'. The Script Editor application uses resource ID 128, but you
can use any valid resource ID. Save the script comment that accompanies the script data
as resources of type 'TEXT' and 'styl' with resource ID 1128. (See Figure 7-1 on
page 7-6 for an example of a script comment.) Each script file can contain only one script
and one script comment. The file type for a compiled script file should be 'osas'.

A script application has the file type 'APPL'. If a script application has the creator
signature 'aplt', a user can initiate execution of the script it contains by opening it
from the Finder. If a script application has the creator signature 'dplt' and contains a
user-defined handler for the Open Documents event, a user can initiate execution of the
handler by dragging a document or folder icon over the script application’s icon. For
more information about the file formats used for script files, see “Script Editors and
Script Files” on page 7-6.

Script applications must include a 'SIZE' resource and two 'CODE' resources with
resource IDs 0 and 1. These resources should be identical to those in the sample script
application files provided by Apple Computer, Inc. (except that you can change the size
of the memory partition). The 'CODE' resources contain bootstrap code that instantiates
the script application component. The script application component, which is registered
with the Component Manager at startup, provides the code that loads the script to be
run and passes the resulting script ID to the appropriate component.

When the user opens a script application from the Finder, the Finder sends the script
application an Open Application event. If the scripting component that created the script
supports OSAExecuteEvent, the script application component passes the Open
Application event and the script ID for the script to OSAExecuteEvent. If the scripting
component doesn’t support OSAExecuteEvent, the script application component
passes the script ID to OSAExecute.

Loading and Executing Script Data 10
Figure 7-4 on page 7-13 illustrates how an application might execute a script whenever
the user presses the Tab key after entering a customer’s name in the “Customer Name”
field of an electronic form. To execute a script in response to some user action, your
application must be able to load and execute the script data for a compiled script.

This section describes how to load and execute a previously compiled and saved script.
The next section, “Modifying and Recompiling a Compiled Script,” describes how to
allow a user to modify a compiled script.
10-14 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
The OSALoad function takes three input parameters: a component instance that
identifies a connection with a scripting component; a descriptor record that contains a
handle to the script data to be loaded; and a parameter that contains flags for use by
individual scripting components. The function returns, in the fourth parameter, a script
ID for the script data.

When your application calls OSALoad with a component instance that identifies a
connection with the generic scripting component, the generic scripting component in
turn uses a connection with the scripting component that created the script data (if that
component is registered with the Component Manager on the local computer). If the
descriptor record passed to OSALoad is of type typeOSAGenericStorage, the generic
scripting component uses the trailer that follows the script data to determine
which scripting component to open a connection with. If the descriptor record’s type is
the subtype value for some other scripting component, the generic scripting component
does not look for a trailer and uses the descriptor type to identify the scripting
component.

When your application calls OSALoad with a component instance that identifies a
connection to any scripting component other than the generic scripting component, that
component can load script data only if it was saved as the data for a descriptor record
whose descriptor type matches the scripting component’s subtype. In this case, however,
your application easily can take advantage of additional routines and other special
capabilities provided by that scripting component.

It is also possible to call OSALoad using the generic scripting component, then use
generic scripting component routines to identify the specific component associated with
the loaded script. This allows you to use component-specific routines with a script
originally loaded by the generic scripting component. For information about how to do
this, see “Routines Used by Scripting Components,” which begins on page 10-92.

The OSALoad function returns a script ID for the loaded script data. The generic
scripting component always associates the returned script ID with the scripting
component that created the script. In this way, it can use a connection with
that component again whenever the client application passes the returned script ID
to other scripting component routines.

Listing 10-4 shows a procedure that loads and executes a script. The
MyLoadAndExecute procedure takes a handle to script data that was previously saved
using a generic storage descriptor record, obtains a script ID for the equivalent compiled
script, executes the compiled script in the default context, and disposes of both the
compiled script and the resulting script value ID. If the OSAExecute function returns a
script execution error, MyLoadAndExecute obtains further information about the error
and displays it to the user.
Using Scripting Component Routines 10-15

C H A P T E R 1 0

Scripting Components
Listing 10-4 A routine that loads and executes script data previously saved using a generic
storage descriptor record

PROCEDURE MyLoadAndExecute (scriptData: Handle);

VAR

scriptDesc: AEDesc;

scriptID, resultID: OSAID;

scriptText: AEDesc;

myOSAErr, ignoreErr: OSAError;

BEGIN

{load the script data}

scriptDesc.descriptorType := typeOSAGenericStorage;

scriptDesc.dataHandle := scriptData;

myOSAErr := OSALoad(gScriptingComponent, scriptDesc,

kOSAModeNull, scriptID);

IF myOSAErr = noErr THEN

BEGIN

{execute the resulting compiled script in the default }

{ context}

myOSAErr := OSAExecute(gScriptingComponent, scriptID,

kOSANullScript, kOSAModeNull,

resultID);

ignoreErr := OSADispose(gScriptingComponent, scriptID);

ignoreErr := OSADispose(gScriptingComponent, resultID);

END;

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;

The OSALoad function in Listing 10-4 takes a component instance, a generic storage
descriptor record for the script data to be loaded, and a parameter that contains the
mode flags, if any, for loading the script. In this case the constant kOSAModeNull
indicates that no mode flags are set. The OSALoad function returns a script ID for the
resulting compiled script, which the MyLoadAndExecute procedure then passes to the
OSAExecute function.

In addition to a component instance and the script ID for the compiled script to be
executed, the OSAExecute function takes a script ID for a context and a parameter that
contains the mode flags, if any, for script execution. In Listing 10-4, the script ID passed
to OSAExecute for the script context is kOSANullScript, indicating that the scripting
component can use its default context to bind any variables. The constant
kOSAModeNull in the next parameter indicates that no mode flags are set for script
execution.
10-16 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
After disposing of the compiled script and the resulting script value,
MyLoadAndExecute checks the result code returned by OSAExecute. If it is
errOSAScriptError, MyLoadAndExecute calls the MyGetScriptErrorInfo
procedure (see Listing 10-3 on page 10-11), which in turn uses the OSAScriptError
function to obtain more information about the error.

You can use the OSALoad and OSAExecute functions as shown in Listing 10-4 if you
expect the user to execute the compiled script several times or manipulate it in some
other way. If you want to load and execute a script just one time and don’t need to
keep the compiled script in memory after it has been executed, you can use
OSALoadExecute instead of OSALoad, OSAExecute, and OSADispose. This function
takes a component instance, a descriptor record for the script data to be loaded and
executed, a context ID, and a modeFlags parameter. The OSALoadExecute function
executes the resulting compiled script, disposes of the compiled script, and returns the
script ID for the resulting script data.

Modifying and Recompiling a Compiled Script 10
In addition to loading and executing a previously compiled and saved script as
described in the previous section, your application can use the scripting component
routines described in this section to decompile a compiled script, display the equivalent
source data to users for editing, and recompile the source data after editing is completed.
For example, if a user wants to change the script shown in Figure 7-4 on page 7-13 so
that it refers to some other database or looks up other information in addition to the
customer’s address, the forms application can use scripting component routines to
display the compiled script to the user and recompile it after the user has modified it.

You can use the OSAGetSource function to obtain the source data for a compiled script.
The OSAGetSource function takes a component instance, a script ID for the compiled
script, and the desired type of the resulting descriptor record. If you specify a component
instance that identifies a connection with the generic scripting component, you can use
OSAGetSource to get the source data for any compiled script created by a scripting
component that is registered with the Component Manager on the local computer. If you
specify a component instance that identifies an explicit connection with a scripting
component, you can use OSAGetSource only to get the source data for scripts that were
compiled by that scripting component.

The MyEditGenericScript procedure in Listing 10-5 shows how you can use the
OSAGetSource function with a component instance that identifies a connection to the
generic scripting component. The MyEditGenericScript function gets the source
data for a compiled script, allows the user to edit it, and recompiles the script so the
original script ID refers to the recompiled script data.
Using Scripting Component Routines 10-17

C H A P T E R 1 0

Scripting Components
Listing 10-5 A routine that displays a compiled script for editing and recompiles it

PROCEDURE MyEditGenericScript (scriptID: OSAID);

VAR

scriptText: AEDesc;

myOSAErr: OSAError;

ignoreErr: OSErr;

BEGIN

{first get the source data}

myOSAErr := OSAGetSource(gScriptingComponent, scriptID,

typeChar, scriptText);

{call the application's primitive text editor}

MyEditText(scriptText.dataHandle);

{now compile the edited script data in scriptText using }

{ the scripting component that originally created it; }

{ passing the original script ID to OSACompile causes }

{ OSACompile to replace the original script with the new one}

myOSAErr := OSACompile(gScriptingComponent, scriptText,

kOSAModeNull, scriptID);

ignoreErr := AEDisposeDesc(scriptText);

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;

After obtaining the source data for the script, the MyEditGenericScript procedure
calls the MyEditText function, which displays the application’s own primitive text
editor and allows the user to edit the source data. After the user has finished editing the
script, MyEditGenericScript passes the edited text and the script ID for the original
compiled script to the OSACompile function, which updates the script ID so that it
refers to the modified and recompiled script. The kOSAModeNull constant passed in the
third parameter of OSACompile indicates that no mode flags are specified for
compilation.

If the OSACompile function returns errOSAScriptError, the
MyEditGenericScript procedure calls the MyGetScriptErrorInfo procedure
shown in Listing 10-3 on page 10-11 to obtain information about the error.

After script data has changed as shown in Listing 10-5, your application should save the
modified script data. Listing 10-6 shows how this could be done from a function that
loads script data, calls the MyEditGenericScript procedure shown in Listing 10-5 to
modify and recompile the script, then saves the modified script data.
10-18 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-6 A function that loads and modifies script data, then saves it using a generic
storage descriptor record

FUNCTION MyLoadAndModifyScriptData (resourceID: Integer)

: OSAError;

VAR

scriptDesc: AEDesc;

storageDescRec: AEDesc;

scriptID: OSAID;

myOSAErr: OSAError;

ignoreErr: OSErr;

myHndl: Handle;

BEGIN

scriptDesc.descriptorType := typeOSAGenericStorage;

scriptDesc.dataHandle := GetResource(kOSAScriptResourceType,

resourceID);

myOSAErr := OSALoad(gGenericScriptingComponent, scriptDesc,

kOSAModeNull, scriptID);

MyEditGenericScript (scriptID);

myOSAErr := OSAStore(gScriptingComponent, scriptID,

typeOSAGenericStorage, kOSAModeNull,

storageDescRec);

MyWriteResource(storageDescRec.dataHandle, resourceID);

ignoreErr := AEDisposeDesc(scriptDesc);

ignoreErr := AEDisposeDesc(storageDescRec);

END;

Using a Script Context to Handle an Apple Event 10
The preceding sections describe how you can load, compile, modify, and execute scripts
under circumstances determined by your application. Your application can use these
techniques to associate a script with an Apple event object or application object and
execute the script when the user manipulates the object in some way.

Another way to execute a script is to use a script context (called a script object in
AppleScript) to handle an Apple event. To do this, your application passes both the
event and the script context to OSAExecuteEvent or OSADoEvent. You can also
associate script contexts with Apple event objects—that is, objects in your application
that can be identified by object specifier records. If an Apple event acts on an object with
which a script context is associated, your application attempts to use the script context to
handle the Apple event.

For example, Figure 7-7 on page 7-26 shows how you can use a general Apple event
handler to provide initial processing for all Apple events received by your application.
Listing 10-7 shows an example of such a handler.
Using Scripting Component Routines 10-19

C H A P T E R 1 0

Scripting Components
You install a general Apple event handler like the one in Listing 10-7 in your
application’s special handler dispatch table using the constant keyPreDispatch:

myErr := AEInstallSpecialHandler(keyPreDispatch,

 @MyGeneralAppleEventHandler,

 FALSE);

When it receives an Apple event, the MyGeneralAppleEventHandler function in
Listing 10-7 first extracts the event’s direct parameter. It then calls another
application-defined function, MyGetAttachedScript, which checks whether the direct
parameter contains an object specifier record, calls AEResolve to locate the
corresponding Apple event object, and returns a script ID for any script context attached
to that object.

If a script context is associated with the object, MyGeneralAppleEventHandler passes
the script context’s script ID and the Apple event to the OSADoEvent function.
Otherwise, MyGeneralAppleEventHandler returns errAEEventNotHandled,
which causes the Apple Event Manager to look for an appropriate handler in the
application’s Apple event dispatch table or elsewhere using standard Apple event
dispatching.

The OSADoEvent function in Listing 10-7 takes a component instance that identifies a
connection with the generic scripting component. (If it has not already done so, the
generic scripting component in turn opens a connection with the scripting component
that created the script context.) In addition to the component instance, the Apple event,
and the script ID for the script context, OSADoEvent takes a parameter that indicates no
mode flags are set and a VAR parameter that contains any reply Apple event returned as
a result of handling the event.

If the scripting component determines that a script context can’t handle the specified
event (for example, if an AppleScript script context doesn’t include statements that
handle the event), OSADoEvent returns errAEEventNotHandled. If OSADoEvent
attempts to use the script context to handle the event, the function returns a reply event
that contains either the resulting script value or, if an error occurred, information about
the error.

The script context shown in Figure 7-7 contains an AppleScript handler for the Move
event. Such handlers exist only as AppleScript statements in a script context and do not
have corresponding entries in an application’s Apple event dispatch table. However, a
handler in a script context can modify or override the actions performed by an
application’s standard Apple event handlers installed in its Apple event dispatch table.
The next section, “Supplying a Resume Dispatch Function,” describes how this works.
10-20 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-7 A general Apple event handler that uses the OSADoEvent function

FUNCTION MyGeneralAppleEventHandler (event: AppleEvent;

 reply: AppleEvent;

 refcon: LongInt): OSErr;

VAR

dp, resultDesc: AEDesc;

scriptID: OSAID;

myErr, ignoreErr: OSErr;

myOSAErr: OSAError;

BEGIN

{get the direct parameter}

myErr := AEGetParamDesc(event, keyDirectObject, typeWildCard,

dp);

{get script ID for script context attached to object }

{ specified in direct parameter}

IF MyGetAttachedScript(dp, scriptID) THEN

{execute the handler in the script context handler and, if }

{ necessary, the default Apple event handler}

myOSAErr := OSADoEvent(gScriptingComponent, event,

scriptID, kOSAModeNull, reply)

ELSE

myOSAErr := errAEEventNotHandled;

ignoreErr := AEDisposeDesc(dp);

MyGeneralAppleEventHandler := OSErr(myOSAErr);

END;

For more information about OSADoEvent, OSAExecuteEvent, and other routines
related to the use of script contexts to handle Apple events, see page 10-71.

Supplying a Resume Dispatch Function 10
Every scripting component calls a resume dispatch function during script execution if
the script contains the equivalent of an AppleScript continue statement within an
event handler. (See Figure 7-7 on page 7-26 for an example.) The resume dispatch
function dispatches the event specified by the script directly to the application’s standard
handler for that event.
Using Scripting Component Routines 10-21

C H A P T E R 1 0

Scripting Components
Thus, if the script context passed to OSADoEvent in Listing 10-7 specifies that the event
passed in the event parameter should be continued—that is, handled by the
application’s standard Apple event handler for that event—the scripting component
passes the event to the resume dispatch function currently set for that instance of the
scripting component. The resume dispatch function attempts to redispatch the event to
the handler installed in the application’s Apple event dispatch table for that event. If the
call to the resume dispatch function is successful, execution of the script proceeds from
the point at which the resume dispatch function was called. If the call to the resume
dispatch function is not successful, OSADoEvent returns errAEEventNotHandled in
the keyErrorNumber parameter of the reply event. (Other routines that execute scripts,
such as OSAExecute or OSAExecuteEvent, return errOSAScriptError in this
situation, and a subsequent call to OSAScriptError with kOSAErrorNumber in the
selector parameter returns errAEEventNotHandled.)

Some scripting components may provide routines that allow your application to set or
get the pointer to the resume dispatch function used by a specified instance of a scripting
component.

TYPE AEHandlerProcPtr = EventHandlerProcPtr;

A resume dispatch function takes the same parameters as an Apple event handler.

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent;

 reply: AppleEvent; refCon: LongInt)

:OSErr;

To set the resume dispatch function for a scripting component, call
OSASetResumeDispatchProc; to get the current dispatch function for a
scripting component, call OSAGetResumeDispatchProc. If you do not set a
resume dispatch function for a scripting component, it uses standard Apple event
dispatching to dispatch the event, starting with the special handler dispatch table.

You can install a resume dispatch function using the OSASetResumeDispatchProc
function. However, if you are using a general handler similar to that in Listing 10-7 on
page 10-21 and you can rely on standard Apple event dispatching to dispatch the event
correctly, you don’t need to provide a resume dispatch function. Instead, you can
specify kOSAUseStandardDispatch as the resume dispatch function and the
constant kOSADontUsePhac as the reference constant when you call
OSASetResumeDispatchProc.

myErr := OSASetResumeDispatchProc(gScriptingComponent,

kOSAUseStandardDispatch, kOSADontUsePhac);

This causes the Apple Event Manager to redispatch events that would otherwise be
passed to a resume dispatch function using standard Apple event dispatching—except
that the Apple Event Manager bypasses your application’s special handler dispatch table
and thus won’t call your general Apple event handler recursively.
10-22 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
When a scripting component calls your resume dispatch function, the A5 register is set
up for your application, and your application is the current process.

Supplying an Alternative Active Function 10
Every scripting component calls an active function periodically during script
compilation and execution. All scripting components support routines that allow your
application to set or get the pointer to the active function used by that scripting
component.

TYPE OSAActiveProcPtr = ProcPtr;

A pointer of type OSAActiveProcPtr points to a MyActiveProc function that takes a
reference constant as a parameter.

FUNCTION MyActiveProc(refCon: LongInt): OSErr;

If you want your application to get time periodically during script compilation and
execution for tasks such as spinning the cursor or checking for system-level errors, you
should provide an alternative active function that performs those tasks. To set an
alternative active function, call OSASetActiveProc; to get the current active function,
call OSAGetActiveProc.

If you do not set an alternative active function for a scripting component, it uses its own
default active function. A scripting component’s default active function allows a user to
cancel script execution by pressing Command-period and calls WaitNextEvent to give
other processes time.

Your alternative active function can in turn call the scripting component’s default active
function. To do this, your application can call OSAGetActiveProc before calling
OSASetActiveProc to set the alternative active function, then call the default active
function directly when necessary. Some scripting components may also supply
building-block routines that your application can use to construct an alternative active
function.

Multithreaded applications may need to give time to other threads while one thread is
waiting for the scripting component to complete compilation or execution of a script.
You can provide an alternative send function and an idle function that allows threads to
be switched (see “Alternative Send Functions” on page 10-25). However, the Apple
Event Manager calls an idle function only after an Apple event has been sent, whereas a
scripting component calls an active function at regular intervals throughout script
compilation and execution. Thus, to give time to multiple threads, you may want to
provide an alternative active function in addition to an alternative send function and an
idle function.

When a scripting component calls your alternative active function, the A5 register is set
up for your application, and your application is the current process.
Using Scripting Component Routines 10-23

C H A P T E R 1 0

Scripting Components
Supplying Alternative Create and Send Functions 10
Every scripting component calls a create function whenever it creates an Apple event
during script execution, and a send function whenever it sends an Apple event.
Scripting components that use Apple events during script compilation, including
AppleScript, also call create and send functions during compilation.

Some scripting components may provide routines that allow your application to set or
get the pointers to the create and send functions used by that scripting component. If
your application does not set alternative send and create functions, the scripting
component uses the standard Apple Event Manager functions AESend and
AECreateAppleEvent, which it calls with its own default parameters.

A scripting component that supports the routines you can use to set or get alternative
create and send functions has the kOSASupportsAESending bit set in its component
description record. For more information about using the Component Manager to find a
scripting component that supports specific routines, see “Connecting to a Scripting
Component,” which begins on page 10-3.

When a scripting component calls your alternative send or create function, the A5
register is set up for your application, and your application is the current process.

Alternative Create Functions 10

A scripting component that allows your application to set or get its create function uses a
pointer to identify the current create function.

TYPE AECreateAppleEventProcPtr = ProcPtr;

A pointer of type AECreateAppleEventProcPtr points to a MyAECreateProc
function that takes the same parameters as the AECreate function plus a reference
constant.

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent;

 refCon: LongInt): OSErr;

Your application can use an alternative create function to gain control over the creation
and addressing of Apple events. This can be useful, for example, if your application
needs to add its own transaction code to the event.
10-24 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
To set an alternative create function, call OSASetCreateProc; to get the current
create function, call OSAGetCreateProc. If you do not set an alternative create
function for a scripting component, it uses the standard Apple Event Manager function
AECreateAppleEvent, which it calls with its own default parameters.

Your alternative create function can in turn call the scripting component’s default create
function. To do this, your application can call OSAGetCreateProc before calling
OSASetCreateProc to set the alternative create function, then call the default create
function directly when necessary.

Alternative Send Functions 10

A scripting component that allows your application to set or get its send function uses a
pointer to identify the current send function.

TYPE AESendProcPtr = ProcPtr;

A pointer of type AESendProcPtr points to a MyAESendProc function that takes the
same parameters as the AECreate function plus a reference constant.

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent;

 sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt;

 idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr;

 refCon: LongInt): OSErr;

Your application can use an alternative send function to perform almost any action
instead of or in addition to sending Apple events. For example, it can modify Apple
events before sending them, save copies of Apple events before sending them, or
substitute some other specialized mechanism for sending Apple events.

To set an alternative send function, call OSASetSendProc; to get the current send
function, call OSAGetSendProc. If you do not set an alternative send function for a
scripting component, it uses the standard Apple Event Manager function AESend, which
it calls with its own default parameters.

Your alternative send function can in turn call the scripting component’s default send
function. To do this, your application can call OSAGetSendProc before calling
OSASetSendProc to set the alternative send function, then call the default send
function directly when necessary.
Using Scripting Component Routines 10-25

C H A P T E R 1 0

Scripting Components
After a scripting component successfully calls a send function, the scripting component
proceeds with script execution. If a call to a send function is not successful, the scripting
component returns errOSAScriptError, and a subsequent call to OSAScriptError
with kOSAErrorNumber in the selector parameter returns
errAEEventNotHandled.

Multithreaded applications need to allow other threads to execute while one thread is
waiting for the response to an Apple event. You can accomplish this by supplying an idle
function for your alternative send function that allows threads to be switched and by
setting the kAEQueueReply flag in the sendMode parameter of the send function.
However, if the call to the send function specifies the kAENoReply flag, be careful not to
override it, because the user may have explicitly requested that no reply be returned or
the 'aete' resource may indicate that the application cannot reply to that event.

Note
The Apple Event Manager calls an idle function only after an Apple
event has been sent, whereas a scripting component calls an active
function at regular intervals throughout script compilation and
execution. Thus, to give time to multiple threads, you may want to
provide an alternative active function in addition to an alternative send
function and an idle function. ◆

Some scripting components (including the current version of AppleScript) can execute
only one script at a time per component instance. For this reason, a multithreaded
application must provide a separate component instance for each script that it compiles
or executes while it is also compiling or executing other scripts.

You should follow the rules for setting sendMode flags described in the chapter
“Creating and Sending Apple Events” in this book when you set flags for the sendMode
parameter of an alternative send function. Keep these additional guidelines in mind:

■ If the target application is on the local computer, you can set the kAECanInteract
and kAECanSwitchLayer flags.

■ If the target application is on the local computer and the user has requested no reply,
set the kAENoReply, kAECanInteract, and kAECanSwitchLayer flags.

■ If the target application is on a remote computer, set the kAENeverInteract flag
and do not set the kAECanSwitchLayer flag.

Recording Scripts 10
If you want your application to record Apple events in the form of a compiled script,
or if you are writing a script-editing application like Script Editor, you can use the
OSAStartRecording and OSAStopRecording functions to start and stop recording
into a specified script ID on a single computer. Both functions take a component
instance and a script ID for a compiled script. When your application calls
OSAStartRecording, the scripting component identified by the component instance
10-26 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
sends a Start Recording event to your application and installs a Receive Recordable
Event handler in your application’s Apple event dispatch table. When your application
calls OSAStopRecording, the scripting component removes the handler.

An application acting as a recording process in this manner should not provide a
handler for the Start Recording event. Instead, the Apple Event Manager receives
the event and responds by sending a Recording On event to all running processes
on the local computer. Thereafter, the Apple Event Manager sends copies of
subsequent recordable events to the recording process, whose previously installed
Receive Recordable Event handler, much like a handler for event class typeWildCard
and event ID typeWildCard, handles those recordable events by recording them in the
compiled script specified in the call to OSAStartRecording.

Whenever the Receive Recordable Event handler receives a recordable event, the
scripting component sends your application a Recorded Text event. The Recorded Text
event contains the decompiled source data for the recorded event in the form of
styled text.

If your want your application to display the source data for recorded events as they are
recorded, you must provide a handler for the Recorded Text event.

For more information about the Receive Recordable Event handler and Apple event
recording, see “How Apple Event Recording Works,” which begins on page 9-35.

Writing a Scripting Component 10

It is possible to create scripting components that execute a variety of scripts, including
scripts that can be “run” in some sense but do not consist of statements in a scripting
language. For example, script data can consist of an XCMD or even sound data that the
appropriate scripting component can trigger or play back when it executes the script (see
“Storage Formats for Script Data,” which begins on page 10-12).

Recorded Text—append styled text to script editor window

Event class kOSASuite

Event ID kOSARecordedText

Required parameter

Keyword: keyDirectObject

Descriptor type: typeStyledText or any other text descriptor type

Data: Decompiled source data for recorded event

Description Sent by a scripting component to a recording process for each
event recorded after a call to OSAStartRecording
Writing a Scripting Component 10-27

C H A P T E R 1 0

Scripting Components
If you are developing a scripting component, you should read the instructions for
creating components in the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox. Every scripting component should also

■ Provide a component name in the scripting component’s component resource that
will make sense when displayed to users.

■ Support the standard scripting component routines described in “Required Scripting
Component Routines,” which begins on page 10-30.

■ Support some, all, or none of the optional scripting component routines, as
appropriate for the tasks to be performed by the scripting component. These routines
are described in “Optional Scripting Component Routines,” which begins on
page 10-46.

■ Use the three OSA routines OSAGetStorageType, OSAAddStorageType, and
OSARemoveStorageType to inspect, add, or remove the trailers appended to script
data in generic storage descriptor records. These routines are described in
“Manipulating Trailers for Generic Storage Descriptor Records,” which begins on
page 10-92.

■ Send the Get AETE event when necessary. This event is described in “Handling the
Get AETE Event,” which begins on page 8-23.

Scripting Components Reference 10

This section describes the standard scripting component data structures and routines
your application can use to manipulate and execute scripts. This section also describes
additional routines provided by the AppleScript scripting component and three routines
called by scripting components.

The first section, “Data Structures,” describes the principal data types used by scripting
component routines. “Required Scripting Component Routines,” which begins on
page 10-30, describes the standard scripting component routines that all scripting
components must support. “Optional Scripting Component Routines,” which begins on
page 10-46, describes additional standard scripting component routines that scripting
components are not required to support.

Your application can use the Component Manager to find a scripting component that
supports specific optional routines or to determine whether a particular scripting
component supports a specific group of routines. For information about how to do this,
see “Connecting to a Scripting Component,” which begins on page 10-3.

“AppleScript Component Routines,” which begins on page 10-80, describes additional
routines supported by the AppleScript component. “Generic Scripting Component
Routines” which begins on page 10-84, describes routines you can use to get instances of
specific components and perform other useful tasks when you are using multiple
scripting components. “Routines Used by Scripting Components,” which begins on
page 10-92, describes three routines that all scripting components can use to manipulate
trailers for generic storage descriptor records.
10-28 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Data Structures 10
This section describes the principal data structures and Component Manager type codes
used by the standard scripting component routines. Data structures used by individual
routines are described with the appropriate routines in the sections that follow.

The Component Manager type code for components that support the standard
scripting component routines is 'osa ', and the subtype code for the generic scripting
component is 'scpt'.

CONST

kOSAComponentType = 'osa ';

kOSAGenericScriptingComponentSubtype = 'scpt';

Because all results returned by the Component Manager are of type ComponentResult
(a long integer), scripting components also define this type for result codes.

TYPE

OSAError = ComponentResult;

Scripting components keep track of script data in memory by means of script IDs of type
OSAID.

TYPE OSAID = LongInt;

A scripting component assigns a script ID when it creates the associated script data (that
is, a compiled script, a script value, a script context, or other kinds of script data
supported by a scripting component) or loads it into memory. The scripting routines that
create, load, compile, and execute scripts all return script IDs, and your application must
pass valid script IDs to the other routines that manipulate scripts. A script ID remains
valid until a client application calls OSADispose to reclaim the memory used for the
corresponding script data.

If the execution of a script does not result in a value, OSAExecute returns the constant
kOSANullScript as the script ID. If a client application passes kOSANullScript to
the OSAGetSource function instead of a valid script ID, the scripting component should
display a null source description (possibly an empty text string). If a client application
passes kOSANullScript to OSAStartRecording, the scripting component creates a
new compiled script for editing or recording.

CONST kOSANullScript = 0;
Scripting Components Reference 10-29

C H A P T E R 1 0

Scripting Components
Required Scripting Component Routines 10
This section describes the routines that all scripting components must support. Your
application can use these routines to save and load script data, execute and dispose of
scripts, get script information, and manipulate the active function. “Optional Scripting
Component Routines,” which begins on page 10-46, describes additional routines your
application can use with scripting components that support them.

Saving and Loading Script Data 10

The OSAStore function takes a script ID and returns a copy of the corresponding script
data in the form of a storage descriptor record. You can then save the script data as a
resource or write it to the data fork of a document. The OSALoad function takes script
data in a storage descriptor record and returns a script ID.

OSAStore 10

You can use the OSAStore function to get a handle to script data in the form of a storage
descriptor record.

FUNCTION OSAStore(scriptingComponent: ComponentInstance;

scriptID: OSAID;

desiredType: DescType;

modeFlags: LongInt;

VAR resultingScriptData: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID
The script ID for the script data for which to obtain a data handle.

desiredType
The desired type of the descriptor record to be returned. If you want to
store the script data in the form used by a generic storage descriptor
record, specify typeOSAGenericStorage.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To indicate that only the
minimum script data required to run the script should be returned, pass
kOSAModePreventGetSource in this parameter. (In this case the script
data returned is not identical to the compiled script data and can’t be
used to generate source data.) If the scriptID parameter identifies a
script context, you can pass kOSAModeDontStoreParent in this
parameter to store the script context without storing its parent context.

resultingScriptData
The resulting descriptor record.
10-30 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

The OSAStore function writes script data to a descriptor record so that the data can later
be saved in a resource or written to the data fork of a document. You can then reload the
data for the descriptor record as a compiled script (although possibly with a different
script ID) by passing the descriptor record to OSALoad.

If you want the returned script data to be as small as possible and you are sure
that you won’t need to display the source data to the user, specify the
kOSAModePreventGetSource flag in the modeFlags parameter. If the scriptID
parameter identifies a script context and you don’t want the returned script data to
include the associated parent context, specify the kOSAModeDontStoreParent flag in
the modeFlags parameter.

The desired type is either typeOSAGenericStorage (for a generic storage descriptor
record) or a specific scripting component subtype value (for a component-specific
storage descriptor record).

To store either a generic storage descriptor record or a component-specific storage
descriptor record with your application’s resources, use 'scpt' as the resource type.
The generic scripting component subtype, the generic storage descriptor type, and the
resource type for stored script data all have the same value, though they serve different
purposes.

CONST

kOSAGenericScriptingComponentSubtype = 'scpt';

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

typeOSAGenericStorage = kOSAScriptResourceType;

RESULT CODES

SEE ALSO

For more information about storage formats for script data, see “Saving Script Data” on
page 10-12.

For an example of the use of OSAStore, see Listing 10-6 on page 10-19.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Desired type not supported by this

scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-31

C H A P T E R 1 0

Scripting Components
OSALoad 10

You can use the OSALoad function to load script data.

FUNCTION OSALoad(scriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 modeFlags: LongInt;

 VAR resultingScriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
The descriptor record containing the script data to be loaded.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To indicate that only the
minimum script data required to run the script should be loaded, pass
kOSAModePreventGetSource in this parameter.

resultingScriptID
The returned script ID for the compiled script.

DESCRIPTION

The OSALoad function loads script data and returns a script ID. The generic scripting
component uses the descriptor record in the scriptData parameter to determine which
scripting component should load the script. If the descriptor record is of type
typeOSAGenericStorage, the generic scripting component uses the trailer at the end
of the script data to identify the scripting component. If the descriptor record’s type is
the subtype value for another scripting component, the generic scripting component
uses the descriptor type to identify the scripting component.

If you want the script ID returned by OSALoad to identify only the minimum script data
required to run the script and you are sure that you won’t need to display the source
data to the user, specify the kOSAModePreventGetSource flag in the modeFlags
parameter.

Scripting components other than the generic scripting component can load script data
only if it has been saved in a descriptor record whose descriptor type matches the
scripting component’s subtype.

Script data may change after it has been loaded—for example, if your application allows
the user to edit a script’s source data. To test whether script data has been modified, pass
its script ID to OSAGetScriptInfo. If it has changed, you can call OSAStore again to
obtain a handle to the modified script data and save it.
10-32 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

SEE ALSO

For more information about the way scripting components interpret script data, see
“Saving Script Data” on page 10-12.

For examples of the use of OSALoad, see Listing 10-4 on page 10-16 and Listing 10-6 on
page 10-19.

Executing and Disposing of Scripts 10

To execute a script, your application must first obtain a valid script ID for a compiled
script or script context. You can use either the OSALoad function described in the
preceding section or the optional OSACompile function described on page 10-48 to
obtain a script ID.

The OSAExecute function takes a script ID for a compiled script or script context and
returns a script ID for a script value. The OSADisplay function converts a script value
to text that your application can later display to the user. If the OSAExecute function
returns errOSAScriptError, you can use the OSAScriptError function to get more
information about the error.

When your application no longer needs the script data associated with a specific script
ID, you can use the OSADispose function to release the memory the script data occupies.

OSAExecute 10

You can use the OSAExecute function to execute a compiled script or a script context.

FUNCTION OSAExecute(scriptingComponent: ComponentInstance;

 compiledScriptID: OSAID;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errOSACorruptData –1702 Corrupt data
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Script data not for this scripting

component
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-33

C H A P T E R 1 0

Scripting Components
compiledScriptID
The script ID for the compiled script to be executed.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

DESCRIPTION

The OSAExecute function executes the compiled script identified by the
compiledScriptID parameter, using the script context identified by the contextID
parameter to maintain state information, such as the binding of variables, for the
compiled script. After successfully executing a script, OSAExecute returns the script ID
for a resulting script value, or, if execution does not result in a value, the constant
kOSANullScript.

You can use the OSACoerceToDesc function to coerce the resulting script value to a
descriptor record of a desired descriptor type, or the OSADisplay function to obtain the
equivalent source data for the script value.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
10-34 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If the result code returned by OSAExecute is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

SEE ALSO

For information about the OSAGetSource and OSACoerceToDesc functions, see
page 10-51 and page 10-54, respectively.

For examples of the use of the OSAExecute function, see Listing 10-2 on page 10-9 and
Listing 10-4 on page 10-16.

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function,” which begins on page 10-21, and the description of a
resume dispatch function on page 10-97.

OSADisplay 10

You can use the OSADisplay function to convert a script value to text. Your application
can then use its own routines to display this text to the user.

FUNCTION OSADisplay(scriptingComponent: ComponentInstance;

 scriptValueID: OSAID;

 desiredType: DescType;

 modeFlags: LongInt;

 VAR resultingText: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptValueID
The script ID for the script value to coerce.

desiredType
The desired text descriptor type, such as typeChar, for the resulting
descriptor record.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Error occurred during execution
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-35

C H A P T E R 1 0

Scripting Components
modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To make the resulting text
readable by humans only, so that it can’t be recompiled, specify
kOSAModeDisplayForHumans.

resultingText
The resulting descriptor record.

DESCRIPTION

The OSADisplay function coerces the script value identified by scriptValueID to a
descriptor record of the text type specified by the desiredType parameter, if possible.
Valid types include all the standard text descriptor types defined in the Apple Event
Registry: Standard Suites, plus any special types supported by the scripting component.

Unlike OSAGetSource, OSADisplay can coerce only script values and always
produces a descriptor record of a text descriptor type. In addition, if you specify the
mode flag kOSAModeDisplayForHumans, the resulting text cannot be recompiled.

SPECIAL CONSIDERATIONS

If you want to get a script value in a form that you can display for humans to read, use
OSADisplay. If you want the descriptor type of the descriptor record returned in the
resultingText parameter to be the same as the descriptor type returned by a scripting
component, use OSACoerceToDesc and specify typeWildCard as the desired type.

RESULT CODES

SEE ALSO

For descriptions of the OSAGetSource and OSACoerceToDesc functions, see
page 10-51 and page 10-54, respectively.

For an example of the use of OSADisplay, see Listing 10-2 on page 10-9.

noErr 0 No error
errOSACantCoerce –1700 Desired type not supported by scripting

component
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
10-36 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAScriptError 10

You can use the OSAScriptError function to get information about errors that occur
during script execution.

FUNCTION OSAScriptError(scriptingComponent: ComponentInstance;

selector: OSType;

desiredType: DescType;

VAR resultingErrorDescription: AEDesc)

: OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

selector A value that determines what OSAScriptError returns. The value can
be one of these constants:

CONST

kOSAErrorNumber = 'errn';

kOSAErrorMessage = 'errs';

kOSAErrorBriefMessage = 'errb';

kOSAErrorApp = 'erap';

kOSAErrorPartialResult = 'ptlr';

kOSAErrorOffendingObject = 'erob';

kOSAErrorRange = 'erng';

desiredType
The desired descriptor type of the resulting descriptor record. The
description that follows explains how this is determined by the value
passed in the selector parameter.

resultingErrorDescription
The resulting descriptor record.

DESCRIPTION

Whenever the OSAExecute function returns the error errOSAScriptError, you can
use the OSAScriptError function to get more specific information about the error from
the scripting component that encountered it. (This information remains available only
until the next call to the same scripting component.) The information returned by
Scripting Components Reference 10-37

C H A P T E R 1 0

Scripting Components
OSAScriptError depends on the value passed in the selector parameter, which also
determines the descriptor type you should specify in the desiredType parameter.

Every scripting component should support calls to OSAScriptError that pass
kOSAErrorNumber, kOSAErrorMessage, or kOSAErrorPartialResult in the
selector parameter.

Some scripting components may also support calls that pass other values in the
selector parameter, including kOSAErrorRange, which provides start and end
positions delimiting the errant expression in the source data. If the value of the selector
parameter is kOSAErrorRange, the value of desiredType must be
typeOSAErrorRange.

Constant
Information returned in
resultingErrorDescription parameter

kOSAErrorNumber Error number for either system error or scripting
component error. The value of desiredType must
be typeShortInteger.

kOSAErrorMessage Error message associated with error number,
including both the name of the application and a
description of the error. This constant is sufficient
for simple error reporting. The value of
desiredType must be typeChar or another text
descriptor type.

kOSAErrorBriefMessage Brief error message associated with error number,
excluding the name of the application, any partial
result, and the offending object. The value of
desiredType must be typeChar or another text
descriptor type.

kOSAErrorApp Either the name or the process serial number
(PSN) of the application that received the error,
if it was the result of sending an Apple event.
The value of desiredType must be
typeProcessSerialNumber (for the PSN)
or a text descriptor type such as typeChar
(for the name).

kOSAErrorPartialResult Partial result returned after a call to AESend that
failed. This consists of a reply parameter that
contains some but not all of the information
requested.The value of desiredType must be
typeBest (for the best type) or typeWildCard
(for the default type).

kOSAErrorOffendingObject An object specifier record for the object that caused
the error. The value of desiredType must be
typeObjectSpecifier, typeBest, or
typeWildCard. For some scripting components,
including AppleScript, these three values are
equivalent.

kOSAErrorRange Range of source data in which error
occurred. The value of desiredType
must be typeOSAErrorRange.
10-38 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
CONST typeOSAErrorRange = 'erng';

A descriptor record of type typeOSAErrorRange is an AE record that consists of two
descriptor records of typeShortInteger specified by these keywords:

CONST

keyOSASourceStart = 'srcs'; {start of error range}

keyOSASourceEnd = 'srce'; {end of error range}

If the value of the selector parameter is kOSAErrorNumber, scripting components
may return, in the resultingErrorDescription parameter, one of these general
error codes:

errOSACantCoerce –1700 Same as errAECoercionFail; can’t coerce
data to requested descriptor type

errOSACantAccess –1728 Same as errAENoSuchObject; runtime error
in resolution of object specifier record

errOSAGeneralError –2700 General runtime error

errOSADivideByZero –2701 Attempt to divide by zero

errOSANumericOverflow –2702 Numeric overflow

errOSACantLaunch –2703 Can’t launch specified file because it isn’t an
application

errOSAAppNotHighLevelEventAware –2704 Doesn’t respond to Apple events

errOSACorruptTerminology –2705 The application has a corrupted 'aete'
resource

errOSAStackOverflow –2706 Stack overflow

errOSAInternalTableOverflow –2707 Internal table overflow

errASDataBlockTooLarge –2708 Attempt to create a value larger than the
allowable size

errOSATypeError –1703 Same as errAEWrongDataType; wrong
descriptor type

errOSAMessageNotUnderstood –1708 Same as errAEEventNotHandled; event not
handled or message not understood

errOSAUndefinedMessage –1717 Same as errAEHandlerNotFound; handler
not found for message

errOSAIllegalIndex –1728 Same as errAEIllegalIndex; not a valid
index

errOSAIllegalRange –2720 Same as errAEImpossibleRange; range of
specified objects not possible

errOSASyntaxError –2740 General syntax error

errOSASyntaxTypeError –2741 Syntax error; parser expected one type but
found another

errOSATokenTooLong –2742 Identifier too long
continued
Scripting Components Reference 10-39

C H A P T E R 1 0

Scripting Components
Although scripting components are not required to support these error codes, their use
simplifies error handling for applications that run scripts created by multiple
components.

If the value of the selector parameter is kOSAErrorNumber, the AppleScript
component may return, in the resultingErrorDescription parameter, one of these
error codes:

SPECIAL CONSIDERATIONS

If you call OSAScriptError using an instance of the generic scripting component, the
generic scripting component uses the same instance of a scripting component that it used
for the previous call.

RESULT CODES

SEE ALSO

For an example of the use of OSAScriptError, see Listing 10-3 on page 10-11.

errOSAMissingParameter –1701 Same as errAEDescNotFound; descriptor
record not found

errOSAParameterMismatch –1721 Same as errAEWrongNumberArgs; wrong
number of arguments

errOSADuplicateParameter –2750 Parameter specified more than once

errOSADuplicateProperty –2751 Property specified more than once

errOSADuplicateHandler –2752 Handler defined more than once

errOSAUndefinedVariable –2753 Undefined variable

errOSAInconsistentDeclarations –2754 Inconsistent declarations

errOSAControlFlowError –2755 Control flow error

errAECantConsiderAndIgnore –2720 Can’t both consider and ignore a parameter

errASCantCompareMoreThan32k –2721 Can’t compare text larger than 32K

errASCantCompareMixedScripts –2722 Can’t compare text from different script systems

errASTerminologyNestingTooDeep –2760 Tell statements nested too deeply

errASInconsistentNames –2780 Syntax error; names at beginning and end of
handler are inconsistent (AppleScript English
dialect only)

noErr 0 No error
errOSACantCoerce –1700 Desired type not supported by scripting

component
errOSASystemError –1750 General scripting system error
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance
10-40 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSADispose 10

You can use the OSADispose function to reclaim the memory occupied by script data.

FUNCTION OSADispose(scriptingComponent: ComponentInstance;

 scriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data to be disposed of.

DESCRIPTION

The OSADispose function releases the memory assigned to the script data identified by
the scriptID parameter. The script ID passed to the OSADispose function is no longer
valid if the function returns successfully. A scripting component can then reuse that
script ID for other script data.

A call to OSADispose returns noErr if the script ID is kOSANullScript, although it
does not dispose of anything.

RESULT CODES

Setting and Getting Script Information 10

The OSASetScriptInfo function sets various kinds of information about script data,
and the OSAGetScriptInfo function returns information about script data. The kind
of information these functions set or get depends on constants you pass to the functions.

OSASetScriptInfo 10

You can use OSASetScriptInfo to set information about script data according to the
value you pass in the selector parameter.

FUNCTION OSASetScriptInfo(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 selector: OSType;

 value: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-41

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data whose information is to be set.

selector A value that determines what kind of information OSASetScriptInfo
sets. All scripting components can accept this value:

CONST kOSAScriptIsModified = 'modi';

The kOSAScriptIsModified constant indicates that the count of
changes since the script data was loaded or created should be set to the
value in the value parameter. The AppleScript component provides
limited support for this constant.

value The value to set.

DESCRIPTION

The OSASetScriptInfo function sets script information according to the value you
pass in the selector parameter. If you use the kOSAScriptIsModified constant,
OSASetScriptInfo sets a value that indicates how many times the script data has
been modified since it was created or passed to OSALoad. Some scripting components
may provide additional constants.

SPECIAL CONSIDERATIONS

Although you can specify kOSAScriptIsModified when you are using the
AppleScript component without generating an error, the current version of AppleScript
doesn’t actually set a value for the count of changes since the script data was loaded or
created. For more information, see the description of OSAGetScriptInfo that follows.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance
10-42 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAGetScriptInfo 10

You can use OSAGetScriptInfo to obtain information about script data according to
the value you pass in the selector parameter.

FUNCTION OSAGetScriptInfo(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 selector: OSType;

 VAR result: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data about which to obtain information.

selector A value that determines what kind of information OSAGetScriptInfo
returns. The value can be one of these constants:

CONST kOSAScriptIsModified = 'modi';

kOSAScriptIsTypeCompiledScript = 'cscr';

kOSAScriptIsTypeScriptValue = 'valu';

kOSAScriptIsTypeScriptContext = 'cntx';

kOSAScriptBestType = 'best';

kOSACanGetSource = 'gsrc';

The AppleScript component provides limited support for the constant
kOSAScriptIsModified (see page 10-44). In addition to the standard
constants, the AppleScript component also supports this constant:

CONST kASHasOpenHandler = 'hsod';

result The requested information, which you can coerce to the appropriate
descriptor type for the value specified in the selector parameter.

DESCRIPTION

The OSAGetScriptInfo function returns various results according to the value you
pass in the selector parameter.

Value of selector parameter
Information returned in the result
parameter

kOSAScriptIsModified Long integer that indicates the number of
times the script data has been modified
since it was passed to OSALoad.

kOSAScriptIsTypeCompiledScript Boolean value that indicates whether or not
the script data is a compiled script.

continued
Scripting Components Reference 10-43

C H A P T E R 1 0

Scripting Components
The AppleScript component also provides this constant for use in the selector
parameter.

SPECIAL CONSIDERATIONS

Although you can specify kOSAScriptIsModified when you are using the
AppleScript component without generating an error, the current version of AppleScript
interprets this request conservatively. The AppleScript component stores script data in a
network of interlocking structures, and running a script can cause any of these
structures to be modified. If you pass a script ID is to OSAGetScriptInfo with
kOSAScriptIsModified as the value of the selector parameter, the AppleScript
component returns 1 if there is any possibility that the script data or related structures
may have been modified, and 0 if there is no possibility that they have been modified.

RESULT CODES

kOSAScriptIsTypeScriptValue Boolean value that indicates whether or not
the script data is a script value.

kOSAScriptIsTypeScriptContext Boolean value that indicates whether or not
the script data is a script context.

kOSAScriptBestType A descriptor type that you can pass to
OSACoerceToDesc.

kOSACanGetSource Boolean value that indicates whether the
script data can be successfully passed to
OSAGetSource.

Value of selector
parameter Information returned in the result parameter

kASHasOpenHandler Boolean value that indicates whether a script context
with the specified script ID contains a handler for the
Open Documents event. If the script ID doesn’t identify
a script context, OSAGetScriptInfo returns the result
code errOSAIllegalAccess.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance

Value of selector parameter
Information returned in the result
parameter (continued)
10-44 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating the Active Function 10

The OSASetActiveProc and OSAGetActiveProc functions allow your application to
set or to get a pointer to the active function called periodically by the scripting
component during script execution. To get time periodically during script execution for
its own purposes, your application can substitute its own active function for use by the
scripting component. If you do not specify an active function, the scripting component
uses its default active function, which allows a user to cancel script execution.

The functions described in this section use the following type for pointers to active
functions:

TYPE OSAActiveProcPtr = ProcPtr;

For more information about active functions, see “Supplying an Alternative Active
Function” on page 10-23.

OSASetActiveProc 10

You can use the OSASetActiveProc routine to set the active function that a scripting
component calls periodically while executing a script.

FUNCTION OSASetActiveProc(scriptingComponent: ComponentInstance;

 activeProc: OSAActiveProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

activeProc
A pointer to the active function to set. If the value of this parameter is
NIL, OSASetActiveProc sets the scripting component’s default active
function.

refCon A reference constant to be associated with the active function. This
parameter can be used for many purposes; for example, it could contain a
handle to data used by the active function.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-45

C H A P T E R 1 0

Scripting Components
OSAGetActiveProc 10

You can use the OSAGetActiveProc function to get a pointer to the active function that
a scripting component is currently using.

FUNCTION OSAGetActiveProc(scriptingComponent: ComponentInstance;

 VAR activeProc: OSAActiveProcPtr;

 VAR refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

activeProc
The OSAGetActiveProc function returns in this parameter a pointer to
the active function currently set for the specified scripting component.

refCon The OSAGetActiveProc function returns in this parameter the reference
constant associated with the active function for the specified scripting
component.

RESULT CODES

Optional Scripting Component Routines 10
This section describes eight groups of optional routines that scripting components can
support. Your application can use the Component Manager to find a scripting
component that supports a specific group of routines or to determine whether a
particular scripting component supports a specific group of routines.

To specify one or more groups of routines for the Component Manager, use the following
constants to set the equivalent bits in the componentFlags field of a component
description record:

CONST

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;

kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-46 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Each of these flags identifies one of the groups of routines that are described in the
sections that follow. For information about using these constants to locate scripting
components that support specific groups of optional routines, see “Connecting to a
Scripting Component,” which begins on page 10-3.

Compiling Scripts 10

Scripting components can provide three optional routines that get the name of
a scripting component, compile a script, and update a script ID.

To obtain the name of a scripting component in a form that you can coerce to text,
you can use the OSAScriptingComponentName function. The OSACompile function
compiles source data and returns a script ID, and the OSACopyID function updates
the script data associated with one script ID with the script data associated with
another script ID.

A scripting component that supports the routines in this section has the
kOSASupportsCompiling bit set in the componentFlags field of its component
description record.

OSAScriptingComponentName 10

You can use the OSAScriptingComponentName function to get the name of a scripting
component.

FUNCTION OSAScriptingComponentName

(scriptingComponent: ComponentInstance;

 VAR resultingScriptingComponentName: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingScriptingComponentName
The name of the scripting component; or, if the component is the generic
scripting component, the name of the default scripting component.

DESCRIPTION

The OSAScriptingComponentName function returns a descriptor record that you can
coerce to a text descriptor type such as typeChar. This can be useful if you want to
display the name of the scripting language in which the user should write a new script.
Scripting Components Reference 10-47

C H A P T E R 1 0

Scripting Components
RESULT CODES

SEE ALSO

For an example of the use of OSAScriptingComponentName, see Listing 10-2 on
page 10-9.

OSACompile 10

You can use the OSACompile function to compile the source data for a script and obtain
a script ID for a compiled script or a script context.

FUNCTION OSACompile (scriptingComponent: ComponentInstance;

sourceData: AEDesc; modeFlags: LongInt;

VAR previousAndResultingScriptID: OSAID)

: OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record containing suitable source data for the specified
scripting component.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

previousAndResultingScriptID
The script ID for the resulting compiled script. If the value of this
parameter on input is kOSANullScript, OSACompile returns a new
script ID for the compiled script data. If the value of this parameter on
input is an existing script ID, OSACompile updates the script ID so that it
refers to the newly compiled script data.

DESCRIPTION

You can pass a descriptor record containing source data suitable for a specific scripting
component (usually text) to the OSACompile function to obtain a script ID for the
equivalent compiled script or script context. To compile the source data as a script
context for use with OSAExecuteEvent or OSADoEvent, you must set the
kOSACompileIntoContext flag, and the source data should include appropriate
handlers.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-48 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
After you have successfully compiled the script, you can use the returned script ID to
refer to the compiled script when you call OSAExecute and other scripting component
routines.

You can control the way a compiled script is executed by adding any of these flags to the
modeFlags parameter:

SPECIAL CONSIDERATIONS

If you use OSACompile with an instance of the generic scripting component and pass
kOSANullScript in the previousAndResultingScriptID parameter, the generic
scripting component uses the default scripting component to compile the script.

Flag Description

kOSAModePreventGetSource Compiled script consists of only the minimum
script data required to run the script. It will cause
an error if passed to OSAGetSource.

kOSACompileIntoContext The OSACompile function returns a script context
instead of a compiled script.

kOSAModeAugmentContext Script data associated with script ID passed in
previousAndResultingCompiledScriptID is
augmented rather than replaced with the new
compiled script. Specifying this flag automatically
invokes the kOSAModeCompileIntoContext
mode flag. If you redefine variables, handlers, and
so on that were previously defined in the script
context, the new definitions will replace the old
ones.

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).
Scripting Components Reference 10-49

C H A P T E R 1 0

Scripting Components
If you’re recompiling a script, specify the original script ID in the
previousAndResultingScriptID parameter. The generic scripting component uses
the script ID to determine which scripting component it should use to compile the script.

RESULT CODES

SEE ALSO

For an example of the use of OSACompile to update an existing script ID, see Listing
10-5 on page 10-18. For an example of the use of OSACompile to obtain a new script ID,
see Listing 10-2 on page 10-9.

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSACopyID 10

You can use the OSACopyID function to update script data after editing or recording and
to perform undo or revert operations on script data.

FUNCTION OSACopyID(scriptingComponent: ComponentInstance;

 fromID: OSAID;

 VAR toID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

fromID The script ID for script data that you want to be associated with the script
ID in the toID parameter.

toID The script ID for the script data to be replaced. If the value of this
parameter is kOSANullScript, the OSACopyID function returns a new
script ID.

DESCRIPTION

The OSACopyID function replaces the script data identified by the script ID in the toID
parameter with the script data identified by the script ID in the fromID parameter.

noErr 0 No error
errOSACantCoerce –1700 Source data incompatible with scripting

component
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error)
badComponentInstance $80008001 Invalid component instance
10-50 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

Getting Source Data 10

The OSAGetSource function returns the source data that corresponds to the script data
identified by a script ID. The source data it returns can in turn be passed to OSACompile.

A scripting component that supports the OSAGetSource function has the
kOSASupportsGetSource bit set in the componentFlags field of its component
description record.

OSAGetSource 10

You can use the OSAGetSource function to decompile the script data identified by a
script ID and obtain the equivalent source data.

FUNCTION OSAGetSource(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 desiredType: DescType;

 VAR resultingSourceData: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data to decompile. If you pass
kOSANullScript in this parameter, OSAGetSource returns a null
source description (such as an empty text string).

desiredType
The desired descriptor type of the resulting descriptor record, or
typeBest if any type will do.

resultingSourceData
The resulting descriptor record.

DESCRIPTION

The OSAGetSource function decompiles the script data identified by the specified
script ID and returns a descriptor record containing the equivalent source data. The
source data returned need not be exactly the same as the source data originally passed to
OSACompile—for example, white space and formatting might be different—but it
should be a reasonable equivalent suitable for user viewing and editing.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-51

C H A P T E R 1 0

Scripting Components
The difference between OSACoerceToDesc and OSAGetSource is that OSAGetSource
creates source data that can be displayed to a user or compiled and executed to generate
an appropriate value, whereas OSACoerceToDesc actually returns the value. For
example, if you call OSAGetSource and specify a string value, it returns the text
surrounded by quotation marks (so that it can be properly compiled). If you call
OSACoerceToDesc and specify a string value, it simply returns the text.

The main difference between OSADisplay and OSAGetSource is that OSAGetSource
can coerce any form of script data using a variety of descriptor types, whereas
OSADisplay can coerce only script values and always produces a descriptor record of a
text descriptor type.

RESULT CODES

SEE ALSO

For an example of the use of OSAGetSource, see Listing 10-5 on page 10-18.

Coercing Script Values 10

Scripting components can provide support for two optional routines,
OSACoerceFromDesc and OSACoerceToDesc, which coerce data in a descriptor
record to a script value and coerce a script value to data in a descriptor record,
respectively.

A scripting component that supports the routines in this section has the
kOSASupportsAECoercion bit set in the componentFlags field of its component
description record.

OSACoerceFromDesc 10

You can use the OSACoerceFromDesc function to obtain the script ID for a script value
that corresponds to the data in a descriptor record.

FUNCTION OSACoerceFromDesc

(scriptingComponent: ComponentInstance;

 scriptData: AEDesc; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSASourceNotAvailable –1756 Source data not available
badComponentInstance $80008001 Invalid component instance
10-52 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
A descriptor record containing the script data to be coerced.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. If the scriptData parameter
contains an Apple event, you can use any of the mode flags listed in the
description that follows.

resultingScriptValueID
The resulting script ID for a script value.

DESCRIPTION

The OSACoerceFromDesc function coerces the descriptor record in the scriptData
parameter to the equivalent script value and returns a script ID for that value.

If you pass OSACoerceFromDesc an Apple event in the scriptData
parameter, it returns a script ID for the equivalent compiled script in the
resultingScriptValueID parameter. In this case you can specify any of the
modeFlags values used by OSACompile to control the way the compiled script
is executed:

Flag Description

kOSAModePreventGetSource Compiled script consists of only the minimum
script data required to run the script. It will cause
an error if passed to OSAGetSource.

kOSACompileIntoContext The OSACoerceFromDesc function returns a
script context instead of a compiled script.

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).
Scripting Components Reference 10-53

C H A P T E R 1 0

Scripting Components
SPECIAL CONSIDERATIONS

If you call OSACoerceFromDesc using an instance of the generic scripting component,
the generic scripting component uses the default scripting component to perform the
coercion.

RESULT CODES

SEE ALSO

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSACoerceToDesc 10

You can use the OSACoerceToDesc function to coerce a script value to a descriptor
record of a desired descriptor type.

FUNCTION OSACoerceToDesc(scriptingComponent: ComponentInstance;

 scriptValueID: OSAID;

 desiredType: DescType;

 modeFlags: LongInt;

 VAR result: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptValueID
The script ID for the script value to coerce.

desiredType
The desired descriptor type of the resulting descriptor record.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull.

result The resulting descriptor record.

DESCRIPTION

The OSACoerceToDesc function coerces the script value identified by scriptValueID
to a descriptor record of the type specified by the desiredType parameter, if possible.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-54 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Valid types include all the standard descriptor types defined in the Apple Event Registry:
Standard Suites, plus any special types supported by the scripting component.

SPECIAL CONSIDERATIONS

If you want the descriptor type of the descriptor record returned in the result
parameter to be the same as the descriptor type returned by a scripting component, use
OSACoerceToDesc and specify typeWildCard as the desired type. If you want to get
a script value in a form that you can display for humans to read, use OSADisplay.

RESULT CODES

SEE ALSO

For a description of OSADisplay, see page 10-35.

Manipulating the Create and Send Functions 10

Some scripting components provide routines that allow your application to set or get
pointers to the create and send functions used by the scripting component when it sends
and creates Apple events during script execution. If you do not set the pointers
that specify these functions, the scripting component uses the standard
AECreateAppleEvent and AESend functions with default parameters.

To gain control over the creation and addressing of Apple events, your application can
provide its own create function for use by scripting components. To set a new create
function, call the OSASetCreateProc function; to get the current create function, call
OSAGetCreateProc.

The send function provided by your application can perform almost any action instead
of or in addition to sending Apple events; for example, it can be used to facilitate
concurrent script execution. To set a new send function, call the OSASetSendProc
function; to get the current send function, call OSAGetSendProc.

The functions described in this section use the following types for pointers to the create
and send functions:

TYPE

AESendProcPtr = ProcPtr;

AECreateAppleEventProcPtr = ProcPtr;

For more information about create and send functions, see “Supplying Alternative
Create and Send Functions,” which begins on page 10-24.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-55

C H A P T E R 1 0

Scripting Components
Scripting components that support manipulation of the create and send functions also
support the OSASetDefaultTarget function, which allows you to set the default
application to which Apple events are sent.

A scripting component that supports the functions described in this section has the
kOSASupportsAESending bit set in the componentFlags field of its component
description record.

OSASetCreateProc 10

You can use the OSASetCreateProc function to specify a create function that a
scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

FUNCTION OSASetCreateProc(scriptingComponent: ComponentInstance;

 createProc: AECreateAppleEventProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

createProc
A pointer to the create function to set.

refCon A reference constant.

RESULT CODES

OSAGetCreateProc 10

You can use the OSAGetCreateProc function to get a pointer to the create function that
a scripting component is currently using to create Apple events.

FUNCTION OSAGetCreateProc(scriptingComponent: ComponentInstance;

VAR createProc: AECreateAppleEventProcPtr;

VAR refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-56 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
createProc
The OSAGetCreateProc function returns, in this parameter, a pointer to
the create function currently set for the specified scripting component.

refCon The OSAGetCreateProc function returns, in this parameter, the
reference constant associated with the create function for the specified
scripting component.

RESULT CODES

OSASetSendProc 10

You can use the OSASetSendProc function to specify a send function that a scripting
component should use instead of the Apple Event Manger’s AESend function when
sending Apple events.

FUNCTION OSASetSendProc(scriptingComponent: ComponentInstance;

sendProc: AESendProcPtr;

refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sendProc A pointer to the send function to set.

refCon A reference constant.

RESULT CODES

OSAGetSendProc 10

You can use the OSAGetSendProc function to get a pointer to the send function that a
scripting component is currently using.

FUNCTION OSAGetSendProc(scriptingComponent: ComponentInstance;

VAR sendProc: AESendProcPtr;

VAR refCon: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-57

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sendProc The OSAGetSendProc function returns, in this parameter, a pointer to
the send function currently set for the specified scripting component.

refCon The OSAGetSendProc function returns, in this parameter, the reference
constant associated with the send function for the specified scripting
component.

RESULT CODES

OSASetDefaultTarget 10

You can use the OSASetDefaultTarget function to set the default target application
for Apple events.

FUNCTION OSASetDefaultTarget

(scriptingComponent: ComponentInstance;

 target: AEAddressDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

target The address of the application that is being made the default application.
If you pass a null descriptor record in this parameter, the scripting
component treats the current process as the default target.

DESCRIPTION

The OSASetDefaultTarget function establishes the default target application for
Apple event sending and the default application from which the scripting component
should obtain terminology information. For example, AppleScript statements that refer
to the default application do not need to be enclosed in tell/end tell statements.

If your application doesn’t call this function, or if you pass a null descriptor record in the
target parameter, the scripting component treats the current process (that is, the
application that calls OSAExecute or related routines) as the default target application.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-58 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

Recording Scripts 10

The OSAStartRecording function turns on the Apple Event Manager’s recording
mechanism and specifies a script in which subsequent recordable Apple events are
recorded. The scripting component sends the recording process (for example, a script
editor) a Recorded Text event that contains the decompiled equivalent for each
recordable event it receives. The script editor can then display the decompiled script in a
script editor window if a window for that script is currently open. Recording continues
until a call to OSAStopRecording turns recording off.

Script editors use these routines to allow users to control recording. Any application can
use these routines to provide its own script-recording interface.

For more information about the Apple event recording mechanism, see the chapter
“Recording Apple Events” in this book. For more information about the Recorded Text
event, see “Recording Scripts” on page 10-26.

A scripting component that supports the functions described in this section has the
kOSASupportsRecording bit set in the componentFlags field of its component
description record.

OSAStartRecording 10

You can use the OSAStartRecording routine to turn on Apple event recording and
record subsequent Apple events in a compiled script.

FUNCTION OSAStartRecording

(scriptingComponent: ComponentInstance;

 VAR compiledScriptToModifyID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

compiledScriptToModifyID
The script ID for the compiled script in which to record.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-59

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSAStartRecording routine turns on Apple event recording. Subsequent Apple
events are recorded (that is, appended to any existing statements) in the compiled script
specified by the compiledScriptToModifyID parameter. If the source data for the
compiled script is currently displayed in a script editor’s window, the script editor’s
handler for the Recorded Text event should display each new statement in the window
as it is recorded. Users should not be able to change a script that is open in a script editor
window while it is being recorded into.

To record into a new compiled script, pass the constant kOSANullScript in the
compiledScriptToModifyID parameter. The scripting component should respond by
creating a new compiled script and recording into that.

SPECIAL CONSIDERATIONS

The generic scripting component uses its default scripting component to create and
record into a new compiled script.

RESULT CODES

SEE ALSO

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSAStopRecording 10

You can use the OSAStopRecording function to turn off Apple event recording.

FUNCTION OSAStopRecording(scriptingComponent: ComponentInstance;

 compiledScriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when

it is already on for a recording
process

errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
10-60 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
compiledScriptID
A script ID for the compiled script into which Apple events are being
recorded.

