
For Macintosh SE,
Macintosh SEl30,

Macintosh II,
Macintosh llx,

Macintosh Portable,
Macintosh Ilcx,
Macintosh IIci,

and Macintosh llfx

Designing Cards and Drivers
for the MacintosH Family
by Apple Computer, Inc.

Second Edition

For Macintosh SE,
Macintosh SF/30,

Macintosh II,
Macintosh IIx,

Macintosh Portable,
Macintosh IIcx,
Macintosh IIc~

and Macintosh IIfx

Designing Cards and Drivers
for the Macintosh® Family
Second Edition

A ... ~
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

• APPLE COMPUTER, INC.
All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of America.

© Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010
Apple, the Apple logo, AppleLink,
LaserWriter, AppleTalk, Alux,
Macintosh, and SANE are registered
trademarks of Apple Computer,
Inc.

APDA, Apple Desktop Bus,
EtherTalk, FDHD, MPW,
QuickDraw, and SuperDrive are
trademarks of Apple Computer,
Inc.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

FreeBus and TwoBus are
trademarks of Diversified I/O, Inc.

PAL is a registered trademark of
International Business Machines
Corp.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.

Motorola is a registered trademark
of Motorola Corporation.

PEM is a registered trademark of
Penn Engineering and
Manufacturing Corp.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the
United States and Canada.

ISBN 0-201-52404-X
ABCDEFGHIj-MU-9543210
First printing, May 1990

W ARRAN1Y INFORMATION

ALL IMPLIED WARRANTIES ON
TInS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICUlAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAn. PURCHASE OF
TInS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
W ARRAN1Y OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO TInS MANUAL,
ITS QUALI1Y, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, TInS MANUAL IS SOLD
"AS IS," AND YOU, TIlE
PURCHASER, ARE ASSUMING TIlE
ENTIRE RISK AS TO ITS QUALflY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
DAHLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING mOM Mff DEFECT OR
INACCURACY IN TInS MANUAL,
even if advised of the possibility of
such damages.

TIlE W ARRAN1Y AND REMEDIES
SET FORm ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRfITEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures and tables / xv

Preface About This Book / xxiii
Design philosophy / xxiv
Conventions used in this book / xxiv
About the mechanical drawings and design guides / xxvi
About the Macintosh technical documentation / xxvi
How to get more information· / xxviii

APDA / xxviii
User groups / xxix
Apple Developer Services / xxix

Introduction Expansion Strategy for the Macintosh Family / 1
Limiting the number of expansion interfaces / 2
NuBus expansion / 3
Processor-direct slot (PDS) expansion / 3

The 68000 Direct Slot expansion interface / 4
The 68030 Direct Slot expansion interface / 5
Recommended strategy for 68030 Direct Slot expansion
card design / 5
Converting your designs / 6

Application-specific expansion / 6
Slot strategy summary / 7

Part I The NuBus Expansion Interface / 9
About Part I / 10
Addressing design philosophy / 11
NuBus use and licensing requirements / 11

iii

1 Hardware Overview of the Macintosh n Famlly / 13
Major features / 14
Hardware architecture / 16

RAM / 22
ROM / 22
Device I/O / 22
Address/data bus / 24

NuBus interface architecture / 26
Processor-bus to NuBus state machine / 27
NuBus to processor-bus state machines / 27

2 NuBus Overview / 31
NuBus features / 32
NuBus elements / 33
NuBus signal classifications / 35
NuBus timing / 36
Definitions / 37

3 NuBus Data Transfer / 41
Utility signals / 42

Clock signal / 42
Reset signal / 42
Power Fail Warning signal / 43
Non-Master Request signal / 43

Card slot identification signals / 43
Signal line determinacy / 44
Data transfer signals / 45

Control signals / 45
Address/Data signals / 45
Bus parity signals / 46

Data transfer specifications / 46
Single data cycle transactions / 47

Read transactions / 48
Write transactions / 49
Acknowledge cycles / 51
Attention cycles / 51

Interrupt operations / 53
By write transaction / 53

iv Designing Cards and Drivers for the Macintosh Family

By slots sharing a single NuBus /NMRQ line / 53
By a dedicated /NMRQ line from each slot
(Macintosh II-family computers) / 53

Block data transfers / 53
Block read / 54
Block write / 56
Block transfer errors / 57

Nonaligned microprocessor accesses / 58
Nonaligned reads / 58
Nonaligned writes / 59

Data caching / 59
Compliance categories / 59

4 NuBus Arbitration / 61
Arbitration overview / 62
Arbitration logic mechanism / 63
Arbitration timing overview / 65
Locking / 65

Bus locking / 67
Resource locking / 68

Bus parking / 69

5 NuBus Card Electrical Design Guide / 71
Electrical requirements / 72

Logical and electrical state relationships / 72
DC and AC specifications for line drive / 72
/PFW interaction with the power supply / 74
NuBus connector pin assignments / 74
Power supply specifications / 75
NuBus power budget / 76

Timing requirements / 77
Utility and data transfer timing / 77
Arbitration timing / 78

Contents v

6 NuBus Card Physical Design Guide / 81
Card description / 82
NuBus connector description / 83
Recommended heat dissipation guidelines / 85
Third-party design aids / 86

7 NuBus Card Memory Access / 87
Address space '/ 88
Macintosh II-family address allocations / 90

Slot allocations / 92
NuBus bit and byte structure / 92

8 NuBus Card Firmware / 95
An introduction to the firmware / 96

About the Slot Manager and the declaration ROM / 96
About sResources / 97
How sResources are implemented / 99
The sRsrcType entry / 99
How to configure the sRsrcType fields for video
card sResources / 101

sRsrcType fields for a video card functional sResource / 101
sRsrcType fields for a video card Board sResource / 102

How QuickDraw interacts with the Slot Manager and
declaration ROM / 103
Summary of firmware design objectives / 104
Obtaining card identification and sRsrcType values
from MacDTS / 105

Data types / 106
Firmware structure / 108

The format block / 111
ByteLanes / 113
Reserved / 113
TestPattern / 113
Format / 114
RevisionLevel / 114
CRC / 114
Length / 114
DirectoryOffset / 115

vi Designing Cards and Drivers for the Macintosh Family

The sResource directory / 115
sResources / 116
Apple-defined sResource entries / 118

sRsrcType / 119
sRsrcName / 120
sRsrclcon / 120
RsrcDrvrDir / 120
sRsrcLoadRec / 121
sRsrcBootRec / 122
sRsrcFlags / 123
sRsrcHWDevId / 123
MinorBaseOS / 123
MinorLength / 124
MajorBaseOS / 124
MajorLength / 124
sRsrcCicn / 124
sRsrclc18 / 124
sRsrclc14 / 124
sGammaDir / 125

The Board sResource / 125
BoardId / 126
PRAMInitData / 127
PrimaryInit / 127
STimeOut / 128
VendorInfo / 128
SecondaryInit / 129
sRsrcVidNames / 129

Additional firmware requirements of video cards / 130
Identifying direct devices / 130
Identifying 32-bit addressable configurations / 131
Icons / 131
Gamma table data / 132
Video mode name directory / 133
Video card name / 133
Resolution / 133

Sample code / 133

Contents vii

9 NuBus Card Driver Design / 153
Storing the driver code for a NuBus card / 154
Specific and generic drivers / 154

Card-specific drivers / 154
Card-generic drivers / 155

The sDriver record / 157
Installing a driver at startup / 157
Calling a driver / 159
Slot device interrupts / 161

sIntInstall / 162
sIntRemove / 162
PollRoutine / 163

Video drivers / 163
Video declaration ROM information / 164

Video driver routines / 166
Video driver data structures / 167
Control routines / 168
Status routines / 172

Gamma correction in the Macintosh II family / 174
How gamma correction works / 175
The gammaTbI data structure / 177
Using gamma correction / 178

Video driver example / 178
Summary / 203

Data types / 203
Interrupt queue routines / 203
Advanced control routines / 204
Advanced status routines / 204
Assembly-language information / 205

Data structures / 205
Interrupt queue routines / 205

10 NuBus Design Examples / 207
NuBus Test Card / 208

Overview of operation / 208
Programming model / 208
Byte swapping and the NTC / 210
Programming the NTC / 211

Examples / 211

viii Designing Cards and Drivers for the Macintosh Family

Hardware organization / 213
NuBus address/data buffers / 213
Address and Data registers / 213
Address comparison / 213
SLAVE PAL / 214
ARB PAL / 214
MASTER PAL / 214
MISC PAL / 214
NBDRVR PAL / 214

Slave operation / 216
Master operation / 216

SCSI-NuBus Test Card / 217
Software overview / 217
Hardware overview / 217

NuBus transceivers (ALS651's) / 220
Slot Decode (F86/F30) / 220
NuBus state machine (stNUBUS1 PAL) / 220
NuBus signal generator (stNUBUS2 PAL) / 220
Decode and timing (stMISC PAL) / 221
SCSI chip (NCR5380) / 222
Pseudo-ROM / 222
RAM / 222

PAL descriptions / 222
A simple disk controller / 222

System configuration / 223
Controller card block diagram / 223
Floppy disk controller logic / 225

NuBus interface logic / 225
Programmed I/O (PIa) operations / 226
On-card D MA operations / 227

Memory map and the declaration ROM / 228

11 The Macintosh n Video Card / 229
Video card overview / 230
Functional operation / 231

Processor-ta-video card interface / 232
Timing generation / 232
Frame Buffer Controller (FBC) / 232
Video RAM / 233

Contents ix

Color look-up table (CLUT) / 236
Horizontal and vertical scan timing / 236
Declaration ROM operation / 239

Configuration data / 239
The driver / 240
The primary initialization code / 241

Firmware interfaces / 241
Card connectors / 243

Video connector / 243
External-signal connector / 244

Part n The Processor-Direct Slot Expansion Interface / 245
About Part II / 246

12 Overview of Macintosh PDS Computers / 247
Major features / 248
Hardware architecture / 249

RAM / 254
ROM / 255
Device I/O / 256

Processor-direct slot interface / 256
The 68000 Direct Slot / 257
The 68030 Direct Slot / 258
Additional support for expansion / 258

13 Electrical Design Guide for 68000 Direct Slot
Expansion Cards / 261
The Macintosh SE 68000 Direct Slot / 262

Electrical description of the Macintosh SE expansion
connector / 262
Functional description of the MC68000 signals in the
Macintosh SE / 268
Accessing the Macintosh SE electronics froin an expansion card / 270

Accessing I/O devices from an expansion card / 270
Accessing RAM from an expansion card / 271
Deviating from the normal RAM access method / 274

Available Macintosh SE address space / 275
Macintosh SE power budget / 278

x Designing Cards and Drivers for the Macintosh Family

The Macintosh Portable 68000 Direct Slot / 278
Electrical description of the Macintosh Portable
expansion connector / 279
Functional description of the Mc68HCOOO signals in the
Macintosh Portable / 281
Macintosh Portable power budget / 282

14 Electrical Design Guide for 68030 Direct Slot
Expansion Cards / 283
About the 68030 Direct Slot / 284

Electrical description of the Macintosh SE/30 68030 Direct Slot / 285
Electrical description of the Macintosh Hfx 68030 Direct Slot / 292

Functional description of the MC68030 signals / 299
Macintosh SE/30 68030 Direct Slot machine-specific signals / 302
Macintosh Hfx 68030 Direct Slot machine-specific signals / 303

Design considerations for Macintosh SE/30 expansion cards / 305
Memory and I/O access from a Macintosh SE/30 expansion card / 305
Pseudo-slot design guidelines for Macintosh SE/30
expansion cards / 307
Interrupt handling for the Macintosh SE/30 68030 Direct Slot / 309
Design hints for Macintosh SE/30 expansion cards / 310
Power consumption guidelines for Macintosh SE/30
expansion cards / 311

Design considerations for Macintosh IIfx PDS expansion cards / 312
Pseudo-slot design guidelines for Macintosh IIfx PDS
expansion cards / 312
Memory cycle termination in the Macintosh Hfx / 312
Interrupt handling for the Macintosh IIfx 68030 Direct Slot / 313
Bus master priority scheme for Macintosh Hfx / 313
Effect of Macintosh Hfx clock speeds on PDS expansion
card design / 3 i 4
Using the Macintosh Hfx cache memory / 315
Additional design hints / 316
Power consumption guidelines for Macintosh Hfx PDS
expansion cards / 316

Contents xi

15 Physical Design Guide for Macintosh PDS
Expansion Cards / 317
Physical guidelines for Macintosh SE expansion cards / 318
The 68000 Direct Slot 96-pin connector for the Macintosh SE / 321
Physical guidelines for Macintosh Portable expansion cards / 324
Physical guidelines for Macintosh SE/30 expansion cards / 327
The 68030 Direct Slot 120-pin connector for the Macintosh SE/30 / 334
Physical guidelines for Macintosh IIfx PDS expansion cards / 336
External connection drawings / 337
Third-party design aids / 341

16 Processor-Direct Slot Design Example / 343
Disk controller overview / 344
System configuration / 344
Interface card block diagram / 345
Floppy disk controller logic / 347
Macintosh SE interface logic / 347

Programmed I/O (PIO) operations / 348
DMA operations / 350

Address allocation / 351

Part m Application-Specific Expansion Interfaces / 353
About Part III / 354

17 Macintosh Portable RAM, ROM, and
Modem Expansion / 355
Macintosh Portable ROM expansion / 356

ROM expansion address space / 356
ROM expansion cards / 358
Design considerations and suggestions / 361
EDisks (electronic disks) / 362
The EDisk driver / 362

Data checksumming / 363
EDisk driver operation / 363
EDisk header format / 364

Macintosh Portable RAM expansion / 367
RAM expansion address space / 367

xii Designing Cards and Drivers for the Macintosh Family

RAM expansion cards / 368
Macintosh Portable modem card / 372

Modem card hardware interface / 372
Modem connector electrical interface / 374
Physical design guide for a modem card / 376
Modem power-control interface / 377

Ring detection / 380
Modem card power requirements / 380

Telephone network interface / 380
Standards information for reference / 381

Compatibility and modulation / 381
Transmit carrier frequencies / 381
Guard tone frequencies and transmit levels (CCITT only) / 381
Answer tone frequency / 381
Received signal frequency tolerance / 381

18 Macintosh Dci Cache Memory Expansion / 383
Overview / 384

How the cache works / 385
Using the cache / 385

Getting access to the cache card / 386
Electrical description of the cache connector / 387
Electrical design guidelines for the cache card / 392
Mechanical design guidelines for the cache card / 393
Power consumption guidelines / 395

A EM!, Heat Dissipation, and Product Safety Guidelines / 397
EMI guidelines for expansion cards / 398

Without external I/O connections / 398
With external I/O connections / 399

Heat dissipation guidelines / 400
Heat dissipation guidelines for NuBus cards / 400
Heat dissipation gUidelines for processor-direct slot cards / 401

Product safety / 402

Contents xiii

B PAL Listing for the NuBus Test Card / 405

C PAL Listings for the SCSI-NuBus Test Card / 415

Glossary / 419

Index / 427

Foldouts / 433

xiv Designing Cards and Drivers for the Macintosh Family

Figures and tables

Preface About This Book / xxiii

Table P-l Macintosh technical documentation / xxvii

1 Hardware Overview of the Macintosh IT Family / 13

Figure 1-1 Block diagram of the Macintosh II / 18
Figure 1-2 Block diagram of the Macintosh IIx and

Macintosh IIcx / 19
Figure 1-3 Block diagram of the Macintosh IIci / 20
Figure 1-4 Block diagram of the Macintosh IIfx / 21
Figure 1-5 Macintosh II address/data bus architecture / 24
Figure 1-6 Macintosh IIx and Macintosh IIcx

address/data bus architecture / 25
Figure 1-7 Bus interface architecture / 28
Figure 1-8 NuBus to processor-bus translation / 29

Table 1-1 Major features of the Macintosh II family / 14

2 NuBus Overview / 31

Figure 2-1 Simplified NuBus diagram / 34
Figure 2-2 NuBus signal timing / 36
Figure 2-3 Cycle and transaction relationships / 40

Table 2-1
Table 2-2
Table 2-3

Design objectives and features / 32
Classes of NuBus signals / 35
Basic definitions / 37

Figures and tables xv

3 NuBus Data Transfer / 41

Figure 3-1 Words, halfwords, and bytes / 47
Figure 3-2 Timing of NuBus read transaction / 49
Figure 3-3 Timing of NuBus write transaction / 50
Figure 3-4 Timing of NuBus block read transaction / 55
Figure 3-5 Timing for NuBus block write transaction / 56

Table 3-1 Transfer mode coding / 47
Table 3-2 Transfer status coding / 51
Table 3-3 Attention cycle coding / 52
Table 3-4 Block size and starting address coding / 54

4 NuBus Arbitration / 61

Figure 4-1 Sample arbitration contest / 63
Figure 4-2 Typical bus arbitration logic / 64
Figure 4-3 NuBus arbitration and transaction timing, single master

and two masters / 66
Figure 4-4 Sample bus lock / 67
Figure 4-5 Read-modify-write indivisible bus operation / 69

5 NuBus Card Electrical Design Guide / 71

Figure 5-1 Data transfer timing diagram / 77
Figure 5-2 Detailed arbitration timing / 79

Table 5-1 Logical stat~ definitions / 72
Table 5-2 NuBus line drive requirements and load allowances / 73
Table 5-3 Connector pin assignments / 75
Table 5-4 Power supply specifications / 75
Table 5-5 Recommended current and capacitance limits

for a NuBus card / 76
Table 5-6 Data transfer timing parameters / 78
Table 5-7 Bus arbitration timing parameters / 79

6 NuBus Card Physical Design Guide / 81

Figure 6-1 96-pin plug connector for a Macintosh II-family NuBus
expansion card / 84

Figure 6-2 96-pin socket connector on main logic board / 85

xvi Designing Cards and Drivers for the Macintosh Family

7 NuBus Card Memory Access / 87

Figure 7-1 NuBus address space / 89
Figure 7-2 Byte-lane mapping / 94

Table 7-1
Table 7-2

Table 7-3

24-bit to 32-bit address translations / 90
NuBus to Macintosh II-family processor address
mapping / 91
Slot allocations / 92

8 NuBus Card Firmware / 95

Figure 8-1

Figure 8-2

Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 8-13

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6

Format and hierarchical structure of the sRsrcType fields for
a video card functional sResource / 102
Format and hierarchical structure of the sRsrcType fields for
a video card Board sResource / 103
Formats of sBlock and SExecBlock data types / 107
Firmware structure of the Macintosh II Video Card / 109
Firmware structure of the Macintosh II EtherTalk
Interface Card / 110
Format block structure / 111
Format block examples / 112
sResource directory structure / 116
sResource structure / 117
The sRsrcType format / 119
Typical sDriver directory / 121
Typical Board sResource / 126
sPRAMInit record structure / 127

Data types / 106
Possible ByteLanes values / 113
Apple-defined sResource ID numbers / 118
sDriver directory ID numbers / 121
Apple-defined Board sResource ID numbers / 125
VendorInfo ID numbers / 128

9 NuBus Card Driver Design / 153

Figure 9-1 Card-specific driver / 155
Figure 9-2 Card-generic driver / 156
Figure 9-3 sDriver record / 157
Figure 9-4 Color response without gamma correction / 175
Figure 9-5 Color response with gamma correction / 176

Figures and tables xvii

Table 9-1
Table 9-2

Video declaration ROM spIDs / 165
Video parameter record / 165

10 NuBus Design Examples / 207

Figure 10-1 Master transaction timing, normal and locked / 215
Figure 10-2 Schematic of SCSI-NuBus Test Card / 218
Figure 10-3 SCSI-NuBus timing diagram / 221
Figure 10-4 Floppy disk controller block diagram / 224

Table 10-1 Master register interpretation / 209
Table 10-2 Register addresses / 209
Table 10-3 RAM access signals / 226
Table 10-4 Device select decode addresses / 228

11 The Macintosh IT Video Card / 229

Figure 11-1 Video card block diagram / 231
Figure 11-2 Access to video RAM space / 235
Figure 11-3 Horizontal and vertical scan timing for high-resolution

RGB monitor / 237
Figure 11-4 Horizontal and vertical scan timing for the RS-170

monitor / 238
Figure 11-5 Firmware levels / 242

Table 11-1 Pin assignments for the video output connector / 243
Table 11-2 Pin assignments for the external-signal connector / 244

12 Overview of Macintosh PDS Computers / 247

Figure 12-1 Block diagram of the Macintosh SE / 251
Figure 12-2 Block diagram of the Macintosh Portable / 252
Figure 12-3 Block diagram of the Macintosh SE/30 / 253

Table 12-1 Major features of Macintosh computers with
processor-direct slots / 248

xviii Designing Cards and Drivers for the Macintosh Family

13 Electrical Design Guide for 68000 Direct Slot
Expansion Cards / 261

Figure 13-1 Macintosh SE 68000 Direct Slot connector pinout / 264
Figure 13-2 Timing of video and Mc68000 accesses to RAM

in the Macintosh SE / 272
Figure 13-3 Timing for reading and writing RAM from a

Macintosh SE expansion card / 274
Figure 13-4 Macintosh SE address space / 277
Figure 13-5 Macintosh Portable 68000 Direct Slot connector

pinout / 280

Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or
driving limits / 265

Table 13-2 Mc68000 signal descriptions / 268
Table 13-3 Power budget / 278
Table 13-4 Mc68HCOOO signal descriptions / 281
Table 13-5 Macintosh Portable 68000 Direct Slot power budget / 282

14 Electrical Design Guide for 68030 Direct Slot
Expansion Cards / 283

Figure 14-1 Macintosh SE/30 68030 Direct Slot connector pinout / 286
Figure 14-2 Macintosh Hfx 68030 Direct Slot expansion

connector pinout / 293

Table 14-1 Macintosh SE/30 68030 Direct Slot connector signals / 287
Table 14-2 Macintosh SE/30 68030 Direct Slot signals, loading

or driving limits / 290
Table 14-3 Macintosh IIfx 68030 Direct Slot connector signals / 294
Table 14-4 Macintosh Hfx 68030 Direct Slot signals, loading

or driving limits / 297
Table 14-5 MC68030 common signals on the 68030 Direct Slot / 300
Table 14-6 Macintosh SE/30 machine-specific signals on the

68030 Direct Slot / 302
Table 14-7 Macintosh Hfx machine-specific signals on the

68030 Direct Slot / 304
Table 14-8 Macintosh SE/30 32-bit physical address spaces / 306
Table 14-9 24-to-32-bit logical address translation map / 307
Table 14-10 Pseudo-slot address ranges for Macintosh SE/30

expansion cards / 308
Table 14-11 Power budget for a Macintosh SE/30 expansion card / 311
Table 14-12 Macintosh Hfx bus master priority scheme / 314

Figures and tables xix

15 Physical Design Guide for Macintosh PDS Expansion Cards / 317

Figure 15-1 Macintosh SE expansion card design guide / 319
Figure 15-2 An expansion card in the Macintosh SE assembly / 320
Figure 15-3 An expansion card and the Macintosh SE main

logic board / 321
Figure 15-4 96-pin plug connector for a Macintosh SE

expansion card / 322
Figure 15-5 Macintosh SE connector and mounting supports for

an expansion card / 323
Figure 15-6 Detail of 96-pin socket connector used on Macintosh SE

main logic board / 324
Figure 15-7 Expansion connector location on Macintosh Portable

main logic board / 325
Figure 15-8 The Macintosh Portable 68000 Direct Slot

expansion card / 326
Figure 15-9 Smallest allowable Macintosh SE/30 expansion card / 328
Figure 15-10 Largest allowable Macintosh SE/30 expansion card / 329
Figure 15-11 Maximum allowable component heights for a

Macintosh SE/30 expansion card / 330
Figure 15-12 Expansion connector on the Macintosh SE/30

main logic board / 331
Figure 15-13 An expansion card in the Macintosh SE/30 assembly / 332
Figure 15-14 Orientation of Macintosh SE/30 mounting hardware / 333
Figure 15-15 120-pin plug connector for a Macintosh SE/30

expansion card / 334
Figure 15-16 Detail of 120-pin socket connector used on

Macintosh SE/30 main logic board / 335
Figure 15-17 Connector card mounting Macintosh SE chassis / 338
Figure 15-18 Internal expansion cable routing for Macintosh SE / 339
Figure 15-19 Internal expansion cable routing for Macintosh SE/30 / 340

16 Processor-Direct Slot Design Example / 343

Figure 16-1 Floppy disk controller block diagram / 346
Figure 16-2 Controller PIO timing / 349

Table 16-1 Bus control signals / 347
Table 16-2 Device select decode addresses / 351

x x Designing Cards and Drivers for the Macintosh Family

17 Macintosh Portable RAM, ROM, and Modem Expansion / 355

Figure 17-1 Macintosh Portable memory map / 357
Figure 17-2 Macintosh Portable ROM expansion connector pinout / 359
Figure 17-3 ROM expansion card design guide / 360
Figure 17-4 Macintosh Portable RAM expansion connector pinout / 369
Figure 17-5 RAM expansion card design guide / 371
Figure 17-6 Macintosh Portable modem interface / 373
Figure 17-7 Pinout of modem connector on Macintosh Portable / 374
Figure 17-8 Modem card design guide / 376
Figure 17-9 Cold-start (initial power-up) timing diagram / 378
Figure 17-10 Warm-start (wake-up) timing diagram / 379

Table 17-1 Macintosh Portable ROM expansion connector signals / 359
Table 17-2 Macintosh Portable RAM expansion connector signals / 370
Table 17-3 Modem connector signal descriptions / 375

18 Macintosh IIci Cache Memory Expansion / 383

Figure 18-1 Macintosh IIci cache connector pinout / 388
Figure 18-2 Cache card design guide / 394

Table 18-1 Cache memory address space / 386
Table 18-2 Cache control trap / 386
Table 18-3 Macintosh IIci cache connector signal descriptions / 389
Table 18-4 Macintosh llci cache connector signals, loading

or driving limits / 390
Table 18-5 Power budget for a Macintosh llci cache card / 395

Foldouts / 433
Foldout 1 Design guide for Macintosh II-family NuBus cards / 435
Foldout 2 NuBus card clearance requirements, Macintosh II,

Macintosh IIx, and Macintosh IIfx / 437
Foldout 3 NuBus card clearance requirements, Macintosh IIcx and

Macintosh IIci / 439
Foldout 4 Connector shield for Macintosh II-family computer / 441
Foldout 5 NuBus Test Card (NTC) schematic / 443
Foldout 6 Design guide for Macintosh IIfx PDS expansion card / 445
Foldout 7 Connector card design guide for Macintosh PDS / 447

Figures and tables xxi

Preface About This Book

The purpose of this book is to provide you, the developer, with the
information that you need to develop expansion cards and device
drivers for the Apple® Macintosh® family of computers. The
introduction to this book discusses the Macintosh-family expansion
strategy. It will give you an insight into Apple's plans for current and
future hardware expansion for the Macintosh computer family. Following
the introduction, the book is divided into three parts. Part I defines the
specifications of the NuBuS™ expansion interface, provides electrical
and mechanical guidelines for designing NuBus expansion cards, and
supplies information that is vital to the design of driver software. Part II
is devoted to the processor-direct slot (PDS) expansion interface. This
part defines the design criteria and provides electrical and mechanical
guidelines for designing expansion cards for Macintosh computers with
processor-direct slots. Part III gives design specifications and provides
electrical and mechanical guidelines for expansion interfaces that have
only one specific purpose.

xxiii

Design philosophy

In keeping with the Macintosh design philosophy, it is incumbent upon you, the card
designer and driver writer, to make the installation of the card and its use by applications
as transparent as possible. To the greatest extent possible, an application should rely on
only a few high-level calls Of any) and not have to use low-level calls. To do otherwise
jeopardizes the broadest potential use of your product.

Conventions used in this book

The following visual cues are used throughout this manual to identify different types
of information:

• Note: A note like this contains information that is interesting but not essential for an
understanding of the main text.

6. Important A note like this contains information that is essential for an
understanding of the main text. D.

... Warning Warnings like this indicate potential problems. A

When new or specialized terms are defined, they appear in boldface. Those terms are also
defined in the glossary at the back of the book.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the hexadecimal
equivalent of decimal number 16 is written as $10.

In Part I, a NuBus word consists of 32 bits and a NuBus halfword consists of 16 bits. In
Part II, a word consists of i6 bits and a longword consists of 32 bits. The two parts follow
a different convention for their terminology to be consistent with the outside
documentation to which each part is related: the Texas Instruments specification of the
NuBus for Part I and the Motorola documentation for the MC68000 and MC68030
microprocessors for Part II.

xxiv Designing Cards and Drivers for the Macintosh Family

Address ranges are given as "lower address through higher address' or "lower address­
higher address'; in either form the range is inclusive of the given endpoints. For example,
an access range in memory is given in text as "$000000 through $3F FFFF," and in a table
as "$00 0000-$3F FFFF." .

A preceding slash is used to designate an active-low signal, for example, / ACK. A range of
signals is designated like this, with the highest numbered signal first: / AD31-/ ADO. If there
is more than one subrange in a set, the subranges are enclosed in angle brackets like this:
</ AD31-/ AD29, / AD7-/ ADO>.

Macintosh resource types are designated by enclosing them in single straight quotation
marks, for example, 'INIT'.

The term processor is often used instead of microprocessor or Cpu. Processor usually refers
to the primary microprocessor on the main logic board and coprocessor refers to an
auxiliary processor such as the Mc68882 floating-point unit on the main logic board or
another processor on an expansion card.

The terms processor-direct slot, PDS, 68000 Direct Slot, and 68030 Direct Slot are all used
to identify the processor-direct expansion interface associated with some Macintosh
computers. Other documents may use the terms processor dependent slot anq 030 Direct
Slot to identify this interface.

The following abbreviations are used:

KB kilobyte
Kbit kilobit
MB megabyte
Mbit megabit
GB gigabyte
ms millisecond
JlS microsecond
ns nanosecond
kn kilohm
rnA milliamp
J.l.A microamp
pF picofarad
K 1024

The distinction between boards and cards is as follows: boards are a permanent part of
the computer (for example, the main logic board), whereas cards are insertable and can be
added or exchanged for functional expansion or reconfiguration of the system.

Preface About This Book xxv

About the mechanical drawings and design guides

Mechanical drawings of cards and connectors are provided in several chapters and in
foldouts in the back of the book. Some of these drawings are design guides used within
Apple Computer and were correct at the time of publication; they are, however, subject
to change in the future.

About the Macintosh technical documentation

Apple Computer, Inc. provides a suite of technical books that explain the hardware and
software of the Macintosh family of computers.

The original Macintosh documentation consisted of the first three volumes of Inside
Macintosh. Shortly after the introduction of the Macintosh Plus (with the 128 KB ROM),
Volume IV of Inside Macintosh was released as a delta guide. That is, Volume IV covered
only those aspects of the Macintosh Plus that were different from earlier Macintosh
computers. Later, a fifth volume was added, called Inside Macintosh, Volume V. It is also a
delta guide, covering the new and different features of the Macintosh SE and the
Macintosh II computers.

As the variety and the sophistication of Macintosh computers evolve, so does the
documentation. In order to provide information that is comprehensive-and that
provides answers to specific questions-Apple provides a whole family of books. Each of
these books gives complete information about a single subject, and may include some
information that also appears in Inside Macintosh. Guide to Macintosh Family Hardware,
second edition, and this book are two of the books in this suite.

For programmers and developers who are new to the Macintosh world, Apple has created
two introductory books: Technical Introduction to the Macintosh Family and
Programmer's Introduction to the Macintosh Family.

In addition to the books about the Macintosh itself, there are books on related subjects.
Examples are a book about the user interface, a book about Apple's floating-point
numerics, and the reference books for the Macintosh Programmer's Workshop.

Table P-1 gives a brief description of many of the books in the Macintosh
technical documentation.

xxvi Designing Cards and Drivers for the Macintosh Family

• Table P-l Macintosh technical documentation

Technical documentation

Inside Macintosh
Inside Macintosh, Volumes I-III

Inside Macintosh, Volume IV

Inside Macintosh, Volume V

Introductory books
Technical Introduction
to the Macintosh Family

Programmer's Introduction
to the Macintosh Family
Single-subject books
Designing Cards and Drivers for
the Macintosh Family,
second edition

Guide to Macintosh Family
Hardware, second edition

Related books
Human Interface Guidelines:
The Apple Desktop Interface

Apple Numerics Manual

Macintosh Programmer's
Workshop 3.0 Reference

Reference material

Complete reference to the Macintosh Toolbox and
Operating System for the original 64 KB ROM

Delta guide to the Macintosh Plus (128 KB ROM)

Delta guide to the Macintosh SE and Macintosh II
(256 KB ROM)

Introduction to the Macintosh software and
hardware for the original Macintosh, the
Macintosh Plus, the Macintosh SE, and the
Macintosh II

Introduction to programming the Macintosh
system for programmers who are new to it

Hardware and device-driver reference for the
expansion capabilities of the Macintosh computer
family including the Macintosh II, Macintosh IIx,
Macintosh IIcx, Macintosh SE, Macintosh SE/30,
Macintosh Portable, and Macintosh IIfx

Hardware reference and developer's guide for the
Macintosh computer family including the
Macintosh II, Macintosh IIx, Macintosh IIcx,
Macintosh SE, Macintosh SE/30, Macintosh
Portable, and Macintosh IIfx

Detailed guidelines for developers
implementing the Macintosh user interface

Description of the Standard Apple Numerics
Environment (SANE®), an IEEE-standard floating­
point environment supported by all Apple
computers

Description of the Macintosh Programmer's
Workshop (MPW™), Apple's software
development environment for all Macintosh
computers

Preface About This Book xxvii

You may also find useful information in the following earlier books, now superseded:

Macintosh Family Hardware Reference

Designing Cards and Drivers for
Macintosh II and Macintosh SE

How to get more information

Earlier reference for the Macintosh hardware for
the classic Macintosh, Macintosh SE, and
Macintosh II

Earlier hardware and device driver reference for the
expansion capabilities of the Macintosh II and
Macintosh SE

Several organizations exist that provide support for Macintosh hardware and software
developers. This section tells you how to contact the Apple Programmers and Developers
Association (APDA™), Apple user groups, and Apple Developer Services.

APDA

APDA provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. For
information about APDA, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014
800-282-APDA (800-282-2732)
FAX: 408-562-3971
Telex: 171-576
AppleLink: APDA

xxviii Designing Cards and Drivers for the Macintosh Family

User groups

Apple user groups are associations of individuals who share information about Apple
computers and related products. For information about Apple user groups in your area,
call this toll-free number:

(800) 538-9696

Ask for extension 500.

Apple Developer Services

Apple's goal is to provide developers with the resources they need to create new Apple­
compatible products. Apple offers two programs: the Partners Program, for developers
who intend to resell Apple-compatible products; and the Associates Program, for
developers who do not intend to resell Apple-compatible products and for other people
involved in the development of Apple-compatible products.

As an Apple Partner or Associate, you will receive monthly mailings including a newsletter,
Apple II and Machintosh Technical Notes, pertinent Developer Program information, and
all the latest news relating to Apple products. You will also receive Apple's Technical Guide
Book and automatic membership in APDA. You'll have access to developer AppleLink®
and to Apple's Developer Hotline for general developer information.

As an Apple Partner, you'll be eligible for discounts on equipment and you'll receive
technical assistance from the staff of Apple's Developer Technical Support department.

For more information about Apple's developer support programs, contact Apple
Developer Programs at the following address:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014

Preface About This Book xxix

Introduction Expansion Strategy for the
Macintosh Family

Apple has decided on an expansion strategy that limits the Apple®
Macintosh® family of computers to three distinctly different internal
architectural expansion configurations: the NuBus ™ expansion interface,
the processor-direct slot (PDS) expansion interface, and the application­
specific expansion interface. Limiting the expansion architecture to
three categories ensures that expansion card developers, both internal
and external to Apple, have some degree of predictability and stability in
their expansion card designs. Since Apple depends upon you, the third­
party hardware developer, to create the expansion cards that enhance
many Macintosh computers, it is important that you are aware of this
expansion strategy. This section gives you the information you will need
to make good decisions on what cards to develop, and for what
Macintosh models, both present and future.

1

Limiting the number of expansion interfaces

Apple's implementation of NuBus represents a mature expansion mechanism that has been
adopted as the primary expansion vehicle for the Macintosh II family of modular
computers and can be supported across a variety of Macintosh products.

Macintosh compact computers such as the Macintosh SE and the Macintosh SE/30 use the
processor-direct slot (PDS) expansion interface. The Macintosh IIfx has a processor­
direct slot, but its primary expansion interface is the NuBus. The Macintosh Portable also
has a processor-direct slot, but its usefulness is somewhat limited in comparison to the
compact computers. You can think of the PDS as an extension of the microprocessor
used in a particular Macintosh model. Because of this dependency on the microprocessor,
the slot configuration will probably change whenever a newer, more powerful processor is
adopted. For example, the MC68000 microprocessor in the Macintosh SE uses a 96-pin
PDS connector, while the PDS connector in the M(Ycintosh SE/30 has been expanded to
120 pins to take advantage of the enhanced features of the MC68030 microprocessor.
Therefore, in addition to NuBus, the minimum number of processor-direct slot expansion
interfaces that you have to support is determined by the number of different
microprocessors that are implemented in the Macintosh family of computers.

Apple plans to limit the number of expansion interfaces by adopting a slot specification
for each microprocessor that is sufficiently comprehensive to apply to most of the
Macintosh computers that use the same microprocessor.

The application-specific category refers to expansion interfaces that are dedicated to a
singular, unique purpose. Usually computers that provide this feature also have NuBus or a
processor-direct slot as their primary means of expansion. For example, in addition to its
processor-direct slot, the Macintosh Portable includes three other expansion connectors:
one for a ROM card, one for a RAM card, and one for a modem card. Although NuBus is
the primary means of expansion for the Macintosh IIci, this machine includes an
expansion interface connector designed specifically for a cache memory card. In some
specific applications, you might find that the expansion connector is physically identical
to the connector used for the processor-direct slot, but it will probably not provide the
same functions.

2 Designing Cards and Drivers for the Macintosh Family

NuBus expansion

The NuBus is Apple's primary expansion interface for Macintosh computer products. All
Macintosh II-family computers include the NuBus expansion interface in configurations
ranging from three to six identical slot connectors. The NuBus is a truly powerful
expansion vehicle providing features such as a small pin count, a large area for card
implementation, a versatile bus protocol, high data-transfer rates, variably sized data
transfers, and parallel bus arbitration.

The NuBus hardware requires a large space within the Macintosh case and usually requires
some additional circuitry. Therefore NuBus is inappropriate for compact designs
such as the Macintosh SE and the Macintosh SE/30. These designs are better suited for
PDS expansion.

You can expect enhancements to Apple's implementation of NuBus on future Macintosh
machines. These could include block transfer modes and other new features that are not
available on current Macintosh computers with NuBus. These enhancements will not affect
the capabilities of your current card designs, but will add more usability to future designs.

Apple is committed to the NuBus expansion interface being the primary expansion
system for the Macintosh family and will continue to support it in the foreseeable future.
For a detailed description of the NuBus specification, as well as guidelines for designing
NuBus expansion cards, see Part I, "The NuBus Expansion Interface."

Processor-direct slot (PDS) expansion

Apple uses the processor-direct slot expansion interface on compact, or small­
footprint, Macintosh computers such as· the Macintosh SE and the Macintosh SE/30, or
any design for which NuBus is inappropriate. The Macintosh IIfx also includes a
processor-direct slot but its primary means of expansion is the NuBus interface. A PDS
implementation brings the microprocessor address, control, and data lines, along with
clock, power, and a few model-specific Signals, to a single expansion connector on the
main logic board. The Macintosh Portable has a processor-direct slot, but only limited
power is available from the expansion connector.

Introduction Expansion Strategy for the Macintosh Family 3

An advantage of the PDS interface is that it provides an expansion mechanism that does
not burden the average user, who may not need the extensive expansion capabilities of
the NuBus configuration. Also, you can design a PDS expansion card with a smaller form
factor than a NuBus card, and since no additional circuitry is usually required for PDS
expansion, it costs less to implement than NuBus. Finally, a PDS expansion card has direct
access to the microprocessor resulting in a speed advantage that allows support of some
tasks that cannot be done with a NuBus card.

A disadvantage of the PDS expansion interface is its inability to support the bus structure
across Macintosh products that use different microprocessors. Because the PDS
expansion interface is an extension of the microprocessor, the configuration of the slot
connector will change whenever a newer, more powerful microprocessor is used in the
Macintosh family. Other disadvantages include difficulty in extending the bus, the
inability to support more than one card, and the requirement that processor activity must
be suspended during bus activity.

Apple plans to limit the number of PDS configurations that you must support by allowing
only one slot specification for each of the microprocessors used. The goal is to have the
PDS specification remain constant within a microprocessor family, and have a common
physical form factor and electrical characteristics without compromising the Macintosh
design. Part II, "The Processor-Direct Slot Expansion Interface," defines the PDS
specifications and gives detailed electrical and physical guidelines for designing PDS
expansion cards.

The 68000 Direct Slot expansion interface

The Macintosh SE was the first Macintosh computer offering processor-direct slot
expansion. The expansion interface to the Mc68000 microprocessor in the Macintosh SE
is a 96-pin connector. The 68000 Direct Slot expansion interface is flexible enough to allow
you to design coprocessor cards such as accelerators or to extend the I/O capabilities of
the computer. The 96-pin expansion connector on the Macintosh Portable is physically
identical to that of the Macintosh SE, but the pinout and signals available
are different.

4 Designing Cards and Drivers for the Macintosh Family

The 68030 Direct Slot expansion interface

Both the Macintosh SE/30 and the Macintosh IIfx have a 120-pin expansion connector to
satisfy the requirements of the more powerful Mc68030 microprocessor used in these
machines. The additional pins allow you to take full advantage of the increased
functionality of the processor, including its 32-bit address and data bus capabilities.
Although it is possible that the physical form factor could change on future 68030-based
machines due to space limitations, the electrical characteristics should remain the same.
Due to the difference in physical form factors and electrical characteristics, cards you
design for the 68000 Direct Slot will not work in the 68030 Direct Slot, and vice versa.

Recommended strategy for 68030 Direct Slot expansion card design

The MC68030-based Macintosh SE/30 and Macintosh IIfx are currently the only Macintosh
computers with the 68030 PDS hardware expansion capability, but plans call for future
MC68030-based Macintosh machines with and without NuBus to also implement the
68030 Direct Slot.

The 68030 Direct Slot electrical specification contains several types of signals including
power, data lines, address lines, control lines, clocks, and machine-specific signals. Most
of these signals are classified as common, meaning that they will be available on all
Macintosh computers that use the 68030 Direct Slot. Others, however, are classified as
machine specific, meaning that they mayor may not be present on different Macintosh
computers that use the 68030 Direct Slot. The intent is, with each new version of the
Macintosh, to identify those signals that are common to all machines, to flag those signals
that are machine specific, and to provide you with guidelines to know when to use the
machine-specific signals. Detailed signal descriptions are provided in Chapter 14,
"Electrical Design Guide for 68030 Direct Slot Expansion Cards."

Because of the scarcity of open areas in the memory maps of new Macintosh PDS
computers, you should design your expansion card to occupy an address location
corresponding to the 32-bit physical address ranges used by NuBus expansion cards
resident in Macintosh II-family computers. This method of emulating NuBus address
space is called pseudo-slot design. If you follow the pseudo-slot method and design your
PDS expansion card along the lines of a NuBus card, the existing Slot Manager ROM
firmware controls your card as if it were a NuBus card, the only difference being that the
electrical signals arrive through the 68030 Direct Slot expansion interface, not the NuBus
expansion interface. This means that you can use the same device driver for both your
PDS expansion card and its NuB us equivalent. Chapter 14 provides more detailed
information on pseudo-slot expansion card design.

Introduction Expansion Strategy for the Macintosh Family 5

If you don't take advantage of pseudo-slot design, you have to do several things
differently. Apple has reserved a range of physical address spaces in the memory map for
68030 Direct Slot cards that do not emulate the NuBus address space. To gain access to
the reserved address space, the Macintosh must be in 32-bit mode and your card driver
must be able to switch between 24-bit and 32-bit modes. This means your card driver must
also include specific information to allow access to the card's address space and that the
Slot Manager routines cannot be used.

Converting your designs

PDS cards that take advantage of the pseudo-slot design features will not work when used
in a NuBus slot of a Macintosh with the NuBus interface because of bus conflicts with
physical NuBus. However, pseudo-slot design allows you to easily convert your 68030
Direct Slot expansion card to a NuBus card, or vice versa. (The similarity is in the card's
electrical and software designs; NuBus and PDS cards have different card sizes and
connectors, so the mechanical design would have to be changed to allow the redesigned
card to fit the target slot.)

Application-specific expansion

The Macintosh computers that offer application-specific expansion usually have NuBus
or a processor-direct slot as their primary means of expanding the system. By providing
an interface that is dedicated to a specific function, you free up a NuBus slot or the
processor-direct slot to accept cards that perform a variety of functions such as
coprocessing, networking, and so on. The application-specific expansion interface
mayor may not directly access the processor. The cache memory expansion connector
on the Macintosh IIci does, but the ROM, RAM, and modem expansion connectors
on the Macintosh Portable do not. Part III, "Application-Specific Expansion Interfaces,"
gives detailed electrical and physical guidelines for designing application-specific
expansion cards.

6 Designing Cards and Drivers for the Macintosh Family

Slot strategy summary

In summary, the preferred expansion mechanism for Macintosh is NuBus. The processor­
direct slot is used on Macintosh computers with and without NuBus to provide general
system expansion. The application-specific expansion interface provides a mechanism
for specific functions such as memory expansion.

By designing NuBus cards, you will have access to the rapidly growing installed base of
Macintosh computers with NuBus expansion slots. By porting your NuBus design to the
68030 Direct Slot via the pseudo-slot method, you need to supply only one driver for both
68030 Direct Slot cards and NuBus cards, and can design cards that will be usable in future
Macintosh computers without NuBus.

Introduction Expansion Strategy for the Macintosh Family 7

Part I The NuBus Expansion Interface

About Part I

The Apple implementation of NuBus is the subject of Part I of this book; that implementation
is an extension of the Texas Instruments product documented in their NuBus Specification,
document number TI-2242825-0001*A, copyright 1983. Some features of NuBus, most notably
block data transfer and system parity valid, are documented for completeness even though
they are not supported in the Macintosh II family of computers; these instances are labeled.

Part I contains 11 chapters specifically dedicated to the NuBus expansion interface. Following
are brief descriptions of the major topics covered in each chapter.

Chapter 1 provides block diagrams of each computer in the Macintosh II family, a comparison
of major features, and an overview of computer operation. The chapter then describes the
NuBus interface architecture and the state machines used to implement it.

Chapter 2 describes NuBus features, provides a simplified diagram of the NuBus hardware,
defines many NuBus terms, classifies the signals used to implement communication over the
pus, and discusses the most basic timing and transaction cycle relationships.

Chapter 3 details each signal, its timing, and its line characteristics. The chapter defines various types
of bus cycles, then describes the sequential combination of bus cycles to perform transactions.

Chapter 4 gives the rules for arbitration to resolve the contention between cards for bus
mastership, so that all cards have access to the bus.

Chapter 5 provides an electrical design guide for NuBus expansion cards, focusing on the
electrical requirements of line drivers and receivers.

Chapter 6 provides the physical information you need to design NuBus expansion cards.

Chapter 7 describes how cards in NuBus slots can address memory in a Macintosh II-family computer.

Chapter 8 defines the firmware data structures typically stored on the card in ROM.

Chapter 9 describes several driver options, driver installation, and the video driver declaration
ROM and routines. Pseudo-code for an actual video card driver is provided.

Chapter 10 contains design examples, including schematics and PAL equations for three NuB us
cards that have been built and tested.

Chapter 11 concludes Part I of the book with a description of the Macintosh II Video Card.

10 Designing Cards and Drivers for the Macintosh Family

In the back of this book, following Part III, there are three appendixes. Appendix A
provides information on electromagnetic interference (EMI) , heat dissipation, and
product safety standards, and applies to Part I, Part II, and Part III.

Appendix B contains the PAL listings for the NuBus Test Card described in Chapter 10.

Appendix C contains the PAL listings for the SCSI-NuBus Test Card described in
Chapter 10.

Addressing design philosophy

Whenever possible, use 32-bit addressing conventions and methods. This is your best
guarantee of future software compatibility.

NuBus use and licensing requirements

NuBus is a trademark of Texas Instruments, Inc. Part I of this book describes the
iinplementation of NuBus by Apple Computer in the Macintosh II-family computers.
Certain features of the NuBus interface are not implemented in the Macintosh II-family
computers but may be in future products; note is made of that fact where appropriate.

In addition to the NuBus information in this book, you will probably also need the IEEE
Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1987. It may be
ordered from

Institute of Electrical and Electronics Engineers
345 East 47 Street
New York, NY 10017

Texas Instruments owns patents on the NuBus. If you wish to make devices for computers'
with the NuBus interface, you need to obtain a license directly from Texas Instruments.
For further details please send your request to

Texas Instruments, Inc.
12501 Research Boulevard
Austin, TX 78759
Attention: NuBus Licensing
WS 2151

Part I The NuBus Expansion Interface 11

Chapter 1 Hardware Overview of the
Macintosh II Family

This chapter provides a basic description of the structure and
organization of the Apple Macintosh II family of computers.
The Macintosh II, the Macintosh IIx, the Macintosh IIcx, the
Macintosh IIci, and the Macintosh IIfx are in this computer family.
All use an I/O bus based on Texas Instruments NuBus to allow
expansion beyond the capabilities of the ports (connectors) on
the back of the machines; NuBus slots allow a wide variety of devices
to be connected. The chapter places the NuBus interface in context
within the total computing machine.

13

Major features

Table 1-1 compares the major features of the Macintosh II-family computers.

• Table 1-1 Major features of the Macintosh II family

Feature Macintosh n Macintosh 11K Macintosh nex Macintosh nei Macintosh nfx

Processor Mc68020 Mc68030 Mc68030 Mc68030 Mc68030
32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus
32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus

Processor clock 15.6672 MHz 15.6672 MHz 15.6672 MHz 25 MHz 40 MHz

Coprocessor Mc68881 floating- Mc68882 floating- Mc68882 floating- Mc68882 floating- Mc68882 floating-
point unit point unit point unit point unit point unit

Memory 24-to-32-bit Mc68030 has a Mc68030 has a Mc68030 has a Mc68030 has a
management address built-in PMMU built-in PMMU built-in PMMU built-in PMMU

translation by that allows true that allows true that allows true that allows true
AMU; or logical- 32-bit address 32-bit address 32-bit address 32-bit address
to-physical translation with translation with translation with translation with
address hardware page hardware page hardware page hardware page
translation by replacement replacement replacement replacement
optional Mc68851
PMMU

Video interface NuBus video card NuBus video card NuBus video card On-board video NuBus video card
with on-card with on-card with on-card with main with on-card
screen buffer screen buffer screen buffer memory screen screen buffer

buffer or NuBus
video card

RAM Up to 128 MB of Up to 128 MB of Up to 128 MB of Up to 128 MB of Up to 128 MB of
DRAM in eight 30- DRAM in eight 30- DRAM in eight 30- DRAM in eight 30- DRAM in 64-pin
pin SIMMs (over pin SIMMs (over pin SIMMs (over pin SIMMs (over SIMMs (over 2 GB
2 GB available 2 GB available 2 GB available 2 GB available available through
through NuBus through NuBus through NuBus through NuBus NuBus slots);
slots) slots) slots) slots); optional 32 KB of SRAM,

DRAM parity with fast RAM cache;
9-bit SIMMs optional DRAM

parity with 9-bit
SIMMs

(Continued)

14 Designing Cards and Drivers for the Macintosh Family

• Table 1-1 Major features of the Macintosh II family (Continued)

Feature Macintosh II Macintosh 11K Macintosh llcx Macintosh llei Macintosh IIfx

ROM 256 KB in four 256 KB standard 256 KB standard 512 KB standard 512 KB standard
512 Kbit ROM in 64-pin ROM in 64-pin ROM in four 1 Mbit in one ROM
chips SIMM, SIMM, ROM chips, SIMM

expandable to expandable to optional 64-pin
64MB over 64 MB ROM SIMM

allows expansion
to 64MB

Expansion slots Six NuBus slots Six NuBus slots Three NuBus slots Three NuBus Six NuBus slots,
slots, one cache one processor-
card connector direct slot

Keyboard and Two Apple Two Apple Two Apple Two Apple Two Apple
mouSe interface Desktop BUS™ Desktop Bus Desktop Bus Desktop Bus Desktop Bus

(ADB) ports (ADB) ports (ADB) ports (ADB) ports (ADB) ports

Serial ports Two mini 8-pin Two mini 8-pin Two mini 8-pin Two mini 8-pin Two mini 8-pin
connectors connectors connectors connectors connectors
supporting supporting supporting supporting supporting
RS-422 and RS-422 and RS-422 and RS-422 and RS-422 and
AppleTalk® AppleTalk AppleTalk AppleTalk AppleTalk

Floppy disk Integrated Woz Super Woz Super Woz Super Woz Super Woz
support Machine (IWM) Integrated Integrated Integrated Integrated

chip controls two Machine (SWIM) Machine (SWIM) Machine (SWIM) Machine (SWIM)
internal 800 KB, chip controls two chip controls one chip controls one chip controls one
3.sn floppy disk internal 1.4MB, internal 1.4 MB, internal 1.4 MB, internal 1.4 MB,
drives (one 3.5" FDHDTM 3.5" drive and 3.sn drive and 3.5" drive and
standard, one drives (one one optional one optional one optional
optional) standard, one external FDHD external FDHD external FDHD

optional) drive drive drive

SCSI ports one internal 50- one internal 50- one internal 50- one internal 50- one internal 50-
pin, one external pin, one external pin, one external pin, one external pin, one external
DB-25 DB-25 DB-25 DB-25 DB-25

Sound Apple Sound Apple Sound Apple Sound Apple Sound Apple Sound
Chip Chip Chip Chip Chip

Battery Long-life lithium Long-life lithium Long-life lithium Long-life lithium Long-life lithium
battery battery battery battery battery

Chapter 1 Hardware Overview of the Macintosh II Family 15

Hardware architecture

The following discussion is brief and intended only to show the place of the NuBus in the
computer architecture. For a complete description of hardware operation, see the Guide to
Macintosh Family Hardware manual (which supersedes the Macintosh Family Hardware
Reference). The Technical Introduction to the Macintosh Family contains a higher level overview.

Block diagrams of the computers in the Macintosh II family are shown in Figures 1-1
through 1-4. The Macintosh II (Figure 1-1) contains a Motorola Mc6S020 microprocessor
driven by a 15.6672 megahertz (MHz) clock. The Macintosh IIx and the Macintosh IIcx
(Figure 1-2) contain the more powerful Motorola Mc6S030 microprocessor, which is also
driven by a 15.6672 MHz clock. The Macintosh IIci (Figure 1-3) uses an MC6S030
microprocessor but its clock speed has been increased to 25 MHz. The Macintosh IIfx
(Figure 1-4), the most powerful member of the Macintosh II family, also uses an Mc6S030
microprocessor but it is driven by a 40 MHz clock.

All members of the Macintosh II family use similar integrated circuits (ICs) that enable the
microprocessor to communicate with external devices. These ICs are shown in the block
diagrams of Figures 1-1 through 1-4 and include

• a 65C23 Versatile Interface Adapter (VIAl) for communicating with the ADB
transceiver which, in turn, communicates with the mouse and keyboard (the VIA also
communicates with the real-time clock)

• another 65C23 Versatile Interface Adapter (VIA2) for handling interrupts from the
NuBus slots (not used in the Macintosh IIci or Macintosh IIfx)

• an NCR 53CSO SCSI (Small Computer System Interface) chip for high-speed data
transfer with the internal hard disk and any other SCSI device (integrated into SCSI
DMA chip on the Macintosh IIfx)

• a Zilog Z8530 Serial Communications Controller (SCC) for serial communication

• an Apple custom chip, called the IWM (Integrated Woz Machine), for controlling
800 KB, 3.5-inch floppy disk drives in the Macintosh II; another Apple custom chip,
called the SW'IM (Super Woz Integrated Machine), replaces the IWM chip in the
Macintosh IIx, Macintosh IIcx, Macintosh IIci, and Macintosh IIfx and controls the
1.4 MB, 3.5-inch FDHD (floppy disk, high density) drives as well as 800 KB floppy disk
drives (an FDHD drive is also called a SuperDrive™)

• the Apple Sound Chip (AS C) sound generator

16 Designing Cards and Drivers for the Macintosh Family

In addition, the Macintosh IIfx includes several new Apple custom ICs that enable the
microprocessor to communicate with external devices. These ICs are shown in Figure 1-4
and include

• a SCSI DMA chip, which not only provides all of the functions of the NCR 53C80 SCSI
chip used in the other Macintosh II-family computers, but can also transfer data to
and from the main processor by direct-memory access (DMA). (The DMA capability is
not supported by current system software.)

• an SCC lOP % processor) chip that provides an intelligent interface to the serial
communication controller

• a SWIM-ADB lOP chip that provides an intelligent interface to the SWIM-ADB controller

• an FMC (fast memory controller) that supports high-speed cache memory, main RAM,
and ROM

• an OSS (operating-system services) chip that handles interrupts and device decodes,
functions that are performed by the VIAs and the GLUE chip in the other
Macintosh II-family computers

In all Macintosh II-family computers except the Macintosh IIei, the interface with the
video display is through a video card in one of the NuBus slots. The Macintosh IIci has the
option of using a NuBus video card, but its primary video interface is built into the
computer. Video signals are generated by the Apple custom RBV (RAM-based video) chip
and are driven through theVDAC (video digital-to-analog converter) and CLUT (color
look-up table).

The floating-point numeric coprocessors (MC68881 for the Macintosh II and Mc68882 for
the other computers in the Macintosh II family) use the coprocessor interfaces of their
respective microprocessors.

Chapter 1 Hardware Overview of the Macintosh II Family 17

• Figure 1-1 Block diagram of the Macintosh II

I

A31-23,....--~

1.:.2...,.. NuChip n NuBus connectors
I I r=:=fi= r=:=fi= ~ ~ r=:=fi= ~

~-2 E IID~l~ 111111111111111111
I---...... --.... --~I--:I... III I:: -:: :1: I:: I::

~ ~~2~~~

IInte?UPt L
sWItch I

- GLUE

/PWRIRQ tt
Power .1
switch

/NMI

A31-24,22,
20,1()..13,1,O

8 $9 $A $B $C $D $E

A25-2 Address
MUXs

D31-Q '----.......
RAM

1 to8MB
Apple

Al8-; ~:=2=~6=O~=B~j1IL.. __ AD_B_ I ~~
o VvIAIIR~ L©

D31-24
A12-9 ~ VIAl

I-sec
interrupt

VBL 1 VIA2IR r---~ interrupt

RTC

rl---+=-=-1

A12-9 ~
Slot

interrupts
I

r
II

DRQ
I D31-24

A6-4

I D31-24

A12-9

ISCCIR~

D31-24 r-----
A2,1

/SND

~
AU-Q

VIAl

~---=:-~--<---o---J
L-__ ~---, SLOTS GLUE
r----, SCSIIRQ ~ interrupts

SCSI

IWM

sec

ASC

Internal hard disk
External
SCSI port

connector
::::::::::::::::::::::::: I

......................... ,
Internal floppy Internal floppy
disk connector disk.connector

I :::::::::: I I :::::::::: I

Serial
ports

Channel AD' I Port A •••

I
nvers (modem)·· .. •
and

Channel B receivers Port B ::".
I (printer) ••

Jf1 Internal External
f- Sony f1\J speaker s0/A{ck

soundIC ~

f- Sony
soundIC

18 Designing Cards and Drivers for the Macintosh Family

• Figure 1-2 Block diagram of the Macintosh IIx and Macintosh IIcx

FPU

Mc68882

CPU

Mc6s030

GLUE

A4-1

D31-O

A7-O

Address bus
A31-8

Data bus
D31-O

I Inte~Pt Im~ sWitch r--
A31-24,22,
20,16-13,1,0

A31-23,1,0 NuChip n NuBus connectors
~~~~~§ 
Hi Hi HI Iii HI Hi 

A25-3 

Al8-2 

~ 

7 ..... 