DESCRIPTION

The OSAStopRecording function turns off recording. If the script is not currently open
in a script editor window, the compiledScriptToModifyID parameter supplied to
OSAStartRecording is then augmented to contain the newly recorded statements. If
the script is currently open in a script editor window, the script data that corresponds to
the compiledScriptToModifyID parameter supplied to OSAStartRecording is
updated continuously until the client application calls OSAStopRecording.

If the compiled script identified by the script ID in the compiledScriptID parameter
is not being recorded into or recording is not currently on, OSAStopRecording returns
noErr.

RESULT CODES

Executing Scripts in One Step 10

The OSALoadExecute, OSACompileExecute, and OSADoScript functions combine
the capabilities of several other scripting component functions so that an application can
execute a script in a single step. You can use these functions if you know that the script
data to be executed will be executed only once.

A scripting component that supports the functions described in this section has the
kOSASupportsConvenience bit set in the componentFlags field of its component
description record.

OSALoadExecute 10

You can use the OSALoadExecute function to load and execute a script in a single step
rather than calling OSALoad and OSAExecute.

FUNCTION OSALoadExecute (scriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 contextID: OSAID; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID)

 : OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-61

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
The descriptor record identifying the script data to be loaded and
executed.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

DESCRIPTION

The OSALoadExecute function loads script data and executes the resulting compiled
script, using the script context identified by the contextID parameter to maintain state
information such as the binding of variables. After successfully executing the script,
OSALoadExecute disposes of the compiled script and returns either the script ID for
the resulting script value or, if execution does not result in a value, the constant
kOSANullScript.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
10-62 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If the result code returned by OSALoadExecute is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

OSACompileExecute 10

You can use the OSACompileExecute routine to compile and execute a script in a
single step rather than calling OSACompile and OSAExecute.

FUNCTION OSACompileExecute

(scriptingComponent: ComponentInstance;

 sourceData: AEDesc;

 contextID: OSAID; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record identifying suitable source data for the specified
scripting component.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

noErr 0 No error
errOSACorruptData –1702 Same as errAECorruptData
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Script data not for this scripting

component
errOSAScriptError –1753 Error occurred during execution
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-63

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSACompileExecute function compiles source data and executes the resulting
compiled script, using the script context identified by the contextID parameter to
maintain state information such as the binding of variables. After successfully executing
the script, OSACompileExecute disposes of the compiled script and returns either the
script ID for the resulting script value or, if execution does not result in a value, the
constant kOSANullScript.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

If the result code returned by OSACompileExecute is a general result code, there was
some problem in arranging for the script to be run. If the result code is
errOSAScriptError, an error occurred during script execution. In this case, you can
obtain more detailed error information by calling OSAScriptError.

RESULT CODES

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

noErr 0 No error
errOSACantCoerce –1700 Data could not be coerced to the requested

data type
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error) or an

execution error occurred
badComponentInstance $80008001 Invalid component instance
10-64 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSADoScript 10

You can use the OSADoScript routine to compile and execute a script and convert the
resulting script value to text in a single step rather than calling OSACompile,
OSAExecute, and OSADisplay.

FUNCTION OSADoScript (scriptingComponent: ComponentInstance;

 sourceData: AEDesc;

 contextID: OSAID; desiredType: DescType;

 modeFlags: LongInt;

 VAR resultingText: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record identifying suitable source data for the specified
scripting component.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

desiredType
The desired text descriptor type, such as typeChar, for the resulting
descriptor record.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingText
The resulting descriptor record.

DESCRIPTION

Calling the OSADoScript function is equivalent to calling OSACompile followed by
OSAExecute and OSADisplay. After compiling the source data, executing the compiled
script using the script context identified by the contextID parameter, and returning the
text equivalent of the resulting script value in the resultingText parameter,
OSADoScript disposes of both the compiled script and the resulting script value.
Scripting Components Reference 10-65

C H A P T E R 1 0

Scripting Components
You can control the way in which the scripting component executes the script by adding
any of these flags to the modeFlags parameter:

If the result code returned by OSADoScript is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution, and the resultingText parameter contains
the error message associated with the error. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

SEE ALSO

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function,” which begins on page 10-21, and the description of a resume
dispatch function on page 10-97.

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDisplayForHumans Resulting text is readable by humans only and
cannot be recompiled by OSACompile.

noErr 0 No error
errOSACantCoerce –1700 Data could not be coerced to the requested

data type
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error) or an

execution error occurred
badComponentInstance $80008001 Invalid component instance
10-66 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating Dialects 10

Scripting components that provide several dialects may provide five functions that allow
you to switch between dialects dynamically and get information about currently
available dialects. The codes for specific dialects are provided by the scripting
component.

The OSASetCurrentDialect function sets the current dialect, and the
OSAGetCurrentDialect function gets the dialect code for the current dialect.
The OSAAvailableDialectCodeList function returns a list of codes for a scripting
component’s dialects. You can pass any of these codes to the OSAGetDialectInfo
function to get information about a specific dialect.

Instead of using the OSAAvailableDialectCodeList and OSAGetDialectInfo
functions, you can use the OSAAvailableDialects function to get a descriptor list
that contains information about all of the currently available dialects for a scripting
component. However, it is usually more convenient to get information about just one
dialect.

A scripting component that supports the functions described in this section has the
kOSASupportsDialects bit set in the componentFlags field of its component
description record.

OSASetCurrentDialect 10

You can use the OSASetCurrentDialect function to set the current dialect for a
scripting component.

FUNCTION OSASetCurrentDialect

(scriptingComponent: ComponentInstance;

 dialectCode: Integer): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

dialectCode
The code for the dialect to be set.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-67

C H A P T E R 1 0

Scripting Components
OSAGetCurrentDialect 10

You can use the OSAGetCurrentDialect function to get the dialect code for the dialect
currently being used by a scripting component.

FUNCTION OSAGetCurrentDialect

(scriptingComponent: ComponentInstance;

 VAR resultingDialectCode: Integer): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectCode
The OSAGetCurrentDialect function returns, in this parameter, the
code for the current dialect of the specified scripting component.

RESULT CODES

OSAAvailableDialectCodeList 10

You can use the OSAAvailableDialectCodeList function to obtain a descriptor list
containing dialect codes for each of a scripting component’s currently available dialects.

FUNCTION OSAAvailableDialectCodeList

(scriptingComponent: ComponentInstance;

 VAR resultingDialectCodeList: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectCodeList
The returned descriptor list.

DESCRIPTION

Each item in the descriptor list returned by OSAAvailableDialectCodeList is a
descriptor record of descriptor type typeInteger containing a dialect code for one of
the specified scripting component’s currently available dialects. Dialect codes are
defined by individual scripting components.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
10-68 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
You can pass any dialect code you obtain using OSAAvailableDialectCodeList to
OSAGetDialectInfo to get information about the corresponding dialect.

RESULT CODES

OSAGetDialectInfo 10

You can use the OSAGetDialectInfo function to get information about a specified
dialect provided by a specified scripting component.

OSAGetDialectInfo (scriptingComponent: ComponentInstance;

 dialectCode: Integer; selector: OSType;

 VAR resultingDialectInfo: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

dialectCode
A code for the dialect about which you want information. You can
obtain a list of a scripting component’s dialect codes by calling
OSAAvailableDialectCodeList.

selector A constant that indicates what kind of information you want
OSAGetDialectInfo to return in the result parameter. This constant
determines the descriptor type for the descriptor record returned. See the
description that follows for a list of the standard constants you can
specify in this parameter.

resultingDialectInfo
A descriptor record containing the requested information. The descriptor
record’s descriptor type corresponds to the constant specified in the
selector parameter.

DESCRIPTION

After you obtain a list of dialect codes by calling OSAAvailableDialectCodeList,
you can pass any of those codes to OSAGetDialectInfo to get information about the
corresponding dialect. The descriptor type of the descriptor record returned by
OSAGetDialectInfo depends on the constant specified in the selector parameter.
All scripting components support the following constants for this parameter:

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-69

C H A P T E R 1 0

Scripting Components
CONST

keyOSADialectName = 'dnam';{used with descriptor record }

{ of any text type, such as }

{ type typeChar}

keyOSADialectLangCode = 'dlcd';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectScriptCode = 'dscd';{used with descriptor record }

{ of type typeShortInteger}

Individual scripting components may allow you to specify additional constants.

RESULT CODES

OSAAvailableDialects 10

You can use the OSAAvailableDialects function to obtain a descriptor list containing
information about each of the currently available dialects for a scripting component.

FUNCTION OSAAvailableDialects

(scriptingComponent: ComponentInstance;

 VAR resultingDialectInfoList: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectInfoList
The returned descriptor list.

DESCRIPTION

Each item in the list returned by OSAAvailableDialects is an AE record of descriptor
type typeOSADialectInfo.

CONST typeOSADialectInfo = 'difo';

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadSelector –1754 Invalid selector
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
10-70 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Each descriptor record in the descriptor list contains, at a minimum, four
keyword-specified descriptor records with the following keywords:

CONST

keyOSADialectName = 'dnam';{used with descriptor record }

{ of any text type, such as }

{ type typeChar}

keyOSADialectCode = 'dcod';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectLangCode = 'dlcd';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectScriptCode = 'dscd';{used with descriptor record }

{ of type typeShortInteger}

Rather than calling OSAAvailableDialects to obtain complete dialect
information for a scripting component, it is usually more convenient to call
OSAAvailableDialectCodeList to get a list of codes for a scripting component’s
dialects, then call OSAGetDialectInfo to get information about the specific dialect
you’re interested in.

RESULT CODES

Using Script Contexts to Handle Apple Events 10

The optional routines described in this section allow your application to use script
contexts to handle Apple events. One way to do this is to install a general Apple
event handler in your application’s special handler dispatch table. The general
Apple event handler provides initial handling for every Apple event received by your
application. (For an example of such a handler, see “Using a Script Context to Handle an
Apple Event” on page 10-19.)

The general Apple event handler extracts the event’s direct parameter, obtains a script ID
for the script context associated with the object described in the direct parameter, and
passes the Apple event and the script ID to either OSAExecuteEvent or OSADoEvent.
The main difference between these two functions is that OSAExecuteEvent returns a
script ID for the resulting script value, whereas OSADoEvent returns a reply Apple
event that includes either the resulting script value or information about any errors that
occurred.

If the scripting component determines that a script context can’t handle the
specified event (for example, if an AppleScript script context doesn’t include
statements that handle the event), OSAExecuteEvent and OSADoEvent return
errAEEventNotHandled. This causes the Apple Event Manager to look for an
appropriate handler in the application’s Apple event dispatch table or elsewhere,

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-71

C H A P T E R 1 0

Scripting Components
using standard Apple event dispatching. If the scripting component determines that a
script context passed to OSAExecuteEvent or OSADoEvent can handle the event, the
function attempts to use the script context for that purpose.

Script contexts can in turn pass an event to a resume dispatch function with
a statement that’s equivalent to an AppleScript continue statement. The
OSASetResumeDispatchProc and OSAGetResumeDispatchProc functions allow
your application to set and get pointers to the resume dispatch function used by a
scripting component. These functions use the following type for a pointer to a
resume dispatch function:

TYPE AEHandlerProcPtr = EventHandlerProcPtr;

A resume dispatch function takes the same parameters as an Apple event handler and
dispatches an event to an application’s standard handler for that event.

If you need to create a new, empty script context, you can use the OSAMakeContext
function.

A scripting component that supports the functions described in this section has the
kOSASupportsEventHandling bit set in the componentFlags field of its component
description record.

OSASetResumeDispatchProc 10

You can use the OSASetResumeDispatchProc function to set the resume dispatch
function called by a scripting component during execution of an AppleScript continue
statement or its equivalent.

FUNCTION OSASetResumeDispatchProc

(scriptingComponent: ComponentInstance;

 resumeDispatchProc: AEHandlerProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resumeDispatchProc
You can specify one of the following in this parameter:

■ a pointer to a resume dispatch function

■ the kOSAUseStandardDispatch constant, which causes the Apple
Event Manager to dispatch the event using standard Apple event
dispatching

■ the kOSANoDispatch constant, which tells the Apple Event Manager
that the processing of the Apple event is complete and that it does not
need to be dispatched
10-72 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
refCon A reference constant. Specify kOSADontUsePhac in this parameter and
kOSAUseStandardDispatch in the resumeDispatchProc parameter
to request standard Apple event dispatching excluding the special
handler dispatch table.

DESCRIPTION

The OSASetResumeDispatchProc function sets the resume dispatch function that the
specified instance of a scripting component calls during execution of an AppleScript
continue statement or its equivalent. The resume dispatch function should dispatch
the event to the application’s standard handler for that event.

If you are using a general handler similar to that in Listing 10-7 on page 10-21 for
preliminary processing of Apple events, and if you can rely on standard Apple event
dispatching to dispatch the event correctly, you don’t need to provide a resume dispatch
function. Instead, you can specify kOSAUseStandardDispatch as the value of the
resumeDispatchProc parameter and the constant kOSADontUsePhac as the value of
the refCon parameter. This causes the Apple Event Manager to use standard Apple
event dispatching except that it bypasses your application’s special handler dispatch
table and thus won’t call your general Apple event handler recursively.

RESULT CODES

SEE ALSO

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function” on page 10-21 and the description of a resume dispatch function on
page 10-97.

OSAGetResumeDispatchProc 10

You can use the OSAGetResumeDispatchProc function to get the resume dispatch
function currently being used by a scripting component instance during execution of an
AppleScript continue statement or its equivalent.

FUNCTION OSAGetResumeDispatchProc

(scriptingComponent: ComponentInstance;

 VAR resumeDispatchProc: AEHandlerProcPtr;

 VAR refCon: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-73

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resumeDispatchProc
The OSAGetResumeDispatchProc function returns a pointer to the
resume dispatch function for the specified scripting component in this
parameter. If no resume dispatch function has been registered,
OSAGetResumeDispatchProc returns kOSAUseStandardDispatch
(the default).

refCon The OSAGetResumeDispatchProc function returns the reference
constant associated with the resume dispatch function in this parameter.

RESULT CODES

OSAExecuteEvent 10

You can use the OSAExecuteEvent function to handle an Apple event with the aid of a
script context and obtain a script ID for the resulting script value.

FUNCTION OSAExecuteEvent(scriptingComponent: ComponentInstance;

 theAppleEvent: AppleEvent;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID)

 : OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

theAppleEvent
The Apple event to be handled.

contextID The script ID for the script context to be used to handle the Apple event.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
A script ID for the resulting script value.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-74 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

The OSAExecuteEvent function attempts to use the script context specified by the
contextID parameter to handle the Apple event specified by the theAppleEvent
parameter. If the scripting component determines that the script context can’t handle the
event (for example, if a script written in AppleScript doesn’t include statements that
handle the event), OSAExecuteEvent immediately returns errAEEventNotHandled
rather than errOSAScriptError.

If the scripting component determines that the script context can handle the event,
OSAExecuteEvent executes the script context’s handler and returns the resulting script
ID. If execution of the script context’s handler for the event generates an error,
OSAExecuteEvent returns errOSAScriptError, and you can get more detailed error
information by calling the OSAScriptError function.

You can control the way in which the scripting component executes a script context by
adding any of these flags to the modeFlags parameter:

If the script context identified by the contextID parameter specifies that the Apple
event should be passed to the application’s default handler for that event (for example,
with an AppleScript continue statement), OSAExecuteEvent passes the event to the
resume dispatch function currently being used by the scripting component. The resume
dispatch function dispatches the event directly to the application’s standard handler for
that event (that is, without calling OSAExecuteEvent again). If the contextID
parameter is kOSANullScript, the OSAExecuteEvent function passes the event

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
Scripting Components Reference 10-75

C H A P T E R 1 0

Scripting Components
directly to the resume dispatch function. If a call to the resume dispatch function is
successful, execution of the script context proceeds from the point at which the resume
dispatch function was called.

IMPORTANT

The OSAExecuteEvent function can generate the result code
errAEEventNotHandled in at least two ways. If the scripting
component determines that a script context doesn’t declare a handler for
a particular event, OSAExecuteEvent immediately returns
errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard
handler for the event fails to handle it, OSAExecuteEvent returns
errOSAScriptError and a call to OSAScriptError with
kOSAErrorNumber in the selector parameter returns
errAEEventNotHandled as the resulting error description. ▲

RESULT CODES

OSADoEvent 10

You can use the OSADoEvent function to handle an Apple event with the aid of a script
context and obtain a reply event.

FUNCTION OSADoEvent(scriptingComponent: ComponentInstance;

 theAppleEvent: AppleEvent;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR reply: AppleEvent): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

theAppleEvent
The Apple event to be handled.

noErr 0 No error
errAEEventNotHandled –1708 Script context doesn’t contain handler for

event
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Error occurred during execution or

because of an attempt to pass event to a
NIL resume dispatch function

badComponentInstance $80008001 Invalid component instance
10-76 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
contextID The script ID for the script context to be used to handle the Apple event.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

reply The reply Apple event.

DESCRIPTION

The OSADoEvent function resembles both OSADoScript and OSAExecuteEvent.
However, unlike OSADoScript, the script OSADoEvent executes must be in the
form of a script context, and execution is initiated by an Apple event. Unlike
OSAExecuteEvent, OSADoEvent returns a reply Apple event rather than the script ID
of the resulting script value.

The OSADoEvent function, like OSAExecuteEvent, attempts to use the script context
specified by the contextID parameter to handle the Apple event specified by the
theAppleEvent parameter. If the scripting component determines that the script
context can’t handle the event (for example, if a script written in an AppleScript dialect
doesn’t include statements that handle the event), OSADoEvent immediately returns
errAEEventNotHandled rather than errOSAScriptError.

If the scripting component determines that the script context can handle the event,
OSADoEvent executes the script context’s handler for the event and returns the resulting
script ID.

The OSADoEvent function returns a reply event that contains either the resulting script
value or, if an error occurred during script execution, information about the error. If the
error errOSAScriptError occurs during script execution, OSADoEvent calls
OSAScriptError and returns the appropriate error information in the reply. The
OSADoEvent function never returns errOSAScriptError.

You can control the way in which the scripting component executes a script context by
adding any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

continued
Scripting Components Reference 10-77

C H A P T E R 1 0

Scripting Components
If the script context specifies that the Apple event should be passed to the application’s
standard handler for that event (for example, with an AppleScript continue statement),
OSADoEvent passes the event to the resume dispatch function currently being used by
the scripting component. The resume dispatch function dispatches the event directly to
the application’s standard handler for that event (that is, without calling OSADoEvent
again). If the contextID parameter is kOSANullScript, the OSADoEvent function
passes the event directly to the resume dispatch function. If the call to the resume
dispatch function is successful, execution of the script context proceeds from the point at
which the resume dispatch function was called.

IMPORTANT

Like OSAExecuteEvent, OSADoEvent can generate the result code
errAEEventNotHandled in at least two ways. If the scripting
component determines that a script context doesn’t declare a handler for
a particular event, OSADoEvent immediately returns
errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard
handler for the event fails to handle it, OSADoEvent returns
errAEEventNotHandled in the reply Apple event. ▲

RESULT CODES

SEE ALSO

For an example of the use of OSADoEvent, see Listing 10-7 on page 10-21.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

noErr 0 No error
errAEEventNotHandled –1708 Script context doesn’t contain handler

for event
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance

Flag Description (continued)
10-78 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAMakeContext 10

You can use the OSAMakeContext function to get a script ID for a new script context.

FUNCTION OSAMakeContext(scriptingComponent: ComponentInstance;

contextName: AEDesc;

parentContext: OSAID;

VAR resultingContextID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

contextName
Name of new context. Some scripting components may use context names
for semantic purposes. If the value of this parameter is typeNull,
OSAMakeContext creates an unnamed context.

parentContext
Existing context from which new context inherits bindings. If the value of
this parameter is kOSANullScript, the new context does not inherit
bindings from any other context.

resultingContextID
A script ID for the resulting script context.

DESCRIPTION

The OSAMakeContext function creates a new script context that you may pass to
OSAExecute or OSAExecuteEvent. The new script context inherits the bindings of the
script context specified in the parentContext parameter.

SPECIAL CONSIDERATIONS

If you call OSAMakeContext using an instance of the generic scripting component, the
generic scripting component uses the default scripting component to create the new
script context.

RESULT CODES

SEE ALSO

To compile existing source data into a script context, use OSACompile as described on
page 10-48.

noErr 0 No error
errOSACantCoerce –1700 Invalid context name
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance D
Scripting Components Reference 10-79

C H A P T E R 1 0

Scripting Components
AppleScript Component Routines 10
The AppleScript component provides routines for initializing the AppleScript
component and manipulating the styles used to display AppleScript statements in a
script. These routines are used primarily by script editors and other applications that
display source data to users.

Initializing AppleScript 10

Before you call any of the standard scripting component routines, you can call the
ASInit function to initialize the AppleScript component with desired
application-specific stack and heap sizes. If you don’t call ASInit, the AppleScript
component initializes itself using either the values specified in the application’s 'scsz'
resource or, for those values not provided by the 'scsz' resource, default values
provided by the AppleScript component.

ASInit 10

You can use the ASInit function to initialize the AppleScript component.

FUNCTION ASInit (scriptingComponent: ComponentInstance;

 modeFlags: LongInt;

 minStackSize: LongInt;

 preferredStackSize: LongInt;

 maxStackSize: LongInt;

 minHeapSize: LongInt;

 preferredHeapSize: LongInt;

 maxHeapSize: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

modeFlags Reserved for future use. Set to kOSAModeNull.

minStackSize
The minimum size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.

preferredStackSize
The preferred size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.

maxStackSize
The maximum size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.
10-80 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
minHeapSize
The minimum size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

preferredHeapSize
The preferred size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

maxHeapSize
The maximum size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

DESCRIPTION

Your application should set the modeFlags parameter to kOSAModeNull. You can use
the other parameters to specify memory sizes for the portion of your application’s heap
used by the AppleScript component for its application-specific heap and stack. If your
application sets any of these parameters to 0, the AppleScript component uses the
corresponding value in your application’s 'scsz' resource. If that value is also set to 0,
the AppleScript component uses the corresponding default value:

CONST

kASDefaultMinStackSize = 1 * 1024;

kASDefaultPreferredStackSize = 4 * 1024;

kASDefaultMaxStackSize = 16 * 1024;

kASDefaultMinHeapSize = 4 * 1024;

kASDefaultPreferredHeapSize = 64 * 1024;

kASDefaultMaxHeapSize = 32 * 1024 * 1024;

If your application doesn’t call ASInit explicitly, the AppleScript component initializes
itself using the values specified in your application’s 'scsz' resource when your
application first calls any scripting component routine. If any of these values are set to 0,
the AppleScript component uses the corresponding default value.

If your application doesn’t call ASInit explicitly and doesn’t call any scripting
component routines, the AppleScript component will not be initialized. For example, if
your application opens and closes the AppleScript component or calls Component
Manager routines such as OpenDefaultComponent or FindNextComponent but
doesn’t call any scripting component routines, the AppleScript component is not
initialized.

When the AppleScript component is initialized, it uses your application’s high memory
to create the blocks that it locks for its own use. If you expect to lock any portion of high
memory for a shorter time than you expect the AppleScript component to be available,
you should call ASInit explicitly.
Scripting Components Reference 10-81

C H A P T E R 1 0

Scripting Components
RESULT CODES

Getting and Setting Styles for Source Data 10

The ASGetSourceStyles and ASSetSourceStyles functions allow you to get and
set the script format styles currently used by the AppleScript component to display
scripts. To obtain a list of style names formatted according to the script format styles
currently used by the AppleScript component, use the ASGetSourceStyleNames
function.

ASGetSourceStyles 10

You can use the ASGetSourceStyles function to get the script format styles currently
used by the AppleScript component to display scripts.

FUNCTION ASGetSourceStyles

(scriptingComponent: ComponentInstance;

 VAR resultingSourceStyles: STHandle): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingSourceStyles
A handle to a style element array defined by the TextEdit data type
TEStyleTable that defines the styles used for different kinds of
AppleScript terms.

DESCRIPTION

The ASGetSourceStyles function returns a style element array that defines the nine
styles used for AppleScript terms.

You can use these index constants to identify individual styles returned in the
resultingSourceStyles parameter:

CONST

kASSourceStyleUncompiledText = 0;

kASSourceStyleNormalText = 1;

kASSourceStyleLanguageKeyword = 2;

kASSourceStyleApplicationKeyword = 3;

kASSourceStyleComment = 4;

kASSourceStyleLiteral = 5;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-82 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kASSourceStyleUserSymbol = 6;

kASSourceStyleObjectSpecifier = 7;

kASNumberOfSourceStyles = 8;

Other AppleScript dialects may define additional styles. When you have finished using
the style element array, you must dispose of it.

RESULT CODES

SEE ALSO

For information about the TEStyleTable array, see Inside Macintosh: Text.

ASSetSourceStyles 10

You can use the ASSetSourceStyles function to set the script format styles used by
the AppleScript component to display scripts.

FUNCTION ASSetSourceStyles (scriptingComponent: ComponentInstance;

 sourceStyles: STHandle): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceStyles
A handle to a style element array defined by the TextEdit data type
TEStyleTable that defines the nine styles used for different kinds of
AppleScript terms. The style for each kind of term should be identified
according to the index constants listed for ASGetSourceStyles on
page 10-82.

DESCRIPTION

The ASSetSourceStyles function sets the script format styles used to display scripts.
If you pass a NIL handle in the sourceStyles parameter, the AppleScript component
uses its default styles.

After you have set the script format styles, you must dispose of the style element array
you used to specify them.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-83

C H A P T E R 1 0

Scripting Components
RESULT CODES

SEE ALSO

For information about the TEStyleTable array, see Inside Macintosh: Text.

ASGetSourceStyleNames 10

You can use the ASGetSourceStyleNames function to obtain a list of style names that
are each formatted according to the script format styles currently used by the
AppleScript component.

FUNCTION ASGetSourceStyleNames

(scriptingComponent: ComponentInstance;

 modeFlags: LongInt;

 VAR resultingSourceStyleNameList: AEDescList)

 : OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

modeFlags Reserved for future use. Set to kOSAModeNull.

resultingSourceStyleNameList
List of style names (for example, “Uncompiled Text,” “Normal Text”) that
are each formatted according to the current script format styles. The order
of the names corresponds to the order of the source style constants listed
for ASGetSourceStyles on page 10-82.

RESULT CODES

Generic Scripting Component Routines 10
To manipulate and execute scripts written in different scripting languages, your
application can either open a connection with each corresponding scripting component
individually or open a single connection with the generic scripting component. For
information about how to connect with scripting components, see “Connecting to a
Scripting Component,” which begins on page 10-3.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-84 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If you open a connection with the generic scripting component, it in turn attempts to
open connections dynamically with the appropriate scripting component for each script
that it executes or manipulates. To provide this capability, the generic scripting
component must be able to determine which scripting component created any script ID
passed as a parameter to a standard scripting component routine. Because different
scripting components may end up using the same script ID to refer to different scripts,
the generic scripting component uses its own generic script IDs. The generic scripting
component translates generic scripting IDs into the corresponding component-specific
script IDs and vice versa when necessary.

A generic script ID is a script ID of type GenericID.

TYPE GenericID = OSAID;

You don’t need to know in detail how the generic scripting component keeps track of
script IDs. However, you should be aware that the script IDs to which your application
refers when it uses the generic scripting component are not the same as the script IDs
used by scripting components that actually manipulate and execute scripts.

If you are writing a script editor or recorder, you must pass the existing script ID to
OSACompile or OSAStartRecording when you are recompiling or recording into an
existing script. This ensures that the script is recompiled or recorded using the same
scripting component that originally created the script. If instead you pass
kOSANullScript to these routines, the new script is compiled or recorded using the
default scripting component. Each instance of the generic scripting component has its
own default scripting component. The section “Getting and Setting the Default Scripting
Component,” which follows, describes routines provided by the generic scripting
component that allow you to get and set the default scripting component.

The generic scripting component supports the standard scripting component routines.
However, most scripting components also support their own component-specific
routines. You can’t use the generic scripting component to call a component-specific
routine. Instead, you must use an instance of the specific scripting component that
supports the routine.

To facilitate the use of component-specific routines, the generic scripting component
allows you to identify the scripting component that created stored script data, get an
instance of a specified scripting component, and convert between generic script IDs and
component-specific script IDs. The section “Using Component-Specific Routines,” which
begins on page 10-87, describes the generic scripting component routines that allow you
to perform these tasks.

Some generic scripting component routines take or return a component subtype of type
ScriptingComponentSelector.

TYPE ScriptingComponentSelector = OSType;

You can use subtype codes of this type to identify specific scripting components.
Scripting Components Reference 10-85

C H A P T E R 1 0

Scripting Components
Getting and Setting the Default Scripting Component 10

The default scripting component for any instance of the generic
scripting component is initially AppleScript, but you can change
it if necessary. The OSAGetDefaultScriptingComponent and
OSASetDefaultScriptingComponent functions allow you to get
and set the default scripting component.

OSAGetDefaultScriptingComponent 10

You can use the OSAGetDefaultScriptingComponent function to get the subtype
code for the default scripting component associated with an instance of the generic
scripting component.

FUNCTION OSAGetDefaultScriptingComponent

(genericScriptingComponent: ComponentInstance;

 VAR scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
The function returns, in this parameter, the subtype code for the default
scripting component associated with the instance of the generic scripting
component specified in the genericScriptingComponent parameter.

DESCRIPTION

The OSAGetDefaultScriptingComponent function returns the subtype code for the
default scripting component. This is the scripting component that will be used by
OSAStartRecording, OSACompile, or OSACompileExecute if no existing script ID
is specified. From the user’s point of view, the default scripting component corresponds
to the scripting language selected in the Script Editor application when the user first
creates a new script.

Each instance of the generic scripting component has its own default
scripting component, which is initially AppleScript. You can use
OSASetDefaultScriptingComponent to change the default scripting component.

RESULT CODES

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-86 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSASetDefaultScriptingComponent 10

You can use the OSASetDefaultScriptingComponent function to set the default
scripting component associated with an instance of the generic scripting component.

FUNCTION OSASetDefaultScriptingComponent

(genericScriptingComponent: ComponentInstance;

 scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
The subtype code for the scripting component you want to set as the
default.

DESCRIPTION

The OSASetDefaultScriptingComponent function sets the default scripting
component for the specified instance of the generic scripting component to the
scripting component identified by the scriptingSubType parameter.

Each instance of the generic scripting component has its own default
scripting component, which is initially AppleScript. You can use
OSAGetDefaultScriptingComponent to get the current default
scripting component for an instance of the generic scripting component.

RESULT CODES

Using Component-Specific Routines 10

You can’t use the generic scripting component to call a component-specific routine.
Instead, you must use an instance of the specific scripting component that supports the
routine.

To facilitate the use of component-specific routines, the generic scripting component
allows you to identify the scripting component that created stored script data, get an
instance of a specified scripting component, and convert between generic script IDs and
component-specific script IDs.

noErr 0 No error
errOSACantOpenComponent –1762 Specified component subtype hasn’t

been registered
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-87

C H A P T E R 1 0

Scripting Components
If you want to identify the scripting component that created a storage descriptor record
but don’t want to load the script, use the OSAGetScriptingComponentFromStored
function. When you need to use a specific scripting component, the
OSAGetScriptingComponent function allows you to get a component instance for
that scripting component.

The OSAGenericToRealID and OSARealToGenericID functions allow you to
convert between generic script IDs and component-specific script IDs.

OSAGetScriptingComponentFromStored 10

You can use the OSAGetScriptingComponentFromStored routine to get the subtype
code for a scripting component that created a storage descriptor record.

FUNCTION OSAGetScriptingComponentFromStored

(genericScriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 VAR scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptData
Either a generic storage descriptor record or a component-specific storage
descriptor record.

scriptingSubType
The function returns, in this parameter, a subtype code identifying the
scripting component that created the descriptor record specified by the
scriptData parameter.

DESCRIPTION

The OSAGetScriptingComponentFromStored function returns, in the
scriptingSubType parameter, the subtype code for the scripting component that
created the script data specified by the scriptData parameter.

The generic scripting component automatically identifies the appropriate scripting
component for you when you use it to call OSALoad. By calling
OSAGetScriptingComponentFromStored, you can determine, without loading a
script, which scripting component created the script data.
10-88 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

OSAGetScriptingComponent 10

You can use the OSAGetScriptingComponent function to get the instance of a
scripting component for a specified subtype.

FUNCTION OSAGetScriptingComponent

(genericScriptingComponent: ComponentInstance;

 scriptingSubType: ScriptingComponentSelector;

 VAR scriptingInstance: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
A subtype code for a scripting component.

scriptingInstance
The function returns, in this parameter, a component instance for the
scripting component identified by the scriptingSubType parameter.

DESCRIPTION

You can’t use the generic scripting component with component-specific routines.
Instead, use an instance of the specific scripting component, which you can obtain with
OSAGetScriptingComponent.

The OSAGetScriptingComponent function returns, in the scriptingInstance
parameter, an instance of the scripting component identified by the
scriptingSubType parameter. Each instance of the generic scripting component
keeps track of a single instance of each component subtype, so
OSAGetScriptingComponent always returns the same instance of a specified
scripting component that the generic scripting component uses for standard scripting
component routines.

For example, you can use OSAGetDefaultComponent to get the subtype code for
the default scripting component (that is, the scripting component used by the
generic scripting component for new scripts). You can then get an instance of the default
scripting component by passing its subtype code to OSAGetScriptingComponent.
Finally, you can pass that instance to OSAScriptingComponentName to obtain the
default scripting component’s name so you can display it to the user.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-89

C H A P T E R 1 0

Scripting Components
Similarly, you can pass kAppleScriptSubtype in the scriptingSubType parameter
to obtain an instance of the AppleScript component. This is necessary, for example, to
call AppleScript-specific routines such as ASGetSourceStyles.

RESULT CODES

SEEALSO

For descriptions of the OSAGetDefaultScriptingComponent and
OSAScriptingComponentName functions, see page 10-86 and page 10-47, respectively.

OSAGenericToRealID 10

You can use the OSAGenericToRealID function to convert a generic script ID to the
corresponding component-specific script ID.

FUNCTION OSAGenericToRealID

(genericScriptingComponent: ComponentInstance;

 VAR theScriptID: OSAID;

 VAR theExactComponent: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

theScriptID
The generic script ID that you want to convert. The
OSAGenericToRealID function returns, in this parameter, the
component-specific script ID that corresponds to the generic script ID that
you pass in this parameter.

theExactComponent
The OSAGenericToRealID function returns, in this parameter, the
component instance that created the script ID returned in the
theScriptID parameter.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-90 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

You can’t use the generic scripting component and a generic script ID with
component-specific routines. Instead, you can use the component instance and script ID
returned by OSAGenericToRealID.

Given a generic script ID (that is, a script ID returned by a call to a standard component
routine via the generic scripting component), the OSAGenericToRealID function
returns the equivalent component-specific script ID and the component instance that
created that script ID. The OSAGenericToRealID function modifies the script ID in
place, changing the generic script ID you pass in the theScriptID parameter to the
corresponding component-specific script ID.

RESULT CODES

OSARealToGenericID 10

You can use the OSARealToGenericID function to convert a component-specific script
ID to the corresponding generic script ID.

FUNCTION OSARealToGenericID

(genericScriptingComponent: ComponentInstance;

 VAR theScriptID: OSAID;

 theExactComponent: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

theScriptID
The component-specific script ID that you want to convert. You must
have obtained this script ID from the scripting component instance
passed in the theExactComponent parameter. The
OSARealToGenericID function returns, in this parameter, the generic
script ID that corresponds to the component-specific script ID that you
pass in this parameter.

theExactComponent
A scripting component instance returned by a generic scripting
component routine.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-91

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSARealToGenericID function performs the reverse of the task performed by
OSAGenericToRealID. Given a component-specific script ID and an exact scripting
component instance (that is, the component instance that created the component-specific
script ID), the OSARealToGenericID function returns the corresponding generic script
ID. The OSARealToGenericID function modifies the script ID in place, changing the
component-specific script ID passed in the theScriptID parameter to the
corresponding generic script ID.

You’ll need to do this if you have obtained a component-specific script ID using an
exact scripting component instance and you want to refer to the same script in calls that
use an instance of the generic scripting component. You can’t use a component-specific
script ID with the generic scripting component.

The script ID you pass in the theScriptID parameter must be a component-specific
script ID obtained from a scripting component instance known to the generic scripting
component. You can obtain such an instance by calling either
OSAGetScriptingComponent or OSAGenericToRealID.

RESULT CODES

Routines Used by Scripting Components 10
Scripting components can call three routines to manipulate the trailers for generic
storage descriptor records. “Writing a Scripting Component” on page 10-27 provides
general guidelines for writing a scripting component.

Manipulating Trailers for Generic Storage Descriptor Records 10

All scripting components must use the OSAGetStorageType, OSAAddStorageType,
and OSARemoveStorageType functions described in this section to add, remove, and
inspect the trailers appended to script data in generic storage descriptor records.

For more information about generic storage descriptor records, see “Saving Script Data,”
which begins on page 10-12.

noErr 0 No error
errOSAComponentMismatch –1761 The theScriptID and

theExactComponent parameters are
for two different scripting components

errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-92 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAGetStorageType 10

You can use the OSAGetStorageType function to retrieve the scripting component
subtype from the script trailer appended to the script data in a generic storage descriptor
record.

FUNCTION OSAGetStorageType(scriptData: Handle;

VAR type: DescType): OSErr;

scriptData
A handle to the script data.

type The descriptor type specified in the script data trailer.

DESCRIPTION

The OSAGetStorageType function retrieves the scripting component subtype from the
trailer. If no trailer can be found, OSAGetStorageType returns the error
errOSABadStorageType.

RESULT CODES

OSAAddStorageType 10

You can use the OSAAddStorageType routine to add a trailer to the script data in a
generic storage descriptor record.

FUNCTION OSAAddStorageType(scriptData: Handle;

type: DescType): OSErr;

scriptData A handle to the script data.

type The descriptor type to be specified in the trailer added to the script data.

DESCRIPTION

The OSAAddStorageType routine attaches a trailer to a handle (consequently
expanding the data to which the handle refers) or updates an existing trailer.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type
Scripting Components Reference 10-93

C H A P T E R 1 0

Scripting Components
RESULT CODES

OSARemoveStorageType 10

You can use the OSARemoveStorageType routine to remove a trailer from the script
data in a generic storage descriptor record.

FUNCTION OSARemoveStorageType (scriptData: Handle): OSErr;

scriptData
A handle to the script data.

DESCRIPTION

The OSARemoveStorageType routine removes an existing trailer (reducing the
handle's size). If no trailer can be found, then the handle is not modified, and noErr is
returned.

RESULT CODES

Application-Defined Routines 10
Your application can provide alternative active, send, and create functions for use by
scripting components during script execution. All scripting components support
routines that allow you to set and get the current active function called periodically by
the scripting component during script execution. Some scripting components also
support routines that allow you to set and get the current send and create functions used
by the scripting component when it creates and sends Apple events during script
execution.

This section provides the syntax declarations for the active, send, create, and resume
dispatch functions. When a scripting component calls any of these functions, the A5
register is set up for your application, and your application is the current process.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type
10-94 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
MyActiveProc 10

Your application can provide an alternative active function that performs periodic tasks
during script compilation such as checking for Command-period, spinning the cursor,
and checking for system-level errors.

FUNCTION MyActiveProc (refCon: LongInt): OSErr;

refCon A reference constant.

DESCRIPTION

Every scripting component calls an active function periodically during script
compilation and execution and provides routines that allow your application to set or
get the pointer to the active function.

If you don’t set an alternative active function for a scripting component, it uses its own
default active function. A scripting component’s default active function allows a user to
cancel script execution by pressing Command-period and calls WaitNextEvent to give
other processes time.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s active function, see “Manipulating the Active Function” on
page 10-45.

For a discussion of the role of an active function, see “Supplying an Alternative Active
Function” on page 10-23.

MyAECreateProc 10

Your application can provide an alternative create function to gain control over the
creation and addressing of Apple events. This can be useful, for example, if your
application needs to add its own transaction code to the event. An alternative create
function takes the same parameters as the AECreateAppleEvent function plus a
reference constant.

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent;

 refCon: LongInt): OSErr;
Scripting Components Reference 10-95

C H A P T E R 1 0

Scripting Components
DESCRIPTION

Every scripting component calls a create function whenever it creates an Apple event
during script execution and provides routines that allow you to set or get the pointer to
the create function.

If you don’t set an alternative create function for a scripting component, it uses the
standard Apple Event Manager function AECreateAppleEvent, which it calls with its
own default parameters.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s create function, see “Manipulating the Create and Send
Functions,” which begins on page 10-55.

For information about create functions, see “Alternative Create Functions” on page 10-24.

For a description of the parameters for the AECreateAppleEvent function, see
“Creating Apple Events,” which begins on page 5-26.

MyAESendProc 10

Your application can provide an alternative send function that performs almost any
action instead of or in addition to sending Apple events. For example, before sending an
Apple event, an alternative send function can modify the event or save a copy of the
event. An alternative send function takes the same parameters as the AESend function
plus a reference constant.

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent;

 sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt;

 idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr;

 refCon: LongInt): OSErr;

DESCRIPTION

Every scripting component calls a send function whenever it sends an Apple event
during script execution and provides routines that allow you to set or get the pointer to
the send function.
10-96 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If you don’t set an alternative send function for a scripting component, it uses the
standard Apple Event Manager function AESend, which it calls with its own default
parameters.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s send function, see “Manipulating the Create and Send
Functions,” which begins on page 10-55.

For more information about send functions, see “Alternative Send Functions” on
page 10-25.

For a description of the parameters for the AESend function, see “Sending Apple
Events,” which begins on page 5-38.

MyResumeDispatch 10

Your application can provide a resume dispatch function that a scripting component
calls during script execution to dispatch Apple events directly to an application’s default
handler for an Apple event. A resume dispatch function takes the same parameters as an
Apple event handler.

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent;

reply: AppleEvent; refCon: LongInt)

: OSErr;

theAppleEvent
The Apple event to be dispatched.

reply The default reply Apple event provided by the Apple Event Manager.

refCon The reference constant stored in the Apple event dispatch table for the
Apple event.

DESCRIPTION

If a script specifies that the Apple event should be passed to an application’s standard
handler for that event (for example, with an AppleScript continue statement), the
scripting component executing the script passes the event to the resume dispatch
function currently being used by the scripting component. The resume dispatch function
should dispatch the event directly to the application’s standard handler for that event. If
you use script contexts to handle Apple events, you may need to provide a resume
dispatch function.
Scripting Components Reference 10-97

C H A P T E R 1 0

Scripting Components
If you can rely on standard Apple event dispatching to dispatch the event correctly, you
don’t need to provide a resume dispatch function. Instead, you can use the
OSASetResumeDispatchProc routine to specify that the Apple Event Manager should
use standard Apple event dispatching instead of a resume dispatch function.

SEE ALSO

For a description of the OSASetResumeDispatchProc function, see page 10-72.

For a discussion of the use of script contexts to handle Apple events, see “Using a Script
Context to Handle an Apple Event” on page 10-19.
10-98 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Summary of Scripting Components 10

Pascal Summary 10

Constants 10

CONST

{Component Manager type and subtype codes}

kOSAComponentType = 'osa ';

kOSAGenericScriptingComponentSubtype = 'scpt';

{null script ID passed to OSAExecute, OSAGetSource, or OSAStartRecording}

kOSANullScript = 0; {empty script}

{mode flag that indicates a routine's default mode settings are to be }

{ used}

kOSAModeNull = 0;

kOSANullMode = 0;

{mode flag used with OSAStore to store a script context without storing }

{ its parent context}

kOSAModeDontStoreParent = $00004000;

{mode flag used with OSAStore, OSALoad, or OSACompile to request }

{ minimum script data}

kOSAModePreventGetSource = $00000001;

{mode flags used with OSACompile, OSAExecute, OSALoadExecute, }

{ OSACompileExecute, OSADoScript, OSAExecuteEvent, and OSADoEvent}

{these mode flags cause the scripting component to set the corresponding }

{ sendMode flags when it sends the event}

kOSAModeNeverInteract = kAENeverInteract;

kOSAModeCanInteract = kAECanInteract;

kOSAModeAlwaysInteract = kAEAlwaysInteract;

kOSAModeDontReconnect = kAEDontReconnect;
Summary of Scripting Components 10-99

C H A P T E R 1 0

Scripting Components
{this mode flag causes the scripting component not to set the }

{ kAECanSwitchLayer sendMode flag when it sends the event}

kOSAModeCantSwitchLayer = $00000040;

{this mode flag causes the scripting component not to set the }

{ kAEDontRecord sendMode flag when it sends the event}

kOSAModeDoRecord = $00001000;

{mode flags used with OSACompile}

{this mode flag causes OSACompile to compile the source data as a script }

{ context}

kOSAModeCompileIntoContext = $00000002;

{this mode flag causes OSACompile to augment the script data for a }

{ script context rather than replacing it}

kOSAModeAugmentContext = $00000004;

{mode flags used with OSADisplay or OSADoScript to indicate that output }

{ needs to be readable by humans only and does not have to be recompiled }

{ by OSACompile}

kOSAModeDisplayForHumans = $00000008;

{suite and event code for the Recorded Text event}

kOSASuite = 'ascr';

kOSARecordedText = 'recd';

{resource type for stored script data}

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

{descriptor type for generic storage descriptor records}

typeOSAGenericStorage = kOSAScriptResourceType;

{descriptor types and error range keywords for OSAScriptError}

kOSAErrorNumber = 'errn'; {returns error number}

kOSAErrorMessage = 'errs'; {returns error message}

kOSAErrorBriefMessage = 'errb'; {returns brief error }

 { message}

kOSAErrorApp = 'erap'; {returns PSN or name of }

 { errant application}

kOSAErrorPartialResult = 'ptlr'; {returns partial }

 { result, if any}
10-100 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kOSAErrorOffendingObject = 'erob'; {returns info about }

 { offending object, if }

 { any}

kOSAErrorRange = 'erng'; {returns error range}

typeOSAErrorRange = 'erng'; {descriptor type for }

 { error range}

keyOSASourceStart = 'srcs'; {start of error range}

keyOSASourceEnd = 'srce'; {end of error range}

{if selector parameter of kOSAScriptError is kOSAErrorNumber, scripting }

{ components may return any of these error codes}

{dynamic errors}

errOSACantCoerce = errAECoercionFail;

errOSACantAccess = errAENoSuchObject;

errOSAGeneralError = -2700;

errOSADivideByZero = -2701;

errOSANumericOverflow = -2702;

errOSACantLaunch = -2703;

errOSAAppNotHighLevelEventAware = -2704;

errOSACorruptTerminology = -2705;

errOSAStackOverflow = -2706;

errOSAInternalTableOverflow = -2707;

errOSADataBlockTooLarge = -2708;

{component-specific dynamic script errors: -2720 through -2739}

{static errors}

errTypeError = errAEWrongDataType;

errOSAMessageNotUnderstood = errAEEventNotHandled;

errOSAUndefinedMessage = errAEHandlerNotFound;

errOSAIllegalIndex = errAEIllegalIndex;

errOASIllegalRange = errAEImpossibleRange;

errOSASyntaxError = -2740;

errOSASyntaxTypeError = -2741;

errOSATokenTooLong = -2742;

errOSAMissingParameter = errAEDescNotFound;

errOSAParameterMismatch = errAEWrongNumberArgs;

errOSADuplicateParameter = -2750;

errOSADuplicateProperty = -2751;

errOSADuplicateHandler = -2752;

errOSAUndefinedVariable = -2753;
Summary of Scripting Components 10-101

C H A P T E R 1 0

Scripting Components
errOSAInconsistentDeclarations = -2754;

errOSAControlFlowError = -2755;

{component-specific static script errors: -2760 through -2779}

{dialect-specific script errors: -2780 through -2799}

{descriptor type for each item in list returned by OSAAvailableDialects}

typeOSADialectInfo = 'difo';

{keywords for descriptor record of descriptor type typeOSADialectInfo; }

{ these can also be used in selector parameter of OSAGetDialectInfo}

keyOSADialectName = 'dnam'; {used with descriptor }

 { record of any text }

 { type, such as typeChar}

keyOSADialectCode = 'dcod'; {used with descriptor }

 { record of type }

 { typeShortInteger}

keyOSADialectLangCode = 'dlcd'; {used with descriptor }

 { record of type }

 { typeShortInteger}

keyOSADialectScriptCode = 'dscd'; {used with descriptor }

 { record of type }

 { typeShortInteger}

{constants for use with OSASetResumeDispatchProc}

kOSAUseStandardDispatch = kAEUseStandardDispatch;

kOSANoDispatch = kAENoDispatch;

kOSADontUsePhac = $0001;

{selectors for use with OSAGetScriptInfo}

kOSAScriptIsModified = 'modi';

kOSAScriptIsTypeCompiledScript = 'cscr';

kOSAScriptIsTypeScriptValue = 'valu';

kOSAScriptIsTypeScriptContext = 'cntx';

kOSAScriptBestType = 'best';

kOSACanGetSource = 'gsrc';

{OSA component flags}

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;
10-102 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

{component selectors}

{basic scripting}

kOSASelectLoad = $0001;

kOSASelectStore = $0002;

kOSASelectExecute = $0003;

kOSASelectDisplay = $0004;

kOSASelectScriptError = $0005;

kOSASelectDispose = $0006;

kOSASelectSetScriptInfo = $0007;

kOSASelectGetScriptInfo = $0008;

kOSASelectSetActiveProc = $0009;

kOSASelectGetActiveProc = $000A;

{compiling}

kOSASelectScriptingComponentName = $0102;

kOSASelectCompile = $0103;

kOSASelectCopyID = $0104;

{getting source data}

kOSASelectGetSource = $0201;

{coercing script values}

kOSASelectCoerceFromDesc = $0301;

kOSASelectCoerceToDesc = $0302;

{manipulating send and create functions}

kOSASelectSetSendProc = $0401;

kOSASelectGetSendProc = $0402;

kOSASelectSetCreateProc = $0403;

kOSASelectGetCreateProc = $0404;

kOSASelectSetDefaultTarget = $0405;

{recording}

kOSASelectStartRecording = $0501;

kOSASelectStopRecording = $0502;
Summary of Scripting Components 10-103

C H A P T E R 1 0

Scripting Components
{convenience}

kOSASelectLoadExecute = $0601;

kOSASelectCompileExecute = $0602;

kOSASelectDoScript = $0603;

{manipulating dialects}

kOSASelectSetCurrentDialect = $0701;

kOSASelectGetCurrentDialect = $0702;

kOSASelectAvailableDialects = $0703;

kOSASelectGetDialectInfo = $0704;

kOSASelectAvailableDialectCodeList = $0705;

{executing Apple event handlers in script contexts}

kOSASelectSetResumeDispatchProc = $0801;

kOSASelectGetResumeDispatchProc = $0802;

kOSASelectExecuteEvent = $0803;

kOSASelectDoEvent = $0804;

kOSASelectMakeContext = $0805;

{scripting-component-specific selectors begin with this value}

kOSASelectComponentSpecificStart = $1001;

{*******AppleScript component constants*******}

typeAppleScript = 'ascr';

{Component Manager subtype for AppleScript component}

kAppleScriptSubtype = typeAppleScript;

{AppleScript constant for storage descriptor records}

typeASStorage = typeAppleScript;

{AppleScript constant for the selector parameter of OSAGetScriptInfo}

kASHasOpenHandler = 'hsod';

{AppleScript component selectors}

kASSelectInit = $1001;

kASSelectSetSourceStyles = $1002;

kASSelectGetSourceStyles = $1003;

kASSelectGetSourceStyleNames = $1004;

{default initialization parameters for AppleScript}

kASDefaultMinStackSize = 1 * 1024;

kASDefaultPreferredStackSize = 4 * 1024;

kASDefaultMaxStackSize = 16 * 1024;
10-104 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kASDefaultMinHeapSize = 4 * 1024;

kASDefaultPreferredHeapSize = 64 * 1024;

kASDefaultMaxHeapSize = 32 * 1024 * 1024;

{AppleScript source style flags}

kASSourceStyleUncompiledText = 0;

kASSourceStyleNormalText = 1;

kASSourceStyleLanguageKeyword = 2;

kASSourceStyleApplicationKeyword = 3;

kASSourceStyleComment = 4;

kASSourceStyleLiteral = 5;

kASSourceStyleUserSymbol = 6;

kASSourceStyleObjectSpecifier = 7;

kASNumberOfSourceStyles = 8;

{if selector parameter of kOSAScriptError is kOSAErrorNumber, }

{ AppleScript component may return any of these error codes}

errASCantConsiderAndIgnore = -2720;

errASCantCompareMoreThan32k = -2721;

errASCantCompareMixedScripts = -2722;

errASTerminologyNestingTooDeep = -2760;

errASInconsistentNames = -2780; {English dialect}

{*******generic scripting component constants*******}

{component version this header file describes}

kGenericComponentVersion = $0100;

{generic scripting component selectors}

kGSSSelectGetDefaultScriptingComponent = $1001;

kGSSSelectSetDefaultScriptingComponent = $1002;

kGSSSelectGetScriptingComponent = $1003;

kGSSSelectGetScriptingComponentFromStored = $1004;

kGSSSelectGenericToRealID = $1005;

kGSSSelectRealToGenericID = $1006;

Data Types 10

TYPE

OSAID = LongInt; {script ID}

OSAError = ComponentResult; {type for result codes}
Summary of Scripting Components 10-105

C H A P T E R 1 0

Scripting Components
{pointers for application-defined functions}

OSAActiveProcPtr = ProcPtr;

AESendProcPtr = ProcPtr;

AECreateAppleEventProcPtr = ProcPtr;

AEHandlerProcPtr = EventHandlerProcPtr;

{generic scripting component data types}

ScriptingComponentSelector = OSType;

GenericID = OSAID;

Required Scripting Component Routines 10

Saving and Loading Script Data

FUNCTION OSAStore (scriptingComponent: ComponentInstance;
scriptID: OSAID;
desiredType: DescType;
modeFlags: LongInt;
VAR resultingScriptData: AEDesc): OSAError;

FUNCTION OSALoad (scriptingComponent: ComponentInstance;
scriptData: AEDesc;
modeFlags: LongInt;
VAR resultingScriptID: OSAID): OSAError;

Executing and Disposing of Scripts

FUNCTION OSAExecute (scriptingComponent: ComponentInstance;
compiledScriptID: OSAID;
contextID: OSAID;
modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADisplay (scriptingComponent: ComponentInstance;
scriptValueID: OSAID;
desiredType: DescType;
modeFlags: LongInt;
VAR resultingText: AEDesc): OSAError;

FUNCTION OSAScriptError (scriptingComponent: ComponentInstance;
selector: OSType;
desiredType: DescType;
VAR resultingErrorDescription: AEDesc)
: OSAError;

FUNCTION OSADispose (scriptingComponent: ComponentInstance;
scriptID: OSAID): OSAError;
10-106 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Setting and Getting Script Information

FUNCTION OSASetScriptInfo (scriptingComponent: ComponentInstance;
scriptID: OSAID; selector: OSType;
value: LongInt): OSAError;

FUNCTION OSAGetScriptInfo (scriptingComponent: ComponentInstance;
scriptID: OSAID; selector: OSType;
VAR result: LongInt): OSAError;

Manipulating the Active Function

FUNCTION OSASetActiveProc (scriptingComponent: ComponentInstance;
activeProc: OSAActiveProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetActiveProc (scriptingComponent: ComponentInstance;
VAR activeProc: OSAActiveProcPtr;
VAR refCon: LongInt): OSAError;

Optional Scripting Component Routines 10

Compiling Scripts

FUNCTION OSAScriptingComponentName
(scriptingComponent: ComponentInstance;
VAR resultingScriptingComponentName: AEDesc)
: OSAError;

FUNCTION OSACompile (scriptingComponent: ComponentInstance;
sourceData: AEDesc; modeFlags: LongInt;
VAR previousAndResultingScriptID: OSAID)
: OSAError;

FUNCTION OSACopyID (scriptingComponent: ComponentInstance;
fromID: OSAID; VAR toID: OSAID): OSAError;

Getting Source Data

FUNCTION OSAGetSource (scriptingComponent: ComponentInstance;
scriptID: OSAID; desiredType: DescType;
VAR resultingSourceData: AEDesc): OSAError;

Coercing Script Values

FUNCTION OSACoerceFromDesc (scriptingComponent: ComponentInstance;
scriptData: AEDesc; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;
Summary of Scripting Components 10-107

C H A P T E R 1 0

Scripting Components
FUNCTION OSACoerceToDesc (scriptingComponent: ComponentInstance;
scriptValueID: OSAID;
desiredType: DescType; modeFlags: LongInt;
VAR result: AEDesc): OSAError;

Manipulating the Create and Send Functions

FUNCTION OSASetCreateProc (scriptingComponent: ComponentInstance;
createProc: AECreateAppleEventProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetCreateProc (scriptingComponent: ComponentInstance;
VAR createProc: AECreateAppleEventProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSASetSendProc (scriptingComponent: ComponentInstance;
sendProc: AESendProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetSendProc (scriptingComponent: ComponentInstance;
VAR sendProc: AESendProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSASetDefaultTarget
(scriptingComponent: ComponentInstance;
target: AEAddressDesc): OSAError;

Recording Scripts

FUNCTION OSAStartRecording (scriptingComponent: ComponentInstance;
VAR compiledScriptToModifyID: OSAID): OSAError;

FUNCTION OSAStopRecording (scriptingComponent: ComponentInstance;
compiledScriptID: OSAID): OSAError;

Executing Scripts in One Step

FUNCTION OSALoadExecute (scriptingComponent: ComponentInstance;
scriptData: AEDesc;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSACompileExecute (scriptingComponent: ComponentInstance;
sourceData: AEDesc;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADoScript (scriptingComponent: ComponentInstance;
sourceData: AEDesc;
contextID: OSAID;
desiredType: DescType; modeFlags: LongInt;
VAR resultingText: AEDesc): OSAError;
10-108 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating Dialects

FUNCTION OSASetCurrentDialect
(scriptingComponent: ComponentInstance;
dialectCode: Integer): OSAError;

FUNCTION OSAGetCurrentDialect
(scriptingComponent: ComponentInstance;
VAR resultingDialectCode: Integer): OSAError;

FUNCTION OSAAvailableDialectCodeList
(scriptingComponent: ComponentInstance;
VAR resultingDialectCodeList: AEDesc)
: OSAError;

FUNCTION OSAGetDialectInfo (scriptingComponent: ComponentInstance;
dialectCode: Integer; selector: OSType;
VAR resultingDialectInfo: AEDesc): OSAError;

FUNCTION OSAAvailableDialects
(scriptingComponent: ComponentInstance;
VAR resultingDialectCodeList: AEDesc)
: OSAError;

Using Script Contexts to Handle Apple Events

FUNCTION OSASetResumeDispatchProc
(scriptingComponent: ComponentInstance;
resumeDispatchProc: AEHandlerProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetResumeDispatchProc
(scriptingComponent: ComponentInstance;
VAR resumeDispatchProc: AEHandlerProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSAExecuteEvent (scriptingComponent: ComponentInstance;
theAppleEvent: AppleEvent;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADoEvent (scriptingComponent: ComponentInstance;
theAppleEvent: AppleEvent;
contextID: OSAID; modeFlags: LongInt;
VAR reply: AppleEvent): OSAError;

FUNCTION OSAMakeContext (scriptingComponent: ComponentInstance;
contextName: AEDesc;
parentContext: OSAID;
VAR resultingContextID: OSAID): OSAError;
Summary of Scripting Components 10-109

C H A P T E R 1 0

Scripting Components
AppleScript Component Routines 10

Initializing AppleScript

FUNCTION ASInit (scriptingComponent: ComponentInstance;
modeFlags: LongInt;
minStackSize: LongInt;
preferredStackSize: LongInt;
maxStackSize: LongInt;
minHeapSize: LongInt;
preferredHeapSize: LongInt;
maxHeapSize: LongInt): OSAError;

Getting and Setting Styles for Source Data
FUNCTION ASGetSourceStyles (scriptingComponent: ComponentInstance;

VAR resultingSourceStyles: STHandle): OSAError;

FUNCTION ASSetSourceStyles (scriptingComponent: ComponentInstance;
sourceStyles: STHandle): OSAError;

FUNCTION ASGetSourceStyleNames
(scriptingComponent: ComponentInstance;
modeFlags: LongInt;
VAR resultingSourceStyleNamesList: AEDescList)
: OSAError;

Generic Scripting Component Routines 10

Getting and Setting the Default Scripting Component

FUNCTION OSAGetDefaultScriptingComponent
(genericScriptingComponent: ComponentInstance;
VAR scriptingSubType:
ScriptingComponentSelector): OSAError;

FUNCTION OSASetDefaultScriptingComponent
(genericScriptingComponent: ComponentInstance;
scriptingSubType: ScriptingComponentSelector):
OSAError;

Using Component-Specific Routines

FUNCTION OSAGetScriptingComponentFromStored
(genericScriptingComponent: ComponentInstance;
scriptData: AEDesc;
VAR scriptingSubType:
ScriptingComponentSelector): OSAError;
10-110 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
FUNCTION OSAGetScriptingComponent
(genericScriptingComponent: ComponentInstance;
scriptingSubType: ScriptingComponentSelector;
VAR scriptingInstance: ComponentInstance)
: OSAError;

FUNCTION OSAGenericToRealID (genericScriptingComponent: ComponentInstance;
VAR theScriptID: OSAID;
VAR theExactComponent: ComponentInstance)
: OSAError;

FUNCTION OSARealToGenericID (genericScriptingComponent: ComponentInstance;
VAR theScriptID: OSAID;
theExactComponent: ComponentInstance)
: OSAError;

Routines Used by Scripting Components 10

Manipulating Trailers for Generic Storage Descriptor Records

FUNCTION OSAGetStorageType (scriptData: Handle; VAR type: DescType): OSErr;

FUNCTION OSAAddStorageType (scriptData: Handle; type: DescType): OSErr;

FUNCTION OSARemoveStorageType
(scriptData: Handle): OSErr;

Application-Defined Routines 10

FUNCTION MyActiveProc (refCon: LongInt): OSErr;

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;
theAEEventID: AEEventID; target: AEAddressDesc;
returnID: Integer; transactionID: LongInt;
VAR result: AppleEvent;
refCon: LongInt): OSErr;

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;
VAR reply: AppleEvent; sendMode: AESendMode;
sendPriority: AESendPriority;
timeOutInTicks: LongInt;
idleProc: IdleProcPtr;
filterProc: EventFilterProcPtr;
refCon: LongInt): OSErr;

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent; reply: AppleEvent;
refCon: LongInt): OSErr;
Summary of Scripting Components 10-111

C H A P T E R 1 0

Scripting Components
C Summary 10

Constants 10

/*Component Manager type and subtype codes*/

#define kOSAComponentType 'osa '

#define kOSAGenericScriptingComponentSubtype 'scpt'

/*null script ID passed to OSAExecute, OSAGetSource, or OSAStartRecording*/

#define kOSANullScript ((OSAID) 0)

/*mode flag that indicates a routine's default mode settings are to be used*/

#define kOSAModeNull 0

#define kOSANullMode 0

/*mode flag used with OSAStore to store a script context without storing */

/* its parent context*/

#define kOSAModeDontStoreParent 0x00004000

/*mode flag used with OSAStore, OSALoad, or OSACompile to request */

/* minimum script data*/

#define kOSAModePreventGetSource 0x00000001

/*mode flags used with OSACompile, OSAExecute, OSALoadExecute, */

/* OSACompileExecute, OSADoScript, OSAExecuteEvent, and OSADoEvent*/

/*these mode flags cause the scripting component to set the corresponding */

/* sendMode flags when it sends the event*/

#define kOSAModeNeverInteract kAENeverInteract

#define kOSAModeCanInteract kAECanInteract

#define kOSAModeAlwaysInteract kAEAlwaysInteract

#define kOSAModeDontReconnect kAEDontReconnect

/*this mode flag causes the scripting component not to set the */

/* kAECanSwitchLayer sendMode flag when it sends the event*/

#define kOSAModeCantSwitchLayer 0x00000040

/*this mode flag causes the scripting component not to set the */

/* kAEDontRecord sendMode flag when it sends the event*/

#define kOSAModeDoRecord 0x00001000
10-112 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
/*mode flags used with OSACompile*/

/*this mode flag causes OSACompile to compile the source data as a script */

/* context*/

#define kOSAModeCompileIntoContext 0x00000002

/*this mode flag causes OSACompile to augment the script data for a script */

/* context rather than replacing it*/

#define kOSAModeAugmentContext 0x00000004

/*mode flags used with OSADisplay or OSADoScript to indicate that output */

/* needs to be readable by humans only and does not have to be recompiled */

/* by OSACompile*/

#define kOSAModeDisplayForHumans 0x00000008

/*suite and event code for the Recorded Text event*/

#define kOSASuite 'ascr'

#define kOSARecordedText 'recd'

/*resource type for stored script data*/

#define kOSAScriptResourceType kOSAGenericScriptingComponentSubtype

/*descriptor type for generic storage descriptor records*/

#define typeOSAGenericStorage kOSAScriptResourceType

/*descriptor types and error range keywords for OSAScriptError*/

#define kOSAErrorNumber 'errn' /*returns error number*/

#define kOSAErrorMessage 'errs' /*returns error message*/

#define kOSAErrorBriefMessage 'errb' /*returns brief error */

/* message*/

#define kOSAErrorApp 'erap' /*returns PSN or name of */

/* errant application*/

#define kOSAErrorPartialResult 'ptlr' /*returns partial result, */

/* if any*/

#define kOSAErrorOffendingObject 'erob' /*returns info about */

/* offending object, if any*/

#define kOSAErrorRange 'erng' /*returns error range*/

#define typeOSAErrorRange 'erng' /*descriptor type for */

/* error range*/

#define keyOSASourceStart 'srcs' /*start of error range*/

#define keyOSASourceEnd 'srce' /*end of error range*/
Summary of Scripting Components 10-113

C H A P T E R 1 0

Scripting Components
/*if selector parameter of kOSAScriptError is kOSAErrorNumber, scripting */

/* components may return any of these error codes*/

/*dynamic errors*/

#define errOSACantCoerce errAECoercionFail

#define errOSACantAccess errAENoSuchObject

#define errOSAGeneralError -2700

#define errOSADivideByZero -2701

#define errOSANumericOverflow -2702

#define errOSACantLaunch -2703

#define errOSAAppNotHighLevelEventAware -2704

#define errOSACorruptTerminology -2705

#define errOSAStackOverflow -2706

#define errOSAInternalTableOverflow -2707

#define errOSADataBlockTooLarge -2708

/*component-specific dynamic script errors: -2720 through -2739*/

/*static errors*/

#define errTypeError errAEWrongDataType

#define errOSAMessageNotUnderstood errAEEventNotHandled

#define errOSAUndefinedMessage errAEHandlerNotFound

#define errOSAIllegalIndex errAEIllegalIndex

#define errOASIllegalRange errAEImpossibleRange

#define errOSASyntaxError -2740

#define errOSASyntaxTypeError -2741

#define errOSATokenTooLong -2742

#define errOSAMissingParameter errAEDescNotFound

#define errOSAParameterMismatch errAEWrongNumberArgs

#define errOSADuplicateParameter -2750

#define errOSADuplicateProperty -2751

#define errOSADuplicateHandler -2752

#define errOSAUndefinedVariable -2753

#define errOSAInconsistentDeclarations -2754

#define errOSAControlFlowError -2755

/*component-specific static script errors: -2760 through -2779*/

/*dialect-specific script errors: -2780 through -2799*/

/*descriptor type for each item in list returned by OSAAvailableDialects*/

#define typeOSADialectInfo 'difo'
10-114 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
/*keywords for descriptor record of descriptor type typeOSADialectInfo; */

/* these can also be used in selector parameter of OSAGetDialectInfo*/

#define keyOSADialectName 'dnam' /*used with descriptor */

/* record of any text */

/* type, such as typeChar*/

#define keyOSADialectCode 'dcod' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

#define keyOSADialectLangCode 'dlcd' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

#define keyOSADialectScriptCode 'dscd' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

/*constants for use with OSASetResumeDispatchProc*/

#define kOSAUseStandardDispatch kAEUseStandardDispatch

#define kOSANoDispatch kAENoDispatch

#define kOSADontUsePhac $0001

/*selectors for use with OSAGetScriptInfo*/

#define kOSAScriptIsModified 'modi'

#define kOSAScriptIsTypeCompiledScript 'cscr'

#define kOSAScriptIsTypeScriptValue 'valu'

#define kOSAScriptIsTypeScriptContext 'cntx'

#define kOSAScriptBestType 'best'

#define kOSACanGetSource 'gsrc'

/*OSA component flags*/

#define kOSASupportsCompiling 0x0002

#define kOSASupportsGetSource 0x0004

#define kOSASupportsAECoercion 0x0008

#define kOSASupportsAESending 0x0010

#define kOSASupportsRecording 0x0020

#define kOSASupportsConvenience 0x0040

#define kOSASupportsDialects 0x0080

#define kOSASupportsEventHandling 0x0100

/*component selectors*/

/*basic scripting*/

#define kOSASelectLoad 0x0001
Summary of Scripting Components 10-115

C H A P T E R 1 0

Scripting Components
#define kOSASelectStore 0x0002

#define kOSASelectExecute 0x0003

#define kOSASelectDisplay 0x0004

#define kOSASelectScriptError 0x0005

#define kOSASelectDispose 0x0006

#define kOSASelectSetScriptInfo 0x0007

#define kOSASelectGetScriptInfo 0x0008

#define kOSASelectSetActiveProc 0x0009

#define kOSASelectGetActiveProc 0x000A

/*compiling*/

#define kOSASelectScriptingComponentName 0x0102

#define kOSASelectCompile 0x0103

#define kOSASelectCopyID 0x0104

/*getting source data*/

#define kOSASelectGetSource 0x0201

/*coercing script values*/

#define kOSASelectCoerceFromDesc 0x0301

#define kOSASelectCoerceToDesc 0x0302

/*manipulating send and create functions*/

#define kOSASelectSetSendProc 0x0401

#define kOSASelectGetSendProc 0x0402

#define kOSASelectSetCreateProc 0x0403

#define kOSASelectGetCreateProc 0x0404

#define kOSASelectSetDefaultTarget 0x0405

/*recording*/

#define kOSASelectStartRecording 0x0501

#define kOSASelectStopRecording 0x0502

/*convenience*/

#define kOSASelectLoadExecute 0x0601

#define kOSASelectCompileExecute 0x0602

#define kOSASelectDoScript 0x0603

/*manipulating dialects*/

#define kOSASelectSetCurrentDialect 0x0701

#define kOSASelectGetCurrentDialect 0x0702

#define kOSASelectAvailableDialects 0x0703

#define kOSASelectGetDialectInfo 0x0704
10-116 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
#define kOSASelectAvailableDialectCodeList 0x0705

/*executing Apple event handlers in script contexts*/

#define kOSASelectSetResumeDispatchProc 0x0801

#define kOSASelectGetResumeDispatchProc 0x0802

#define kOSASelectExecuteEvent 0x0803

#define kOSASelectDoEvent 0x0804

#define kOSASelectMakeContext 0x0805

/*scripting-component-specific selectors are added beginning with this */

/* value*/

#define kOSASelectComponentSpecificStart 0x1001

/********AppleScript component constants********/

#define typeAppleScript 'ascr'

/*Component Manager subtype for AppleScript component*/

#define kAppleScriptSubtype typeAppleScript

/*AppleScript constant for storage descriptor records*/

#define typeASStorage typeAppleScript

/*AppleScript constant for the selector parameter of OSAGetScriptInfo*/

#define kASHasOpenHandler 'hsod'

/*AppleScript component selectors*/

#define kASSelectInit 0x1001

#define kASSelectSetSourceStyles 0x1002

#define kASSelectGetSourceStyles 0x1003

#define kASSelectGetSourceStyleNames 0x1004

/*default initialization parameters for AppleScript*/

#define kASDefaultMinStackSize 1 * 1024

#define kASDefaultPreferredStackSize 4 * 1024

#define kASDefaultMaxStackSize 16 * 1024

#define kASDefaultMinHeapSize 4 * 1024

#define kASDefaultPreferredHeapSize 64 * 1024

#define kASDefaultMaxHeapSize 32 * 1024 * 1024

/*AppleScript source style flags*/

#define kASSourceStyleUncompiledText 0

#define kASSourceStyleNormalText 1

#define kASSourceStyleLanguageKeyword 2
Summary of Scripting Components 10-117

C H A P T E R 1 0

Scripting Components
#define kASSourceStyleApplicationKeyword 3

#define kASSourceStyleComment 4

#define kASSourceStyleLiteral 5

#define kASSourceStyleUserSymbol 6

#define kASSourceStyleObjectSpecifier 7

#define kASNumberOfSourceStyles 8

/*if selector parameter of kOSAScriptError is kOSAErrorNumber, AppleScript */

/* component may return any of these error codes*/

#define errASCantConsiderAndIgnore -2720

#define errASCantCompareMoreThan32k -2721

#define errASCantCompareMixedScripts -2722

#define errASTerminologyNestingTooDeep -2760

#define errASInconsistentNames -2780 /*English dialect*/

/*******generic scripting component constants*******/

/*component version this header file describes*/

kGenericComponentVersion 0x0100

/*generic scripting component selectors*/

#define kGSSSelectGetDefaultScriptingComponent 0x1001

#define kGSSSelectSetDefaultScriptingComponent 0x1002

#define kGSSSelectGetScriptingComponent 0x1003

#define kGSSSelectGetScriptingSystemFromStored 0x1004

#define kGSSSelectGenericToRealID 0x1005

#define kGSSSelectRealToGenericID 0x1006

Data Types 10

typedef unsigned long OSAID; /*script ID*/

typedef ComponentResult OSAError; /*type for result codes*/

/*pointers for application-defined functions*/

typedef pascal OSErr (*OSAActiveProcPtr) (long refCon);

typedef pascal OSErr (*AESendProcPtr)

 (const AppleEvent* theAppleEvent,

AppleEvent* reply, AESendMode sendMode,

AESendPriority sendPriority,

long timeOutInTicks, IdleProcPtr idleProc,

EventFilterProcPtr filterProc, long refCon);
10-118 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
typedef pascal OSErr (*AECreateAppleEventProcPtr)

 (AEEventClass theAEEventClass,

AEEventID theAEEventID,

const AEAddressDesc* target, short returnID,

long transactionID, AppleEvent* result,

long refCon);

typedef pascal OSErr (*AEHandlerProcPtr)

 (const AppleEvent* the AppleEvent,

AppleEvent* reply, long refCon);

/*generic scripting component data types*/

typedef OSType ScriptingComponentSelector;

typedef OSAID GenericID;

Required Scripting Component Routines 10

Saving and Loading Script Data

pascal OSAError OSAStore (ComponentInstance scriptingComponent,
OSAID scriptID, DescType desiredType,
long modeFlags, AEDesc* resultingScriptData);

pascal OSAError OSALoad (ComponentInstance scriptingComponent,
const AEDesc* scriptData, long modeFlags,
OSAID* resultingScriptID);

Executing and Disposing of Scripts

pascal OSAError OSAExecute (ComponentInstance scriptingComponent,
OSAID compiledScriptID, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSADisplay (ComponentInstance scriptingComponent,
OSAID scriptValueID, DescType desiredType,
long modeFlags, AEDesc* resultingText);

pascal OSAError OSAScriptError
(ComponentInstance scriptingComponent,
OSType selector, DescType desiredType,
AEDesc* resultingErrorDescription);

pascal OSAError OSADispose (ComponentInstance scriptingComponent,
OSAID scriptID);

Setting and Getting Script Information

pascal OSAError OSASetScriptInfo
(ComponentInstance scriptingComponent,
OSAID scriptID, OSType selector, long value);
Summary of Scripting Components 10-119

C H A P T E R 1 0

Scripting Components
pascal OSAError OSAGetScriptInfo
(ComponentInstance scriptingComponent,
OSAID scriptID, OSType selector, long* result);

Manipulating the Active Function

pascal OSAError OSASetActiveProc
(ComponentInstance scriptingComponent,
OSAActiveProcPtr activeProc, long refCon);

pascal OSAError OSAGetActiveProc
(ComponentInstance scriptingComponent,
OSAActiveProcPtr* activeProc, long* refCon);

Optional Scripting Component Routines 10

Compiling Scripts

pascal OSAError OSAScriptingComponentName
(ComponentInstance scriptingComponent,
AEDesc* resultingScriptingComponentName);

pascal OSAError OSACompile (ComponentInstance scriptingComponent,
const AEDesc* sourceData,
long modeFlags,
OSAID* previousAndResultingScriptID);

pascal OSAError OSACopyID (ComponentInstance scriptingComponent,
OSAID fromID, OSAID* toID);

Getting Source Data

pascal OSAError OSAGetSource
(ComponentInstance scriptingComponent,
OSAID scriptID, DescType desiredType,
AEDesc* resultingSourceData);

Coercing Script Values

pascal OSAError OSACoerceFromDesc
(ComponentInstance scriptingComponent,
const AEDesc* scriptData, long modeFlags,
OSAID* resultingScriptValueID);

pascal OSAError OSACoerceToDesc
(ComponentInstance scriptingComponent,
OSAID scriptValueID, DescType desiredType,
long modeFlags, AEDesc* result);
10-120 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating the Create and Send Functions

pascal OSAError OSASetCreateProc
(ComponentInstance scriptingComponent,
AECreateAppleEventProcPtr createProc,
long refCon);

pascal OSAError OSAGetCreateProc
(ComponentInstance scriptingComponent,
AECreateAppleEventProcPtr* createProc,
long* refCon);

pascal OSAError OSASetSendProc
(ComponentInstance scriptingComponent,
AESendProcPtr sendProc, long refCon);

pascal OSAError OSAGetSendProc
(ComponentInstance scriptingComponent,
AESendProcPtr* sendProc, long* refCon);

pascal OSAError OSASetDefaultTarget
(ComponentInstance scriptingComponent,
const AEAddressDesc* target);

Recording Scripts

pascal OSAError OSAStartRecording
(ComponentInstance scriptingComponent,
OSAID* compiledScriptToModifyID);

pascal OSAError OSAStopRecording
(ComponentInstance scriptingComponent,
OSAID compiledScriptID);

Executing Scripts in One Step

pascal OSAError OSALoadExecute
(ComponentInstance scriptingComponent,
const AEDesc* scriptData, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSACompileExecute
(ComponentInstance scriptingComponent,
const AEDesc* sourceData, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSADoScript (ComponentInstance scriptingComponent,
const AEDesc* sourceData, OSAID contextID,
DescType desiredType, long modeFlags,
AEDesc* resultingText);
Summary of Scripting Components 10-121

C H A P T E R 1 0

Scripting Components
Manipulating Dialects

pascal OSAError OSASetCurrentDialect
(ComponentInstance scriptingComponent,
short dialectCode);

pascal OSAError OSAGetCurrentDialect
(ComponentInstance scriptingComponent,
short* resultingDialectCode);

pascal OSAError OSAAvailableDialectCodeList
(ComponentInstance scriptingComponent,
AEDesc* resultingDialectCodeList);

pascal OSAError OSAGetDialectInfo
(ComponentInstance scriptingComponent,
short dialectCode, OSType selector,
AEDesc* resultingDialectInfo);

pascal OSAError OSAAvailableDialects
(ComponentInstance scriptingComponent,
AEDesc* resultingDialectInfoList);

Using Script Contexts to Handle Apple Events

pascal OSAError OSASetResumeDispatchProc
(ComponentInstance scriptingComponent,
AEHandlerProcPtr resumeDispatchProc,
long refCon);

pascal OSAError OSAGetResumeDispatchProc
(ComponentInstance scriptingComponent,
AEHandlerProcPtr* resumeDispatchProc,
long* refCon);

pascal OSAError OSAExecuteEvent
(ComponentInstance scriptingComponent,
const AppleEvent* theAppleEvent,
OSAID contextID, long modeFlags,
OSAID* resultingScriptValueID);

pascal OSAError OSADoEvent (ComponentInstance scriptingComponent,
const AppleEvent* theAppleEvent,
OSAID contextID, long modeFlags,
AppleEvent* reply);

pascal OSAError OSAMakeContext
(ComponentInstance scriptingComponent,
const AEDesc* contextName,
OSAID parentContext,
OSAID* resultingContextID);
10-122 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
AppleScript Component Routines 10

Initializing AppleScript

pascal OSAError ASInit (ComponentInstance scriptingComponent,
long modeFlags, long minStackSize,
long preferredStackSize, long maxStackSize,
long minHeapSize, long preferredHeapSize,
long maxHeapSize);

Getting and Setting Styles for Source Data

pascal OSAError ASGetSourceStyles
(ComponentInstance scriptingComponent,
STHandle* resultingSourceStyles);

pascal OSAError ASSetSourceStyles
(ComponentInstance scriptingComponent,
STHandle sourceStyles);

pascal OSAError ASGetSourceStyleNames
(ComponentInstance scriptingComponent,
long modeFlags,
AEDescList* resultingSourceStyleNamesList);

Generic Scripting Component Routines 10

Getting and Setting the Default Scripting Component

pascal OSAError OSAGetDefaultScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector* scriptingSubType);

pascal OSAError OSASetDefaultScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector scriptingSubType);

Using Component-Specific Routines

pascal OSAError OSAGetScriptingComponentFromStored
(ComponentInstance genericScriptingComponent,
const AEDesc *scriptData,
ScriptingComponentSelector scriptingSubType);

pascal OSAError OSAGetScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector scriptingSubType,
ComponentInstance* scriptingInstance);
Summary of Scripting Components 10-123

C H A P T E R 1 0

Scripting Components
pascal OSAError OSAGenericToRealID
(ComponentInstance genericScriptingComponent,
OSAID *theScriptID,
ComponentInstance *theExactComponent);

pascal OSAError OSARealToGenericID
(ComponentInstance genericScriptingComponent,
OSAID *theScriptID,
ComponentInstance theExactComponent);

Routines Used by Scripting Components 10

Manipulating Trailers for Generic Storage Descriptor Records

pascal OSErr OSAGetStorageType
(Handle scriptData, DescType* type);

pascal OSErr OSAAddStorageType
(Handle scriptData, DescType type);

pascal OSErr OSARemoveStorageType
(Handle scriptData);

Application-Defined Routines 10

pascal OSErr MyActiveProc (long refCon);

pascal OSErr MyAECreateProc
(AEEventClass theAEEventClass,
AEEventID theAEEventID, AEAddressDesc target,
short returnID, long transactionID,
AppleEvent* result, long refCon);

pascal OSErr MyAESendProc (AppleEvent theAppleEvent, AppleEvent* reply,
AESendMode sendMode,
AESendPriority sendPriority,
long timeOutInTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc, long refCon);

pascal OSErr MyResumeDispatch
(const AppleEvent* theAppleEvent,
AppleEvent* reply, long refCon);
10-124 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Result Codes 10
noErr 0 No error
errOSACantCoerce –1700 Same as errAECoercionFail; data could not be

coerced to the requested data type
errOSACorruptData –1702 Same as errAECorruptData
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already

on for a recording process
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Illegal storage type
errOSAScriptError –1753 Error occurred during compilation or execution
errOSABadSelector –1754 Selector not supported by scripting component
errOSASourceNotAvailable –1756 Source data not available
errOSANoSuchDialect –1757 Invalid dialect code
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
errOSAComponentMismatch –1761 Generic scripting component error; parameters

are for two different scripting components instead
of the same one

errOSACantOpenComponent –1762 Generic scripting component error; can’t connect
to scripting component

badComponentInstance $80008001 Invalid component instance
Summary of Scripting Components 10-125

C H A P T E R 1 1

11

Figure 11-0
Listing 11-0

11 Program-to-Program

Contents

Communications Toolbox

About the PPC Toolbox 11-4
Ports, Sessions, and Message Blocks 11-4
Setting Up Authenticated Sessions 11-6

Using the PPC Toolbox 11-10
PPC Toolbox Calling Conventions 11-14
Specifying Port Names and Location Names 11-17

Opening a Port 11-20
Browsing for Ports Using the Program Linking Dialog Box 11-22
Obtaining a List of Available Ports 11-27

Preparing for a Session 11-29
Initiating a PPC Session 11-29
Receiving Session Requests 11-35
Accepting or Rejecting Session Requests 11-37

Exchanging Data During a PPC Session 11-39
Reading Data From an Application 11-40
Sending Data to an Application 11-42

Ending a Session and Closing a Port 11-43
Invalidating Users 11-44

PPC Toolbox Reference 11-46
Data Structures 11-46

The PPC Toolbox Parameter Block 11-46
The PPC Port Record 11-49
The Location Name Record 11-50
The Port Information Record 11-51

PPC Toolbox Routines 11-51
Initializing the PPC Toolbox 11-52
Using the Program Linking Dialog Box 11-52
Obtaining a List of Ports 11-55
Contents 11-1

C H A P T E R 1 1

Opening and Closing a Port 11-57
Starting and Ending a Session 11-60
Receiving, Accepting, and Rejecting a Session 11-67
Reading and Writing Data 11-72
Locating a Default User and Invalidating a User 11-76

Application-Defined Routines 11-78
Completion Routines for PPC Toolbox Routines 11-78
Port Filter Functions 11-79

Summary of the PPC Toolbox 11-81
Pascal Summary 11-81

Constants 11-81
Data Types 11-82
PPC Toolbox Routines 11-88
Application-Defined Routines 11-89

C Summary 11-90
Constants 11-90
Data Types 11-91
PPC Toolbox Routines 11-96
Application-Defined Routines 11-97

Assembly-Language Summary 11-97
Trap Macros 11-97

Result Codes 11-98
11-2 Contents

C H A P T E R 1 1

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Program-to-Program Communications Toolbox 11

This chapter describes how you can use the Program-to-Program Communications
(PPC) Toolbox to send and receive low-level message blocks between applications.

The PPC Toolbox can be used by different applications located on the same computer
or across a network of Macintosh computers. The PPC Toolbox is available only in
System 7 or later. To test for the existence of the PPC Toolbox, use the Gestalt function,
described in Inside Macintosh: Operating System Utilities.

Read this chapter if you want your application to transmit and receive data from other
applications that support the PPC Toolbox. Applications that utilize the PPC Toolbox
must be open and connected to each other to exchange data. The PPC Toolbox
allows you to send large amounts of data to other applications; it is typically useful
for code that is not event-based. The PPC Toolbox is called by the Macintosh Operating
System and can also be called by applications, device drivers, desk accessories, or
other programs.

The PPC Toolbox provides a method of communication that is particularly useful for
applications that are specifically designed to work together and are dependent on each
other for information. For example, suppose one user organizes large amounts of data
using a database application and another user filters and plots the same data using a
plotting application. If both applications use the PPC Toolbox, these two applications can
directly transmit data to each other when both applications are open and connected to
each other.

You can also use the PPC Toolbox if your application communicates with other
applications using high-level events or Apple events, and your application allows the
user to choose another application to communicate with. You can use a PPC Toolbox
routine that provides a standard user interface to display a dialog box that lists other
applications that are available to exchange information. See “Browsing for Ports Using
the Program Linking Dialog Box” beginning on page 11-22 for detailed information.
See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
information on high-level events, and see earlier chapters in this book for information on
Apple events.

The PPC Toolbox uses the AppleTalk Data Stream Protocol (ADSP) and the
Name-Binding Protocol (NBP). For detailed information on ADSP and NBP, see
Inside Macintosh: Networking.

Note
The sample applications “store data,” “display data,” “send and
receive,” “make memo,” and “spell quick” used in this chapter are not
actual products of Apple Computer, Inc. They are used for illustrative
purposes only. ◆
11-3

C H A P T E R 1 1

Program-to-Program Communications Toolbox

About the PPC Toolbox 11

The PPC Toolbox provides you with the ability to

■ exchange data with other open applications on the same computer or across a
network of Macintosh computers

■ browse through a listing of applications that are available to exchange data

■ verify user identities for communication across a network

To utilize the PPC Toolbox to exchange data between open applications, each application
involved must support the PPC Toolbox.

This chapter first defines the main elements of the PPC Toolbox and then discusses
how to

■ set up your application for communication

■ use security features prior to establishing communication

■ locate other applications that can exchange data

■ initiate communication between applications

■ accept or reject incoming communications requests

■ transmit and receive data between applications

■ terminate communication between applications

Ports, Sessions, and Message Blocks 11
To initiate communication between applications, you must first open a port. A port is a
portal through which your application can exchange information with another
application. A port is designated by a port name and a location name.

A port name is a unique identifier for a particular application on a computer. The port
name contains a name string, a type string, and a script code for localization. The
location name identifies the location of the computer on the network. The location name
contains an object string, a type string, and a zone. An application can specify an alias
location name by modifying its type string.

Your application can open as many ports as it requires as long as each port name is
unique within a particular computer. See “Specifying Port Names and Location Names”
beginning on page 11-17 for detailed information on port names and location names.
11-4 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Through its port, an open application can communicate with another open application
during a session. One port can support any number of communication sessions. During
a session, an application sends and receives data in the form of a message block. The
PPC Toolbox treats each block of data as a byte stream and delivers it in the same
sequence in which it was sent.

The words port name, location name, session, and message block are programmatic terms.
You should not use them in the user interface of your application or in your user
documentation. Instead, refer to a file that contains executable code as an
application program. An application program that opens and uses PPC ports supports
program linking. When you link two application programs together, you are forming
a program link. A link allows two application programs to communicate with each other—
you unlink two application programs when you break the link between them. You can
compare the link between two application programs to the communication established
using telephones. For example, a program link is similar to a telephone connection that
enables various forms of communication such as human-to-human, modem-to-modem,
and facsimile machine–to–facsimile machine.

Figure 11-1 shows a database application on one computer that has initiated a session
with a spreadsheet application located on another computer on the network.

Figure 11-1 A PPC Toolbox session between two applications

Session

Location name

Port name

PPC Toolbox PPC Toolbox

store data,
database

display data,
spreadsheet

Joe Smith’s Macintosh:PPCToolBox@loading

Port name

Location name

Jane Doe’s Macintosh:PPCToolBox@twilight

3
70 1
About the PPC Toolbox 11-5

C H A P T E R 1 1

Program-to-Program Communications Toolbox

The database application’s port name consists of “store data” (the name string)
and “database” (the type string). Its location name consists of “Jane Doe’s Macintosh”
(the object string), “PPCToolBox” (the type string), and “twilight” (the AppleTalk zone).

The spreadsheet application’s port name consists of “display data” (the name string) and
“spreadsheet” (the type string). Its location name consists of “Joe Smith’s Macintosh”
(the object string), “PPCToolBox” (the type string), and “loading” (the AppleTalk zone).

Setting Up Authenticated Sessions 11
Network communication must be active to initiate sessions with other computers across
a network. The user must activate AppleTalk in the Chooser and enable program linking
using the Sharing Setup control panel located in the Control Panels folder inside the
System Folder. Figure 11-2 displays the icon for the Sharing Setup control panel.

Figure 11-2 The icon for the Sharing Setup control panel

Figure 11-3 shows the Sharing Setup control panel.

Figure 11-3 The Sharing Setup control panel
11-6 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

To permit other computers to initiate sessions with the owner’s computer, the owner of
the computer must click the Start button underneath Program Linking (Start toggles
with Stop). The Sharing Setup control panel then indicates “Program linking is on. Click
Stop to prevent other users from linking to your shared programs.” To prevent other
computers from initiating sessions, an owner simply clicks Stop underneath Program
Linking. The Sharing Setup control panel then indicates “Program linking is off. Click
Start to allow other users to link to your shared programs.” Clicking the Start or Stop
button also enables or disables the transmission of incoming Apple events across the
network.

If a user clicks the Stop button while there are active incoming sessions (sessions
initiated by other users), an alert box (shown in Figure 11-4) appears on the user’s screen.

Figure 11-4 The session termination alert box

If a user clicks OK, all active sessions initiated by other users are immediately
terminated. Note that it is still possible for the owner of the computer to initiate sessions,
even though other users may not initiate sessions with the owner’s computer.

The PPC Toolbox establishes the identity of users through the process of authentication.
The authentication mechanism of the PPC Toolbox identifies each user through an
assigned name and password. Each session initiated with a port that is located on a
remote computer requires authentication (unless guest access is enabled) before a session
is permitted. Sessions between applications located on the same computer never require
authentication.

A computer’s owner can establish access for other users and guests by opening the
Users & Groups control panel located in the Control Panels folder. The Users & Groups
control panel allows an owner to specify the names and passwords of other users
whose computers can initiate sessions with his or her ports across the network.
When the computer’s owner opens the Users & Groups control panel, the Guest icon
appears. If the owner’s name is specified in the Sharing Setup control panel, an icon with
the owner’s name also appears.
About the PPC Toolbox 11-7

C H A P T E R 1 1

Program-to-Program Communications Toolbox

To specify a particular new user, the owner chooses New User from the File menu.
The owner should type in the user’s name. When the owner opens a user icon in the
Users & Groups control panel, the Finder displays the users and groups dialog box on
the owner’s screen. Figure 11-5 shows the users and groups dialog box for a particular
user.

Figure 11-5 The users and groups dialog box

To permit authenticated session requests, the owner can specify a password for each
user. The owner allows other users to utilize the PPC Toolbox by clicking the checkbox
under Program Linking. If the owner clicks the checkbox again, all active sessions
initiated by this particular user are immediately terminated. The user termination alert
box (shown in Figure 11-6) is displayed as a warning.

Figure 11-6 The user termination alert box
11-8 About the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

When the owner opens a Guest icon in the Users & Groups control panel, the Finder
displays the guest dialog box on the owner’s screen. Authentication is not required if the
owner permits guest access. Figure 11-7 shows the guest dialog box.

Figure 11-7 The guest dialog box

By clicking the checkbox under Program Linking, the owner permits guests to
communicate using the PPC Toolbox or Apple events.

Consider this example of the authentication process: one user decides to make a
dictionary service available to other users. A second user wishes to employ this service
in a word-processing program. Assuming both programs support the PPC Toolbox, the
word-processing program attempts to gain access to the dictionary service that is open
on the first user’s computer by initiating a session. When the word-processing
application requests a session, the PPC Toolbox attempts to authenticate the second user
by requesting a user name and a password (unless guest access is enabled). If the
authentication process verifies the user’s identity and the dictionary application accepts
the request for a session, a session is established and the second user can access the
dictionary’s data.
About the PPC Toolbox 11-9

C H A P T E R 1 1

Program-to-Program Communications Toolbox

Figure 11-8 illustrates the authentication process that occurs when a user attempts to
initiate a session.

Figure 11-8 The PPC Toolbox authentication process

Using the PPC Toolbox 11

This section describes how to

■ use PPC Toolbox calling conventions

■ open a port

■ list all available port locations on the network

Accept/
reject

Macintosh computer

Start

Dictionary
service

Word
processor

PPC Toolbox

Macintosh computer

Authentication

PPC Toolbox
11-10 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

■ indicate that a port is available to accept session requests

■ initiate a session

■ accept and reject session requests

■ read and write data during a session

■ end a session after data is transmitted and received

■ close a port when it is no longer needed to transmit or receive data

■ invalidate users

To begin, you must determine whether the PPC Toolbox is available on the
user’s computer system by using the Gestalt function with the selector
gestaltPPCToolboxAttr. A noErr result code indicates that the PPC Toolbox
is present.

The Gestalt function returns a combination of the following constants
in the response parameter: gestaltPPCToolboxPresent,
gestaltPPCSupportsRealTime, gestaltPPCSupportsOutGoing,
and gestaltPPCSupportsIncoming.

The PPC Toolbox currently supports only sessions in real time. The Gestalt function
returns gestaltPPCSupportsRealTime by default. If this bit is not set, you need to
initialize the PPC Toolbox.

The Gestalt function returns gestaltPPCSupportsOutGoing to indicate support of
outgoing sessions across a network of Macintosh computers. If this bit is not set, the user
hasn’t enabled AppleTalk in the Chooser.

The Gestalt function returns gestaltPPCSupportsIncoming if the user has
enabled program linking in the Sharing Setup control panel. If this bit is not set, the user
either hasn’t enabled AppleTalk in the Chooser or hasn’t enabled program linking in the
Sharing Setup control panel.

Use the PPCInit function to initialize the PPC Toolbox.

err := PPCInit;
Using the PPC Toolbox 11-11

C H A P T E R 1 1

Program-to-Program Communications Toolbox

Listing 11-1 illustrates how you use the PPCInit function to initialize the PPC Toolbox.

Listing 11-1 Initializing the PPC Toolbox using the PPCInit function

FUNCTION MyPPCInit: OSErr;

VAR

PPCAttributes: LongInt;

err: OSErr;

BEGIN

err := Gestalt(gestaltPPCToolboxAttr, PPCAttributes);

IF err = noErr THEN {PPC Toolbox is present}

BEGIN

IF BAND(PPCAttributes, gestaltPPCSupportsRealTime) = 0 THEN

BEGIN

MyPPCInit := PPCInit; {initialize the PPC Toolbox}

{test the attributes for the PPC Toolbox}

err := Gestalt(gestaltPPCToolboxAttr, PPCAttributes);

END;

IF BAND(PPCAttributes, gestaltPPCSupportsOutGoing) <> 0 THEN

{ports can be opened to the outside world}

ELSE {it's likely that AppleTalk is disabled, so you }

; { may want to tell the user to activate AppleTalk }

{ from the Chooser}

IF BAND(PPCAttributes, gestaltPPCSupportsIncoming) <> 0 THEN

{ports can be opened with location names that the }

{ outside world can see}

ELSE {it's likely that program linking is disabled, so }

; { you may want to tell the user to start program }

{ linking from the Sharing Setup control panel}

END

ELSE

MyPPCInit := err;

END;
11-12 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Figure 11-9 illustrates a spreadsheet application (on the left) that has initiated a session
with a database application (on the right) to exchange data using the PPC Toolbox. This
figure includes an example of the sequence of PPC Toolbox routines executed by these
applications. Detailed descriptions of the functions appear in the sections that follow.

Figure 11-9 Database and spreadsheet applications using the PPC Toolbox

PPCOpen

PPCBrowser

StartSecureSession

PPCWrite

PPCOpen

PPCInform

PPCAccept

PPCRead

PPCClose PPCClose

PPCEnd

PPCRead

PPCEnd

PPCWrite

PPC
Toolbox

PPC
Toolbox

3
70 1
Using the PPC Toolbox 11-13

C H A P T E R 1 1

Program-to-Program Communications Toolbox
To establish a session, each application must first open a port using the PPCOpen
function. The spreadsheet application prepares to receive session requests by calling the
PPCInform function.

Before initiating a session or opening a port, the database application can let the
user browse through the list of available ports (using the PPCBrowser function).
If the user decides to communicate with the spreadsheet application, the database
application initiates a session with the spreadsheet application’s port using the
StartSecureSession function. After the PPC Toolbox authenticates the user name
and password of the initiating port, the spreadsheet application accepts the session
request (using the PPCAccept function).

Once the session is established, the applications exchange information in the form of
message blocks (using the PPCRead and PPCWrite functions). During a session, an
application can both read from and write message blocks to another application. After
the information exchange is done, each application ends the session (PPCEnd) and then
closes its port (PPCClose) when it quits.

The PPCOpen function returns a port reference number. The port reference number is a
reference number for the port through which you are requesting a session. The
database application uses the port reference number in subsequent calls to the
StartSecureSession and PPCClose functions. The StartSecureSession function
returns a session reference number. The session reference number is used to identify the
session during the exchange of data. It is used in subsequent calls to the PPCWrite,
PPCRead, and PPCEnd functions.

The PPCOpen function returns a port reference number that the spreadsheet uses in
subsequent calls to the PPCInform and PPCClose functions. The PPCInform function
returns a session reference number that is used in subsequent calls to the PPCAccept,
PPCRead, PPCWrite, and PPCEnd functions.

PPC Toolbox Calling Conventions 11
Most PPC Toolbox functions can execute synchronously (meaning that the application
cannot continue until the function completes execution) or asynchronously (meaning
that the application is free to perform other tasks while the function is executing).
The PPC Toolbox functions that can only be executed synchronously include PPCInit,
PPCBrowser, StartSecureSession, DeleteUserIdentity, and
GetDefaultUser. All other PPC Toolbox functions can execute asynchronously or
synchronously. Here’s an example:

FUNCTION PPCFunction (pb: PPCParamBlockPtr;

 async: Boolean): OSErr;
11-14 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The pb parameter should point to a PPC parameter block. Set the async parameter to
TRUE if you want the function to execute asynchronously; set it to FALSE if you want the
function to execute synchronously.

Note
The PPCInform, PPCRead, and PPCWrite functions should always be
executed asynchronously, because they require interaction from the
other application in the session before they complete execution. ◆

The PPCParamBlockRec data type defines the PPC parameter block.

TYPE PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOpen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts }

{ params}

END;

For an illustration of the fields of each individual parameter block (such as
PPCInformPBRec or IPCListPortsPBRec), see Figure 11-18 on page 11-47.

Your application transfers ownership of the PPC parameter block (and any buffers or
records pointed to by the PPC parameter block) to the PPC Toolbox until a PPC function
completes execution. Once the function completes, ownership of the parameter block
(and any buffers or records it points to) is transferred back to your application. If a
PPC Toolbox function is executed asynchronously, your program cannot alter memory
that might be used by the PPC Toolbox until that function completes.
Using the PPC Toolbox 11-15

C H A P T E R 1 1

Program-to-Program Communications Toolbox
A PPC Toolbox function that is executed asynchronously must specify NIL or the
address of a completion routine in the ioCompletion field of the PPC parameter block.
You should use the ioResult field to determine the actual result code when an
asynchronously executed PPC Toolbox function completes.

If you specify NIL in the ioCompletion field, you should poll the ioResult field of
the PPC parameter block after the function is called to determine whether the PPC
function has completed the requested operation. You should poll the ioResult field
within the event loop of your application. If the ioResult field contains a value other
than 1, the function has completed execution. Note that you must not poll the ioResult
field at interrupt time to determine whether the function has completed execution.

If you specify a completion routine in the ioCompletion field, it is called at interrupt
time when the PPC Toolbox function completes execution.

▲ W A R N I N G

Completion routines execute at the interrupt level and must preserve all
registers other than A0, A1, and D0–D2. (Note that MPW C and MPW
Pascal do this automatically.) Your completion routine must not make
any calls to the Memory Manager directly or indirectly, and it can’t
depend on the validity of handles to unlocked blocks. The PPC Toolbox
preserves the application global register A5. ▲

You can write completion routines in C, Pascal, or assembly language. A completion
routine declared in Pascal has this format:

PROCEDURE MyCompletionRoutine (pb: PPCParamBlockPtr);

The pb parameter points to the PPC parameter block passed to the PPC Toolbox function.

You may call another PPC Toolbox function from within a completion routine, but the
function called must be executed asynchronously. It is recommended that you allocate
parameter blocks of data type PPCParamBlockRec so that you may reuse the
pb parameter to call another PPC Toolbox function from within a completion routine.
For example, you should call either the PPCAccept function or the PPCReject function
asynchronously from within a PPCInform completion routine to accept or reject the
session request.

If your application is executing PPC Toolbox functions asynchronously, you may want to
define your own record type to hold all data associated with a session. You can attach the
data to the end of the parameter block. Here’s an example:
11-16 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
TYPE

SessRecHndl = ^SessRecPtr;

SessRecPtr = ^SessRec;

SessRec =

RECORD

pb: PPCParamBlockRec; {must be first }

{ item in record}

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

theUserName: Str32;

END;

The additional data elements in your record can be accessed during execution of a
completion routine by coercing the pb parameter to a pointer to your record type.

Specifying Port Names and Location Names 11
Before initiating a session, you must open a port to communicate with other programs. A
port name and location name identify each port. An application can open as many ports
as it requires as long as each port name is unique within a particular computer. You
specify both the port name and the location name in the PPC parameter block.

Figure 11-10 illustrates a single Macintosh computer with two applications, and their
corresponding port names and location names.

To open a port, you need to specify a port name. A port name consists of a name string, a
type string, and a script code for localization. For example, you can designate “make
memo” as the application’s name string, “word processor” as its type string, and
“smRoman” as its script code.

A port name is defined by a PPC port record. The PPC port record contains a script code,
name string, port kind selector, and type string. The script code is an integer script
identifier used for localization. The name string consists of a 32-byte character string that
designates the application name. You should keep both the script code and the
name string in a resource. The port kind selector is an integer that selects the kind of type
string. You should make it consistent internationally. The type string can be either a
32-byte character string or a 4-character creator and a 4-character file type. See the
chapter “Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for
information on creators and file types. See Inside Macintosh: Text for information on script
codes and localization.
Using the PPC Toolbox 11-17

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Figure 11-10 Two Macintosh applications and their corresponding ports

The PPCPortRec data type defines the PPC port record.

TYPE PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);

ppcByCreatorAndType:

(portCreator: OSType;

portType: OSType);

END;

Port name

PPC Toolbox

store data,
database

make memo,
word processor

Port name

Location name

Jane Doe’s Macintosh:PPCToolBox@twilight
11-18 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The location name identifies the location of the computer on the network. The
PPC Toolbox provides the location name when the user starts up the computer.
The location name is specified in the standard Name-Binding Protocol (NBP) form,
<object string>:PPCToolBox @<AppleTalk zone>. The object string is the name provided in
the Sharing Setup control panel in the Control Panels folder. By default, the type string is
“PPCToolBox”. The AppleTalk zone is the zone to which the particular Macintosh
computer belongs. For example, “Jane Doe’s Macintosh:PPCToolBox@twilight” specifies
the object string, type string, and AppleTalk zone for a particular computer.

The LocationNameRec data type defines the location name record. The
locationKindSelector field can be set to ppcNoLocation, ppcNBPLocation,
or ppcNBPTypeLocation.

TYPE LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF

{ppcNoLocation: storage not used by this value}

ppcNBPLocation:

(nbpEntity: EntityName); {NBP name entity}

ppcNBPTypeLocation:

(nbpType: Str32); {just the NBP type }

{ string for the }

{ PPCOpen function}

END;

The ppcNoLocation constant is used when the location received from or passed to a
PPC Toolbox function is the location of the local machine.

The ppcNBPLocation constant is used when a full NBP entity name is received from or
passed to a PPC Toolbox function.

Note
You should assign an NBP value directly—do not pack it using
nbpSetEntity. ◆

The ppcNBPTypeLocation constant is used only by the PPCOpen function when an
alias location name is needed.

The NBP type to be used for the alias location name is passed in the location name
record’s nbpType field. Alias location names allow you to filter the NBP objects
(Macintosh computers) displayed by the program linking dialog box (shown in
Figure 11-12 on page 11-22) using the PPCBrowser function. See “Browsing for Ports
Using the Program Linking Dialog Box” beginning on page 11-22 for information on the
PPCBrowser function.
Using the PPC Toolbox 11-19

C H A P T E R 1 1

Program-to-Program Communications Toolbox
An alias location name could be used to advertise a service (such as a dictionary service)
that is available to any application located on the network. For example, “Joe Smith’s
Macintosh: dictionary@ozone” specifies the object string, type string, and AppleTalk
zone for a particular dictionary service.

To search for all dictionary services available within a zone, you use the PPCBrowser
function and a filter. Figure 11-11 illustrates a Macintosh dictionary service application,
its corresponding port name, and its alias location name.

Figure 11-11 The PPC Toolbox and a dictionary service application

Opening a Port 11

To open a port and associate a name with it, use the PPCOpen function. Listing 11-2
illustrates how you use the PPCOpen function to open a port. In this listing, the name is
“Inside Macintosh” and the port type string is “Example”. The location name is
<object string>:PPC Example@<AppleTalk zone>.

Alias location name

Port name

PPC Toolbox

spell quick,
dictionary

Joe Smith's Macintosh:dictionary@ozone

Location name

Joe Smith's Macintosh:PPCToolBox@ozone
11-20 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-2 Opening a PPC port

FUNCTION MyPPCOpen(VAR thePortRefNum: PPCPortRefNum;

 VAR nbpRegisteredFlag: Boolean): OSErr;

VAR

thePPCOpenPBRec: PPCOpenPBRec;

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

BEGIN

WITH thePPCPortRec DO

BEGIN

{nameScript and name should be resources to allow }

{ easy localization}

nameScript := smRoman; {Roman script}

name := 'Inside Macintosh';

{the port type should always be hard-coded to allow the }

{ application to find ports of a particular type even }

{ after the name is localized}

portKindSelector := ppcByString;

portTypeStr := 'Example';

END;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPTypeLocation;

nbpType := 'PPC Example';

END;

WITH thePPCOpenPBRec DO

BEGIN

serviceType := ppcServiceRealTime;

resFlag := 0; {must be 0 for 7.0}

portName := @thePPCPortRec;

locationName := @theLocationNameRec;

networkVisible := TRUE; {make this a visible }

{ entity on the network}

END;

MyPPCOpen := PPCOpen(@thePPCOpenPBRec, FALSE);{synchronous}

thePortRefNum := thePPCOpenPBRec.portRefNum;

nbpRegisteredFlag := thePPCOpenPBRec.nbpRegistered;

END;
Using the PPC Toolbox 11-21

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The PPCOpen function opens a port with the port name and location name specified in
the name and location fields of the parameter block. When the PPCOpen function
completes execution, the portRefNum field returns the port reference number. You can
use the port reference number in the PPCInform, PPCStart, StartSecureSession,
and PPCClose functions to refer to the port you have opened.

Browsing for Ports Using the Program Linking Dialog Box 11

Before initiating a session, you can use either the PPCBrowser function or the
IPCListPorts function to locate a port to communicate with.

Use the PPCBrowser function to display the program linking dialog box (shown in
Figure 11-12) on the user’s screen.

Note
Because this function displays a dialog box on the user’s screen, you
must not call the PPCBrowser function from an application that is
running in the background. ◆

Figure 11-12 The program linking dialog box

In the program linking dialog box, the user selects the computer, zone, and application.
The zone list is not displayed if there is no network connection. Figure 11-13 shows the
dialog box without the zone list.
11-22 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Figure 11-13 The program linking dialog box without a zone list

As shortcuts for the user, the program linking dialog box supports standard keyboard
equivalents. Pressing Command-period or the Esc (Escape) key selects Cancel—pressing
Enter or Return selects the OK button.

Each list is sorted in alphabetical order. As in the Chooser, the current list is indicated by
a thick outline around its border. The program linking dialog box supports keyboard
navigation and use of the arrow keys to select items from the current list. Pressing Tab or
clicking the rectangle of another list switches the current list. Pressing Shift-Tab reverses
the order in which the lists are selected. In addition, double-clicking an application name
in the Programs list of the program linking dialog box is equivalent to clicking the OK
button.

The PPCBrowser function allows users to browse for PPC ports.

err := PPCBrowser (prompt, applListLabel, defaultSpecified,

 theLocation, thePortInfo, portFilter,

 theLocNBPType);

If the defaultSpecified parameter is TRUE, the PPCBrowser function tries to select
the PPC port specified by the parameters theLocation and thePortInfo when the
program linking dialog box first appears. If the default cannot be found, the
PPCBrowser function selects the first PPC port in the list.
Using the PPC Toolbox 11-23

C H A P T E R 1 1

Program-to-Program Communications Toolbox
An application can open multiple ports as long as each port name is unique within a
particular computer. Unique ports can have duplicate name fields but different types.
For example, you can designate “make memo” as the application’s name string and
“word processor” as its type string. You can also designate a separate port as “make
memo” (the application’s name string) and “text only” (its type string).

In such a case, the PPCBrowser function does a secondary sort based on the port type.
Ports with a type selector of ppcByCreatorAndType are displayed before
ppcByString ports, and types are sorted alphabetically within each type selector.

The PPCBrowser function uses the IPCListPorts function to obtain the list of existing
ports on a particular computer within a particular zone. The portFilter parameter
of the PPCBrowser function allows you to filter the list of PPC ports before it displays
them in the program linking dialog box. If you set the portFilter parameter to NIL,
the PPCBrowser function displays the names of all the existing PPC ports returned
by the IPCListPorts function. If you do not set the portFilter parameter to NIL,
you must set it to a pointer to a port filter function that you create.

Listing 11-3 illustrates how you use a sample port filter function. In this listing, the
MyBrowserPortFilter function returns TRUE for ports with the port type string
“Example”.

Listing 11-3 Using a port filter function

FUNCTION MyBrowserPortFilter(theLocationNameRec: LocationNameRec;

 thePortInfoRec: PortInfoRec)

 : Boolean;

BEGIN

IF thePortInfoRec.name.portKindSelector = ppcByString THEN

IF thePortInfoRec.name.portTypeStr = 'Example' THEN

MyBrowserPortFilter := TRUE

ELSE

MyBrowserPortFilter := FALSE

ELSE

MyBrowserPortFilter := FALSE;

END;
11-24 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The PPCBrowser function calls your filter function once for each port on the selected
computer. Your function should return TRUE for each port you want to display in the
program linking dialog box, and FALSE for each port that you do not want to display.
Do not modify the data in the filter function parameters theLocationNameRec and
thePortInfoRec.

The PPCBrowser function returns the selected port name in the parameter
thePortInfo. The IPCListPorts function returns the port names in the area of
memory pointed to by the bufferPtr field of the IPCListPorts parameter block.
Both functions specify each port name in a port information record.

TYPE PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

If the authRequired field returns TRUE, the port requires authentication before
a session can begin. You should use the StartSecureSession function to initiate a
session with this port. If this field returns FALSE, you can use either the PPCStart
function or the StartSecureSession function to initiate a session. See “Initiating a
PPC Session” beginning on page 11-29 for detailed information. The name field of the
port information record specifies an available port name.

Listing 11-4 illustrates how you use the PPCBrowser function to display the program
linking dialog box in order to obtain the location and name of a port chosen by the user.
In this listing, the PPCBrowser function builds lists of zones (shown in the AppleTalk
Zones list of the program linking dialog box), objects (shown in the Macintoshes list),
and ports (shown in the Programs list). In this example, the PPCBrowser function next
tries to default to object “Moof™” in the “Twilight” zone. If it matches the object and
zone, it also tries to default to the port “Inside Macintosh” with the port type “Example”.
Using the PPC Toolbox 11-25

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Note that the data in the records LocationNameRec and PortInfoRec is used to
match the names in the program linking dialog box. The data has nothing to do with the
NBP type used by NBPLookup or the filtered PPC ports that show up in the program
linking dialog box. The NBPLookup function uses the NBP type supplied in
theLocNBPType. The PPC port names are filtered using the MyBrowserPortFilter
function shown in Listing 11-3 on page 11-24.

Listing 11-4 Browsing through dictionary service ports

FUNCTION MyPPCBrowser(VAR theLocationNameRec: LocationNameRec;

 VAR thePortInfoRec: PortInfoRec): OSErr;

VAR

prompt: Str255;

applListLabel: Str255;

defaultSpecified: Boolean;

theLocNBPType: Str32;

BEGIN

prompt := 'Choose an example to link to:';

applListLabel := 'Examples';

defaultSpecified := TRUE;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPLocation;

WITH nbpEntity DO

BEGIN

objStr := 'Moof™';

{typeStr is ignored}

zoneStr := 'Twilight';

END;

END;

WITH thePortInfoRec.name DO

BEGIN

{nameScript and name should be resources to allow easy }

{ localization}

nameScript := smRoman; {Roman script}

name := 'Inside Macintosh';

{the port type should always be hard-coded to allow the }

{ application to find ports of a particular type even }

{ after the name is localized}

portKindSelector := ppcByString;

portTypeStr := 'Example';

END;
11-26 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
{when building the list of objects (Macintoshes), }

{ show only those with the NBP type "PPC Example"}

theLocNBPType := 'PPC Example'; {match this NBP type}

MyPPCBrowser := PPCBrowser(prompt, applListLabel,

defaultSpecified,

theLocationNameRec,

thePortInfoRec,

@MyBrowserPortFilter,

theLocNBPType);

END;

Obtaining a List of Available Ports 11

To generate a list of ports without displaying dialog boxes, you can use the
IPCListPorts function. The IPCListPorts function allows you to obtain a list of
ports on a particular computer within a particular zone. To obtain a list of ports, several
steps are required. First, use the GetZoneList function to obtain a list of zones. Next,
you must use the PLookupName function to obtain a list of computers with ports. After
establishing the zone and the computer, you can use the IPCListPorts function to
obtain the list of available ports. See Inside Macintosh: Networking for information on the
GetZoneList and PLookupName functions.

Listing 11-5 illustrates how you use the IPCListPorts function to obtain a list of ports
on a particular computer. This function returns a list of port information records in the
buffer pointed to by the parameter thePortInfoBufferPtr. The actual number of
port information records is returned in the parameter theActualCount.
Using the PPC Toolbox 11-27

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-5 Using the IPCListPorts function to obtain a list of ports

FUNCTION MyIPCListPorts

(theStartIndex: Integer;

 theRequestCount: Integer; VAR theActualCount: Integer;

 theObjStr: Str32; theZoneStr: Str32;

 thePortInfoBufferPtr: PortInfoArrayPtr): OSErr;

VAR

theIPCListPortsPBRec: IPCListPortsPBRec;

thePPCPortRec: PPCPortRec;

theLocationNameRec: LocationNameRec;

BEGIN

{list all PPC ports at the specified location}

WITH thePPCPortRec DO

BEGIN

nameScript := smRoman;

name := '='; {match all names}

portKindSelector := ppcByString;

portTypeStr := '='; {match all types}

END;

WITH theLocationNameRec DO

BEGIN

locationKindSelector := ppcNBPLocation;

WITH nbpEntity DO

BEGIN

{set NBP object from the list returned by NBPLookup}

objStr := theObjStr;

{set NBP type, in this example to "PPC Example"; if you }

{ don't supply your own NBP type, use "PPCToolBox"}

typeStr := 'PPC Example';

{set NBP zone from the list returned by GetZoneList}

zoneStr := theZoneStr;

END;

END;

WITH theIPCListPortsPBRec DO

BEGIN

startIndex := theStartIndex;

requestCount := theRequestCount;

portName := @thePPCPortRec;

locationName := @theLocationNameRec;

bufferPtr := thePortInfoBufferPtr;

END;
11-28 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
MyIPCListPorts := IPCListPorts(@theIPCListPortsPBRec, FALSE);

theActualCount := theIPCListPortsPBRec.actualCount;

END;

The IPCListPorts function returns information about ports that are on the computer
specified in the locationName field of the list ports parameter block. If you set the
locationName field to NIL or if you set the locationKindSelector field in
the location name record to ppcNoLocation, the IPCListPorts function returns
only the port names for the local computer.

The bufferPtr field points to an area of memory that contains the requested port
names. You are responsible for allocating enough memory to hold the requested
port names. The buffer length must be equal to

sizeof(PortInfoRec) * requestCount

Preparing for a Session 11
To communicate, you can open a port for your application and make it available to
receive session requests, to initiate sessions, or both. Applications that are able to receive
session requests can choose to accept or reject incoming session requests.

Before an application can accept and establish a session with another application,
the PPC Toolbox authenticates the initiating user (unless guest access is enabled or the
applications are located on the same computer). Once a session begins, the
two applications can exchange data with each other.

Initiating a PPC Session 11

Once you have established the name and the location of the port that you want
to communicate with, you can initiate a session. You can use either the
StartSecureSession function or the PPCStart function to initiate a session.
The StartSecureSession function displays several dialog boxes to identify each user
who requests a session. You may prefer to use the PPCStart function for low-level code
such as that used for drivers, which typically do not provide a user interface. You may
also prefer to use PPCStart when the application you are initiating a session with does
not require authentication. The IPCListPorts and PPCBrowser functions return
information about whether a particular port requires authentication.

Note
Do not call the StartSecureSession function from an application
that is running in the background, because the function displays several
dialog boxes on the user’s screen. ◆
Using the PPC Toolbox 11-29

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The StartSecureSession function provides authentication services to identify each
user who requests a session. This function combines the processes of prompting for user
name and password and initiating a session into one synchronous procedure call. If
authentication fails, the PPC Toolbox rejects the incoming session request.

err := StartSecureSession (pb, userName, useDefault, allowGuest,

guestSelected, prompt);

Set the useDefault parameter to TRUE if you want the StartSecureSession
function to use the default user identity (described later in this section). If the default
user identity cannot be authenticated, the StartSecureSession function displays a
dialog box to allow a user to log on. Figure 11-14 shows the user identity dialog box.

Figure 11-14 The user identity dialog box

The prompt parameter of the StartSecureSession function allows you to specify a
line of text that the dialog box can display. The allowGuest parameter specifies
whether to enable the Guest radio button. If a port requires authentication, you should
set this parameter to FALSE.

The userName parameter specifies the name of the user who is attempting to initiate a
session. If the user name is not specified, the user identity dialog box appears on the
user’s screen with the owner name provided from the Sharing Setup control panel.
11-30 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
If the user enters an invalid password, the StartSecureSession function displays the
dialog box shown in Figure 11-15.

Figure 11-15 The incorrect password dialog box

After the user clicks OK, the user identity dialog box reappears in the foreground so that
the user can enter the password again.

If the user’s name is invalid, the StartSecureSession function displays the dialog
box shown in Figure 11-16.

Figure 11-16 The invalid user name dialog box

After the user clicks OK, the user identity dialog box reappears so that the user can enter
a new user name.

The StartSecureSession function remains in this loop until a secure session is
initiated or the user clicks Cancel in the user identity dialog box. If a secure session
is initiated, StartSecureSession returns the user reference number in the
corresponding field in the PPCStart parameter block. The user reference number
represents the user name and password. A user reference number of 0 indicates that a
session has been initiated with guest access. See “Setting Up Authenticated Sessions”
beginning on page 11-6 for more information.
Using the PPC Toolbox 11-31

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Before your application quits, you need to invalidate all user reference numbers obtained
with the StartSecureSession function except for the default user reference number
and the guest reference number (0). See “Invalidating Users” on page 11-44 for detailed
information.

Listing 11-6 illustrates how to use the StartSecureSession function to establish an
authenticated session. This listing shows only one session, although your application
may conduct multiple sessions at one time.

Listing 11-6 Using the StartSecureSession function to establish a session

FUNCTION MyStartSecureSession(thePortInfoPtr: PortInfoPtr;

theLocationNamePtr: LocationNamePtr;

thePortRefNum: PPCPortRefNum;

VAR theSessRefNum: PPCSessRefNum;

VAR theUserRefNum: LongInt;

VAR theRejectInfo: LongInt;

VAR userName: Str32;

VAR guestSelected: Boolean): OSErr;

VAR

thePPCStartPBRec: PPCStartPBRec;

useDefault: Boolean;

allowGuest: Boolean;

err: OSErr;

BEGIN

WITH thePPCStartPBRec DO

BEGIN

ioCompletion := NIL;

portRefNum := thePortRefNum; {from the PPCOpen function}

serviceType := ppcServiceRealTime;

resFlag := 0;

portName := @thePortInfoPtr^.name; {from the PPCBrowser}

locationName := theLocationNamePtr; {from the PPCBrowser}

userData := 0; {application-specific data that the }

{ PPCInform function sees}

END;

{try to connect with default user identity}

useDefault := TRUE;

{highlight the Guest button appropriately}

allowGuest := NOT thePortInfoPtr^.authRequired;

err := StartSecureSession(@thePPCStartPBRec, userName,

 useDefault, allowGuest,

 guestSelected, stringPtr(NIL)^);
11-32 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
IF err = noErr THEN

BEGIN

theSessRefNum := thePPCStartPBRec.sessRefNum;

theUserRefNum := thePPCStartPBRec.userRefNum;

END

ELSE

IF err = userRejectErr THEN

{return rejectInfo from the PPCReject function}

theRejectInfo := thePPCStartPBRec.rejectInfo;

MyStartSecureSession := err;

END;

For low-level code such as that used for drivers (which typically do not provide a user
interface), you can use the PPCStart function instead of the StartSecureSession
function to initiate a session. You can also use the IPCListPorts function (instead of
displaying the program linking dialog box) to obtain a list of ports.

If the authRequired field of the port information record contains FALSE, the port
allows guest access. If the authRequired field of the port information record contains
TRUE, use the PPCStart function and the user reference number obtained previously
from the StartSecureSession function to reestablish an authenticated session.

You can also attempt to log on as the default user using the GetDefaultUser function
to obtain the default user reference number and the default user name. The default user
name is established after the owner starts up the computer.

err := GetDefaultUser (userRef, userName);

The userRef parameter is a reference number that represents the user name and
password of the default user. The userName parameter contains the owner name that is
specified in the Sharing Setup control panel.

The GetDefaultUser function returns an error when the default user identity does not
exist (no name is specified in the Sharing Setup control panel) or the user is not currently
logged on.

Listing 11-7 illustrates how you use the PPCStart function to initiate a session. The
PPCStart function uses the port information record and the location name record to
attempt to open a session with the selected PPC port.
Using the PPC Toolbox 11-33

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-7 Initiating a session using the PPCStart function

FUNCTION MyPPCStart(thePortInfoPtr: PortInfoPtr;

theLocationNamePtr: LocationNamePtr;

thePortRefNum: PPCPortRefNum;

VAR theSessRefNum: PPCSessRefNum;

VAR theUserRefNum: LongInt;

VAR theRejectInfo: LongInt): OSErr;

VAR

thePPCStartPBRec: PPCStartPBRec;

userName: Str32;

err: OSErr;

BEGIN

WITH thePPCStartPBRec DO

BEGIN

ioCompletion := NIL;

portRefNum := thePortRefNum; {from the PPCOpen function}

serviceType := ppcServiceRealTime;

resFlag := 0;

portName := @thePortInfoPtr^.name; {destination port}

locationName := theLocationNamePtr; {destination location}

userData := 0; {application-specific data for PPCInform}

END;

err := GetDefaultUser(thePPCStartPBRec.userRefNum, userName);

IF err <> noErr THEN

thePPCStartPBRec.userRefNum := 0;

IF thePortInfoPtr^.authRequired AND

(thePPCStartPBRec.userRefNum = 0) THEN

{port selected doesn't allow guests & you don't have a }

{ default user ref number so you can't log on to this port}

err := authFailErr

ELSE {attempt to log on}

err := PPCStart(@thePPCStartPBRec, FALSE);

IF err = noErr THEN

BEGIN

theSessRefNum := thePPCStartPBRec.sessRefNum;

theUserRefNum := thePPCStartPBRec.userRefNum;

END

ELSE

IF err = userRejectErr THEN

{return rejectInfo from the PPCReject function}

theRejectInfo := thePPCStartPBRec.rejectInfo;

MyPPCStart := err;

END;
11-34 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The port to which you wish to connect must have an outstanding PPCInform function
to successfully start a session. You cannot initiate a session with a port that is not able to
receive session requests.

If the port is open, has an outstanding PPCInform function posted, and accepts your
session request, the PPCStart function returns a noErr result code and a valid session
reference number. This session reference number is used to identify the session during
the exchange of data.

Receiving Session Requests 11

Your application can open as many ports as it requires as long as each port name is
unique within a particular computer. A single port can support a number of
communication sessions. To allow a port to receive session requests, use the PPCInform
function. (Note that you must open a port to obtain a port reference number before
calling the PPCInform function.) A port may have any number of outstanding
PPCInform requests.

Listing 11-8 illustrates how you use the PPCInform function to allow a port to receive
session requests. In this listing, the parameter thePPCParamBlockPtr points to
a PPC parameter block record allocated by the application. The portRefNum,
autoAccept, portName, locationName, userName, and ioCompletion parameters
of the PPC parameter block record must be supplied. If you want to automatically accept
all incoming session requests, you can set the autoAccept field in the PPCInform
parameter block.
Using the PPC Toolbox 11-35

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-8 Using the PPCInform function to enable a port to receive sessions

FUNCTION MyPPCInform(thePPCParamBlockPtr: PPCParamBlockPtr;

thePPCPortPtr: PPCPortPtr;

theLocationNamePtr: LocationNamePtr;

theUserNamePtr: stringPtr;

thePortRefNum: PPCPortRefNum): OSErr;

BEGIN

WITH thePPCParamBlockPtr^.informParam DO

BEGIN

ioCompletion := @MyInformCompProc;

portRefNum := thePortRefNum; {from the PPCOpen function}

autoAccept := FALSE; {the completion routine }

{ handles accepting or }

{ rejecting requests}

portName := thePPCPortPtr;

locationName := theLocationNamePtr;

userName := theUserNamePtr;

END;

MyPPCInform := PPCInform(PPCInformPBPtr(thePPCParamBlockPtr),

TRUE); {asynchronous}

END;

A PPC parameter block record is used instead of a PPCInform parameter block record
so that the same parameter block can be reused to make other PPC Toolbox calls from
the PPCInform completion routine. The parameter block and the records it points to
cannot be deallocated until all calls that use the parameter block and records have
completed.

You should make the call to PPCInform asynchronously. For each function that you use
asynchronously, you should provide a completion routine. The completion routine gets
called at interrupt time when the PPCInform function completes.
11-36 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-9 illustrates a completion routine for a PPCInform function. You can use the
data passed into your PPCInform completion routine (user name, user data, port name,
and location name) to determine whether to accept or reject the session request.

Listing 11-9 Completion routine for a PPCInform function

PROCEDURE MyInformCompProc(pb: PPCParamBlockPtr);

BEGIN

IF pb^.informParam.ioResult = noErr THEN

BEGIN

{decide if this session should be accepted or rejected by }

{ looking at data supplied by the session requester}

IF pb^.informParam.userData <> -1 THEN

DoPPCAccept(pb)

ELSE

DoPPCReject(pb);

END

ELSE

{use a global to tell the application that }

{ PPCParamBlockRec and the records it points to }

{ can be deallocated}

gPBInUse := FALSE;

END;

When the PPCInform function completes, the MyInformCompProc procedure
determines whether to accept or reject the incoming session request. It does this by
calling PPCAccept or PPCReject, as described in the next section.

Accepting or Rejecting Session Requests 11

Use the PPCAccept function or the PPCReject function to accept or reject an incoming
session request.

▲ W A R N I N G

If the PPCInform function (with the autoAccept parameter set
to FALSE) returns a noErr result code, you must call either
the PPCAccept function or the PPCReject function. The computer
trying to initiate a session (using the StartSecureSession function
or the PPCStart function) waits (hangs) until the session attempt is
either accepted or rejected, or until an error occurs. ▲
Using the PPC Toolbox 11-37

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-10 illustrates how you use the PPCAccept function to accept a session
request. This listing reuses the parameter block used in the PPCInform function, so the
sessRefNum field already contains the session reference number needed by the
PPCAccept function.