~~~ E J>o-AD"",3"",l-O~ IIIIII1I11111111I1 

~JjbJjb~~~

D31-O

D31-O

Address
MUXs

ROM
256KB

$9 $A $B $C $D $E
I- lIex ---' I
L..:.=: Macintosh IIx ~

RAM
lto8MB

ADB

Apple Desktop
Bus ports

8 NIAlIRQ1--r--i·~1======d

A12-9

A12-9

~

VIAl 1 sec int

VvIAZIRQ
VBLint

VIA2

RTC

Slot
interrupts

I
r- ~------~~
1::=====~t=J SLOTS Int GLUE

~---------------------~~---~~~~ DRQ SCSlIRQ

A6-4

A12-9

A2,1

/SCCIRQ

/SND

SCSI

SWIM

SCC

ASC

Internal hard disk
External
SCSI port

°::::::::::::1

connector
I::::::::::::::::::::::::: 1

Internal floppy
Internal floppy disk connector Exte~al
disk connector (Macintosh lIex only) floppy disk port
[::::::::::1 L :::::::::: (Macintosh IIex only)

0::::::::: I
Serial

Channel A PortA
ports

Drivers (modem) ••
Channel B a~d Port B •••

t---===-"'----t.~re~c~el~ve=rs~ (.) ••
I pnnter r(l Internal External

H Sony
sound IC

speaker sou9ack

H Sony
'--__ -I sound IC

Chapter 1 Hardware Overview of the Macintosh II Family 19

• Figure 1-3 Block diagram of the Macintosh IIci

A31-O I I Device-select signals
RABll-O MDU RAAll-O

t t
RAM to- PGC ~ RAM

bankB (optional) bank A

D31-O

D31-O t L-.-.-

I FPU

A4-1 Bus
Mc68882 buffers I--

RD31-O RBV
A4,1,O ~

IPL2-O
NMI ------------

Registers &
D31-O interrupts

Video CPU D31-24 Video (0-8 bits)
A31-O Sync signals

port
Mc68030 VDAC A4-2 R,G,&B /

r--

D31-O
--- I/O & NuBus interrupts

ROM
A22-O 512KB ~ Internal speaker

CPU External sound ja
Signals Left channel Sony I "9 D31-24 I soundIC I

All-O ASC Right channel Sony I
sound IC I

ck

RAM cache

-I I
Apple Deskto connector RTC

D31-24 .. Bus ports

1 VIAl ·1 I c: A12-9 .. ADB
i D31-O ..
i Internal hard disk !

A31-O D31-24 connector External
!

J SCSI I,························· SCSI port
A6-4

.........................
.: : : .. : .. ,

Internal floppy disk External

D31-24 connector floppy
I :::::::::: I disk port

p

(A12-9) SWIM j

Serial

D31-24 Channel A
Drivers

ports
Port A (modem) :~ ••

A2,1 SCC ChannelB
and Port B (printer)

receivers
NuBus connectors
=-- =-- =--

A31- NuChip30 TIrTIiTIi 23,1,0
~ (AD31-O) llilliill NuBus A22-2

trans-
D31-O ceivers

$C $D $E

20 Designing Cards and Drivers for the Macintosh Family

• Figure 1-4 Block diagram of the Macintosh IIfx

ROM
D31-O

Al8-4 512 KB A22-4

A30,
28-4

D31-O

CPU A31-O
A26-0

MC68030
CPU signals

if

Fast-slow buffers

DP24
DP31-O

PA31-O

DP31-24

AP31-O OSS

APll-O

AP129

DP31-O
FPU

AP4-1 Mc68882

DP31-O
SCSI

AP~l-O DMA

D31-O
Cache data

RAM

D31-O
Cache tag

RAM

D31-O

1

~ =-l FMC

Processor-
di~lot

::.

1 DP31-O
PA~l-O

..-VO and NuBus
interrupts

Main RAM

speaker External
sound jack

~Intemal
H Sony I

DP31-24 sound IC I J-L----~O
ASC H Sony I

sound IC I

DP31-24 VIAl RTC I

Internal hard disk
connector

r::::::::::::::::::::::::: I
External

SCSI port
":::::::::::: I

Apple Desktop
Bus ports

ADB 1
transceiver II----I-nt-erna-I-flo-P-py----r---{ -

disk connectors --.J I 1 :::::::::: 1

L....-__ ...J I SWIM 1'-----1-::-::--1:1::::1 Serial

L....-__ ...J Channel A Port A (modem) p.~r:s

--.J SCC I I D~~drs
I 1L-_8~53_0_~C~h~an~n~el~B~~re~c~ei~ve~rs~ Port B (printer)

Chapter 1 Hardware Overview of the Macintosh II Family 21

RAM

RAM is the working memory of the system. Its base address is $00. The first 256 bytes of
RAM (addresses $00 through $FF) are normally used by the microprocessor as exception
vectors; these are the addresses of the routines that gain control whenever an exception
such as an interrupt or a trap occurs. RAM also contains the system and application heaps,
the stack, and other information used by applications.

The microprocessor's accesses to RAM are not interleaved (alternated) with the video
display's accesses during the active portion of a screen scan line; this is different from the
original Macintosh, Macintosh Plus, and Macintosh SE. Video RAM is located on the video
card in a NuBus slot. (If on-board video is used in the Macintosh IIci, video RAM must be
installed in RAM bank A on the main logic board.) The microprocessor has uninterrupted
access to RAM, making the average RAM 32-bit access rate equal to 12.53 MB per second
for the Macintosh II, and 15.6 MB per second for the Macintosh IIx and the Macintosh
Hcx. In the Macintosh IIci, the use of burst mode and the RAM IC's fast-page mode give
the processor a maximum RAM access rate of 36.36 MB per second. The average rate of
the Macintosh IIci depends upon the amount of contention with the built-in video
circuits. The average RAM access rate of the Macintosh IIfx is 64 MB per second based on
successfully accessing the cache memory 90% of the time.

ROM

ROM is the system's permanent read-only memory. Its base address is available as the
constant romStart and is also stored in the global variable ROMBase. ROM contains the
routines for the User Interface Toolbox and Macintosh Operating System, and the various
system traps.

Device I/O

Computers in the Macintosh II family use memory-mapped I/O, which means that each
device in the system is accessed by reading or writing to specific locations in the address
space of the computer. The address space reserved for device I/O contains blocks
devoted to each of the devices within the computer. Each device contains logic that
recognizes when it's being accessed, and the device responds in the appropriate manner.

22 Designing Cards and Drivers for the Macintosh Family

For compatibility with MC68000-based Macintosh computers, the Macintosh Operating
System operates by default in 24-bit mode. New applications can take advantage of the
full 32-bit mode for slot access as explained in Chapter 7, "NuBus Card Memory Access."

Separate address spaces are reserved for processor access to cards in NuBus slots. For a
device in NuBus slot number s, the address space in 32-bit mode begins at address
$FsOO 0000 and continues through the highest address, $FsFF FFFF (where s is a constant in
the range $9 through $E for the Macintosh II, IIx, and IIfx, $9 through $B for the
Macintosh IIcx, and $C through $E for the Macintosh IIci).

The microprocessor can directly access 232 bytes or 4 gigabytes of address space. In a
Macintosh II-family computer, this address space is partially accessible when the
Macintosh Operating System is in 24-bit mode and totally accessible in 32-bit mode.

In general, ROM routines won't run in 32-bit mode under the current Macintosh Operating
System. An application or driver written to run in 32-bit mode must switch to 24-bit mode
before calling any ROM routine and return to 32-bit mode thereafter.

If an application needs access to a NuBus card in 32-bit mode (because it needs access to
more than 1 MB of slot space, for example), it can use the system call SwapMMUMode to
perform mode switching. This call is described in the Operating System Utilities chapter
of Inside Macintosh.

Memory management in the Macintosh II is provided by the Address Management Unit.
The main function of the AMU is to accomplish a 24-to-32-bit memory mapping
translation. A bit in VIA2 controls the mode change. This method offers the direct use of
all 32 bits in one mode and a mapped set of addresses in 24-bit mode. You must replace
the AMU with the MC68851 paged memory management unit (PMMU) if you are running
virtual operating systems such as AlUX, because the AlUX® operating system runs entirely
in 32-bit mode. The Mc68851 PMMU is also capable of ignoring the high eight bits of the
address in order for the Macintosh Operating System to run in 24-bit mode.

The other computers in the Macintosh II family do not need an AMU or a PMMU because
the MC68030 microprocessor used in these computers includes a built-in memory
management unit that provides all necessary memory management functions, including 24-
bit to 32-bit memory mapping translation and AlUX operating system support.

Chapter 7, "NuBus Card Memory Access," shows in detail how cards installed in NuBus
slots address memory.

Chapter 1 Hardware Overview of the Macintosh II Family 23

Address/data bus

Figures 1-5 and 1-6 are examples showing the basic address/data bus architecture used in
the Macintosh II, Macintosh IIx, and Macintosh IIcx computers. (Although examples of
the Macintosh IIci and the Macintosh IIfx are not included, the function of the
address/data bus interface in these machines is essentially the same.) Note that the
address and data buses shown in Figures 1-5 and 1-6 are separate on the microprocessor
side of !he NuBus interface (transceivers and controD, and that the addresses and data
are multiplexed on the NuBus side of the interface. Of primary interest in these figures are
the address and data paths (shown grayed) to and from the NuBus transceivers. The
utility, control, arbitration, and slot ID signals are listed in Table 2-2.

The 32-bit wide multiplexed address or data bus connects to the NuBus slot connectors. See
the section "Address/Data Signals" in Chapter 3 for a description of the address/data bus.

• Figure 1-5 Macintosh II address/data bus architecture

NuBus slots

9 ABC D E

~t~~~~~m~r~:~:~:~:

llllllll! l'III:I!':::~e::::::::~
r---------~--------~±ri~ ~------~~--~~~~

A7!~~"'"'''' .! ~, .. ,.,:.:, •. :•.... ,.,~., ~, .. ~".:.,~.:".:, .. : .. 8.·.~ : ~, .. :.~.;.;,;.~,;.~,~:~:?~, .. :.,:.: :,:.::,;.!,I.'".I.I.:.' ... ·.:,:.,.: .. ,.;:.,'.:·.,:: ... ,:::.,!.::.,i.:.,I:: .. ,I.::.,!,:.: •. ·.,,:.:,:.:.: .. ',:.'.: .. :.: .. :.: .. ::,.,', .. :,:.'.: .. ',:.:.:.,:,:,'.' .. ,'.,::: ... ::.:'.:,.',:.: ~~jtmtttj~lJt~~;~;tj~j~)~l~ :.:.:.:.:.:.:.:.:. ::::::::::;:::;:::::::;:::~::tfl~

A4~Al -I i% I 1"'''''''''':;i=~~''''~~~~''''-,;;~~;''''~;l~;''''~;F~'''~;~-A9
GLUE ! ! ! ! : "--!~--I

CPU control

D31-DO

and
timing

Logical -4- ~ Physical

24 Designing Cards and Drivers for the Macintosh Family

• Figure 1-6 Macintosh IIx and Macintosh Hcx address/data bus architecture

NuBus slots

Macintosh IIx
I

I Mafintosh Hex
I I

9 ABC D E

Chapter 1 Hardware Overview of the Macintosh II Family 25

NuBus interface architecture

All Macintosh II-family computers use a similar interface architecture to communicate
with the NuBus. The most noticeable difference is that the newer computers, the
Macintosh IIci and the Macintosh IIfx, have incorporated different NuBus control and
data transceivers into their bus interface design. The Macintosh II, the Macintosh IIx, and
the Macintosh IIcx all use the NuChip custom IC for their bus interface control function as
shown Figures 1-1 and 1-2. In the Macintosh IIci (Figure 1-3), the bus interface control
function is replaced by a NuChip 30 custom IC, and in the Macintosh IIfx (Figure 1-4), two
custom ICs, the BIU30 and the BIU2, perform the control and transceiver functions. This
section shows how the processor uses the bus interface control and transceiver logic to
communicate with the NuBus.

The NuBus interface in Figures 1-1 through 1-4 shows bidirectional bus interface blocks
between the microprocessor bus and the NuBus. Figure 1-7 shows a further breakdown of
the functional elements comprising the bus interface circuits.

The bus interface control function is implemented as four state machines, three of which
are shown in Figure 1-7. The fourth state machine prevents the NuBus from indefinitely
awaiting an acknowledge by generating an acknowledge cycle in response to /START after
256 bus cycles (25.6 microseconds). A wait this long occurs when the processor makes an
access to nonfunctional addresses, perhaps because the card being addressed is not
present in any of the NuBus slots.

26 Designing Cards and Drivers for the Macintosh Family

Processor-bus to NuBus state machine

The processor-bus to NuBus state machine (see Figure 1-7) is activated whenever the
microprocessor generates a physical address from $6000 0000 through $FFFF FFFF in the
data or program address spaces (see the memory map, Figure 1-8). The state machine
synchronizes the request with the NuBus clock and presents the same address over the
NuBus. If a slave device on NuBus responds, the data is transferred. If no slave responds,
a NuBus timeout occurs and a Bus Error UBERR) signal is sent to the processor. The
processor can then determine the cause of the error.

• Note: A special check is made for access to $FOxx xxxx, which is the main logic board's
slot address; if attempted, a Bus Error signal is generated immediately and no NuBus
transaction is attempted.

NuBus to processor-bus state machines

Two state machines, the NuBus slave and the NuBus to processor-bus, control a NuBus to
processor-bus data transfer (see Figure 1-7).

The NuBus to processor-bus state machine controls accesses from the NuBus, through the
processor bus, to RAM, ROM, and I/O. For example, if an address from $0000 0000
through $3FFF FFFF is presented on the NuBus, then the NuBus to processor-bus state
machine requests the processor bus from the microprocessor and performs a RAM access
to the same address. Similarly, if an access in address space $F080 0000 through
$FOFF FFFF is made on the NuBus, an access in $4x80 0000 through $4xFF FFFF on the
processor bus is made to the ROM (see the map in Figure 1-8). Chapter 7 provides much
more detailed information on memory access. See Table 7-2, in particular.

• Warning The ability to access processor-bus I/O devices is not intended for
normal use. Access to anything other than ROM or RAM will probably
not be supported on future systems. ...

Chapter 1 Hardware Overview of the Macintosh II Family Z7

• Figure 1-7 Bus interface architecture

.------ NuBus control signals

_-------- /AD31-/ADO
NuBus address/data bus - -

A31-A24 /AD31-/AD24 D7-DO

A23-AI6 /AD23-/ADI6 DI5-DB

A31-AI
D31-DO

::t::

Processor
Processor

AI5-AB /ADI5-/ADB D23-D16 data bus
address bus

A7-A2
Al AO

Encoder/
SIZI-SIZO decoder

-r--

/AD7-/ADO

/fMI-/fMO -r--

D31-D24

Processor
control signals

NuBus slave Processor-bus (for example,
state machine ~ /START, / ACK, etc. to NuBus ~ / AS, INUBUS,

/CLK - > ~--~I----+--""':'--~--1 state machine /DSACKn)

NuBus to
processor-bus
state machine

cI6M ~[>
(Processor L-___ --I

clock)

Processor
control signals
(for example,

/BR, /AS, /DSACKn)

/CLK - t> < r- c16M

The Macintosh II, the Macintosh IIx, and the Macintosh IIcx have only 256 KB of ROM; this
many locations require only 18 bits of addressing to specify a ROM location. The hardware
decode logic interprets any physical address whose upper four address bits (A31-A28) are equal
to $4 as a ROM access. So there are 32 minus 4, or 28, bits available to access the locations in a
ROM that requires only 18 bits of addressing. This means that 10 address bits are "don't cares"
and that on the map of physical addresses there are 1024 (210) different addresses (aliases) that
will access the same ROM location. This act of gaining access to a memory location from
several different addresses is called aliasing. It usually occurs in computer systems when an
incomplete address decoding mechanism is used.

28 Designing Cards and Drivers for the Macintosh Family

The NuBus to processor-bus state machine also monitors and records when the NuBus
master initiates an attention-resource-Iock cycle, and controls the subsequent events of a
resource locked transaction as described in the section "Bus Locking" in Chapter 4.

The NuBus slave state machine is synchronous to the NuBus and tracks the state changes
on the NuBus.

• Figure 1·8 NuBus to processor-bus translation

Slots -

Expansion
address

NuBus
access to

RAM

NuBus
address space

SEFFF FFFF

Processor

32-bit physical
address space

} Slots

NuBus

I/O

ROM

RAM

Chapter 1 Hardware Overview of the Macintosh II Family 19

Chapter 2 NuBus Overview

Chapter 2 describes NuBus features, provides a simplified diagram of the
NuBus hardware, defines many NuBus terms, classifies the signals used to
implement communication over the bus, and discusses the most basic
timing and transaction cycle relationships.

31

NuBus features

The NuBus is used for expansion of a Macintosh II-family computer beyond the
capabilities of the ports (connectors) on the back of the machine.

NuBus is a 32-bit-wide bus chosen by Apple to mechanize the multislot expansion of the
computers in the Macintosh II family. Table 2-1 shows the highest-level design objectives
and the supporting features of the NuBus. Apple chose the NuBus over competitors
because it offered cost-effective high performance along with maturity of hardware
design and production.

• Table 2-1 Design objectives and features

Design objective Supporting features

System architecture independent

High-speed data transfer

Simplicity of protocol

Small pin count

Ease of system configuration

Optimized for 32-bit transfers, but supports
8-bit and 16-bit nonjustified transfers.
Not based on the control structure of a
particular microprocessor.

10 MHz clock synchronizes bus arbitration and
transfers of read/write data to a single 32-bit
address space (block transfers available but
not implemented in the Macintosh II family).

Reads and writes are the only operations used.
I/O and interrupts are memory mapped.
Single, large physical address space allows uniform
access to all addressable cards or other resources.

Multiplexed data and address lines.
Simplified connection, only 51 signals plus
power and ground lines.

Geographical addressing (ID lines) enables
interface system to be free of DIP switches
and jumpers. Distributed, parallel arbitration
eliminates jumper wiring of slots with missing
cards (daisy-chaining).

32 Designing Cards and Drivers for the Macintosh Family

NuBus elements

The NuBus is a synchronous bus; all transitions and signal samplings are synchronized to a
central system clock. However, it has many of the features of an asynchronous bus;
transactions may be a variable number of clock periods long. This design provides the
adaptability of an asynchronous bus with the design simplicity of a synchronous bus.

Figure 2-1 is a simplified representation of a typical NuBus system. In addition to the
slot identification (ID), clock, address/data, and arbitration lines shown in the diagram,
there are system reset, parity, power fail warning, non-master request, and data transfer
control lines.

NuBus supports only read and write operations in a single address space, in contrast to
some other bus designs. I/O and interrupts may be accomplished within these read and
write mechanisms. In the Macintosh II family, however, interrupts are detected through
the non-master request line (see "Interrupt Operations" in Chapter 3).

The cards in NuBus slots are peers; no card or slot is a default master. The exception is
that only one card drives the system clock line; the clock is supplied by the main logic
board. Each slot has an ID code hard-wired into the main logic board of the computer.
This allows cards to differentiate themselves without the computer user having to arrange
jumpers or adjust DIP switches.

The NuBus supports multiprocessing and other sophisticated system architectures with a
few simple mechanisms explained in Chapter 3, "NuBus Data Transfer."

Chapter 2 NuBus Overview 33

• Figure 2-1 Simplified NuBus diagram

Representative NuBus cards
(Up to six in Macintosh II, IIx, and IIfx, three in Macintosh IIcx and IIci)

I

(
Master Slave Master Slave

NuBus

34 Designing Cards and Drivers for the Macintosh Family

NuBus signal classifications

NuBus signals can be grouped into six classes based on the functions that they perform.
There are also power and ground lines. Table 2-2 shows the NuBus signal classifications.

• Table 2-2 Classes of NuBus signals

ClassJIication Signal Signal description Number of pins

Utility /RESET Reset 1
/CLK Clock 1
/PFW Power Fail Warning 1
/NMRQ Non-Master Request 1

Control /START Start 1
/ACK Acknowledge 1
/TMO Transfer Mode 0 1
/TMI Transfer Mode 1 1

Address/ data /AD31-/AD0 Address/Data 32

Arbitration / ARB 3-/ ARBO Arbitration 4
/RQST Request 1

Parity /SP System Parity 1
/SPV System Parity Valid 1

Slot ID /ID3-/IDO Slot Identificatjon 4
Total signals 51

Power/ground +5V 11
+12V 2
-12V 2
-5V (not supplied) t 8

GND Ground 20

Reserved Reserved 2

Total pin count 96
t These pins are wired together but not supplied with power from the computer.

Chapter 2 NuBus Overview 35

NuBus timing

The NuBus system clock has a 100 nanosecond (ns) period with a 75 ns high, 25 ns low duty
cycle. Figure 2-2 shows the basic timing for most NuBus signals. The low-to-high transition
of /CLK is used to drive and release signals on the bus. Signals are sampled on the high-to­
low transition of the clock. The asymmetric duty cycle of the clock provides 75 ns for
propagation and setup time. Bus skew problems are avoided by having 25 ns between the
sample and drive edges.

• Figure 2-2 NuBus signal timing

Period

I
(lOOns

leLK 75ns

25ns

ISIGNAL --«K-----,.----f~>----
I I
I I
I I
I I
I I
I I
I I
I I
I I

Driving edges

Sampling edge __________ _

36 Designing Cards and Drivers for the Macintosh Family

Definitions

Table 2-3 defines terms used throughout Part I that are used to describe the NuBus
expansion interface. The relationships among some of these terms are illustrated in
Figures 2-2 and 2-3. All NuBus signals are active (asserted) when low; a slash preceding a
signal name indicates that it is active-low, for example, /START.

• Table 2-3 Basic definitions

Tam Definition

Acknowledge (ack) cycle Last cycle of a transaction during which / ACK is asserted by
a slave responding to a master. See Figure 2-3.

Active For an active-low signal, synonymous with asserled, low,
and tme.

Arbitration contest The mechanism used to choose which of two or more cards
requesting control of the bus will become the next bus
master. The arbitration contest requires two bus periods
(at 100 ns each).

Asserted The logic state of an active-low signal line when the line is
driven low. All NuBus signal lines are active-low.
Synonymous with active, low, and tme.

Attention cycle A particular kind of start cycle, one in which both /START
and / ACK are asserted. There are two types, attention-null
and attention-resource-Iock cycles. See "Resource Locking"
in Chapter 4.

Bus lock A mechanism for providing continuing tenure (bus
ownership) by a single card. The extended tenure may
include multiple transactions or attention cycles. One type
of attention cycle is an attention-resource-Iock (often
shortened to resource lock); therefore a bus lock mayor
may not include a resource lock.

Card A printed circuit board connected to the bus in parallel with
other cards.

(Continued)

Chapter 2 NuBus Overview 37

• Table 2-3

Tenn

Clock cycle

Data cycle

Deasserted

Drive

Driving edge

False

High

Inactive

Low

Master

Open collector

Parked

Period

Basic definitions (Continued)

Definition

The sequence of events on the NuBus clock from one rising
edge to the next, nominally 100 ns in duration and beginning
at the rising edge. See Figure 2-2.

Any period in which data is known to be valid and
acknowledged. It includes acknowledge cycles, as well as
intermediate data cycles within a block transfer. (Block
data transfer is not implemented in the Macintosh II
family.) See Figure 2-3.

For an active-low signal, synonymous with high, inactive,
unasserted, false, and released.

To cause a bus signal line to be in a known, determinate state.

The rising edge (low to high) of the central system clock
UCLK). See Figure 2-2.

For an active-low signal, synonymous with high, inactive,
deasserted, unasserted,. and released.

For an active-low signal, synonymous with inactive,
deasserted, unasserted, false, and released.

For an active-low signal, synonymous with high, deasserted,
unasserted, false, and released.

For an active-low signal, synonymous with active, asserted,
and true.

A card that initiates the addressing of another card or the
processor on the main logic board. The card addressed is at
that time acting as a slave.

A bus driver that drives a line low or doesn't drive it at all.

The condition when a bus master has completed a
transaction and released /RQST, and before any other card
has asserted /RQST. Bus parking is discussed in Chapter 4.

The 100 ns duration of /CLK, the NuBus clock signal
consisting of a 75 ns high state and a 25 ns low state.
See Figure 2-2.

(Continued)

38 Designing Cards and Drivers for the Macintosh Family

• Table 2-3 Basic definitions (Continued)

Term Definition

Released For an active-low signal, synonymous with high, inactive,
deasserted, unasserted, and false.

Sampling edge The falling edge (high to low) of the central system clock
(/CLK). See Figure 2-2.

Slave A card that responds to being addressed by another card
acting as a master. The main logic board in the Macintosh II
family may be either master or slave. Some cards may be
slave-only in function because they lack the circuitry to
arbitrate in a bus ownership contest.

Slot A connector attached to the bus. A card may be inserted
into any of the slots when more than one is provided
(Macintosh II, Macintosh IIx, and Macintosh IIfx have six
slots; Macintosh IIcx and Macintosh IIci have three slots).

Slot ID The hex number ($9 through $E in the Macintosh II,
Macintosh IIx, and Macintosh IIfx; $9 through $B in the
Macintosh Hcx; and $C through $E in the Macintosh IIci)
corresponding to each card slot. Each slot ID is established
by the main logic board of the computer and
communicated to the card through the /IDx lines.

Standard slot space The upper one-sixteenth of the total address space. These
addresses are in the form $Fsxx xxxx, where F, s, and x are hex
digits of 4 bits each. This address space is geographically
divided among the NuBus slots according to slot ID numbers.

Start cycle

Super slot space

The first cycle of a transaction during which /START is
asserted. See Figure 2-3. The start cycle is one bus clock
period long; the transfer mode and the address are valid
during this cycle.

The large portion of memory in the range $9000 0000
through $EFFF FFFF. NuBus addresses of the form
$sxxx xxxx (that is, $sOOO 0000 through $sFFF FFFF) address
the super slot space that is assigned to the card in slot s,
where s is an ID digit in the range $9 through $E.

(Continued)

Chapter 2 NuBus Overview 39

• Table 2-3 Basic definitions (Continued)

Tenn Defmition

Tenure A time period of unbroken bus ownership by a single
master. A master may lock the bus and, during one tenure,
perform several transactions. The concept of bus locking is
further explained in Chapter 4 in the section "Locking."

Three-state A bus driver that drives a line low or high or doesn't drive it
at all. Also commonly called tri-state.

Transaction A complete NuBus operation such as read or write. In the
Macintosh II family, a transaction is made up of a start
cycle, wait cycles as required by the responding card, and
an acknowledge cycle. Start cycles are one clock period
long and convey address and command information.
Acknowledge cycles are also one clock period long and
convey data and acknowledgement information. See
Figure 2-3.

True For an active-low signal, synonymous with active, asserted,
and low.

Unasserted For an active-low signal, synonymous with high, deasserted,
false, inactive, and released.

Word In Part I, word refers to a NuBus word and is 32 bits long; a
halfword is 16 bits long (usage is consistent with the Texas
Instruments NuBus specification). The data type word,
however, is 16 bits long (see Table 8-1); this inconsistency
results from the difference between 16- and 32-bit
microprocessors. Part II of this book refers to a word as 16
bits and a longword as 32 bits.

• Figure 2-3 Cycle and transaction relationships

Address/
Data

Transaction Block transaction
I I ____ ~(==:~~~~)~--~(-~ ~_l~ __ __

I Am I ~~~~: I Dam I I Am I ~·~·~]~r~~~~~~] Dam I
---'-V--.l. V V V V"---'---

Start Acknowledge Start Data Acknowledge
cycle cycle cycle cycle cycle

40 Designing Cards and Drivers for the Macintosh Family

Chapter 3 NuBus Data Transfer

This chapter describes the utility signals, slot ID signals, and data transfer
signals; it then gives specifications for the process of transferring data
over the NuBus interface from a master to a slave.

41

Utility signals

This section identifies the signal lines that serve utility functions for the NuBus interface.
The main logic board of a Macintosh II-family computer provides the structure and the slot
connectors; it also provides the Clock and Reset signal sources and bus timeout circuitry.

Clock signal

Clock UCLK), driven from a single source, synchronizes bus arbitration and data transfers
between system cards. /CLK has an asymmetric duty-cycle of 75% high and a constant
nominal frequency of 10 MHz. In general, signals are changed at the rising (driving) edge
of /CLK, and they are sampled at the falling (sampling) edge.

Reset signal

Reset URESET) is an open-collector line that is asserted asynchronously to the NuBus clock.
When asserted, /RESET causes a NuBus interface initialization for all cards (bus reset).

Because of the design of the computer hardware and firmware, there is a slight deviation
of the duration of the /RESET signal from that specified in the IEEE 1196 NuBus
standard. Durations and times are dependent on system clock frequency.

As part of the startup code in the ROM, a Reset instruction is executed shortly after the
microprocessor comes out of hardware reset (nominally 200 ms). The execution of this
Reset instruction causes a subsequent 33 J..ls assertion of /RESET. Thus, for each of the
three ways in which Reset occurs, the timing is as follows:

1. Initial power-on: Shortly after all power supplies have stabilized, the /RESET line is
driven low for a nominal 200 ms. Then, about 3 J..lS later and because of the startup
code, /RESET is again driven low for 33 J..lS.

2. Pressing the Reset button: /RESET is asserted for as long as the button is held
down, plus the nominal 200 ms. As in the power-on case, a subsequent 3 J..lS deassertion
is followed by an additional 33 Ils assertion.

3. Executing the Restart command: The code for this menu item executes two Reset
instructions separated by about 3 J..ls. Thus, /RESET is asserted for 33 Ils, deasserted for
3 J..lS, and asserted again for 33 J..lS.

You should treat all assertions of /RESET (of any duration) identically.

42 Designing Cards and Drivers for the Macintosh Family

Power Fan Warning signal

Power Fail Warning (/PFW) may be asserted asynchronous with respect to the driving edge
of /CLK and indicates that the power is about to fail. In the Macintosh II family, this
signal is also used to control the power supply. Driving /PFW high turns the computer on;
driving /PFW low turns it off.