Listing 11-10 Accepting a session request using the PPCAccept function

PROCEDURE DoPPCAccept(pb: PPCParamBlockPtr);

VAR

err: OSErr;

BEGIN {accept the session}

pb^.acceptParam.ioCompletion := @MyAcceptCompProc;

{the sessRefNum field is set by the PPCInform function}

err := PPCAccept(@pb^.acceptParam, TRUE); {asynchronous}

END;

For each function that you use asynchronously, you should provide a completion
routine. Listing 11-11 illustrates a completion routine for a PPCAccept function. This
procedure gets called at interrupt time when the PPCAccept function completes. If there
are no errors, it sets the global variable gSessionOpen to TRUE. The global variable
gPBInUse is set to FALSE to inform the application that the parameter block and the
records it points to are no longer in use.

You can use the session reference number in subsequent PPCWrite, PPCRead, and
PPCEnd functions once a session is accepted.

Listing 11-11 Completion routine for a PPCAccept function

PROCEDURE MyAcceptCompProc(pb: PPCParamBlockPtr);

BEGIN

IF pb^.acceptParam.ioResult = noErr THEN

{accept completed so the session is completely open}

gSessionOpen := TRUE;

{use a global to tell the application that PPCParamBlockRec }

{ and the records it points to can be deallocated}

gPBInUse := FALSE;

END;

Use the PPCReject function to reject an incoming session request. Listing 11-12
illustrates how you use the PPCReject function to reject a session request.
11-38 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
This listing reuses the parameter block used in the PPCInform function, so the
sessRefNum field already contains the session reference number needed by the
PPCReject function.

Listing 11-12 Rejecting a session request using the PPCReject function

PROCEDURE DoPPCReject(pb: PPCParamBlockPtr);

VAR

err: OSErr;

BEGIN {reject the session}

WITH pb^.rejectParam DO

BEGIN

ioCompletion := @MyRejectCompProc;

{the sessRefNum field is set by the PPCInform function}

rejectInfo := -1;

END;

err := PPCReject(@pb^.rejectParam, TRUE); {asynchronous}

END;

Listing 11-13 illustrates a completion routine for a PPCReject function. This procedure
is called at interrupt time when the PPCReject function completes. In this example, the
global variable gPBInUse is set to FALSE to inform the application that the parameter
block and the records it points to are no longer in use.

Listing 11-13 Completion routine for a PPCReject function

PROCEDURE MyRejectCompProc(pb: PPCParamBlockPtr);

BEGIN

{use a global to tell the application that PPCParamBlockRec }

{ and the records it points to can be deallocated}

gPBInUse := FALSE;

END;

Exchanging Data During a PPC Session 11
After a session begins, each application can send data to and receive data from the other
using a sequence of message blocks. The PPC Toolbox treats each message block as a
byte stream and does not interpret the contents of the message block. The size of a
message block can be between 0 and (232–1) bytes. The PPC Toolbox treats the buffer size
as an unsigned long integer.
Using the PPC Toolbox 11-39

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The PPC Toolbox delivers the message blocks in the same sequence as they are sent and
without duplicates. In Figure 11-17, an application transmits message blocks during
a session.

Figure 11-17 Transmitting message blocks

For each message block, you specify a block creator, block type, and user data. The first
PPCWrite function that you use to create a new message block sets the attributes for the
block. The PPCRead function returns the block creator, block type, and user data
attributes for the current message block when the call completes.

Although the PPC Toolbox does not interpret these attributes, they can give the receiving
application information about how to process the contents of the message block. For
example, a database application may specify, in the block creator field, a counter to
indicate the block number (block number 20 of 30 total blocks). This application could
also specify a code, such as 'DREC', in the block type field to indicate that the
information it contains is a database record. In addition, this application could specify, in
the user data field, the length of the message block.

Reading Data From an Application 11

An application can both read from and write data to another application during a
session. Use the PPCRead function during a session to read incoming blocks of data
from another application.

Once a session is initiated, you should have a PPCRead function pending. You can issue
a PPCRead function from inside a completion routine. This provides you with
immediate notification if an error condition arises or the session closes.

Block 2PPC Toolbox

Session

Block 1Block 3 PPC Toolbox

3
70 1
11-40 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The blockCreator, blockType, and userData fields are returned for the block you
are reading. (These fields are set by the PPCWrite function.) To determine whether there
is additional data to be read, check the more field. The value FALSE indicates the end of
a message block.

Listing 11-14 illustrates how you use the PPCRead function to read data during a session.

Listing 11-14 Using the PPCRead function to read data during a session

FUNCTION MyPPCRead(thePPCReadPBPtr: PPCReadPBPtr;

theSessRefNum: PPCSessRefNum;

theBufferLength: Size;

theBufferPtr: Ptr): OSErr;

BEGIN

WITH thePPCReadPBPtr^ DO

BEGIN

ioCompletion := NIL;

sessRefNum := theSessRefNum; {from PPCStart or PPCInform}

bufferLength := theBufferLength;

bufferPtr := theBufferPtr;

END;

MyPPCRead := PPCRead(thePPCReadPBPtr, TRUE); {asynchronous}

END;

You should make any calls to PPCRead asynchronously. You can provide a completion
routine that will be called when the PPCRead function has completed, or you can poll
the ioResult field of the PPC parameter block to determine whether the PPCRead
function has completed. A PPCRead completion routine can issue another asynchronous
PPC Toolbox call or set global variables. If another PPC Toolbox call is made from a
completion routine, then the PPCRead function must use a record of data type
PPCParamBlockRec instead of type PPCReadPBRec.

Listing 11-15 illustrates a function that can be used to poll the ioResult field of a record
of data type PPCReadPBRec. The function returns TRUE when the PPCRead function
associated with PPCReadPBRec has completed.

Listing 11-15 Polling the ioResult field to determine if a PPCRead function has completed

FUNCTION MyReadComplete(thePPCReadPBPtr: PPCReadPBPtr;

VAR err: OSErr): Boolean;

BEGIN

err := thePPCReadPBPtr^.ioResult;

MyReadComplete := err <> 1;

END;
Using the PPC Toolbox 11-41

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Sending Data to an Application 11

Use the PPCWrite function to send a message block during a session specified by the
session reference number.

You should call the PPCWrite function asynchronously. You can provide a completion
routine that will be called when the PPCWrite function has completed, or you can poll
the ioResult field of the PPC parameter block to determine whether the PPCWrite
function has completed. A PPCWrite completion routine can issue another PPC Toolbox
call or set global variables. If another PPC Toolbox call is made from a completion
routine, then the PPCWrite function must use a record of data type
PPCParamBlockRec instead of type PPCWritePBRec. Note that message blocks are
sent in the order in which they are written.

Listing 11-16 illustrates how you use the PPCWrite function to write data during a
session.

Listing 11-16 Using the PPCWrite function to write data during a session

FUNCTION MyPPCWrite(thePPCWritePBPtr: PPCWritePBPtr;

 theSessRefNum: PPCSessRefNum;

 theBufferLength: Size;

 theBufferPtr: Ptr): OSErr;

BEGIN

WITH thePPCWritePBPtr^ DO

BEGIN

ioCompletion := NIL;

sessRefNum := theSessRefNum; {from PPCStart or PPCInform}

bufferLength := theBufferLength;

bufferPtr := theBufferPtr;

more := FALSE; {no more data to read}

userData := 0; {application-specific data}

blockCreator := '????'; {application-specific data}

blockType := '????'; {application-specific data}

END;

MyPPCWrite := PPCWrite(thePPCWritePBPtr, TRUE); {asynchronous}

END;

The first PPCWrite function that you use to create a new message block sets the block
creator, block type, and user data attributes for the block. These attributes are returned to
the application when it reads from the message block. Set the more field to FALSE to
indicate the end of the message block or set this field to TRUE if you want to append
additional data to a message block.
11-42 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-17 illustrates a function that can be used to poll the ioResult field of a record
of data type PPCWritePBRec. The function returns TRUE when the PPCWrite function
associated with PPCWritePBRec has completed.

Listing 11-17 Polling the ioResult field to determine if a PPCWrite function has completed

FUNCTION MyWriteComplete(thePPCWritePBPtr: PPCWritePBPtr;

 VAR err: OSErr): Boolean;

BEGIN

err := thePPCWritePBPtr^.ioResult;

MyWriteComplete := err <> 1;

END;

Ending a Session and Closing a Port 11
After data is written and read in, use the PPCEnd function to end the session (identified
by the session reference number). You may receive an error if you use the PPCEnd
function to end a session that has already been terminated.

Listing 11-18 illustrates how you use the PPCEnd function to end a session.

Listing 11-18 Ending a PPC session using the PPCEnd function

FUNCTION MyPPCEnd(theSessRefNum: PPCSessRefNum): OSErr;

VAR

thePPCEndPBRec: PPCEndPBRec;

BEGIN

thePPCEndPBRec.sessRefNum := theSessRefNum;

MyPPCEnd := PPCEnd(@thePPCEndPBRec, FALSE); {synchronous}

END;

The PPCEnd function causes all calls to the PPCRead and PPCWrite functions to
complete (with a sessClosedErr result code) and invalidates the session reference
number. The PPCEnd function also releases any PPC Toolbox resources so that they can
be reused.

Use the PPCClose function to close the port specified by the port reference number.
When you close a port, all sessions associated with a port are ended. Any active
asynchronous calls associated with a session then call their completion routines (if they
have one).
Using the PPC Toolbox 11-43

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Listing 11-19 illustrates how you use the PPCClose function to close a port.

Listing 11-19 Closing a PPC port using the PPCClose function

FUNCTION MyPPCClose(thePortRefNum: PPCPortRefNum): OSErr;

VAR

theClosePBRec: PPCClosePBRec;

BEGIN

theClosePBRec.portRefNum := thePortRefNum; {from PPCOpen}

MyPPCClose := PPCClose(@theClosePBRec, FALSE); {synchronous}

END;

In this example, the call to PPCClose is made synchronously.

Invalidating Users 11
It is your responsibility to invalidate all user reference numbers obtained with the
StartSecureSession function before your application quits. However, while your
application remains open, you may want to keep track of a user reference number to
start a session with a port, end it, and then later start another session with the same port.

Use the DeleteUserIdentity function to invalidate the user reference number for a
particular user.

err := DeleteUserIdentity (userRef);

The DeleteUserIdentity function removes a user by invalidating the specified user
reference number. Note that you cannot invalidate the guest reference number (0) and, in
most cases, you should not dispose of the default user reference number.
11-44 Using the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Listing 11-20 illustrates how you use the DeleteUserIdentity function to invalidate a
user reference number obtained from a StartSecureSession function. The sample
code does not invalidate the user reference number if it is either the default user
reference number or the guest reference number (0).

Listing 11-20 Using the DeleteUserIdentity function to invalidate a user identity

FUNCTION MyDeleteNewUserRefNum(newUserRef: LongInt): OSErr;

VAR

err: OSErr;

defUserRef: LongInt;

defUserName: Str32;

BEGIN

IF newUserRef <> 0 THEN

BEGIN {user reference number passed was not the guest}

err := GetDefaultUser(defUserRef, defUserName);

IF err = noErr THEN

BEGIN {there is a default user}

IF newUserRef <> defUserRef THEN

{new user ref number isn't the default user ref num, }

{ so ok to delete}

err := DeleteUserIdentity(newUserRef);

END

ELSE {there is no default, so delete new user ref num}

err := DeleteUserIdentity(newUserRef);

MyDeleteNewUserRefNum := err;

END

ELSE {user reference number passed was the guest}

MyDeleteNewUserRefNum := noErr;

END;
Using the PPC Toolbox 11-45

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPC Toolbox Reference 11

This section describes the data structures and routines that are specific to
the PPC Toolbox. The section “PPC Toolbox Routines” beginning on page 11-51
describes PPC Toolbox routines. “Application-Defined Routines” beginning on
page 11-78 describes completion routines and port filter functions.

Data Structures 11
This section describes the PPC parameter block, PPC port record, location name record,
and port information record.

The PPC Toolbox Parameter Block 11

PPC Toolbox functions require a pointer to a PPC parameter block. You must fill out any
fields of the parameter block that the specific PPC Toolbox function requires.

TYPE PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOpen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts }

{ params}

END;

Figure 11-18 on the next page shows the PPC Toolbox parameter blocks. Note that the
reserved fields are not included in the illustration. The qLink, csCode, intUse,
intUsePtr, and reserved fields are used internally by the PPC Toolbox. Your
application should not rely on the PPC Toolbox to preserve these fields across calls.

Your application transfers ownership of the PPC Toolbox parameter block (and any
buffers or records pointed to by the PPC Toolbox parameter block) to the PPC Toolbox
until a PPC function is complete. Once the function completes, ownership of the
parameter block (and any buffers or records it points to) is transferred back to your
application. If a PPC Toolbox function is executed asynchronously, your program cannot
alter memory that might be used by the PPC Toolbox until that function completes.
11-46 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

F
ig

u
re

 1
1-

18
T

he
 P

P
C

 T
oo

lb
ox

 p
ar

am
et

er
 b

lo
ck

s

PPC
Ope

nPB
Rec

fi
ll
er
1

ne
tw
or
kV
is
ib
le

nb
pR
eg
is
te
re
d

po
rt
Re
fN
um

8 42 44 46 8 0 2 4 6

PPC
Clo

seP
BRe

c
po
rt
Re
fN
um

PPC
Inf

orm
PBR

ec

PPC
Sta

rtP
BRe

c

PPC
End

PBR
ec

PPC
Acc

ept
PBR

ec

PPC
Rej

ect
PBR

ec

PPC
Wri

teP
BRe

c

IPC
Lis

tPo
rts

PBR
ec

po
rt
Re
fN
um

re
qu
es
tT
yp
e

se
rv
ic
eT
yp
e

re
sF
la
g

re
je
ct
In
fo

us
er
Da
ta

fi
ll
er
1

us
er
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

fi
ll
er
1

fi
ll
er
1

fi
ll
er
2

fi
ll
er
3

fi
ll
er
4

re
je
ct
In
fo

PPC
Rea

dPB
Rec

fi
ll
er
1

se
rv
ic
eT
yp
e

au
to
Ac
ce
pt

se
rv
ic
eT
yp
e

re
sF
la
g

po
rt
Na
me

lo
ca
ti
on
Na
me

bu
ff
er
Pt
r

bu
ff
er
Le
ng
th

ac
tu
al
Le
ng
th

mo
re

fi
ll
er
2

us
er
Da
ta

bl
oc
kC
re
at
or

fi
ll
er
1

st
ar
tI
nd
ex

re
qu
es
tC
ou
nt

ac
tu
al
Co
un
t

bu
ff
er
Pt
r

po
rt
Na
me

lo
ca
ti
on
Na
me

bl
oc
kT
yp
e

se
ss
Re
fN
um

0 6 8 0 2 4 8 0

po
rt
Re
fN
um

po
rt
Na
me

po
rt
Na
me

lo
ca
ti
on
Na
me

re
je
ct
In
fo

us
er
Da
ta

fi
ll
er
1

bu
ff
er
Pt
r

bu
ff
er
Le
ng
th

ac
tu
al
Le
ng
th

mo
re

fi
ll
er
2

us
er
Da
ta

bl
oc
kC
re
at
or

bl
oc
kT
yp
e

se
ss
Re
fN
um

se
ss
Re
fN
um

se
ss
Re
fN
um

lo
ca
ti
on
Na
me

Offset
PPC Toolbox Reference 11-47

3 4 5 5 5 64 5 5 6 6 6 6 7

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

Program-to-Program Communications Toolbox

A PPC Toolbox function that is executed asynchronously must specify NIL or the
address of a completion routine in the ioCompletion field of the PPC parameter block.
The ioResult field should be used to determine the actual result code when an
asynchronously executed PPC Toolbox function completes. If you specify a completion
routine in the ioCompletion field, it is called at interrupt time when the PPC Toolbox
function completes execution. See page 11-78 for the routine declaration for a completion
routine.

The PPC Port Record 11

A PPC port name is defined by a PPC port record. The PPCPortRec data type defines
the PPC port record.

TYPE PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);

ppcByCreatorAndType:

(portCreator: OSType;

portType: OSType);

END;

Field descriptions

nameScript An integer script code.
name A string that designates the application name.
portKindSelector

An integer that selects the kind of type string (either ppcByString
or ppcByCreatorAndType).

portTypeStr If the portKindSelector field specifies ppcByString, the
portTypeStr field contains a 32-byte character string.

portCreator If the portKindSelector field specifies
ppcByCreatorAndType, the portCreator field contains a
4-character creator code.

portType If the portKindSelector field specifies
ppcByCreatorAndType, the portType field contains a
4-character type code.

To open a port, you need to specify a port name. As previously described, a port name
consists of a script code, a name string, and a type string. For example, you can
designate “smRoman” as the script code, “make memo” as the application’s name string,
and “word processor” as its type string.
11-48 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

The Location Name Record 11

A location name identifies the location of a computer on the network. A location
name is specified in the standard Name-Binding Protocol (NBP) form,
<object string>:PPCToolBox @<AppleTalk zone>. The object string is the name provided in
the Sharing Setup control panel in the Control Panels folder. By default, the type string is
“PPCToolBox”. The AppleTalk zone is the zone to which the particular Macintosh
computer belongs. For example, “Jane Doe’s Macintosh:PPCToolBox@twilight” specifies
the object string, type string, and AppleTalk zone for a particular computer.

The LocationNameRec data type defines the location name record. The
locationKindSelector field can be set to ppcNoLocation, ppcNBPLocation, or
ppcNBPTypeLocation.

TYPE LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF

{ppcNoLocation: storage not used by this value}

ppcNBPLocation:

(nbpEntity: EntityName); {NBP name entity}

ppcNBPTypeLocation:

(nbpType: Str32); {just the NBP type }

{ string for the }

{ PPCOpen function}

END;

Field descriptions

locationKindSelector
An integer that determines how the location is specified.
You can use either of the constants ppcNBPLocation
or ppcNBPTypeLocation. (The PPC Toolbox uses the constant
ppcNoLocation when the location received from or passed to a
PPC Toolbox function is the location of the local machine.)

nbpEntity If the locationKindSelector field specifies ppcNBPLocation,
the nbpEntity field specifies a full NBP entity name.

nbpType If the locationKindSelector field specifies
ppcNBPTypeLocation, the nbpType field specifies an alias
location name. This location kind is used only by the PPCOpen
function when an alias location name is needed.

Note
You should assign an NBP value directly—do not pack it using
nbpSetEntity. ◆
PPC Toolbox Reference 11-49

C H A P T E R 1 1

Program-to-Program Communications Toolbox

The Port Information Record 11

A port information record identifies whether a particular port requires authentication
and specifies the port’s port name. Both the PPCBrowser and IPCListPorts functions
return information about ports using port information records. In addition, if you
provide a port filter function, the PPC Toolbox provides information to your function
about the current port in a port information record. The PortInfoRec data type defines
a port information record.

TYPE PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

Field descriptions

filler1 Reserved.
authRequired Specifies whether the port requires authentication. This field is

TRUE if the port requires authentication before a session can begin.
Otherwise, this field is FALSE.

name Specifies an available port name.

For information on the PPCBrowser and IPCListPorts functions, see page 11-52 and
page 11-54, respectively. For information on port filter functions, see page 11-78.

PPC Toolbox Routines 11
This section describes the routines for

■ initializing the PPC Toolbox

■ displaying the program linking dialog box

■ listing available ports

■ opening and closing a port

■ starting and ending a session

■ accepting and rejecting a session

■ reading and writing data

■ obtaining the default user reference number and name

■ invalidating a user reference number

Result codes appear after each function where applicable.
11-50 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11

P
rogram

-to-P
rogram

 C
om

m
unications Toolbox

Initializing the PPC Toolbox 11

You use the PPCInit function to initialize the PPC Toolbox.

PPCInit 11

Use the PPCInit function to initialize the PPC Toolbox.

FUNCTION PPCInit: OSErr;

DESCRIPTION

After initialization, most PPC Toolbox routines can execute either synchronously or
asynchronously.

Note that a noGlobalsErr result code indicates that the PPC Toolbox is not loaded
properly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCInit function are

The registers on entry and exit for this routine are

RESULT CODES

Using the Program Linking Dialog Box 11

You can use either the PPCBrowser function or the IPCListPorts function to locate a
port to communicate with. Use the PPCBrowser function to display the program linking
dialog box. For the description of IPCListPorts, see page 11-54.

Trap macro Selector

_PPCBrowser $0000

Registers on entry

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noGlobalsErr –904 System unable to allocate memory, critical error
PPC Toolbox Reference 11-51

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCBrowser 11

Use the PPCBrowser function to display the program linking dialog box, which allows a
user to select a port to communicate with.

FUNCTION PPCBrowser (prompt: Str255; applListLabel: Str255;

defaultSpecified: Boolean;

VAR theLocation: LocationNameRec;

VAR thePortInfo: PortInfoRec;

portFilter: PPCFilterProcPtr;

theLocNBPType: Str32): OSErr;

prompt A line of text that the PPCBrowser function displays as a prompt in the
program linking dialog box. If you specify NIL or an empty string is
passed, the default prompt “Choose a program to link to:” is used.

applListLabel
The title of the list of PPC ports. If you specify NIL or an empty string is
passed, the default title “Programs” is used.

defaultSpecified
A value that determines which port is initially selected in the program
linking dialog box. If you specify TRUE, you must provide information in
the parameters theLocation and thePortInfo. In this case, the
PPCBrowser function tries to select the PPC port specified by the
parameters theLocation and thePortInfo when the program linking
dialog box first appears. If you specify FALSE, the PPCBrowser function
selects the first port in the list and you can leave the location name record
and the port information record (in the parameters theLocation and
thePortInfo) uninitialized.

theLocation
The port location. For information on this data structure, see “The
Location Name Record” on page 11-49.

thePortInfo
The port name. For information on this data structure, see “The Port
Information Record” on page 11-50.

portFilter
Determines how the list of PPC ports is filtered. If this parameter is NIL,
the names of all existing PPC ports are displayed. If this parameter isn’t
NIL, it must be a pointer to a port filter function.

theLocNBPType
The NBP type passed to NBPLookup to generate the list of computers. If
you specify NIL or an empty string is passed, the default, “PPCToolBox”,
is used.
11-52 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

The PPCBrowser function builds the list of ports and then displays the program linking
dialog box.

If you set the defaultSpecified parameter to TRUE, the PPCBrowser function tries
to select the PPC port specified by the parameters theLocation and thePortInfo
when the program linking dialog box first appears. The locationKindSelector field
in the location name record must be set to the ppcNoLocation constant (which
specifies the local computer) or the ppcNBPLocation constant (which specifies the NBP
object and NBP zone). The ppcNBPTypeLocation constant is not supported for
matching. When matching the location, only the object string and the zone string of the
entity name are used—the type string is ignored. When matching the port, the entire
PPC port record (script, name, and port type) is used in the port information record. The
authRequired field of the port information record is ignored.

The parameter theLocNBPType of the PPCBrowser function specifies the NBP type
passed to NBPLookup to generate the list of computers. If you specify NIL or an empty
string is passed, the default, “PPCToolBox”, is used. Note that the current computer is
always included in the list of computers (even if a location with the specified type does
not exist for it). If the parameter theLocNBPType contains either of the NBP wildcard
characters (= or ≈), the PPCBrowser function returns a paramErr result code.

If the PPCBrowser function returns noErr, the parameters theLocation and
thePortInfo specify the port chosen by the user. If the PPCBrowser function returns a
userCanceledErr result code, the user clicked the Cancel button, and no port was
selected. If the function returns a memFullErr result code, there was not enough
memory to load the PPCBrowser package, and the dialog box did not appear.

Note
You must not call the PPCBrowser function from an application that is
running in the background, since this function displays a dialog box on
the user’s screen. ◆

RESULT CODES

SEE ALSO

For an example of the use of the PPCBrowser function, see Listing 11-4 on
page 11-26. For an example of the program linking dialog box, see
Figure 11-12 on page 11-22. For information on port filter functions,
see page 11-78.

noErr 0 No error
paramErr –50 Illegal parameter
memFullErr –108 Not enough memory to load PPCBrowser package
userCanceledErr –128 User decided not to conduct a session
PPC Toolbox Reference 11-53

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Obtaining a List of Ports 11

Use the IPCListPorts function to generate a list of existing ports without displaying a
dialog box. The IPCListPortsPBRec data type defines the parameter block used by
the IPCListPorts function.

IPCListPorts 11

Use the IPCListPorts function to generate a list of existing ports without displaying a
dialog box.

FUNCTION IPCListPorts (pb: IPCListPortsPBPtr;

 async: Boolean): OSErr;

pb A pointer to an IPCListPorts parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the IPCListPorts function asynchronously, you must specify
in the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the IPCListPorts function asynchronously, you must not change any of the
fields in the parameter block until the call completes. The port name, location name, and
buffer pointed to by IPCListPortsPBRec are owned by the PPC Toolbox until the call
completes. These objects must not be deallocated or moved in memory while the call is
in progress.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ startIndex Integer Index to the port entry list
→ requestCount Integer Number of port names requested
← actualCount Integer Number of port names returned
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
→ bufferPtr PortInfoArrayPtr Pointer to an array of

PortInfoRec
11-54 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
The startIndex field specifies the index to the list of ports on the remote machine from
which the PPC Toolbox begins to get the list. In most cases, you’ll want to start at the
beginning, so set the startIndex field to 0. The requestCount field specifies the
maximum number of port information records that can fit into your buffer.

The actualCount field returns the actual number of entries returned. Your program
can use the IPCListPorts function repeatedly to obtain the entire list of ports. Ports
that are not visible to the network are not included in the ports listing on a remote
machine. (If you specify FALSE for the networkVisible field in the PPCOpen function,
the port is not included in the listing of available ports across a network.)

The portName field must contain a pointer to a PPC port record that specifies which
PPC ports to list. You can specify particular values in the PPC port record or you can use
an equal sign (=) in the name or the portTypeStr fields as a wildcard to match all port
names or port types.

The locationName field should contain a pointer to a location name record that
designates the computer that contains the PPC ports you want returned. If the
locationKindSelector field in the location name record is ppcNoLocation or if
the locationName pointer is NIL, then the location is the local machine. If the
locationKindSelector field in the location name record is ppcNBPLocation,
then the location is a remote machine designated by the location name record’s
nbpEntity field.

The IPCListPorts function returns an array (list) of port information records in the
area of memory pointed to by bufferPtr. Make sure that the buffer pointed to by the
bufferPtr field is at least sizeof(PortInfoRec) * requestCount.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the IPCListPorts function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $000A

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
PPC Toolbox Reference 11-55

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the IPCListPorts function, see Listing 11-5 on page 11-28.

Opening and Closing a Port 11

You open a port using the PPCOpen function and close a port using the PPCClose
function.

PPCOpen 11

You open a port using the PPCOpen function.

FUNCTION PPCOpen (pb: PPCOpenPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCOpen parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate locationKindSelector in

location name
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
sessTableErr –907 PPC Toolbox is unable to create a session
noResponseErr –915 Unable to contact application
badPortNameErr –919 PPC port record is invalid
networkErr –925 An error has occurred in the network
badLocNameErr –931 Location name is invalid

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
← portRefNum PPCPortRefNum Port reference number of port

opened
→ serviceType PPCServiceType Service type requested—must be

ppcServiceRealTime
→ resFlag SignedByte Reserved field—must be 0
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
→ networkVisible Boolean Make this port network visible
← nbpRegistered Boolean Port location was registered on

the network
11-56 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

If your application calls the PPCOpen function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCOpen function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The port name and location name
pointed to by the PPCOpen parameter block record are owned by the PPC Toolbox until
the call completes. These objects must not be deallocated or moved in memory while the
call is in progress.

The portRefNum field returns the PPC port identifier. Use this port reference number to
initiate a session for this particular port. Set the serviceType field to indicate that this
port accepts sessions in real time. For System 7, this field must always be set to the
ppcServiceRealTime constant. You must set the resFlag field to 0.

The portName field must contain a pointer to a PPC port record that specifies the name
of the PPC port to be opened.

The locationName field should contain a pointer to a location name record that
designates the location of the PPC port to be opened. If the locationName pointer is
NIL, then the default name PPC Toolbox is used. If a location name record is used, then
the locationKindSelector field in the location name record must be
ppcNBPTypeLocation, and an alias location name specified by the location name
record’s nbpType field is used.

The networkVisible field indicates whether the port should be made visible (for
browsing as well as incoming network requests). If you specify FALSE, this port is not
visible in the listing of available ports across a network (although it is still included
within the local machine’s listing of available ports).

The nbpRegistered field returns TRUE if the location name specified was registered on
the network.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCOpen function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0001

Registers on entry

A0 Pointer to a parameter block

D0 Selector (1)
PPC Toolbox Reference 11-57

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCOpen function, see Listing 11-2 on page 11-21.

PPCClose 11

You use the PPCClose function to close the port specified by the port reference number.

FUNCTION PPCClose (pb: PPCClosePBPtr; async: Boolean): OSErr;

pb A pointer to a PPCClose parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate

locationKindSelector in location name
noPortErr –903 Unable to open port or bad port reference

number
noGlobalsErr –904 System unable to allocate memory, critical error
badReqErr –909 Bad parameter or invalid state for this operation
portNameExistsErr –910 Another port is already open with this name
badPortNameErr –919 PPC port record is invalid
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
badLocNameErr –931 Location name is invalid
nbpDuplicateName –1027 Location name represents a duplicate on this

computer

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of port to close
11-58 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

If your application calls this function asynchronously, you must specify in the
ioCompletion field either the address of a completion routine or NIL. If you
set ioCompletion to NIL, you should poll the ioResult field of the PPC parameter
block (from your application’s main event loop) to determine whether the PPC Toolbox
has completed the requested operation. A value in the ioResult field other than 1
indicates that the call is complete. Note that it is unsafe to poll the ioResult field at
interrupt time since the PPC Toolbox may be in the process of completing a call. See
“PPC Toolbox Calling Conventions” beginning on page 11-14 for detailed information.

The portRefNum field specifies the PPC port identifier of the port to close. The port
reference number must be a valid port reference number returned from a previous call to
the PPCOpen function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCClose function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCClose function, see Listing 11-19 on page 11-44.

Starting and Ending a Session 11

You use the PPCStart or StartSecureSession function to initiate a session with
another port, and you use the PPCEnd function to end a session.

Trap macro Selector

_PPC $0009

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
PPC Toolbox Reference 11-59

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCStart 11

The PPCStart function initiates a session with the destination port specified in the
name and location fields.

FUNCTION PPCStart (pb: PPCStartPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCStart parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the PPCStart function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time, since the PPC Toolbox may be in the process of completing a call. See “PPC
Toolbox Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCStart function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The port name and location name
pointed to by the PPCStart parameter block record are owned by the PPC Toolbox until
the call completes. These objects must not be deallocated or moved in memory while the
call is in progress.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of this

session
← sessRefNum PPCSessRefNum Session reference number of this

session
→ serviceType PPCServiceType Service type requested—must be

ppcServiceRealTime
→ resFlag SignedByte Reserved field—must be 0
→ portName PPCPortPtr Pointer to a PPCPortRec
→ locationName LocationNamePtr Pointer to a LocationNameRec
← rejectInfo LongInt Value from PPCReject if session

was rejected
→ userData LongInt Application-specific data
→ userRefNum LongInt User reference number
11-60 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
You specify the PPC port identifier in the portRefNum field. The port reference number
is a reference number for the port through which you are requesting a session. The value
you specify must correspond to the port reference number returned from the PPCOpen
function.

The sessRefNum field returns a session identifier. This number, which is provided by
the PPC Toolbox, is used while data is being exchanged to identify a particular session.
You must set the serviceType field to indicate that the session is to be connected in
real time. For System 7, this field must always be set to the ppcServiceRealTime
constant. You must set the resFlag field to 0.

The portName field must contain a pointer to a PPC port record. The locationName
field should contain a pointer to a location name record or NIL. The PPC port record and
the location name record specify the name and location of the PPC port to initiate a
session with, and they are usually obtained from the PPCBrowser function. If the
locationKindSelector field in the location name record is ppcNoLocation or if
the locationName pointer is NIL, then the location is the local machine. If the
locationKindSelector field in the location name record is ppcNBPLocation,
then the location is a remote machine designated by the location name record’s
nbpEntity field.

If the ioResult field of the PPC parameter block returns a userRejectErr result
code, the rejectInfo field contains the same value as the rejectInfo field in the
PPCReject parameter block. The rejectInfo field is defined by your application.

The initiating port can specify any information in the userData field. The PPCInform
function reports this data to the responding port upon its completion.

The userRefNum field specifies an authenticated user. The authentication mechanism of
the PPC Toolbox identifies each user through an assigned name and a password. A user
reference number of 0 indicates that you want to specify a guest.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCStart function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0002

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
PPC Toolbox Reference 11-61

C H A P T E R 1 1

Program-to-Program Communications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCStart function, see Listing 11-7 on page 11-34.

StartSecureSession 11

The StartSecureSession function prompts for user name and password and calls
PPCStart—all in one synchronous procedure call. Use the StartSecureSession
function whenever a port destination requires authentication.

FUNCTION StartSecureSession (pb: PPCStartPBPtr;

 VAR userName: Str32;

 useDefault: Boolean;

 allowGuest: Boolean;

 VAR guestSelected: Boolean;

 prompt: Str255): OSErr;

pb A pointer to a PPCStart parameter block.

userName A pointer to a 32-byte character string to be displayed as the user’s name.

useDefault
A Boolean value that indicates whether you want the
StartSecureSession function to use the default user identity (and
possibly prevent the user identity dialog box from appearing). If so,
specify TRUE; otherwise, specify FALSE.

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 locationKindSelector is not

ppcNBPLocation or ppcNoLocation
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noUserNameErr –911 User name unknown on destination machine
userRejectErr –912 Destination rejected the session request
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
badPortNameErr –919 PPC port record is invalid
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did

not have an inform pending
authFailErr –927 User’s password is wrong
noUserRecErr –928 Invalid user reference number
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
guestNotAllowedErr –932 Destination port requires authentication
11-62 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
allowGuest
A Boolean value that determines whether the Guest radio button in the
user identity dialog box is active (TRUE) or inactive (FALSE).

guestSelected
Returns TRUE if the user has logged on as a guest.

prompt A line of text that the dialog box displays in place of the default prompt.
Specify NIL or an empty string to use the default prompt.

DESCRIPTION

Your program fills out a parameter block just as though it were calling the PPCStart
function. You specify all input fields in the parameter block except for the userRefNum
field. The userRefNum field is returned when the StartSecureSession function
successfully completes.

The userName parameter is a pointer to a 32-byte character string to be displayed as
the user’s name. If the Pascal string length is 0, the default user name is used. The
default user name is the name specified in the Sharing Setup control panel. The default
user name is returned in the userName buffer.

Set the useDefault parameter to TRUE if you want the StartSecureSession
function to use the default user identity (and possibly prevent the user identity dialog
box from appearing). The allowGuest parameter specifies whether the Guest radio
button in the user identity dialog box is active. You usually set it to the inverse of the
authRequired field in the port information record. For example, if authRequired is
TRUE, then allowGuest should be set to FALSE.

The guestSelected parameter returns TRUE if the user has logged on as a guest. The
prompt parameter of the StartSecureSession function allows you to specify a line
of text that the dialog box can display. Specify NIL or an empty string for the prompt
parameter to enable the PPC Toolbox to use the default prompt. The PPC Toolbox uses
the default string “Link to <port name> on <object string> as:”. The port name is obtained
from the name string of the port name, and the object string is obtained from the object
string of the location name.

Note
Do not call the StartSecureSession function from an application
that is running in the background, because the function displays several
dialog boxes on the user’s screen. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StartSecureSession function are

Trap macro Selector

_PPC $000E
PPC Toolbox Reference 11-63

C H A P T E R 1 1

Program-to-Program Communications Toolbox
The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the StartSecureSession function, see “Initiating a PPC
Session” beginning on page 11-29.

PPCEnd 11

Use the PPCEnd function to end a session. This function completes all outstanding
asynchronous calls associated with the session reference number.

FUNCTION PPCEnd (pb: PPCEndPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCEnd parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Registers on entry

A0 Pointer to a StartSecureParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
userCanceledErr –128 User decided not to conduct a session
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 locationKindSelector is not

ppcNBPLocation or ppcNoLocation
noPortErr –903 Bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
badPortNameErr –919 PPC port record is invalid
noUserRefErr –924 Unable to create a new user reference number
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did

not have an inform pending
badServiceMethodErr –930 Service method is other than

ppcServiceRealTime
guestNotAllowedErr –932 Destination port requires authentication
11-64 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Parameter block

DESCRIPTION

If your application calls the PPCEnd function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

You provide a session identifier in the sessRefNum field to identify the session that you
are terminating. The PPCStart, StartSecureSession, or PPCInform function
returns the session reference number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCEnd function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCEnd function, see Listing 11-18 on page 11-43.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of

session to end

Trap macro Selector

_PPC $0008

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
PPC Toolbox Reference 11-65

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Receiving, Accepting, and Rejecting a Session 11

You use the PPCInform function to receive session requests. After the PPCInform
function completes (with the autoAccept field set to FALSE), you must accept or reject
the session request using the PPCAccept or PPCReject function.

PPCInform 11

As long as a port has been opened, you can call the PPCInform function at any time.
You can have any number of outstanding PPCInform functions.

FUNCTION PPCInform (pb: PPCInformPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCInform parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCInform function asynchronously.

Parameter block

DESCRIPTION

If your application calls the PPCInform function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ portRefNum PPCPortRefNum Port reference number of this

session
← sessRefNum PPCSessRefNum Session reference number of this

session
← serviceType PPCServiceType Service type of this session
→ autoAccept Boolean If TRUE, session is accepted

automatically
→ portName PPCPortPtr Pointer to PPCPortRec, may be

NIL
→ locationName LocationNamePtr Pointer to LocationNameRec,

may be NIL
userName StringPtr Pointer to Str32, may be NIL

← userData LongInt Application-specific data
← requestType PPCSessionOrigin Network or local request
11-66 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
If you call the PPCInform function asynchronously, you must not change any of the
fields in the parameter block until the call completes. The port name, location name, user
name, and buffer pointed to by the record of type PPCInformPBRec are owned by the
PPC Toolbox until the call completes. These objects must not be deallocated or moved in
memory while the call is in progress.

You provide the PPC port identifier in the portRefNum field. A PPCOpen function
returns the port identifier. The sessRefNum field returns a session identifier.

The serviceType field indicates the service type. For system software version 7.0, this
field always returns the ppcServiceRealTime constant.

If you set the autoAccept field to TRUE, session requests are automatically accepted as
they are received. When the PPCInform function completes execution with a noErr
result code and you set the autoAccept field to FALSE, you need to accept or reject
the session.

▲ W A R N I N G

If the PPCInform function (with the autoAccept parameter set
to FALSE) returns a noErr result code, you must call either the
PPCAccept function or the PPCReject function. The computer trying
to initiate a session using the StartSecureSession function or the
PPCStart function waits (hangs) until the session attempt is either
accepted or rejected, or until an error occurs. ▲

The portName field must contain NIL or a pointer to a PPC port record. If the
portName field contains NIL, then the name of the PPC port that initiated the
session is not returned. If the portName field points to a PPC port record, then
the PPC port record is filled with the name of the PPC port that initiated the session
when the PPCInform function completes.

The locationName field must contain NIL or a pointer to a location name record. If the
locationName field contains NIL, then the location of the PPC port that initiated the
session is not returned. If the locationName field points to a location name record, then
the location name record is filled with the location of the PPC port that initiated the
session when the PPCInform function completes. If the locationKindSelector field
of the location name record returned is ppcNoLocation, then the location is the local
machine. If the locationKindSelector field of the location name record returned is
ppcNBPLocation, then the location is a remote machine designated by the location
name record’s nbpEntity field.

The userName field must contain NIL or a pointer to a 32-byte character string.
If the userName field contains NIL, then the user name string is not returned. If the
userName field points to a 32-byte character string, then the 32-byte character string is
filled with the name of the user making the session request (if authenticated) when the
PPCInform function completes.

When the PPCInform function completes, the userData field contains the user data
provided by the application making the session request. This field is transparent to the
PPC Toolbox. The application can send any data in this field.
PPC Toolbox Reference 11-67

C H A P T E R 1 1

Program-to-Program Communications Toolbox
When the PPCInform function completes, the requestType field contains either
ppcRemoteOrigin or ppcLocalOrigin, depending on whether the session request is
initiated by a computer across the network or by a port on the same computer.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCInform function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCInform function, see Listing 11-8 on page 11-36.

PPCAccept 11

Use the PPCAccept function to indicate that an application is willing to accept an
incoming session request after a PPCInform function completes.

FUNCTION PPCAccept (pb: PPCAcceptPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCAccept parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Trap macro Selector

_PPC $0003

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noPortErr –903 Unable to open port or bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
portClosedErr –916 The port was closed
11-68 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Parameter block

DESCRIPTION

If your application calls the PPCAccept function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

The sessRefNum field specifies a session identifier. Use the session reference number
returned from the completed PPCInform parameter block to accept the session request.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCAccept function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the PPCAccept function, see “Accepting or Rejecting
Session Requests” beginning on page 11-37.

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of session

to accept

Trap macro Selector

_PPC $0004

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
PPC Toolbox Reference 11-69

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCReject 11

Use the PPCReject function to reject a session request after a PPCInform function
completes.

FUNCTION PPCReject (pb: PPCRejectPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCReject parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

DESCRIPTION

If your application calls the PPCReject function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

The sessRefNum field specifies a session to be rejected. This must be a valid session
reference number returned from a previous PPCInform function. The rejectInfo
field is an optional field. The application receiving a session request may specify any
data in this field. The initiating application receives this information in the PPCStart
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCReject function are

The registers on entry and exit for this routine are

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number of session

to reject
→ rejectInfo LongInt Value to return if session is rejected

Trap macro Selector

_PPC $0005

Registers on entry

A0 Pointer to a parameter block

D0 Selector code
11-70 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCReject function, see page 11-39.

Reading and Writing Data 11

The PPCRead function reads incoming data from an application, and the PPCWrite
function writes data to an application during a session.

PPCRead 11

Use the PPCRead function to read message blocks during a session.

FUNCTION PPCRead (pb: PPCReadPBPtr; async: Boolean): OSErr;

pb A pointer to a PPCRead parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCRead function asynchronously.

Parameter block

Registers on exit

D0 Result code

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number
→ bufferLength Size Length of data buffer
← actualLength Size Actual length of data read
→ bufferPtr Ptr Pointer to data buffer
← more Boolean TRUE if more data in this block to

be read
← userData LongInt Application-specific data
← blockCreator OSType Creator of block read
← blockType OSType Type of block read
PPC Toolbox Reference 11-71

C H A P T E R 1 1

Program-to-Program Communications Toolbox
DESCRIPTION

If your application calls the PPCRead function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14 for detailed information.

If you call the PPCRead function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The buffer pointed to by the record of
data type PPCReadPBRec is owned by the PPC Toolbox until the call completes. These
objects must not be deallocated or moved in memory while the call is in progress.

The sessRefNum field specifies a session to read data from. This must be a valid session
reference number returned from a previous PPCStart, StartSecureSession, or
PPCInform function. The bufferLength and bufferPtr fields specify the length and
location of a buffer the message block will be read into. Your application must allocate
the storage for the buffer. The actualLength field returns the actual size of the data
read into your data buffer.

The more field returns TRUE if the provided buffer cannot hold the remainder of the
message block. Your application may read a message block in several pieces. It is not
necessary to have a buffer large enough to read in the entire message block, so a message
block can span multiple calls to the PPCRead function.

Upon completion of the PPCRead function, the userData, blockCreator, and
blockType fields contain information regarding the contents of the message block. You
specify these fields using the PPCWrite function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCRead function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0007

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
11-72 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCRead function in conjunction with the PPCWrite
function, see “Exchanging Data During a PPC Session” beginning on page 11-39.

PPCWrite 11

Use the PPCWrite function to write message blocks during a session.

FUNCTION PPCWrite (pb: PPCWritePBPtr; async: Boolean): OSErr;

pb A pointer to a PPCWrite parameter block.

async A value that specifies whether the function is to be executed
asynchronously (TRUE) or synchronously (FALSE). You should execute
the PPCWrite function asynchronously.

Parameter block

DESCRIPTION

If your application calls the PPCWrite function asynchronously, you must specify in
the ioCompletion field either the address of a completion routine or NIL. If you set
ioCompletion to NIL, you should poll the ioResult field of the PPC parameter block
(from your application’s main event loop) to determine whether the PPC Toolbox has

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
sessClosedErr –917 The session has closed

→ ioCompletion PPCCompProcPtr Address of a completion routine
← ioResult OSErr Result code
→ sessRefNum PPCSessRefNum Session reference number
→ bufferLength Size Length of data buffer
← actualLength Size Actual length of data written
→ bufferPtr Ptr Pointer to data buffer
→ more Boolean TRUE if more data in this block to

be written
→ userData LongInt Application-specific data
→ blockCreator OSType Creator of block written
→ blockType OSType Type of block written
PPC Toolbox Reference 11-73

C H A P T E R 1 1

Program-to-Program Communications Toolbox
completed the requested operation. A value in the ioResult field other than 1 indicates
that the call is complete. Note that it is unsafe to poll the ioResult field at interrupt
time since the PPC Toolbox may be in the process of completing a call. See “PPC Toolbox
Calling Conventions” beginning on page 11-14.

If you call the PPCWrite function asynchronously, you must not change any of the fields
in the parameter block until the call completes. The buffer pointed to by the record of
data type PPCWritePBRec is owned by the PPC Toolbox until the call completes. These
objects must not be deallocated or moved in memory while the call is in progress.

The sessRefNum field specifies a session identifier. This must be a valid session
reference number returned from a previous PPCStart, StartSecureSession, or
PPCInform function.

The bufferLength and bufferPtr fields specify the length and location of a buffer
the message block is sent to. If the PPCWrite function returns a noErr result code, the
actualLength field returns the actual size of the message block that was written.

Set the more field to TRUE to indicate that you will be using the PPCWrite function
again to append data to this message block. Set the more field to FALSE to indicate that
this is the end of the data in this message block.

The initiating port can specify any information in the userData field. The PPCRead
function reports this data to the responding port upon its completion.

Set the userData, blockCreator, and blockType fields for each message block that
you create. These fields can give the receiving application information about how to
process the contents of the message block. They are ignored when you append
information to a message block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PPCWrite function are

The registers on entry and exit for this routine are

Trap macro Selector

_PPC $0006

Registers on entry

A0 Pointer to a parameter block

D0 Selector code

Registers on exit

D0 Result code
11-74 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
RESULT CODES

SEE ALSO

For an example of the use of the PPCWrite function in conjunction with the PPCRead
function, see “Exchanging Data During a PPC Session” beginning on page 11-39.

Locating a Default User and Invalidating a User 11

You use the GetDefaultUser function to obtain a user reference number and the name
of the default user. To invalidate a particular user name and corresponding password,
use the DeleteUserIdentity function.

GetDefaultUser 11

The GetDefaultUser function returns the user reference number and the name of the
default user.

FUNCTION GetDefaultUser (VAR userRef: LongInt;

 VAR userName: Str32): OSErr;

userRef If the GetDefaultUser function completes with no errors, then the
userRef parameter returns the user reference number that represents the
user name and password of the default user.

userName The name of the default user.

DESCRIPTION

The default user is specified in the Sharing Setup control panel. This function is useful if
your application uses the PPCStart function to initiate a session with an application
that does not support guest access.

If the GetDefaultUser function completes with no errors, then the userRef
parameter returns the user reference number that represents the user name and
password of the default user. The userName parameter must contain NIL or a 32-byte
character string. If the userName parameter contains NIL, then the user name string is

noErr 0 No error
notInitErr –900 PPC Toolbox has not been initialized yet
noGlobalsErr –904 System unable to allocate memory, critical error
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
sessClosedErr –917 The session has closed
PPC Toolbox Reference 11-75

C H A P T E R 1 1

Program-to-Program Communications Toolbox
not returned. If the userName parameter is a 32-byte character string, the 32-byte
character string contains the user name that is specified in the Sharing Setup control
panel when the GetDefaultUser function completes (with no errors).

▲ W A R N I N G

If you are using Pascal, you cannot pass NIL for the userName
parameter. For example, you cannot pass StringPtr(NIL)^ because
Pascal performs range checking of string bounds. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetDefaultUser function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the GetDefaultUser function, see Listing 11-20 on
page 11-45.

DeleteUserIdentity 11

To invalidate a particular user name and corresponding password, use the
DeleteUserIdentity function.

FUNCTION DeleteUserIdentity (userRef: LongInt): OSErr;

userRef The reference number representing the user and password to be deleted.

Trap macro Selector

_PPC $000D

Registers on entry

A0 Pointer to a GetDefaultUserParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noDefaultUserErr –922 User has not specified owner name in Sharing Setup

control panel
notLoggedInErr –923 Default user reference number does not yet exist
11-76 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
DESCRIPTION

The DeleteUserIdentity function deletes the user name and password
corresponding to the user reference number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DeleteUserIdentity function are

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For an example of the use of the DeleteUserIdentity function, see “Invalidating
Users” on page 11-44.

Application-Defined Routines 11
This section describes the routine syntax for completion routines and port filter functions.

Completion Routines for PPC Toolbox Routines 11

Your application can provide a pointer to a completion routine in the ioCompletion
field of a PPC parameter block. You can provide completion routines only for
PPC Toolbox routines that you execute asynchronously.

Trap macro Selector

_PPC $000C

Registers on entry

A0 Pointer to a DeleteUserParams record

D0 Selector code

Registers on exit

D0 Result code

noErr 0 No error
noUserRecErr –928 Invalid user reference number
PPC Toolbox Reference 11-77

C H A P T E R 1 1

Program-to-Program Communications Toolbox
MyCompletionRoutine 11

You can provide a completion routine for a PPC Toolbox routine that you execute
asynchronously.

PROCEDURE MyCompletionRoutine (pb: PPCParamBlockPtr);

pb A pointer to the PPC parameter block passed to the PPC Toolbox function.

DESCRIPTION

If you specify a completion routine in the ioCompletion field of a PPC parameter
block, it is called at interrupt time when the PPC Toolbox routine completes execution.
The PPC Toolbox passes to your completion routine a pointer to the same PPC
parameter block that your application passed to the PPC Toolbox routine.

▲ W A R N I N G

Completion routines execute at the interrupt level and must preserve all
registers other than A0, A1, and D0–D2. (Note that MPW C and MPW
Pascal do this automatically.) Your completion routine must not make
any calls to the Memory Manager, directly or indirectly, and it can’t
depend on the validity of handles to unlocked blocks. The PPC Toolbox
preserves the application global register A5. ▲

SEE ALSO

For examples of completion routines, see Listing 11-9 on page 11-37, Listing 11-11 on
page 11-38, and Listing 11-13 on page 11-39.

Port Filter Functions 11

This section describes the port filter function that can be used by the PPCBrowser
function.

MyPortFilter 11

You can provide a pointer to a port filter function in the portFilter parameter of the
PPCBrowser function.You can use a port filter function to refine the list of PPC ports
that the PPCBrowser function displays in the program linking dialog box.

FUNCTION MyPortFilter (locationName: LocationNamePtr;

 thePortInfo: PortInfoPtr): Boolean;
11-78 PPC Toolbox Reference

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
locationName
A pointer to a location name record. This record specifies the location of
the PPC port currently under consideration for display in the program
linking dialog box.

thePortInfo
A pointer to a port information record. This record specifies the port
information for the PPC port currently under consideration for display in
the program linking dialog box.

DESCRIPTION

The PPCBrowser function calls your port filter function once for each port before it adds
that port to the dialog list. Your port filter function should return TRUE for each port that
should be displayed in the program linking dialog box, and FALSE for each port
that shouldn’t be displayed.

SEE ALSO

For an example of a port filter function, see Listing 11-3 on page 11-24. For a description
of the location name record, see page 11-49. For a description of the port information
record, see page 11-50.
PPC Toolbox Reference 11-79

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Summary of the PPC Toolbox 11

Pascal Summary 11

Constants 11

CONST

{gestalt selectors}

gestaltPPCToolboxAttr = 'ppc '; {PPC Toolbox attributes}

gestaltPPCToolboxPresent = $0000; {PPC Toolbox is present}

gestaltPPCSupportsRealTime = $1000; {real time only in system }

{ software version 7.0}

gestaltPPCSupportsOutGoing = $0002; {support of outgoing }

{ sessions across a network}

gestaltPPCSupportsIncoming = $0001; {user enabled program }

{ linking in Sharing Setup }

{ control panel}

{service type)

ppcServiceRealTime = 1; {real time only in System 7}

{look-up type}

ppcNoLocation = 0; {there is no PPCLocName}

ppcNBPLocation = 1; {use AppleTalk NBP}

ppcNBPTypeLocation = 2; {use just the NBP type, fill }

{ in the rest with default}

{port type}

ppcByCreatorAndType = 1; {port type is specified as }

{ standard creator and type}

ppcByString = 2; {port type is in Pascal }

{ string format}

{session request type returned in the PPCInform function}

ppcLocalOrigin = 1; {session initiated on }

{ local computer}

ppcRemoteOrigin = 2; {session initiated on }

{ remote computer}
11-80 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Data Types 11

TYPE

PPCServiceType = SignedByte; {service type}

PPCLocationKind = Integer; {look-up type}

PPCPortKinds = Integer; {port type}

PPCSessionOrigin = SignedByte; {local or remote}

PPCPortRefNum = Integer; {port reference number}

PPCSessRefNum = LongInt; {session reference number}

LocationNamePtr = ^LocationNameRec;

LocationNameRec =

RECORD

locationKindSelector: PPCLocationKind; {which variant}

CASE PPCLocationKind OF {ppcNoLocation: storage not }

{ used by this value}

ppcNBPLocation: {NBP name entity}

 (nbpEntity: EntityName);

ppcNBPTypeLocation:(nbpType: Str32);{just the NBP type string }

{ for the PPCOpen function}

END;

PortInfoPtr = ^PortInfoRec;

PortInfoRec =

RECORD

filler1: SignedByte; {space holder}

authRequired: Boolean; {authentication required}

name: PPCPortRec; {port name}

END;

PPCPortPtr = ^PPCPortRec;

PPCPortRec =

RECORD

nameScript: ScriptCode; {script identifier}

name: Str32; {port name shown in program }

{ linking dialog box}

portKindSelector: PPCPortKinds; {general category of }

{ application}

CASE PPCPortKinds OF

ppcByString: (portTypeStr: Str32);{32 characters}

ppcByCreatorAndType: {4-character creator and type}

(portCreator: OSType; portType: OSType);

END;
Summary of the PPC Toolbox 11-81

C H A P T E R 1 1

Program-to-Program Communications Toolbox
PPCParamBlockPtr = ^PPCParamBlockRec;

PPCParamBlockRec =

RECORD

CASE Integer OF

0: (openParam: PPCOpenPBRec); {PPCOPen params}

1: (informParam: PPCInformPBRec); {PPCInform params}

2: (startParam: PPCStartPBRec); {PPCStart params}

3: (acceptParam: PPCAcceptPBRec); {PPCAccept params}

4: (rejectParam: PPCRejectPBRec); {PPCReject params}

5: (writeParam: PPCWritePBRec); {PPCWrite params}

6: (readParam: PPCReadPBRec); {PPCRead params}

7: (endParam: PPCEndPBRec); {PPCEnd params}

8: (closeParam: PPCClosePBRec); {PPCClose params}

9: (listPortsParam: IPCListPortsPBRec); {IPCListPorts params}

END;

PortInfoArrayPtr = ^PortInfoArray;

PortInfoArray = ARRAY[0..0] OF PortInfoRec;

PPCOpenPBPtr = ^PPCOpenPBRec;

PPCOpenPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a }

{ completion routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {PPC port identifier}

filler1: LongInt; {space holder}

serviceType: PPCServiceType; {real time only}

resFlag: SignedByte; {reserved field}

portName: PPCPortPtr; {name of port to be opened}

locationName: LocationNamePtr; {location of port to be }

{ opened}

networkVisible: Boolean; {port is visible for }

{ browsing}

nbpRegistered: Boolean; {location name registered }

{ on network}

END;
11-82 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
PPCInformPBPtr = ^PPCInformPBRec;

PPCInformPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {port identifier}

sessRefNum: PPCSessRefNum; {session identifier}

serviceType: PPCServiceType; {real time only}

autoAccept: Boolean; {automatic session }

{ acceptance}

portName: PPCPortPtr; {name of port that }

{ initiated a session}

locationName: LocationNamePtr; {location of port that }

{ initiated a session}

userName: StringPtr; {name of user that }

{ initiated a session}

userData: LongInt; {application-defined}

requestType: PPCSessionOrigin; {local or remote}

END;

PPCStartPBPtr = ^PPCStartPBRec;

PPCStartPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

portRefNum: PPCPortRefNum; {identifier for requested }

{ port}

sessRefNum: PPCSessRefNum; {session identifier}

serviceType: PPCServiceType; {real time only}
Summary of the PPC Toolbox 11-83

C H A P T E R 1 1

Program-to-Program Communications Toolbox
resFlag: SignedByte; {reserved field}

portName: PPCPortPtr; {name of port to be opened}

locationName: LocationNamePtr; {location of port to be }

{ opened}

rejectInfo: LongInt; {rejection of session}

userData: LongInt; {application-specific}

userRefNum: LongInt; {specifies an authenticated }

{ user}

END;

PPCAcceptPBPtr = ^PPCAcceptPBRec;

PPCAcceptPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

END;

PPCRejectPBPtr = ^PPCRejectPBRec;

PPCRejectPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

filler2: Integer; {space holder}

filler3: LongInt; {space holder}

filler4: LongInt; {space holder}
11-84 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
rejectInfo: LongInt; {rejection of session}

END;

PPCWritePBPtr = ^PPCWritePBRec;

PPCWritePBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

bufferLength: Size; {length of buffer to be }

{ written}

actualLength: Size; {actual size of data written}

bufferPtr: Ptr; {location of buffer to be }

{ written}

more: Boolean; {additional data to be }

{ written}

filler2: SignedByte; {space holder}

userData: LongInt; {application-specific}

blockCreator: OSType; {creator of block to be }

{ written}

blockType: OSType; {type of block to be written}

END;

PPCReadPBPtr = ^PPCReadPBRec;

PPCReadPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}
Summary of the PPC Toolbox 11-85

C H A P T E R 1 1

Program-to-Program Communications Toolbox
filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {session identifier}

bufferLength: Size; {length of buffer to be read}

actualLength: Size; {actual size of the data }

{ read}

bufferPtr: Ptr; {location of buffer to be }

{ read}

more: Boolean; {additional data to be read}

filler2: SignedByte; {space holder}

userData: LongInt; {application-specific}

blockCreator: OSType; {creator of block to be read}

blockType: OSType; {type of block to be read}

END;

PPCEndPBPtr = ^PPCEndPBRec;

PPCEndPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

sessRefNum: PPCSessRefNum; {identifier of session to }

{ be terminated}

END;

PPCClosePBPtr = ^PPCClosePBRec;

PPCClosePBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}
11-86 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
portRefNum: PPCPortRefNum; {identifier of port to }

{ be closed}

END;

IPCListPortsPBPtr = ^IPCListPortsPBRec;

IPCListPortsPBRec =

RECORD

qLink: Ptr; {private}

csCode: Integer; {private}

intUse: Integer; {private}

intUsePtr: Ptr; {private}

ioCompletion: PPCCompProcPtr; {address of a completion }

{ routine}

ioResult: OSErr; {completion of operation}

reserved: ARRAY[1..5] OF LongInt;

{private}

filler1: Integer; {space holder}

startIndex: Integer; {index to the port entry }

{ list}

requestCount: Integer; {number of entries to }

{ be returned}

actualCount: Integer; {actual number of port names}

portName: PPCPortPtr; {list of port names}

locationName: LocationNamePtr; {location of port names}

bufferPtr: PortInfoArrayPtr; {pointer to a buffer}

END;

PPC Toolbox Routines 11

Initializing the PPC Toolbox

FUNCTION PPCInit: OSErr;

Using the Program Linking Dialog Box

FUNCTION PPCBrowser (prompt: Str255; applListLabel: Str255;
defaultSpecified: Boolean;
VAR theLocation: LocationNameRec;
VAR thePortInfo: PortInfoRec;
portFilter: PPCFilterProcPtr;
theLocNBPType: Str32): OSErr;

Obtaining a List of Ports

FUNCTION IPCListPorts (pb: IPCListPortsPBPtr; async: Boolean): OSErr;
Summary of the PPC Toolbox 11-87

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Opening and Closing a Port

FUNCTION PPCOpen (pb: PPCOpenPBPtr; async: Boolean): OSErr;

FUNCTION PPCClose (pb: PPCClosePBPtr; async: Boolean): OSErr;

Starting and Ending a Session

FUNCTION PPCStart (pb: PPCStartPBPtr; async: Boolean): OSErr;

FUNCTION StartSecureSession (pb: PPCStartPBPtr; VAR userName: Str32;
useDefault: Boolean; allowGuest: Boolean;
VAR guestSelected: Boolean; prompt: Str255)
: OSErr;

FUNCTION PPCEnd (pb: PPCEndPBPtr; async: Boolean): OSErr;

Receiving, Accepting, and Rejecting a Session

FUNCTION PPCInform (pb: PPCInformPBPtr; async: Boolean): OSErr;

FUNCTION PPCAccept (pb: PPCAcceptPBPtr; async: Boolean): OSErr;

FUNCTION PPCReject (pb: PPCRejectPBPtr; async: Boolean): OSErr;

Reading and Writing Data

FUNCTION PPCRead (pb: PPCReadPBPtr; async: Boolean): OSErr;

FUNCTION PPCWrite (pb: PPCWritePBPtr; async: Boolean): OSErr;

Locating a Default User and Invalidating a User

FUNCTION GetDefaultUser (VAR userRef: LongInt; VAR userName: Str32)
: OSErr;

FUNCTION DeleteUserIdentity (userRef: LongInt): OSErr;

Application-Defined Routines 11

PROCEDURE MyCompletionRoutine
(pb: PPCParamBlockPtr);

FUNCTION MyPortFilter (locationName: LocationNameRec;
thePortInfo: PortInfoRec): Boolean;
11-88 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
C Summary 11

Constants 11

CONST

enum {

/*gestalt selectors*/

#define gestaltPPCToolboxAttr 'ppc ' /*PPC Toolbox attributes*/

gestaltPPCToolboxPresent = $0000, /*PPC Toolbox is present*/

gestaltPPCSupportsRealTime = $1000, /*real time only in system */

/* software version 7.0*/

gestaltPPCSupportsOutGoing = $0002, /*support of outgoing */

/* sessions across a network*/

gestaltPPCSupportsIncoming = $0001 /*user enabled program */

/* linking in Sharing Setup */

/* control panel*/

};

enum {

/*service type*/

ppcServiceRealTime = 1 /*real time only in System 7*/

};

enum {

/*look-up type*/

ppcNoLocation = 0, /*there is no PPCLocName*/

ppcNBPLocation = 1, /*use AppleTalk NBP*/

ppcNBPTypeLocation = 2 /*use just the NBP type, fill */

/* in the rest with default*/

};

enum {

/*port type*/

ppcByCreatorAndType = 1, /*port type is specified as */

/* standard Mac creator and type*/

ppcByString = 2 /*port type is in Pascal */

/* string format*/

};

enum {

/*session request type returned in the PPCInform function*/

ppcLocalOrigin = 1, /*session initiated on */

/* local computer*/

ppcRemoteOrigin = 2 /*session initiated on */

/* remote computer*/

};
Summary of the PPC Toolbox 11-89

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Data Types 11

typedef unsigned char PPCServiceType; /*service type*/

typedef short PPCLocationKind; /*look-up type*/

typedef short PPCPortKinds; /*port type*/

typedef unsigned char PPCSessionOrigin; /*local or remote*/

typedef short PPCPortRefNum; /*port reference number*/

typedef long PPCSessRefNum; /*session reference number*/

struct PPCPortRec {

ScriptCode nameScript; /*script identifier*/

Str32 name; /*port name shown in program */

/* linking dialog box*/

PPCPortKinds portKindSelector; /*general category of */

/* application*/

union

Str32 portTypeStr; /*32 characters*/

struct

OSType creator; /*4-character creator and */

OSType type; /* type*/

} port;

} u;

};

typedef struct PPCPortRec PPCPortRec;

typedef PPCPortRec *PPCPortPtr;

struct LocationNameRec {

PPCLocationKind locationKindSelector; /*which variant*/

union {

EntityName nbpEntity; /*NBP name entity*/

Str32 nbpType; /*just the NBP type string */

/* for the PPCOpen function*/

} u;

};

typedef struct LocationNameRec LocationNameRec;

typedef LocationNameRec *LocationNamePtr;

struct PortInfoRec {

unsigned char filler1; /*space holder*/

Boolean authRequired; /*authentication required*/

PPCPortRec name; /*port name*/

};
11-90 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
typedef struct PortInfoRec PortInfoRec;

typedef PortInfoRec *PortInfoPtr;

typedef PortInfoRec *PortInfoArrayPtr;

typedef pascal Boolean (*PPCFilterProcPtr) (LocationNamePtr, PortInfoPtr);