See Chapter 5, "NuBus Card Electrical Design Guide," for /PFW drive requirements if the
card you are designing is to control the power supply through the NuBus.

Non-Master Request signal

Non-Master Request (/NMRQ) is a signal asynchronous to /CLK that provides an interrupt
mechanism for cards that are intended to be slave-only. Such cards avoid the cost of
implementing arbitration logic.

Card slot identification signals

Identification signals 3 through 0 (/ID3-/IDO) are binary coded to specify the physical
location of each card. The highest numbered slot ($F) has the four signals wired low. The
lowest numbered slot ($0) has all ID signals high. In the Macintosh II, Macintosh IIx, and
Macintosh IIfx computers there are six slots numbered $9 through $E. The Macintosh IIcx
and Macintosh IIci have only three slots numbered $9 through $B and $C through $E,
respectively. The main logic board is addressed as slot $0.

6. Important You must tie the ID lines high through pull-up resistors or they will not
work. For example, the Macintosh II Video Card described in
Chapter 11 uses 3.3 kilohm pull-up resistors; you should, however, be
able to use resistors as high as 10 kilohms safely. f:::"

The distributed arbitration logic uses the ID numbers to uniquely identify cards for
arbitration contests. See Chapter 4, "NuBus Arbitration."

Chapter 3 NuBus Data Transfer 43

The ID signals are also used to allocate a small portion of the total address space to each
card. The upper 1/16th (256 MB) of the entire 4 gigabyte NuBus address space is called
the standard slot space. If /ID3-/IDO are used to specify NuBus address lines / AD27-
/ AD24, each of the 16 possible NuBus card slots has an address of the form $Fsxx xxxx,
where s is the 4-bit hex digit for a particular slot. This address range allocates 16 MB of
iddress space (l/16th of 256 MB) per NuBus card slot, an address region called a slot.

However, by using the /ID3-/IDO bits in a different way, a second natural address decode
of what is called super slot space can be easily performed. If /ID3-/IDO are used to
specify NuBus address lines / AD31-/ AD28, each of the 16 possible NuBus card slots has an
address of the form $sxxx xxxx, where s is the 4-bit hex digit for a particular slot. This
address range allocates 256 MB of address space (l/16th of 4 GB) per NuBus card slot, an
address region called a super slot. Thus each physical slot has allocated to it a standard slot
space and a super slot space.

This fixed address allocation, based solely on the slot location of a card, enables the
design of systems that are free of jumpers and switches. Chapter 7, "NuBus Card Memory
Access," discusses memory addressing in detail.

Signal line determinacy

The bus driving circuitry, the bus transmission line parameters, and the terminating
impedances must be coordinated to make the signal lines determinate within the
specified setup and hold times of the NuBus clock.

A signal line is determinate by virtue of satisfying one of the following conditions:

• If a signal is driven during clock cycle n, then it is determinate during cycle n.

• If a signal is unasserted during cycle n, and is not driven during cycle n + 1, then that
signal is guaranteed to remain unasserted during cycle n + 1.

• If an open collector signal is driven asserted during cycle n and is not driven during
cycle n + 1, then it is guaranteed to be unasserted during cycle n + 1.

• If a three-state signal is asserted during cycle n, and is not driven during cycles
n + 1 and n + 2, then it is not guaranteed determinate during cycle n + 1, but the line is
guaranteed to be unasserted during cycle n + 2.

44 Designing Cards and Drivers for the Macintosh Family

Data transfer signals

The bus data transfer signals, including control, addressldata, and bus parity, are all three-state.

Control signals

This section describes the primary functions of the four NuBus control signals.

Transfer Start (lSTART) is driven for only one clock period by the current bus master at
the beginning of a transaction. 1ST ART indicates to the slaves that the addressl data
signals are carrying a valid address.

Transfer Acknowledge (lACK) is driven for only one clock period by the addressed slave
device and indicates the completion of the transaction. An exception to the foregoing is
an attention cycle, when the bus master asserts both ISTART and lACK. See "Attention
Cycles," later in this chapter.

Transfer Mode 0 and 1 (lTMO, ITM1) are driven by the current bus master during start
cycles to indicate the type of bus operation being initiated. They are also driven by bus
slaves during acknowledge cycles to denote the type of acknowledgement. ITMO and
ITM1 encoding for start cycles is given in Table 3-1.

Address/Data signals

AddresslData 0 through 31 (I AD 31-1 ADO) signals are multiplexed to carry a 32-bit byte
address at the beginning of each transaction and up to 32 bits of data later in the
transaction. Note that the I ADO and I AD1 signals, along with ITMO and ITM1, carry
transfer mode information during the start cycle. This transfer mode encoding is shown
in Table 3-1.

Chapter 3 NuBus Data Transfer 45

Bus parity signals

System Parity (/SP) transmits parity information between NuBus cards that implement
NuBus parity checking. Future Apple products may employ this feature, but the
Macintosh II family does not provide bus parity checking, so this line is pulled high.

System Parity Valid (/SPV) indicates that the /SP bit is being used. Cards that do not
generate bus parity never drive /SPV active and cards that do not check parity ignore /SP
and /SPV. Future Apple products may employ this feature, but in current versions of the
Macintosh H family, this line is pulled high.

• Note: The Macintosh IIci and the Macintosh HEx have an optional feature that allows
RAM parity checking when 9-bit SIMMs are installed, however this capability is
unrelated to NuBus parity checking.

Data transfer specifications

The NuBus supports reads and writes of several different data sizes. Although optimized
for transactions of words and blocks of words, the NuBus also supports byte and NuBus
halfword transactions as shown in Figure 3-1. The base unit of addressability is a NuBus
word; / AD31-/ AD2 specify the appropriate word. The two least significant address bits
(/AD1-/ADO), along with /TM1-1TMO, specify the transfer mode; that mode determines
which part of the addressed word is to be transferred, as shown in Table 3-1.

All NuBus data transfers are unjustified. That is, a byte of data is conveyed on the same
byte lane regardless of the transfer mode used to access it. Similarly, a halfword is
conveyed on the same halfword lane regardless of the transfer mode used to access it.
Therefore, bytes with address 0 modulo 4 are always carried by / ADO through / AD7,
bytes 1 modulo 4 by / AD8 through / AD15, bytes 2 modulo 4 by / AD16 through / AD23, and
bytes 3 modulo 4 by /AD24 through /AD31. This unjustified data path approach allows
straightforward connection of 8-bit, 16-bit, and 32-bit devices.

46 Designing Cards and Drivers for the Macintosh Family

• Table 3-1 Transfer mode coding

/fMl /fMO IADl IADO Type of cycle

L L L L Write byte 3
L L L H Write byte 2
L L H L Write byte 1
L L H H Write byte 0
L H L L Write halfword 1
L H L H Write block
L H H L Write halfword 0
L H H H Write word

H L L L Read byte 3
H L L H Read byte 2
H L H L Read byte 1
H L H H Read byte 0
H H L L Read halfword 1
H H L H Read block
H H H L Read halfword 0
H H H H Read word

• Figure 3-1 Words, halfwords, and bytes

Bit 31 Bit 0

NuBusword

Halfword 1 HalfwordO

Byte 3 I Byte 2 Bytel J Byte 0

Single data cycle transactions

The simplest transactions on the NuBus convey one data item and consist of a start cycle
and a subsequent acknowledge cycle. These transactions are either reads or writes of
bytes, halfwords, or words.

Chapter 3 NuBus Data Transfer 47

All transactions are initiated by a bus master which drives ISTART active while driving the
ITMx, IADO, and IAD1 signals to define the cycle type. The remaining IADx signals are also
driven to convey the address. The transaction is completed when the responding slave
drives lACK active while driving status information on the ITMx lines. For write
transactions, the master must switch the I ADx lines from address to data information in
the second clock period and hold that data until acknowledged. In read cycles, the slave
drives the data simultaneously with the acknowledge cycle in the last period.

The following abbreviations are used in the timing diagrams and step sequences in this section:

R Rising (driving) edge of ICLK
F Falling (sampling) edge of ICLK

Read transactions

Figure 3-2 shows the timing for read bus transactions other than block transfers. Block
transfers are not supported in the current members of the Macintosh II family, but they
may be used in future products. Read operations with data widths of 8, 16, and 32 bits are
selected by the transfer mode signals (lTMx) and the two low-order address signals (I AD1
and I ADO) as shown in Table 3-1. The slave must put the requested data item on either 8,
16, or all 32 of the I AD31 through,! ADO signals. Any bits other than the requested data may
be driven either high or low by the slave; they must be determinate.

Once the bus master has acquired the bus, a read bus transaction involves the following steps:

R(1)t The bus master drives ISTART low, drives lACK high, and drives the I ADx and
ITMx lines with the appropriate values to initiate the transfer.

F(1)*

R(2)

R(n)§

F(n)

R(n + I)

The bus slaves sample the I ADx and ITMx lines.

The bus master releases the I ADx, ITMx, and 1ST ART lines and waits
for lACK.

The bus slave drives the requested data onto the I ADx lines,. drives
the appropriate status code on ITMO and ITMl, and drives lACK low.

The bus master samples the I ADx and ITMx lines to receive the data
and note any error condition.

The bus slave releases the I ADx, lACK, and ITMx lines. This may be
the R(I) of the next transaction.

t R is the rising edge of /CLK.
* F is the falling edge of /CLK.
§ 2 =::; n < 256, the system defmed timeout period.

48 Designing Cards and Drivers for the Macintosh Family

• Figure 3-2 Timing of NuBus read transaction

R(1) F(1) R(2)
5

F(n) Ren+})

ICLK ...J U W
I I I
I I I
I I I
I I I
I I I

IADx 1< Address >---s s K Data
I I
I I I
I I I
I I I
I I I

k
I

k ITMx Mode >-s S Status code
I I
I I I
I I I
I I I
I

lr-5 s I

!, I

ISTART I
I

I j I
I I I
I I I
I I I
I I I
I I I
I I

S 5
I

I i

~ lACK I I
I I
I I I

! ! !

Write transactions

Figure 3-3 shows the timing for write operations other than block transfers. Block
transfers are not supported in current Macintosh II-family computers, but they may be
used in future products. Write operations with data widths of 8, 16, and 32 bits are
selected by the transfer mode signals UTMx) and the two low-order address bits (/ AD1
and /ADO).

I
I
I
I
I

>-I
I
I
I
I

>-i
I
I
I
I

I
I
I
I
I
I
I
I
I

V-
I

Chapter 3 NuBus Data Transfer 49

• Figure 3-3 Timing of NuBus write transaction

/CLK ~
I I I I
I I I I
I I I I
I I

~ ~
I I

/ADx -k Address ~ ! Data >-I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

!fMx -k Mode ~ S S k Status code >-I I I I I
I I I I I I I I I I I ,
I I

S S
I

I
/START ~ V I

I
I I I I I I I I I S S I I ,

1"- V /ACK I I
I I
I I

! ! ! I

The bus master has the resp'onsibility for aligning data onto the appropriate I ADx lines for
halfword and byte writes. For example, a write of byte 3 requires that the data be placed
on I AD24 through I AD3l; all other I ADx lines are not defined and are driven to either a high
or low state. (See Figure 7-2.)

Once the bus master has acquired the bus, a write bus transaction involves the following steps:

R(1)t The bus master asserts ISTARTand the appropriate I ADx and
ITMx lihes to initiate the transfer.

F(1)*

R(2)

F(2)-F(n)§

R(n)

F(n)

R(n + 1)

The bus slave samples the I ADx and ITMx lines.

The bus master places the data to be written onto the I ADx lines,
releases the 1ST ART and ITMx lines, and waits for lACK.

The bus slave samples the I ADx lines to capture the data. The data
may be sampled before or during the assertion of lACK.

The bus slave asserts lACK and places the appropriate status code
on ITMO and ITMl when the data is accepted.

The bus master samples lACK and ITMx to determine the end
of transaction.

The bus master releases the I ADx lines while the bus slave releases
the lACK and ITMx lines.

t R is the rising edge of /CLK.
* F is the falling edge of /CLK.
§ 2 ~ n < 256, the system defmed timeout period.

50 Designing Cards and Drivers for the Macintosh Family

Acknowledge cycles

During acknowledge cycles the addressed slave drives the ITMx lines while it drives lACK.
The ITMx lines provide status information to the current bus master as shown in Table 3-2.

• Table 3-2 Transfer status coding

ITM! /fMO Type of acknowledge

L L Bus transfer complete
L H Error
H L Bus timeout error
H H Try again later

Bus transfer complete: The bus transfer complete response indicates the· normal valid
completion of a bus transaction.

Error: During a read or write operation, certain error conditions may occur. The
transaction terminates in a normal manner and the bus master has the responsibility for
handling the error condition reported.

Bus timeout: If an unimplemented address location is accessed, or for any other reason a
slave does not respond to a start cycle address, the attempted transaction is
acknowledged with a bus timeout error response. This timeout response indicates that
the system defined timeout period has elapsed while the bus is busy (that is, the bus is
between start and acknowledge cycles) and no data transfer acknowledge has occurred.
Bus timeout support logic on the Macintosh main logic board enforces a period of 256
clock periods, or 25.6 microseconds, and assumes the role of the nonresponding slave; it
generates an acknowledge cycle with a bus timeout error code.

Try again later: This response status code indicates that a slave is unable to respond at
this time to a data transfer request from a bus master. The master should retry the
transaction; slaves should be designed so that a large number of retries are not required.

A computer in the Macintosh II family generates a processor-bus error exception UBERR
signal) if its microprocessor attempts a NuBus access that is terminated with an error, bus
timeout, or try-again-Iater response.

Attention cycles

An attention cycle is defined as a bus cycle during which both ISTART and lACK are
asserted. During· an attention cycle, the ITMx lines have a different function. Two of the
four available co dings are used at present, as shown in Table 3-3.

Chapter 3 NuBus Data Transfer 51

• Table 3-3 Attention cycle coding

/I'Ml !fMO Type of attention cycle

L L Attention-null
L H Reserved
H L Attention-resource-Iock
H H Reserved

During an attention cycle, the I ADx lines are ignored by all bus cards and no data may
be transferred.

Attention cycles are used to reinitiate bus arbitration (attention-null) or to signal a
resource lock (attention-resource-Iock), or both. Refer to Chapter 4, "NuBus Arbitration,"
for a detailed explanation of bus arbitration and resource locking.

Attention-null: The attention-null cycle has two uses:

• to reinitiate arbitration after the bus has been requested and won, but the new bus
owner decides not to transfer data (in this case, the new bus owner must generate an
attention-null cycle)

• to indicate the end of a data transfer using a locked resource

Attention-resource-Iock: ITMI high (H) and ITMO low (L) signal an attention-resource­
lock cycle at the beginning of a sequence of locked transactions constituting a locked
tenure of the current bus master. During this tenure, cards with lockable multiport
resources lock them against access by local processors other than the NuBus master. That
tenure is terminated by an attention-null cycle.

You should follow these implementation rules:

• Masters must drive lACK high during their start cycle to guarantee that lACK is in the
unasserted state and the start cycle is not interpreted as an attention cycle.

• Masters must ensure that the first lACK terminates a transaction. An attention cycle
immediately following the acknowledge cycle must not latch data.

• Slaves must qualify ISTART with the logical complement of lACK to decode a start
cycle. Otherwise, an attention cycle could be misinterpreted as a start cycle.

52 Designing Cards and Drivers for the Macintosh Family

Interrupt operations

Three possible ways to handle NuBus interrupts are available, but only one way is used by
the Macintosh II family of computers.

By write transaction

Interrupts on the NuBus cap be implemented as write transactions. Interrupts are not done
this wayan Macintosh I~family computers. Interrupt operations require no unique signals
or protocols. Any card on the NuBus that is capable of becoming bus master can interrupt
a processor card by performing a write operation into an area of memory that is
monitored by that processor. Any address range on the processor card can be defined as
its interrupt space. This allows interrupts to be posted to individual processors and allows
interrupt priority to be software specified by memory mapping the priority level.

By slots sharing a single NuBus /NMRQ line

The individual slot /NMRQ (Non-Master Request) signals may drive a single NuBus line
(fNMRQ), in which case, the system processor will have available only the wired-OR result
of all of the slot /NMRQ signals. In this case, the software must poll the slots capable of
generating the bus INMRQ signal to determine the source or sources of the interrupt.
Interrupts are not done this wayan Macintosh I~ family computers.

By a dedicated /NMRQ line from each slot (Macintosh ll-family computers)

Computers in the Macintosh II family use a separate (non-NuBus) INMRQ line from each
slot to support interrupts (see Figures 1-1 through 1-4). Each card slot has a unique /NMRQ
line driving an OR gate whose output is a real hardware interrupt signal to the
microprocessor (through VIA2, or equivalent). In addition, each of the INMRQ lines can
be independently polled by the processor, to allow the software to communicate with the
appropriate handlers for each of the cards asserting INMRQ.

Block data transfers

Block transfers are not implemented in Macintosh I~family computers, but they may be
implemented in future Apple products. The following discussion, although not pertinent
to the Macintosh, is provided for completeness in describing the NuBus.

Chapter 3 NuBus Data Transfer 53

Block transfers are transactions that consist of a start cycle, multiple data cycles from or
to sequential address locations, and an acknowledge cycle. The number of data cycles is
controlled by the master and communicated during the start cycle. Allowed lengths of
block transfers are 2, 4, 8, and 16 words. COnly 32-bit NuBus word transfers are supported
in block transfer mode.)

The ITM1, ITMO, IAD1, IADO encoding for block transfers is shown in Table 3-1. The
starting address of the block must correspond to the size of the block and is encoded by
the I AD2 through I ADS lines as shown in Table 3-4.

During block transfers, each data· cycle is acknowledged by the responding slave. The
intermediate acknowledges are data cycles where ITMO is asserted and ITM1 and lACK are
both unasserted. For intermediate acknowledgements, /TMO has the same significance
and timing as the lACK signal for nonblock transfers. The acknowledgement of the final
word transfer is a standard acknowledge cycle. Status codes are shown in Table 3-2.

• Table 3-4 Block size and starting address coding

Block size Block

/AD5 /AD4 /AD3 /AD2 (words) starting address

X X X H 2 CAD31-AD3)OOO
X X H L 4 CAD31-AD4)OOOO
X H L L 8 CAD31-ADS)OOOOO
H L L L 16 CAD31-AD6)OOOOOO
L L L L Error

Block read

Figure 3-4 shows the timing for a NuBus block read transaction. See Table 3-1 for the
ITMl, ITMO, IAD1, IADO encoding that initiates block reads. The lADS through IAD2lines
determine the size and starting address of the transaction as shown in Table 3-4. The
responding slave drives data onto the bus and the initiating bus master accepts the data
on each intermediate or final acknowledge. Assertion of ITMO is used by the responding
slave as an intermediate acknowledge, meaning that the next consecutive word of data is
ready to be put on the bus.

54 Designing Cards and Drivers for the Macintosh Family

• Figure 3-4 Timing of NuBus block read transaction

ICLK

IAD31-/AD6

IADS-/ADO

/fMO

/fMl

ISTART

lACK

I I I I I I
I I I I I I

---ck Address :H s k Data >-s S k Data :>-
---1Ck Block info >-s 5 k Data ~ 5 k Data :>-

: t::: \
---rY 5 S ~ !r s 1'\ Status code >-

I I i
I I I

__ ~~ 5 S S S k Status code :>-
\ \ \

---;.\ !AS cs I I !'-. V - :>!:
: I ::
I I cS cs :~
: I :> :>:'\. V
!! :!

t The addressed slave is responsible for driving /fMO to the desired state between R(n) and R(b+ 1).

Once the bus master has acquired the bus, a block read consists of these steps:

R(1)t The bus master asserts ISTART and the appropriate I ADx and ITMx
lines to initiate the transfer.

F(1)*

R(2)

R(n)§

F(n)

R(n + 1)

The bus slaves sample the I ADx and ITMx lines.

The bus master releases the I ADx, ITMx, and ISTART lines and waits
for an intermediate acknowledge (lTMO asserted).

The bus slave places the first word of requested data on the I ADx
lines and asserts ITMO.

The bus master samples the I ADx lines and ITMO to capture data.
ITMO is asserted and the first word of data is captured.

If the next consecutive word of data is not ready to be put on the
bus, the slave drives ITMO unasserted until the word is ready.

Chapter 3 NuBus Data Transfer 55

The previous three steps are repeated for ascending addresses until B-1 words have been
transferred, where B is the block size (2, 4, 8, or 16).

R(b yr The bus slave places the final word of requested data onto the I ADx
lines, asserts lACK, and places the appropriate status code on ITMO
and ITM1.

F(b) The bus master samples the I ADx and ITMx lines to receive the data
and note any error conditions.

R(b + 1) The bus slave releases the I ADx, lACK, and ITMx lines.
t R is the rising edge of ICLK.
* F is the falling edge of ICLI{'
§ 2 ~ n ~ 256, the system defmed timeout period.
9f 2 ~ b ~ 256B.

Block write

Figure 3-5 is a timing diagram for a NuBus block write operation. Block writes are similar
to block reads except the bus master drives the data bus while the slave accepts data. The
format for describing block size and starting address is the same as for block read.