/*procedures you need to write*/

/*ex: void MyCompletionRoutine(PPCParamBlkPtr pb)*/

/*ex: pascal Boolean MyPortFilter(LocationNamePtr, PortInfoPtr)*/

typedef ProcPtr PPCCompProcPtr;

#define PPCHeader \

Ptr qLink; /*private*/

unsigned short csCode; /*private*/

unsigned short intUse; /*private*/

Ptr intUsePtr; /*private*/

PPCCompProcPtr ioCompletion; /*address of a */

/* completion routine*/

OSErr ioResult; /*completion of operation*/

unsigned long Reserved[5]; /*private*/

struct PPCOpenPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*PPC port identifier*/

long filler1; /*space holder*/

PPCServiceType serviceType; /*real time only*/

unsigned char resFlag; /*reserved field*/

PPCPortPtr portName; /*name of port to be opened*/

LocationNamePtr locationName; /*location of port to be */

/* opened*/

Boolean networkVisible; /*port is visible for */

/* browsing*/

Boolean nbpRegistered; /*location name registered */

/* on network*/

};

typedef struct PPCOpenPBRec PPCOpenPBRec;

typedef PPCOpenPBRec *PPCOpenPBPtr;

struct PPCInformPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*port identifier*/

PPCSessRefNum sessRefNum; /*session identifier*/

PPCServiceType serviceType; /*real time only*/
Summary of the PPC Toolbox 11-91

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Boolean autoAccept; /*automatic session acceptance*/

PPCPortPtr portName; /*name of port that */

/* initiated a session*/

LocationNamePtr locationName; /*location of port that */

/* initiated a session*/

StringPtr userName; /*name of user that */

/* initiated a session*/

unsigned long userData; /*application-defined*/

PPCSessionOrigin requestType; /*local or remote*/

};

typdef struct PPCInformPBRec PPCInformPBPtr;

struct PPCStartPBRec {

PPCHeader

PPCPortRefNum portRefNum; /*identifier for requested */

/* port*/

PPCSessRefNum sessRefNum; /*session identifier*/

PPCServiceType serviceType; /*real time only*/

unsigned char resFlag; /*reserved field*/

PPCPortPtr portName; /*name of port to be opened*/

LocationNamePtr locationName; /*location of port to be opened*/

unsigned long rejectInfo; /*rejection of session*/

unsigned long userData; /*application-specific*/

unsigned long userRefNum; /*specifies an authenticated user*/

};

typedef struct PPCStartPBRec PPCStartPBRec;

typedef PPCStartPBRec *PPCStartPBPtr;

struct PPCAcceptPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

};

typedef struct PPCAcceptPBRec PPCAcceptPBRec;

typedef PPCAcceptPBRec *PPCAcceptPBPtr;

struct PPCRejectPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/
11-92 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
short filler2; /*space holder*/

long filler3; /*space holder*/

long filler4; /*space holder*/

unsigned long rejectInfo; /*rejection of session*/

};

typedef struct PPCRejectPBRec PPCRejectPBRec;

typedef PPCRejectPBRec *PPCRejectPBPtr;

struct PPCWritePBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

Size bufferLength; /*length of buffer to be written*/

Size actualLength; /*actual size of data written*/

Ptr bufferPtr; /*location of buffer to be */

/* written*/

Boolean more; /*additional data to be written*/

unsigned char filler2; /*space holder*/

unsigned long userData; /*application-specific*/

OSType blockCreator; /*creator of block to be written*/

OSType blockType; /*type of block to be written*/

};

typedef struct PPCWritePBRec PPCWritePBRec;

typedef PPCWritePBRec *PPCWritePBPtr;

struct PPCReadPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*session identifier*/

Size bufferLength; /*length of buffer to be read*/

Size actualLength; /*actual size of the data read*/

Ptr bufferPtr; /*location of buffer to be read*/

Boolean more; /*additional data to be read*/

unsigned char filler2; /*space holder*/

unsigned long userData; /*application-specific*/

OSType blockCreator; /*creator of block to be read*/

OSType blockType; /*type of block to be read*/

};

typedef struct PPCReadPBRec PPCReadPBRec;

typdef PPCReadPBRec *PPCReadPBPtr;
Summary of the PPC Toolbox 11-93

C H A P T E R 1 1

Program-to-Program Communications Toolbox
struct PPCEndPBRec {

PPCHeader

short filler1; /*space holder*/

PPCSessRefNum sessRefNum; /*identifier of session to */

/* be terminated*/

};

typedef struct PPCEndPBRec PPCEndPBRec;

typedef PPCEndPBRec *PPCEndPBPtr;

struct PPCClosePBRec {

PPCHeader

PPCPortRefNum portRefNum; /*identifier of port to */

/* be closed*/

};

typedef struct PPCClosePBRec PPCClosePBRec;

typedef PPCClosePBRec *PPCClosePBPtr;

struct IPCListPortsPBRec {

PPCHeader

short filler1; /*space holder*/

unsigned short startIndex; /*index to the port entry list*/

unsigned short requestCount; /*number of entries to */

/* be returned*/

unsigned short actualCount; /*actual number of port names*/

PPCPortPtr portName; /*list of port names*/

LocationNamePtr locationName; /*location of port names*/

PortInfoArrayPtr bufferPtr; /*pointer to a buffer*/

};

typedef struct IPCListPortsPBRec IPCListPortsPBRec;

typedef IPCListPortsPBRec *IPCListPortsPBPtr;

union PPCParamBlockRec {

PPCOpenPBRec openParam; /*PPCOpen params*/

PPCInformPBRec informParam; /*PPCInform params*/

PPCStartPBRec startParam; /*PPCStart params*/

PPCAcceptPBRec acceptParam; /*PPCAccept params*/

PPCRejectPBRec rejectParam; /*PPCReject params*/

PPCWritePBRec writeParam; /*PPCWrite params*/

PPCReadPBRec readParam; /*PPCRead params*/

PPCEndPBRec endParam; /*PPCEnd params*/

PPCClosePBRec closeParam; /*PPCClose params*/
11-94 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
IPCListPortsPBRec listPortsParam; /*IPCListPorts params*/

};

typdef union PPCParamBlockRec PPCParamBlockRec;

typdef PPCParamBlockRec *PPCParamBlockPtr;

PPC Toolbox Routines 11

Initializing the PPC Toolbox

pascal OSErr PPCInit (void);

Using the Program Linking Dialog Box

pascal OSErr PPCBrowser (ConstStr255Param prompt,
ConstStr255Param applListLabel,
Boolean defaultSpecified,
LocationNameRec *theLocation,
PortInfoRec *thePortInfo,
PPCFilterProcPtr portFilter,
ConstStr32Param theLocNBPType);

Obtaining a List of Ports

pascal OSErr IPCListPorts (IPCListPortsPBPtr pb, Boolean async);

Opening and Closing a Port

pascal OSErr PPCOpen (PPCOpenPBPtr pb, Boolean async);

pascal OSErr PPCClose (PPCClosePBPtr pb, Boolean async);

Starting and Ending a Session

pascal OSErr PPCStart (PPCStartPBPtr pb, Boolean async);

pascal OSErr StartSecureSession
(PPCStartPBPtr pb, Str32 userName,
Boolean useDefault, Boolean allowGuest,
Boolean *guestSelected,
ConstStr255Param prompt);

pascal OSErr PPCEnd (PPCEndPBPtr pb, Boolean async);

Receiving, Accepting, and Rejecting a Session

pascal OSErr PPCInform (PPCInformPBPtr pb, Boolean async);

pascal OSErr PPCAccept (PPCAcceptPBPtr pb, Boolean async);

pascal OSErr PPCReject (PPCRejectPBPtr pb, Boolean async);
Summary of the PPC Toolbox 11-95

C H A P T E R 1 1

Program-to-Program Communications Toolbox
Reading and Writing Data

pascal OSErr PPCRead (PPCReadPBPtr pb, Boolean async);

pascal OSErr PPCWrite (PPCWritePBPtr pb, Boolean async);

Locating a Default User and Invalidating a User

pascal OSErr GetDefaultUser (unsigned long *userRef, Str32 userName);

pascal OSErr DeleteUserIdentity
(unsigned long userRef);

Application-Defined Routines 11

void MyCompletionRoutine (PPCParamBlockPtr pb);

pascal Boolean MyPortFilter (LocationNameRec locationName,
PortInfoRec thePortInfo);

Assembly-Language Summary 11

Trap Macros 11

Trap Macros Requiring Routine Selectors

_Pack9

_PPC

Selector Routine

$0D00 PPCBrowser

Selector Routine

$0000 PPCInit

$0001 PPCOpen

$0002 PPCStart

$0003 PPCInform

$0004 PPCAccept

$0005 PPCReject

$0006 PPCWrite

$0007 PPCRead

$0008 PPCEnd

$0009 PPCClose
11-96 Summary of the PPC Toolbox

C H A P T E R 1 1

Program-to-Program Communications Toolbox

11
P

rogram
-to-P

rogram
 C

om
m

unications Toolbox
Reading and Writing Data

pascal OSErr PPCRead (PPCReadPBPtr pb, Boolean async);

pascal OSErr PPCWrite (PPCWritePBPtr pb, Boolean async);

Locating a Default User and Invalidating a User

pascal OSErr GetDefaultUser (unsigned long *userRef, Str32 userName);

pascal OSErr DeleteUserIdentity
(unsigned long userRef);

Application-Defined Routines 11

void MyCompletionRoutine (PPCParamBlockPtr pb);

pascal Boolean MyPortFilter (LocationNameRec locationName,
PortInfoRec thePortInfo);

Assembly-Language Summary 11

Trap Macros 11

Trap Macros Requiring Routine Selectors

_Pack9

_PPC

Selecto
r Routine

$0D00 PPCBrowser

Selector Routine

$0000 PPCInit

$0001 PPCOpen

$0002 PPCStart

$0003 PPCInform

$0004 PPCAccept

$0005 PPCReject

$0006 PPCWrite

$0007 PPCRead

$0008 PPCEnd

$0009 PPCClose
Summary of the PPC Toolbox 11-97

Result Codes 11

$000A IPCListPorts

$000C DeleteUserIdentity

$000D GetDefaultUser

$000E StartSecureSession

noErr 0 No error
paramErr –50 Illegal parameter
memFullErr –108 Not enough memory to load PPCBrowser package
userCanceledErr –128 User decided not to conduct a session
notInitErr –900 PPC Toolbox has not been initialized yet
nameTypeErr –902 Invalid or inappropriate locationKindSelector in location

name
noPortErr –903 Unable to open port or bad port reference number
noGlobalsErr –904 System unable to allocate memory, critical error
localOnlyErr –905 Network activity is currently disabled
destPortErr –906 Port does not exist at destination
sessTableErr –907 PPC Toolbox is unable to create a session
noSessionErr –908 Invalid session reference number
badReqErr –909 Bad parameter or invalid state for this operation
portNameExistsErr –910 Another port is already open with this name
noUserNameErr –911 User name unknown on destination machine
userRejectErr –912 Destination rejected the session request
noResponseErr –915 Unable to contact application
portClosedErr –916 The port was closed
sessClosedErr –917 The session has closed
badPortNameErr –919 PPC port record is invalid
noDefaultUserErr –922 User has not specified owner name in Sharing Setup control

panel
notLoggedInErr –923 Default user reference number does not yet exist
noUserRefErr –924 Unable to create a new user reference number
networkErr –925 An error has occurred in the network
noInformErr –926 PPCStart failed because target application did not have an

inform pending
authFailErr –927 User’s password is wrong
noUserRecErr –928 Invalid user reference number
badServiceMethodErr –930 Service method is other than ppcServiceRealTime
badLocNameErr –931 Location name is invalid
guestNotAllowedErr –932 Destination port requires authentication
nbpDuplicate –1027 Location name represents a duplicate on this computer

Selector Routine

C H A P T E R 1 2

12

Figure 12-0
Listing 12-0
Table 11-0

Contents

12 Data Access Manager

About the Data Access Manager 12-5
The High-Level Interface 12-7

Sending a Query Through the High-Level Interface 12-8
Retrieving Data Through the High-Level Interface 12-9

The Low-Level Interface 12-9
Sending a Query Through the Low-Level Interface 12-10
Retrieving Data Through the Low-Level Interface 12-11

Comparison of the High-Level and Low-Level Interfaces 12-11
Using the Data Access Manager 12-12

Executing Routines Asynchronously 12-12
General Guidelines for the User Interface 12-13

Keep the User in Control 12-13
Provide Feedback to the User 12-13

Using the High-Level Interface 12-14
Writing a Status Routine for High-Level Functions 12-22
Using the Low-Level Interface 12-28
Getting Information About Sessions in Progress 12-36
Processing Query Results 12-37

Getting Query Results 12-37
Converting Query Results to Text 12-43

Creating a Query Document 12-47
User Interface Guidelines for Query Documents 12-47
Contents of a Query Document 12-49
Query Records and Query Resources 12-52
Writing a Query Definition Function 12-52

Data Access Manager Reference 12-55
Data Structures 12-55

The Asynchronous Parameter Block 12-56
The Query Record 12-57
The Results Record 12-59
Contents 12-1

C H A P T E R 1 2

Data Access Manager Routines 12-60
Initializing the Data Access Manager 12-61
High-Level Interface: Handling Query Documents 12-62
High-Level Interface: Handling Query Results 12-66
Low-Level Interface: Controlling the Session 12-69
Low-Level Interface: Sending and Executing Queries 12-77
Low-Level Interface: Retrieving Results 12-83
Installing and Removing Result Handlers 12-87

Application-Defined Routines 12-90
Resources 12-91

The Query Resource 12-91
The Query String Resource 12-92
The Query Definition Function Resource 12-93

Summary of the Data Access Manager 12-94
Pascal Summary 12-94

Constants 12-94
Data Types 12-95
Data Access Manager Routines 12-97
Application-Defined Routines 12-99

C Summary 12-99
Constants 12-99
Data Types 12-101
Data Access Manager Routines 12-102
Application-Defined Routines 12-104

Assembly-Language Summary 12-104
Trap Macros 12-104

Result Codes 12-105
12-2 Contents

C H A P T E R 1 2

12

D
ata A

ccess M
anager

Data Access Manager 12

This chapter describes how your application can use the Data Access Manager to gain
access to data in another application. It also tells you how to provide templates to be
used for data transactions.

The Data Access Manager is available in System 7 and later versions. Use the
Gestalt Manager to determine whether the Data Access Manager is present. To
determine whether the Data Access Manager is available, use the Gestalt function
with the gestaltDBAccessMgrAttr environmental selector. If the Data Access
Manager is not available, the Gestalt function returns an error. For more information
on the Gestalt Manager, see Inside Macintosh: Operating System Utilities.

The Data Access Manager allows your application to communicate with a database or
other data source even if you do not know anything about databases in general or the
specific data source with which the users of your software will be communicating. All
your application needs are a few high-level Data Access Manager functions and access to
a file called a query document. The query document, provided by another application,
contains commands and data in the format appropriate for the database or other data
source. The string of commands and data sent to the data source are referred to as a
query. Note that a query does not necessarily extract data from a data source; it might
only send data or commands to a database or other application.

The Data Access Manager makes it easy for your application to communicate with data
sources. You need only add a menu item that opens a query document, using a few
standard Data Access Manager functions to implement the menu selection. Users of your
application can then access a database or other data source whenever they have the
appropriate query documents. A user of a word-processing program might use this
feature, for example, to obtain access to archived material, dictionaries in a variety of
languages, or a database of famous quotations. A user of a spreadsheet program might
use a query document to obtain tax records, actuarial tables, or other data. A user of an
art or computer-aided design program might download archived illustrations or
designs. And for the user of a database application for the Macintosh computer, the
Data Access Manager can provide the resources and power of a mainframe database.

The Data Access Manager also provides a low-level interface for use by applications that
are capable of creating their own queries and that therefore do not have to use query
documents.

If your application uses only the high-level interface and relies on query documents
created by other programs, then all the routines you need to know are described in this
chapter. However, if you want to create a query document or an application that uses the
low-level interface, then you must also be familiar with the command language used by
the data server.
12-3

C H A P T E R 1 2

Data Access Manager

You need the information in this chapter if you want your application to access data in
other applications or if you want to write a query document.

Note
The Data Access Manager makes it easy for your application to
communicate with a database running on a remote computer, and this
chapter generally assumes that you are using it for that purpose.
However, there is no reason why the database could not be local—that
is, running on the same computer as your application. To implement
such a system, you would have to have a database that runs on a
Macintosh computer and that has a command-language interface, plus a
database extension that can use that command language. In most cases,
it would be much simpler to run the database as a separate application
and use the Clipboard to transfer data into and out of the database. ◆

Note also that the program containing the data need not be a database. With the
appropriate database extension, your application could read data from a spreadsheet,
for example, or any other program that stores data.

Apple Computer, Inc. provides a database extension that uses Data Access Language
(DAL). A database extension provides an interface between the Data Access
Manager and the database or other program that contains the data. If you want
to write an application that uses the low-level interface to communicate with a
Data Access Language server, or if you want to create a query document that
uses Data Access Language, you must be familiar with that language. Data Access
Language Programmer’s Reference, available from APDA, fully describes this language.
12-4

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

About the Data Access Manager 12

The Data Access Manager constitutes a standard interface that allows Macintosh
applications to communicate with any number of databases or other data sources
through a variety of data servers. As used in this chapter, a data server is the application
that acts as an interface between the database extension on the Macintosh computer and
the data source, which can be on the Macintosh computer or on a remote host computer.
A data server can be a database server program, such as a Data Access Language server,
which can provide an interface to a variety of different databases, or it can be the data
source itself, such as a Macintosh application.

The Data Access Manager has two application interfaces: the high-level interface and the
low-level interface. If the proper database extension and query documents are available
in the user’s system, you can use the high-level interface to communicate with a data
source without having any knowledge of the command language that the data server
uses. Even if you use the low-level interface, your application can isolate the user from
any specific knowledge of the data source or the data server’s command language.

This section presents an overview and description of the Data Access Manager, including
diagrams and conceptual descriptions of the components and processes involved in
using the high-level and low-level interfaces. Next, “Using the Data Access Manager”
beginning on page 12-12 includes descriptions, flowcharts, and program fragments that
provide a step-by-step guide to the use of the high-level and low-level interfaces.
“Creating a Query Document” beginning on page 12-47 describes the contents and
function of a query document. You do not have to read this section unless you are
writing an application that creates query documents, although if you are using the
high-level interface you might be interested to know just how a query document works.

Figure 12-1 illustrates connections between Macintosh applications and a database on a
remote computer. The arrows in Figure 12-1 show the flow of information, not the paths
of commands or control signals. See Figure 12-2 on page 12-8 and Figure 12-3 on
page 12-10 for the sequences involved in sending and retrieving data.
About the Data Access Manager 12-5

C H A P T E R 1 2

Data Access Manager

Figure 12-1 A connection with a database

Database-
naive

application

Commands;
Query

Query
results

Data Access
Language server

Remote computer

Macintosh computer

Database-
aware

application

Database Database

Data Access Language
database extension

Other data
server

High-level interface

Data Access Manager

Low-level interface

Query
document

QueryCommands

Query
results

Query Query
results

Query Query
results

Other database
extensions
12-6 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

The High-Level Interface 12
As Figure 12-1 on page 12-6 shows, a database-naive application—that is, one that
cannot prepare a query for a specific data server—uses the Data Access Manager’s
high-level routines to communicate with a data server. Because the application cannot
prepare a query, it must use a query document to provide one. A query document can
contain code, called a query definition function, that prompts the user for information
and modifies the query before the Data Access Manager sends it to the data server. The
exact format of a query definition function is described in “Writing a Query Definition
Function” on page 12-52.

Note
The term query refers to any string of commands (and associated data)
that can be executed by a data server. A query can send data to a data
source, retrieve data from a data source, or reorganize the data in a
data source. The Data Access Manager does not interpret or execute the
query; it only implements the interface (sometimes called the application
program interface, or API) that allows you to send the query to the
data server. ◆

When you want to use the high-level routines to execute a query on a data server, you
first select a query document or allow the user to select one. You use high-level
routines to

■ get the query from the query document

■ execute the query definition function to modify the query

■ send the query to the data server

■ retrieve the results from any query that asks for information from the data source

■ convert to text the results returned by a query

For example, suppose a company that makes rubber ducks has a database on a
minicomputer that contains a mailing list of all its customers. The database has a
Data Access Language interface, and the company’s marketing manager has a
Macintosh computer with an application that uses high-level Data Access Manager
routines to communicate with the remote database server. As Figure 12-2 illustrates, the
marketing manager must also have a query document, created by another application,
that she can use to get an address from the mailing list on the remote minicomputer. The
query document can be as complex or as simple as its creator cares to make it; in this
example, the query document is designed specifically to obtain addresses from the
rubber duck mailing list. The marketing manager might have several other query
documents available as well: one to extract a mailing list for a specific zip code, one to
list all of the customers who have made a purchase within the last year, and so on.
About the Data Access Manager 12-7

C H A P T E R 1 2

Data Access Manager

Notice that once the query document has sent the query to the data server, the Data
Access Manager handles the data retrieval. Although query documents and high-level
Data Access Manager routines make it very easy for you to request data from a data
source, there is no way for a query document to verify that data sent to a data source has
been successfully received. For that reason, it is recommended that you use the low-level
interface to send data to a data source or update data in a data source.

Figure 12-2 Using high-level Data Access Manager routines

Sending a Query Through the High-Level Interface 12

To obtain a list of addresses from the mailing list, the marketing manager chooses the
Open Query menu command from the File menu in her application. From the list of
query documents displayed, she chooses one named Rubber Duck Address List.

Displays
data

User wants to obtain
a list of addresses
from mailing list

Query
document

Mailing list
database

Database server

Translates
data

Checks status of
server periodically
until data is available

Sends
query

Data
Access

ManagerDatabase-
naive

application

Query
document

File Edit Tools Colors ?

File Edit Tools Colors ?
12-8 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

The application calls the Data Access Manager function DBGetNewQuery, specifying the
resource ID of the query ('qrsc') resource in the Rubber Duck Address List query
document. The DBGetNewQuery function creates a query record and a partial query
from the information in the query resource. The partial query specifies the type of data
(character strings) and the columns from which the data items should come (the name
and address columns). The partial query lacks some specific data (the rows that should
be searched) that is needed to complete the search criteria.

Next, the application calls the DBStartQuery function, which in turn calls the query
definition function in the query document. The query definition function displays a
dialog box that asks for the purchase dates to search. When the marketing manager
types in the requested information and clicks OK, the query definition function adds the
data to the partial query in memory. The query is now ready to be executed.

Next, the DBStartQuery function sends the query to the Data Access Language
database extension, and the database extension sends the query over a communications
network to the remote Data Access Language server. Finally, the DBStartQuery
function commands the Data Access Language server to execute the query.

Retrieving Data Through the High-Level Interface 12

When the application is ready to retrieve the data that it requested from the database, the
application calls the DBGetQueryResults function. This function determines when the
data is available, retrieves it from the data server, and places the data in a record in
memory. The application can then call the DBResultsToText function, which uses
routines called result handlers to convert each data item to a character string. The
DBResultsToText function passes to the application a handle to the converted data.
The application then displays the list of customers for the marketing manager.

Data items and result handlers are described in “Processing Query Results” beginning
on page 12-37.

The Low-Level Interface 12
A database-aware application communicates through the low-level interface of the
Data Access Manager. You can use the low-level interface to

■ initiate communication with the data server, sending the user name, password, and
other information to the data server

■ send a query to the data server

■ execute the query that you have sent to the data server

■ halt execution of the query

■ return status and errors from the data server

■ send data to the data source

■ retrieve data from the data source
About the Data Access Manager 12-9

C H A P T E R 1 2

Data Access Manager

For example, suppose once again that a company that makes rubber ducks has a mailing
list of all of its customers in a database on a minicomputer, and the database has a Data
Access Language interface. This time, suppose the Macintosh application the marketing
manager is using calls low-level Data Access Manager routines to communicate with the
remote database server. Figure 12-3 illustrates the use of the low-level interface. Notice
that if you use the high-level interface (Figure 12-2), the query document and the
Data Access Manager prepare the query, send the query, retrieve the query results, and
translate the data for you. If you use the low-level interface, however, you must perform
these functions yourself.

Figure 12-3 Using low-level Data Access Manager routines

Sending a Query Through the Low-Level Interface 12

To update the mailing list with a new address for customer Marvin M., the marketing
manager enters the new address into her application. The application prepares a Data
Access Language statement (a query) that specifies the type of data (a character string),
the column into which the data item should go (the address column), the row to be
modified (the Marvin M. row), plus the actual data the application wishes to send
(Marvin M.’s address). The application then passes this query to the Data Access

Application checks status
of server periodically
until data is available

Data
Access

Manager

Displays
data

Mailing list
database

Database server

File Edit Tools Colors ?

Database-
aware

application

Sends
query

Starts
session

Sends
query

Starts
session

File Edit Tools Colors ?

User wants to obtain
a list of addresses
from mailing list
12-10 About the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

Manager using the low-level interface. (The application can send the query in several
pieces or all at once.) The Data Access Manager sends the query to the Data Access
Language database extension in the Macintosh computer, and the database extension
sends the query to the remote Data Access Language server.

Retrieving Data Through the Low-Level Interface 12

Once the query begins executing, the application can periodically check with the data
server to determine whether the data is ready (Figure 12-3). When the data is available,
the application must retrieve it one data item at a time. An application that uses the
low-level interface must determine the data type of each data item, convert the data into
a format that is meaningful to the user, and store the data in memory allocated by the
application. Data types are described in “Getting Query Results” beginning on
page 12-37.

Note that neither the Data Access Manager nor the DAL database extension reads,
modifies, or acts on the query that an application sends to the data server. The
data server does execute the query, causing the data source to accept new data or
prepare data for the application. To use the low-level interface to communicate with a
data server, your application must be capable of preparing a query that can be executed
by the data server.

Comparison of the High-Level and Low-Level Interfaces 12
An application that uses the low-level interface to send a query to the data server must
prepare the query, initiate communication with the data server, send the query to the
data server, and execute the query. If it requested data to be returned, the application
must determine when the data is ready, and retrieve the data one item at a time. Each
step in this process requires calling one or more low-level routines.

The high-level interface between the Data Access Manager and the application, in
contrast, consists of only a few routines, each of which might call several low-level
routines to accomplish its tasks. For example, a single high-level function can call the
query definition function, initiate communication with the data server, send the query to
the data server, and execute the query.

Because the high-level interface is very easy to use and requires no specific knowledge of
the data source or database server, you can add high-level data access to your
application very easily. Then, whenever someone provides a query document for use
with a specific data server, the user can take advantage of the data access capability
included in your application. However, because there is no way for a query document to
verify that data sent to a data source has been successfully received, it is recommended
that you use the low-level interface to send data to a data source or update data in a data
source.

Although in concept the low-level routines and high-level routines serve separate
purposes, there is nothing to prevent you from using calls to both in a single application.
For example, you might use low-level routines to send a query to a data server and
high-level routines to read the results and convert them to text.
About the Data Access Manager 12-11

C H A P T E R 1 2

Data Access Manager

Using the Data Access Manager 12

There are at least three different ways in which you can use the Data Access Manager to
communicate with a data source. You can

■ use low-level interface routines to send queries and retrieve data from the data source.
In this case, your application must be capable of preparing a query in a language
appropriate for the data server.

■ use high-level interface routines to send queries and retrieve data from the data
source. In this case, you must have one or more query documents provided by
another application.

■ create your own query documents and use high-level interface routines to send
queries and retrieve data from the data source. In this case, your application must be
capable of preparing a query, but it can use the same query repeatedly once it has
been prepared.

This section describes how to use the high-level and low-level interfaces to the Data
Access Manager to send queries to a data server. This section also describes how to call
Data Access Manager functions asynchronously, how to determine the status of the
high-level functions at various points in their execution (and cancel execution if you so
desire), how to obtain information about Data Access Manager sessions that are in
progress, and how to retrieve query results and convert them to text.

Executing Routines Asynchronously 12
All of the Data Access Manager low-level routines and some of the high-level routines
can execute asynchronously—that is, the routine returns control to your application
before the routine has completed execution. Your application must call the Event
Manager’s WaitNextEvent function periodically to allow an asynchronous routine to
complete execution.

Note
The database extension is responsible for implementing asynchronous
execution of Data Access Manager routines. For example, if you call the
DBSend function to send a query to a data server, and the database
extension calls a device driver, the database extension can return control
to your application as soon as the device driver has placed its routine in
the driver input/output (I/O) queue. If you attempt to execute a routine
asynchronously and the database extension that the user has selected
does not support asynchronous execution, the routine returns a result
code of rcDBAsyncNotSupp and terminates execution. ◆

All Data Access Manager routines that can execute asynchronously take as a parameter a
pointer to a parameter block known as the asynchronous parameter block. If the value of
this pointer is NIL, the function is executed synchronously—that is, the routine does not
return control to your application until execution is complete.
12-12 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12

D
ata A

ccess M
anager

General Guidelines for the User Interface 12
When you use the Data Access Manager to provide data access, you should keep two
important principles in mind: keep the user in control, and provide feedback to the user.

Keep the User in Control 12

When designing a data access feature or application, keep in mind that the user should
have as much access to the Macintosh computer’s abilities as possible. Design your
application so that most of the data access process happens in the background. Call the
Data Access Manager asynchronously whenever the database extension you are using
supports asynchronous calls. Because data retrieval queries can take minutes or even
hours to complete, they should always run in the background.

After issuing a query, return control of the computer to users so that they may work on
other tasks or switch to other applications while the query runs. Whenever a background
task requires the user’s attention, follow the suggestions in Macintosh Human Interface
Guidelines regarding user notification. A background task should never take control from
the user by posting an alert box in front of the active application’s windows. Any
message that you post should identify the query that requires attention. For example, an
alert box might display the message “The query Get Employee Information was canceled
because the connection was unexpectedly broken.”

If your application allows more than one simultaneous connection to data sources or
allows more than one query document to run, provide a modeless window that lists the
open connections and queries, displays the status of each, and allows the user to cancel
them if necessary.

Allow the user to limit the amount of disk space that must remain free after any
transaction. For example, a user may wish to specify that 1 MB of space always be free.
Cancel any transaction that would exceed the user’s limit and notify the user.

Provide Feedback to the User 12

Keep the user informed about status, progress, and error conditions, and allow the user
to cancel an interaction whenever possible. Inform the user before the application
becomes modal and the computer becomes unavailable. Use the spinning beach ball
cursor or the animated wristwatch cursor to indicate a process that takes several seconds
to complete. Use a dialog box to indicate any process that lasts longer than a few
seconds. For example, connecting to a remote database could take a couple of minutes.
In this case include a Cancel button in the dialog box so that the user can cancel the
operation. When possible, display a progress indicator to show how long a process lasts.
Warn the user before doing anything potentially dangerous or irreversible, such as
deleting all of a user’s data files to replace them with data retrieved from a data source.

When a data retrieval query terminates prematurely, make the retrieved data available to
the user but warn the user that it is incomplete. The user can then evaluate the partial
data before deciding whether to run the query again.
Using the Data Access Manager 12-13

C H A P T E R 1 2

Data Access Manager

Using the High-Level Interface 12
Use the high-level interface to the Data Access Manager if you want to use a query
document to do the work of communicating with a data source. You can use the
high-level interface to open a query document, execute the query definition function in
the query document, establish communication (initiate a session) with a data server,
send the query to the data server, execute the query, retrieve any data requested by the
query, and convert the retrieved data to text. Although two or three high-level routines
accomplish most of these tasks, you may need to call a few low-level routines as well to
control a session with a data server.

Applications that implement this type of data access must provide user control and
feedback as described in “General Guidelines for the User Interface” on page 12-13. In
addition, you should include an Open Query command in the File menu. The Open
Query command is equivalent to the Open (file) command in meaning. When the user
chooses this command, display an open file dialog box filtered to show only query
documents (file type 'qery'). The user can then select the desired query document. The
query document contains the query to be sent to the data source. Depending on the type
of query, the data source could receive information, send back information, report the
status of the data source, or perform some other task.

Figure 12-4 is a flowchart of a typical session using the high-level interface.
As Figure 12-4 illustrates, you must follow this procedure to use the high-level interface:

1. Call the InitDBPack function to initialize the Data Access Manager.

2. Select the query document that you want to use and determine the resource ID of the
'qrsc' resource in that query document. You can use any method you like to select
the query document. One possibility is to use the StandardGetFile procedure to let
the user select the query document. A query document should contain only one
'qrsc' resource; you can then use the Resource Manager to determine the
resource ID of the 'qrsc' resource in the document that the user selected. For
further information, see the description of the StandardGetFile procedure in
the chapter “Standard File Package” in Inside Macintosh: Files and the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

3. Call the DBGetNewQuery function. The DBGetNewQuery function creates in memory
a data structure called a query record from the 'qrsc' resource that you specify.

4. Call the DBStartQuery function specifying the handle to the query record that you
created with the DBGetNewQuery function (step 3).
You should also provide the DBStartQuery function with a handle to your status
routine. A status routine is a routine that you provide to update windows, check the
results of the low-level calls made by the DBStartQuery and DBGetQueryResults
functions, and cancel execution of these functions when you consider it appropriate to
do so.
12-14 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Figure 12-4 A flowchart of a session using the high-level interface

InitDBPack

Yes

Yes

Yes

No

Yes

Yes

No

No

Quit

DBInit

DBGetQueryResults

DBGetNewQuery

DBStartQuery

DBResultsToText

DBDisposeQuery

DBEnd

Convert
data to
text?

Let Data
Access Manager

initiate
communication

for you?

Requested
data?

Use same
query record

again?

Use new
query

document?

Open
another
session?

Yes

No

No

No
Using the Data Access Manager 12-15

C H A P T E R 1 2

Data Access Manager
The DBStartQuery function calls the query definition function (if any) referred to by
the query record. The query definition function can prompt the user for information
and modify the query record.
After the query definition function has completed execution, the DBStartQuery
function calls your status routine so that you can update your windows if necessary.
The DBStartQuery function then checks whether communication has been
established with the data server. If not, it calls your status routine so that you can
display a status dialog box and then calls the DBInit function to establish
communication (initiate a session) with the data server. The DBStartQuery function
obtains the values it needs for the DBInit function parameters from the query record.
When the DBInit function completes execution, the DBStartQuery function calls
your status routine again.
The DBInit function returns an identification number, called a session ID. This
session ID is unique; no other current session, for any database extension, has the
same session ID. You must specify the session ID any time you want to send data to or
retrieve data from this session. If you prefer, you can use the DBInit function to
establish communication before you call the DBStartQuery function. In that case,
you must specify the session ID as an input parameter to the DBStartQuery
function. See “Using the Low-Level Interface” beginning on page 12-28 for more
information on using the DBInit function.
Once communication has been established, the DBStartQuery function calls the
DBSend function to send the data server the query specified by the query record.
When the DBSend function has completed execution, the DBStartQuery function
calls your status routine. Finally, the DBStartQuery function uses the DBExec
function to execute the query. The DBStartQuery function calls your status routine
after the DBExec function has completed execution (that is, the query has started
executing and the DBExec function has returned control to the DBStartQuery
function) and again just before the DBStartQuery function completes execution.

5. If you requested data and want to know when the data is available, but do not want
to retrieve the data immediately, you can call the DBState function. This function
tells you when the data server has finished executing the query, but it does not
retrieve the data. If you requested data and want to retrieve it as soon as it is
available, you do not have to call the DBState function; go to step 6 instead.
If you did not request data, you can use the DBState function to determine the status
of the query. When the data server has finished executing the query, skip to step 8.

6. Call the DBGetQueryResults function. If the query has not finished executing, this
function returns the rcDBExec result code. If the query has finished executing, the
DBGetQueryResults function calls the DBGetItem function repeatedly until the
data server has returned all of the data available.
The DBGetQueryResults function puts the returned data into a record that contains
handles to arrays that contain the data, the type of data in each column, and the
length of each data item. The Data Access Manager allocates the memory for this data
in the application heap.
12-16 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function calls your status routine after it retrieves each
data item. You can use this opportunity to display the data item for the user
and to give the user the opportunity to cancel execution of the function. The
DBGetQueryResults function also calls your status routine just before completing
execution, so that you can dispose of any memory allocated by the status routine,
remove any dialog box that you displayed, and update your windows if necessary.
To convert the returned data to text, go to the next step. If you do not want to convert
the returned data to text, skip to step 9.

7. Call the DBResultsToText function. This function calls a result handler function for
each data type. The result handler converts the data to text, places it in a buffer, and
returns a handle to the buffer. Some result handlers are provided with the Data Access
Manager; you can provide as many with your application as you wish. Result
handlers are discussed in “Converting Query Results to Text” beginning on
page 12-43.

8. If you are finished using the query record, call the DBDisposeQuery function to
dispose of the query record and free all the memory associated with the query record.
If you want to reuse the same query, return to step 5. You should close the query
document when you are finished using it.
If you want to use a new query document, return to step 3.

9. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBInit function has
returned a nonzero session ID, even if it also returned an error.

Listing 12-1 illustrates the use of the high-level interface. This code initiates a session
with a remote database, lets the user select a query document to execute, opens the
selected file, finds a 'qsrc' resource, and creates a query record. Next, it executes the
query, checks the status of the remote database server, retrieves the data when it’s
available, and converts this data to text. When the query has finished executing, the code
disposes of the query record, ends the session, and closes the user-selected query
document. In general, there’s no reason why there can’t be multiple sessions open at
once. You can identify each session by its session ID. Listing 12-1 shows just one session.

Listing 12-1 assumes that you are using a database extension that supports asynchronous
execution of Data Access Manager routines. This listing shows just one possible
approach to sending a query and retrieving data asynchronously.
Using the Data Access Manager 12-17

C H A P T E R 1 2

Data Access Manager
Listing 12-1 Using the high-level interface

PROCEDURE MyHiLevel(VAR rr: ResultsRecord; myTextHdl: Handle;

VAR thisSession: LongInt; VAR sessErr: OSErr);

TYPE

{define a record to include space for the current value in }

{ A5 so a completion routine can find it}

CRRec = RECORD

QPB: DBAsyncParamBlockRec; {the parameter block}

appsA5: LongInt; {append A5 to the }

{ parameter block}

END;

CRRecPtr = ^CRRec;

VAR

StartPB, GetQRPB: CRRec;

SFR: StandardFileReply;

packErr, startQErr, getQErr, disposeQErr: OSErr;

getnewQErr, gStartQErr, gGetQRErr: OSErr;

endErr, fsopenErr, fscloseErr, resultsErr: OSErr;

gStart, gQueryResults: Boolean;

qrscHandle: Handle;

rsrcID: Integer;

rsrcType: ResType;

rsrcName: Str255;

myQHandle: QueryHandle;

savedResFile: Integer;

typeList: SFTypeList;

fsRefNum: Integer;

FUNCTION GetQPB: CRRecPtr;

INLINE $2E88; {MOVE.L A0,(SP)}

BEGIN

gStart := FALSE;

gQueryResults := FALSE;

sessErr := noErr; {assume everything went fine}

packErr := InitDBPack; {initialize the Data Access Mgr}

{display a dialog box to let the user pick a query document}

typeList[0] := 'qery';

StandardGetFile(NIL, 1, typeList, SFR);

IF SFR.sfGood = TRUE THEN

fsopenErr := FSpOpenRF(SFR.sfFile, fsCurPerm, fsRefNum);

IF (fsopenErr <> noErr) OR (SFR.sfGood = FALSE) THEN
12-18 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
BEGIN

sessErr := fsopenErrOrUserCanceled;

EXIT(MyHiLevel);

END;

savedResFile := CurResFile; {save current resource file}

UseResFile(fsRefNum); {get query info from here}

{a query document should have only one 'qrsc' resource}

qrscHandle := Get1IndResource('qrsc', 1);

IF ResError <> noErr THEN

BEGIN

sessErr := ResError;

EXIT(MyHiLevel);

END;

{get the resource ID of the 'qrsc' resource}

GetResInfo(qrscHandle, rsrcID, rsrcType, rsrcName);

{create a query record using the resource ID}

getnewQErr := DBGetNewQuery(rsrcID, myQHandle);

IF getnewQErr <> noErr THEN

BEGIN

sessErr := getnewQErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

StartPB.QPB.completionProc := @MyStartCompRoutine;

StartPB.appsA5 := SetCurrentA5; {save this for the }

{ completion routine}

{MyStartStatus is a status routine that handles messages sent }

{ by the DBStartQuery function when it calls a low-level }

{ function}

startQErr := DBStartQuery(thisSession, myQHandle,

@MyStartStatus, @StartPB);

IF startQErr <> noErr THEN

BEGIN

sessErr := startQErr;

IF thisSession <> 0 THEN

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

WHILE NOT gStart DO {while waiting for gStart to go TRUE, }

BEGIN { MyGoDoSomething calls WaitNextEvent }

MyGoDoSomething; { to give other routines a chance to run}

END; {while}

{the DBStartQuery call has completed}
Using the Data Access Manager 12-19

C H A P T E R 1 2

Data Access Manager
IF gStartQErr <> noErr THEN

BEGIN

sessErr := gStartQErr;

IF thisSession <> 0 THEN

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

GetQRPB.QPB.completionProc := @MyGetQRCompRoutine;

GetQRPB.appsA5 := SetCurrentA5; {save this for the }

{ completion routine}

{MyGetQRStatus is a status routine that handles messages sent }

{ by the DBGetQueryResults function when it calls a low-level }

{ function.}

getQErr := DBGetQueryResults(thisSession, rr, kDBWaitForever,

@MyGetQRStatus, @GetQRPB);

IF getQErr <> noErr THEN

BEGIN

sessErr := getQErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

WHILE NOT gQueryResults DO

BEGIN

MyGoDoSomething;

END; {while}

{The DBGetQueryResults call has completed. Assuming the call }

{ completed successfully, you may want to convert the }

{ retrieved data to text, return memory you have borrowed, }

{ and end the session.}

IF gGetQRErr <> noErr THEN

BEGIN

sessErr := gGetQRErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyHiLevel);

END;

{the data has been retrieved; convert it to text}

resultsErr := DBResultsToText(rr, myTextHdl);

{The current query is finished. You can elect to execute }

{ the next 'qrsc' resource of the file, or select another }

{ query document. This example just returns to the caller.}

disposeQErr := DBDisposeQuery(myQHandle);

UseResFile(savedResFile);{restore current resource file}

fscloseErr := FSClose(fsRefNum); {close the query document}
12-20 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
IF fscloseErr <> noErr THEN

DoError(fscloseErr);

endErr := DBEnd(thisSession, NIL);

IF endErr <> noErr THEN

DoError(endErr);

END;

Listing 12-2 shows the completion routines MyStartCompRoutine and
MyGetQRCompRoutine used in Listing 12-1.

Listing 12-2 Two completion routines

PROCEDURE MyStartCompRoutine(aCRRecPtr: CRRecPtr);

VAR

curA5: LongInt;

BEGIN

aCRRecPtr := GetQPB; {get the param block}

curA5 := SetA5(aCRRecPtr^.appsA5); {set A5 to the app's A5}

gStart := TRUE; {query has been started}

gStartQErr := aCRRecPtr^.QPB.result;{send back result code}

{do whatever else you want to do}

curA5 := SetA5(curA5);{restore original A5}

END; {MyStartCompRoutine}

PROCEDURE MyGetQRCompRoutine(aCRRecPtr: CRRecPtr);

VAR

curA5: LongInt;

BEGIN

aCRRecPtr := GetQPB; {get the param block}

curA5 := SetA5(aCRRecPtr^.appsA5); {set A5 to the app's A5}

gQueryResults := TRUE;{query results are complete}

gGetQRErr := aCRRecPtr^.QPB.result; {send back the result code}

{do whatever else you want to do}

curA5 := SetA5(curA5); {restore original A5}

END; {MyGetQRCompRoutine}

The next section provides information about status routines.
Using the Data Access Manager 12-21

C H A P T E R 1 2

Data Access Manager
Writing a Status Routine for High-Level Functions 12
Both of the two main high-level functions, DBStartQuery and DBGetQueryResults,
call low-level functions repeatedly. After each time they call a low-level function, these
high-level functions call a routine that you provide, called a status routine. Your status
routine can check the result code returned by the low-level function and can cancel
execution of the high-level function before it calls the next low-level function. Your status
routine can also update your application’s windows after the DBStartQuery function
has displayed a dialog box.

You provide a pointer to your status routine in the statusProc parameter to the
DBStartQuery and DBGetQueryResults functions.

Here is a function declaration for a status routine:

FUNCTION MyStatusFunc (message: Integer; result: OSErr;

 dataLen: Integer; dataPlaces: Integer;

 dataFlags: Integer; dataType: DBType;

 dataPtr: Ptr): Boolean;

Your status routine should return a value of TRUE if you want to continue execution of
the DBStartQuery or DBGetQueryResults function, or a value of FALSE if you want
to cancel execution of the function. In the latter case, the high-level function returns the
userCanceledErr result code.

Note
If you call the DBStartQuery or DBGetQueryResults function
asynchronously, you cannot depend on the A5 register containing a
pointer to your application’s global variables when the Data Access
Manager calls your status routine. ◆

The message parameter tells your status routine the current status of the high-level
function that called it. The possible values for the message parameter depend on
which function called your routine.

The value of the result parameter depends on the value of the message parameter, as
summarized in the following list:

Message Result

kDBUpdateWind 0

kDBAboutToInit 0

kDBInitComplete Result of DBInit

kDBSendComplete Result of DBSend

kDBExecComplete Result of DBExec

kDBStartQueryComplete Result of DBStartQuery

kDBGetItemComplete Result of DBGetItem

kDBGetQueryResultsComplete Result of DBGetQueryResults
12-22 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The dataLen, dataPlaces, dataFlags, dataType, and dataPtr parameters are
returned only by the DBGetQueryResults function, and only when the message
parameter equals kDBGetItemComplete. When the DBGetQueryResults function
calls your status routine with this message, the dataLen, dataPlaces, and dataType
parameters contain the length, decimal places, and type of the data item retrieved,
respectively, and the dataPtr parameter contains a pointer to the data item.

The least significant bit of the dataFlags parameter is set to 1 if the data item is in the
last column of the row. The third bit of the dataFlags parameter is set to 1 if the data
item is NULL. You can use this information, for example, to check whether the data meets
some criteria of interest to the user, or to display each data item as the DBGetItem
function receives it. You can use the constants kDBLastColFlag and kDBNullFlag to
test for these flag bits.

The DBGetQueryResults function returns a results record, which contains a handle to
the retrieved data. The address in the dataPtr parameter points inside the array
specified by this handle. Because the dataPtr parameter is not a pointer to a block of
memory allocated by the Memory Manager, but just a pointer to a location inside such a
block, you cannot use this pointer in any Memory Manager routines (such as the
GetPtrSize function). Note also that you cannot rely on this pointer remaining valid
after you return control to the DBGetQueryResults function.

The DBStartQuery function can send to your status routine the following constants in
the message parameter:

CONST {DBStartQuery status messages}

kDBUpdateWind = 0; {update windows}

kDBAboutToInit = 1; {about to call DBInit}

kDBInitComplete = 2; {DBInit has completed}

kDBSendComplete = 3; {DBSend has completed}

kDBExecComplete = 4; {DBExec has completed}

kDBStartQueryComplete = 5; {DBStartQuery is about to }

{ complete}

DBStartQuery message
constant Meaning

kDBUpdateWind The DBStartQuery function has just called a
query definition function. Your status routine
should process any update events that your
application has received for its windows.

kDBAboutToInit The DBStartQuery function is about to call the
DBInit function to initiate a session with a data
server. Because initiating the session might involve
establishing communication over a network, and
because in some circumstances the execution of a
query can tie up the user’s computer for some
length of time, you might want to display a dialog
box giving the user the option of canceling
execution at this time.
Using the Data Access Manager 12-23

C H A P T E R 1 2

Data Access Manager
continued

kDBInitComplete The DBInit function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBInit function. If the DBInit function returns
the noErr result code, the DBStartQuery
function calls the DBSend function next. If the
DBInit function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBSendComplete The DBSend function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBSend function. If the DBSend function returns
the noErr result code, the DBStartQuery
function calls the DBExec function next. If the
DBSend function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBExecComplete The DBExec function has completed execution.
When the DBStartQuery function calls your
status routine with this message, the result
parameter contains the result code returned by the
DBExec function. If the DBExec function returns
the noErr result code, the DBStartQuery
function returns control to your application next. If
the DBExec function returns any other result code,
you can display a dialog box informing the user of
the problem before returning control to the
DBStartQuery function. The DBStartQuery
function then returns an error code and stops
execution.

kDBStartQueryComplete The DBStartQuery function has completed
execution and is about to return control to your
application. The function result is in the result
parameter passed to your status routine. Your
status routine can use this opportunity to perform
any final tasks, such as disposing of memory that it
allocated or removing from the screen any dialog
box that it displayed.

DBStartQuery message
constant Meaning (continued)
12-24 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function can send to your status routine the following
constants in the message parameter:

CONST {DBGetQueryResults status messages}

kDBGetItemComplete = 6; {DBGetItem has completed}

kDBGetQueryResultsComplete = 7; {DBGetQueryResults has }

{ completed}

Listing 12-3 shows a status routine for the DBStartQuery function. This routine
updates the application’s windows in response to the kDBUpdateWind message,

DBGetQueryResults message
constant Meaning

kDBGetItemComplete The DBGetItem function has completed
execution. When the DBGetQueryResults
function calls your status routine with this
message, the result parameter contains the
result code returned by the DBGetItem
function. The DBGetQueryResults
function also returns values for the
dataLen, dataPlaces, dataType,
dataFlags, anddataPtr parameters, as
discussed earlier in this section.

For each data item that it retrieves, the
DBGetQueryResults function calls
the DBGetItem function twice: once to
obtain information about the next data item
and once to retrieve the data item. The
DBGetQueryResults function calls your
status routine only after calling the
DBGetItem function to retrieve a data item.

If your status routine returns a function
result of FALSE in response to the
kDBGetItemComplete message, the results
record returned by the
DBGetQueryResults function to your
application contains data through the last
full row retrieved.

Data types and results records are described
in “Getting Query Results” beginning on
page 12-37.

kDBGetQueryResultsComplete The DBGetQueryResults function has
completed execution and is about to return
control to your application. The function
result is in the result parameter passed to
your status routine. Your status routine can
use this opportunity to perform any final
tasks, such as disposing of memory that it
allocated or removing from the screen any
dialog box that it displayed.
Using the Data Access Manager 12-25

C H A P T E R 1 2

Data Access Manager
displays a dialog box giving the user the option of canceling before the data access is
initiated, and checks the results of calls to the DBInit, DBSend, and DBExec functions.
If one of these functions returns an error, the status routine displays a dialog box
describing the error.

Listing 12-3 A sample status routine

FUNCTION MyStartStatus(message: Integer; result: OSErr;

 dataLen: Integer; dataPlaces: Integer;

dataFlags: Integer; dataType: DBType;

dataPtr: Ptr): Boolean;

VAR

myString: Str255;

continue: Boolean;

BEGIN

continue := TRUE; {assume user wants to continue with query}

CASE message OF

kDBUpdateWind: {a qdef function has just been called; }

BEGIN { handle activate and update events}

MyDoActivate; {find and handle activate events}

MyDoUpdate; {find and handle update events}

END; {kDBUpdateWind}

kDBAboutToInit: {about to initiate a session}

BEGIN {MyDisplayDialog displays a dialog box. The value }

{ returned in the continue variable indicates }

{ whether DBStartQuery should continue.}

myString := 'The Data Access Manager is about to open a

session. This could take a while. Do you

want to continue?';

MyDisplayDialog(@myString, continue);

END; {kDBAboutToInit}

kDBInitComplete: {the DBInit function has completed execution}

BEGIN

IF result <> noErr THEN {if there's an error, }

BEGIN { let the user know what it is}

CASE result OF

rcDBError:

BEGIN

myString := 'The Data Access Manager was unable to

open the session. Please check your

connections and try again later.';

MyDisplayString(@myString);

END; {rcDBError}
12-26 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
rcDBBadDDev:

BEGIN

myString := 'The Data Access Manager cannot find

the database extension file it needs to

open a session. Check with your system

administrator for a copy of the file.';

MyDisplayString(@myString);

END; {rcDBBadDDev}

OTHERWISE

BEGIN

myString := 'The Data Access Manager was unable to

open the session. The error code

returned was';

MyDisplayError(@myString, result);

END; {of otherwise}

END; {of CASE result}

END; {of result <> noErr}

END; {kDBInitComplete}

kDBSendComplete: {the DBSend function has completed execution}

BEGIN

{if there's an error, let the user know what it is}

IF result <> noErr THEN

BEGIN

IF result = rcDBError THEN

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to send the

query. Please try again later.';

MyDisplayString(@myString);

END

ELSE

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to send the

query. The error code returned was';

MyDisplayError(@myString, result);

END;

END; {of result <> noErr}

END; {kDBSendComplete}

kDBExecComplete: {the DBExec function has completed execution}

BEGIN

IF result <> noErr THEN {if there's an error, }

BEGIN { let the user know what it is}
Using the Data Access Manager 12-27

C H A P T E R 1 2

Data Access Manager
IF result = rcDBError THEN

BEGIN

myString := 'The Data Access Manager was unable to

execute the query. There may be a problem

with the query document or the database.

Check with your system administrator.';

MyDisplayString(@myString);

END

ELSE

BEGIN

myString := 'An error occurred while the Data

Access Manager was trying to execute the

query. The error code returned was';

MyDisplayError(@myString, result);

END;

END; {of result <> noErr}

END; {kDBExecComplete}

kDBStartQueryComplete:{the DBStartQuery function is about }

BEGIN { to return control to your application}

{clean up memory and any dialog boxes left on the screen}

MyCleanUpWindows;

END; {kDBStartQueryComplete}

END; {CASE message}

MyStartStatus := continue;

END;

Using the Low-Level Interface 12
You can use the low-level interface to establish communication (initiate a session) with a
data server, send a query to the data server, execute the query, and retrieve any data
requested by the query. You call one or more low-level routines to accomplish each of
these tasks.

Applications that implement this type of data access must provide user control and
feedback, as described in “General Guidelines for the User Interface” on page 12-13.
When the data source is ready to return data, you can retrieve it all and then display it to
the user, or you can display the data as it arrives. If the data arrives slowly, it’s best to
display it one record at a time as it arrives. This way the user can preview the data,
decide if it’s the desired information, and cancel the query if not.

Figure 12-5 is a flowchart of a typical session using the low-level interface. As Figure 12-5
illustrates, you must follow this procedure to use the low-level interface:

1. Call the InitDBPack function to initialize the Data Access Manager.

2. Call the DBInit function to establish communication with the data server. The
DBInit function returns an identification number, called a session ID. This session ID
12-28 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
is unique; no other current session, for any database extension, has the same
session ID.
Using the Data Access Manager 12-29

C H A P T E R 1 2

Data Access Manager
Figure 12-5 A flowchart of a session using the low-level interface

Command
string

Data
item

Yes

No

Yes

Quit

InitDBPack

DBInit

NoNo

No

No

No

DBSendItem DBSend

DBExec

DBState

DBGetItem

DBEnd

Query
complete?

Command string
or

data item?

Query finished
executing?

Requested
data?

Last data
item?

Send
another
query?

Open
another
session?

Yes

Yes

Yes

Yes
12-30 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
You must specify the session ID any time you want to send data to or retrieve data
from this session.
The DBInit function requires as input parameters the name of the database extension
and character strings for the host system, user name, password, and connection string.
All of these parameters depend on the user and the user’s computer system,
including the specific database extension, host computer, data server, and database
management software in use. You will not know the user name and password when
you are writing an application, and you might not know the values of any of these
parameters. Therefore, you must display a dialog box that prompts the user for the
necessary information.
Depending on the database extension you are using, the DBInit function
might return a session ID of zero if it fails to initiate a session, or it might return
a nonzero session ID and a result code other than noErr. In the latter case, you
can pass the session ID to the DBGetErr function to determine the cause of the error.
If the DBInit function returns a nonzero session ID and a result code other than
noErr, you must call the DBEnd function before making another attempt to open
the session.

3. Prepare a query, and send it to the data server by calling the DBSend and
DBSendItem functions one or more times.
An application that uses the low-level interface must be capable of creating a query
for the data server in the language and format required by that data server.
The DBSend function sends a query or a portion of a query to the data server. The
data server appends this portion of the query to any portion you sent previously.
Because the Data Access Manager and data server do not modify the string you send
in any way, they do not insert any delimiter between fragments of queries that you
send to the data server. If you want a blank or a semicolon to be included between
query fragments, or if you want to use return characters to divide the query into lines
of text, you must include them in the character string that you send with the DBSend
function. The data string that you send with the DBSend function can be any length
up to 64 KB.
The DBSendItem function sends a single data item to the data server. Use the
DBSendItem function to send data items to the data source in the same format as
they are retrieved from the data source by the DBGetItem function. You must specify
the data type as an input parameter and, for any data type that does not have an
implied length, you must specify the length as well. The database extension or the
data server (depending on how the system is implemented) converts the data item to
a character string and appends it to the query, just as a query program fragment is
appended to the query by the DBSend function.
You can call the DBSend and DBSendItem functions as many times as you wish to
send your query to the data server.
Listing 12-4 sends the Data Access Language query fragment “print 451+222;” to
the Data Access Language server.
Using the Data Access Manager 12-31

C H A P T E R 1 2

Data Access Manager
Listing 12-4 Sending a query fragment

FUNCTION MySendFragment(sessID: LongInt): OSErr;

VAR

value1: LongInt;

value2: LongInt;

text1, text2, text3: Str15;

text1Ptr, text2Ptr, text3Ptr: Ptr;

rc: OSErr;

BEGIN

text1 := 'print ';

value1 := 451;

text2 := '+';

value2 := 222;

text3 := ';';

MySetTextPtrs(text1, text1Ptr, text2, text2Ptr,

text3, text3Ptr);

rc := DBSend (sessID, text1Ptr, LENGTH(text1), NIL);

IF rc = noErr THEN

rc := DBSendItem (sessID, typeInteger, 0, 0, 0,

Ptr(ORD(@value1)), NIL);

IF rc = noErr THEN

rc := DBSend (sessID, text2Ptr, LENGTH(text2), NIL);

IF rc = noErr THEN

rc := DBSendItem (sessID, typeInteger, 0, 0, 0,

Ptr(ORD(@value2)), NIL);

IF rc = noErr THEN

rc := DBSend (sessID, text3Ptr, LENGTH(text3), NIL);

MySendFragment := rc;

END;

4. Use the DBExec function to initiate execution of the query.
Depending on the way the system you are using is implemented, the DBExec
function might return control to your application as soon as the query has begun
execution.

5. Use the DBState function to determine the status of the data source.
The DBState function tells you when the data server has finished executing the
query you just sent. If you have requested data, the data server stores the data you
requested but does not send it to your application until you request it explicitly. The
DBState function tells you when the data is available; if data is available, go to step
6. If you wish to send another query, return to step 3. If you are finished using the
data source, skip to step 7.
12-32 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
6. Call the DBGetItem function repeatedly to retrieve the data.
The DBGetItem function retrieves the next data item from the data server. You can
also use this function to obtain information about the next data item without
retrieving the data. When you use the DBGetItem function to retrieve a data item,
you must specify the location and size of the buffer into which the function is to place
that item. If you know beforehand what kind of data to expect, you can allocate a
buffer of the exact size you need. If you do not know what type of data to expect, you
can first call the DBGetItem function with a NIL pointer to the data buffer. The
DBGetItem function then returns information about the next data item without
actually retrieving it. You can then allocate the appropriate buffer and call
DBGetItem again.
Alternatively, to avoid calling DBGetItem twice for each data item, you can allocate
a buffer that you expect to be of sufficient size for any data item and call
the DBGetItem function. If the buffer is not large enough for the data item, the
DBGetItem function returns the rcDBError result code, but still returns information
about the data item. You can then allocate the necessary buffer, call the DBUnGetItem
function to go back one data item, and call the DBGetItem function again to retrieve
the data item a second time.
The DBGetItem function includes a timeout parameter that you can use to specify
the maximum amount of time that the database extension should wait to receive
results from the data server before canceling the command. If the database extension
you are using does not support asynchronous execution of routines, you can use the
timeout parameter to return control to your application while a query is executing.
To use the timeout parameter in this way, call the DBGetItem function periodically,
specifying a brief period of time for the timeout parameter. Your application can
then retrieve the next data item as soon as execution of the query is complete without
having to call the DBState function to determine when data is available. The
DBGetItem function ignores the timeout parameter if you make an asynchronous
call to this function.

7. When you are finished using the data source, you must use the DBEnd function to
terminate the session. You must call the DBEnd function after the DBInit function has
returned a nonzero session ID, even if it also returned an error.

The procedure in Listing 12-5 uses the low-level interface to send a Data Access
Language routine to the Data Access Language server on a remote computer and then
retrieves the results. The procedure initiates a session with a remote database and calls
the MySendFragment routine (Listing 12-4) to send a query. Next, it executes the query,
checks the status of the remote database server, and retrieves the data when it’s
available. This example retrieves only one data item. To retrieve more than one data
item, put the data-retrieval code in a loop.

Listing 12-5 assumes that the database extension does not support asynchronous
execution of Data Access Manager routines. For an example of asynchronous execution
of routines, see Listing 12-1 beginning on page 12-18.
Using the Data Access Manager 12-33

C H A P T E R 1 2

Data Access Manager
Listing 12-5 Using the low-level interface

PROCEDURE MyLoLevel(VAR thisSession: LongInt; VAR sessErr: OSErr);

VAR

theDDevName: Str63;

theHost, theUser: Str255;

thePasswd, theConnStr: Str255;

packErr, initErr, sendErr, execErr: OSErr;

stateErr, getErr, endErr: OSErr;

myTimeout: LongInt;

myType: DBType;

len, places, flags: Integer;

myBuffer: Ptr;

myDataInfo: Boolean;

myDataReturned: Boolean;

BEGIN

sessErr := noErr; {assume everything went fine}

packErr := InitDBPack; {init the Data Access Mgr}

{Set up values for theDDevName, theHost, theUser, thePasswd, }

{ and theConnStr. You can display a dialog box prompting }

{ the user to supply some of these parameters.}

theDDevName := 'DAL';

theHost := 'The Host System Name';

theUser := 'Joe User';

thePasswd := 'secret';

theConnStr := 'extra stuff as needed';

initErr := DBInit(thisSession, theDDevName, theHost, theUser,

thePasswd, theConnStr, NIL);

IF initErr <> noErr THEN

BEGIN

sessErr := initErr;

IF thisSession <> 0 THEN endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

{send a query or query fragment to the remote data server}

sendErr := MySendFragment(thisSession);

{If there's an error, then probably something went wrong with }

{ DBSend or DBSendItem. Don't forget to end the session.}

IF sendErr <> noErr THEN

BEGIN

sessErr := sendErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;
12-34 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
{The query has been sent. This example assumes that }

{ the query will return data.}

execErr := DBExec(thisSession, NIL);

IF execErr = noErr THEN

BEGIN

stateErr := rcDBExec;

WHILE (stateErr = rcDBExec) DO

BEGIN {while waiting for stateErr <> rcDBExec, }

MyGoDoSomething; { let other apps run}

stateErr := DBState(thisSession, NIL);

END;

{DBState returned a result code other than rcDBExec. }

{ If it's rcDBValue, there are results to retrieve. }

{ Otherwise, it's probably an error.}

IF stateErr = rcDBValue THEN

BEGIN

{call DBGetItem once to get info on the data item and }

{ call DBGetItem a second time to get the data item}

myTimeout := 2*60; {2*60 ticks = 2 seconds}

myType := DBType(typeAnyType);

myDataInfo := FALSE;

WHILE NOT myDataInfo DO

BEGIN

getErr := DBGetItem(thisSession, myTimeout, myType,

 len, places, flags, NIL, NIL);

{If you timed out, then give up control. When }

{ control returns, continue getting the info.}

IF getErr = rcDBBreak THEN MyGoDoSomething

ELSE IF (getErr = noErr) OR (getErr = rcDBValue) THEN

myDataInfo := TRUE

ELSE

BEGIN

sessErr := getErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

END; {while}

{At this point, you may want to examine the info }

{ about the data item before calling DBGetItem a }

{ second time to actually retrieve it.}

{MyGimmeSpace returns a pointer to where you want }

{ the data item to go.}

myBuffer := MyGimmeSpace(len);
Using the Data Access Manager 12-35

C H A P T E R 1 2

Data Access Manager
myDataReturned := FALSE;

WHILE NOT myDataReturned DO

BEGIN

getErr := DBGetItem(thisSession, myTimeout, myType,

 len, places, flags, myBuffer,

NIL);

{If you timed out, then give up control. When }

{ control returns, continue getting the data.}

IF getErr = rcDBBreak THEN MyGoDoSomething

ELSE IF (getErr = noErr) OR

(getErr = rcDBValue) THEN myDataReturned := TRUE

ELSE

BEGIN

sessErr := getErr;

endErr := DBEnd(thisSession, NIL);

EXIT(MyLoLevel);

END;

END; {while}

END

ELSE sessErr := stateErr;

END

ELSE sessErr := execErr;

endErr := DBEnd(thisSession, NIL);

END;

Note that, even if you are using the low-level interface to send queries to the data server,
you might want to use the high-level functions to retrieve data and convert it to text.