• Figure 3-5 Timing for NuBus block write transaction

ICLK

IAD3l-/AD6

IAD5-/ADO

ITMO

!I'Ml

ISTART

lACK

R(1) F(I) R(2) F(n-1) R(n) F(n) R(n+ 1) FCb-1) RCb) FCb) RCb+ 1)

~~~ 
: : ~: fv--.;~: : -j< Address!>G i Data \A..-..; i Data >--
I I I I I I 

-k Block mfo k ~ : Darn PG ~ : Darn >-
! ".---l...; s-.W. i .,-; s k ! ~ ! ;~ (Statuscode >-
: : : I : : 
I I I I I I 

----h ! s i r--r--s ~ Status code >-
I I s----r ! I : 

~
I 5 I : 55 1 , 

I : ; I : : 

: I : : : : 

I ISS I I 5~' iii 
: : : I 
I I I I 

t The addressed slave is responsible for driving !I'MO to the desired state between 
R(n) and R(b+ 1). 

56 Designing Cards and Drivers for the Macintosh Family 



Once the bus master has acquired the bus, a block write consists of these steps: 

R(1)t The bus master asserts ISTART and the appropriate I ADx and ITMx 
lines to initiate the transfer. 

F(1)* 

R(2) 

R(n)§ 
F(n-) 

R(n + 1) 

The bus slaves sample the I ADx and ITMx lines. 

The bus master places the data to be written onto the I ADx lines, 
releases the ISTART and ITMx lines, and waits for an intermediate 
acknowledge (lTMO asserted). 

The bus slave asserts ITMO when the first word of data is accepted. 
The bus slave samples the I ADx lines to capture the data being 
written. The n- notation implies the data may be sampled before or 
during the assertion of ITMO. 

The bus master places the next consecutive word of data on the bus. 

The previous three steps are repeated for ascending addresses until B-1 words have been 
transferred, where B is the block size. 

R(b yr The bus slave asserts lACK and places the appropriate status code on 
ITMO and ITM1 when the final word of data is accepted. 

F(b-) The bus slave samples the I ADx lines to capture the data. The b­
notation implies the data may be sampled before or during the 
assertion of lACK. 

R(b + 1) The bus master releases the I ADx lines while the bus slave releases the 
lACK and ITMx lines. 

t R is the rising edge of /CLK. 
* F is the falling edge of /CLK. 
§ 2 ~ n ~ 256, the system dermed timeout period. 
9f 2 ~ b ~ 256B. 

Block transfer errors 

Although the length of a block transfer is dictated by the master during the start cycle, a 
block transfer may be cut short by an error acknowledgement from the slave at any time. 
The standard status codes shown in Table 3-2 are used. 

The speed of a block transfer is controlled by the slave; therefore, a master requesting a 
block transfer must be capable of transferring data at the speed of the fastest slave in the 
system. This could be one word per NuBus clock cycle (one word per 100 ns). If the master 
is incapable of transfers at the speed the slave specifies, an undetectable overrun (or 
underrun) occurs. 

Chapter 3 NuBus Data Transfer 57 



NuBus specifies. that if a slave supports block transfer, it must support all types of data 
transfer (byte, halfword, and word). In the case of a biock transfer request to a slave that 
cannot support block transfers, that slave should terminate the first transfer with / ACK 
and a normal status code. This is not considered an error condition. The data should be 
ignored for read or write purposes. 

Nonaligned microprocessor accesses 

The Mc68020 and Mc68030 bus interfaces allow accesses that do not fall into natural 
NliBtis transactioris. For example, a microprocessor program can request a read of a 
NuB us word at an odd~numbered location. This cannot be performed in a single NuBus 
transaction since it falls across word boundaries. 

The interface between a Macintosh II-family computer and NuBus always translates an 
aligned request into its counterpart on NuBus. However, that interface also provides 
support for all nonaligned microprocessor accesses (by using the dynamic bus sizing 
facilities of the microprocessor). The computer-to-NuBus interface responds to off­
boundary microprocessor requests with /DSACK (data transfer and size acknowledge) 
signals that tell the processor that the bus is only 16 bits wide. This causes the processor to 
make several cycles to fulfill the original request, using an incremented address and 
decremented size. For each subsequent cycle, the NuBus interface generates an 
appropriate transaction until the entire request is complete. 

Nonaligned reads 

Nonaligned reads are mapped into NuBus word (32-bit) reads. This provides the required 
data in the fewest NuBus transactions. Notice that some nonaligned requests generate 
two NuBus cycles. For example, a NuBus word read of $FsOO 0001 generates a word read to 
$FsOO 0000 and a byte read to $FsOO 0004. The "extra" data provided by the word read is 
ignored. The reason for the second read being a byte read instead of another word read is 
that the processor asks for one byte to $FsOO 0004, which is a natural NuBus transaction. 

58 Designing Cards and Drivers for the Macintosh Family 



Nonaligned writes 

Nonaligned writes are supported by breaking the processor request into pieces that can 
be executed by the NuBus. For example, a NuBus word write to $FsOO 0001 would be 
performed in three pieces: a byte write to $FsOO 0001, a NuBus halfword write to 
$FsOO 0002, and a byte write to $FsOO 0004. 

Data caching 

The MC68030 microprocessor used in the newest Macintosh II-family computers includes 
a feature called data caching. To support this feature, RAM-like cards should always 
supply all 32 bits, regardless of the NuBus request. For example, if a NuBus request is 
presented for a byte, the card should present data for all four bytes in the NuBus word. 

Note that the caching of data can be controlled by software; that is, some address spaces 
can be declared as noncacheable. Any card that is not capable of supporting a full 32-bit 
read must have its corresponding driver software set up the caching control appropriately. 

A similar caveat concerns the nonaligned cases. If a card cannot support a full 32-bit read, 
the software must ensure that only appropriately aligned and sized operations are requested. 

Compliance categories 

You. may design cards that conform to the NuBus specification but do not support all 
NuBus features. Masters and slaves do not need to support all transfer types. Any 
combination of 8-, 16-, and 32-bit single data transfers, with the card acting as either 
master or slave, is allowable. Masters need not support all possible block transfers. 
However, slaves must support all block transfer len.gths if they support block transfer 
at all. 

The decisions about how nonaligned accesses work and the rules for data caching have 
been made to provide the highest performance for 32-bit-wide cards. These cards may 
have all the necessary logic and bus transceivers to support these rules. 

NuBus slot cards may be dumb. It is not required that all devices respond with an error 
status code for transfer types that they do not handle; it is acceptable to merely respond 
with an / ACK assertion. 

Chapter 3 NuBus Data Transfer 59 



Such dumb cards must be managed only by device drivers that are designed to 
communicate with them appropriately. One of the functions of the declaration ROM is to 
provide indications of the capabilities of the card. (The declaration ROM is described in 
Chapter 8, "NuBus Card Firmware.") 

Driver-supported cards are those that are accessed indirectly via a software driver. You 
can write the driver to manage any idiosyncrasies of the card. For these types of cards, 
you have relative freedom in the tradeoffs you make in the design of the hardware 
because you can write the driver software to accommodate them. 

Peer cards are cards that are designed to execute code that is not specialized to the 
card; for example, two cards that execute cooperating processes to solve a problem. 
These cards must be more general in their hardware design, because the code that 
executes on them assumes no restrictions in types of access, size of data operands, 
and so forth. 

In general, peer cards must be designed to support the maximum size of transfer that 
any of their peers are capable of supporting. In particular, a peer card that is designed 
to cooperate with the Mc68020 or MC68030 microprocessors on the main logic board 
of a Macintosh II-family computer must properly handle 32-bit (NuBus word) transfers. 
If such a card contains, for example, an MC68000 and has a local bus that is naturally 
16 bits in width, the card must provide the hardware support in its NuBus interface 
to handle such 32-bit transfers. This would involve doing two local bus cycles for each 
NuB us word request. 

A card with an MC68000 processor must make two NuBus halfword requests to satisfy an 
access to a NuBus word quantity (for example, a pointer value). A computer in the 
Macintosh II family properly responds to these two requests. The same instruction when 
executed by the MC68020 or Mc68030 microprocessor makes one NuBus word request. If 
the card with the Mc68000 does not respond with the correct 32-bit quantity, the program 
obviously does not execute correctly. 

You should clearly indicate in the card's documentation exactly which kind of card it is 
and what types of accesses it supports. 

Memory devices, however, must support all transfer types except for block transfer; the 
devices should always respond with all 32 bits in the addressed NuBus word. This rule 
allows RAM cards to be used as if they were on-board RAM in order to support nonaligned 
transfers, 68020 bit-field instructions, 68030 caching, and so forth. 

60 Designing Cards and Drivers for the Macintosh Family 



Chapter 4 NuBus Arbitration 

This chapter discusses how the bus master is selected from among the 
several cards likely to be competing for bus mastership, and how all the 
other cards desiring service are accommodated. 

61 



Arbitration overview 

The NuBus fair arbitration mechanism differs from strict priority arbitration in that it 
prevents "starvation" of cards and distributes access to the bus evenly. 

Arbitrate 3 to Arbitrate 0 (/ ARB3-/ ARBO) are open-collector binary coded lines driven by 
contenders for the bus. They are used by the distributed arbitration logic to determine 
bus mastership. 

Bus Request (/RQST) is an open-collector line driven low by contenders for the bus. 

During arbitration, one or more cards contend for control of the NuBus. Cards that desire 
ownership of the NuBus must first assert the /RQST line. /RQST may be asserted only 
while it is in an unasserted state. All cards that assert /RQST place their ID codes on the 
/ ARBx lines and contend for the bus. The arbitration logic distributed among the cards 
determines which of the cards gets ownership of the NuBus. After two clock periods, 
signal transients have settled and the contest mechanism is complete. The contender with 
the highest ID code has its code on the / ARBx lines, has won bus ownership, and may 
initiate a transaction (after completion of any transactions in progress). 

Presuming the winner does not desire to lock the bus, the winning card first removes its 
/RQST and at the same time asserts /START (this begins a sta~ cycle of the card's first 
transaction). Then, after the start cycle, the card removes its / ARBx signals and continues 
with the cycles required to complete the transaction. 

The release of /START initiates another contest between any cards that originally 
requested the bus in the same clock period, but that have not yet won. These cards will be 
granted ownership in tum, from highest ID number to lowest ID number. The rule that 
/RQST must be unasserted before a card may assert it keeps other cards from 
participating in contests until all the original requestors have been served. 

Figure 4-1 shows a situation in which cards with ID codes $9 and $A request the bus at the 
same clock period. Card $A wins the first arbitration contest, and then removes its 
request after its start cycle (when the address is shown on the / ADx lines). In the 
meantime, card $9 continues to assert /RQST. Card $E desires the bus as well but may not 
request it because the IRQST line is already asserted by card $9. Contesting against no 
one, card $9 wins the next contest and gains bus ownership. When card $9 releases /RQST, 
card $E requests, arbitrates, and wins. Note that card $9 owns the bus only after it both 
wins a contest and the transaction in progress ends. 

62 Designing Cards and Drivers for the Macintosh Family 



• Figure 4·1 Sample arbitration contest 

IADx Adr 

Master SA 
transaction 

Master $9 
transaction 

Master $E 
transaction 

Data 
'-~----"----------"--"'--

IARBx 

IRQST 

I 
I 
I 
I 

,,~--~~----~~ / 

I 
Because IRQST is unasserted, 
master $E may assert it and contend. 

Master $9 releases IRQST as 
it initiates transaction. 

Master SA removes IRQST 
and takes its ID off I ARBx. 

Master $E desires bus but cannot 
contend because IRQST is asserted. 

Master $9 and master $A desire bus 
and assert IRQST and contend. 

Arbitration logic mechanism 

When a bus contest occurs, each card drives the / ARBx lines with its unique ID code and 
then releases the / ARBx lines if it detects higher ID codes than its own on the / ARBx lines. 
One possible implementation of this arbitration logic is diagrammed in Figure 4-2, for 
illustrative purposes only. 

Chapter 4 NuBus Arbitration 63 



• Figure 4-2 Typical bus arbitration logic 

fARB 

GRANT 

Note that the / ARBx lines are bused common to all cards, but the /IDx lines present a 
unique binary code to each card slot. The signals / ARB and GRANT are card signals, not 
NuBus signals. / ARB is an input to the arbitration logic that indicates whether the card is 
contending for the bus, and GRANT is an output that indicates whether the / ARBx lines 
currently match this card's /IDx lines. The following logic equations approximate how the 
arbitration logic on any given card works: 

/ ARB3 =/ID3 • ARB 
/ ARB2 =/ID2 • ARB • (/ID3 + ARB3 ) 
/ ARBI =/IDI • ARB • (/ID3 + ARB3 ) • (/ID2 + ARB2 ) 
/ ARBO =/IDO • ARB • (/ID3 + ARB3) • (/ID2 + ARB2 ) • (/IDI + ARBI ) 

where • is Logical AND, + is Logical OR, and ARBx is the logical complement of / ARBx. 

According to these equations, after a short delay (arbitration period) the / ARBx lines will 
equal the ID code of the highest priority contender, that is, the contender with the largest 
integer for its ID code. See Appendix B for the PAL listing labeled (ARB2) , NuBus 

Arbi tration logic; implementation of these equations accomplishes the desired 
arbitration. 

• Note: The signal names / ARB and GRANT are written here with capital letters, 
consistent with the convention used in this book, but the Texas Instruments NuBus 
documentation uses /arb and grant, respectively. 

64 Designing Cards and Drivers for the Macintosh Family 



Arbitration timing overview 

The details of arbitration timing are covered in Chapter 5, "NuBus Card Electrical Design 
Guide." Arbitration events generally occur on driving edges and sampling edges, 
synchronous to the system clock, with the same timing as the basic address/data, control, 
and utility signals. For example, /RQST may be asserted on a particular driving edge only if 
it is seen to be unasserted on the previous sample edge. However, the / ARBx lines differ 
from all other NuBus signals in that their assertion timing is specified from the sample 
edge of the bus clock. See Figures 4-3 and 5-2. 

Arbitration contests last two clock periods by definition. On the second sampling edge 
after a contest starts, all contenders sample their internal GRANT signal. The highest 
priority contender will find its GRANT signal asserted. The winner may now take control of 
the bus and assert /START on the next driving edge (25 ns after the contest's second 
sampling edge) if the bus isn't in use. 

If the bus is in use, the new winner asserts /START on the driving edge immediately after 
the next sample edge where the current transaction's / ACK is asserted. The new winner 
continues to assert its ID code on the / ARBx lines throughout the start cycle of its first 
transaction. This facilitates bus lock detection and bus diagnostics. 

Locking 

Although cards generally use the bus for a single transaction before allowing another 
requesting card to become bus master, sometimes the bus must be held locked in an 
extended tenure. For some local processor operations, it may be necessary to prevent any 
NuBus requests from interfering with the access of the processor to its local bus. 

This might be the case, for example, when the processor is doing a floppy disk transfer, 
which is inherently time critical. Such a processor must have some mechanism (for 
example, a bus lock line) for locking itself, and its local bus, from NuBus intrusion. This 
type of locking is called bus locking. 

Another example of locking to prevent interference is an indivisible test-and-set 
operation performed in a multiprocessor environment; this type of locking is called 
resource locking. 

6. Important The bus must not be held in a locked condition for more than four 
transactions at a time. 6. 

Chapter 4 NuBus Arbitration 65 



• Figure 4-3 NuBus arbitration and transaction timing, single master and two masters 

Single master, bus idle 

ICLK 

IRQST 

Driving edge 

I jampling edge 

I I 
I I 
I I 

Ii I I ~I ____ --.I I 

I ARB3-1 ARBO 
I I I 

~d!:::::::::::t::::~~~--------_+----_r-----------------------------------
I I I 
I I I 
I I I 
I I I 

ISTART ! I I 
I I I 
I I I 
I I I 

lACK 
l ___ ~ __ A_------~------) 

I I 
Arbitration Transaction 

Two masters ($9 & $A), one transaction each 

ICLK 
I I I 
I I I 
I I I 

/RQST : I I 
I 
I 

I I I 
I I I 

I ARB3-1 ARBO -K! ~ 
I I I 
I I I 
I I I 
I I I 

ISTART I I I I I 
I I I 
I I I 
I I I 

lACK 
l l 

I I 
Arbitration Arbitration 
($A wins) ($9 wins) 

I 
Transaction ($A) 

66 Designing Cards and Drivers for the Macintosh Family 

I 
I 
I 
I 

~ 

I 
Transaction ($9) 



Bus locking 

Bus locking requires no added mechanism. To lock the bus, a master simply continues to 
request (by keeping the / ARB lines driven with its ID code) and contend (continuing to 
assert /RQST). Because it has the highest ID code of ~hose cards present, it wins 
subsequent contests. Figure 4-4 shows an example in which card $C locks the bus for two 
transactions. Fairness in arbitration depends upon cards not locking the NuBus unless 
required and locking it only for the shortest required tenure. 

Any card or software that uses extended-tenure bus locking should clearly specify in the 
documentation for the product the maximum number of bus cycles allowed. 

• Figure 4-4 Sample bus lock 

$C tenure $A tenure $9 tenure 
_-J-------- t 

IADx 

IARBx 

IRQ Sf 

~~----------------------------~/ 

Master $C 
keeps contesting 

Master $C, master $A, and master $9 
desire bus and assert IRQSf e$C desiring 
two indivisible transactions) 

Master $C removes /RQST 
and takes ID off I ARBx 

t Tenure continues until another card asserts /RQSf 
and the next arbitration contest commences. 

Chapter 4 NuBus Arbitration 67 



Resource locking 

Resource locking is initiated by the bus owner driving both /START and / ACK to 
commence an attention-resource-Iock cycle; this alerts all cards that a bus and resource 
locked transaction is occurring. The bus lock is maintained as described in the previous 
section. A bus owner that issues an attention-resource-Iock cycle as the first cycle of a bus 
tenure must conclude that tenure with an attention-null cycle to inform all cards that the 
tenure is complete. 

Access to a resource must be controlled when that resource is accessible by both a local 
processor and the NuBus. One example of such a shared resource is a dual-ported RAM. 
Another, more specific, example is found in Macintosh II-family computers, where the 
NuBus interface circuitry uses the local processor bus to access the shared resource, RAM, 
as shown in Figure 4-5. 

All cards that have shared resources capable of being locked must monitor the NuBus for 
an attention-resource-Iock cycle and must record the occurrence. A card does not have to 
react to the occurrence of a bus tenure starting with an attention-resource-Iock cycle 
unless it is addressed during that tenure; this allows mUltiple resources to· be alerted and 
locked during a single bus tenure. 

Figure 4-5 may be helpful in discussing an indivisible bus operation. For example, suppose 
the processor on the NuBus card is instructed to perform a read-modiFy-write cycle to the 
RAM as part of executing a TAS (test and set) instruction. The NuBus card contends for 
and wins bus ownership, then initiates an attention-resource-Iock cycle. The state 
machines in the BID respond to the attention-resource-Iock cycle by setting a flag. This 
flag indicates that if the RAM-shared resource is accessed by the processor on the NuBus 
card, the BID will lock the processor bus. The local processor will then be unable. to access 
the RAM and thereby interfere with the indivisible read-modiFy-write of a data structure 
by the NuBus processor. Any bus owner that is programmed to perform an indivisible bus 
operation should lock resources on any slaves to be addressed during that operation, as 
well as locking any bus that provides an alternative path to those resources. 

A card is not required to provide locking of its local resources; it may do so on some 
resources and not on others. Reliable TAS instructions may only be done on resources that 
can be locked. 

68 Designing Cards and Drivers for the Macintosh Family 



• Figure 4-5 Read-modify-write indivisible bus operation 

Modify 

Bus interface logic 

~l:~:~~~~fu~l:~~:~~:~~~~r[f:~~~f:~~~~f$~::~:~f~~:f:f:~:f;I:f;~f:~~~~i:t:~f::::: 

rm 
Mc6S020or 

MC68030 
processor 

Bus parking 

Shared 
resource 

(RAM or other) 

Local 
processor 

bus 

A bus master that has released /RQST is considered parked on the bus and may use 
it at any time (without rearbitration) until another card asserts /RQST. When /RQST 
is finally asserted by another requestor, the parked bus master finishes its current 
transaction and relinquishes the bus to the new winner without commencing another 
transaction. Bus parking reduces the average time to acquire the bus in systems with a 
small number of contenders. 

• Note: A bus owner is not allowed to go from a parked condition into a bus-locked 
series of transactions without submitting to arbitration by asserting /RQST. 

Chapter 4 NuBus Arbitration 





Chapter 5 NuBus Card Electrical Design Guide 

This chapter gives the electrical specifications and timing requirements for 
NuBus cards, including power requirements, connector pin assignments, a 
power budget, and timing diagrams. Refer to Appendix A for guidelines on 
electromagnetic interference (EMI) , heat dissipation, and product safety. 

71 



Electrical requirements 

This section provides the detailed electrical information that you need to design a NuBus 
expansion card. 

Logical and electrical state relationships 

All NuBus signals are active when low. The relationship between logical states and 
electrical signal levels for all NuBus lines is shown in Table 5-1. 

• Table 5-1 

Logical state 

H (unasserted) 
L (asserted) 

Logical state definitions 

Electrical signal level 

> 2.0V at the receiver 
< O.BV at the receiver 

DC and AC specifications for line drive 

This section provides the drive requirements and the load allowance for each of the NuBus 
lines. These lines can be divided into five basic types based on their electrical drive and 
load characteristics: 

• clock (/CLK) 

• address/data (/ ADx, /SP, /SPV) 

• control (/START, / ACK, /TMx) 

• open collector (/RESET, /RQST, / ARBx, /NMRQ) 

• power control (/PFW) 

Table 5-2 lists the specifications for these line (signal)· types, from a NuBus card's point of 
view. The columns labeled drive indicate the minimum requirements for card outputs, 
while those labeled load specify the maximum load that may be presented by card inputs. 
Negative currents indicate flow out of a node (sourcing) and positive currents indicate 
flow into a node (sinking). 

72 Designing Cards and Drivers for the Macintosh Family 



• Table 5-2 NuBus line drive requirements and load allowances 

ACdrive DC drive AC load DC load 
IpD Ipu 10L 10 H C

L 
III I I H 

Signal type (min) (min) (min) (min) (max) (max) (max) 

Clock t 90mA SOmA 60mA -30mA l8pF -1.4 mA 0.1 mA 
from 
driver 

Address/ data 80mA 40mA 24mA -12mA l8pF -0.5 rnA 0.1 rnA 
@3.2V 

Control 80mA 40 rnA 24 rnA -12 rnA l8pF -0.5 rnA 0.1 rnA 
@3.2V 

Open collector 80mA N/A 60 rnA N/A l8pF -0.625 rnA 0.1 rnA 

Power control (/PFW) * 
t Supplied by the Macintosh II-family computer. 
* The source of /PFW must be capable of sourcing 20 rnA at 3 V for 2 seconds when driving /PFW 

high to turn the computing system on. See the next section. 

The column headings in Table 5-2 have the following meanings: 
IpD Transient pull-down current, required for one Tpd (NuBus delay period) whenever the 

driver changes from unasserted to asserted. 

Ipu Transient pull-up current, required for one Tpd whenever the driver changes from 
asserted to unasserted. 

10L Low-output drive current available at 0.5 V. 

IOH High-output drive current available at specified voltage. 

CL Capacitive load per slot. 

III DC low-level input current. 

IIH DC high-level input current. 

• Note: Each NuBus card input can present an AC load of up to 18 pF to the computer's 
main logic board. This includes 2 pF for the NuBus connector, and 16 pF for the card's 
trace capacitance plus the input capacitance of all devices connected to that trace. 
Also, the load presented by NuBus card inputs (and tri-stated outputs) affects those 
NuBus signals as seen by the computer's main logic board and by any other installed 
NuBus cards. To minimize NuBus signal degradation, it is best to buffer all card inputs 
as close to the NuBus connector as possible, and to limit each signal to one 15 load. 
This is especially important for the NuBus clock signal, which because of its critical 
timing and high frequency, is easily damaged by the loading effect of a NuBus card. 
For additional helpful design hints, see Appendix A, "EMI, Heat Dissipation, and 
Product Safety Guidelines." 

Chapter 5 NuBus Card Electrical Design Guide 73 



/PFW interaction with the power supply 

The /PFW signal is intended to serve two purposes: 

1. To allow the power supply to be turned on and off by a low-voltage signal that can be 
controlled by the logic board (or expansion card) circui~ry find hence by software. 

2. To allow the power supply to warn the computer of an impending power loss. 

When /PFW is held between 3.0 and 6.8 volts for at least 1.5 seconds, the power supply 
turns on and the computer begins operating. Once the power supply turns on, its own 
+5 volt output holds /PFW high so it can' continue operating. If /PFW is pulled below 
.6 volts, the power supply will tum off; /PFW should be held below .6 volts until the 
computer completely shuts down. If some fault condition (such as AC line failure) causes 
the power supply ~o tum off, the power supply will pull /PFW low at least 2 ms before the 
DC outputs fail. 

There are many issues that restrict the circuitry that can be connected to /PFW. Here are a 
few cautions and tips: . 
I 

• The /PFW voltage may be greater than the +5-volt bus voltage for a second or two 
when the computer is turned on. . 

• If /PFW is fed into a gate input, any internal diodes to the +5-volt (or any other power) 
bus may prevent the computer from turning on because /PFW goes high before the 
power supply outputs bring the power buses up to rated voltage. 

I 

• No pUllup may be added to the /PFW line or else Q4 on the maip logic board may not 
be able to turn off the computer. .. 

• Any circuitry connected to /PFW must present a high impedance when the power is 
removed or it may prevent the computer from turning on and drain the pattery. 
Likewise, such circuitry must present a high impedance load during normal operation 
to prevent contention with other drivers of /PFW. The only time additional circuitry 
should present a low impedance load to the /PFW line is when it is intentionally anci 
temporarily controlling the /PFW signal. . . . 

NuBus connector pin assignments 

Table 5-3 gives the pin assignments for NuBus connectors. The order of the rows is given 
as viewed from the front edge of the card. 

74 Designing Cards and Drivers for the Macintosh Family 



• Table 5·3 Connector phi assignments 

PIn Row A RowB RowC Pin RowA' RowB RowC 

1 -12V -12V IRE SET 17 IAD23 GND IAD22 
2 * . GND 

* 
18 lAD 25 GND lAD 24 

3 ISPV GND +5v 19 lAD 27 GND lAD 26 
4 ISP +5V +5V 20 lAD 29 GND IAD28 
5 ITMI +5v ITMO 21 IAD31 GND IAD30 
6 lAD 1 +5V IADO 22 GND GND GND 
7 IAD3 +5V lAD 2 23 GND GND IPFW 
8 lADS t IAD4 24 IARBI t IARBO 
9 IAD7 t IAD6 25 IARB3 t IARB2 

10 IAD9 t IAD8 26 IIDI t lIDO 
11 IADll t IADI0 27 IID3 t IID2 
12 /AD13 GND IAD12 28 lACK +5V ISTART 
13 IAD15 GND IAD14 29 +5 +5V +5V 
14 lAD 17 GND IAD16 30 IRQST GND +5V 
15 lAD 19 GND IAD18 31 INMRQ GND GND 
16 IAD21 GND IAD20 32 +12V +12V ICLK 
t These pins are connected but not supplied with the -5.2 V described in the Texas Instruments 

NuBus specification. This voltage could be supplied by a card, in which case -5.2 V would be 
available to all cards. 

* These pins are reserved in the standard IEEE 1196; in the Macintosh II family, they are 
grounded. 

Power supply specifications 

Three voltages are specified on the NuBus: +5 V, +12 V, and -12 V. These voltages are 
listed in Table 5-4 with their specifications. 

• Table 5·4 Power supply specifications 

Combined Maximum 
Source Nominal Tolerance Uneandload ripple 
label value from nominal regulation (peak·peak) 

+5 5V ±3% 0.3% 50mV 
+12 12V ±3% 0.3% 75mV 
-12 -12 V ±3% 0.3% 75mV 

Chapter 5 NuBus Card Electrical Design Guide 75 



NuBus power budget 

You can determine the maximum current available to any NuBus card by dividing the 
maximum current available to the entire NuBus by the number of NuBus slots. For 
example, since a Macintosh II, Macintosh IIx, and Macintosh IIfx all have six NuBus slots, 
the maximum current available to anyone NuBus card is one sixth of that available to the 
entire NuBus. And since a Macintosh IIcx and a Macintosh IIci have only three slots, the 
maximum current available to anyone NuBus card is one third of that available to the 
entire NuBus. Worst case analysis for a fully loaded Macintosh II-family computer, with 
equal current allocation to each of the slots, yields the recommendations in Table 5-5. A 
similar analysis, starting with the maximum capacitance for which the power supply 
operates reliably and subtracting the maximum capacitance on the main logic board, 
yields the card filter capacitance recommendations in the table. 

• Note: The maximum current available to the entire NuBus in the Macintosh IIcx or 
Macintosh IIci computer is one half of the maximum current available to the entire 
NuBus of a Macintosh II, Macintosh IIx, or Macintosh IIfx computer. Therefore, the 
calculated maximum current allocation to each of the three slots in a Macintosh IIcx or 
Macintosh IIci is the same as that shown in Table 5-5. 

• Table 5-5 Recommended current and capacitance limits for a NuBus card 

Nominal power 
supply value 

5V 
12V 

-12V 

Recommended maximum 
current per card (slot) 

2.0 A, continuous 
0.175 A, continuous 
0.150 A, continuous 

Recommended maximum 
capacitance per card 

1513 microfarads 
536 microfarads 
698 microfarads 

• Note: The current analysis assumed a hard disk (1.8 A RMS max.) and two floppy disk 
drives (0.2 A typical) internal to the computer; if you choose to develop a card that 
exceeds these recommendations, you should make the end user aware of any 
limitations imposed on the system configuration. 

The recommendations for maximum card capacitance are actual (not nominal) 
capacitance. You must allow for the capacitance tolerances of the particular capacitors 
being used in order to stay below the recommended maximum. 

76 Designing Cards and Drivers for the Macintosh Family 



Timing requirements 

To meet the following timing requirements, you must pay careful attention to card 
construction practices. You must provide adequate design and manufacturing margins so 
that cards manufactured by you and other developers may be interchangeably inserted in 
any Macintosh II-family computer and all communicate with each other and the processor 
on the main logic board. 

Utility and data transfer timing 

Figure 5-1 shows the clock, control, and address/data timing relationships during data 
transfers. Table 5-6 lists the bus timing specifications for these signals. Control and 
address/data signals are changed on the rising edge of /CLK and sampled on the falling 
edge of /CLK. This timing gives protection from bus skew. 

• Figure 5-1 Data transfer timing diagram 

/CLK 

At driver 

At receiver 

Tcp 
Tcw 

Ton 
Toff 
Tsu 
Th 

2Tpd 

Clock period 
Clock width 
Tum on time at driver 
Tum off time at driver 
Setup time at receiver 
Hold time at receiver 
NuBus propagation 

Tcp 
I 

Chapter 5 NuBus Card Electrical Design Guide 



• Table 5-6 Data transfer timing parameters 

Parameter Description Minimum Maximum Units 

Tep Clock period 99.99 100.01 ns 
Tew Clock width 73 77 ns 
Ton Turn-on time 0 35 ns 
Toff Turn-off time 0 35 ns 
2Tpd NuBus delay 17 ns 
Tsu Setup time 21 ns 
Th Hold time Tep-Tew ns 

Setup, hold, and other times are defined at the card-to-NuBus connectors. All card­
internal delays must be taken into account while providing for the times specified 
in the table. 

Arbitration timing 

Refer to Chapter 4, "NuBus Arbitration," for a description of the arbitration process. The 
timing for the / ARBx signals is not the same as the timing of the data transfer signals. 
Arbitration begins on the falling (sampling) edge of /CLK before the assertion of /RQST 
or, if /RQST is already active on the falling edge of /CLK, during /START. The contenders 
assert their respective slot IDs on the / ARBx lines. The bus contest must be settled within 
two cycles of /CLK following the assertion of /RQST or the negation of /START. By the 
end of that interval, the / ARB lines will contain the ID code of the card winning the 
arbitration contest. 

Figure 5-2 details the /ARBx timing for an arbitration won by card $A following a/START 
signal initiated by card $9. See Table 5-7 for the meaning of the abbreviations used in 
Figure 5-2. 

In the general case, contenders must wait for the preceding bus master to release the 
/ ARBx lines before the succeeding bus arbitration can take place. Thus, the arbitration 
turn-on time (Ton) for / ARBx signals is the turn-off time of the preceding master (Toff), plus 
the bus propagation delay (2T pd' one reflection assumed), plus the time taken to react to 
the change in logic levels (Ten)' 

Table 5-7 lists the timing specifications for the / ARBx lines. 

78 Designing Cards and Drivers for the Macintosh Family 



• Figure 5·2 Detailed arbitration timing 

ISTART ___ I , _______ r-
lACK 

ICLK 

IARB3 

IARB2 

IARBl 

IARBO 

• Table 5·7 

Parameter 

Tarb 

Ton 
Tds 
Ten 
Tsu 
Th 
Toff 
2Tpd 

I I 
I I 
I I 

LZZZZZ7 
I I 
I I 
I I 

IS/\I,I 
I I 
I I 
I I 

,'-______ 1 

I I 
I I 
I I 
I I 
I I 

:Th: 
H 

I I 
I I 

~ I 

I ! 
:/~-/~~------------------------~~~~--, II I I 

I ARBx lines settled at $A (arbitration winner) 

Lines driven to $B=$(A+9) 

Lines in three-state (during Toff) or $(A+9) 

Lines driven to $E, bus master (assumed) 

Bus arbitration timing parameters 

Description Minimum Maximum 

Arbitration time 200 
Arbitration turn-on time 10 83 
Arbitration disable time 26 
Arbitration enable time 26 
Arbitration setup time 31 
Hold time 10 
Turn-off time 10 40 
NuBus delay 17 

Units 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

Chapter 5 NuBus Card Electrical Design Guide 79 





Chapter 6 NuBus Card Physical Design Guide 

This chapter contains physical design gUidelines for the development of 
Macintosh II-family expansion cards. It describes the physical 
characteristics, including the maximum allowable dimensions, of a 
Macintosh II-family 
NuBus card . 

• Note: The Texas Instruments NuBus documentation also specifies a 
much larger, triple-height card, but that card cannot be used in a 
Macintosh II-family computer. 

81 



Card description 

Three foldout drawings in the back of the book show the pertinent design details and 
installation requirements of a NuBus expansion card. Foldout 1 shows the overall 
dimensions and the placement of connectors on a typical NuBus card. Foldout 2 gives the 
clearance dimensions for installing a NuBus card in a Macintosh II, Macintosh IIx, or 
Macintosh IIEx. Foldout 3 gives the clearance dimensions for installing a NuBus card in a 
Macintosh IIcx or Macintosh IIci. 

.. Warning Foldouts 1 through 3 are from design guides used within Apple 
Computer. These drawings were correct at the time of publication but 
are subject to future change .... 

6 Important To make sure that your NuBus card fits and functions in all 
Macintosh II-family computers, your physical design should adhere to 
the specifications in the Institute of Electrical and Electronic 
Engineers publication IEEE Standard for a Simple 32-Bit Backplane 
Bus: NuBus, ANSI/IEEE Std 1196-1987. Do 

A NuBus expansion card must be 4.0 inches in height and between 12.875 and 7.0 inches in 
length. Foldout 1 shows a card viewed from the component side. The NuBus connector is 
on the bottom edge of the card in the drawing. The I/O connector is on the right side. 

Card thickness must be 0.062 ± 0.0075 inches. Warpage must be controlled to within 0.10 
inch deviation from ideal. 

Components may be placed anywhere within the unslashed area of the foldout drawirig. 
The prohibited area along the top edge in the drawing applies to cards of any length. The 
five 
holes 0.133 inches (3.38 mm) in diameter are used only for Apple tooling purposes and are 
optional to you. 

Components may not extend beyond the edge of the card, in any direction. Component 
height must not be more than 0.60 inch, measured from the card surface. No component 
or wire lead is allowed to extend more than 0.10 inch beyond the non component side of 
the card. 

The nominal spacing between centerlines of adjacent NuBus connectors is 0.900 inches in 
the Macintosh II, Macintosh IIx, and Macintosh IIEx computers and 0.950 inches in the 
Macintosh IIcx and Macintosh IIci computers. 

82 Designing Cards and Drivers for the Macintosh Family 



NuBus connector description 

The NuB us connector on the card must be a 603-2-IEC-C096-M connector. Pin assignments 
are as shown earlier in Table 5-3. Figure 6-1 shows the version of that connector used on the 
Macintosh II Video Card. Figure 6-2 shows the NuBus mating connector on the the main 
logic board of a Macintosh II-family computer. Note that this is the same as the 
connector used in the Macintosh SE and shown in Figure 15-6. 

You can get Euro-DIN connectors meeting Apple specifications from 

Amp Incorporated 
Harrisburg, PA 17105 

Because of high-volume production requirements, Apple purchases specially modified 
versions of the Euro-DIN connector from this vendor. However, you may purchase mating 
connectors of standard configuration from this or other vendors. 

For EMI protection, a metal shield surrounds the I/O connector on the rear of the card. 
Appendix A, "EMI, Heat Dissipation, and Product Safety Guidelines," provides 
information on EMI reduction when a Macintosh II-family computer is expanded. See 
Foldout 4 at-the back of the book for a drawing of the I/O connector shield. 

• Warning Foldout 4 is from a design guide used within Apple Computer. This 
drawing was correct at the time of publication but is subject to future 
change. A 

The type and number of I/O connectors Of required) are left to you, but they must meet 
dimensional constraints of the shield. 

An auxiliary connector is allowable, but discouraged. It must be no longer than 3.0 inches 
and be located as shown in IEEE Standard for a Simple 32-Bit Backplane Bus: NuBus, 
ANSI/IEEE Std 1196-198. 

Chapter 6 NuBus Card Physical Design Guide 83 



• Figure 6-1 96-pin plug connector for a Macintosh II-family NuBus expansion card 

Three-row pin connector 
96 contact positions 
254 mm (.100 inch) spacing pins 

4.9~t--t-I 
(.193) 

Gold plated, 20 microinches, over nickel plate 

(.102) 

Rowe 
RowB 
Row A 

84 Designing Cards and Drivers for the Macintosh Family 

Dimensions are in 
millimeters with 
inches in parentheses. 



• Figure 6·2 96-pin socket connector on main logic board 
Dimensions are in millimeters with 
inches in parentheses. 

max. 
2.75 
(.108) 

Tt6~ ~ (.456) CJ CJ CJ CJ 

U U ___________________________ U U j-3: 
2.54 .J I 2.79 min 

5.08 
(.200) 

(.100) ~ (.110) 

95.0 (3.74) max. ------~ .. I 
90.0 (3.54) ~ I 

85.0 (3.34) max. ------..t. i 
00++++++++++++++++++++++++++++ 
00++++++++++*+++++++++++++++++0 

++++++++++++++++++++++++++++~~.r'.~ 

31 x 2.54 (.100) = 78.74 (3.10) 
2.54 2 holes @ 
(.100) 2.85 (.112) 

Three-row socket connector 
96 contact positions 
2.54 mm (.100 inch) spacing sockets 
Gold plated, 20 microinches, over nickel plate 

Recommended heat dissipation guidelines 

al 
bl 
c1 

2.54 
(.100) 

3.95 (.155) 
8.5 (.334) max. 
10.6 (.417) 

Apple recommends that Macintosh II-family expansion cards should dissipate a 
maximum of 13.3 watts of power. This total, which provides a comfortable margin for the 
major computer components, is arrived at as follows: 

+5V @ 2.0A= 10.0 W 
+12 V @ 0.175 A = 2.1 W 
-12 V @ 0.1 A = 1.2 W 
Total power = 13.3 W 

Dissipation of more than 13.3 watts of power by a card may cause excessive temperature 
rise on certain critical components. Apple studies indicate that at an ambient 
temperature of about 24°C, 13.3 watts of dissipated power from the expansion card will 
cause an acceptable rise in average component case temperature to about 53°C. (Studies 
were conducted with an internal hard disk drive installed.) For additional information, 
refer to the section "Heat Dissipation Guidelines for NuB us Cards," in Appendix A. 

Chapter 6 NuBus Card Physical Design Guide 85 



Third-party design aids 

There are a number of products available that will help you design your expansion cards 
much faster and more easily. For example, you can purchase blank NuBus expansion cards 
for proto typing from 

Diversified I/O, Inc. 
1008 Stewart Drive 
Sunnyvale, CA 94086 
(408) 730-2171 
AppleLink: D0242 

Also, you can quickly implement the NuBus interface circuitry by using a VLSI (very large 
scale integration) chip set designed specifically for this purpose. Currently there are two 
VLSI chip sets available. These are marketed by Texas Instruments, Inc. and Pinnacle 
Micro, Inc. 

For information on the Texas Instruments NuBus chip set, contact 

Texas Instruments NuBus Marketing 
Texas Instruments, Inc. 
P.O. Box 655012 
Dallas, TX 75265 
(214) 997-5499 

For information on the Pinnacle Micro NuChips, contact 

Pinnacle Micro, Inc. 
15265 Alton Parkway 
Irvine, CA 92718 
(800) 553-7070 
FAX: (714) 727-1913 
AppleLink®: D2064 

86 Designing Cards and Drivers for the Macintosh Family 



Chapter 7 NuBus Card Memory Access 

This chapter describes how cards connected to a Macintosh II-family 
computer through the NuB us slots can access address space. The 
discussion is in three sections: 

• a general description of the NuBus address space and how it is 
accessed in both 24-bit and 32-bit modes 

• a discussion of how the NuBus address space is allocated, including 
its mapping to the address space in a Macintosh II-family computer 

• a description of the bit structure of NuBus messages, and how it 
differs from the microprocessor bus architecture 

In addition to the memory areas it uses for its own operations, every 
NuBus card must contain a declaration ROM area. The declaration ROM 
contains certain standard data structures that are used by the 
Macintosh Slot Manager. These data structures are defined in Chapter 8, 
"NuBus Card Firmware." 



Address space 

The NuBus architecture allows full 32-bit addresses, providing four gigabytes of address 
space. The upper one-sixteenth (256 megabytes) of the NuBus address space is called the 
standard slot space. As shown in Figure 7-1, this addressing region is further divided into 16 
regions of 16 megabytes apiece, each of which constitutes the standard slot space for one 
possible slot ID. NuBus addresses of the form $Fsxx xxxx (that is, $FsOO 0000 through $FsFF 
FFFF) address the standard slot space that belongs to the card in slot s, where s is an ID digit 
in the range $9 through $E. Because the Macintosh II family uses only slot IDs $9 through $E, 
only the six standard slot spaces $F9xx xxxx through $FExx xxxx are actually used. 

• Note: For convenience, this section refers only to a NuBus configuration of six slots 
represented by slot IDs $9 through $E. Keep in mind that the Macintosh Hcx, with its 
three NuBus slots, uses slot IDs $9 through $B and has only three slot spaces, 
$F9xx xxxx through $FBxx xxxx. The Macintosh IIci also has only three NuBus slots, 
uses slot IDs $C through $E, and has only three slot spaces, $FCxx xxxx through 
$FExxxxxx. 

This system of fixed address allocations, based solely on a card's slot location, makes it 
possible for you to design cards that are free of jumpers and configuration switches. 

• Warning Whenever possible, use 32-bit addressing conventions and methods . 
This will be your best guarantee of future software compatibility . .A. 

When a NuBus card needs to address more than 16 megabytes, it can access an additional 
region of the NuBus address space. The area from $9000 0000 through $EFFF FFFF is called 
super slot space. It is divided into regions of 256 megabytes each. NuBus addresses of 
the form $sxxx xxxx (that is, $sOOO 0000 through $sFFF FFFF) address the super slot space 
that belongs to the card in slot s. 

Figure 7-1 also shows the card's declaration ROM space, discussed in Chapter 8. 

88 Designing Cards and Drivers for the Macintosh Family 



• Figure '-I NuBus address space 

4GB 

Super slot 
space 

Standard slot 
space 

I 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

t 
: I 
I I 
I I 
I I --,, 

I I 

1MB I I -t II I I 

I I 
: I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

Slot 
allocation 

I 

Typical alias 

As explained in Inside Macintosh, a Macintosh II-family computer operates in either 32-bit 
or 24-bit mode. In 32-bit mode, it can access all the address space in both the standard 
slot and super slot spaces of any slot card. In 24-bit mode, it can address only one 
megabyte of each card's standard slot space. In 24-bit mode, the computer hardware 
translates 24-bit addresses of the form $sx xxxx into 32-bit addresses of the form 
$FsOx xxxx, where s is a digit in the range $9 through $E. 

Chapter 7 NuBus Card Memory Access 89 



Addresses of the form $Fssx xxxx access the same NuBus slot in both 24-bit and 32-bit 
modes. However, if you use an address of this form in 24-bit mode, the system will 
translate it into a NuBus address of $FsOx xxxx. In 32-bit mode it will remain unchanged. 
Hence if you need less than one megabyte of address space to be accessible from NuBus, 
you should design your card to use only bits / AD 19-/ ADO. By ignoring bits / AD 23-/ AD20, 
yoti guarantee that addresses of the form $Fssx xxxx will be valid in both 24-bit and 32-bit 
modes. 

The computer hardware translates other 24-bit addresses above $7F FFFF into different 
32-bit addresses. The full translation algorithm is shown in Table 7-1. 

• Table '-1 24-bit to 32-bit address translations 

24-bit address range 

$00 0000-$7F FFFF 
$80 0000-$8F FFFF 
$sO OOOO-$sF FFFF 
$FO OOOO-$FF FFFF 

32~bit address range Notes 

$0000 OOOO-$007F FFFF 
$4000 0000-$400F FFFF 
$FsOO OOOO-$FsOF FFFF s in range $9 through $E 
$5000 0000-$500F FFFF 

Macintosh IT-family address allocations 

All of the existing Macintosh II-family address space is accessible from NuBus. It is 
mapped onto the NuBus address space as shown in Table 7-2. 

When the microprocessor accesses 32-bit addresses in the range $6000 0000 through 
$FFFF FFFF (except for $FOxx xxxx), it initiates a NuBus transaction. The mapping shown 
in Table 7-2 is correct for current members of the Macintosh II family. Future Macintosh 
products may have different mappings. 

90 Designing Cards and Drivers for the Macintosh Family 



• Table 7-2 NuBus to Macintosh II-family processor address mapping 

24·bit addresses 52·bit addresses Used to access 
from processor from processor NuBus addresses computer 

$xxOO 0000 to $0000 0000 to $0000 0000 to Present RAM 
$xx7FFFFF $007FFFFF $007F FFFF 

$0080 0000 to $0080 0000 to Future RAM 
$3FFFFFFF $3FFF FFFF 

$xx80 0000 to $4000 0000 to $F080 0000 to ROM (aliased) 
$xx8F FFFF $4FFF FFFF $FOFF FFFF 

$xxFO 0000 to $5000 0000 to $FOOO 0000 to I/O (aliased); do not 
$xxFFFFFF $5FFF FFFF $F070 FFFF access from a 

slot card 

$6000 0000 to $6000 0000 to Slow PDS slot space 
$6FFF FFFF $6FFFFFFF for Macintosh IIfx 

(presently unused on 
other CPUs) 

$7000 0000 to $7000 0000 to Fast PDS slot space 
$7FFF FFFF $7FFF FFFF for Macintosh IIfx 

(presently unused on 
other CPUs) 

$8000 0000 to $8000 0000 to Presently unused 
$8FFF FFFF $8FFFFFFF 

$9000 0000 to $9000 0000 to Super slot space, slots 
$EFFF FFFF $EFFF FFFF $9 to $E 

$xxFO 0000 to $FOOO 0000 to $FOOO 0000 to Slot $0 (Macintosh 
$xxFFFFFF $FOFF FFFFt $FOFFFFFF system)t 

$FIOO 0000 to $FIOO 0000 to Presently unused 
$F8FFFFFF $F8FFFFFF 

$xxsO 0000 to $FsOO 0000 to $FsOO 0000 to Standard slot s~ace, slot s 
$xxsFFFFF $FsFFFFFF $FsFFFFFF (s in the range 9-$E) 

or or 
$FsIO 0000 to $FsIO 0000 to 
$FsFFFFFF $FsFFFFFF 

$FFOO 0000 to $FFOO 0000 to Presently unused 
$FFFFFFFF $FFFFFFFF 

t If the microprocessor attempts to access addresses in this range, it will immediately generate a bus 
error (/BERR) exception. No NuBus transaction will take place. 

Chapter 7 NuBus Card Memory Access 91 



Slot allocations 

In 24-bit mode, the lower one megabyte of each card's standard slot space is mapped 
onto a part of the 24-bit Macintosh II address space. This address space is used for 
communication between the card in that slot and the computer. For example, NuBus 
addresses $F900 0000 through $F90F FFFF correspond to 24-bit Macintosh addresses 
$900000 through $9F FFFF and are used by slot $9. All the rest of each slot's NuBus address 
allocation is available for other uses by the card in that slot and may also be addressed by 
the Macintosh II-family computers in 32-bit mode and by cards in other slots. These 
allocations are listed in Table 7-3. 

• Table 7-3 Slot allocations 

Slot 24-blt addresses 

$9 $90 0000-$9F FFFF 
$A $AO OOOO-$AF FFFF 
$ B $BO OOOO-$BF FFFF 
$C $CO OOOO-$CF FFFF 
$D $DO OOOO-$DF FFFF 
$E $EO OOOO-$EF FFFF 

NuBus super slot space 

$9000 0000-$9FFF FFFF 
. $AOOO OOOO-$AFFF FFFF 
$BOOO OOOO-$BFFF FFFF 
$COOO OOOO-$CFFF FFFF 
$DOOO OOOO-$DFFF FFFF 
$EOOO OOOO-$EFFF FFFF 

NuBus standard slot space 

$F900 0000-$F9FF FFFF 
$FAOO OOOO-$F AFF FFFF 
$FBOO OOOO-$FBFF FFFF 
$FCOO OOOO-$FCFF FFFF 
$FDOO OOOO-$FDFF FFFF 
$FEOO OOOO-$FEFF FFFF 

Slot $0 corresponds to the Macintosh computer itself. It addresses the 16 megabytes of 
NuBus slot space from $FOOO 0000 to $FOFF FFFF. The microprocessor cannot access 
slot $0. 

NuBus bit and byte structure 

The NuBus bit structure is not the same as the bit structure of the MC68020 bus or the 
MC68030 bus. To achieve byte addressing consistency, the Macintosh II-family 
computers perform byte swapping of data between the microprocessor and the NuBus. 
This section explains the rationale and details of this implementation. 

92 Designing Cards and Drivers for the Macintosh Family 



The routes by which bytes are transferred between the NuBus and the Macintosh II-family 
microprocessor are called byte lanes. Each NuBus addressable byte has a particular byte 
lane in which it is transferred; all bytes with addresses of the form (xxx modulo 4) = N are 
transferred in byte lane N. Unfortunately, there is no universal agreement about what the 
significance of a given addressed byte should be ~ithin a larger unit. For example, within a 
NuBus word, byte 3 is the most significant byte (msb), while in the 68020 and 68030 
microprocessors, byte 3 is the least significant byte (Isb) of a longword (32-bit) value. 

In designing the Macintosh II family of computers, a choice had to be made about 
whether to preserve the significance of bytes between the NuBus and the processor or to 
preserve byte addressing consistency. Note that this choice deals with how the four bytes 
within a NuBus word and a processor longword are connected to each other. 

Apple chose to preserve byte address consistency in the Macintosh II family; each of the 
four bytes of the processor is connected to its corresponding NuBus byte lane. That is, byte 
n of the processor is connected to NuBus byte lane n, as shown in Figure 7-2. Byte lanes are 
numbered to reflect the bytes they carry: that is, byte lane 0 carries byte 0, byte lane 1 carries 
byte 1, and so on. NuBus encodes the least significant bits in its data word into byte 0 and 
the most significant bits into byte 3. The microprocessor does the reverse: it places its least 
significant bits in byte 3 and its most significant bits in byte O. Byte-lane routing is 
performed automatically by the Macintosh II-family computers. Only the bytes are 
swapped, not bits within bytes. Notice in Figure 7-2 that bit numbers do not have a direct 
correspondence between the processor and the NuBus. For example, bits D31-D24 (byte 0) 
of the processor are connected to bits AD7-ADO (byte lane 0) of the NuBus. 

The significance of a byte within a larger item is reversed in this process. That is, the msb 
of a NuBus word is in byte lane 3, while the msb of a 68020 or 68030 longword is in byte O. 
Thus, there is an apparent swapping of the bytes between the world of the microprocessor 
and NuBus; this is referred to as byte swapping. 

For many cards, byte swapping is not important. However, for cards that communicate 
with processors of different byte ordering, very careful attention must be paid to the 
NuBus interface. An Intel 80386, for example, has byte ordering identical to NuBus; that 
is, the lsb of an 80386 word is byte 0, the msb is byte 3. 

Transferring data by bytes between such a processor and the NuBus would always produce 
the correct value. However, if the MC68020 or MC68030 reads a NuBus word from an 
80386 on a card, it would read a vaiue whose bytes were swapped in significance. For 
example, a word read of a location within the 80386 card that contained a 32-bit value 
of $1234 5678 would be seen as $7856 3412 by the Macintosh processor because of the 
byte swapping. 

Chapter 7 NuBus Card Memory Access 93 



• Figure 7-2 Byte-lane mapping 

Byte number: 3 2 1 

NuBus AD lines I Bits 31-24 I I Bits 23-16 I I Bits 15-8 I I 
MSB ~ 

Byte lane 3 

Byte lane 0 

Byte lane 2 

Byte lane 1 

MSB 1 ~ 
Processor D lines I Bits 31-24 I I Bits 23-16 I I Bits 15-8 I I 

Byte number: o 1 2 

Communication between a Macintosh II-family computer and a NuBus card may use any 
combination of one or more byte lanes. This subject is discussed in more detail under 
"The Format Block" in Chapter 8; possible byte-lane combinations are shown there in 
Table 8-2. 

Although cards may communicate with each other over the NuBus in any format, all 
communication with the computer (including communication between a card's 
declaration ROM and the Macintosh Slot Manager) must conform to the microprocessor 
bus format. This may require byte swapping when word and long data types are used. 

94 Designing Cards and Drivers for the Macintosh Family 

o 
Bits 7-fJ I 

ISB 

ISB 

Bits 7-fJ I 
3 



Chapter 8 NuBus Card Firmware 

This chapter describes the Slot Manager and the firmware that must be 
included on cards that communicate with a Macintosh II-family 
computer through the NuBus protocol. Such firmware is normally in a 
ROM area on the card called the declaration ROM (also known as the 
configuration ROM). 

The discussion in this chapter is divided into the following parts: 

• an introduction to the Slot Manager and the card's declaration 
ROM firmware 

• a list of data types used by the Slot Manager and the declaration 
ROM firmware 

• a description of the required internal structure of the declaration 
ROM firmware 

• a description of the additional internal data structures that are 
unique to the declaration ROM of a video card 

• sample code for a typical NuBus card 

95 



An introduction to the ftrmware 

This section examines the relationship between the Slot Manager and the declaration 
ROM, and explains some major concepts that you must understand before you can 
implement the declaration ROM firmware. It is important that you read and comprehend 
the information in this overview; if you understand the relationship of the Slot Manager to 
the declaration ROM, and the concept of slot resources, you will find it much easier to 
grasp the detailed information contained in the rest of this chapter. 

• Note: In other chapters of this book, a distinction is made between board (a printed­
circuit board that is a permanent part of the computer) and card (a printed-circuit 
board that can be inserted and removed). However, because the firmware 
terminology uses the term board to mean a removable card, that distinction is not 
made in this chapter-both card and board mean a removable card. 

About the Slot Manager and the declaration ROM 

The Slot Manager and declaration ROM have three main goals: 

• to provide a standard mechanism to recognize the presence of an expansion card in 
the computer 

• to describe data structures and provide a programmable interface that simplifies 
access to information describing the card's functionality, as well as to necessary data 
and code to support each device 

• to allow the user to insert an expansion card into any slot without the need for 
configuration switches or the installation of any special software 

If a valid declaration ROM is present, system software, applications, and drivers can take 
advantage of the Slot Manager's library of routines and accomplish these goals. 

96 Designing Cards and Drivers for the Macintosh Family 



The Slot Manager is a group of routines in the ROM of a Macintosh computer that 
communicate with the declaration ROM firmware on a NuBus expansion card. The Slot 
Manager gets information from the declaration ROM and provides it to the application 
program to identify an expansion card in a NuBus slot, to define the functions that card 
can perform, or to pass it other data. It does this by determining what, if any, expansion 
cards are in the Macintosh II-family computer at startup time and by fetching 
identification, functional, and other information from the firmware of each card 
identified. The Slot Manager places the information it gathers into data structures in the 
system heap that your application can access by using the Slot Manager routines. The Slot 
Manager chapter of Inside Macintosh describes these routines in detail. 

The declaration ROM is an area on a NuBus expansion card that contains firmware 
that identifies the card and its functions, and allows the card to communicate with 
the computer through the Slot Manager routines. However, communication with the 
Slot Manager is possible only if you configure your card's declaration ROM firmware 
properly. The declaration ROM provides all the necessary data for you to install an 
expansion card in a slot and ensure that it will work without setting any DIP switches 
or loading any special software. 

Your card's declaration ROM firmware can be implemented in any of three physical 
widths: 8, 16, or 32 bits. It must include these elements: 

• a format block 

• an sResource directory 

• an sResource (slot resource) for each function on the card plus one unique sResource 
called a Board sResource 

The section "Firmware Structure," later in this chapter, defines each of these elements and 
describes their firmware structure in detail. All of the elements are important, but before 
you try to implement your firmware, you should become thoroughly familiar with two 
major concepts: the sResource and the sRsrcType entry of an sResource. 

About sResources 

The combination of the Slot Manager and declaration ROM identifies your expansion card 
and allows the computer, and high-level applications and drivers, to communicate with it. 
The way they do this is through one or more sResources. The small s indicates a slot 
resource as opposed to a real Macintosh resource. Don't confuse sResources on expansion 
cards with standard Macintosh resources; they are different, although related 
conceptually. The firmware in your card's declaration ROM defines these sResources. 

Chapter 8 NuBus Card Firmware CJ7 



While most sResources define a function or capability of the expansion card, some 
sResources may contain only data-for example code, icons, special fonts, or vendor­
defined data. 

There is typically one sResource for each function a card can perform plus one (and only 
one) unique sResource called a Board sResource. An sResource relating to a specific 
function a card can perform is called a functional sResource. It usually provides 
information about that particular function to high-level applications that are interested in 
getting access to the function. Most cards perform only one function. For example, a 
modem card might perform only a modem function, a video card a video function, and so 
on-each of these cards would have only one functional sResource. However, it is 
possible to build an expansion card with many functions. An example is a multi-function 
card that contains a parallel port, a serial port, and a modem. In this case, the card's 
declaration ROM would have three functional sResources-one for each function, as well 
as the required Board sResource. 

You need a functional sResource for each of a card's functions so that higher level 
software (applications looking for the function or drivers wanting to communicate with 
the card) can query the Slot Manager and it will find and return the location of the card. 
This allows applications to use compatible cards (either later versions of cards made by 
the same manufacturer or compatible cards made by other manufacturers) resulting in a 
larger installed base for the application without having to make a revision each time a new 
card capable of handling the particular function becomes available. 

Although functional sResources are desirable and beneficial, you are not required to 
include them in the declaration ROM; the Board sResource, however, is always required. If 
the Board sResource is absent, or invalid, the Slot Manager marks the slot where the card is 
located as empty and Slot Manager calls to that slot do not work. 

The Board sResource is, in a sense, a special case of a functional sResource. It provides a 
handy place to store card-related data that identifies the expansion card. This data includes 
entries such as the primary initialization routine that is called at system startup time, the 
board name, vendor identification, and anything else that you may want to identify. 

98 Designing Cards and Drivers for the Macintosh Family 



How sResources are implemented 

sResources are implemented as lists of sResource entries terminated by a special 
EndOfList element. Each entry is a 32-bit record that consists of an 8-bit ID field and 
a 24-bit field that consists of either data or a signed offset to another structure. To get 
information from a declaration ROM, you use the Slot Manager to find the beginning of 
the sResource, searching either by the ID number or its type entry (see the next section). 
Within each sResource list, the Slot Manager finds entries by searching in ascending order 
for an ID that you specify. . 

An sResource has several entries, some that are required and others that are optional, 
depending on your needs. For ex~mple, an sResource always needs an sRsrcType 
entry and an sRsrcName entry to identify it. If the sResource is device oriented, other 
entries you might include are sRsrclcon, sRsrcDrvrDir, sRsrcLoadRec, and so on. The 
section "Apple-Defined sResource Entries," later in this chapter, describes all of these 
sResource entries in detail. But for now, it's important that you focus your attention on 
the sRsrcType entry. If you do not have correct information in the fields of this entry, 
applications and drivers cannot recognize the function provided or the special features 
of your card; the Slot Manager may even mark the slot as being empty. 

The sRsrcType entry 

Every sResource must include an sRsrcType entry whose fields identify that particular 
sResource. When applications and drivers communicate (via the Slot Manager) with your 
card's declaration ROM, they use the information in the fields of the sRsrcType entry of 
each sResource to identify the functions the card performs (in the case of functional 
sResources) or to identify the card itself (in the case of the Board sResource). 

The format of an sRsrcType entry consists of two 32-bit-Iong integers divided into four 
major fields that are hierarchical in structure as shown here. 

Category (bits 30-16; bit 31 is reserved for Apple's use) 

cType (bits 15-0) 

DrSW (16-31) 

DrHW (15-0) 

Chapter 8 NuBus Card Firmware 99 



Following is a brief description of each of the sRsrcType fields in a typical 
functional sResource. 

Category 

cType 

DrSW 

DrHW 

The Category field identifies a unique functional category such as 
Display, Network, or Memory. (There are many predefined categories; 
these are just a few of them. Some cards can use predefined 
categories but others will need new categories defined for them.) 

Under a given category, you use the cType field to identify a sub-type of 
that category. For example, under Category Display, there might be 
cType entries such as Video and LCD. (For commonly predefined 
categories, there are often predefined cType entries.) 

Continuing down the hierarchy, there are DrSW fields that identify the 
driver software interfaces that apply to a given Category and cType. For 
example, under Category Display and cType Video, a typical predefined 
driver software interface would be one defined by Apple to work with 
QuickDraw™ using the Macintosh Operating System frame buffers. Note 
that at this point in the hierarchy, a function's architecture has been 
defined down to the software interface level. 

Finally, under the DrSW field, you use the DrHW field to identify a 
specific hardware device, for example the Apple Macintosh II Video Card . 

• Note: Apple Macintosh Developer Technical Support (MacDTS) assigns alphanumeric 
strings and hexadecimal values (called equates) that define the fields in the sRsrcType 
entry of each of your sResources. Instructions for obtaining these values are provided 
later in this chapter in the section "Obtaining Card Identification and sRsrcType 
Values From MacDTS." 

MacDTS can assign new definitions and values to the sRsrcType fields of a card's 
functional sResources if no predefined categories or types exist. For example, suppose 
that the Widget company is developing a fractal card. Since there are no predefined 
sRsrcType fields for a fractal card's functional sResource, MacDTS might assign 
definitions such as CatComputational, TypFractal, DrSWWidget, and DrHWWidget, along 
with corresponding hexadecimal equate values. 

While the previous discussion shows that the values assigned to the sRsrcType fields of 
functional sResources can vary for each function, it is important to remember that the values 
assigned to the sRsrcType fields of a Board sResource are fixed and cannot change. 

tOO Designing Cards and Drivers for the Macintosh Family 



How to configure the sRsrcType fields for video card sResources 

Because a QuickDraw-compatible video card is one of the most common expansion cards, 
this section uses the Macintosh II Video Card as an example to explain how to configure the 
sRsrcType fields for a video card's sResources. The Macintosh II Video Card satisfies the 
requirements of QuickDraw and the Macintosh Operating System but does not perform any 
unique functions that only a special-purpose application could benefit from. 

Assume that you are designing a video card. Since the card probably performs only one 
function, its declaration ROM should include one functional sResource to declare the 
video function plus the required Board sResource to identify the card. The four sRsrcType 
fields of the video card's functional sResource and Board sResource are explained and 
illustrated in the following sections. 

sRsrcType fields for a video card functional sResource 

Figure 8-1 illustrates the format and hierarchical structure of the fields in the sRsrcType entry 
of a functional sResource that defines the display function of a QuickDraw-compatible 
video card. This example uses the values assigned to the Macintosh II Video Card, often 