Getting Information About Sessions in Progress 12
If your application is only one of several on a single Macintosh computer connected to
data servers, you can use the DBGetConnInfo and DBGetSessionNum functions to
obtain information about the sessions in progress. If you know the session ID (which is
returned by the DBInit function when you open a session), you can use the
DBGetConnInfo function to determine the database extension being used, the name of
the host system on which the session is running, the user name and connection string
used to initiate the session, the time at which the session started, and the status of the
session. The status of the session specifies whether the data server is executing a query
or waiting for another query fragment, whether there is output data available, and
whether execution of a query ended in an error.
12-36 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
If you do not know the session ID, or if you want to get information about all open
sessions, you can specify a database extension and a session number when you call the
DBGetConnInfo function. Although there can be only one active session with a given
session ID, session numbers are unique only for a specific database extension. Because
the database extension assigns session numbers sequentially, starting with 1, you can
call the DBGetConnInfo function repeatedly for a given database extension,
incrementing the session number each time, to obtain information about all
sessions open for that database extension. Your application need not have initiated
the session to obtain information about it in this fashion.

The DBGetSessionNum function returns the session number when you specify the
session ID. You can use this function to determine the session numbers for the sessions
opened by your own application. You might want this information, for example, so you
can distinguish your own sessions from those opened by other applications when you
use the DBGetConnInfo function to get information about all open sessions.

Processing Query Results 12
You can use the low-level function DBGetItem to retrieve a single data item returned by
a query, or you can use the high-level function DBGetQueryResults to retrieve all of
the query results at once. If you use the DBGetQueryResults function, you can then
use the DBResultsToText function to convert the results to ASCII text. The
DBResultsToText function calls routines called result handlers, which are installed in
memory by applications or by system extensions (files containing 'INIT' resources).
This section discusses the use of the DBGetItem and DBGetQueryResults functions
and describes how to write and install a result handler.

Getting Query Results 12

The DBGetItem function retrieves a single data item that was returned by a data source
in response to a query. When you call the DBGetItem function, you specify the data
type to be retrieved. If you do not know what data type to expect, you can specify the
typeAnyType constant for the dataType parameter, and the data server returns the
next data item regardless of data type. It also returns information about the data item,
including data type and length.

If you do not know the length of the next data item, you can specify NIL for the buffer
parameter in the DBGetItem function, and the data server returns the data type, length,
and number of decimal places without retrieving the data item. The next time you call
the DBGetItem function with a nonzero value for the buffer parameter, the function
retrieves the data item.
Using the Data Access Manager 12-37

C H A P T E R 1 2

Data Access Manager
If you want to skip a data item, specify the typeDiscard constant for the dataType
parameter. Then the next time you call the DBGetItem function, it retrieves the
following data item.

You should use the DBGetItem function if you want complete control over the retrieval
of each item of data. If you want the Data Access Manager to retrieve the data for you,
use the DBGetQueryResults function instead.

Table 12-1 shows the data types recognized by the Data Access Manager. You use a
constant to specify each data type, as follows:

CONST {data types}

typeAnyType = 0; {can be any data type}

typeNone = 'none'; {no more data expected}

typeBoolean = 'bool'; {Boolean}

typeSMInt = 'shor'; {short integer}

typeInteger = 'long'; {integer}

typeSMFloat = 'sing'; {short floating point}

typeFloat = 'doub'; {floating point}

typeDate = 'date'; {date}

typeTime = 'time'; {time}

typeTimeStamp = 'tims'; {date and time}

typeChar = 'TEXT'; {character}

typeDecimal = 'deci'; {decimal number}

typeMoney = 'mone'; {money value}

typeVChar = 'vcha'; {variable character}

typeVBin = 'vbin'; {variable binary}

typeLChar = 'lcha'; {long character}

typeLBin = 'lbin'; {long binary}

typeDiscard = 'disc'; {discard next data item}

typeUnknown = 'unkn'; {result handler for unknown }

{ data type}

typeColBreak = 'colb'; {result handler for column break}

typeRowBreak = 'rowb'; {result handler for end of line}

The writer of a database extension can define other data types to support specific data
sources or data servers.
12-38 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Each data type has a standard definition, shown in Table 12-1. For example, if the
DBGetItem function returns the typeInteger constant for the dataType parameter,
you know that the data item represents an integer value and that a 4-byte buffer is
necessary to hold it. Similarly, if you are using the DBSendItem function to send to the
data server a data item that you identify as typeFloat, the data server expects to
receive an 8-byte floating-point value.

Notice that some of these data types are defined to have a specific length (referred to as
an implied length), and some do not. The len parameter of the DBSendItem and
DBGetItem functions indicates the length of an individual data item. The
DBGetQueryResults function returns a handle to an array of lengths, decimal places,
and flags in the colInfo field of the results record. The typeAnyType,
typeColBreak, and typeRowBreak constants do not refer to specific data types, and
therefore the length specification is not applicable for these constants.

Table 12-1 Data types defined by the Data Access Manager

Constant Length Definition

typeAnyType NA Any data type (used as an input parameter to the
DBGetItem function only; never returned by the
function).

typeNone 0 Empty.

typeBoolean 1 byte TRUE (1) or FALSE (0).

typeSMInt 2 bytes Signed integer value.

typeInteger 4 bytes Signed long integer value.

typeSMFloat 4 bytes Signed floating-point value.

typeFloat 8 bytes Signed floating-point value.

typeDate 4 bytes Date; a long integer value consisting of a year (most
significant 16 bits), month (8 bits), and day (least
significant 8 bits).

typeTime 4 bytes Time; a long integer value consisting of an hour (0–23;
most significant 8 bits), minute (8 bits), second (8 bits),
and hundredths of a second (least significant 8 bits).

typeTimeStamp 8 bytes Date and time. A long integer date value followed by a
long integer time value.

typeChar Any Fixed-length character string, not NULL terminated. The
length of the string is defined by the specific data
source.
Using the Data Access Manager 12-39

C H A P T E R 1 2

Data Access Manager
typeDecimal Any Packed decimal string. A contiguous string of 4-bit
nibbles, each of which contains a decimal number,
except for the low nibble of the highest-addressed byte
(that is, the last nibble in the string), which contains a
sign. The value of the sign nibble can be 10, 12, 14, or 15
for a positive number or 11 or 13 for a negative number;
12 is recommended for a positive number and 13 is
recommended for a negative number. The most
significant digit is the high-order nibble of the
lowest-addressed byte (that is, the first nibble to appear
in the string).

The total number of nibbles (including the sign nibble)
must be even; therefore, the high nibble of the
highest-addressed byte of a number with an even
number of digits must be 0.

For example, the number +123 is represented as $123C.

The number –1234 is represented as $01234D.

The length of a packed decimal string is defined as the
number of bytes, including any extra leading 0 and the
sign nibble. A packed decimal string can have from 0 to
31 digits, not including the sign nibble.

In addition to the length of a packed decimal string,
each data item has an associated value that indicates
the number of digits that follow the decimal place. The
places parameter in the DBGetItem and
DBSendItem functions indicates the number of
decimal places in an individual data item. The
DBGetQueryResults function returns the number of
decimal places.

typeMoney Any Same as typeDecimal, but always has two decimal
places.

typeVChar Any Variable-length character string, NULL terminated.

continued

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant Length Definition

1

3

2

C

Bits 7 4 3 0 Address

A

A+1

Bits 7 4 3 0 Address

A

A+1

A+24 D

0

2

1

3

12-40 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetQueryResults function retrieves all of the data that was returned by a data
source in response to a query, unless insufficient memory is available to hold the data, in
which case it retrieves as many complete rows of data as possible. The
DBGetQueryResults function stores the data in a structure called a results record.
You must allocate the results record data structure and pass this record to the
DBGetQueryResults function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

typeVBin Any Not defined. Reserved for future use.

typeLChar Any Not defined. Reserved for future use.

typeLBin Any Not defined. Reserved for future use.

typeDiscard NA Do not retrieve the next data item (used as an input
parameter to the DBGetItem function only; never
returned by the function).

typeUnknown NA A dummy data type for the result handler that
processes any data type for which no other result
handler is available (used as an input parameter to the
DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

typeColBreak NA A dummy data type for the result handler that the
DBGetQueryResults function calls after each item
that is not the last item in a row (used as an input
parameter to the DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

typeRowBreak NA A dummy data type for the result handler that the
DBGetQueryResults function calls at the end of each
row (used as an input parameter to the
DBInstallResultHandler,
DBRemoveResultHandler, and
DBGetResultHandler functions only; never returned
by the DBGetItem function).

Table 12-1 Data types defined by the Data Access Manager (continued)

Constant Length Definition
Using the Data Access Manager 12-41

C H A P T E R 1 2

Data Access Manager
The results record is defined by the ResultsRecord data type.

TYPE ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {info about each data item}

END;

The numRows field in the results record indicates the total number of rows retrieved. If
the DBGetQueryResults function returns a result code other than rcDBValue, then
not all of the data actually returned by the data source was retrieved. This could happen,
for instance, if the user’s computer does not have sufficient memory space to hold all the
data. In this case, your application can make more space available (by writing the data in
the data record to disk, for example) and then call the DBGetQueryResults function
again to complete retrieval of the data.

Note
The DBGetQueryResults function retrieves whole rows only; if it runs
out of space in the middle of a row, it stores the partial row in a private
buffer so that the data in the results record ends with the last complete
row. Because the last partial row is no longer available from the data
server, you cannot start to retrieve data with the DBGetQueryResults
function and then switch to the DBGetItem function to complete the
data retrieval. ◆

The numCols field indicates the number of columns in each row of data.

The colTypes field is a handle to an array of data types, specifying the type of data in
each column. The number of elements in the array is equal to the value in the numCols
field. Table 12-1 beginning on page 12-39 shows the standard data types.

The colData field is a handle to the data retrieved by the DBGetQueryResults
function.
12-42 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The colInfo field is a handle to an array of records of type DBColInfoRecord, each of
which specifies the length, places, and flags for a data item. There are as many records in
the array as there are data items retrieved by the DBGetQueryResults function. Here
is the DBColInfoRecord type definition:

TYPE DBColInfoRecord =

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal and }

{ money data items}

flags: Integer; {flags for data item}

END;

The len field indicates the length of the data item. The DBGetQueryResults function
returns a value in this field only for those data types that do not have implied lengths;
see Table 12-1 beginning on page 12-39.

The places field indicates the number of decimal places in data items of types
typeMoney and typeDecimal. For all other data types, the places field returns 0.

The least significant bit of the flags field is set to 1 if the data item is in the last column
of the row. The third bit of the flags field is 1 if the data item is NULL. You can use the
constants kDBLastColFlag and kDBNullFlag to test for these flag bits.

Converting Query Results to Text 12

The DBResultsToText function provided by the high-level interface converts the data
retrieved by the DBGetQueryResults function into strings of ASCII text. This function
makes it easier for you to display retrieved data for the user.

For the DBResultsToText function to convert data of a specific type to text, either the
application or the system software must have a routine called a result handler. With
System 7, Apple Computer, Inc., provides system result handlers for the data types listed
here. (These data types are described in Table 12-1 beginning on page 12-39.)

Note
Apple’s system result handler for the variable character (typeVChar)
data type strips trailing spaces from the character string. ◆

Data type Constant Data type Constant

Boolean typeBoolean Time typeTime

Short integer typeSMInt Date and time typeTimeStamp

Integer typeInteger Character typeChar

Short floating
point

typeSMFloat Decimal number typeDecimal

Floating point typeFloat Money value typeMoney

Date typeDate Variable character typeVChar
Using the Data Access Manager 12-43

C H A P T E R 1 2

Data Access Manager
In addition to the result handlers for these standard data types, Apple provides the
following three system result handlers, which correspond to no specific data type:

The typeUnknown result handler processes any data type for which no other result
handler is available. The DBResultsToText function calls the typeColBreak
result handler after each item that is not the last item in a row. This result handler does
not correspond to any data type, but adds a delimiter character to separate columns of
text. The default typeColBreak result handler inserts a tab character. Similarly, the
DBResultsToText function calls the typeRowBreak result handler at the end of each
row of data to add a character that separates the rows of text. The default
typeRowBreak result handler inserts a return character. Your application can install
your own typeColBreak and typeRowBreak result handlers to insert whatever
characters you wish—or to insert no character at all, if you prefer.

You can install result handlers for any data types you know about. When you call the
DBInstallResultHandler function, you can specify whether the result handler you
are installing is a system result handler. A system result handler is available to all
applications that use the system. All other result handlers (called application result
handlers) are associated with a particular application. The DBResultsToText function
always uses a result handler for the current application in preference to a system result
handler for the same data type. When you install a system result handler for the same
data type as an already installed system result handler, the new result handler replaces
the old one. Similarly, when you install an application result handler for the same data
type as a result handler already installed for the same application, the new result handler
replaces the old one for that application.

Result handlers are stored in memory. The Data Access Manager installs its system result
handlers the first time the Macintosh Operating System loads the Data Access Manager
into memory. You must reinstall your own application result handlers each time your
application starts up. You can also install your own system result handlers each time
your application starts up, or you can provide a system extension (that is, a file with an
'INIT' resource) that installs system result handlers each time the user starts up the
system.

Here is a function declaration for a result handler function:

FUNCTION MyResultHandler (dataType: DBType;

 theLen, thePlaces, theFlags: Integer;

 theData: Ptr; theText: Handle): OSErr;

Data type Constant

Unknown typeUnknown

Column break typeColBreak

End of line typeRowBreak
12-44 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The dataType parameter specifies the data type of the data item that the
DBResultsToText function is passing to the result handler. Table 12-1 beginning on
page 12-39 describes the standard data types.

The parameters theLen and thePlaces specify the length and number of decimal
places of the data item that the DBResultsToText function wants the result handler to
convert to text.

The parameter theFlags is the value returned for the flags parameter by the
DBGetItem function. If the least significant bit of this parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1, the data
item is NULL. You can use the constants kDBLastColFlag and kDBNullFlag to test for
these flag bits.

The parameter theData is a pointer to the data that the result handler is to convert
to text.

The parameter theText is a handle to the buffer that is to hold the text version of the
data. The result handler should use the Memory Manager’s SetHandleSize function
to increase the size of the buffer as necessary to hold the new text, and append the new
text to the end of the text already in the buffer. The SetHandleSize function is
described in the chapter “Memory Manager” in Inside Macintosh: Memory.

If the result handler successfully converts the data to text, it should return a result code
of 0 (noErr).

You can use the DBInstallResultHandler function to install a result handler and the
DBRemoveResultHandler function to remove an application result handler. You can
install and replace system result handlers, but you cannot remove them.

The following line of code installs an application result handler. The first parameter
(typeInteger) specifies the data type that this result handler processes. The second
parameter (MyTypeIntegerHandler) is a pointer to the result handler routine. The
last parameter (FALSE) is a Boolean value specifying that this routine is not a system
result handler.

err := DBInstallResultHandler

 (typeInteger,@MyTypeIntegerHandler,FALSE);
Using the Data Access Manager 12-45

C H A P T E R 1 2

Data Access Manager
Listing 12-6 shows a result handler that converts the integer data type to text.

Listing 12-6 A result handler

FUNCTION MyTypeIntegerHandler(datatype: DBType; theLen: Integer;

theData: Ptr;

theText: Handle): OSErr;

VAR

theInt: LongInt;

theTextLen: LongInt;

temp: Str255;

atemp1: Ptr;

atemp2: LongInt;

atemp3: LongInt;

BEGIN

BlockMove(theData, @theInt, sizeof(theInt));

NumToString(theInt, temp); {convert to text}

theTextLen := GetHandleSize(theText); {get current size }

{ of theText}

{size text handle}

SetHandleSize(theText, theTextLen + LongInt(LENGTH(temp)));

IF (MemError <> noErr) THEN

MyTypeIntegerHandler := MemError

ELSE

BEGIN

atemp1 := Ptr(ORD(@temp));

atemp2 := LongInt(theText^) + theTextLen;

atemp3 := LongInt(LENGTH(temp));

{use BlockMove to append text}

BlockMove(P2CStr(atemp1), Ptr(atemp2), atemp3);

MyTypeIntegerHandler := MemError;

END;

END;
12-46 Using the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Creating a Query Document 12

A query document is a file of type 'qery' that contains a 'qrsc' resource and one or
more 'wstr' resources, and may contain a 'qdef' resource plus other resources.
Query documents make it possible for you to write applications that can communicate
with data servers without requiring familiarity with the command language used by the
data server. Because a query document is most useful if it can be used by many
different applications, no query document should depend on the presence of a particular
application in order to function.

An application can call the DBGetNewQuery function to convert a 'qrsc' resource into
a query record in memory. A query record specifies connection information and also
contains a handle to an array of queries; each query can be either a complete query or a
template for a query. If the 'wstr' resource is a template, it contains the commands and
data necessary to create a query, without any information that the user must add just
before the query is sent. The 'qdef' resource contains a query definition function,
which can modify the query record and, if necessary, fill in the query template to create a
complete query. The DBStartQuery function sends the query pointed to by a query
record to a data server. The following sections describe the contents of a query
document, describe query records, and define the 'qrsc', 'wstr', and 'qdef'
resources.

User Interface Guidelines for Query Documents 12
All query documents should behave in fundamentally the same way. They should be
self-explanatory and should never execute a query without an explicit command from
the user. When your application opens a query document, the query document should
display a dialog box with enough information about the query so that the user can
decide if it’s the right query. The dialog box should describe the purpose of the query,
what kind of data it transfers and in which direction, the type of data source it accesses,
and any warnings or instructions. The dialog box can describe how the user interprets
the data, such as the name of each field in a record. Figure 12-6 shows an example of a
query document dialog box.
Creating a Query Document 12-47

C H A P T E R 1 2

Data Access Manager
Figure 12-6 A query document dialog box

This dialog box should allow the user to cancel the request for data. In addition, it may
be useful to allow the user to set parameters with text boxes, checkboxes, or radio
buttons. For example, a query to a database of financial information could provide a list
of these options: a trial balance, profit-and-loss statements, or net worth reports. Save the
last set of user-specified parameters with the query document. This way the user can
review the parameters used to generate the data or use the same parameters the next
time.

Once a query starts running, it must be able to complete its task without user
intervention. If a query must run modally (that is, it must run to completion before
returning control to the user), display a dialog box that shows the query’s progress and
be sure to return control to the user as soon as possible. The philosophy of this process is
similar to that of receiving electronic mail—that is, inform the user when the information
arrives, but let the user decide when to read it.

Whenever possible, query documents should check that data is compatible before
transmitting it to a data source. Establish a connection with a data source only after you
have checked the data.
12-48 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Contents of a Query Document 12
The query document must contain

■ one 'qrsc' resource, as defined in the next section, “Query Records and Query
Resources”

■ one 'STR#' resource that contains the name of the database extension to be used,
plus any host, user name, password, and connection string needed for the DBInit
function

■ one or more 'wstr' resources containing queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes

A 'wstr' resource consists of a 2-byte length field followed by a character string. (The
w in 'wstr' refers to the length word as opposed to the length byte used in an 'STR '
resource.) Each 'wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). The
'qrsc' resource includes an array that lists the resource ID numbers of all of the
'wstr' resources in the query document and an index into the array that specifies
which one of the 'wstr' resources should be sent to the data server.

In addition, the query document may contain

■ a 'qdef' resource that contains a query definition function

■ any resources needed by the query definition function, such as 'DLOG' and 'DITL'
resources (which support dialog boxes)

■ resources to support an icon (to replace the default icon that the Finder uses for files of
type 'qery'); see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for more information on icon resources and for guidelines on designing icons

Figure 12-7 illustrates the relationship between the resources in a query document and
the query record.
Creating a Query Document 12-49

C H A P T E R 1 2

Data Access Manager
Figure 12-7 The relationship between resources in a query document and the query record

The query document in Figure 12-7 contains a 'qrsc' resource that specifies the
resource ID of a 'qdef' resource, the resource IDs of three 'wstr' resources, and
the resource ID of an 'STR#' resource. It also specifies which of the three 'wstr'
resources represents the current query.

Query document

'qrsc' resource

Resource ID of 'qdef'

Resource IDs of 'wstr's

Current query index

Resource ID of 'STR#'

'qdef' resource

'wstr' resource

'STR#' resource

Other resources

Query record

Partial queries

'wstr' resource

'wstr' resource

Info:
Suzie Doe
456 East St.
MyTown, MA

Info:
John Chapman
123 Main St.
ThisTown, MO

Info:
Sam Surf
34 Beach Ave.
ByTheSea, CA
12-50 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The DBGetNewQuery function creates the query record and partial queries from this
information. Your application can use the DBStartQuery function to send a query to a
data server. The DBStartQuery function calls the query definition function referred to
by the query record (if any). The query definition function can prompt the user for
information and modify the query as needed. Figure 12-8 illustrates a query record that
contains a handle to an array of queries, a handle to a query definition function, and an
index that identifies the current query. The query definition function displays a dialog
box and modifies the current query according to the user’s input. Once the query
definition function modifies the current query and returns, the DBStartQuery function
sends the query to the data server.

Figure 12-8 The relationship between a query definition function and queries

Query record

Partial queries

Current query index

Handle to queries

Handle to 'qdef'

Query definition
function

User
changes
or adds

information

'qdef' modifies current query

Info:
Johnny Chapman
88 North Circle Drive
ThatTown, CA

Info:
Suzie Doe
456 East St.
MyTown, MA

Info:
John Chapman
123 Main St.
ThisTown, MO

Info:
Sam Surf
34 Beach Ave.
ByTheSea, CA
Creating a Query Document 12-51

C H A P T E R 1 2

Data Access Manager
Query Records and Query Resources 12
The DBGetNewQuery function converts the 'qrsc' resource in the query document
into a query record in memory. The query definition function can then modify
the query record before the application sends the query to the data server. See
“The Query Record” beginning on page 12-57 for a description of the query record.
See “The Query Resource” beginning on page 12-91 for the format of a 'qrsc' resource.
The next section provides information about query definition functions.

Writing a Query Definition Function 12
Before the DBStartQuery function sends a query to a data server, it calls the query
definition function specified by the queryProc field in the query record. The purpose of
the query definition function is to modify the query and the query record before the
query is sent to the data server. The query definition function can use dialog boxes to
request information from the user. Because a query document is most useful if it can be
used by many different applications, no query definition function should depend on the
presence of a particular application.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type 'qdef' in the query document.

Here is a function declaration for a query definition function.

FUNCTION MyQDef (VAR sessID: LongInt; query: QueryHandle): OSErr;

If the application has already initiated a session with the data server, the DBStartQuery
function passes the session ID for that session in the sessID parameter to the query
definition function. If the query definition function receives a 0 in this parameter, then
the Data Access Manager has not initiated a session. In this case, the query definition
function can return a 0 in the sessID parameter, or it can call the DBInit function to
initiate a session and then return the session ID in this parameter.

If the query definition function returns a 0 in the sessID parameter, the DBStartQuery
function calls the DBInit function and then calls the DBSend function to send a query to
the data server. If the query definition function returns a session ID in this parameter, the
DBStartQuery function calls the DBSend function immediately.

The query parameter to the query definition function specifies a handle to the query
record. The query definition function can modify any of the fields in the query record,
including the currQuery field that specifies which query is to be sent to the data server.
In addition, the query definition function can modify an existing query or create a new
query, adding the handle to the new query to the query list. Note that, because a query in
memory consists only of a 2-byte length value followed by a character string, the query
definition function has to know the exact contents and structure of a query in order to
modify it.
12-52 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The query definition function must return the noErr result code as the function result if
the function executed successfully. If it returns any other value, the DBStartQuery
function does not call the DBSend function. The query definition function can return any
result code, including noErr, userCanceledErr, or rcDBError.

When the DBStartQuery function calls the query definition function, the current
resource file is the file that contains the 'qrsc' resource from which the Data Access
Manager created the query record. When the query definition function returns control to
the Data Access Manager, the current resource file must be unchanged. See the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox for more information on
the current resource file.

The query definition function can allocate memory and use the dataHandle field in the
query record to store a handle to it. The query definition function must free any memory
it allocates before terminating.

Listing 12-7 shows a query definition function that uses a dialog box to prompt the user
for a user name and password and then modifies the query record accordingly.

Listing 12-7 A query definition function

FUNCTION MyQDef(VAR sessID: LongInt; query: QueryHandle): OSErr;

CONST

myNameItem = 7;

myPassWordItem = 8;

VAR

myNumRes: Integer;

myResList: ResListHandle;

myResLPtr: ResListPtr;

myIndex: Integer;

myDialog: DialogPtr;

myDlogID: Integer;

itemType: Integer;

itemHName: Handle;

itemHPasswd: Handle;

itemBox: Rect;

mySTR: ARRAY[1..2] OF Str255;

itemHit: Integer;

myQErr: OsErr;

BEGIN

{If sessID = 0 no session has been initiated. Your qdef may }

{ optionally initiate a session, or it can let DBStartQuery }

{ take care of this. In this example, the qdef doesn't }

{ check the sessID parameter.}

HLock(Handle(query));

myNumRes := query^^.numRes;
Creating a Query Document 12-53

C H A P T E R 1 2

Data Access Manager
myResList := query^^.resList;

HLock(Handle(myResList));

myResLPtr := myResList^;

myIndex := 0;

{look for a 'DLOG' resource}

WHILE (myIndex < myNumRes) AND

(myResLPtr^[myIndex].theType <> 'DLOG') DO

BEGIN

myIndex := myIndex + 1;

END;

IF (myIndex < myNumRes) THEN {found the 'DLOG' resource}

myDlogID := myResLPtr^[myIndex].id

ELSE

BEGIN

{The 'DLOG' wasn't found; exit with no error. This }

{ is probably OK; it just means that the query }

{ and the query record don't get modified.}

MyQDEF := noErr;

HUnlock(Handle(query));

HUnlock(Handle(myResList));

EXIT(MyQDef);

END;

{found the 'DLOG' and its ID; now display the dialog box}

myDialog := GetNewDialog(myDlogID, Ptr(NIL), WindowPtr(-1));

SetPort(GrafPtr(myDialog));

REPEAT

ModalDialog(@MyEventFilter, itemHit);

UNTIL ((itemHit = kOK) OR (itemHit = kCancel));

IF itemHit = kOK THEN

BEGIN

{The user clicked the OK button. Update the user }

{ and password fields of the query record.}

GetDialogItem(myDialog, myNameItem, itemType, itemHName,

 itemBox);

GetDialogItemText(itemHName, mySTR[1]);

GetDialogItem(myDialog, myPassWordItem, itemType,

itemHPasswd, itemBox);

GetDialogItemText(itemHPasswd, mySTR[2]);

{Now you can change the query record or the query itself. }

{ What you change is entirely up to you. In this example, }

{ the qdef changes only the user and password fields }

{ of the query record.}

query^^.user := mySTR[1];
12-54 Creating a Query Document

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
query^^.password := mySTR[2];

MyQDef := noErr;

END

ELSE

MyQDef := userCanceledErr;

HUnlock(Handle(query));

HUnlock(Handle(myResList));

DisposDialog(myDialog);

END;

Data Access Manager Reference 12

This section describes the data structures, routines, and resources that are specific to the
Data Access Manager. The “Data Structures” section shows the data structures for the
asynchronous parameter block, the results record, the query record, and the data item
record. The “Data Access Manager Routines” section beginning on page 12-60 describes
routines for using the high-level and low-level interfaces, including initializing the Data
Access Manager, handling query documents and results, controlling sessions, sending
and executing queries, retrieving results, and installing and removing result handlers.
The “Resources” section beginning on page 12-91 describes the query resource, the query
string resource, and the query definition function resource.

Data Structures 12
This section describes the data structures that you use to provide information to the
Data Access Manager or that the Data Access Manager uses to provide information to
your application.

You provide a pointer to an asynchronous parameter block as a parameter to
the DBStartQuery, DBGetQueryResults, DBInit, DBEnd, DBGetSessionNum,
DBKill, DBSend, DBSendItem, DBExec, DBState, DBGetErr, DBBreak, DBGetItem,
and DBUnGetItem functions.

The query record specifies connection information and contains a handle to an array of
one or more complete queries or query templates. The DBGetNewQuery function returns
a handle to a query record, and you provide a handle to a query record as a parameter to
the DBStartQuery and DBDisposeQuery functions.

You use the results record to store the data that was returned by a data source in
response to a query. The results record is a parameter to the DBGetQueryResults and
DBResultsToText functions.
Data Access Manager Reference 12-55

C H A P T E R 1 2

Data Access Manager
The Asynchronous Parameter Block 12

Each Data Access Manager routine that can be called asynchronously (that is, that can
return control to your application before it has completed execution) takes as a
parameter a pointer to a parameter block known as the asynchronous parameter block. If
you specify NIL for this parameter, the routine does not return control to your
application until it has completed execution.

Note
The asynchronous parameter block is passed on to the database
extension, which is responsible for implementing the asynchronous
routine. If the database extension does not support asynchronous
routines, the Data Access Manager returns the rcDBAsyncNotSupp
result code and terminates execution of the routine. ◆

The DBAsyncParamBlockRec data type defines the asynchronous parameter block.

TYPE DBAsyncParamBlockRec =

RECORD

completionProc: ProcPtr; {pointer to completion routine}

result: OSErr; {result of call}

userRef: LongInt; {reserved for use by application}

ddevRef: LongInt; {reserved for use by database }

{ extension}

reserved: LongInt; {reserved for use by Data }

{ Access Manager}

END;

DBAsyncParmBlkPtr = ^DBAsyncParamBlockRec;

Field descriptions

completionProc
Points to a completion routine that the database extension calls
when it has completed executing the asynchronous function. Before
calling the completion routine, the Data Access Manager places a
pointer to the asynchronous parameter block in the A0 register. If
you do not want to use a completion routine, set this parameter
to NIL.

result Returns the result code for the called routine. The database
extension sets this field to 1 while the routine is executing and
places the result code in it when the routine completes. Your
application can poll this field to determine when an asynchronous
routine has completed execution.

userRef Reserved for the application’s use. Because the Data Access
Manager passes a pointer to the parameter block to the completion
routine, you can use this field to pass information to the
completion routine.
12-56 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
ddevRef Reserved for use by the database extension.
reserved Reserved for use by the Data Access Manager.

The Query Record 12

The DBGetNewQuery function converts a 'qrsc' resource in a query document into a
query record in memory and returns a handle to the query record. The query record
specifies connection information and also contains a handle to an array of queries; each
query can be either a complete query or a template for a query. The DBGetNewQuery
function creates the queries from the 'wstr' resources stored in the query document.

The QueryRecord data type defines a query record.

TYPE QueryRecord =

RECORD

version: Integer; {query record format version}

id: Integer; {resource ID of 'qrsc'}

queryProc: Handle; {handle to qdef}

ddevName: Str63; {name of database extension}

host: Str255; {name of host computer}

user: Str255; {name of user}

password: Str255; {user's password}

connStr: Str255; {connection string}

currQuery: Integer; {index of current query}

numQueries: Integer; {number of queries in list}

queryList: QueryListHandle; {handle to array of }

{ handles to text}

numRes: Integer; {number of resources in list}

resList: ResListHandle; {handle to array of resource }

{ list elements}

dataHandle: Handle; {handle to memory for qdef}

refCon: LongInt; {reserved for use by app}

END;

QueryPtr = ^QueryRecord; {pointer to query record}

QueryHandle = ^QueryPtr; {handle to query record}

Field descriptions

version The version number of the query record format. For the Data Access
Manager released with System 7, the version number is 0.

id The resource ID of the 'qrsc' resource from which the Data
Access Manager created this query record.

queryProc A handle to the query definition function that the DBStartQuery
function calls. This handle is NIL if there is no query definition
function—that is, if the DBStartQuery function should send the
query specified by this query record to the data server without
modifications.
Data Access Manager Reference 12-57

C H A P T E R 1 2

Data Access Manager
ddevName The database extension name used as a parameter to the DBInit
function.

host The name of the host computer system used as a parameter to the
DBInit function.

user The name of the user, used as a parameter to the DBInit function.
password The user’s password, used as a parameter to the DBInit function.
connStr The connection string used as a parameter to the DBInit function.
currQuery An index value from 1 through numQueries, indicating which

element in the array of query handles represents the current query.
The current query is the one actually sent to the data server. If
the query document contains more than one 'wstr' resource, the
query definition function can prompt the user to select a new
current query and modify this field in the query record
appropriately.

numQueries The number of queries referred to by the queryList field.
queryList A handle to an array of handles. Each handle in this array refers to a

query. Each query is created from a 'wstr' resource in the query
document and is stored in memory as a 2-byte length field followed
by ASCII text. (The length does not include the 2 bytes of the length
field.) The query definition function can create a new query. To add
a new handle to the array of handles, use the Memory Manager’s
SetHandleSize function to increase the size of the array. Don’t
forget to change the value of the numQueries field as well.

numRes The number of resources referred to by the resList field.
resList A handle to an array of records of type ResListElem. Each record

in the array contains the type and ID of a resource that is needed by
the query definition function.

TYPE ResListElem =

RECORD

theType: ResType; {resource type}

id: Integer; {resource ID}

END;

dataHandle A handle to memory for use by the query definition function. When
the Data Access Manager first creates the query record, it sets this
field to NIL. The query definition function can allocate memory and
place a handle to it in this field. The query definition function
should dispose of any memory it allocates before it returns control
to the Data Access Manager.

refCon The query record’s reference value. The application can use this
field for any purpose.
12-58 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The Results Record 12

The results record describes the data that was returned by a data source in response to a
query. To get the results of a query, allocate a results record and pass this record to the
DBGetQueryResults function. The Data Access Manager allocates the handles inside
the results record. When your application is finished using the results record, you must
deallocate both the results record and the handles inside the results record.

The results record is defined by the ResultsRecord data type.

TYPE ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {info about each data item}

END;

Field descriptions

numRows The total number of rows retrieved. If the DBGetQueryResults
function returns a result code other than rcDBValue, then not all of
the data actually returned by the data source was retrieved. This
could happen, for instance, if the user’s computer does not have
sufficient memory space to hold all the data. In this case, your
application can make more space available (by writing the data in
the data record to disk, for example) and then call the
DBGetQueryResults function again to complete retrieval of the
data.

Note

The DBGetQueryResults function retrieves whole rows only; if it
runs out of space in the middle of a row, it stores the partial row in a
private buffer so that the data in the results record ends with the
last complete row. Because the last partial row is no longer available
from the data server, you cannot start to retrieve data with the
DBGetQueryResults function and then switch to the DBGetItem
function to complete the data retrieval. ◆

numCols The number of columns in each row of data.
colTypes A handle to an array of data types, specifying the type of data in

each column. The number of elements in the array is equal to the
value in the numCols field. Table 12-1 beginning on page 12-39
shows the standard data types.

colData A handle to the data retrieved by the DBGetQueryResults
function.
Data Access Manager Reference 12-59

C H A P T E R 1 2

Data Access Manager
colInfo A handle to an array of records of type DBColInfoRecord, each of
which specifies the length, places, and flags for a data item. There
are as many records in the array as there are data items retrieved by
the DBGetQueryResults function. Here is the
DBColInfoRecord type definition:

TYPE DBColInfoRecord =

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal }

{ and money data items}

flags: Integer; {flags for data item}

END;

The len field indicates the length of the data item. The
DBGetQueryResults function returns a value in this field only for
those data types that do not have implied lengths; see Table 12-1 on
page 12-39 for a list of these data types.
The places field indicates the number of decimal places in data
items of types typeMoney and typeDecimal. For all other data
types, the places field returns 0.
The least significant bit of the flags field is set to 1 if the data item
is in the last column of the row. The third bit of the flags field is 1
if the data item is NULL. You can use the constants
kDBLastColFlag and kDBNullFlag to test for these flag bits.

Data Access Manager Routines 12
The Data Access Manager has high-level routines, low-level routines, and routines that
manipulate result handlers. This section describes all of the Data Access Manager
routines.

All of the low-level routines and some of the high-level routines accept a pointer to
an asynchronous parameter block as a parameter. For these routines, see “The
Asynchronous Parameter Block” beginning on page 12-56 for a description of the fields
in the parameter block.

If you specify a nonzero value for the pointer to the asynchronous parameter block, the
database extension executes the function asynchronously—that is, it returns control to
the Data Access Manager before the routine has completed execution, and the Data
Access Manager returns control to your application. If you specify NIL for this
parameter, the database extension does not return control to your application until the
routine has finished execution. Your application must call the Event Manager’s
WaitNextEvent function periodically to allow an asynchronous routine to complete
execution. The WaitNextEvent function is described in the chapter “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials.
12-60 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
You can tell when an asynchronous routine has completed execution and check the result
code by looking at values in the asynchronous parameter block. You can use the DBKill
function to cancel an asynchronous routine.

Note
A noErr result code returned by a routine that has been called
asynchronously indicates only that the routine began execution
successfully. You must check the result field of the asynchronous
parameter block for the final result of the routine. ◆

Assembly-Language Note

You can invoke each of the Data Access Manager routines with a macro
that has the same name as the routine, but preceded with an underscore;
for example, the macro for the DBInit function is named _DBInit.
Each of these macros places a routine selector in the D0 register and calls
the trap _Pack13. The routine selectors are listed in each routine
description and in “Assembly-Language Summary” beginning on
page 12-104. ◆

Initializing the Data Access Manager 12

You must initialize the Data Access Manager before you can use it.

InitDBPack 12

Use the InitDBPack function to initialize the Data Access Manager.

FUNCTION InitDBPack: OSErr;

DESCRIPTION

The InitDBPack function initializes the Data Access Manager. You must call the
InitDBPack function before you call any other Data Access Manager routines. If the
Data Access Manager has already been initialized, the InitDBPack function returns the
noErr result code but does nothing else.

The interface routine that implements the InitDBPack function includes a version
number for the Data Access Manager. If the Data Access Manager is a different version
from that specified by the interface routine, then the InitDBPack function returns the
rcDBWrongVersion result code.

SPECIAL CONSIDERATIONS

The InitDBPack function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-61

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InitDBPack function are

RESULT CODES

High-Level Interface: Handling Query Documents 12

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
use and contents of query documents are discussed in “Creating a Query Document”
beginning on page 12-47. The routines described in this section create query records,
dispose of query records, and use query documents to establish communication with
and send queries to a data server. For a general discussion of the high-level interface, see
“The High-Level Interface” beginning on page 12-7 . For instructions on using the
high-level interface, refer to “Using the High-Level Interface” beginning on page 12-14.

DBGetNewQuery 12

You can use the DBGetNewQuery function to create a query record.

FUNCTION DBGetNewQuery (queryID: Integer;

VAR query: QueryHandle): OSErr;

queryID The resource ID of a 'qrsc' resource.

query Returns a handle to the query record.

DESCRIPTION

The DBGetNewQuery function creates a query record from the specified 'qrsc'
resource. The resource file that contains the 'qrsc' resource must remain open until
after the DBStartQuery function has completed execution. If you do not already know
the resource ID of the 'qrsc' resource (for example, if you call the StandardGetFile
procedure to let the user select the query document), you can use Resource Manager
routines to determine the resource ID.

Trap macro Selector

_InitDBPack $0100

noErr 0 No error
rcDBWrongVersion –812 Wrong version number
12-62 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
SPECIAL CONSIDERATIONS

The DBGetNewQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetNewQuery function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBGetNewQuery function. For a description of the query record, see page 12-57. For a
description of the 'qrsc' resource, see “The Query Resource” beginning on page 12-91.
The StandardGetFile procedure is described in the chapter “Standard File Package”
in Inside Macintosh: Files, and Resource Manager routines are described in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

DBDisposeQuery 12

When you are finished using a query record, call DBDisposeQuery to dispose of the
query record.

FUNCTION DBDisposeQuery (query: QueryHandle): OSErr;

query A handle to the query record to dispose.

DESCRIPTION

The DBDisposeQuery function disposes of a query record and frees all the memory
that the Data Access Manager allocated when it created the query record.

SPECIAL CONSIDERATIONS

The DBDisposeQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

Trap macro Selector

_DBGetNewQuery $030F

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-63

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBDisposeQuery function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBDisposeQuery function in the high-level interface. For a description of the query
record, see page 12-57.

DBStartQuery 12

Use the DBStartQuery function to initiate the process of sending a query to a data
server.

FUNCTION DBStartQuery (VAR sessID: LongInt; query: QueryHandle;

 statusProc: ProcPtr;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID A session ID that identifies a session with the data server. If you specify 0
for this parameter, then the DBStartQuery function initiates a session
and returns the session ID in the sessID parameter.

query A handle to a query record.

statusProc
A pointer to a status routine that your application can use to update its
windows after the query definition function has completed execution.
(The DBStartQuery function does not attempt to update your
application’s windows.) The DBStartQuery function also calls your
status routine before it initiates a session with a data server, after it calls
the DBInit function, after it calls the DBSend function, and after it
calls the DBExec function. Status routines are discussed in “Writing a
Status Routine for High-Level Functions” beginning on page 12-22.

asyncPB A pointer to an asynchronous parameter block. When specified, the
DBStartQuery function calls the DBInit, DBSend, and DBExec
functions asynchronously. As soon as the DBInit function has started
execution, it returns control to your application. Your application must
then call the Event Manager’s WaitNextEvent function periodically to

Trap macro Selector

_DBDisposeQuery $0210

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-64 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
allow these asynchronous routines to run, and it must check the result
field of the asynchronous parameter block to determine when each
routine has completed execution.

DESCRIPTION

The DBStartQuery function performs the following tasks, in the order specified:

1. It calls the query definition function (if any) pointed to by the query record. The query
definition function modifies the query record and the query, usually by asking the
user for input. The query definition function can display a dialog box that gives
the user the option of canceling the query; if the user does cancel the query, the
DBStartQuery function returns the userCanceledErr result code.

2. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBUpdateWind constant in the message
parameter so that your application can update its windows.

3. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBAboutToInit constant in the
message parameter so that your application can display a dialog box informing the
user that a session is about to be initiated with a data server, and giving the user the
option of canceling execution of the function.

4. If the sessID parameter is 0, the DBStartQuery function calls the DBInit function
to initiate a session, and returns a session ID.

5. If you specify a nonzero value for the statusProc parameter and the
DBStartQuery function calls the DBInit function, the DBStartQuery function
calls your status routine with the kDBInitComplete constant in the message
parameter and the result of the DBInit function in the function result.

6. The DBStartQuery function calls the DBSend function to send the query to the data
server.

7. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBSendComplete constant in the
message parameter and the result of the DBSend function in the result parameter.

8. The DBStartQuery function calls the DBExec function to execute the query.

9. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBExecComplete constant in the
message parameter and the result of the DBExec function in the result parameter.

10. If you specify a nonzero value for the statusProc parameter, the DBStartQuery
function calls your status routine with the kDBStartQueryComplete constant in the
message parameter and the result of the DBStartQuery function in the result
parameter.

SPECIAL CONSIDERATIONS

The DBStartQuery function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-65

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBStartQuery function are

RESULT CODES

SEE ALSO

See “Using the High-Level Interface” beginning on page 12-14 for a general description
of how the DBStartQuery function works in conjunction with other Data Access
Manager routines. See Listing 12-1 beginning on page 12-18 for an example of the use of
the DBStartQuery function. For a description of the query record, see page 12-57. For
information on how to write a query definition function or status routine, see “Writing a
Query Definition Function” beginning on page 12-52 and “Writing a Status Routine for
High-Level Functions” beginning on page 12-22, respectively. Descriptions of the
DBInit, DBSend, and DBExec functions begin on page 12-69, page 12-77, and
page 12-79, respectively.

High-Level Interface: Handling Query Results 12

The high-level interface to the Data Access Manager allows applications to manipulate
query documents and to get the results of the query provided by a query document. The
high-level routines in this section retrieve query results and convert them to text.

DBGetQueryResults 12

You can use the DBGetQueryResults function to retrieve the results of a query.

FUNCTION DBGetQueryResults (sessID: LongInt;

 VAR results: ResultsRecord;

 timeout: LongInt; statusProc: ProcPtr;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

Trap macro Selector

_DBStartQuery $0811

noErr 0 No error
userCanceledErr –128 User canceled the query
rcDBError –802 Error initiating session, sending text, or executing

query
rcDBBadSessID –806 Session ID is invalid
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-66 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
sessID The session ID of the session from which you wish to retrieve results.

results The results record, which contains handles to the retrieved data.

timeout The value that the DBGetQueryResults function uses for the
timeout parameter each time it calls the DBGetItem function.
The timeout parameter specifies the maximum amount of time that the
database extension should wait to receive results from the data server
before canceling the DBGetItem function. Specify the timeout
parameter in sixtieths of a second. To disable the timeout feature, set the
timeout parameter to the kDBWaitForever constant. Some database
extensions ignore the timeout parameter when you specify a nonzero
value for the asyncPB parameter.

statusProc
A pointer to a status routine that you provide. The DBGetQueryResults
function calls your status routine after it calls the DBGetItem function to
retrieve a data item. When it calls the status routine, the
DBGetQueryResults function provides the result of the DBGetItem
function, the data type, the data length, the number of decimal places, the
flags associated with the data item, and a pointer to the data item.

asyncPB A pointer to an asynchronous parameter block. If specified, the
DBGetQueryResults function calls the DBGetItem function
asynchronously for each data item. As soon as the DBGetItem function
has started execution, it returns control to your application. Your
application must then call the Event Manager’s WaitNextEvent
function periodically to allow this asynchronous routine to run, and it
must check the result field of the asynchronous parameter block to
determine when the routine has completed execution.

DESCRIPTION

The DBGetQueryResults function retrieves the results returned by a query and places
them in memory. If there is sufficient memory available, this function retrieves all of the
results at once. If the DBGetQueryResults function runs out of memory, it places as
much data as possible in memory, up to the last whole row. You can then make more
memory available and call the DBGetQueryResults function again to retrieve more
data.

You must allocate the results record and pass this record to the DBGetQueryResults
function. The Data Access Manager allocates the handles inside the results record. When
your application is finished using the results record, you must deallocate both the results
record and the handles inside the results record.

The DBGetQueryResults function can be used to retrieve the results of any query, not
only queries sent and executed by the DBStartQuery function.

SPECIAL CONSIDERATIONS

The DBGetQueryResults function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.
Data Access Manager Reference 12-67

C H A P T E R 1 2

Data Access Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetQueryResults function are

RESULT CODES

SEE ALSO

See Listing 12-1 beginning on page 12-18 for an example of the use of the
DBGetQueryResults function. See page 12-56 for a description of the asynchronous
parameter block. Descriptions of the DBStartQuery and DBGetItem functions begin
on page 12-64 and page 12-84, respectively. For more information on results records, see
“The Results Record” beginning on page 12-59 and “Getting Query Results” beginning
on page 12-37. For more information on status routines, see “Writing a Status Routine for
High-Level Functions” beginning on page 12-22.

DBResultsToText 12

After retrieving a results record from DBGetQueryResults, you can use the
DBResultsToText function to convert the returned data to text.

FUNCTION DBResultsToText (results: ResultsRecord;

 VAR theText: Handle): OSErr;

results The results record returned by the DBGetQueryResults function.

theText The DBResultsToText function returns a handle to the converted text
in this parameter. This handle is allocated by the Data Access Manager.

DESCRIPTION

The DBResultsToText function calls result handlers to convert to text the data
retrieved by the DBGetQueryResults function.

Trap macro Selector

_DBGetQueryResults $0A12

noErr 0 No error
userCanceledErr –128 Function canceled by status routine
rcDBValue –801 Data available
rcDBError –802 Query execution ended in an error
rcDBBreak –804 Function timed out
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-68 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
SPECIAL CONSIDERATIONS

The DBResultsToText function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBResultsToText function are

RESULT CODES

SEE ALSO

See Listing 12-1 begining on page 12-18 for an example of the use of the
DBResultsToText function. See “Converting Query Results to Text” beginning on
page 12-43 for a discussion of result handlers.

Low-Level Interface: Controlling the Session 12

The low-level interface to the Data Access Manager allows applications to open and
close sessions with a data server, send and execute queries, retrieve query results, and
obtain information about any current session.

DBInit 12

Use the DBInit function to initiate a session with a data server.

FUNCTION DBInit (VAR sessID: LongInt; ddevName: Str63;

 host: Str255; user: Str255; password: Str255;

 connStr: Str255;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The DBInit function returns the session ID in this parameter. This
session ID is unique; no other current session, for any database extension,
has the same session ID. You must specify the session ID any time you
want to send data to or retrieve data from this session. Depending on the
database extension you are using, the DBInit function might return a

Trap macro Selector

_DBResultsToText $0413

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-69

C H A P T E R 1 2

Data Access Manager
session ID of 0 if it fails to initiate a session, or it might return a
nonzero session ID and a result code other than noErr. In the latter case,
you can pass the session ID to the DBGetErr function to determine the
cause of the error.

ddevName A string of no more than 63 characters that specifies the name of the
database extension. The name of the database extension is contained in
the database extension file in a resource of type 'STR ' with a
resource ID of 128. For the Data Access Language database extension
provided by Apple, for example, this string is “DAL”.

host The name of the host system on which the data server is located. This
name depends on the manner in which the database extension initiates
communication with the data server and how the system administrator
has set up the computer system.

user The name of the user.

password The password associated with the user name.

connStr A string that is passed to the data server, which might pass it on to the
database management software on the host computer. This string is
necessary in some systems to complete log-on procedures.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You must initiate a session before you call any Data Access Manager function that
requires a session ID as an input parameter. If the DBInit function returns a nonzero
session ID, you must call the DBEnd function to terminate the session, even if the
DBInit function also returns a result code other than noErr.

Because the high-level function DBStartQuery can call the DBInit function, you do
not have to call the DBInit function if you have called the DBStartQuery function.

SPECIAL CONSIDERATIONS

The DBInit function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBInit function are

Trap macro Selector

_DBInit $0E02
12-70 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBInit function. See
page 12-64 for a description of the DBStartQuery function. The DBEnd function is
described next.

DBEnd 12

You must call the DBEnd function to terminate a session.

FUNCTION DBEnd (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBEnd function terminates a session with a data server and terminates the network
connection between the application and the host computer.

SPECIAL CONSIDERATIONS

The DBEnd function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBEnd function are

noErr 0 No error
rcDBError –802 Error initiating session
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called

Trap macro Selector

_DBEnd $0403
Data Access Manager Reference 12-71

C H A P T E R 1 2

Data Access Manager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBGetConnInfo 12

The DBGetConnInfo function returns information about the specified session,
including

■ the version of the database extension

■ the name of the host system on which the session is running

■ the user name

■ the connection string that was used to initiate communication

■ the name of the network

■ the time at which the session started, in ticks (sixtieths of a second)

■ the status of the session

FUNCTION DBGetConnInfo (sessID: LongInt; sessNum: Integer;

VAR returnedID: LongInt;

VAR version: LongInt;

VAR ddevName: Str63;

VAR host: Str255; VAR user: Str255;

VAR network: Str255; VAR connStr: Str255;

VAR start: LongInt; VAR state: OSErr;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function. If you include
a nonzero value for the sessID parameter when you call the
DBGetConnInfo function, the function returns the name of the database
extension in the ddevName parameter. If you use 0 for the sessID
parameter and specify the database extension and session number instead
(in the ddevName and sessNum parameters), the function returns the
session ID in the returnedID parameter.

sessNum The session number of the session about which you want information. If
you specify a nonzero session number, you must also provide the
database extension in the ddevName parameter.

noErr 0 No error
rcDBError –802 Error ending session
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-72 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
returnedID
Returns the session ID if you specify the session number and the database
extension.

version Returns the version number of the database extension that is currently in
use.

ddevName A string of no more than 63 characters that specifies the name of the
database extension. If you specify 0 for the session ID, you must include
the name of the database extension as well as a session number. If you
specify a valid session ID, then the DBGetConnInfo function returns the
name of the database extension in the ddevName parameter. The name of
the database extension is contained in the database extension file in a
resource of type 'STR ' with a resource ID of 128. For the Data Access
Language database extension provided by Apple, for example, this string
is “DAL”.

host Returns the host string used to initiate communication with the data
server.

user Returns the user string used to initiate communication with the data
server.

network Returns the name of the network through which the database extension is
communicating with the data server. This parameter is an empty string if
you are not communicating through a network.

connStr Returns the connection string used to initiate communication with the
data server.

start Returns the time, in ticks (sixtieths of a second), at which this session was
initiated.

state Returns one of the following values to provide information about the
status of the session:

CONST noErr = 0; {no error--ready for more }
{ text}

rcDBValue = –801; {output data available}
rcDBError = –802; {execution ended in an }

{ error}
rcDBExec = –805; {busy--currently executing }

{ query}

asynchPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You can use the DBGetConnInfo function to get information about a particular session,
or you can call the function repeatedly, incrementing the session number each time, to
get information about all of the sessions associated with a particular database extension.
Data Access Manager Reference 12-73

C H A P T E R 1 2

Data Access Manager
The sessID parameter is the session ID that was returned by the DBInit function. The
sessNum parameter is the session number of the session about which you want
information. You can specify either the session ID or the session number when you call
the DBGetConnInfo function. If you specify the sessID parameter, use 0 for the
sessNum parameter. If you specify the sessNum parameter, then use 0 for the sessID
parameter. If you specify the sessNum parameter, you must specify a value for the
ddevName parameter as well. If you specify the session number and the database
extension, then the DBGetConnInfo function returns the session ID in the returnedID
parameter.

SPECIAL CONSIDERATIONS

The DBGetConnInfo function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetConnInfo function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. For more
information on the use of the DBGetConnInfo function, see “Getting Information
About Sessions in Progress” on page 12-36.

Trap macro Selector

_DBGetConnInfo $1704

noErr 0 No error
rcDBBadSessID –806 Session ID is invalid or database extension name is

invalid
rcDBBadSessNum –807 Invalid session number
rcDBBadDDev –808 Couldn’t find the specified database extension, or

error occurred in opening database extension
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-74 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DBGetSessionNum 12

The DBGetSessionNum function returns a session number when you specify the
session ID.

FUNCTION DBGetSessionNum (sessID: LongInt; VAR sessNum: Integer;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

sessNum Returns the session number of the session you specify with the sessID
parameter. The session number is unique for a particular database
extension, but the same session number might be in use for different
database extensions at the same time.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

You can use the DBGetSessionNum function to determine the session numbers for the
sessions opened by your own application. You might want this information, for example,
so you can distinguish your own sessions from those opened by other applications when
you use the DBGetConnInfo function to get information about all open sessions.

SPECIAL CONSIDERATIONS

The DBGetSessionNum function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetSessionNum function are

RESULT CODES

Trap macro Selector

_DBGetSessionNum $0605

noErr 0 No error
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-75

C H A P T E R 1 2

Data Access Manager
SEE ALSO

A description of the asynchronous parameter block structure begins on page 12-56. The
DBInit function description begins on page 12-69. A description of the
DBGetConnInfo function begins on page 12-72.

DBKill 12

Use the DBKill function to cancel the execution of an asynchronous routine.

FUNCTION DBKill (asyncPB: DBAsyncParmBlkPtr): OSErr;

asyncPB A pointer to an asynchronous parameter block.

DESCRIPTION

The DBKill function cancels the execution of the asynchronous call specified by the
asyncPB parameter.

SPECIAL CONSIDERATIONS

The DBKill function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBKill function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

Trap macro Selector

_DBKill $020E

noErr 0 No error
rcDBError –802 Error canceling routine
rcDBBadAsynchPB –810 Invalid parameter block specified
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-76 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Low-Level Interface: Sending and Executing Queries 12

The functions in this section send queries or portions of queries to the data server,
execute queries that have been sent, return information about queries that have been
sent, and halt execution of queries that are executing.

DBSend 12

You can use the DBSend function to send a query or a portion of a query to a data server.

FUNCTION DBSend (sessID: LongInt; text: Ptr; len: Integer;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

text A pointer to the query or query fragment that you want to send to
the data server. The query or query fragment must be a character string.

len The length of the character string. If the len parameter has a value of –1,
then the character string is assumed to be NULL terminated (that is, the
string ends with a NULL byte); otherwise, the len parameter specifies the
number of bytes in the string.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBSend function sends a query or a portion of a query to the data server. The data
server appends this portion of the query to any portion you sent previously. Because the
Data Access Manager does not modify the string you send in any way, it does not
insert any delimiter between fragments of queries that you send to the data server. If
you want a blank or a semicolon to be included between query fragments, or if you want
to use return characters to divide the query into lines of text, you must include them in
the character string that you send with this function.

The data server does not execute the query until you call the DBExec function.

SPECIAL CONSIDERATIONS

The DBSend function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBSend function are

Trap macro Selector

_DBSend $0706
Data Access Manager Reference 12-77

C H A P T E R 1 2

Data Access Manager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-4
beginning on page 12-32 for an example of the use of the DBSend function in sending a
query fragment. See page 12-79 for a description of the DBExec function.

DBSendItem 12

You can use the DBSendItem function to send to the data server the data that you wish
to include in a query.

FUNCTION DBSendItem (sessID: LongInt; dataType: DBType;

len: Integer; places: Integer;

flags: Integer; buffer: Ptr;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

dataType The data type for the data item that you are sending to the data server.

len The length of the data item that you are sending to the data server. The
database extension and data server ignore the len parameter if the data
type has an implied length.

places The number of decimal places for the data item that you are sending
to the data server. The database extension and data server ignore the
places parameter for all values of the dataType parameter except
typeDecimal and typeMoney.

flags Set the flags parameter to 0. There are no flags currently defined for the
DBSendItem function.

buffer A pointer to the memory location of the data item that you want to send.
When you use the DBSendItem function to send an item of data to a data
server, the database extension and data server format the data according
to the data type, length, and decimal places you specify, convert it to a
character string, and append the data to the query.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

noErr 0 No error
rcDBError –802 Error trying to send text
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-78 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DESCRIPTION

The DBSendItem function sends a single data item to the data server. The database
extension or the data server (depending on how the system is implemented) converts the
data item to a character string and appends it to the query, just as the DBSend function
appends a query program fragment to the query. The query is not executed until you call
the DBExec function.

SPECIAL CONSIDERATIONS

The DBSendItem function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBSendItem function are

RESULT CODES

SEE ALSO

For a discussion of data types, see “Getting Query Results” beginning on page 12-37. For
a description of the asynchronous parameter block, see page 12-56. See Listing 12-4
beginning on page 12-32 for an example of the use of the DBSendItem function in
sending a query fragment. See page 12-77 for a description of the DBSend function. The
DBExec function is described next.

DBExec 12

The DBExec function initiates execution of a query that you have sent to a data server.

FUNCTION DBExec (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

Trap macro Selector

_DBSendItem $0B07

noErr 0 No error
rcDBError –802 Error trying to send item
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-79

C H A P T E R 1 2

Data Access Manager
DESCRIPTION

The DBExec function initiates execution of a query that you have sent to a data server.
You can use the DBState function to determine the status of a query after you have
initiated execution.

SPECIAL CONSIDERATIONS

The DBExec function may move or purge memory. You should not call this routine from
within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBExec function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example of the use of the DBExec function. Descriptions
of the DBSend and DBSendItem functions begin on page 12-77 and page 12-78,
respectively. The DBState function is described next.

DBState 12

You can use the DBState function to determine whether the data server has successfully
executed a query and whether it has data available for you to retrieve.

FUNCTION DBState (sessID: LongInt;

asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

Trap macro Selector

_DBExec $0408

noErr 0 No error
rcDBError –802 Error trying to begin execution
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-80 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
DESCRIPTION

The DBState function returns a result code that indicates the status of the data server.

SPECIAL CONSIDERATIONS

The DBState function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBState function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBGetErr 12

The DBGetErr function retrieves error codes and error messages from a data server. You
can use this function to obtain information when a low-level function returns the result
code rcDBError.

FUNCTION DBGetErr (sessID: LongInt; VAR err1: LongInt;

 VAR err2: LongInt; VAR item1: Str255;

 VAR item2: Str255; VAR errorMsg: Str255;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

err1 Returns the primary error code.

err2 Returns the secondary error code.

item1 Returns a string that describes the object of the error message.

Trap macro Selector

_DBState $0409

noErr 0 No error
rcDBValue –801 Output data available
rcDBError –802 Error executing function
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-81

C H A P T E R 1 2

Data Access Manager
item2 Returns a string that describes the object of the error message.

errorMsg Returns the error message.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

If the DBState function returns the rcDBError result code, indicating that execution of
a query ended in an error, the error information retuned by DBGetErr can help you
debug the query. The meaning of each error code and error message returned by this
function depends on the data server with which you are communicating; see the
documentation for that data server for more information.

SPECIAL CONSIDERATIONS

The DBGetErr function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetErr function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

DBBreak 12

You can use the DBBreak function to cancel a query—for example, if you determine that
it is taking too long to complete execution.

FUNCTION DBBreak (sessID: LongInt; abort: Boolean;

asyncPB: DBAsyncParmBlkPtr): OSErr;

Trap macro Selector

_DBGetErr $0E0A

noErr 0 No error
rcDBError –802 Error retrieving error information
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-82 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
sessID The session ID that was returned by the DBInit function.

abort A Boolean value that indicates how DBBreak should cancel the query.
Specify TRUE (nonzero) to cause the data server to halt any query that is
executing and terminate the current session. Specify FALSE (0) to cause
the data server to halt any query that is executing and reinitialize itself.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBBreak function can halt execution of a query and reinitialize the data server, or it
can unconditionally terminate a session with a data server.

SPECIAL CONSIDERATIONS

The DBBreak function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBBreak function are

RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56.

Low-Level Interface: Retrieving Results 12

The functions in this section allow you to retrieve a data item from the data server, to
obtain information about the next data item, and to retrieve the same data item more
than once.

Trap macro Selector

_DBBreak $050B

noErr 0 No error
rcDBError –802 Error executing function
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-83

C H A P T E R 1 2

Data Access Manager
DBGetItem 12

After you have executed a query and the DBState function returns the rcDBValue
result code, indicating that data is available, you can use the DBGetItem function to
retrieve the next data item. You can also use this function to obtain information about the
next data item without retrieving the data.

FUNCTION DBGetItem (sessID: LongInt; timeout: LongInt;

 VAR dataType: DBType; VAR len: Integer;

 VAR places: Integer; VAR flags: Integer;

 buffer: Ptr; asyncPB: DBAsyncParmBlkPtr)

 : OSErr;

sessID The session ID that was returned by the DBInit function.

timeout The maximum amount of time that the database extension should wait to
receive results from the data server before canceling the function. Specify
the timeout parameter in ticks (sixtieths of a second). To disable the
timeout feature, set the timeout parameter to the kDBWaitForever
constant. If the timeout period expires, the DBGetItem function returns
the rcDBBreak result code. The DBGetItem function ignores the
timeout parameter if you call the function asynchronously.

One use for the timeout parameter is to call the DBGetItem function
periodically with a short value set for this parameter in order to return
control to your application while a query is executing. Your application
can then retrieve the next data item as soon as execution of the query is
complete without having to call the DBState function to determine when
data is available.

dataType The data type that you expect the next data item to be. If the item is not of
the expected data type, the database extension returns the rcDBBadType
result code. If you want to retrieve the next data item regardless of type,
set the dataType parameter to the typeAnyType constant. To skip the
next data item, set the dataType parameter to the typeDiscard
constant. The data server sets the dataType parameter to the actual type
of the data item when it retrieves the data item or returns information
about the data item.

len The length of the data buffer pointed to by the buffer parameter. If you
use the DBGetItem function to obtain information only (by setting the
buffer parameter to NIL), then the data server ignores the len
parameter. The data server sets the len parameter to the actual length of
the data item when it retrieves the data item or returns information
about the data item.

places Returns the number of decimal places in data items of types typeMoney
and typeDecimal. For all other data types, the data server returns 0 for
the places parameter.
12-84 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
flags If the least significant bit of the flags parameter is set to 1, the data item
is in the last column of the row. If the third bit of this parameter is set to 1,
the data item is NULL. You can use the constants kDBLastColFlag and
kDBNullFlag to test for these flag bits.

buffer A pointer to the location where you want the retrieved data item to be
stored. You must ensure that the location you specify contains enough
space for the data item that will be returned. To determine the data type,
length, and number of decimal places of the next data item without
retrieving it, specify NIL for the buffer parameter.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBGetItem function retrieves the next data item from the data server. You can
repeat the DBGetItem function as many times as is necessary to retrieve all of the data
returned by the data source in response to a query.

SPECIAL CONSIDERATIONS

The DBGetItem function may move or purge memory. You should not call this routine
from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetItem function are

RESULT CODES

Trap macro Selector

_DBGetItem $100C

noErr 0 No error
rcDBNull –800 The data item was NULL
rcDBValue –801 Data available was successfully retrieved
rcDBError –802 Error executing function
rcDBBadType –803 Next data item not of requested data type
rcDBBreak –804 Function timed out
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-85

C H A P T E R 1 2

Data Access Manager
SEE ALSO

For a discussion of data types, see “Getting Query Results” beginning on page 12-37.
To retrieve all of a query’s data items at once, use the high-level function
DBGetQueryResults; a description of that function begins on page 12-66. For a
description of the asynchronous parameter block, see page 12-56. See Listing 12-5
beginning on page 12-34 for an example that illustrates the use of the DBGetItem
function.

DBUnGetItem 12

The DBUnGetItem function reverses the effect of the last call to the DBGetItem
function, in the sense that the next time you call the DBGetItem function it retrieves the
same item a second time.

FUNCTION DBUnGetItem (sessID: LongInt;

 asyncPB: DBAsyncParmBlkPtr): OSErr;

sessID The session ID that was returned by the DBInit function.

asyncPB A pointer to an asynchronous parameter block. If you do not want to call
the function asynchronously, set this parameter to NIL.