referred to as the TFB card. The combined value of the sRsrcType fields for the Macintosh II 
Video Card is $0003000100010001. The hierarchical structure is illustrated by the 
indentations of the fields. 

Notice that all of the hardware devices identified in Figure 8-1, starting with DrHWTFB, 
adhere to the DrSW Apple software interface, since they are nested under DrSW Apple. 
Thus, if a company decides to make a new video card that adheres to the Apple driver 
software interface, MacDTS only needs to assign it a new DrHW value, for example 
DrHWproductE, to differentiate it from other video cards. 

For more in-depth information on the video driver software interface, refer to the section 
"Video Driver Routines" in Chapter 9. 

Chapter 8 NuBus Card Firmware 101 



• Figure 8-1 Format and hierarchical structure of the sRsrcType fields for a video card 
functional sResource 

31 16 15 o 31 16 15 

I Category I cType I DrSW I 
$0003 $0001 $0001 

I I 
I 

I 

Equate values for Macintosh II Video Card 

CatDisplay Equate value of $0003 

TypVideo Equate value of $0001 

DrSWApple Equate value of $0001 

DrHWfFB Equate value 6f $0001 

DrHWproductA Equate value of $0002 

DrHWproductB Equate value of $0003 

DrHWproductC Equate value of $0004 

DrHWproductD Equate value of $0005 

DrSWcompanyA Equate value of $0002 

TypLCD Equate value of $0002 

sRsrcType fields for a video card Board sResource 

o 

DrllW I 
$0001 

I 

Remember that a Board sResource is nothing more than a unique type of sResource that 
identifies the card rather than a function performed by the card. The Board sResource 
includes sRsrcType fields that identify its function as that of being an expansion card. The 
format of these fields and their hierarchical structure are shown in Figure 8-2. Note that the 
equate values assigned to the sRsrcType fields of a Board sResource are always the same. For 
example, Category is always $0001 and cType, DrSW, and DrHW are always $0000. 

102 Designing Cards and Drivers for the Macintosh Family 



• Figure 8-2 Format and hierarchical structure of the sRsrcType fields for a video card 
Board sResource 

31 16 15 

I Category I cType 

$0001 $0000 

CatBoard 

TypBoard 

DrSWBoard 

DrHWBoard 

o 31 16 15 

DrSW 

$0000 

Equate value of $0001 

Equate value of $0000 

Equate value of $0000 

Equate value of $0000 

o 
DrHW I 
$0000 

How QuickDraw interacts with the Slot Manager and declaration ROM 

This section describes how QuickDraw and the Slot Manager use the sResource 
information in the video card's declaration ROM. 

When the system first comes up, the Start Manager makes a call to the Slot Manager 
requesting all expansion cards whose sRsrcType fields include CatDisplay, TypVideo, and 
DrSWApple. The QuickDraw software needs the information in these fields from all 
QuickDraw-compatible video cards. (The DrHW field is masked to indicate that 
QuickDraw does not care about this field and assumes that the card's video driver will 
handle the specifics of the hardware.) QuickDraw is concerned only with the video 
devices that conform to the Apple driver software interface. QuickDraw cannot support 
incompatible driver software interfaces. If it tried, it might make an incorrect control 
call, or use a wrong parameter, and so on. Thus, if you configure your DrSW field for a 
proprietary driver software interface that is not Apple compatible, your card will not work 
with QuickDraw. 

When the Slot Manager gets the request, it finds each video card that meets the above 
sRsrcType requirements. For example, you could have a different manufacturer's video 
card in each slot of a Macintosh II and the Slot Manager would find all of them, because 
Apple has predefined the DrSW Apple field and all of the existing video cards are 
compatible with this driver software interface. 

Chapter 8 NuBus Card Firmware 103 



Apple manufactures the Macintosh II Video Card whose DrHW field is identified as 
DrHWfFB, but Apple (or any company) could make any number of new video cards and 
each would have a different DrHW identification; since the driver software interface does 
not change, QuickDraw would not be affected at all. This gives you the advantage of not 
having to revise the software every time a new card becomes available as long as you. 
adhere to the predefined Apple driver software interface. 

You can also apply the preceding concept to any manufacturer who wishes to define their 
own Category, cType, and DrSW interface. When they do this, many different 
applications can work with a given card or cards (for example, various communication 
applications can run on one or more modem cards), or one application can work with a 
variety of cards (as shown in our previous discussion of QuickDraw). As an example, a 
customer could buy a new modem card and instead of having to purchase a new 
application, their existing application would still work without having to be upgraded. 
Following this concept allows flexibility in yqur designs and broadens the market for your 
cards and applications. 

Sometimes the DrHW field is very important and should not be masked as "don't care." 
For example, assume that a company found a bug in their expansion card's ROM and came 
out with a software patch for it. The patching software would have to locate the card so 
that it could apply the patch. To do this, the patching software would ask the Slot 
Manager to find all cards whose sRsrcType fields match down to and including the DrHW 
level. Without the DrHW field, the Slot Manager could not differentiate between two 
different manufacturer's cards and would not know which ROM to patch. 

Summary of ftrmware design objectives 

Expansion cards for the Macintosh require a declaration ROM if they are to be recognized 
by the system. This ROM contains both information that describes the capabilities of the 
card and executable code that is customized for each card. Because all card-specific 
code can be in the declaration ROM, a properly designed declaration ROM can often be 
used upon installation, with no additional software configuration required. If the size of 
the declaration ROM is limited, the code sections can be executed and their equivalents 
loaded from disk when needed. Note that video and hard disk cards require that the 
device driver be resident in the declaration ROM since the startup devices in each of these 
categories are opened before the file system is available. Packaging all device-specific 
code in the, declaration ROM greatly simplifies the use of an expansion card. 

The declaration ROM should be completely self-contained, but, if necessary, most 
executable sections can be easily and effectively overriden by an 'INIT' file. 

104 Designing Cards and Drivers for the Macintosh Family 



Properly designed applications should rarely need to search for a specific hardware variant 
(drHW). Cards that have the driver in ROM (or separate from the application) allow the 
application program to mask off the DrHW field so that the application can work with 
different versions of the card. This provides the advantage of less maintenance for the 
application programmer, and a higher customer satisfaction level, since the application 
will still run even if the customer buys a later version of your card. 

Well-designed applications adhere to the driver specification and should have no direct 
dependencies on the specific hardware implementation. By following the hierarchical 
structure in the design of your card's declaration ROM, you ensure maximum 
compatibility among the various products available, while allowing the user a great deal of 
flexibility in configuring the system. 

If you publicly define a driver software interface for your card (as Apple has done with the 
video driver), then other manufacturers can develop applications that use your card because 
they know your driver can support the underlying hardware no matter what it is. Also, other 
manufacturers can make expansion cards that conform to the driver software interface, and 
applications (including one you may write) should be able to work with them. 

Obtaining card identification and sRsrcType values from MacDTS 

To obtain card identification and functional sRsrcType values, contact Apple Macintosh 
Developer Technical Support (MacDTS) with the following information: 

• the functions the card performs 

• the official product name (or code name) for the card 

• the driver status (will the card have a software driver other than one that has been 
predefined, such as Apple's video driver?) 

• the driver location (will the driver be on board in ROM or does it get installed at 
initialization time? is it in the application? and so on) 

• the company address (postal and electronic mail addresses, if possible) and the name 
and phone number of the person in the company responsible for the expansion card 

With the above information, MacDTS can assign the values for Category, cType, DrSW, 
and DrHW. All information you provide remains strictly confidential. A HyperCard stack 
that facilitates entering and sending this information to MacDTS is available on the 
Developer Helper CD-ROM as well as on AppleLink. 

Chapter 8 NuBus Card Firmware 105 



Data types 

Table 8-1 shows the data types used for communication between the Slot Manager and the 
card's declaration ROM firmware. Two of the data types are illustrated in Figure 8-3. 

• Table 8-1 Data types 

Data type 

Byte 
Word 
Long 
Pointer 
cString 
Offset 

sBlock 
SExecBlock 

Description 

8 bits, signed or unsigned 
16 bits, signed or unsigned 
32 bits, signed or unsigned 
32 bits, signed or unsigned 
One-dimensional array of bytes, the last of which has the value $00 
24 signed bits padded to 32 bits, representing a self-relative offset; only 
bytes in valid byte lanes are counted 
See Figure 8-3 
See Figure 8-3 

In both examples shown in Figure 8-3, the value of the physical block size field must be the 
size of that field (4 bytes) plus the actual physical block size. For example, if the data 
structure in the sBlock data type is 100 bytes long, then the value of the physical block 
size must be 104 bytes. In the example of the SExecBlock data type, the revision level 
field is always 02, the reserved field is always 00, and the CPU ID field identifies the 
processor-Ol for the 68000, 02 for the 68020, and 03 for the 68030. 

. . . 

106 Designing Cards and Drivers for the Macintosh Family 



ill Figure 8-3 Formats of sBlock and SExecBlock data types 

sBlock 
31 o 

Physical block size 

SExecBlock 
31 

Revision I 
level 

Data structure 

Physical block size 

CPUID I Reserved 

Code offset 

Code 

o 

• Note: Whenever offset values are used in the declaration ROM firmware, they count 
only bytes in byte lanes actually being used. Hence these values may be less than the 
arithmetic difference between the two addresses being offset. For a discussion of 
byte lanes, see "NuBus Bit and Byte Structure" in Chapter 7. 

Chapter 8 NuBus Card Firmware 107 



Firmware structure 

This section gives a detailed description of the elements of a generic NuBus card's 
declaration ROM firmware. If you read the section "An Introduction to the Firmware" in 
the beginning of this chapter, you should already have a good understanding of what an 
sResource is and how you use the fields in an sRsrcType entry to define the sResource in 
the firmware. The information on sResources in this section covers the same material but 
is much more detailed. 

Video cards are more complex than other NuBus cards. They require additional elements 
in their firmware structure, which are described later in this chapter in the section 
"Additional Firmware Requirements of Video Cards." 

Every NuBus card's declaration ROM firmware must include a format block, an sResource 
directory, and a Board sResource, and should include at least one functional sResource 
that identifies the card and its function. Figure 8-4 illustrates the relationship of these 
elements in the declaration ROM of the Macintosh II Video Card. The firmware structure 
shown in Figure 8-4 is also used in the sample code listing at the end of this chapter. 

As a comparison, Figure 8-5 shows the simpler firmware structure of the Macintosh II 
EtherTalk™ Interface Card. 

• Note: To simplify Figure 8-4, only one functional video sResource is shown. However, 
the Macintosh II Video Card is actually available in two different memory 

. configurations and the ROM contains a functional video sResource for each 
configuration. On startup, during the primary initialization routine, the configuration 
that is not applicable is deleted and the correct functional sResource is written into 
the declaration ROM's slot resource table (a data structure that the Slot Manager 
maintains in memory). 

108 Designing Cards and Drivers for the Macintosh Family 



• Figure 8-4 Firmware structure of the Macintosh II Video Card 

Format block Board sResource Code or data 

See Figure 8-6 sRscrType -t-.. CatBoard 

sRscrName I TypBoard T 
BoardId I DrSWBoard 

PrimaryInit I DrHWBoard I 
VendorInfo 

: ~ cString 

: Y PrimaryInitRec 
I ~ cString I ---------1 ~ VendorID 

I I RevLeve1 ~ cString I I I 
sResource directory I I PartNumber ~ cString I I I 

I I~ CatDisplay 
Board sResource H- I 
Vide04 sResource I I TypVideo 

I Functional sResource I DrvrSWApple 
I I 
I I DrvrHWfFB 

t sRscrType t!J-! cString 
sRscrName I 

I I sRscrDrvrDir ~ Driver Driver code 

sRscrHWDevld 
I 
~ Video RAM Base 

MinorBaseOS 
~ Video RAM Length MinorLength 

OneBitMode4 -L-. OneBitParms M 1 BitParms I TwoBitMode4 
I 

Page Count sBlock 
IT 

FourBitMode4 I DeviceType 
I 
I~ TwoBitParms M 2BitParms I I sBlock 
I PageCount 
I DeviceType 
I 

~ FourBitParms H 4BitParms I I PageCount sBlock 

I DeviceType 
I 

Chapter 8 NuBus Card Firmware 109 



• Figure 8-5 Firmware structure of the Macintosh II EtherTalk Interface Card 

Format block Board sResource Code or data 

ByteLanes sRscrType H---. CatBoard 

Reserved sRscrName I TypBoard r-r 
TestPattern BoardId I DrSWBoard 

Format VendorInfo I DrHWBoard I 
RevisionLevel 

: ~ cString 
CRC ~ cString I I 
Length I 

(EtherNet Card) 

00 J DirectoryOffset I .. VendorID Tl cSt ring I 
I 

I RevLevel 
I 
I PartNumber 

1 ..... ~ cString I I 
sResource Directory I~ CatNetwork 

I 
I TypEtherNet 

Board sResource f-l-- Functional sResource I DrvrSWApple 
I I 

Funct sResource t sRscrType 
I DrvrHW3Com 

~S' sRscrName 
I c trmg 

MinorBaseOS 
~ (Network_EtherNeCApple3Com) 

EtherNet Address I $OOOODOOOO 
I 
I 
I 
~ $02608C781750 
I 

(This value is unique to each card) 

110 Designing Cards and Drivers for the Macintosh Family 



The format block 

The format block allows the Slot Manager to find the ROM and validate it. The format 
block starts at the highest address of the declaration ROM and follows at immediately 
lower addresses, counting only those addresses accessed by valid byte lanes. Byte lanes 
are discussed later in this section. The overall format block structure is shown in Figure 8-6. 

• Figure 8-6 Format block structure 

Byte Lanes 

Reserved 

TestPattem 

Fonnat 

RevisionLevel 

CRC 

Length 

00 I DirectOlyOffset 

Number 
of bytes 

1 

4 

1 

1 

4 

4 

4 

The first byte of the format block must reside at one of the four bytes at the end of the 
standard slot space defined under "Slot Allocations" in Chapter 7-that is, the format 
block must begin with a NuBus address in the range $FsFF FFFF through $FsFF FFFC, where 
s is the slot number. The actual starting address used depends on the value of the 
Byte Lanes field, as discussed in the next section. 

When the computer is started up, the Slot Manager searches its slots for installed cards, as 
described in the Device Manager chapter of Inside Macintosh. For each slot it first 
searches NuBus addresses $FsFF FFFF-$FsFF FFFC (wheres is the slot number), looking for 
a valid ByteLanes value. If the Slot Manager finds a valid ByteLanes value, it verifies this 
value by examining the TestPattern field. Once the Slot Manager verifies the test pattern, 
it gets the CRC (Cyclic Redundancy Check) value and checks the whole ROM to see if it 
matches the eRe. If everything matches, the Slot Manager recognizes the declaration 
ROM as valid. 

Chapter 8 NuBus Card Firmware 111 



If no valid ByteLanes and TestPattem values are found, the Slot Manager stores a slot error 
in the corresponding sInfo record, as described in the Slot Manager chapter of Inside 
Macintosh. 

The format block also contains format and identification information and ends with an 
offset to the sResource directory. 

Figure 8-7 shows two examples of the actual structure of a format block, with the addresses 
that would be used if the card were installed in slot $9. The structure on the left assumes that 
only byte lane 1 is used; the structure on the right assumes byte lanes 0, 2, and 3 are used. 

The individual fields of the format block are discussed in the sections that follow. 

• Figure 8-7 Format block examples 

Byte lane 1 used Byte lanes 0,2,3 used 

$F9FF FFFF ~ c=m=I ByteLanes byte 
F9FF FFFE ~ ~ Reserved byte 

ByteLanes byte D2 I ~ F9FF FFFD 

.--_----, ~E :: := I ~ I} TestPattern 
Reserved byte 00 I ~ F9FF FFF9 

F9FF FFF8 ~§A 
F9FF FFF7 ~ Fonnat byte 
F9FF FFF6 ~ RevisionLevel byte 

C7 I ~ F9FF FFF5 

Test pattern 

L..-_-' F9FF FFF4 ~ § 
F9FF FFF3 ~ 
F9FF FFF2 ~ 

I~ F9FF FFFI 2B 
'--------' F9FF FFFO ~ § 

F9FF FFEF ~ 
F9FF FFEE ~ 

93 I ~ F9FF FFED 
'----....;;...;;..---' F9FF FFEC ~ § 

F9FF FFEB~ 
F9FF FFEA~ 

L-.o.....:;..5A_-I1 ~ F9FF FFE9 
• 
• 
• 

F9FFFFE8~§ 
F9FF FFE7~ 
F9FF FFE6~ 

• 
• 
• 

112 Designing Cards and Drivers for the Macintosh Family 

CRC 

Length 

DirectoryOffset 



ByteLanes 

The ByteLanes field tells the computer which of the four NuBus byte lanes to use when 
communicating with an expansion card's declaration ROM. NuBus byte lanes are defined 
under "NuBus Bit and Byte Structure" in Chapter 7. The value of ByteLanes is composed 
by setting a bit in the low nibble for each byte lane used and then setting the high nibble 
to the low nibble's complement. The location of the first bit set to 1 in the low nibble also 
determines the address of ByteLanes, and hence the starting address of the format block. 
Table 8-2 shows all the possible ByteLanes values and their corresponding format block 
starting addresses (where s is the slot number). Notice that the ByteLanes byte always 
occupies the highest address available in the byte lanes being used. The Slot Manager 
doesn't recognize any ByteLanes values not shown in Table 8-2. 

• Table 8-2 Possible ByteLanes values 

Bytelanes ByteLanes Address of 
used value ByteLanes 

° $E1 $FsFFFFFC 
1 $D2 $FsFFFFFD 
0,1 $C3 $FsFFFFFD 
2 $B4 $FsFF FFFE 
0,2 $AS $FsFF FFFE 
1,2 $96 $FsFF FFFE 
0,1,2 $87 $FsFF FFFE 
3 $78 $FsFFFFFF 
0,3 $69 $FsFFFFFF 
1,3 $SA $FsFFFFFF 
0,1,3 $4B $FsFFFFFF 
2,3 $3C $FsFFFFFF 
0,2,3 $2D $FsFFFFFF 
1,2,3 $lE $FsFFFFFF 
0,1,2,3 $OF $FsFFFFFF 

Reserved 

The Reserved field must be set to $00. 

TestPattem 

The TestPattern field identifies the format block. It must be set to $SA93 2BC7. 

Chapter 8 NuB us Card Firmware 113 



Format 

The one-byte Format field identifies the declaration ROM format. A format value of $01 
designates the Apple format. 

RevisionLevel 

This one-byte RevisionLevel field identifies the current ROM revision. The Slot Manager 
accepts RevisionLevel values in the range 1-9. RevisionLevel values above 9 cause it to 
generate a fatal error in the form of a status value of -303. 

CRC 

The four-byte Cyclic Redundancy Check value constitutes a checksum to allow the Slot 
Manager to validate the whole declaration ROM. It is computed by applying a 32-bit 
rotate-left -and-add function to the number of bytes specified by the Length field. Only 
the bytes specified by the ByteLanes field are used to calculate the CRC value. For 
example, if the value of ByteLanes is $E1, the calculation would use only the bytes at 
addresses $FsFF FFFC, $FsFF FFF8, $FsFF FFF4, and so on. In making the CRC 
computation, the value of CRC itself is treated as O. Here is the basic algorithm: 

Start pointer at bottom of ROM (top of ROM -length) 
Initialize sum to 0 (sum will be the calculated eRe value) 
@1 Rotate sum left by one bit (with ROL.L #1 instruction) 

If pointer is pointing to the eRe field in the format header, goto @2 
Get the byte pointed to by pointer 
Add the byte to sum 

@2 Increment pointer to next data byte 
Goto @1 until done (as specified by length bytes) 

Length 

The Length field contains a long value specifying the number of bytes from the declaration 
ROM's starting address (as specified by the ByteLanes value) to the lowest-address byte 
of the sResource data structures. 

114 Designing Cards and Drivers for the Macintosh Family 



DirectoryOffset 

The long DirectoryOffset value specifies the self-relative signed offset from the offset 
itself to the sResource directory. It counts only the bytes in the NuBus byte lanes being 
used, not the absolute address difference. For example, if the directory address appeared 
$1000 bytes before the directory offset field in the declaration ROM image and the value 
of the ByteLanes in the ROM was $E1 (meaning every fourth byte was valid), then the 
DirectoryOffset would equal -$1000 even though the directory appears, to the central 
processor, to be $4000 bytes before the directory offset field. The Slot Manager performs 
the necessary calculations, based on the byte lanes used, to determine the address of the 
directory (in this case, it multiplies -$1000 by 4 to get -$4000). 

The sResource directory 

The sResource directory is another major element in a NuBus card's declaration ROM. 
The sResource directory lists all the sResources in the card firmware and provides an offset 
(counting only valid byte lane bytes) to each one. Figure 8-4 shows an sResource directory 
for two sResources: one sResource for a video function and one Board sResource. 

Each sResource defined by a card designer must have a unique identification number in 
the range 128-254. Identification number 255 is used as an end-of-list marker. 

Identification numbers in the sResource directory and in every sResource listed must be in 
ascending order. 

• Note: Identification numbers in the range 0-127 are reserved for sResources that are 
defined by Apple for all declaration ROMs. At present there is only one of these: the 
Board sResource, described later in this chapter. 

Chapter 8 NuBus Card Firmware 115 



Figure 8-8 shows the sResource directory structure. 

• Figure 8-8 sResource directory structure 

ID field 

sRsrc1d-O 

sRsrc1d-l 

• • • 
sRsrc1d-n 

End of list 

Offset field 

Offset 

Offset 

• • • 
Offset 

0 

, 

Each entry in the sResource directory (except the end-of-list entry) points to an 
sResource. Each entry consists of 32 bits, allocated as follows: 

31-24 sResource identification number 
23-0 Offset from the entry to the sResource, counting only valid byte lanes 

The last entry in the sResource directory must have an offset of 0 and an identification 
number of 255; that is, it must have the value $FFOO 0000. 

sResources 

If you read the section "An Introduction to the Firmware" at the beginning of this chapter, 
you should already be familiar with sResources. Some of the information is repeated in 
this section, but the information here is more detailed and may answer questions you have 
regarding an sResource. 

Each sResource contains a number of entries that refer to information about a single 
capability or function of the expansion card. This information must include the type and 
name of the resource; it may also include optional items such as the resource's icon, driver, 
parameters, and so on. The driver is not optional if the sResource is a startup resource or 
may be a startup video source. Figure 8-4 shows how an sResource defining a video 
function relates to the other elements in a video card's declaration ROM. The general 
structure of an sResource is shown in Figure 8-9. 

116 Designing Cards and Drivers for the Macintosh Family 



• Figure 8-9 sResource structure 

ID field 

I 

sRsrcType 

sRsrcName 

sRsrcIcon 

• • • 
End of list 

Offset field 

Offset 

Offset 

Offset or data 
I • • • 

o 

I 
II 
II 

i 
. Each entry listed for an sResource must have one of the following three data type forms: 

Offset Bits 31-24 Identification number 
Bits 23-0 Offset to long data, cString, sBlock, or another list 

Word 

Byte 

Bits 31-24 
Bits 23-16 
Bits 15-0 

Bits 31-24 
Bits 23-8 
Bits 7-0 

Identification number 
$00 
Word data 

Identification number 
$0000 
Byte data 

These data types are defined under "Data Types," earlier in this chapter. The last entry 
listed in every sResource must have the value $FFOO 0000. Identification numbers for 
sResource entries defined by the card designer must be in the range 128-254. They 
identify items addressed by driver or application code. Identification numbers in the 
range 0-127 are reserved by Apple; those currently assigned to certain Apple-defined 
sResource entries are listed in the following sections. 

To simplify construction of the sResource structures, Apple has defined two assembly 
macros, Offset List Entry (OSLstEntry) and Data List Entry (DatLstEntry). These macros 
are shown in the section "Sample Code," at the end of this chapter. 

Chapter 8 NuBus Card Firmware 117 



Apple-dertned sResource entries 

Table 8-3 lists the Apple-defined sResource entries recognized by the Slot Manager, and the 
sections following describe them. Notice that the sRsrcType and sRsrcName entries are 
required; all others are optional. The entries must be listed in ascending numerical order. 

• Table 8-3 Apple-defined sResource ID numbers 

Name IDnumber Description 

sRsrcType 1 Type of the sResource (required) 

sRsrcName 2 Name of the sResource (required) 

sRsrclcon 3 Icon for the sResource 

sRsrcDrvrDir 4 Driver directory for the sResource 

sRsrcLoadRec 5 Load record for the sResource 

sRsrcBootRec 6 Boot record 

sRsrcFlags 7 sResource flags 

sRsrcHWDevId 8 Hardware device ID 

MinorBaseOS 10 Offset from dCtiDevBase to the sResource's 
hardware base in standard slot space 
($FssO 0000 for 24-bit mode, $FsOO 0000 for 
32-bit mode) 

MinorLength 11 Length of the sResource's address space in 
standard slot space 

MajorBaseOS 12 Offset from dCtlDevBase to the sResource's 
hardware base in super slot space 

MajorLength 13 Length of the sResource in super slot space 

sRsrcCicn 15 Color icon 

sRsrclcl8 16 8-bit icon data 

sRsrclcl4 17 4-bit icon data 

sGammaDir 64 Gamma directory (for video cards only) 

118 Designing Cards and Drivers for the Macintosh Family 



sRsrcType 

The type entry in an sResource is used by the Macintosh Operating System or by an application 
or driver to identify the function or capability of the sResource. It is a required sResource 
entry. The actual value of the sRsrcType entry is an offset to an 8-byte format defined by 
Apple. This format is designed to cover all possible devices that might be supported by a card 
in the computer's expansion slot. However, a bit flag in the format allows the card designer to 
substitute any other format. The format of the sRsrcType entry is shown in Figure 8-10. 
Remember that the fields in the sRsrcType entry have a hierarchical structure . 

.. Warning Non-Apple sResource type formats may conflict with each other. If possible, 
you should use only the Apple format and Apple-assigned values. ... 

• Figure 8-10 The sRsrcType format 

31 1615 0 31 16 15 0 

I Category I c1ype I DrSW I DrHW I. 

The fields in the Apple sRsrcType format are as follows: 

Category 

cType 

DrSW 

DrHW 

Category is the most general classification of card functions. 
Categories include display, network, terminal emulator, serial, 
parallel, intelligent bus, and human input devices. 

cType is a subclass within a category. Within display devices, 
for example, are video cards and graphics extension 
processors; within networks, AppleTalk and Ethernet. 

The DrSW field identifies the driver software interface for 
the sResource. It also specifies how parameters are stored 
in the sResource. 

The DrHW field identifies the hardware associated with the 
sResource and its driver interface. 

Chapter 8 NuBus Card Firmware 119 



The value of each sRsrcType field is unique and is assigned by Apple. To obtain sRsrcType 
values for the card you are designing, contact Apple Macintosh Developer Technical 
Support. Refer to the section "Obtaining Card Identification and sRsrcType Values From 
MacDTS," earlier in this chapter, for details. 

sRsrcName 

The sRsrcName entry in an sResource provides the name of the sResource. It is a required 
sResource entry also. The actual value of the entry is an offset to a cString not more than 
254 characters long. By convention, the name is derived by stripping the prefixes from 
the sRsrcType values and separating the fields by underscores. For instance, the 
sRsrcName for an sResource whose sRsrcType values are CatDisplay, TypVideo, 
DrSWApple, and DrHWTFB becomes 'Display_Video_Apple_TFB'. The routine 
sGetDrvrName prefixes a period to the value of this cString and converts its type to 
Str255. This name should also be imbedded in the driver header of the card's MacOS 
driver. The _Open routine uses this name to open a driver on disk if one is not present in 
the ROM, or if the disk version is newer. 

sRsrcIcon 

The sRsrcIcon entry in an sResource provides the icon for the sResource. The actual value 
of the entry in the sResource is an offset to a resource of type 'ICON'. This is an optional 
sResource entry. 

RsrcDrvrDir 

An sRsrcDrvrDir or an sRsrcLoadRec entry (described in the next section) is required if the 
sResource needs a driver to be installed in the Macintosh Operating System before 
'INIT' 31 resources are called. Otherwise both are optional. An sRsrcDrvrDir entry is 
required if the driver for the sResource resides in the card's declaration ROM; an 
sRsrcLoadRec entry is required if the sResource resides in an extemallocation, such as a 
hard disk attached to the card. 

The actual value of the sRsrcDrvrDir entry in the sResource is an offset to an sDriver 
directory. Each entry in the sDriver directory contains an offset to an sDriver record and 
an sBlock containing the driver code. The identification number for each entry specifies 
which operating system supports the driver. Table 8-4 gives the standard sDriver directory 
identification numbers. Figure 8-11 shows the structure of a typical sDriver directory. 

120 Designing Cards and Drivers for the Macintosh Family 



• Table 8-4 sDriver directory ID numbers 

Name IDnumber 

sMacos68000 1 

sMacos68020 2 

sMacOS68030 3 

Description 

Driver will run on a Macintosh-family computer with 
MC68000 microprocessor '-
Driver will run on a Macintosh-family computer with 
MC68020 microprocessor 
Driver will run on a Macintosh-family computer with 
MC68030 microprocessor 

• Note: Other identification numbers may be used for future Macintosh-family 
operating systems. 

• Figure 8-11 Typical sDriver directory 

ID field Offset field 

sDRVRld-l Offset 

sDRVRld-2 Offset 

• • • 
sDRVRld-n 

End of list 

sRsrcLoadRec 

• • • 
Offset 

0 

I 

Either an sRsrcLoadRec entry or an sRsrcDrvrDir entry (but not both) is required if the 
sResource needs a driver to be installed in the Macintosh Operating System before 
'INIT' 31 resources are called; otherwise both are optional. The sRsrcDrvrDir entry is 
discussed in the preceding section. 

The actual value of the sRsrcLoadRec entry is an offset to an sLoadDriver record. The 
sLoadDriver record has the format of an SExecBlock and contains the code necessary to 
load the appropriate driver. The SExecBlock is described under "Data Types," earlier in 
this chapter. 

Chapter 8 NuBus Card Firmware 121 



sRsrcBootRec 

The sRsrcBootRec entry in an sResource is an offset to an sBootRecord. The 
sBootRecord is needed whenever the computer starts from a NuBus card instead of from 
the internal hard disk or floppy drive. Either the Macintosh Operating System or an 
entirely different operating system can be installed from a card using the sBootRecord. 

The sBootRecord has the same format as an SExecBlock. The structure of the SExecBlock 
is described under "Data Types,'" earlier in this chapter. 

The computer attempts to start from a NuBus card only when certain values are set in its 
parameter RAM. You can get access to these values by using the Start Manager, as 
described in the Start Manager chapter of Inside Macintosh. 

If an sResource with the specified ID in the specified slot exists, and that sResource 
has an sBootRecord, it is used for startup. Otherwise, the normal Macintosh startup 
process occurs. 

The sBootRecord code is first called early in the ROM-based startup sequence, before any 
access.to the internal drive. It is passed an seBlock pointed to by register AO. If a non­
Macintosh operating system is being installed, the sBootRecord can pass control to it. In 
this case, control never returns to the normal start sequence in the Macintosh ROM. 

When the Macintosh Operating System is started up, the sBootRecord is called twice. The 
first time, when the value of seBootState is 0, the startup code tries to load and open at 
least one driver for the card-based device and install it in the disk drive queue. It returns 
the refnum of the driver or an error status. That driver becomes the initial one used to 
install the Macintosh Operating System. During the second call to the sBootRecord, which 
happens after system patches have been installed but before 'INIT' resources have been 
executed, the sBootRec must open any remaining drivers for devices on the card. 

The sBootRecord can use the _HOpen call to open the driver and install it in the unit 
table. The _HOp en call will either fetch the driver from the sDriver directory, or call the 
sLoadDriver record if one exists. In any case, the driver's open code must install the driver 
in the drive queue. 

122 Designing Cards and Drivers for the Macintosh Family 



The sBootRecord uses the following SExecBlock fields: 

seBootState = 0 
~ seSlot 
~ seRsrclD 
~ seDevice 
~ sePartition 
~ seOSType 
~ seReserved 
~ seBootState 
~ seRefNum 
~ seStatus 

seBootState = 1 
~ seSlot 
~ seRsrclD 
~ seDevice 
~ sePartition 
~ seOSType 
~ seReserved 
~ seBootState 

sRsrcFlags 

The slot number (from parameter RAM) 
The sResource ID (from parameter RAM) 