DESCRIPTION

The DBUnGetItem function does not remove the just-retrieved data item from the input
buffer. This function can reverse the effect of only one call to the DBGetItem function;
you cannot use it to step back through several previously retrieved data items.

SPECIAL CONSIDERATIONS

The DBUnGetItem function may move or purge memory. You should not call this
routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBUnGetItem function are

Trap macro Selector

_DBUnGetItem $040D
12-86 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
RESULT CODES

SEE ALSO

For a description of the asynchronous parameter block, see page 12-56. See page 12-84
for a description of the DBGetItem function.

Installing and Removing Result Handlers 12

The functions in this section install, remove, and return pointers to result handlers.

DBInstallResultHandler 12

The DBInstallResultHandler function installs a result handler for the data type
specified by the dataType parameter. The result handler is then used by the
DBResultsToText function to convert data of the specified type into a character string.

FUNCTION DBInstallResultHandler (dataType: DBType;

theHandler: ProcPtr;

isSysHandler: Boolean): OSErr;

dataType The type of result handler to install.

theHandler
A pointer to a result handler.

isSysHandler
A Boolean value that specifies whether the result handler is an
application result handler—to be used only when the
DBResultsToText function is called by the application that installed the
result handler—or a system result handler—to be used by every
application running on the system. If the isSysHandler parameter is
TRUE, the result handler is a system result handler.

DESCRIPTION

When you install an application result handler, it replaces any result handler with the
same name previously installed by that application. Similarly, when you install a system
result handler, it replaces any existing system result handler with the same name. Before
you temporarily replace an existing result handler, use the DBGetResultHandler

noErr 0 No error
rcDBError –802 Error executing function
rcDBBadSessID –806 Session ID is invalid
rcDBAsyncNotSupp –809 The database extension does not support

asynchronous calls
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-87

C H A P T E R 1 2

Data Access Manager
function to obtain a pointer to the present handler, and save the present result handler in
your application’s private storage. Then you can reinstall the original result handler
when you are finished using the temporary one.

Because an application result handler is used in preference to a system result handler if
both are available, you can temporarily replace a system result handler for purposes of
your application by installing an application result handler for the same data type. You
can then use the DBRemoveResultHandler function to remove the application result
handler and return to using the system result handler whenever you wish.

SPECIAL CONSIDERATIONS

The DBInstallResultHandler function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBInstallResultHandler function are

RESULT CODES

SEE ALSO

See page 12-68 for a description of the DBResultsToText function. For information
on application and system result handlers, see “Converting Query Results to Text”
beginning on page 12-43; that section also lists the data types for which Apple provides
system result handlers. Listing 12-6 on page 12-46 shows a sample result handler. The
DBRemoveResultHandler function is described on page 12-90, and the
DBGetResultHandler function is described next.

DBGetResultHandler 12

The DBGetResultHandler function returns a pointer to a result handler for a specified
data type.

FUNCTION DBGetResultHandler (dataType: DBType;

 VAR theHandler: ProcPtr;

 getSysHandler: Boolean): OSErr;

dataType The data type for which to install a result handler.

Trap macro Selector

_DBInstallResultHandler $0514

noErr 0 No error
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-88 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
theHandler
Returns a pointer to the result handler.

getSysHandler
If you set the getSysHandler parameter to FALSE (0), the function
returns a pointer to the current application result handler for the specified
data type, or it returns NIL if there is no application result handler for
that data type. If you set the getSysHandler parameter to TRUE
(nonzero), the function returns a pointer to the current system result
handler for the specified data type, or it returns NIL if there is no system
result handler for that data type.

DESCRIPTION

You can use the DBGetResultHandler function to obtain a pointer to a result handler
so that you can use it to convert to text an individual data item retrieved by the
DBGetItem function. The DBGetQueryResults function automatically converts to text
all of the data pointed to by the results record.

SPECIAL CONSIDERATIONS

The DBGetResultHandler function may move or purge memory. You should not call
this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBGetResultHandler function are

RESULT CODES

SEE ALSO

The DBGetQueryResults function is described on page 12-66, and the DBGetItem
function is described on page 12-84. See “Converting Query Results to Text” beginning
on page 12-43 for a list of the data types for which Apple provides system result
handlers. Listing 12-6 on page 12-46 shows a sample result handler.

Trap macro Selector

_DBGetResultHandler $0516

noErr 0 No error
rcDBNoHandler –811 There is no handler for this data type installed for

the current application
rcDBPackNotInited –813 The InitDBPack function has not yet been called
Data Access Manager Reference 12-89

C H A P T E R 1 2

Data Access Manager
DBRemoveResultHandler 12

You can use the DBRemoveResultHandler function to remove an application result
handler.

FUNCTION DBRemoveResultHandler (dataType: DBType): OSErr;

dataType The type of result handler to remove.

DESCRIPTION

The DBRemoveResultHandler function removes from memory the specified
application result handler. This function cannot remove a system result handler.

SPECIAL CONSIDERATIONS

The DBRemoveResultHandler function may move or purge memory. You should not
call this routine from within an interrupt, such as in a completion routine or a VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DBRemoveResultHandler function are

RESULT CODES

SEE ALSO

For a discussion of result handlers, see “Converting Query Results to Text” beginning on
page 12-43.

Application-Defined Routines 12
You can provide status functions, result handler functions, and query defintion functions
for use with the Data Access Manager. For information on status functions, see “Writing
a Status Routine for High-Level Functions” beginning on page 12-22. See “Processing
Query Results” beginning on page 12-37 for information on result handlers. See “Writing
a Query Definition Function” beginning on page 12-52 for information on query
definition functions.

Trap macro Selector

_DBRemoveResultHandler $0215

noErr 0 No error
rcDBNoHandler –811 There is no handler for this data type installed for

the current application
rcDBPackNotInited –813 The InitDBPack function has not yet been called
12-90 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Resources 12
This section describes the query resource, the query string resource, and the query
definition function resource. You use the query resource to provide information that the
Data Access Manager uses to create a query record in memory. You use the query string
resource to define individual queries. You use the query definition function to modify a
query and the query record before the query is sent to the data server.

The Query Resource 12

Each query document should contain a single 'qrsc' resource. Figure 12-9 shows the
format of the 'qrsc' resource.

Figure 12-9 Structure of a compiled query ('qrsc') resource

A 'qrsc' resource contains these elements:

■ The version number of the 'qrsc' format. For the Data Access Manager released
with System 7, the version number is 0.

■ The resource ID of the 'qdef' resource containing the query definition function that
the Data Access Manager is to call when it opens this 'qrsc' resource. Use an ID of 0
if there is no query definition function for this resource—that is, if the Data Access
Manager should send the query in this resource to the data server without
modifications.

A query resource Bytes

Resource types and resource
IDs of other resources

2

Variable

Version

Resource ID of 'qdef'

Resource ID of 'STR#'
(database extension name, host, user,

password, connection string)

Current query index

Number of 'wstr' resources

2

2

2

2

Resource IDs of 'wstr' resources

Number of other resources
in this query document

Variable

2

Data Access Manager Reference 12-91

C H A P T E R 1 2

Data Access Manager
■ The resource ID of an 'STR#' resource that contains five Pascal strings corresponding
to some of the parameters used by the DBInit function. If the query definition
function is going to prompt the user for the values of these parameters before entering
them in the query record, they should be zero-length strings in the 'STR#' resource.

■ An index value indicating which element in the array of 'wstr' IDs represents the
current query. The current query is the one actually sent to the data server.

■ The number of 'wstr' resources in the query document.

■ An array of resource IDs of the 'wstr' resources in the query document. (The array
elements are numbered starting with 1.) If the query document contains more than
one 'wstr' resource, the query definition function can prompt the user to select the
query to use and modify the current query field in the query record appropriately.

■ The number of other resources in this query document.

■ An array listing the resource types and IDs of all the resources in the query document
other than the standard resources included in all query documents. The resources
listed in this final array are those used by the query definition function. This list
should include resources embedded in other resources, such as a 'PICT' resource
that is included in a 'DITL' resource.

The Query String Resource 12

A query document must contain one or more query string resources of type 'wstr'.
These 'wstr' resources contain individual queries—that is, strings of commands and
data that the DBSend function sends to the data server and that the DBExec function
executes.

A 'wstr' resource consists of a 2-byte length field followed by a character string. (The
w in 'wstr' refers to the length word as opposed to the length byte used in an 'STR '
resource.) Each 'wstr' resource contains one query (or one query template, to be
modified by the query definition function before it is sent to the data server). Figure
12-10 shows the structure of the 'wstr' resource.

Figure 12-10 Structure of a compiled query string ('wstr') resource

The 'qrsc' resource includes an array that lists the resource ID numbers of all of the
'wstr' resources in the query document and an index into the array that specifies
which one of the 'wstr' resources should be sent to the data server.

A 'wstr' resource Bytes

2Length

Commands and data 0 to 254
12-92 Data Access Manager Reference

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
The Query Definition Function Resource 12

A query document may contain a query definition function, which can modify the query
record and, if necessary, fill in the query template to create a complete query.

If you want to include a query definition function, you must make it the first piece of
code in a resource of type 'qdef' in the query document.

Note that, because a query in memory consists only of a 2-byte length value followed by
a character string, the query definition function has to know the exact contents and
structure of a query in order to modify it. For a sample query definition function that
uses a dialog box to prompt the user for a user name and password, see Listing 12-7 on
page 12-53.
Data Access Manager Reference 12-93

C H A P T E R 1 2

Data Access Manager
Summary of the Data Access Manager 12

Pascal Summary 12

Constants 12

CONST

gestaltDBAccessMgrAttr = 'dbac'; {Gestalt selector for }
{ Data Access Manager}

{Gestalt selector response}

gestaltDBAccessMgrPresent = 0; {TRUE if Data Access Manager }

{ is present}

{DBStartQuery status messages}

kDBUpdateWind = 0; {update windows}

kDBAboutToInit = 1; {about to call DBInit}

kDBInitComplete = 2; {DBInit has completed}

kDBSendComplete = 3; {DBSend has completed}

kDBExecComplete = 4; {DBExec has completed}

kDBStartQueryComplete = 5; {DBStartQuery is about }

 { to complete}

{DBGetQueryResults status messages}

kDBGetItemComplete = 6; {DBGetItem has completed}

kDBGetQueryResultsComplete = 7; {DBGetQueryResults has }

{ completed data types}

{data type codes}

typeNone = 'none'; {no more data expected}

typeDate = 'date'; {date}

typeTime = 'time'; {time}

typeTimeStamp = 'tims'; {date and time}

typeDecimal = 'deci'; {decimal number}

typeMoney = 'mone'; {money value}

typeVChar = 'vcha'; {variable character}

typeVBin = 'vbin'; {variable binary}

typeLChar = 'lcha'; {long character}

typeLBin = 'lbin'; {long binary}

typeDiscard = 'disc'; {discard next data item}

typeBoolean = 'bool'; {Boolean}

typeChar = 'TEXT'; {character}
12-94 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
typeSMInt = 'shor'; {short integer}

typeInteger = 'long'; {integer}

typeSMFloat = 'sing'; {short floating point}

typeFloat = 'doub'; {floating point}

{dummy data types for DBResultsToText}

typeUnknown = 'unkn'; {result handler for unknown }

{ data type}

typeColBreak = 'colb'; {result handler for column }

{ break}

typeRowBreak = 'rowb'; {result handler for end of }

{ line}

{any data type in DBGetItem}

typeAnyType = 0; {any data type}

{infinite timeout value for DBGetItem}

kDBWaitForever = -1; {infinite timeout value for }

{ DBGetItem}

{flags for DBGetItem}

kDBLastColFlag = $0001; {data item is last column }

{ of the row}

kDBNullFlag = $0004; {data item is NULL}

Data Types 12

TYPE DBType = OSType; {data type}

DBAsyncParamBlockRec = {asynchronous parameter block}

RECORD

completionProc: ProcPtr; {pointer to completion routine}

result: OSErr; {result of call}

userRef: LongInt; {reserved for use by }

{ application}

ddevRef: LongInt; {reserved for use by database }

{ extension}

reserved: LongInt; {reserved for use by }

{ Data Access Mgr}

END;

DBAsyncParmBlkPtr = ^DBAsyncParamBlockRec;

ResListElem = {resource list in QueryRecord}

RECORD

theType: ResType; {resource type}

id: Integer; {resource ID}

END;
Summary of the Data Access Manager 12-95

C H A P T E R 1 2

Data Access Manager
ResListArray = ARRAY[0..255] OF ResListElem;

ResListPtr = ^ResListArray;

ResListHandle = ^ResListPtr;

QueryRecord =

RECORD

version: Integer; {query record format version}

id: Integer; {resource ID of 'qrsc'}

queryProc: Handle; {handle to query def proc}

ddevName: Str63; {name of database extension}

host: Str255; {name of host computer}

user: Str255; {name of user}

password: Str255; {user's password}

connStr: Str255; {connection string}

currQuery: Integer; {index of current query}

numQueries: Integer; {number of queries in list}

queryList: QueryListHandle; {handle to array of handles to text}

numRes: Integer; {number of resources in list}

resList: ResListHandle; {handle to array of resource list }

 { elements}

dataHandle: Handle; {handle to memory for query def proc}

refCon: LongInt; {reserved for use by application}

END;

QueryPtr = ^QueryRecord; {pointer to query record}

QueryHandle = ^QueryPtr; {handle to query record}

{query list in QueryRecord}

QueryArray = ARRAY[0..255] OF Handle;

QueryListPtr = ^QueryArray;

QueryListHandle = ^QueryListPtr;

{column types array in ResultsRecord}

ColTypesArray = ARRAY[0..255] OF DBType;

ColTypesPtr = ^ColTypesArray;

ColTypesHandle = ^ColTypesPtr;

DBColInfoRecord = {column info in ResultsRecord}

RECORD

len: Integer; {length of data item}

places: Integer; {places for decimal and money }

{ data items}

flags: Integer; {flags for data item}

END;
12-96 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
ColInfoArray = ARRAY[0..255] OF DBColInfoRecord;

ColInfoPtr = ^ColInfoArray;

ColInfoHandle = ^ColInfoPtr;

{structure of results returned by DBGetResults}

ResultsRecord =

RECORD

numRows: Integer; {number of rows retrieved}

numCols: Integer; {number of columns per row}

colTypes: ColTypesHandle; {type of data in each column}

colData: Handle; {array of data items}

colInfo: ColInfoHandle; {DBColInfoRecord array--info about }

{ each data item}

END;

Data Access Manager Routines 12

Initializing the Data Access Manager

FUNCTION InitDBPack: OSErr;

High-Level Interface: Handling Query Documents

FUNCTION DBGetNewQuery (queryID: Integer; VAR query: QueryHandle)
: OSErr;

FUNCTION DBDisposeQuery (query: QueryHandle): OSErr;

FUNCTION DBStartQuery (VAR sessID: LongInt; query: QueryHandle;
statusProc: ProcPtr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

High-Level Interface: Handling Query Results

FUNCTION DBGetQueryResults (sessID: LongInt; VAR results: ResultsRecord;
timeout: LongInt; statusProc: ProcPtr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBResultsToText (results: ResultsRecord; VAR theText: Handle)
: OSErr;

Low-Level Interface: Controlling the Session

FUNCTION DBInit (VAR sessID: LongInt; ddevName: Str63;
host: Str255; user: Str255; password: Str255;
connStr: Str255; asyncPB: DBAsyncParmBlkPtr)
: OSErr;
Summary of the Data Access Manager 12-97

C H A P T E R 1 2

Data Access Manager
FUNCTION DBEnd (sessID: LongInt;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBGetConnInfo (sessID: LongInt; sessNum: Integer;
VAR returnedID: LongInt; VAR version: LongInt;
VAR ddevName: Str63; VAR host: Str255;
VAR user: Str255; VAR network: Str255;
VAR connStr: Str255; VAR start: LongInt;
VAR state: OSErr; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBGetSessionNum (sessID: LongInt; VAR sessNum: Integer;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBKill (asyncPB: DBAsyncParmBlkPtr): OSErr;

Low-Level Interface: Sending and Executing Queries

FUNCTION DBSend (sessID: LongInt; text: Ptr; len: Integer;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBSendItem (sessID: LongInt; dataType: DBType;
len: Integer; places: Integer; flags: Integer;
buffer: Ptr; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBExec (sessID: LongInt; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBState (sessID: LongInt; asyncPB: DBAsyncParmBlkPtr)
: OSErr;

FUNCTION DBGetErr (sessID: LongInt; VAR err1: LongInt;
VAR err2: LongInt; VAR item1: Str255;
VAR item2: Str255; VAR errorMsg: Str255;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBBreak (sessID: LongInt; abort: Boolean;
asyncPB: DBAsyncParmBlkPtr): OSErr;

Low-Level Interface: Retrieving Results

FUNCTION DBGetItem (sessID: LongInt; timeout: LongInt;
VAR dataType: DBType;
VAR len: Integer; VAR places: Integer;
VAR flags: Integer; buffer: Ptr;
asyncPB: DBAsyncParmBlkPtr): OSErr;

FUNCTION DBUnGetItem (sessID: LongInt;
asyncPB: DBAsyncParmBlkPtr): OSErr;
12-98 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Installing and Removing Result Handlers

FUNCTION DBInstallResultHandler
(dataType: DBType; theHandler: ProcPtr;
isSysHandler: Boolean): OSErr;

FUNCTION DBGetResultHandler (dataType: DBType; VAR theHandler: ProcPtr;
getSysHandler: Boolean): OSErr;

FUNCTION DBRemoveResultHandler
(dataType: DBType): OSErr;

Application-Defined Routines 12

FUNCTION MyStatusFunc (message: Integer; result: OSErr;
dataLen: Integer; dataPlaces: Integer;
dataFlags: Integer; dataType: DBType;
dataPtr: Ptr): Boolean;

FUNCTION MyResultHandler (dataType: DBType; theLen: Integer;
thePlaces: Integer; theFlags: Integer;
theData: Ptr; theText: Handle): OSErr;

FUNCTION MyQDef (VAR sessID: LongInt;
query: QueryHandle): OSErr;

C Summary 12

Constants 12

enum {

#define gestaltDBAccessMgrAttr 'dbac' /*Gestalt selector for */
/* Data Access Manager*/

/*Gestalt selector response*/

gestaltDBAccessMgrPresent = 0 /*TRUE if Data Access Manager */

/* is present*/

};

enum { /*DBStartQuery status messages*/

kDBUpdateWind = 0, /*update windows*/

kDBAboutToInit = 1, /*about to call DBInit*/

kDBInitComplete = 2, /*DBInit has completed*/

kDBSendComplete = 3, /*DBSend has completed*/

kDBExecComplete = 4, /*DBExec has completed*/

kDBStartQueryComplete = 5 /*DBStartQuery is about */

/* to complete*/

};
Summary of the Data Access Manager 12-99

C H A P T E R 1 2

Data Access Manager
enum {

/*DBGetQueryResults status messages*/

kDBGetItemComplete = 6, /*DBGetItem has completed*/

kDBGetQueryResultsComplete = 7, /*DBGetQueryResults has */

/* completed data types*/

/*data type codes*/

#define typeNone 'none' /*no more data expected*/

#define typeDate 'date' /*date*/

#define typeTime 'time' /*time*/

#define typeTimeStamp 'tims' /*date and time*/

#define typeDecimal 'deci' /*decimal number*/

#define typeMoney 'mone' /*money value*/

#define typeVChar 'vcha' /*variable character*/

#define typeVBin 'vbin' /*variable binary*/

#define typeLChar 'lcha' /*long character*/

#define typeLBin 'lbin' /*long binary*/

#define typeDiscard 'disc' /*discard next data item*/

/*dummy data types for DBResultsToText*/

#define typeUnknown 'unkn' /*result handler for unknown */

/* data type*/

#define typeColBreak 'colb' /*result handler for */

/* column break*/

#define typeRowBreak 'rowb' /*result handler for */

/* end of line*/

/*any data type in DBGetItem*/

#define typeAnyType (DBType)0 /*any data type*/

/*infinite timeout value for DBGetItem*/

kDBWaitForever = -1, /*infinite timeout value for */

/* DBGetItem*/

/*flags for DBGetItem*/

kDBLastColFlag = 0x0001,/*data item is last column */

/* of the row*/

kDBNullFlag = 0x0004 /*data item is NULL*/

};

enum {

/*more data type codes*/

typeBoolean = 'bool', /*Boolean*/

typeChar = 'TEXT', /*character*/

typeSMInt = 'shor', /*short integer*/

typeInteger = 'long', /*integer*/

typeSMFloat = 'sing', /*short floating point*/

typeFloat = 'doub' /*floating point*/

};
12-100 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Data Types 12

typedef OSType DBType; /*data type*/

struct DBAsyncParamBlockRec { /*asynchronous parameter block*/

ProcPtr completionProc; /*pointer to completion routine*/

OSErr result; /*result of call*/

long userRef; /*reserved for use by application*/

long ddevRef; /*reserved for use by database */

/* extension*/

long reserved; /*reserved for use by */

/* Data Access Manager*/

};

typedef struct DBAsyncParamBlockRec DBAsyncParamBlockRec;

typedef DBAsyncParamBlockRec *DBAsyncParmBlkPtr;

struct ResListElem { /*resource list in QueryRecord*/

ResType theType; /*resource type*/

short id; /*resource ID*/

};

typedef struct ResListElem ResListElem;

typedef ResListElem *ResLisPtr, **ResListHandle;

typedef Handle **QueryListHandle;

struct QueryRecord { /*query record*/

short version; /*query record format version*/

short id; /*resource ID of 'qrsc'*/

Handle queryProc; /*handle to query def proc*/

Str63 ddevName; /*name of database extension*/

Str255 host; /*name of host computer*/

Str255 user; /*name of user*/

Str255 password; /*user's password*/

Str255 connStr; /*connection string*/

short currQuery; /*index of current query*/

short numQueries; /*number of queries in list*/

QueryListHandle queryList; /*handle to array of handles to text*/

short numRes; /*number of resources in list*/

ResListHandle resList; /*handle to array of resource list */

/* elements*/

Handle dataHandle; /*handle to memory for query def proc*/

long refCon; /*reserved for use by application*/

};

typedef struct QueryRecord QueryRecord;
Summary of the Data Access Manager 12-101

C H A P T E R 1 2

Data Access Manager
typedef QueryRecord *QueryPtr, **QueryHandle;

/*column types array in ResultsRecord*/

typedef Handle ColTypesHandle;

struct DBColInfoRecord { /*column info in ResultsRecord*/

short len; /*length of data item*/

short places; /*places for decimal and money */

/* data items*/

short flags; /*flags for data item*/

};

typedef struct DBColInfoRecord DBColInfoRecord;

typedef Handle ColInfoHandle;

struct ResultsRecord { /*results returned by DBGetResults*/

short numRows; /*number of rows retrieved*/

short numCols; /*number of columns per row*/

ColTypesHandle colTypes; /*type of data in each column*/

Handle colData; /*array of data items*/

ColInfoHandle colInfo; /*DBColInfoRecord array--info about */

/* each data item*/

};

typedef struct ResultsRecord ResultsRecord;

Data Access Manager Routines 12

Initializing the Data Access Manager

pascal OSErr InitDBPack (void);

High-Level Interface: Handling Query Documents
pascal OSErr DBGetNewQuery (short queryID, QueryHandle *query);

pascal OSErr DBDisposeQuery (QueryHandle query);

pascal OSErr DBStartQuery (long *sessID, QueryHandle query,
ProcPtr statusProc, DBAsyncParmBlkPtr asyncPB);

High-Level Interface: Handling Query Results
pascal OSErr DBGetQueryResults

(long sessID, ResultsRecord *results,
long timeout, ProcPtr statusProc,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBResultsToText
(ResultsRecord *results, Handle *theText);
12-102 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Low-Level Interface: Controlling the Session

pascal OSErr DBInit (long *sessID, ConstStr63Param ddevName,
ConstStr255Param host, ConstStr255Param user,
ConstStr255Param passwd,
ConstStr255Param connStr,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBEnd (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetConnInfo (long sessID, short sessNum, long *returnedID,
long *version, Str63 ddevName, Str255 host,
Str255 user, Str255 network, Str255 connStr,
long *start, OSErr *state,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetSessionNum
(long sessID, short *sessNum,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBKill (DBAsyncParmBlkPtr asyncPB);

Low-Level Interface: Sending and Executing Queries

pascal OSErr DBSend (long sessID, char *text, short len,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBSendItem (long sessID, DBType dataType, short len,
short places, short flags, void *buffer,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBExec (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBState (long sessID, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBGetErr (long sessID, long *err1, long *err2,
Str255 item1, Str255 item2, Str255 errorMsg,
DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBBreak (long sessID, Boolean abort,
DBAsyncParmBlkPtr asyncPB);

Low-Level Interface: Retrieving Results
pascal OSErr DBGetItem (long sessID, long timeout, DBType *dataType,

short *len, short *places, short *flags,
void *buffer, DBAsyncParmBlkPtr asyncPB);

pascal OSErr DBUnGetItem (long sessID, DBAsyncParmBlkPtr asyncPB);

Installing and Removing Result Handlers

pascal OSErr DBInstallResultHandler
(DBType dataType, ProcPtr theHandler,
Boolean isSysHandler);
Summary of the Data Access Manager 12-103

C H A P T E R 1 2

Data Access Manager
pascal OSErr DBGetResultHandler
(DBType dataType, ProcPtr *theHandler,
Boolean getSysHandler);

pascal OSErr DBRemoveResultHandler
(DBType dataType);

Application-Defined Routines 12

pascal Boolean MyStatusFunc (short message, OSErr result, short dataLen,
short dataPlaces, short dataFlags,
DBType dataType, Ptr dataPtr);

pascal OSErr MyResultHandler
(DBType dataType, short theLen,
short thePlaces, short theFlags, Ptr theData,
Handle theText);

pascal OSErr MyQDef (long *sessID, QueryHandle query);

Assembly-Language Summary 12

Trap Macros 12

Trap Macros Requiring Routine Selectors

_Pack13

Selector Routine

$0100 InitDBPack

$020E DBKill

$0210 DBDisposeQuery

$0215 DBRemoveResultHandler

$030F DBGetNewQuery

$0403 DBEnd

$0408 DBExec

$0409 DBState

$040D DBUnGetItem

$0413 DBResultsToText

$050B DBBreak

$0514 DBInstallResultHandler

$0516 DBGetResultHandler

$0605 DBGetSessionNum
12-104 Summary of the Data Access Manager

C H A P T E R 1 2

Data Access Manager

12
D

ata A
ccess M

anager
Result Codes 12

$0706 DBSend

$0811 DBStartQuery

$0A12 DBGetQueryResults

$0B07 DBSendItem

$0E02 DBInit

$0E0A DBGetErr

$100C DBGetItem

$1704 DBGetConnInfo

noErr 0 No error
userCanceledErr –128 User canceled the query
rcDBNull –800 The data item was NULL
rcDBValue –801 Data available or successfully retrieved
rcDBError –802 Error executing function
rcDBBadType –803 Next data item not of requested data type
rcDBBreak –804 Function timed out
rcDBExec –805 Query currently executing
rcDBBadSessID –806 Session ID is invalid
rcDBBadSessNum –807 Invalid session number
rcDBBadDDev –808 Couldn’t find the specified database extension, or error occurred in

opening database extension
rcDBAsyncNotSupp –809 The database extension does not support asynchronous calls
rcDBBadAsynchPB –810 Invalid parameter block specified
rcDBNoHandler –811 There is no handler for this data type installed for the current

application
rcDBWrongVersion –812 Wrong version number
rcDBPackNotInited –813 The InitDBPack function has not yet been called

Selector Routine
Summary of the Data Access Manager 12-105

Glossary
abstract superclass A superclass listed in the
Apple Event Registry: Standard Suites, such as
cObject or cOpenableObject, that is used
only in definitions of object classes and not for
real Apple event objects. See also object class.

active function A function called by a
scripting component periodically during script
compilation and execution. You must provide an
alternative active function for the use of scripting
components if you want your application to get
time during script compilation and execution for
tasks such as spinning the cursor or checking
for system-level errors.

additional parameter A keyword-specified
descriptor record that a server application uses in
addition to the data specified in the direct
parameter. For example, an Apple event for
arithmetic operations may include additional
parameters that specify operands in an equation.
Additional parameters may be required, or they
may be optional.

address descriptor record A descriptor record
of data type AEAddressDesc that contains the
address of the target or source of an Apple event.

AEIMP See Apple Event Interprocess
Messaging Protocol.

AE record A descriptor record of data type
AERecord that usually contains a list of
parameters for an Apple event. See also
Apple event parameter.

Apple event A high-level event that adheres to
the Apple Event Interprocess Messaging
Protocol. An Apple event consists of attributes
(including the event class and event ID, which
identify the event and its task) and, usually,
parameters (which contain data used by the
target application for the event). See also
Apple event attribute, Apple event parameter.

Apple event array An array in a descriptor list.
The data for an Apple event array is specified by
an array data record, which is defined by the data
type AEArrayData.

Apple event attribute A keyword-specified
descriptor record that identifies the event class,
event ID, target application, or some other
characteristic of an Apple event. Taken
together, the attributes of an Apple event identify
the event and denote the task to be performed on
the data specified in the Apple event’s
parameters. Unlike Apple event parameters
(which contain data used only by the target
application of the Apple event), Apple event
attributes contain information that can be used
by both the Apple Event Manager and the target
application. See also Apple event parameter.

Apple event dispatch table A table in either
the application heap or the system heap that the
Apple Event Manager uses to map Apple events
to the appropriate Apple event handlers.

Apple event handler An application-defined
function that extracts pertinent data from an
Apple event, performs the action requested by
the Apple event, and returns a result.

Apple Event Interprocess Messaging Protocol
(AEIMP) A standard defined by Apple
Computer, Inc., for communication and data
sharing among applications. High-level events
that adhere to this protocol are called Apple
events. See also Apple event.

Apple Event Manager The collection of
routines that allows client applications to send
Apple events to server applications for the
purpose of requesting services or information.
GL-1

G L O S S A R Y

Apple event object A distinct item in a target
application or any of its documents that can be
specified by an object specifier record in an Apple
event sent by a source application. Apple event
objects can be anything that an application can
locate on the basis of such a description,
including items that a user can differentiate and
manipulate while using an application, such as
words, paragraphs, shapes, windows, or style
formats. See also object specifier record.

Apple event object class See object class.

Apple event parameter A keyword-specified
descriptor record containing data that the target
application for an Apple event uses. Unlike
Apple event attributes (which contain
information that can be used by both the Apple
Event Manager and the target application), Apple
event parameters contain data used only by the
target application of the Apple event. See also
Apple event attribute, direct parameter,
optional parameter, required parameter.

Apple event record A descriptor record of data
type AppleEvent that contains a list of
keyword-specified descriptor records. These
descriptor records describe—at least—the
attributes necessary for an Apple event; they may
also describe parameters for the Apple event.
Apple Event Manager functions are used to add
parameters to an Apple event record.

Apple event user terminology resources Two
resources with identical formats used by server
applications to specify the Apple events and
corresponding user terminology that the
applications support. The 'aeut' resource,
which is provided by scripting components,
contains terminology information for all the
standard suites of Apple events defined in the
Apple Event Registry: Standard Suites. An 'aete'
resource must be provided by every scriptable
application; it describes which of the standard
suites listed in the 'aeut' resource the
application supports and provides additional
terminology information for extensions to the
standard suites and custom Apple events
supported by the application. See also
scripting component.

AppleScript component The scripting
component that implements the AppleScript
scripting language. See also scripting component.

AppleScript scripting language The standard
user scripting language defined by Apple
Computer, Inc. The AppleScript scripting
language is implemented by the AppleScript
scripting component. See also dialect.

application result handler A result handler
that is associated with a particular application.
Compare with system result handler.

asynchronous parameter block In the
Data Access Manager, the parameter block that
allows a routine to return control to your
application before the routine has completed
execution.

authentication The process of establishing the
identity of a user. The authentication mechanism
of the PPC Toolbox identifies each user through
an assigned name and password.

boundary objects The elements, specified in a
range descriptor record, that identify the
beginning and end of the range. See also range
descriptor record.

client application An application that uses
Apple events to request a service (for example,
printing a list of files, checking the spelling of a
list of words, or performing a numeric
calculation) from another application (called a
server application). These applications can reside
on the same local computer or on remote
computers connected to a network.

coercion handler A routine that coerces data
from one descriptor type to another.

coercion handler dispatch table A table in
either the application heap or the system heap
that the Apple Event Manager uses to map
desired coercions to the appropriate coercion
handler. See also coercion handler.

comparison descriptor record A coerced
AE record of type typeCompDescriptor that
specifies an Apple event object and either
another Apple event object or data for the Apple
Event Manager to compare to the first object.
GL-2

G L O S S A R Y

compiled script Compiled code that a client
application can decompile into source data or
execute using the standard scripting
component routines.

compiled script file A script file with the file
type 'scpt' that contains script data as a
resource of type 'scpt'. Before executing the
script in a compiled script file, a user must first
open the script from the Finder or from an
application such as Script Editor.

component-specific storage descriptor
record A descriptor record returned by
OSAStore. The descriptor type for a
component-specific storage descriptor record is
the scripting component subtype value for the
scripting component that created the script data.

container An Apple event object that contains
another Apple event object. A container is
specified in an object specifier record by a
keyword-specified descriptor record with
the keyword keyAEContainer. The
keyword-specified descriptor record is usually
another object specifier record. It can also be a
null descriptor record, or it can be used much
like a variable when the Apple Event Manager
determines a range or performs a series of tests.
The objects a container contains can be either
elements or properties. See also Apple event
object, element, object specifier record, property.

container hierarchy The chain of containers
that determine the location of one or more Apple
event objects. See also container.

core Apple event An Apple event defined as
part of the Core suite of Apple events in the
Apple Event Registry: Standard Suites.

create function A function called by a scripting
component whenever it creates an Apple event
during script execution. You must provide an
alternative create function if you want to gain
control over the creation and addressing of Apple
events. If you don’t provide an alternative create
function, scripting components call the
standard Apple Event Manager function
AECreateAppleEvent with default parameters.

custom Apple event An Apple event you
define for use by your own applications. Instead
of creating custom Apple events, you should
try to use the standard Apple events and extend
their definitions as necessary for your
application. If you think you need to define
custom Apple events, you should check with
the Apple Event Registrar to find out whether
Apple events that already exist or are under
development can be adapted to the needs of your
application.

database extension The interface between the
Data Access Manager and a data server.

data server An application that acts as an
interface between a database extension on a
Macintosh computer and a data source, which
can be on the Macintosh computer or on a remote
host computer. A data server can be a database
server program that can provide an interface to a
variety of different databases, or it can be the
data source itself, such as a Macintosh
application.

default container The outermost container in
an application’s container hierarchy; usually the
application itself. See also container hierarchy.

default scripting component The scripting
component used by the generic scripting
component when an application passes
kOSANullScript rather than a valid script ID
to OSACompile or OSAStartRecording.

descriptor list A descriptor record of data type
AEDescList whose data handle refers to a list of
descriptor records.

descriptor record A data structure of type
AEDesc that consists of a handle to data and a
descriptor type that identifies the type of the data
referred to by the handle. Descriptor records are
the fundamental data structures from which
Apple events are constructed.

descriptor type An identifier for the type of
data referred to by the handle in a
descriptor record.
GL-3

G L O S S A R Y

dialect A version of a scripting language that
resembles a specific human language or
programming language; for example, the
AppleScript scripting language provides dialects
that resemble English, Japanese, and other
languages. See also AppleScript scripting
language.

direct parameter The parameter in an Apple
event that contains the data or object specifier
record to be used by the server application. For
example, a list of documents to be opened is
specified in the direct parameter of the Open
Documents event. See also Apple event
parameter.

edition The data written to an edition container
by a publisher. A publisher writes data to an
edition whenever a user saves a document that
contains a publisher, and subscribers in other
documents may read the data from the edition
whenever it is updated. See also publisher,
subscriber.

edition container A file that holds edition data,
represented on the desktop by an edition icon.
An edition container obtains its data from a
publisher within a document. See also edition,
publisher.

Edition Manager The collection of routines that
allows applications to automate copy and paste
operations between applications, so that data can
be shared dynamically.

element An Apple event object contained by
another Apple event object specified as the
element’s container. An Apple event object can
contain many elements of the same element class,
whereas an Apple event object can have only one
of each of its properties. See also Apple event
object, container, element classes, property.

element classes In the Apple Event Registry:
Standard Suites, a list of the object classes for the
elements that an Apple event object of a given
object class can contain. See also Apple event
object, object class.

error callback function An object callback
function that gives the Apple Event Manager
an address. The Apple Event Manager writes to
this address the descriptor record it is currently
working with if an error occurs during the
resolution of an object specifier record. See also
object callback function.

event class An attribute that identifies a group
of related Apple events. The event class appears
in the message field of the Apple event’s event
record. The event class and the event ID identify
the action an Apple event performs. See also
Apple event attribute, event ID.

event ID An attribute that identifies a
particular Apple event within a group of related
Apple events. The event ID appears in the where
field of the Apple event’s event record. The event
ID and the event class identify the action an
Apple event performs. See also Apple event
attribute, event class.

Event Manager The collection of routines that
an application can use to receive information
about actions performed by the user, to receive
notice of changes in the processing status of
the application, and to communicate with
other applications.

extension An object class that duplicates all the
characteristics of an object class of the same name
and adds some of its own. Like a word in a
dictionary, a single object class ID can have
several related definitions.

factoring Using Apple events to separate the
code that controls an application’s user interface
from the code that responds to the user’s
manipulation of the interface. In a fully factored
application, any significant user actions generate
Apple events that a scripting component can
record as statements in a compiled script. See
also recordable application.
GL-4

G L O S S A R Y

functional-area Apple event A standard Apple
event supported by applications with related
features; for example, an Apple event related to
text manipulation for word-processing
applications, or an Apple event related to
graphics manipulation for drawing applications.
Functional-area Apple events are defined by
Apple Computer, Inc., in consultation with
interested developers and are published in the
Apple Event Registry: Standard Suites.

generic script ID Special script IDs used by the
generic scripting component to keep track of
script IDs provided by multiple scripting
components. The generic scripting component
translates generic scripting IDs into the
corresponding component-specific script IDs and
vice versa when necessary.

generic scripting component A special
scripting component that establishes connections
dynamically with the appropriate scripting
component for each script that a client
application attempts to manipulate or execute.
The generic scripting component also provides
routines that you can use to determine which
scripting component created a particular script,
get an instance of a specific scripting component,
and perform other useful tasks when you are
using multiple scripting components. See also
scripting component.

generic storage descriptor record A descriptor
record of type kOSAGenericStorage that can
be used by the generic scripting component or
any other scripting component to store script
data. The script data in a generic storage
descriptor record is followed by a trailer that
contains the subtype for the scripting component
that created the script data.

implied length The definition of a specific
length for a data type. An example of this is the
Data Access Manager’s typeInteger data type,
which has a defined length of 4 bytes.

insertion location descriptor record A record
of type typeInsertionLoc that consists of two
keyword-specified descriptor records. The first is
an object specifier record, and the data for the
second is a constant that specifies the insertion
location in relation to the Apple event object
described by the object specifier record.

interapplication communication (IAC)
architecture A standard and extensible
mechanism for communication among
Macintosh applications, including the Edition
Manager, the Open Scripting Architecture, the
Apple Event Manager, the Event Manager, and
the PPC Toolbox.

key data The data in an object specifier record
that distinguishes one or more Apple event
objects from other Apple event objects of the
same object class in the same container. Key
data is specified by a keyword-specified
descriptor record with the keyword
keyAEKeyData. The Apple Event Manager
interprets key data according to the key form
specified in the same object specifier record.

key form The form taken by the key data in an
object specifier record. The key form is specified
by a keyword-specified descriptor record
with the keyword keyAEKeyForm. The
keyword-specified descriptor record contains a
constant that determines how the Apple Event
Manager and a target application use the key
data to locate specific Apple event objects. For
example, the key form constant formName
indicates that the key data consists of a name,
which should be compared to the names of
Apple event objects in the container specified by
the object specifier record.

keyword A four-character code that uniquely
identifies a descriptor record inside another
descriptor record. In Apple Event Manager
functions, constants are typically used to
represent the four-character codes.

keyword-specified descriptor record A
record of data type AEKeyDesc that consists
of a keyword and a descriptor record.
Keyword-specified descriptor records are used to
describe the attributes and parameters of an
Apple event.

location name An identifier for the network
location of the computer on which a port resides.
The PPC Toolbox provides the location name. It
contains an object string, a type string, and a
zone. An application can specify an alias for its
location name by modifying its type string. See
also port.
GL-5

G L O S S A R Y
logical descriptor record A coerced AE record
of type typeLogicalDescriptor that specifies
a logical expression—that is, an expression that
the Apple Event Manager evaluates to either
TRUE or FALSE. The logical expression is
constructed from a logical operator (one of the
Boolean operators AND, OR, or NOT) and a list of
logical terms to which the operator is applied.
Each logical term in the list can be either another
logical descriptor record or a comparison
descriptor record.

mark-adjusting function A marking callback
function that unmarks objects previously marked
by a call to an application’s marking function.

mark count The number of times the Apple
Event Manager has called the marking function
for the current mark token. Applications that
support marking callback functions should
associate the mark count with each Apple event
object they mark.

marking callback functions Object callback
functions that allow your application to use its
own marking scheme rather than tokens when
identifying large groups of Apple event objects.
See also mark-adjusting function, mark token
function, object callback function, and
object-marking function.

mark token A token returned by a mark token
function. A mark token identifies the way an
application marks Apple event objects during the
current sessions while resolving a single test. A
mark token does not identify a specific Apple
event object; rather, it allows an application that
supports marking callback functions to associate
a group of objects with a marked set.

mark token function A marking callback
function that returns a mark token.

message block A byte stream that an open
application uses to send data to and receive data
from another open application (which can be
located on the same computer or across a
network). The PPC Toolbox delivers message
blocks to an application in the same sequence in
which they were sent.

Name-Binding Protocol (NBP) An AppleTalk
protocol that maintains a table containing the
internet address and name of each entity in the
node that is visible to other entities on the
internet (that is, each entity that has registered a
name with NBP).

null descriptor record A descriptor record
whose descriptor type is typeNull and whose
data handle is NIL.

object accessor dispatch table A table in either
the application heap or the system heap that the
Apple Event Manager uses to map descriptions
of objects in an object specifier record to object
accessor functions that can locate those objects.

object accessor function An application-
defined function that locates an Apple event
object of a specified object class in a container
identified by a token of a specified descriptor
type.

object callback function An application-
defined function used by the Apple Event
Manager to resolve object specifier records. See
also error callback function, marking callback
functions, object-comparison function,
object-counting function, and token disposal
function.

object class A category for Apple event objects
that share specific characteristics listed in an
object class definition in the Apple Event Registry:
Standard Suites. Among these characteristics are
properties, element classes, and Apple events
that can specify objects of that class. An object
class is specified in an object specifier record by a
keyword-specified descriptor record with
the keyword keyAEDesiredClass whose
data handle refers to either a constant or an
object class ID.

object class ID A four-character code, which
can also be represented by a constant, that
identifies an object class for an Apple event
object. The object class ID for a primitive object
class is the same as the four-character value of its
descriptor type.
GL-6

G L O S S A R Y
object class inheritance hierarchy The
hierarchy of subclasses and superclasses that
determines which properties, elements, and
Apple events object classes inherit from other
object classes.

object-comparison function An object callback
function that compares an element to either
another element or to a descriptor record and
returns either TRUE or FALSE.

object-counting function An object callback
function that counts the number of elements of a
specified class in a specified container, so that the
Apple Event Manager can determine how many
elements it must examine to find the element
or elements that pass a test.

object-marking function An object callback
function called repeatedly by the Apple Event
Manager to mark specific Apple event objects.
See also marking callback functions.

object specifier record A description of one or
more Apple event objects based on the Apple
Event Manager and the classification system
defined in the Apple Event Registry: Standard
Suites. An object specifier record consists of a
descriptor record of descriptor type
typeObjectSpecifier that comprises four
keyword-specified descriptor records: the object
class ID, the container for the Apple event object
(which is usually another Apple event object,
specified by another object specifier record), the
key form, and the key data.

Open Application event An Apple event that
asks an application to perform the tasks—such as
displaying untitled windows—associated with
opening itself; one of the four required
Apple events.

Open Documents event An Apple event that
asks an application to open one or more
documents specified in a list; one of the four
required Apple events.

Open Scripting Architecture (OSA) A
mechanism based on the Apple Event Manager
and the Apple Event Registry: Standard Suites that
allows users to control multiple applications by
means of scripts. The scripts can be written in
any scripting language that supports the OSA.

optional parameter A supplemental parameter
in an Apple event used to specify data that the
server application can use in addition to the data
specified in the direct parameter. Source
applications list the keywords for parameters
that they consider optional in the attribute
identified by the keyOptionalKeywordAttr
keyword. Target applications use this attribute to
identify any parameters that they are required to
understand. If a parameter’s keyword is not
listed in this attribute, the target application must
understand that parameter to handle the event
successfully. See also Apple event attribute,
Apple event parameter.

port (1) A portal through which an open
application can exchange information with
another open application using the PPC Toolbox.
A port is designated by a port name and a
location name. An application can open as many
ports as it requires so long as each port name is
unique within a particular computer. (2) A
connection between the CPU and main memory
or a device (such as a terminal) for transferring
data. (3) A socket on the back panel of a
computer where you plug in a cable for
connection to a network or a peripheral device.

port name A unique identifier for a particular
application within a computer. The port name
contains a name string, a type string, and a script
code. An application can specify any number of
port names for a single port so long as each name
is unique. See also port.

primitive object class An object class defined
in the Apple Event Registry: Standard Suites for
Apple event objects that contain a single value;
for example, the cBoolean, cLongInteger,
and cAlias object classes are all primitive object
classes. An Apple event object that belongs to a
primitive object class has no properties and
contains only one element—the value of the data.

Print Documents event An Apple event
that requests that an application print a list
of documents; one of the four required
Apple events.
GL-7

G L O S S A R Y
Program-to-Program Communications (PPC)
Toolbox The collection of routines that allows
applications to exchange blocks of data with
other applications by reading and writing
low-level message blocks.

property An Apple event object that defines
some characteristic of another Apple event object,
such as its font or point size, that can be uniquely
identified by a constant. The definition of each
object class in the Apple Event Registry: Standard
Suites lists the constants and class IDs for
properties of Apple event objects belonging to
that object class. For example, the constants
pName and pBounds identify the name and
boundary properties of Apple event objects that
belong to the object class cWindow. The pName
property of a specific window is defined by an
Apple event object of object class cProperty,
such as the word “MyWindow,” which defines
the name of the window. An Apple event object
can contain only one of each of its properties,
whereas it can contain many elements of the
same element class. See also Apple event object,
container, element classes.

property ID A four-character code, which can
also be represented by a constant, that identifies a
property.

publish To make data available to other
documents and applications through a publisher.
When a user creates or edits the data in the
publisher and then saves it, the current version of
the data is stored in an edition. See also edition,
publisher, subscriber.

publisher A portion of a document that makes
its data available to other documents or
applications. A publisher stores its data in an
edition whenever a user creates or edits the data
in the publisher and then saves it. See also
edition, section, subscriber.

query A string of commands and data sent to a
database or other data source. A query does not
necessarily extract data from a data source; it
might only send data or commands to a database
or other application.

query definition function A function contained
in a query document that prompts the user for
information and modifies the query before the
Data Access Manager sends it to the data server.

query document A file of file type 'qery'
containing commands and data in a format
appropriate for a database or other data source.
An application uses high-level Data Access
Manager routines to open a query document.

query record A data structure in memory
containing information provided by a 'qrsc'
resource. The query record includes a pointer to a
query.

Quit Application event An Apple event that
requests that an application perform the tasks—
such as releasing memory, asking the user to save
documents, and so on—associated with quitting;
one of the four required Apple events. The Finder
sends this event to an application immediately
after sending it a Print Documents event or if the
user chooses Restart or Shut Down from the
Finder’s Special menu.

range descriptor record A coerced AE record of
type typeRangeDescriptor that identifies two
Apple event objects marking the beginning and
end of a range of elements. See also boundary
objects.

recordable application An application that
uses Apple events to report user actions to the
Apple Event Manager for recording purposes.
When a user turns on recording (for example, by
pressing the Record button in the Script Editor
application), a scripting component translates the
Apple events generated by the user’s subsequent
actions into statements in a scripting language
and records them in a compiled script. See also
scriptable application.

recordable event Any Apple event that any
recordable application sends to itself while
recording is turned on for the local computer,
with the exception of events that are sent with
the kAEDontRecord flag set in the sendMode
parameter of the AESend function.
GL-8

G L O S S A R Y
recording process Any process (for example, a
script editor) that can turn Apple event recording
on and off and receive and record recordable
Apple events.

required Apple event One of the four Apple
events in the Required suite that the Finder
sends to applications: Open Documents,
Open Application, Print Documents, or Quit
Application.

required parameter An Apple event parameter
that must be included in an Apple event. For
example, a list of documents to open is a required
parameter for the Open Documents event.
Direct parameters are often required, and other
additional parameters may be required. Optional
parameters are never required.

resolve To locate the Apple event object
described by an object specifier record.

result handler A routine that the Data Access
Manager calls to convert a data item to a
character string.

results record A structure that the Data Access
Manager uses to store the data retrieved by the
DBGetQueryResults function. This data is
returned by a data source in response to a query.

resume dispatch function An
application-defined function called by
OSADoEvent or OSAExecuteEvent to dispatch
an Apple event directly to an application’s
default handler for that event.

script Any collection of data that, when
executed by the appropriate program, causes a
corresponding action or series of actions. When a
scripting component that supports the OSA
executes a script, it sends Apple events as
necessary to trigger actions in server applications.

scriptable application An application that can
respond as a server application to Apple events
sent to it by scripting components. To be
scriptable, an application must respond to the
appropriate standard Apple events, and it must
provide an 'aete' resource that describes the
nature of that support. See also Apple event user
terminology resources.

script application A script file with the file type
'APPL' that contains the script data as a
resource of type 'scpt'. If a script application
has the creator signature 'aplt', a user can
double-click its icon to trigger the script. If a
script application has the creator signature
'dplt', a user can drag the icon for another file
or a folder over the script application’s icon to
trigger its script. By default, when a user triggers
the script in a script application, a splash screen
appears that allows the user either to quit or to
run the script. Users can also save a script
application in a form that bypasses the splash
screen, running the script immediately after the
user double-clicks its icon.

script application component A component
registered with the Component Manager at
system startup. When a user opens a script
application, the script application component
loads the script and passes the resulting script ID
to the appropriate scripting component for
execution.

script comment A description, in a script editor
window, of what the script displayed in that
window does.

script context A form of script that maintains
context information for the execution of other
scripts. A script context can also be used to
handle Apple events. Like a compiled script, a
script context can be decompiled as source data.
In the AppleScript scripting language, a script
context is called a script object.

script data A compiled script, script value,
script context, or any other representation of
a script in memory used internally by a scripting
component. See also compiled script, script
context, script value.

script editor An application that allows users to
record, edit, save, and execute scripts; for
example, the Script Editor application provided
with AppleScript.

script file A file in which a script is stored.
A script file can be a compiled script file, a script
application file, or a script text file.
GL-9

G L O S S A R Y
script ID A data structure of type OSAID—that
is, a long integer—used by scripting components
to keep track of script data.

scripting Writing and executing scripts to
control the behavior of multiple applications.

scripting component A component that
responds appropriately to calls made to the
standard scripting component routines.
Most scripting components implement
scripting languages; for example, the AppleScript
component implements the AppleScript scripting
language.

script object AppleScript term for script
context. See also script context.

script text file Uncompiled statements in
a scripting language saved by a script editor as a
text file. A user must open a script text file in a
script editor and successfully compile it before it
will execute. See also script editor.

script value An integer, a string, a Boolean
value, a constant, a 'PICT', or any other fixed
data that a scripting component returns or uses
in the course of executing a script.

section A document or portion of a document
that shares its contents with other documents.
The Edition Manager supports two types of
sections: publishers and subscribers. A publisher
makes its data available to share and a subscriber
subscribes to available data. See also publisher,
subscriber.

send function A function called by a scripting
component whenever it sends an Apple event
during script execution. You can provide an
alternative send function if you want your
application to perform some action instead of or
in addition to sending Apple events. If you don’t
provide an alternative send function, scripting
components call the standard Apple Event
Manager function AESend with default
parameters.

server application An application that
responds to Apple events requesting a service or
information sent by client applications or
scripting components (for example, by printing a
list of files, checking the spelling of a list of
words, or performing a numeric calculation).
Apple event servers and clients can reside on the
same local computer or on remote computers
connected to a network.

session (1) A logical (as opposed to physical)
connection between two entities (such as a
Macintosh program and a database server) that
facilitates the transmission of information
between the two entities. (2) In the PPC Toolbox,
an exchange of information between one
open application with a port and another open
application with a port. Sessions can occur
between applications that are located on the
same computer or across a network. An
application has the option to accept or reject a
session request. Authentication of the requesting
user may be required before a session can
commence. See also authentication, message
block, port.

session ID A number that uniquely identifies
a session.

source application The application that sends a
particular Apple event to another application or
to itself. Typically, an Apple event client sends an
Apple event requesting a service from an Apple
event server; in this case, the client is the source
application for the Apple event. The Apple event
server may return a different Apple event as a
reply; in this case, the server is the source for
the reply Apple event.

source data Statements in a scripting language
that constitute an uncompiled script.

special handler dispatch table A table in either
the application heap or the system heap that the
Apple Event Manager uses to keep track of
various specialized handlers.
GL-10

G L O S S A R Y
status routine An application-defined routine
that can update windows, check the results
of the low-level calls made by the Data
Access Manager’s DBStartQuery and
DBGetQueryResults functions, and cancel
execution of these functions when appropriate
to do so.

subclass An object class that inherits
properties, element classes, and Apple events
from another object class—its superclass. A
subclass can also include properties, element
classes, or Apple events that are not inherited
from its superclass. Every object class, with the
exception of cObject, is a subclass of another
object class. See also object class, superclass.

subscribe To obtain data that a publisher
makes available in an edition. A user subscribes
to a publisher by choosing Subscribe To from the
Edit menu and selecting the desired edition. See
also edition, publish.

subscriber A portion of a document that
automatically obtains current data from other
documents and applications. A subscriber reads
data from an edition. See also edition, section.

suite In the Apple Event Registry: Standard
Suites, a group of definitions for Apple events,
object classes, primitive object classes, descriptor
types, and constants that are all used for a set of
related activities. For example, the Text suite
includes definitions of Apple events, object
classes, and so on that are used for text
processing.

superclass The object class from which a
subclass inherits properties, elements, and Apple
events. See also object class, subclass.

system Apple event dispatch table See Apple
event dispatch table.

system coercion dispatch table See coercion
handler dispatch table.

system object accessor dispatch table See
object accessor dispatch table.

system result handler A result handler that is
available to all applications that use the system.
Compare with application result handler.

target address An application signature, a
process serial number, a session ID, a target ID
record, or some other application-defined type
that identifies the target of an Apple event.

target application The application addressed to
receive an Apple event. Typically, an Apple event
client sends an Apple event requesting a service
from a server application; in this case, the server
is the target application of the Apple event. The
server application may return a different Apple
event as a reply; in this case, the client is the
target of the reply Apple event.

token A descriptor record returned by an object
accessor function that identifies a requested
Apple event object in a specified container.

token disposal function An object callback
function that disposes of a token.

transaction A sequence of Apple events sent
back and forth between the client and server
applications, beginning with the client’s initial
request for a service. All Apple events that are
part of one transaction must have the same
transaction ID.

whose descriptor record A coerced AE record
of descriptor type typeWhoseDescriptor. The
Apple Event Manager creates whose descriptor
records when it resolves object specifier records
that specify formTest.

whose range descriptor record A coerced
AE record of type typeWhoseRange. Under
certain conditions, the Apple Event Manager
coerces a range descriptor record to a whose
range descriptor record when it resolves object
specifier records that specify formTest.
GL-11

Index
Symbols

'****' (wildcard) descriptor type 4-10, 4-63, 6-26,
4-58

'----' keyword 3-15

A

active functions
routines for manipulating 10-45 to 10-46
supplying alternative 10-23

additional parameters for Apple events 3-9
address descriptor records

adding to an Apple event 5-11 to 5-13
defined 3-14
for direct dispatching 5-13

addresses in Apple events 5-10 to 5-13
'addr' keyword 3-15
AEAddressDesc data type 3-14, 5-11 to 5-13
AEArrayData data type 4-60, 5-58
AEArrayDataPointer data type 4-61
AEArrayType data type 4-60
AECallObjectAccessor function 6-82 to 6-83
AECoerceDesc function 4-95 to 4-96
AECoercePtr function 4-94 to 4-95
AECountItems function 4-31, 4-74
AECreateAppleEvent function 5-4, 5-26 to 5-27
AECreateAppleEventProcPtr data type 10-24
AECreateDesc function 5-6, 5-11, 5-27 to 5-28
AECreateList function 5-29 to 5-30
AECreateProcPtr function 10-95 to 10-96
AEDeleteItem function 4-92
AEDeleteKeyDesc function 4-93
AEDeleteParam function 4-93
AEDesc data type 3-12, 4-56
AEDescList data type 3-17
AEDisposeDesc function 4-39 to 4-40, 4-94
AEDisposeToken function 6-41, 6-46, 6-54, 6-87 to

6-88
AEDuplicateDesc function 5-28 to 5-29
AEEventClass data type 4-59, 4-62
AEEventID data type 4-59, 4-62
AEEventSource data type 4-29
AEGetArray function 4-77 to 4-78
AEGetAttributeDesc function 4-73
AEGetAttributePtr function 4-28 to 4-31,

4-71 to 4-72

AEGetCoercionHandler function 4-98
AEGetEventHandler function 4-64 to 4-65
AEGetInteractionAllowed function 4-82
AEGetKeyDesc function 4-80 to 4-81
AEGetKeyPtr function 4-79 to 4-80
AEGetNthDesc function 4-32, 4-76 to 4-77
AEGetNthPtr function 4-32 to 4-33, 4-75 to 4-76
AEGetObjectAccessor function 6-81 to 6-82
AEGetParamDesc function 4-27 to 4-28, 4-31,

4-69 to 4-70
AEGetParamPtr function 4-27, 4-68 to 4-69
AEGetSpecialHandler function 4-101 to 4-102
AEGetTheCurrentEvent function 4-89
AEIMP (Apple Event Interprocess Messaging

Protocol) 1-3
AEInstallCoercionHandler function 4-96 to 4-97
AEInstallEventHandler function 4-8 to 4-9,

4-62 to 4-64
AEInstallObjectAccessor function 6-22 to 6-27,

6-78 to 6-79
AEInstallSpecialHandler function 4-100 to 4-101
AEInteractAllowed data type 4-48, 4-82
AEInteractWithUser function 4-50, 4-83 to 4-84
AEKeyDesc data type 3-16
AEKeyword data type 3-15 to 3-16
AEManagerInfo function 4-104
AEObjectInit function 6-77
AEProcessAppleEvent function 4-66 to 4-68
AEPutArray function 5-32
AEPutAttributeDesc function 5-37 to 5-38
AEPutAttributePtr function 5-36 to 5-37
AEPutDesc function 5-31
AEPutKeyDesc function 5-34
AEPutKeyPtr function 5-33
AEPutParamDesc function 5-6, 5-35
AEPutParamPtr function 5-5, 5-34 to 5-35
AEPutPtr function 5-30 to 5-31
AERecord data type 3-17 to 3-18
AE records

adding data to 5-33
adding keyword-specified descriptor records

to 5-33 to 5-34
and other Apple Event Manager data structures 3-18
creating 5-29 to 5-30
defined 3-17 to 3-18
deleting keyword-specified descriptor records

from 4-93
getting data out of 4-25 to 4-33, 4-78 to 4-80
getting descriptor records out of 4-80 to 4-81
IN-1

I N D E X

getting sizes and descriptor types of
keyword-specified descriptor records
in 4-90 to 4-91

AERemoveCoercionHandler function 4-99
AERemoveEventHandler function 4-65 to 4-66
AERemoveObjectAccessor function 6-84 to 6-85
AERemoveSpecialHandler function 4-102 to 4-103
AEResetTimer function 4-84 to 4-85
AEResolve function 6-4 to 6-8, 6-28 to 6-47,

6-85 to 6-87
AEResumeTheCurrentEvent function 4-86 to 4-88
AESend function 5-13 to 5-20, 5-38 to 5-42
AESendPriority data type 5-39
AESendProcPtr data type 10-25, 10-96
AESetInteractionAllowed function 4-81 to 4-82
AESetObjectCallbacks function 6-46, 6-79 to 6-80
AESetTheCurrentEvent function 4-88
AESizeOfAttribute function 4-91 to 4-92
AESizeOfKeyDesc function 4-90 to 4-91
AESizeOfNthItem function 4-90
AESizeOfParam function 4-91
AESuspendTheCurrentEvent function 4-85 to 4-86
'aete' resources

and AppleScript 7-17 to 7-20
creating 8-13 to 8-23
defined 7-15 to 7-16
dynamic loading of 7-20
recordable applications and 1-18 to 1-19
role of 1-16 to 1-19, 7-17 to 7-20
scriptable applications and 1-16 to 1-17
structure of 8-8 to 8-13, 8-26 to 8-44
supporting new suites 8-23
supporting standard suites with extensions

8-16 to 8-23
supporting standard suites without extensions

8-14 to 8-16
supporting subsets of suites 8-23

'aeut' resources
additional parameters array 8-34 to 8-36
and AppleScript 7-17 to 7-20
comparison operators array 8-42 to 8-43
defined 7-15 to 7-16
elements array 8-40 to 8-41
enumerations array 8-43 to 8-44
events array 8-29 to 8-33
header data 8-27
object classes array 8-36 to 8-37
properties array 8-38 to 8-40
resource type declaration 8-9 to 8-13
role of 7-17 to 7-20
structure of 8-8 to 8-13, 8-26 to 8-44
suites array 8-27 to 8-29

'aevt' descriptor type 4-57
'aevt' event class 3-8

alert boxes
for multiple publishers in a document 2-58
for new publishers 2-19
for PPC session termination 11-7

alias records, for publishers and subscribers 2-16, 2-20
'alis' descriptor type 4-58
'alis' format type 2-25
'alis' resource type 2-19
'aplt' creator signature 7-7
'appa' descriptor type 4-58
Apple event attributes

adding to Apple events 5-36 to 5-38
defined 3-7
event classes 3-8, 3-15
event IDs 3-8, 3-15
event sources 3-15
getting data out of 4-28 to 4-31, 4-71 to 4-72
getting descriptor records out of 4-73
getting descriptor types of 4-91 to 4-92
getting sizes of 4-91 to 4-92
interaction level 3-15, 4-45
keywords for 3-15
missed keyword 3-15, 4-30, 4-34 to 4-35
optional keyword 4-34, 5-7 to 5-10
original source 3-15
return ID 3-15
setting with the AECreateAppleEvent

function 5-3 to 5-4
target address 3-15, 5-10 to 5-13
timeout 3-15, 5-21
transaction ID 3-15

Apple event data structures
arrays 4-60 to 4-61
disposing of 4-39 to 4-40
summarized 4-56 to 4-61

AppleEvent data type 3-18 to 3-19
Apple event dispatch tables

defined 3-22
getting entries from 4-64 to 4-65
installing entries in 4-7 to 4-11, 4-62 to 4-64
removing entries from 4-65 to 4-66
system 4-7

Apple event handlers
adding to dispatch tables 4-7 to 4-9, 4-62 to 4-64
called from the AEProcessAppleEvent

function 4-66 to 4-67
defined 3-5
getting from dispatch tables 4-64 to 4-65
introduced 1-12
removing from dispatch tables 4-65 to 4-66
tasks performed by 3-23 to 3-27
writing 4-33 to 4-35

Apple Event Interprocess Messaging Protocol
(AEIMP) 1-3

Apple Event Manager 3-3 to 6-116, 9-3 to 9-37
IN-2

I N D E X
application-defined functions for resolving object
specifier records 6-94 to 6-103

getting information about 4-103 to 4-104
Object Support Library and 6-3
routines in 4-61 to 4-104, 5-25 to 5-42, 6-77 to 6-94
testing for availability 4-4
use of Notification Manager 4-51
user interaction with server application 4-45 to 4-55,

4-81 to 4-84
Apple event object classes. See object classes, Apple

event
Apple event objects

Apple Event Registry: Standard Suites and 1-11
classification of 3-39 to 3-46
container hierarchy for 3-45 to 3-46
defined 3-6
described in Apple event parameters 3-10, 3-12
elements of 3-42 to 3-46
finding 3-46 to 3-47
hierarchy within an application 3-33
object accessor functions that find 6-29 to 6-37
object classes and 1-11
object specifier records and 3-32 to 3-34
properties of 3-42 to 3-46
tokens for 6-4 to 6-7, 6-39 to 6-41, 6-47

Apple event parameters
adding 5-5 to 5-7, 5-34 to 5-35
additional 3-9
AppleScript and 8-3 to 8-7
checking for missing required 4-34 to 4-35
defined 3-8
deleting 4-93
direct 3-9, 3-15
error number 4-36 to 4-37
error string 4-37 to 4-39
getting data out of 4-26 to 4-28, 4-68 to 4-71
getting descriptor records out of 4-27 to 4-28,

4-69 to 4-70
getting descriptor types of 4-91
getting sizes of 4-91
optional 3-9, 3-15, 5-7 to 5-10
required 3-9

Apple event records
and other Apple Event Manager data structures 3-18
defined 3-18
disposing of 4-39 to 4-40
getting data out of 4-25 to 4-33, 4-79 to 4-80
getting descriptor records out of 4-80 to 4-81

Apple Event Registry: Standard Suites 1-10 to 1-12
Apple events. See also Apple event attributes; Apple

event parameters
accepting 3-20 to 3-22, 4-5 to 4-7
addresses for 5-10 to 5-13
AppleScript and 8-3 to 8-7
attributes and parameters for 3-7 to 3-12

client applications using 3-4 to 3-5
Create Publisher 4-22 to 4-25
creating 5-3 to 5-13
data structures in 3-12 to 3-19
defined 3-3
determining current 4-89
direct dispatching 5-13
dispatching 4-9 to 4-11, 4-66 to 4-68
from Edition Manager 2-13 to 2-14
Get AETE 8-23 to 8-26
Get Data. See Get Data event
handling 1-12, 4-4 to 4-44
and high-level events 4-5 to 4-7
introduced 1-9
Move. See Move event
Open Application. See Open Application event
Open Documents. See Open Documents event
Print Documents. See Print Documents event
processing 3-20 to 3-27, 4-67 to 4-68, 4-84 to 4-89
Quit Application. See Quit Application event
Receive Recordable Event 9-36
Recorded Text 10-27
recording 9-3 to 9-37
Recording Off 9-4
Recording On 9-4
replying to 4-36 to 4-39, 5-24 to 5-25
reply. See reply Apple events
requesting more time to respond to 4-84 to 4-85
requesting services through 3-28 to 3-32
required 1-10, 4-11 to 4-20
Reset Timer 4-85
responding to 1-9 to 1-13, 3-20 to 3-27, 4-5 to 4-7
resuming handling of 4-86 to 4-88
Section Cancel 2-13
Section Read 2-13
Section Scroll 2-13, 4-21
Section Write 2-13, 4-21
sending 1-9 to 1-13, 5-13 to 5-20
sending to the current process 5-13
server applications using 3-5
Set Data. See Set Data event
standard suites of 1-10
Start Recording 9-36
Stop Recording 9-37
suspending handling of 4-85 to 4-86

Apple event terminology extension resources. See
'aete' resources

Apple event user terminology resources. See 'aeut'
resources

AppleScript component
defined 7-4
error numbers for OSAScriptError 10-40
routines for 10-80 to 10-84

AppleScript scripting language
Apple events and 8-3 to 8-7
IN-3

I N D E X
defined 7-4
dialects, defined 7-17
dialects, routines for manipulating 10-67 to 10-71
scriptable applications and 8-3 to 8-7
supporting 1-13 to 1-22

'APPL' file type 7-7
application-defined routines
MyActiveProc 10-23, 10-95
MyAdjustMarks 6-53 to 6-54, 6-103
MyAECreateProc 10-24 to 10-25
MyAESendProc 10-25 to 10-26, 10-96
MyCoerceDesc 4-107
MyCoercePtr 4-106
MyCompareObjects 6-97 to 6-99
MyCompletionRoutine procedure 11-79
MyCountObjects 6-96 to 6-97
MyDisposeToken 6-99
MyEventHandler 4-105 to 4-106
MyExpDlgHook function 2-98
MyExpModalFilter function 2-98
MyGetErrorDesc 6-100
MyGetMarkToken 6-53 to 6-54, 6-101 to 6-102
MyIdleFunction 5-43
MyIO function 2-104
MyMark 6-102
MyObjectAccessor 6-95 to 6-96
MyOpener function 2-102
MyPortFilter function 11-79 to 11-80
MyQDef function 12-52
MyReplyFilter 5-43 to 5-44
MyResultHandler function 12-44
MyResumeDispatch 10-97
MyStatusFunc function 12-22

arrays, data types for 4-60 to 4-61
ASGetSourceStyleNames function 10-84
ASGetSourceStyles function 10-82 to 10-83
ASInit function 10-80 to 10-82
ASSetSourceStyles function 10-83
AssociateSection function 2-20, 2-50, 2-79
'****' (wildcard) descriptor type 4-10, 4-63, 6-26
asynchronous parameter block record 12-56 to 12-57
authenticating sessions 11-7, 11-10, 11-30

B

'bool' descriptor type 4-57
borders for publishers and subscribers 2-9 to 2-10, 2-50

to 2-57
in bitmapped graphics 2-57
in object-oriented graphics 2-56 to 2-57
in spreadsheets 2-55 to 2-56
in word processors 2-54 to 2-55

boundary objects
specified in range descriptor records 6-20
specified in whose range descriptor records 6-44

C

CallEditionOpenerProc function 2-64,
2-103 to 2-104

CallFormatIOProc function 2-68, 2-104
ccntTokenRecord data type 6-21
client applications, for Apple events

defined 3-4 to 3-5
introduced 1-9
and scripting components 7-10
setting user interaction preferences 4-46 to 4-47

CloseEdition function 2-28, 2-88 to 2-89
'CODE' resources, in script application files 10-14
coercion handlers for descriptor types 4-41 to 4-44,

4-96 to 4-99
comparison descriptor records

comparison operators for 6-51
creating 6-67 to 6-69, 6-89 to 6-90
defined 6-16

'comp' descriptor type 4-57
compiled script files 7-7
compiled scripts

defined 7-23
modifying and recompiling 10-17 to 10-19

compiling, scripting component routines for
10-47 to 10-51

completion routines
in PPC Toolbox 11-16 to 11-17, 11-46 to 11-79

for PPCAccept function 11-38 to 11-39
for PPCInform function 11-36 to 11-37
for PPCRead function 11-41
for PPCReject function 11-39
for PPCWrite function 11-42

complex object specifier records, creating 6-64 to 6-75
component description records, scripting component

flags for 10-5
component instances, and scripting component

routines 10-4
Component Manager, and scripting components

10-3 to 10-7
component-specific storage descriptor records 10-12
container hierarchy

defined 3-45
described in object specifier records 6-10
for formTest 6-17 to 6-19
specifying 6-61 to 6-63

containers
default 6-10
described in object specifier records 3-35, 6-10
IN-4

I N D E X
specifying 6-61 to 6-63
specifying for a range of objects 6-20

Control Panels folder 11-6
'core' event class 3-8
Core suite of Apple events 1-11, 3-41
cProperty as object class ID 3-42, 6-13, 6-27
CreateCompDescriptor function 6-68 to 6-69,

6-89 to 6-90
CreateEditionContainerFile function

2-32 to 2-34, 2-79 to 2-80
Create Element event handler 9-11
create functions

routines for manipulating 10-55 to 10-57
supplying alternative 10-24

CreateLogicalDescriptor function 6-69 to 6-70,
6-91 to 6-92

CreateObjSpecifier function 6-55 to 6-75,
6-93 to 6-94

CreateOffsetDescriptor function 6-72,
6-88 to 6-89

Create Publisher command (Edit menu) 2-10
Create Publisher event 4-22 to 4-25
CreateRangeDescriptor function 6-73, 6-92 to 6-93

D

DAL (Data Access Language) 12-4
Data Access Language (DAL) 12-4
Data Access Manager 12-3 to 12-105

asynchronous calls 12-12
asynchronous parameter block record 12-56 to 12-57
canceling a function call 12-76
connection with a database, illustrated 12-6
data structures in 12-55 to 12-60
data types 12-37 to 12-44
disk-space limit 12-13
high-level interface

compared to low-level 12-11
examples of 12-7, 12-18 to 12-21
retrieving data 12-9
routines 12-62 to 12-69
sending a query 12-8 to 12-9
status routines 12-22 to 12-28
using 12-14 to 12-28

high-level routines 12-7 to 12-9
flowchart 12-8
sequence of use 12-14 to 12-17
uses 12-7

initializing 12-61 to 12-62
local database and 12-4
low-level interface 12-9 to 12-11

compared to high-level 12-11
examples of 12-9 to 12-11

retrieving data 12-11
sending a query 12-11
using 12-28 to 12-36

low-level routines 12-69 to 12-87
flowchart 12-30
sequence of use 12-28 to 12-36
uses 12-9

queries
converting results to text 12-43 to 12-46,

12-68 to 12-69
defined 12-7
executing 12-79 to 12-80
halting execution 12-82 to 12-83
processing results 12-37 to 12-47
retrieving results 12-43
sending 12-31 to 12-32, 12-77 to 12-78
starting 12-64 to 12-66

query definition function resources 12-93
query definition functions 12-52 to 12-55
query documents

contents 12-49 to 12-52
dialog boxes 12-47 to 12-48

query records 12-57 to 12-58
creating 12-62
defined 12-47
disposing of 12-63 to 12-64

query resources 12-91 to 12-92
query string resources 12-92
resources in 12-91 to 12-93
result handlers 12-43 to 12-46, 12-87 to 12-90

application 12-44
function declaration 12-44
provided by Apple Computer 12-43 to 12-44
system 12-44

results records 12-41 to 12-43
routines in 12-60 to 12-90
.See also queries; query documents; query records;

result handlers; sessions, data access
status routines 12-22 to 12-28

sample 12-26 to 12-28
and status messages 12-22 to 12-25

suggested uses 12-3
testing for availability 12-3
user interface guidelines 12-13

for providing feedback 12-13
for query documents 12-47 to 12-48

database access. See Data Access Manager
database command strings. See queries
database extensions

asynchronous execution and 12-12
defined 12-4

database queries. See queries
databases. See Data Access Manager
data servers

defined 12-5
IN-5

I N D E X
status 12-80
DBAsyncParamBlockRec data type 12-56
DBBreak function 12-82 to 12-83
DBColInfoRecord data type 12-43, 12-60
DBDisposeQuery function 12-63 to 12-64
DBEnd function 12-71 to 12-72
DBExec function 12-32, 12-79 to 12-80
DBGetConnInfo function 12-72 to 12-74
DBGetErr function 12-81 to 12-82
DBGetItem function 12-84 to 12-86
DBGetNewQuery function 12-62 to 12-63
DBGetQueryResults function 12-22 to 12-28,

12-66 to 12-68
DBGetResultHandler function 12-88 to 12-89
DBGetSessionNum function 12-75 to 12-76
DBInit function 12-69 to 12-71
DBInstallResultHandler function 12-87 to 12-88
DBKill function 12-76
DBRemoveResultHandler function 12-90
DBResultsToText function 12-68 to 12-69
DBSend function 12-77 to 12-78
DBSendItem function 12-78 to 12-79
DBStartQuery function 12-22 to 12-28, 12-64 to 12-66
DBState function 12-80 to 12-81
DBUnGetItem function 12-86 to 12-87
ddev. See database extensions
default container 6-5, 6-10
default scripting component

defined 10-3
getting and setting 10-86 to 10-87

DeleteEditionContainerFile function 2-49, 2-81
DeleteUserIdentity function 11-44 to 11-45,

11-77 to 11-78
descriptor lists

adding array data to 5-32
adding descriptor records to 5-31
adding items to 5-30 to 5-31
and other Apple Event Manager data structures 3-18
counting descriptor records in 4-74
creating 5-29 to 5-30
defined 3-17
deleting descriptor records from 4-92
disposing of 4-39 to 4-40
getting data out of 4-31 to 4-33, 4-75 to 4-76
getting descriptor records out of 4-76 to 4-77
getting descriptor types of descriptor records in 4-90
getting sizes of descriptor records in 4-90

descriptor records. See also keyword-specified
descriptor records

adding as attributes 5-37 to 5-38
adding as parameters 5-35
adding to descriptor lists 5-31
and other Apple Event Manager data

structures 3-12, 3-18
coercing data in 4-95 to 4-96

counting in descriptor lists 4-74
creating 5-27
defined 3-12 to 3-14
deleting from descriptor lists 4-92
disposing of 4-39 to 4-40, 6-58
duplicating 5-28 to 5-29
getting data out of, in descriptor list 4-75 to 4-76
getting descriptor types of, in descriptor lists 4-90
getting from attributes 4-73
getting from descriptor lists 4-76
getting from keyword-specified descriptor

records 4-80
getting from parameters 4-26 to 4-28, 4-69 to 4-70
getting sizes of, in descriptor lists 4-90

descriptor types
in AE records 4-90 to 4-91
in Apple events 4-89 to 4-92
coercing 4-41 to 4-44, 4-95 to 4-96
defined 3-13 to 3-14
in descriptor lists 4-90
used by Apple Event Manager 4-57 to 4-58

DescType data type 3-13
dialects, of AppleScript scripting language

defined 7-17
routines for manipulating 10-67 to 10-71

dialog boxes
customizing, for publishers and subscribers

2-60 to 2-62
to enable guest access 11-9
for incorrect passwords 11-31
for invalid user names 11-31
for program linking 11-22 to 11-23, 11-32
for publisher creation 2-5, 2-29, 2-31
for publisher options 2-43
for query documents 12-47 to 12-48
for subscriber creation 2-6, 2-37
for subscriber options 2-44, 2-45
for user identification 11-30
for users & groups 11-8

dialog hook functions, expandable 2-97, 2-98
direct dispatching, of Apple events 5-13
direct parameters for Apple events 3-9, 3-15
disks, free space limit for data access 12-13
dispatch tables

for Apple event handlers 4-7 to 4-9, 4-61 to 4-66
for coercion handlers 4-41 to 4-42
for object accessor functions 6-21 to 6-27
for special handlers 4-99 to 4-103

'doub' descriptor type 4-57
'dplt' creator signature 7-7, 10-14
IN-6

I N D E X
E

edition containers
alias record reference to 2-16, 2-22
closing 2-28
creating 2-32 to 2-34
defined 2-4
deleting 2-49
opener functions 2-63 to 2-67, 2-102 to 2-104
opener verbs 2-64 to 2-66
opening 2-26, 2-27, 2-68

to read data 2-41
to write data 2-35 to 2-36

preview of 2-37
reading from 2-27 to 2-28
relocating 2-60
writing to 2-27 to 2-28

EditionContainerSpec data type 2-39
edition containers. See also editions 2-4
EditionHasFormat function 2-41, 2-84 to 2-85
Edition Manager. See also editions; publishers;

subscribers
Apple events sent by 3-8, 4-20 to 4-21
installing entries in Apple event dispatch table 4-9
introduced 1-6 to 1-9

Edition Manager. See also editions; publishers;
subscribers 2-3 to 2-122

and Translation Manager 2-28, 2-41, 2-85, 2-86
routines in 2-73 to 2-105

edition opener functions 2-63, 2-102 to 2-104
EditionOpenerParamBlock data type 2-64, 2-103
editions

defined 2-4
formats for 2-24 to 2-26
preview of 2-6

editions. See also edition containers 2-4
Edit menu

Create Publisher command 2-10
Edition Manager commands in 2-10
Publisher/Subscriber Options command 2-10, 2-43

to 2-44
Show/Hide Borders command 2-10
Stop All Editions command 2-10
Subscribe To command 2-10

elements of Apple event objects 3-42 to 3-46
'enum' descriptor type 4-58
'erng' descriptor type 10-39
'errn' keyword 3-15
error callback function 6-100
error numbers

returned by AppleScript for
OSAScriptError 10-40

returned by scripting components for
OSAScriptError 10-39 to 10-40

errors in script compilation or execution, obtaining
information about 10-37 to 10-40

'errs' keyword 3-15
'esrc' keyword 3-15
'evcl' keyword 3-15
event classes 3-8
event IDs 3-8 to 3-9
EventRecord data type 2-13
event records 2-13, 3-8
events, high-level. See high-level events
'evid' keyword 3-15
expandable dialog hook functions 2-97, 2-98
expandable modal-dialog filter functions 2-97, 2-98
'exte' descriptor type 4-57
extensions of object classes 3-41

F

factoring, for Apple event recording 7-21, 9-6 to 9-13
sending events without executing them 9-12 to 9-13
window movement 9-12

'fals' descriptor type 4-58
File menu

New command 9-9 to 9-11
Open Query command 12-14
Quit command 4-14, 4-20, 9-6 to 9-9

file types
'APPL' 7-7, 10-14
'edtp' 2-32
'edts' 2-32
'edtt' 2-32
'osas' 10-14
'qery' 12-47
'scpt' 7-7, 10-14

Finder events 3-8
FindNextComponent function 10-5
'fmts' format type 2-25
formAbsolutePosition key form

introduced 6-12
key data for 6-14
specifying 6-63

FormatIOParamBlock data type 2-69
format I/O verbs 2-69 to 2-70
format marks 2-27
FormatsAvailable data type 2-26
format types 2-24 to 2-26
'form' keyword 6-8
formName key form

introduced 3-36, 6-12
key data for 6-14
specifying 6-62 to 6-63

formPropertyID key form
introduced 3-36, 6-12
IN-7

I N D E X
key data for 6-13
specifying 6-63

formRange key form
introduced 3-36, 6-12
key data for 6-20 to 6-21
specifying 6-72 to 6-75

formRelativePosition key form
introduced 3-36, 6-12
key data for 6-15
specifying 6-64

formTest key form
and formWhose 6-42
introduced 3-36, 6-12
key data for 6-15 to 6-19
specifying 6-64 to 6-72

formUniqueID key form
introduced 3-36, 6-12
key data for 6-14

formWhose key form 6-12, 6-42 to 6-45
'from' keyword

as the keyAEContainer keyword 6-8
as the keyOriginalAddressAttr keyword 3-15,

9-37
'fss ' descriptor type 4-58
functional-area suites of Apple events 1-11

G

generic script IDs 10-85
generic scripting component 10-84 to 10-92

component-specific routines and 10-87 to 10-92
default scripting component, getting and

setting 10-86 to 10-87
defined 7-22
and generic script IDs 10-85
name of component, obtaining 10-47
opening a connection to 10-4
and OSALoad function 10-15

generic storage descriptor records
defined 10-12
routines for manipulating trailer 10-92 to 10-94

Get AETE event
handling 8-23 to 8-26
introduced 7-20

Get Data event
resolving object specifier record in 6-5 to 6-7
sample object accessor functions 6-29 to 6-34
sent by AppleScript component 7-10

GetDefaultUser function 11-33, 11-76 to 11-77
GetEditionFormatMark function 2-27, 2-82 to 2-83
GetEditionInfo function 2-49, 2-98 to 2-99
GetEditionOpenerProc function 2-63, 2-102

GetLastEditionContainerUsed function 2-39,
2-90 to 2-91

GetStandardFormats function 2-101
GoToPublisherSection function 2-49 to 2-50, 2-100

H

handlers for Apple events. See Apple event handlers
high-level events. See also Apple events

handling when accepting Apple events 4-5 to 4-7
processing while waiting for reply Apple event

5-24 to 5-25

I

idle functions 5-22 to 5-24
InitDBPack function 12-61 to 12-62
InitEditionPack function 2-12, 2-74
insertion location descriptor records 8-5
'inte' keyword 3-15
interapplication communication (IAC) 1-3 to 1-22
invalidating users 11-44
I/O functions 2-68, 2-104 to 2-105
IPCListPorts function

description 11-55 to 11-56
use of by PPCBrowser function 11-25 to 11-27

IPCListPortsPBRec data type 11-46
isHighLevelEventAware flag 4-5
IsRegisteredSection function 2-14, 2-78

K

kAEAlwaysInteract flag 4-46 to 4-47
kAEAnswer event ID 4-36
kAECanInteract flag 4-46 to 4-47
kAECanSwitchLayer flag 4-47
kAECoreSuite event class 3-8
kAEDontExecute flag 5-41, 9-12
kAEDontRecord flag 5-41, 9-3
kAEInteractWithAll flag 4-48
kAEInteractWithLocal flag 4-48
kAEInteractWithSelf flag 4-48
kAENeverInteract flag 4-46 to 4-47
kAENoReply flag 5-14 to 5-15
kAEOpenDocuments event ID 3-9
kAEPrintDocuments event ID 3-9
kAEQueueReply flag 4-37, 5-14 to 5-15
kAEQuitApplication event ID 3-9
kAEWaitReply flag 4-36, 5-14 to 5-15
IN-8

I N D E X
kCoreEventClass event class 3-8
keyAddressAttr keyword 3-15
keyAECompOperator keyword 6-16
keyAEContainer keyword 3-34, 6-8, 6-55
keyAEDesiredClass keyword 3-34, 6-8, 6-55
keyAEEditionFileLoc keyword 4-22
keyAEIndex keyword 6-42
keyAEKeyData keyword 3-34, 6-8
keyAEKeyForm keyword 3-34, 6-8
keyAELogicalOperator constant 6-17
keyAELogicalTerms constant 6-17
keyAEObject1 keyword 6-16
keyAEObject2 keyword 6-16
keyAEObject keyword 8-5
keyAEPosition keyword 8-5
keyAERangeStart constant 6-20
keyAERangeStop constant 6-20
keyAETest keyword 6-42
key data, in object specifier records 6-12 to 6-21

defined 3-36
for formAbsolutePosition 6-14
for formNameID 6-14
for formPropertyID 6-13
for formRange 6-20
for formRelativePosition 6-15
for formTest 6-15 to 6-19
for formUniqueID 6-14
for formWhose 6-42
specifying 6-57 to 6-75

keyDirectObject keyword 3-15
keyErrorNumber keyword 3-15, 4-36 to 4-37
keyErrorString keyword 3-15, 4-37
keyEventClassAttr keyword 3-15
keyEventIDAttr keyword 3-9, 3-15
keyEventSourceAttr keyword 3-15, 4-29
key form, in object specifier records

defined 3-36
introduced 6-11 to 6-12
specifying 6-57

keyInteractLevelAttr keyword 3-15, 4-45
keyMissedKeywordAttr keyword 3-15, 4-30,

4-34 to 4-35, 5-10
keyOptionalKeywordAttr keyword 3-15, 4-34,

5-7 to 5-10
keyOriginalAddressAttr keyword 3-15
keyOSASourceEnd keyword 10-39
keyOSASourceStart keyword 10-39
keyReturnIDAttr keyword 3-15
keyTimeoutAttr keyword 3-15, 5-21
keyTransactionIDAttr keyword 3-15
'keyw' descriptor type 4-58
keywords for Apple events 3-15
keyword-specified descriptor records. See also

descriptor records
adding to AE records 5-33 to 5-34

defined 3-15 to 3-16
deleting from AE records 4-92 to 4-93
disposing of 4-39 to 4-40
getting data out of 4-79 to 4-80
getting descriptor records out of 4-80 to 4-81
getting descriptor types of 4-90 to 4-91
getting sizes of 4-90 to 4-92

kHighLevelEvent message class 4-5
kOASComponentType component type 10-4
kOSAGenericScriptingComponentSubtype

component subtype 10-4, 10-14
kOSAScriptIsModified script information

selector 10-42
kOSAScriptResourceType resource 10-14
kOSASupportsAECoercion flag 10-52
kOSASupportsAESending flag 10-5, 10-56
kOSASupportsCoercion flag 10-5
kOSASupportsCompiling flag 10-5, 10-47
kOSASupportsDialects flag 10-5, 10-67
kOSASupportsGetSource flag 10-5, 10-51
kOSASupportsRecording flag 10-5, 10-59
kOSASupportsTinkering flag 10-5, 10-72
kOSASupportsWindowEditing flag 10-5

L

linking programs. See program linking
'list' descriptor type 4-57
localAndRemoteHLEvents flag 4-5
LocationNameRec data type 11-19, 11-50
logical descriptor records

creating 6-69 to 6-70, 6-91 to 6-92
defined 6-17

'long' descriptor type 4-57

M

'magn' descriptor type 4-57
mark-adjusting function 6-54
marking callback functions 6-53 to 6-54
mark token function 6-53
menu commands

Create Publisher (Edit menu) 2-10
New (File menu) 9-9 to 9-12
Publisher/Subscriber Options (Edit menu) 2-10,

2-43 to 2-44
Quit (File menu) 4-14, 4-20, 9-6 to 9-9
Show/Hide Borders (Edit menu) 2-10
Stop All Editions (Edit menu) 2-10
Subscribe To (Edit menu) 2-10
IN-9

I N D E X
message blocks
defined 11-5
reading data using 11-40 to 11-41
writing data using 11-42 to 11-43

'miss' keyword 3-15, 5-10
modal-dialog filter functions, expandable 2-97, 2-98
'modi' script information selector 10-42
Move event, handled by script context 7-25 to 7-28

N

NewPublisherDialog function 2-29, 2-31,
2-93 to 2-94

NewPublisherExpDialog function 2-60 to 2-61,
2-96 to 2-98

NewPublisherReply data type 2-30 to 2-31
new publisher reply records 2-30, 2-80, 2-93 to 2-94
NewSection function 2-18, 2-75
NewSubscriberDialog function 2-37 to 2-39,

2-91 to 2-92
NewSubscriberExpDialog function 2-60,

2-96 to 2-98
NewSubscriberReply data type 2-38
new subscriber reply records 2-38 to 2-39, 2-91
Notification Manager, used by Apple Event

Manager 4-50
null descriptor records

as default reply Apple event 3-26, 4-36
used to specify default container 6-10

'null' descriptor type 4-58, 6-10, 9-17

O

'oapp' event ID 3-9
object accessor dispatch tables

defined 6-5
getting entries from 6-81 to 6-82
installing entries in 6-21 to 6-27, 6-78 to 6-79
removing entries from 6-84 to 6-85
system 6-22

object accessor functions
adding to dispatch tables 6-21 to 6-27, 6-78 to 6-79
calling 6-82 to 6-83
defined 6-4
examples of 6-29 to 6-38
getting from dispatch tables 6-81 to 6-82
for properties 6-37 to 6-38
removing from dispatch tables 6-84 to 6-85
whose descriptor records and 6-44 to 6-45
writing 6-28 to 6-45

object callback functions
defined 6-4
error callback function 6-100
mark-adjusting function 6-54
marking callback functions 6-53 to 6-54
mark token function 6-53
object comparison function 6-50 to 6-52
object-counting function 6-48 to 6-49
object-marking function 6-54
special handler dispatch tables and 4-100
specifying 6-79 to 6-80
token disposal function 6-41
writing 6-45 to 6-75

object classes, Apple event
Apple event objects and 1-11
and classification of Apple event objects 3-39 to 3-41
defined 3-6

object class IDs
in object specifier records 3-35, 6-9
for properties of Apple event objects 3-42, 6-13

object class inheritance hierarchy 3-40 to 3-41
object comparison function 6-50 to 6-52
object-counting function 6-48 to 6-49
object-marking function 6-54
object specifier records

application-defined functions for resolving
6-94 to 6-103

complex 6-64 to 6-75
creating 6-55 to 6-75, 6-88 to 6-94
defined 3-32 to 3-39
descriptor types used in 6-76
keywords for 3-34, 6-8
resolving 3-33, 6-4 to 6-8, 6-85 to 6-87
simple, creating 6-57 to 6-60
specifying a property 6-63
specifying a range 6-72 to 6-75
specifying a relative position 6-64
specifying a test 6-64 to 6-72
specifying the container hierarchy 6-61 to 6-63

Object Support Library
disabling 4-103
initializing 6-77
linking 6-3

'odoc' event ID 3-9
offset descriptor records 6-72, 6-88 to 6-89
Open Application event

defined 4-13
event ID for 3-9
handling 4-14 to 4-15

OpenComponent function 10-4
OpenDefaultComponent function 10-4
Open Documents event

defined 4-13
event ID for 3-9
handling 4-15 to 4-17
IN-10

I N D E X
illustration of responding to 3-27
OpenEdition function 2-26, 2-41, 2-83
opener verbs 2-64 to 2-66
OpenNewEdition function 2-26, 2-35, 2-86 to 2-87
Open Query command (File menu) 12-14

.See also Data Access Manager
Open Scripting Architecture (OSA)

defined 1-13
and scripting components 7-4

optional parameters for Apple events
defined 3-9
and keyOptionalKeywordAttr attribute 4-34
specifying 5-7 to 5-10

'optk' keyword 3-15, 5-7 to 5-10
OSAActiveProcPtr data type 10-23
OSAAddStorageType function 10-93 to 10-94
OSAAvailableDialectCodeList function

10-68 to 10-69
OSAAvailableDialects function 10-70 to 10-71
OSACoerceFromDesc function 10-52 to 10-54
OSACoerceToDesc function 10-54 to 10-55
OSACompileExecute function 10-10, 10-63 to 10-64
OSACompile function 10-7 to 10-9, 10-48 to 10-50
'osa ' component type 10-4
OSACopyID function 10-50
OSADisplay function 10-35 to 10-36
OSADispose function 10-41
OSADoEvent function 10-19 to 10-23, 10-76 to 10-78
OSADoScript function 10-10, 10-65 to 10-66
OSAExactScriptingComponent function 10-18
OSAExecuteEvent function 10-19 to 10-21,

10-74 to 10-76
OSAExecute function 10-7 to 10-9, 10-14 to 10-17,

10-33 to 10-35
OSAGenericToRealID function 10-90 to 10-91
OSAGetActiveProc function 10-46
OSAGetCreateProc function 10-56
OSAGetCurrentDialect function 10-68
OSAGetDefaultScriptingComponent

function 10-86
OSAGetDialectInfo function 10-69 to 10-70
OSAGetResumeDispatchProc function

10-73 to 10-74
OSAGetScriptInfo function 10-43 to 10-44
OSAGetScriptingComponentFromStored

function 10-88 to 10-89
OSAGetScriptingComponent function

10-89 to 10-90
OSAGetSendProc function 10-57
OSAGetSource function 10-17 to 10-18, 10-51 to 10-52
OSAGetStorageType function 10-93
OSAID data type 7-23, 10-29
OSALoadExecute function 10-61 to 10-63
OSALoad function 10-14 to 10-17, 10-32 to 10-33
OSAMakeContext function 10-79

OSARealToGenericID function 10-91 to 10-92
OSARemoveStorageType function 10-94
OSAScriptError function 10-10 to 10-11,

10-37 to 10-40
OSAScriptingComponentName function 10-47
OSASetActiveProc function 10-45
OSASetCreateProc function 10-56
OSASetCurrentDialect function 10-67
OSASetDefaultScriptingComponent

function 10-87
OSASetDefaultTarget function 10-58 to 10-59
OSASetResumeDispatchProc function 10-72
OSASetScriptInfo function 10-41 to 10-42
OSASetSendProc function 10-57
OSAStartRecording function 10-59 to 10-60
OSAStopRecording function 10-60 to 10-61
OSAStore function 10-30 to 10-31

P

'pdoc' event ID 3-9
port filter function 11-24 to 11-25
PortInfoRec data type 11-25
port locations 11-4
port names 11-4
PPCAccept function 11-38, 11-67, 11-69 to 11-70
PPCAcceptPBRec data type 11-46
PPCBrowser function 11-53 to 11-54

use to locate a port 11-22 to 11-27
use with Apple events 5-11, 5-12

PPCClose function 11-43 to 11-44, 11-59 to 11-60
PPCClosePBRec data type 11-46
PPCEnd function 11-43, 11-65 to 11-66
PPCEndPBRec data type 11-46
PPCInform function 11-35 to 11-37, 11-67 to 11-69
PPCInformPBRec data type 11-46
PPCInit function 11-11, 11-52
PPCOpen function 11-20 to 11-22, 11-57 to 11-58
PPCOpenPBRec data type 11-46
PPCParamBlockRec data type 11-15, 11-46
PPC parameter blocks 11-15, 11-17, 11-46 to 11-49
PPCPortRec data type 11-18 to 11-19, 11-49
PPC ports

closing 11-43 to 11-44
defined 11-4
listing available 11-22 to 11-27
opening 11-17 to 11-22
specifying locations 11-4, 11-19, 11-50
specifying names 11-4, 11-17

PPCRead function 11-40 to 11-41, 11-72 to 11-74
PPCReadPBRec data type 11-46
PPCReject function 11-39, 11-67, 11-71
PPCRejectPBRec data type 11-46
IN-11

I N D E X
PPC sessions
accepting 11-37 to 11-39
defined 11-5
ending 11-43
exchanging message blocks during 11-39 to 11-40
initiating 11-29 to 11-35
receiving requests for 11-35 to 11-37
rejecting 11-37 to 11-39

PPCStart function 11-29, 11-33 to 11-35, 11-60 to 11-63
PPCStartPBRec data type 11-46
PPCWrite function 11-42 to 11-43, 11-74 to 11-76
PPCWritePBRec data type 11-46
primitive object classes 3-41
Print Documents event

defined 4-13
event ID for 3-9
handling 4-17 to 4-19

program linking
defined 11-5
dialog box 11-22 to 11-27
to server applications for Apple events 4-5

Program-to-Program Communications (PPC)
Toolbox 11-3 to 11-98

calling conventions 11-14 to 11-17
data structures in 11-46 to 11-49
routines in 11-51 to 11-78
testing for availability 11-11

'prop' descriptor type 4-58
properties of Apple event objects

defined 3-42 to 3-46
object accessor functions that find 6-37 to 6-38
object class ID for 3-42, 6-13
specifying in an object specifier record 6-63

'prvw' format type 2-25
'psn ' descriptor type 3-14, 4-58
Publisher Options command (Edit menu) 2-10, 2-43
publishers

borders 2-9 to 2-10, 2-50 to 2-54
canceling 2-48 to 2-49
creating 2-29 to 2-32
defined 2-4
locating 2-49 to 2-50
multiple 2-18, 2-58 to 2-59, 2-73
options for 2-43 to 2-50
update modes 2-47 to 2-48

Publisher/Subscriber Options command (Edit
menu) 2-10

publishing data. See Edition Manager; publishers

Q

'qdef' resource type 12-91, 12-93
'qery' file type 12-47

'qrsc' resource type 12-91 to 12-92
queries

converting results to text 12-43 to 12-46, 12-68 to
12-69

defined 12-7
executing 12-79 to 12-80
halting execution 12-82 to 12-83
processing results 12-37 to 12-47
retrieving results 12-43
sending 12-31 to 12-32, 12-77 to 12-78
starting 12-64 to 12-66

query definition function resources 12-93
query definition functions 12-52 to 12-55
query documents 12-47 to 12-55

contents 12-49 to 12-52
dialog boxes 12-47 to 12-48

QueryRecord data type 12-57
query records 12-57 to 12-58

creating 12-62
defined 12-47
disposing of 12-63 to 12-64

query resources 12-91 to 12-92
query string resources 12-92
Quit Application event

defined 4-13
event ID for 3-9
handling 4-19 to 4-20

Quit command (File menu) 4-14, 4-20
'quit' event ID 3-9

R

range descriptor records
creating 6-92 to 6-93
key data for 6-20

ReadEdition function 2-27, 2-85 to 2-86
Receive Recordable Event event 9-36
'reco' descriptor type 4-57
recordable applications 1-18 to 1-19, 7-20 to 7-22, 9-3 to

9-5
'aete' resources and 1-18 to 1-19
defined 7-5
direct dispatching and 5-13
factoring 9-6 to 9-13
guidelines for what to record 9-14 to 9-35
introduced 1-15

Recorded Text event 10-27
Recording Off event 9-4
Recording On event 9-4
recording scripts, routines for 10-59 to 10-61
reference constants

for Apple event handlers 4-8, 4-34
for object accessor function 6-24
IN-12

I N D E X
RegisterSection function 2-22, 2-76 to 2-77
relative position, specifying in an object specifier

record 6-64
reply Apple events 4-36 to 4-39

disposing of 4-39 to 4-40
filter functions while waiting for 5-24 to 5-25
timeouts for 4-84 to 4-85, 5-21 to 5-22

required Apple events 4-11 to 4-20
required parameters for Apple events 3-9, 4-34 to 4-35
Required suite of Apple events 1-10
Reset Timer event 4-85
ResListElem record 12-58
resources

alias 2-19
Apple event terminology. See 'aete' resources,

'aeut' resources
query 12-91 to 12-92
query definition function 12-93
query string 12-92
script 7-7, 10-14
scripting size 8-45 to 8-46
section 2-19
size 4-5, 10-14

resource types
'aete'. See 'aete' resources
'aeut'. See 'aeut' resources
'alis' 2-19
'qdef' 12-91, 12-93
'qrsc' 12-91 to 12-92
'scpt' 7-7, 10-14
'scsz' 8-45 to 8-46
'sect' 2-19
'SIZE' 4-5, 10-14
'wstr' 12-49, 12-92

result handlers 12-43 to 12-47, 12-87 to 12-90
application 12-44
function declaration 12-44
installing 12-87 to 12-88
provided by Apple Computer 12-43 to 12-44
system 12-44

ResultsRecord data type 12-42, 12-59
results records 12-41 to 12-43
resume dispatch functions

defined 7-27
example of use 10-21

'rtid' keyword 3-15

S

sample routines
DoEvent 4-5
DoHighLevelEvent 4-6
DoNewPublisher 2-33 to 2-34

DoNewSubscriber 2-40
DoOptionsDialog 2-46 to 2-47
DoPPCAccept 11-38
DoPPCReject 11-39
DoReadEdition 2-42 to 2-43
DoSectionRead 2-15
DoWriteEdition 2-21, 2-34, 2-36, 2-46, 2-47
MyAcceptCompProc 11-38
MyBrowserPortFilter 11-24
MyCompareObjects 6-52
MyConnectToScripting 10-6
MyCountObjects 6-49
MyCreateComparisonDescRec 6-68
MyCreateDocContainer 6-61
MyCreateFormNameObjSpecifier 6-67
MyCreateLogicalDescRec 6-70
MyCreateObjSpecRec 6-70
MyCreateOptionalKeyword 5-9
MyCreateRangeDescriptor 6-74
MyCreateTableContainer 6-62
MyDeleteNewUserRefNum 11-45
MyDoDragWindow 9-13
MyDoMenuNew 9-9
MyDoMenuQuit 9-6
MyDoNewScript 10-9
MyEditGenericScript 10-18
MyFindDocumentObjectAccessor 6-30
MyFindParaObjectAccessor 6-32
MyFindPropertyOfWindowObjectAccessor 6-3

8
MyFindWindowObjectAccessor 6-35
MyFindWordObjectAccessor 6-34
MyGeneralAppleEventHandler 10-21
MyGetAETE 8-25
MyGetQRCompRoutine 12-21
MyGetScriptErrorInfo 10-11
MyGetSectionHandleFromEvent 2-15
MyGetTargetAddress 5-12
MyGotRequiredParams 4-35
MyHandleCreateElement 9-11
MyHandleCreatePublisherEvent 4-23
MyHandleOApp 4-15
MyHandleODoc 4-15
MyHandlePDoc 4-18
MyHandleQuit 4-19, 9-8
MyHandler 4-38
MyHandleSectionReadEvent 2-14
MyHiLevel 12-18
MyIdleFunction 5-23
MyInformCompProc 11-37
MyIPCListPorts 11-28
MyLoadAndExecute 10-16
MyLoLevel 12-34
MyMultHandler 4-39
MyOpenExistingDocument 2-23
IN-13

I N D E X
MyPPCBrowser 11-26
MyPPCClose 11-44
MyPPCEnd 11-43
MyPPCInform 11-36
MyPPCInit 11-12
MyPPCOpen 11-21
MyPPCRead 11-41
MyPPCStart 11-34
MyPPCWrite 11-42
MyQDef 12-53
MyReadComplete 11-41
MyRejectCompProc 11-39
MyRequestRowFromTarget 6-59
MySaveDocument 2-21
MySendAECreateElement 9-10
MySendAEQuit 9-7
MySendFragment 12-32
MySendMultiplyEvent 5-18
MySetTargetAddresses 5-11
MyStartCompRoutine 12-21
MyStartSecureSession 11-32
MyStartStatus 12-26
MyTypeIntegerHandler 12-46
MyWriteComplete 11-43

'scpt' component subtype 10-4, 10-14
'scpt' file type 7-7
'scpt' resource type 7-7, 10-14
scriptable applications
'aete' resources and 1-16 to 1-17, 8-13 to 8-23
AppleScript and 8-3 to 8-7
defined 7-4
introduced 1-15
requirements for 1-16 to 1-17, 7-14 to 7-20,

8-13 to 8-23
script applications

creator signature for 10-14
defined 7-7

script comments 7-6, 10-14
script contexts

defined 7-23
handling Apple events with 7-25 to 7-28,

10-19 to 10-23
introduced 7-12
routines for handling Apple events with

10-71 to 10-79
used for global contexts 10-8

script data
coercing a descriptor record to 10-52 to 10-54
coercing to a descriptor record 10-54 to 10-55
defined 7-23
disposing of 10-41
executing 10-14 to 10-17, 10-33 to 10-35
generic scripting component and trailer for 10-15
getting handle to 10-30 to 10-31
getting information about 10-43 to 10-44

loading and executing 10-14 to 10-17
resource and file types for 10-13
saving 10-12 to 10-14, 10-30 to 10-31
saving and loading, routines for 10-30 to 10-33
setting and getting information about 10-41 to 10-44
storage formats for 10-12 to 10-13
updating 10-50

Script Editor application
and applications that execute scripts 1-21
scriptable applications and 1-14 to 1-15
script window for 7-6

script editors
and Apple event recording 9-35 to 9-37
defined 7-6

script error information selectors 10-37 to 10-38
script files 7-7
script IDs

defined 7-23
and generic script IDs 10-85

script information selectors 10-43 to 10-44
scripting components 7-3 to 7-28, 10-3 to 10-125

and Apple event recording 9-35 to 9-37
application-defined functions for 10-94 to 10-98
connecting with via Component Manager

10-3 to 10-7
defined 7-4
error numbers for OSAScriptError 10-39 to 10-40
flags for component description records 10-5
and generic scripting component 7-22, 10-15
introduced 1-13
optional routines for 10-46 to 10-79
required routines for 10-30 to 10-46
routines used by 10-84 to 10-94
and scriptable applications 7-8 to 7-11
using to manipulate and execute scripts 7-11 to 7-14,

7-22 to 7-28
writing 10-27

ScriptingComponentSelector data type 10-85
scripting languages

and object specifier records 3-33
AppleScript. See AppleScript scripting language
supporting 1-13 to 1-22

scripts
defined 7-4
executing in one step, routines for 10-61 to 10-66
introduced 1-13
manipulating and executing 1-19 to 1-22, 7-22 to 7-28
multithreaded execution of 10-4
recording, Recorded Text event and 10-27
recording, routines for 10-59 to 10-61

script text files 7-8
script values

coercing to readable text 10-35 to 10-36
coercion of, routines for 10-52 to 10-55
defined 7-23
IN-14

I N D E X
'scsz' resource 8-45 to 8-46
'sect' descriptor type 4-58
Section Cancel event 2-13
SectionEventMsgClass event class ?? to 4-21, 4-21

to ??
SectionOptionsDialog function 2-43, 2-94 to 2-95
SectionOptionsExpDialog function 2-60 to 2-61,

2-96 to 2-98
SectionOptionsReply data type 2-45 to 2-46
Section Read event 2-13, 4-21

preventing initial 2-75
SectionReadMsgID event ID 4-21
SectionRecord data type 2-17 to 2-18, 2-72 to 2-73
section records for publishers and subscribers 2-15 to

2-24
Section Scroll event 2-13, 4-21
SectionScrollMsgID event ID 4-21
sections. See also publishers; subscribers 2-15 to 2-28

canceling 2-48 to 2-49
defined 2-4
reading and writing 2-24
registering 2-13 to 2-14
renaming documents that contain 2-50

Section Write event 2-13, 4-21
SectionWriteMsgID event ID 4-21
'sect' resource type 2-19
'seld' keyword 6-8
Select event 9-16 to 9-35
send functions

routines for manipulating 10-55 to 10-57
supplying alternative 10-25 to 10-26

sendMode flags for AESend 5-40
server applications, for Apple events

defined 3-4 to 3-5
introduced 1-9
setting user interaction preferences 4-48
user interaction with 4-45 to 4-55

session ID, data access
defined 12-16
getting 12-29

session numbers, data access
getting 12-37, 12-75 to 12-76
use of 12-37

sessions, data access
controlling 12-69 to 12-76
examples 12-18, 12-34
getting information about 12-37, 12-72 to 12-74
initiating 12-16, 12-28, 12-69 to 12-71
terminating 12-17, 12-33, 12-71 to 12-72, 12-82 to

12-83
sessions, PPC. See PPC sessions
Set Data event

handling 1-12
recording 9-27 to 9-30
sent by AppleScript component 7-10

sent during script execution 1-17
SetEditionFormatMark function 2-27, 2-82
SetEditionOpenerProc function 2-63, 2-102
Sharing Setup control panel 11-6
'shor' descriptor type 4-57
Show/Hide Borders command (Edit menu) 2-10
'sign' descriptor type 3-14, 4-58
simple object specifier records, creating 6-57 to 6-60
'sing' descriptor type 4-57
'SIZE' resource

use by Apple events 4-5
use in script application files 10-14

source applications, for Apple events 3-4 to 3-5
source data, for scripts

AppleScript routines for styles 10-82 to 10-84
compiling 10-48 to 10-50
compiling and executing 10-7 to 10-11
defined 7-23
obtaining from script data 10-51 to 10-52

'srce' keyword 10-39
'srcs' keyword 10-39
'ssid' descriptor type 3-14, 4-58
Start Recording event 9-36
StartSecureSession function 11-30 to 11-31, 11-63

to 11-66
status routines, Data Access Manager 12-22 to 12-28

for DBGetQueryResults function 12-22 to 12-28
for DBStartQuery function 12-22 to 12-28
defined 12-14
function declaration 12-22
sample 12-26 to 12-28
and status messages 12-22 to 12-25

Stop All Editions command (Edit menu) 2-10
Stop Recording event 9-37
subclasses, in object class definitions 3-40
Subscriber Options command (Edit menu) 2-43 to 2-45
subscribers

borders 2-9 to 2-10, 2-50, 2-54
canceling 2-48
creating 2-37 to 2-39
defined 2-4
modifying the contents of 2-59
options for 2-43 to 2-50
to non-edition files 2-62 to 2-70
update modes 2-48

Subscribe To command (Edit menu) 2-10
subscribing. See Edition Manager; subscribers
superclasses, in object class definitions 3-40
system Apple event dispatch table 4-7
system coercion dispatch table 4-41
system object accessor dispatch table 6-22
IN-15

I N D E X
T

'targ' descriptor type 3-14, 4-58
target addresses of Apple events 5-10 to 5-13
target applications, for Apple events 3-4 to 3-5
terminology in applications, recommended 2-4
terminology resources, Apple event 8-3 to 8-46

and AppleScript 7-17 to 7-20
defined 7-15
structure of 8-8 to 8-13, 8-26 to 8-44

'TEXT' descriptor type 4-57
timeouts for interacting with the user 4-50
timeouts for reply Apple events 4-84 to 4-85, 5-21 to

5-22
'timo' keyword 3-15
token disposal functions

called by Apple Event Manager 6-41, 6-46
defined 6-7
marking callback functions and 6-54

tokens, for Apple event objects
defined 6-4
defining descriptor types for 6-39 to 6-41
object accessor functions and 6-28 to 6-29
ranges of text and 6-40

'tran' keyword 3-15
'true' descriptor type 4-57
typeAbsoluteOrdinal descriptor type 6-14, 6-76
typeAEList descriptor type 4-57
typeAERecord descriptor type 4-57
typeAlias descriptor type 4-58
typeAppleEvent descriptor type 4-57
typeApplSignature descriptor type 3-14, 4-58, 5-10
typeAppParameters descriptor type 4-58
typeBoolean descriptor type 4-57
typeChar descriptor type 4-57
typeCompDescriptor descriptor type 6-16
typeComp descriptor type 4-57
typeCurrentContainer descriptor type 6-20, 6-76
'type' descriptor type 4-58
typeEnumerated descriptor type 4-58, 6-76
typeExtended descriptor type 4-57
typeFalse descriptor type 4-58
typeFSS descriptor type 4-58
typeKeyword descriptor type 4-58
typeLogicalDescriptor descriptor type 6-17
typeLongFloat descriptor type 4-57
typeLongInteger descriptor type 4-57
typeMagnitude descriptor type 4-57
typeNull descriptor type 4-58, 6-10, 9-17
typeObjectBeingExamined descriptor type 6-16,

6-68, 6-76
typeObjectSpecifier descriptor type 4-22, 6-55 to

6-75, 6-76
typeOSAErrorRange descriptor type 10-39

typeOSAGenericStorage descriptor type 10-12,
10-14

typeProcessSerialNumber descriptor type 3-14,
4-58, 5-10, 5-13

typeProperty descriptor type 4-58
typeRangeDescriptor descriptor type 6-20
typeSectionH descriptor type 4-58
typeSessionID descriptor type 3-14, 4-58, 5-10
typeShortFloat descriptor type 4-57
typeShortInteger descriptor type 4-57
typeTargetID descriptor type 3-14, 4-58, 5-10
typeTrue descriptor type 4-57
typeType descriptor type 4-58
typeWhoseDescriptor descriptor type 6-42 to 6-45
typeWhoseRange descriptor type 6-44
typeWildCard descriptor type 4-10, 4-58, 4-63,

6-26 to 6-27

U

UnRegisterSection function 2-22, 2-48, 2-77 to 2-78
user interaction

requesting 4-49 to 4-56, 4-81 to 4-84
setting preferences for client application 4-45 to 4-47
setting preferences for server application 4-48

Users & Groups control panel 11-7

W

WaitNextEvent function, use by the Apple Event
Manager 5-15

'want' keyword 6-8
whose descriptor records 6-42 to 6-45
whose range descriptor records 6-44
WriteEdition function 2-27, 2-88
'wstr' resource type 12-49, 12-92

X, Y, Z

XCMDs, as a script 10-13
IN-16

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter II

NTX

 printer. Final page
negatives were output directly from
text files on an Optrotech SPrint 220
imagesetter. Line art was created using
Adobe

™

 Illustrator and Adobe
Photoshop. PostScript

™

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

®

 and display type is
Helvetica

®

. Bullets are ITC Zapf
Dingbats

®

. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Sharon Everson

WRITERS

Sean Cotter, Paul Black, Laine Rapin

DEVELOPMENTAL EDITORS

Antonio Padial, Anne Szabla

INDEX SPECIALIST

Sanborn Hodgkins

ILLUSTRATORS

Bruce Lee, Ruth Anderson,
Barbara Carey, Lisa Hymel

COVER DESIGNER

Barb Smyth

PRODUCTION EDITOR

Teresa Lujan

FORMATTER

Judith Radin

PROJECT MANAGER

Patricia Eastman

Special thanks to William Cook,
Tony Francis, Warren Harris, Eric House,
Ed Lai, Donald Olson, Beverly Zegarski

Acknowledgments to
Jens Alfke, Gary Bond,
Kevin Calhoun, Julie Callahan,
Dave Curbow, Donn Denman,
Laili Di Silvestro, Sue Dumont,
Wendy Krafft, Bennet Marks,
Cassandra Markham Nelson,
and the entire AppleScript and

Inside Macintosh

 teams.

	Interapplication Communication
	Copyright
	Table of Contents
	Figures, Tables, and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Assembly-Language Information

	The Development Environment

	Introduction to Interapplication Communication
	Contents
	Overview of Interapplication Communication
	Sharing Data Among Applications
	Sending and Responding to Apple Events
	Standard Apple Events
	Handling Apple Events

	Supporting AppleScript and Other Scripting Languag...
	Scriptable Applications
	Recordable Applications
	Applications That Manipulate and Execute Scripts

	Exchanging Message Blocks

	Edition Manager
	Contents
	Introduction to Publishers, Subscribers, and Editi...
	About the Edition Manager
	Using the Edition Manager
	Receiving Apple Events From the Edition Manager
	Creating the Section Record and Alias Record
	Saving a Document Containing Sections
	Opening and Closing a Document Containing Sections...
	Reading and Writing a Section
	Formats in an Edition
	Opening an Edition
	Format Marks
	Reading and Writing Edition Data
	Closing an Edition

	Creating a Publisher
	Creating the Edition Container
	Opening an Edition Container to Write Data

	Creating a Subscriber
	Opening an Edition Container to Read Data
	Choosing Which Edition Format to Read

	Using Publisher and Subscriber Options
	Publishing a New Edition While Saving or Manually
	Subscribing to an Edition Automatically or Manuall...
	Canceling Sections Within Documents
	Locating a Publisher Through a Subscriber

	Renaming a Document Containing Sections
	Displaying Publisher and Subscriber Borders
	Text Borders
	Spreadsheet Borders
	Object-Oriented Graphics Borders
	Bitmapped Graphics Borders
	Duplicating Publishers and Subscribers

	Modifying a Subscriber
	Relocating an Edition
	Customizing Dialog Boxes

	Subscribing to Non-Edition Files
	Getting the Current Edition Opener
	Setting an Edition Opener
	Calling an Edition Opener
	Opening and Closing Editions
	Listing Files That Can Be Subscribed To
	Reading From and Writing to Files
	Calling a Format I/O Function

	Edition Manager Reference
	Data Structures
	The Edition Container Record
	The Section Record

	Edition Manager Routines
	Initializing the Edition Manager
	Creating and Registering a Section
	Creating and Deleting an Edition Container
	Setting and Getting a Format Mark
	Reading in Edition Data
	Writing out Edition Data
	Closing an Edition After Reading or Writing
	Displaying Dialog Boxes
	Locating a Publisher and Edition From a Subscriber...
	Edition Container Formats
	Reading and Writing Non-Edition Files

	Application-Defined Routines

	Summary of the Edition Manager
	Pascal Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Edition Manager Routines
	Application-Defined Routines

	Result Codes

	Introduction to Apple Events
	Contents
	About Apple Events
	Apple Events and Apple Event Objects
	Apple Event Attributes and Parameters
	Apple Event Attributes
	Apple Event Parameters
	Interpreting Apple Event Attributes and Parameters...

	Data Structures Within Apple Events
	Descriptor Records
	Keyword-Specified Descriptor Records
	Descriptor Lists

	Responding to Apple Events
	Accepting and Processing Apple Events
	About Apple Event Handlers
	Extracting and Checking Data
	Interacting With the User
	Performing the Requested Action and Returning a Re...

	Creating and Sending Apple Events
	Creating an Apple Event Record
	Adding Apple Event Attributes and Parameters
	Sending an Apple Event and Handling the Reply

	Working With Object Specifier Records
	Data Structures Within an Object Specifier Record
	The Classification of Apple Event Objects
	Object Classes
	Properties and Elements

	Finding Apple Event Objects

	About the Apple Event Manager
	Supporting Apple Events as a Server Application
	Supporting Apple Events as a Client Application
	Supporting Apple Event Objects
	Supporting Apple Event Recording

	Responding to Apple Events
	Contents
	Handling Apple Events
	Accepting an Apple Event
	Installing Entries in the Apple Event Dispatch Tab...
	Installing Entries for the Required Apple Events
	Installing Entries for Apple Events Sent by the Ed...
	How Apple Event Dispatching Works

	Handling the Required Apple Events
	Required Apple Events
	Handling the Open Application Event
	Handling the Open Documents Event
	Handling the Print Documents Event
	Handling the Quit Application Event

	Handling Apple Events Sent by the Edition Manager
	The Section Read, Section Write, and Section Scrol...
	Handling the Create Publisher Event

	Getting Data Out of an Apple Event
	Getting Data Out of an Apple Event Parameter
	Getting Data Out of an Attribute
	Getting Data Out of a Descriptor List

	Writing Apple Event Handlers
	Replying to an Apple Event
	Disposing of Apple Event Data Structures
	Writing and Installing Coercion Handlers

	Interacting With the User
	Setting the Client Application’s User Interaction ...
	Setting the Server Application’s User Interaction ...
	Requesting User Interaction

	Reference to Responding to Apple Events
	Data Structures Used by the Apple Event Manager
	Descriptor Records and Related Data Structures
	Apple Event Array Data Types

	Routines for Responding to Apple Events
	Creating and Managing the Apple Event Dispatch Tab...
	Dispatching Apple Events
	Getting Data or Descriptor Records Out of Apple Ev...
	Counting the Items in Descriptor Lists
	Getting Items From Descriptor Lists
	Getting Data and Keyword-Specified Descriptor Reco...
	Requesting User Interaction
	Requesting More Time to Respond to Apple Events
	Suspending and Resuming Apple Event Handling
	Getting the Sizes and Descriptor Types of Descript...
	Deleting Descriptor Records
	Deallocating Memory for Descriptor Records
	Coercing Descriptor Types
	Creating and Managing the Coercion Handler Dispatc...
	Creating and Managing the Special Handler Dispatch...
	Getting Information About the Apple Event Manager

	Application-Defined Routines

	Summary of Responding to Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Responding to Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	Creating and Sending Apple Events
	Contents
	Creating an Apple Event
	Adding Parameters to an Apple Event
	Specifying Optional Parameters for an Apple Event
	Specifying a Target Address
	Creating an Address Descriptor Record
	Addressing an Apple Event for Direct Dispatching

	Sending an Apple Event
	Dealing With Timeouts
	Writing an Idle Function
	Writing a Reply Filter Function

	Reference to Creating and Sending Apple Events
	Routines for Creating and Sending Apple Events
	Creating Apple Events
	Creating and Duplicating Descriptor Records
	Creating Descriptor Lists and AE Records
	Adding Items to Descriptor Lists
	Adding Data and Descriptor Records to AE Records
	Adding Parameters and Attributes to Apple Events
	Sending Apple Events

	Application-Defined Routines

	Summary of Creating and Sending Apple Events
	Pascal Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Creating and Sending Apple Events
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	Resolving and Creating Object Specifier Records
	Contents
	Resolving Object Specifier Records
	Descriptor Records Used in Object Specifier Record...
	Object Class
	Container
	Key Form
	Key Data
	Key Data for a Property ID
	Key Data for an Object’s Name

	Key Data for a Unique ID
	Key Data for Absolute Position
	Key Data for Relative Position
	Key Data for a Test
	Key Data for a Range

	Installing Entries in the Object Accessor Dispatch...
	Installing Object Accessor Functions That Find App...
	Installing Object Accessor Functions That Find Pro...

	Writing Object Accessor Functions
	Writing Object Accessor Functions That Find Apple�...
	Writing Object Accessor Functions That Find Proper...
	Defining Tokens
	Handling Whose Tests

	Writing Object Callback Functions
	Writing an Object-Counting Function
	Writing an Object-Comparison Function
	Writing Marking Callback Functions

	Creating Object Specifier Records
	Creating a Simple Object Specifier Record
	Specifying the Container Hierarchy
	Specifying a Property
	Specifying a Relative Position

	Creating a Complex Object Specifier Record
	Specifying a Test
	Specifying a Range

	Reference to Resolving and Creating Object Specifi...
	Data Structures Used in Object Specifier Records
	Routines for Resolving and Creating Object Specifi...
	Initializing the Object Support Library
	Setting Object Accessor Functions and Object Callb...
	Getting, Calling, and Removing Object Accessor Fun...
	Resolving Object Specifier Records
	Deallocating Memory for Tokens
	Creating Object Specifier Records

	Application-Defined Routines
	Object Accessor Functions
	Object Callback Functions

	Summary of Resolving and Creating Object Specifier...
	Pascal Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	Introduction to Scripting
	Contents
	About Scripts and Scripting Components
	Script Editors and Script Files
	Scripting Components and Scriptable Applications
	Scripting Components and Applications That Execute...

	Making Your Application Scriptable
	About Apple Event Terminology Resources
	How AppleScript Uses Terminology Information
	Dynamic Loading of Terminology Information

	Making Your Application Recordable
	Manipulating and Executing Scripts
	Compiling, Saving, Modifying, and Executing Script...
	Using a Script Context to Handle an Apple Event

	Apple Event Terminology Resources
	Contents
	Defining Terminology for Use by the AppleScript Co...
	Structure of Apple Event Terminology Resources
	Creating an Apple Event Terminology Extension Reso...
	Supporting Standard Suites Without Extensions
	Extending the Standard Suites
	Supporting Subsets of Suites
	Supporting New Suites

	Handling the Get AETE Event
	Reference to Apple Event Terminology Resources
	Header Data for an Apple Event Terminology Resourc...
	Suite Data for an Apple Event Terminology Resource...
	Event Data
	Object Class Data
	Comparison Operator Data
	Enumeration and Enumerator Data

	The Scripting Size Resource

	Recording Apple Events
	Contents
	About Recordable Applications
	Factoring Your Application for Recording
	Factoring the Quit Command and the New Command
	Sending Apple Events Without Executing Them

	What to Record
	Recording User Actions
	Recording the Selection of Text Objects
	Recording Insertion Points
	Recording Typing
	Recording the Selection of Nontext Objects
	Identifying Objects
	Moving the Selection During Recording
	Recording Interactions With Dialog Boxes

	How Apple Event Recording Works

	Scripting Components
	Contents
	Connecting to a Scripting Component
	Using Scripting Component Routines
	Compiling and Executing Source Data
	Saving Script Data
	Storage Formats for Script Data
	Resource and File Types for Script Data

	Loading and Executing Script Data
	Modifying and Recompiling a Compiled Script
	Using a Script Context to Handle an Apple Event
	Supplying a Resume Dispatch Function
	Supplying an Alternative Active Function
	Supplying Alternative Create and Send Functions
	Alternative Create Functions
	Alternative Send Functions

	Recording Scripts

	Writing a Scripting Component
	Scripting Components Reference
	Data Structures
	Required Scripting Component Routines
	Saving and Loading Script Data
	Executing and Disposing of Scripts
	Setting and Getting Script Information
	Manipulating the Active Function

	Optional Scripting Component Routines
	Compiling Scripts
	Getting Source Data
	Coercing Script Values
	Manipulating the Create and Send Functions
	Recording Scripts
	Executing Scripts in One Step
	Manipulating Dialects
	Using Script Contexts to Handle Apple Events

	AppleScript Component Routines
	Initializing AppleScript
	Getting and Setting Styles for Source Data

	Generic Scripting Component Routines
	Getting and Setting the Default Scripting Componen...
	Using Component-Specific Routines

	Routines Used by Scripting Components
	Manipulating Trailers for Generic Storage Descript...

	Application-Defined Routines

	Summary of Scripting Components
	Pascal Summary
	Constants
	Data Types
	Required Scripting Component Routines
	Optional Scripting Component Routines
	AppleScript Component Routines
	Generic Scripting Component Routines
	Routines Used by Scripting Components
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Required Scripting Component Routines
	Optional Scripting Component Routines
	AppleScript Component Routines
	Generic Scripting Component Routines
	Routines Used by Scripting Components
	Application-Defined Routines

	Result Codes

	Program-to-Program Communications Toolbox
	Contents
	About the PPC Toolbox
	Ports, Sessions, and Message Blocks
	Setting Up Authenticated Sessions

	Using the PPC Toolbox
	PPC Toolbox Calling Conventions
	Specifying Port Names and Location Names
	Opening a Port
	Browsing for Ports Using the Program Linking Dialo...
	Obtaining a List of Available Ports

	Preparing for a Session
	Initiating a PPC Session
	Receiving Session Requests
	Accepting or Rejecting Session Requests

	Exchanging Data During a PPC Session
	Reading Data From an Application
	Sending Data to an Application

	Ending a Session and Closing a Port
	Invalidating Users

	PPC Toolbox Reference
	Data Structures
	The PPC Toolbox Parameter Block
	The PPC Port Record
	The Location Name Record
	The Port Information Record

	PPC Toolbox Routines
	Initializing the PPC Toolbox
	Using the Program Linking Dialog Box
	Obtaining a List of Ports
	Opening and Closing a Port
	Starting and Ending a Session
	Receiving, Accepting, and Rejecting a Session
	Reading and Writing Data
	Locating a Default User and Invalidating a User

	Application-Defined Routines
	Completion Routines for PPC Toolbox Routines
	Port Filter Functions

	Summary of the PPC Toolbox
	Pascal Summary
	Constants
	Data Types
	PPC Toolbox Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	PPC Toolbox Routines
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	Data Access Manager
	Contents
	About the Data Access Manager
	The High-Level Interface
	Sending a Query Through the High-Level Interface
	Retrieving Data Through the High-Level Interface

	The Low-Level Interface
	Sending a Query Through the Low-Level Interface
	Retrieving Data Through the Low-Level Interface

	Comparison of the High-Level and Low-Level Interfa...

	Using the Data Access Manager
	Executing Routines Asynchronously
	General Guidelines for the User Interface
	Keep the User in Control
	Provide Feedback to the User

	Using the High-Level Interface
	Writing a Status Routine for High-Level Functions
	Using the Low-Level Interface
	Getting Information About Sessions in Progress
	Processing Query Results
	Getting Query Results
	Converting Query Results to Text

	Creating a Query Document
	User Interface Guidelines for Query Documents
	Contents of a Query Document
	Query Records and Query Resources
	Writing a Query Definition Function

	Data Access Manager Reference
	Data Structures
	The Asynchronous Parameter Block
	The Query Record
	The Results Record

	Data Access Manager Routines
	Initializing the Data Access Manager
	High-Level Interface: Handling Query Documents
	High-Level Interface: Handling Query Results
	Low-Level Interface: Controlling the Session
	Low-Level Interface: Sending and Executing Queries...
	Low-Level Interface: Retrieving Results
	Installing and Removing Result Handlers

	Application-Defined Routines
	Resources
	The Query Resource
	The Query String Resource
	The Query Definition Function Resource

	Summary of the Data Access Manager
	Pascal Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Data Access Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	Glossary
	Index
	Colophon