The device number (from parameter RAM) 
The partition number (from parameter RAM) 
Type of operating system to boot (from parameter RAM) 
A reserved field (from parameter RAM) 
o 
Returned refnum of driver to boot with 
~eturned status (zero = good, negative = no driver loaded) 

The slot number 
The sResource ID 
o 
o 
Type of operating system (from parameter RAM) 
A reserved field (from parameter RAM) 
1 

Two flags are defined in the sRsrcFlags word; bit 1 called fOpenAtStart and bit 2 called 
f32BitMode. Bit 1 set (true) tells the Start Manager to install and open the driver at 
startup time; bit 1 clear (false) tells it to leave the driver closed. Bit 2 set tel is the Slot 
Manager to construct a base address in the form $FsOO 0000; when bit 2 is clear, a pase 
address of $FssO 0000 results. These base addresses are placed in the DCE in the 
dCtlDevBase field. If there is no sRsrcFlags entry, both flags are assumed to be clear 
(false) by default. All unused flags must be set to O. 

sRsrcHWDevId 

The sRsrcHWDevId byte entry identifies the sResource as a hardware device. If the 
sResource is not a hardware device (for example, a data structure), this entry may be 
omitted. Each hardware device must be given a unique ID. 

MinorBaseOS 

The MinorBaseOS entry contains an offset to a long value that defines the sResource's 
base address in the slot space allocated to the slot its card is in. The long value is an offset 
relative to NuBus address $FsOO 0000, where s is the slot number. Standard slot space and 
super slot space are discussed under "Address Space" in Chapter 7. 

Chapter 8 NuBus Card Firmware 123 



MinorLength 

The MinorLength entry contains an offset to a long value representing the number of bytes 
of standard slot space occupied by the sResource. 

MajorBaseOS 

The MajorBaseOS entry contains an offset to a long value that defines the sResource's 
base address in the super slot space allocated to the slot its card is in. The long value is an 
offset relative to NuBus address $sOOO 0000, where s is the slot number. 

MajorLength 

The MajorLength entry contains an offset to a long value representing the number of bytes 
of super slot space occupied by the sResource. 

sRsrcCicn 

The sRsrcCicn entry in an sResource provides the color icon for the sResource. To add a 
color icon, include an OSLstEntry with spID = sRsrcCicn = 15 to your Board sResource 
entries. For more information on color icons see the section "Icons," later in this chapter. 
This is an optional sResource entry. 

sRsrcIc18 

The optional sRsrcIcl8 entry provides 8-bit icon data for the sResource. The 'Icl8' resource 
is a 32 x 32 x 8 bit color icon in which each pixel is an index into the standard 8-bit system 
CLUT. A color icon of this form allows full 8-bit color without being penalized by the space 
overhead requirelllents of a color table. To add this icon to your Board sResource entries, 
include an OSLstEntry with spID = sRsrcIcl8 = 16. 

sRsrcIc14 

The optional sRsrcIcl4 entry provides 4-bit icon data for the sResource. This 'Icl4' resource 
is similar to an 'Icl8' resource. It is a compact representation of a 32 x 32 x 4 bit color icon 
in which each pixel is an index into a standard 4-bit CLUT. You can add this icon to your 
BoardsResources by including an OSLstEntry with spID = sRsrcIcl4 = 17. 

124 Designing Cards and Drivers for the Macintosh Family 



sGammaDir 

The sGammaDir entry is an optional sResource entry that provides information about 
gamma resources. It is used only with video cards. You can include this entry in your video 
sResources by adding an OSLstEntry with spID = spGammaDir = 64. For more information 
on the gamma table directory, see the section "Gamma Table Data," later in this chapter. 

The Board sResource 

If you read the section "An Introduction to the Firmware" at the beginning of this chapter, 
you are already familiar with a Board sResource, a unique sResource that must be present 
in the firmware of every card that communicates with the computer. This section repeats 
some of the earlier information, but provides a more in-depth description of the Board 
sResource. Refer to Figure 8-4 to see how the Board sResource relates to the other 
elements in a video card's declaration ROM. 

The entries in a Board sResource provide the computer with a card's identification 
number, vendor information, board flags, and initialization code. Table 8-5 lists the 
standard identification numbers assigned to the Apple-defined entries in the Board 
sResource. These entries are described in detail later in this section. 

• Table 8-5 Apple-defined Board sResource ID numbers 

Entry name ID number 

BoardId 32 
PRAMInitData 33 
PrimaryInit 34 
STimeOut 35 
VendorInfo 36 
SecondaryInit 38 
sRsrcVidNames 65 

Description 

Card design identification number 
Data for initializing the PRAM bytes for the slot 
Primary initialization code 
TimeOut constant 
Vendor part number, name, and so forth 
Secondary initialization code 
Video mode name directory 

A Board sResource must have entries for sRsrcType and sRsrcName, which are required for 
every sResource. Refer to the section "sRsrcType Fields for a Video Card Board 
sResource," earlier in this chapter, for a description of the fields in a Board sResource's 
sRsrcType entry. You can also add other Apple-defined sResource entries, such as 
sRsrcIcon. Figure 8-12 shows the structure of a typical Board sResource. 

Chapter 8 NuBus Card Firmware 125 



• Figure 8-12 Typical Board sResource 

CatBoard 

TypBoard 

DrSWBoard 

.---. DrHWBoard 

sResource 

sRsrcType Offset [J1 cString I 
sRsrcName Offset sPRAMlnit 

BoardId Data Lr 0 Physical block size 

PRAMInitData Offset 0 0 Bytel Byte 2 

Byte 3 Byte 4 ByteS 0 
Primarylnit Offset t-

End of list 0 PrimaryInit 

~ 0 Physical block size 

Rev CPU Reserved 

Code offset 

Code 

BoardId 

The BoardId is a required entry; without it, the computer will log an error in the appropriate 
sInfo record. The BoardId value is a word (two bytes) assigned by Apple. To obtain one for 
the card you are designing, contact Apple Macintosh Developer Technical Support. 

126 Designing Cards and Drivers for the Macintosh Family 



PRAMInitData 

There are six bytes reserved in the parameter RAM (PRAM) of a Macintosh II-family 
computer for each slot. The PRAMInitData entry lets you specify values other than zero 
for these bytes. If it is present in the Board sResource, the PRAMInitData provides an 
offset to an sBlock called an sPRAMInit record, which contains PRAM initialization values. 
If it is omitted from the Board sResource, the PRAM bytes are initialized to zero. 
Initialization occurs when the Macintosh Operating System detects a card for the first 
time or when the Slot Manager finds a BoardId in a Board sResaurce that is different from 
the BoardId in the corresponding sPRAMlnit record. 

The structure of the sPRAMInit record is shown in Figure 8-13. 

• Figure 8-13 sPRAMInit record structure 

31 24 23 o 

0 Physical block size 

0 0 Byte 1 Byte 2 

Byte 3 Byte 4 ByteS Byte 6 

PrimaryInit 

The PrimaryInit entry contains an offset to a PrimaryInit record. The PrimaryInit record 
has the format of an SExecBlock containing the code necessary to initialize the card. The 
structure of the SExecBlock is given under "Data Types," earlier in this chapter. 

If the PrimaryInit record is not present, the computer assumes that the card initializes 
itself or does not require initialization. 

A pointer to an seBlock is passed in register AO to the Primarylnit code. This parameter 
block indicates the slot and sResource ID to the Primarylnit code. 

You must observe the following restrictions when writing code for the Primarylnit record: 

• The code may make no calls to the Macintosh ROM except far Slot Manager routines. 

• The code's length must be less than 16 KB, but ideally should be 2 KB or less. 

• The code's execution time should be less than 200 milliseconds. 

Chapter 8 NuBus Card Firmware 127 



Initialization code that exceeds these requirements can be placed in the Open routine of 
a driver provided for the card. 

The code is expected to return a status in the seStatus field of the SExecBlock data 
structure. This value is saved in the siInitStatusV field of the sInfo record for the slot. Zero 
or positive values indicate no error or nonfatal errors. A value of $8001 causes the Slot 
Manager to defer system initialization of the card until system patches are loaded. It 
means that 32-bit QuickDraw is not in ROM and that the video card can operate only in 
32-bit mode. This forces the Slot Manager to defer using the card as a video device until 
later, when SecondaryInit is run. Negative values indicate a fatal error occurred while 
initializing the card; they prevent the Slot Manager from communicating with the card and 
set an error value in the siInitStatusA field of the sInfo record. 

STimeOut 

The STimeOut entry contains the TimeOut constant, an option for cards capable of 
locking out the microprocessor. If the Slot Manager detects a lockout condition, it retries 
the number of times specified by TimeOut. 

VendorInfo 

The optional Vendorlnfo entry in a Board sResource contains an offset to a list of 
VendorInfo IDs. These IDs are used only by a vendor and are not assigned by MacDTS. 
Vendor information should be placed in cStrings and use the standard identification 
numbers shown in Table 8-6. 

• Table 8-6 VendorInfo ID numbers 

Name 

VendorlD 
SerialNum 
RevLevel 
PartNum 
Date 

IDnumber 

1 
2 
3 
4 
5 

Description 

The card vendor's design identification 
The individual card's serial number 
The card design's revision level 
The part number of the card 
Last revision date of the card 

128 Designing Cards and Drivers for the Macintosh Family 



SecondaryInit 

On Macintosh II-family computers with version 1 or later of the Slot Manager (this 
includes the Macintosh IIci, the Macintosh IIfx, and any machine with 32-bit QuickDraw), 
the SecondaryInit record is executed by the Slot Manager after all system patches have 
been installed. (The original version of the Slot Manager could not execute SecondaryInit 
records.) SecondaryInit gives expansion cards a second opportunity to configure their 
sResources and any other associated RAM structures in case new features were added by 
the system patch. The rules for SecondaryInit are less stringent than those for PrimaryInit, 
since the machine is already up and running. Generally, SecondaryInit should focus on 
performing housecleaning functions on an expansion card's sResources. For example, a 
video card with direct-mode capabilities cannot be the startup device unless 32-bit 
QuickDraw is in ROM. This card may determine whether 32-bit QuickDraw is in ROM at 
PrimaryInit, and if it is not, it may select an alternative indexed mode that is supported 
by Color QuickDraw. At SecondaryInit time, and after system patches have been made, 
the card can again test for 32-bit QuickDraw, and, if it is now present, replace its old 
video sResource with a new one that includes direct-mode information. In this way, the 
card can automatically configure itself to the machine environment. 

The Slot Manager searches for SecondaryInits only in those slots that had successful 
PrimaryInit results. For video cards, a special seResult code ($8001) indicates that no 
compatible video sResource was selected, but the SecondaryInit should be tried if the 
new Slot Manager and 32-bit QuickDraw were loaded in the startup process. This allows 
cards that are only compatible with 32-bit QuickDraw to be used in machines where 32-bit 
QuickDraw is not in ROM. 

Unlike PrimaryInit, SecondaryInit has no size or time limits and executes with system 
interrupts enabled. Also, SecondaryInit can read and modify pertinent system variables. 

sRsrcVidNames 

The optional sRsrcVidNames entry in a video card's Board sResource allows access to the 
video modes name directory. The video names directory identifies the various mode 
possibilities of video cards that operate in more than one video mode. 

Chapter 8 NuBus Card Firmware 129 



Additional ftrmware requirements of video cards 

The firmware structure of a video card's declaration ROM takes advantage of the power 
of the Slot Manager. As a result, it is more complex than the declaration ROMs used on 
most other NuBus cards. It must include data structures that support advanced video 
functionality and newer drawing systems such as 32-bit QuickDraw. The following 
sections describe these additions. 

• Note: 32-bit QuickDraw is included in the CPU ROMs of the Macintosh IIci, the 
Macintosh IIfx, and any future computers in the Macintosh II family. You can also 
install it in earlier Macintosh II-family computers. 

Identifying direct devices 

The major focus of 32-bit QuickDraw is to support direct video devices. A video card is 
considered a direct device when the pixel value you place in the frame buffer directly implies 
the color that will appear on the display without going through any intermediate stages of 
color look-up. Direct video devices have screen depths of 16 bits and 32 bits per pixel. 

Prior to 32-bit QuickDraw, Apple supported only indexed video devices that had screen 
depths of 1, 2, 4, and 8 bits per pixel. A video card is classified as an indexed device when 
the values in the frame buffer can be used as an index into a color look-up table (CLUT) to 
produce an arbitrary color on the display. 

Setting the m VidType field in the video mode parameters to DirectType (2) allows 32-bit 
QuickDraw to determine that a video card is operating in a direct mode (or as a direct 
deVice). In addition, the m VidParams block of each video sResource should have the 
following sets of special values for the 16-bit and 32-bit direct modes. 

FieldName 16 bpp 32 bpp 

vpPixelType 
vpPixelSize 
vpCmpCount 
vpCmpSize 

ChunkyDirect 
16 
3 
5 

ChunkyDirect 
32 
3 
8 

In the above list, ChunkyDirect = 16. The values are the same as those found in a direct 
pixel-map data structure and are used to construct the gDevice's gdPMap descriptor. 

130 Designing Cards and Drivers for the Macintosh Family 



Identifying 32-bit addressable configurations 

The Slot Manager uses a flag in the sRsrcFlags word (spID= 7) of each sResource to 
calculate the frame buffer base address for all cards. The sResource flags were defined 
earlier in this chapter in the section "sRsrcFlags." By setting f32BitMode (bit 2) in this flag 
word, all references to the base address of the device are in the form $FsOO 0000, where s 
represents the NuBus slot number of the card. A 24-bit addressed version of the base 
address in the form of $FssO 0000 is returned if the f32BitMode is clear. 

The fOpenAtStart flag (bit 1) is norma~ly set at startup time to instruct the Slot Manager 
to open the slot device's driver at startup time. If this entry is omitted, the field defaults 
to a value of 2. This default value indicates that the driver should be opened at startup 
time with a 24-bit compatible base address (which is the normal condition for traditional 
video cards). The fOp~nAtStart flag must be present for NuBus cards that want to 
operate in the 16 MB NuBus super slot space. 

It is strongly recommended that applications should never write directly to the frame 
buffer. If your application must write directly to the frame buffer, it should operate in 32-
bit addressing mode. Previously, cards aliased their frame buffer under 32-bit addressing 
as explained in Chapter 1 in the section "NuBus to Processor-Bus State Machines." If your 
application must know the addressing state (24-bit or 32-bit),' it should test the sRsrcFlags 
word for the device being written to. 

If your Macintosh II-family computer does not have 32-bit QuickDraw in ROM, and if 
your card is intended as the' startup device, make sure that you load 32-bit QuickDraw 
before the card presents a 32-bit base address to the system. 

Icons 

You can include manufacturer-specific black-and-white or color icons as an sResource 
entry. This optional entry was defined earlier in this chapter in the section "sRsrcIcon." 
The Monitors cdev displays this icon in the Options dialog box for each different display. 
Monitors first searches the resource fork of the extension file for a 'cicn' = a resource, then 
examines the ROM for a color icon representing an equivalent resource image. If neither is 
found, Monitors searches for 'icl81 resources, followed by 'icl41 structures, and finally for 
'ICON'. If no icon is found, Monitors displays a generic monitor icon. For more 
information on Monitors, see the chapter on the Control Panel in Inside Macintosh. 

Chapter 8 NuB us Card Firmware 131 



For a black-and-white icon, you can add an OSLstEntry with spID = sRsrcIcon = 3 
to the Board sResource. This entry points to a standard 32 x 32 x 1 bit image of an 
icon resource. You retrieve this icon by first setting spsPointer to the sResource, 
spSize to 128, and spResult to a pointer to a 128-byte buffer, and then calling 
_sReadStruct. There is no mask. 

For a color icon, add an OSLstEntry with spID = sRsrcCicn = 15 to the Board sResource. 
Color icons are in sBlock form because they are variably sized structures. The offset 
points to a longword block header that contains the length of the color icon data 
followed by the image of a standard 'cicn' resource. 

Gamma table data 

Each functional sResource of a video card can include an optional directory of gamma 
resources for use with the SetGamma call. This gamma table directory, which is similar in 
form to the driver directory, permits references to pertinent gamma table data located in 
the ROM and in the Monitors extension file for the video card. A selector in the Options 
dialog of the Monitors cdev presents the gamma table choices to the user. Monitors loads 
'gama' resources from both the extension file and the ROM structure. Ideally, each 
different monitor supported by the video card uses a specific gamma correction table for 
the greatest color fidelity. Refer to the section "Gamma Correction in the Macintosh II 
Family," in Chapter 9, for a detailed description of gamma correction. 

In each video sResource, an OSLstEntry with spID = spGammaDir = 64 points to a gamma 
directory. A list of OSLstEntries in the directory points to the various gamma table data 
structures. The gamma tables themselves are sBlocks-a length field followed by data. 
The spIDs of the gamma tables start at 128, the default gamma for this video mode, and 
increase by one for each optional table present. Since the directory entries are offsets, 
multiple sResources can point to the same data block. When collecting the data tables, 
Monitors reads them from the ROM until it encounters an EndOflist entry. 

The first field of each gamma block contains two ID bytes that are used to localize the 
name of the gamma table. The next field is a cString-format that represents the domestic 
name of the gamma table. The final field contains an image of the gamma table 
(equivalent to a 'gama' resource, as defined in Inside MaCintosh, Volume 5). 

Names for gamma tables should reflect the name of the monitor they were intended for, 
and they must be 35 characters or less in length. The Monitors cdev gamma selector has a 
check box that allows the user to select a gamma table by name, or to leave the initial 
gamma table unchanged. When user selection of gamma is enabled, the cdev creates an 
additional option, Uncorrected, which disables gamma correction. 

132 Designing Cards and Drivers for the Macintosh Family 



Video mode name directory 

Video cards that support more than one family of video modes can include an optional 
directory of names that are used to identify the various mode possibilities. This directory 
is structured almost identically to the gamma directory. 

To access this directory, call _sFindStruct with spID = sRsrcVidNames = 65 in the Board 
sResource (not the functional video sResource). For each possible video sResource spID, 
there is a similarly numbered OSLstEntry pointing to the name data. 

Each name data sBlock contains a 2-byte localization ID followed by a cString containing 
the name of the video mode. The video mode name should be concise and consist of 35 
characters or less. 

Video card name 

The video card name is visible in the Monitors Options dialog box and must be limited to 
35 characters or less. 

Resolution 

Although QuickDraw does not look at the gDevice resolution fields, new video card designs 
should set mHRes and mVRes fields to the approximate characteristics of the monitor. 

Sample code 

Here is a sample of the declaration ROM firmware code for the Macintosh II Video Card 
using Macintosh Programmer's Workshop assembly language. Notice that this sample 
code reflects the configuration of the declaration ROM's firmware shown in Figure 8-4. 
Also included in this section are samples of the primary initialization code and the 
secondary initializatio.n code for a video card. 

Chapter 8 NuBus Card Firmware 133 



;-----------------------------------------------------------------------------

(c) Apple Computer, Inc. 1989 
All rights reserved. 

;-----------------------------------------------------------------------------

File: SampleRom.a 

This is a sample configuration ROM definition for a Macintosh II 
Video Card. It demonstrates most of the features and capabilities 
of video cards, including multiple monitor support, system code 
identification, and manufacturer data structures. 

This card supports the following modes: 

1) 640*480 at 1-,4-,and 8-bits/pixel via 24-bit addressing 
2) 640*480 at 1-,4-,8-, and 32-bits/pixel via 32-bit addressing 
3) 640*870 at 1-,4-, and 8-bits/pixel 
4) 640*480 at 1-bit per pixel only as a video mode family with 2 above 

i-----------------------------------------------------------------------------

iInclude files 
PRINT OFF 

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

PRINT ON 

VideoDeclROM MAIN 
STRING 
MACHINE 

'SysEqu.a' 
'SysErr.a' 
'Traps.a' 
'VideoEqu.a' 
'ROMEqu.a' 
'QuickEqu.a' 
'SlotEqu.a' 
'DeclROMEqu.a' 
'SampleEqu.a' 

C 

MC68020 

generic declaration ROM EQU's 
equates specific to this ROM 

;============================================================================= 
iConstants 
;============================================================================= 

sResource constants are in this form: sRsrc_Vidxy, 
where x = size : S - 640*480, B - 640*870 

y addressing 24 or 32 
z = option : A - special mode 

134 Designing Cards and Drivers for the Macintosh Family 



These are the constants for the sRsrcs that are in the sRsrc directory. The numbering was 
developed in this fashion (to facilitate Primarylnit): 

Bit 7 1 always on for video sRsrc IDs 
Bit 6 1 if optional 1-bit only mode, 0 otherwise 
Bit 5 0 
Bit 4 0 
Bit 3 1 if big screen, o otherwise 
Bit 2 0 
Bit 1 0 
Bit 0 1 if accessed in 32-bit mode, else 0 for 24-bit mode 

sRsrc_Board EQU 1 Board sResource 
sRsrc VidS24 EQU $80 
sRsrc_VidS32 EQU $81 
sRsrc_VidB24 EQU $88 
sRsrc VidS32A EQU $C1 

;============================================================================= 
Directory (must be in ascending order!) 

i============================================================================= 

sRsrcDir -
OSLstEntry sRsrc_Board,_ sRsrc_Board Board sRsrc List 
OSLstEntry sRsrc_VidS24,_ sRsrc VidS24 video sRsrc List 
OSLstEntry sRsrc_VidS32,_ sRsrc vidS32 video sRsrc List 
OSLstEntry sRsrc_VidB24,_ sRsrc VidB24 video sRsrc List 
OSLstEntry sRsrc_VidS32A, sRsrc VidS32A video sRsrc List -
DatLstEntry EndOfList,O 

i============================================================================= 
sRsrc_Board List 

;============================================================================= 

_sRsrc_Board 
OSLstEntry 
OSLstEntry 
DatLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrcType,_BoardType 
sRsrcName,_BoardName 
Boardld,SampleBoardID 
Primarylnit,_sPlnitRec 
Vendorlnfo,_Vendorlnfo 
Secondarylnit,_sSInitRec 
sRsrcVidNames,_sVidNameDir 
EndOfList,O 

offset to board descriptor 
offset to name of board 
board ID # (assigned by DTS) 
offset to Primarylnit exec blk 
offset to vendor info record 
offset to Secondarylnit block 
video name directory 

Each NuBus board has a single board identifier, even if it contains multiple devices. 

_BoardType 
DC.W 
DC.W 
DC.W 
DC.W 

_BoardName 
DC.L 

CatBoard 
TypBoard 
o 
o 

'Mac II Sample Video Card' 

Board sResource 

Name of Board 

Chapter 8 NuBus Card Firmware 135 



The video name directory associates an optional name string with each video sRsrc present 
This name is read by the Monitors cdev and is presented in a video mode family selector in 
the Options dialog. If your card does not have mode families, it does not need a name 
directory. If you provide a monitor extension that allows family mode selection, once 
again, you may delete the name directory. 

_sVidNameDir 
OSLstEntry 
OSLstEntry 
DatLstEntry 

_sNameReg 
DC.L 
DC.W 
DC.B 
ALIGN 2 

EndNameReg 

_sNameOption 
DC.L 
DC.W 
DC.B 
ALIGN 2 

EndNameOption 

sRsrc_VidS32,_sNameReg 
sRsrc_VidS32A,_sNameOption 
EndOfList,O 

EndNameReg-_sNameReg 
NameRegResID 
'Full Color Display' 

EndNameOption-_sNameOption 
NameOptResID 
'Black & White Only' 

name record for regular mode 
name record for special mode 

localization resID 

localization resID 

i============================================================================= 
Primary Init Record 

;=====================================================~======================= 

_sPInitRec 
DC.L 
INCLUDE 
ALIGN 2 

_EndsPInitRec 

_EndsPInitRec-_sPInitRec 
'SamplePrimaryInit.a' 

Physical Block Size 
The Header/Code 

i============================================================================= 
Secondary Init Record 

i============================================================================= 

_sSInitRec 
DC.L 
INCLUDE 
ALIGN 2 

EndsSInitRec 

STRING 

_EndsSInitRec-_sSInitRec 
'SampleSecondaryInit.a' 

C 

Physical Block Size 
The Header/Code 

;============================================================================= 
Vendor Info record 

;============================================================================= 

The vendor information record allows the developer to include revision level and part 
number information in their ROMs. 

_VendorInfo 
OSLstEntry 
OSLstEntry 
OSLstEntry 

VendorId,_VendorId 
RevLevel,_RevLevel 
PartNum,_PartNum 

offset to vendor ID 
offset to revision 
offset to part number record 

136 Designing Cards and Drivers for the Macintosh Family 



DatLstEntry 
_VendorId 

DC.L 
_RevLevel 

DC.L 
_PartNum 

DC.L 

EndOfList,O 

'Apple Computer' 

'Sample 1.0' 

'DAF-1234, 

Vendor Id 

Revision Level 

Part Number 

i=============================================================~=============== 

sRsrc Video 
i============================================================================= 

_sRsrc_VidS24 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

OSLstEntry 
OSLstEntry 

OSLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrc_HWDevId,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDir1 

Video Type descriptor 
offset to driver Name string 
offset to driver directory 
hardware device id 

offset to frame buffer array 
offset to frame buffer length 

directory for monitor type 1 

This is a list of the different modes supported by this hardware configuration 

OSLstEntry 
OSLstEntry 
OSLstEntry 

DatLstEntry 

FirstVidMode,_OBMs 
SecondVidMode,_FBMs 
ThirdVidMode,_EBMs 

EndOfList,O 

offset to OneBitMode parms 
offset to FourBitMode parms 
offset to EightBitMode parms 

;-----------------------------------------------------------------------------

_sRsrc_VidS32 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

DatLstEntry 
OSLstEntry 
OSLstEntry 

OSLstEntry 

iParameters 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrcFlags,6 

sRsrc_HWDevId,l 
MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDir1 

FirstVidMode,_OBMs 
SecondVidMode,_FBMs 
ThirdVidMode,_EBMs 
FourthVidMode,_DBMs 
EndOfList,O 

Mac OS Video Type descriptor 
offset to driver Name string 
offset to driver directory 
this flag identifies 32-bit 

devices 
hardware device id 
offset to frame buffer array 
offset to frame buffer length 

offset to OneBitMode parms 
offset to FourBitMode parms 
offset to EightBitMode parms 
offset to Direct mode parms 

i-----------------------------------------------------------------------------

_sRsrc_VidB24 
OSLstEntry 
OSLstEntry 
OSLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 

Chapter 8 NuBus Card Firmware 137 



DatLstEntry 

OSLstEntry 
OSLstEntry 

OSLstEntry 
iParameters 

OSLstEntry 
OSLstEntry 
OSLstEntry 

DatLstEntry 

sRsrc_HWDevld,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDir2 

FirstVidMode,_OBMb 
SecondVidMode,_FBMb 
ThirdVidMode,_EBMb 

EndOfList,O 

directory for monitor type 2 

offset to OneBitMode parms 
offset to FourBitMode parms 
offset to EightBitMode params 

i-----------------------------------------------------------------------------

This video sResource demonstrates video family modes. As an alternate to the full 
function resource above, it doesn't make too much sense, but this alternate could have had 
different screen size or display characteristics. Although 32-bit addressing is not 
required for a one-bit only display, the new Slot Manager is required to allow alternate 
video sResources. 

_sRsrc_VidS32A 
OSLstEntry 
OSLstEntry 
OSLstErtry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
OSLstEntry 

OSLstEntry 

iParameters 
OSLstEntry 

DatLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrcFlags,6 
sRsrc_HWDevld,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDirl 

FirstVidMode,_OBMs 

EndOfList,O 

for 32-bit devices 

offset to OneBitMode parms 

i-----------------------------------------------------------------------------

_VideoType 
DC.W 
DC.W 
DC.W 
DC.W 

_VideoName 
DC.L 

_MinorBase 
DC.L 

_MinorLength 
DC.L 

; 

CatDisplay 
TypVideo 
DrSwApple 
DrHwSample 

defMinorBase 

defMinorLength 

; Video sResource 
i <Category> 
i<Type> 
i<DrvrSw> 
i<DrvrHw> 

this name must match the 
driver name 

frame buffer offset from 
dCtlDevBase 

frame buffer length 

138 Designing Cards and Drivers for the Macintosh Family 



;============================================================================= 
Driver directories 

i============================================================================= 

_VidDrvrDir 
OSLstEntry 
DatLstEntry 

_sMacOS68020 
DC.L 
INCLUDE 

_End020Drvr 

STRING 

sMacOS68020,_sMacOS68020 
EndOfList,O 

_End020Drvr-_sMacOS68020 
'SampleDrvr.a' 

C 

driver directory for Mac OS 

physical block size 
driver code 

i==========~====================================================~============= 

Gamma Directories 
i============================================================================= 

_GammaDir1 . 
OSLstEritry 
DatLstEntry 

_GammaDir2 
OSLstEntry 
DatLstEntry 

128,_StdGamma 
EndOfList,O 

128,_BigGamma 
EndOfList,O 

; for the 640*480 display 

for the 640*870 display 

Here's the image of the Apple HiRes RGB Monitor's standard gamma table. 

_StdGamma 
DC.L 

DC.W 
DC.B 
ALIGN 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

_EndStdGamma-_StdGamma 

SGammaResID 
'Mac II Std Gamma' 
2 
$0000 
drHwSample 
$0000 
$0001 
$0100 
$0008 
$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254, $55565758, $595A5B5C,$5E5F6061 
$62636465, $66676869,$6A6B6C6D, $6E6F7071 
$72737475, $76777879, $7A7B7C7D, $7E7F8081 
$81828384,$85868788,$898A8B8C,$8C8D8E8F 
$90919293,$94959596,$9798999A,$9B9B9C9D 
$9E9FAOA1,$A1A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9E9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

gVersion 
gType 
gFormulaSize 
gChanCnt 
gDataCnt 
gChanWidth 
gamma data 

Chapter 8 NuBus Card Firmware 139 



_EndStdGamma 

_BigGaIlU'fla 
DC.L 
DC.W 
DC.B 
ALIGN 
DC.W 
DC.W 
DC.W 
DC;W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

_EndBigGamma 

_EndBigGamma-_BigGamma 
BGammaResID 
'Large Screen Gamma' 
2 
$0000 
drHwSample 
$0000 
$0001 
$0100 
$0008 
$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254,$55565758,$595A5B5C,$5E5F6061 
$62636465,$66676869,$6A6B6C6D,$6E596F75 
$20666F75,$6E642074,$68652073,$65637265 
$74206D65,$73736167,$65212020,$47726565 
$74696E67,$73206672,$6F6D2044,$61766964 
$2046756E,$67A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9E9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

140 Designing Cards and Drivers for the Macintosh Family 

gVersion 
gType 
gFormulaSize 
gChanCnt 
gDataCnt 
gChanWidth 
gamma data 



;============================================================================= 
One-Bit per pixel parameters 

;============================================================================= 

OSLstEntry 

DatLstEntry 

DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

_OBVParms 
DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

EndOBVParms -

_OBVParmb 
DC.L 

DC.L 
DC.W RBIb 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndOBVParmb 

mVidParams,_OBVParms 

mPageCnt,PagesIs 

mDevType,CLUTType 
EndOfList,O 

mVidParams,_OBVParmb 
mPageCnt,PagesIb 
mDevType,CLUTType 
EndOfList,O 

_EndOBVParms-_OBVParms 

defmBaseOffset 

offset to vid parameters for 
this configuration 

number of video pages in this 
configuration 

device type 

physical Block Size 

RBIs ; physRowBytes 
defmBounds_Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes 
Chunkylndexed 
1 
1 
1 
defmPlaneBytes 

EndOBVParmb- OBVParmb - -
defmBaseOffset 

bmVRes 
bmPixelType 
bmPixelSize 
bmCmpCount 
bmCmpSize 
bmPlaneBytes 

physical Block Size 

; physRowBytes 
defmBounds Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion 
0 packType not used 
0 packSize not used 
defmHRes bmHRes 
de fmVRes bmVRes 
Chunkylndexed bmPixelType 
1 bmPixelSize 
1 bmCmpCount 
1 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

Chapter 8 NuBus Card Firmware 141 



;============================================================================= 
Four-Bit per pixel parameters 

;============================================================================= 

FBMs 
OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

_FBVParms 
DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndFBVParms 

FBVParmb 
DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 

. DC.W 
DC.W 
DC.L 

_EndFBVParmb 

mVidParams,_FBVParms 
mPageCnt,Pages4s 
mDevType,CLUTType 
EndOfList,O 

mVidParams,_FBVParmb 
mPageCnt,Pages4b 
mDevType,CLUTType 
EndOfList,O 

_EndFBVParms-_FBVParms 

defmBaseOffset 

physical Block Size 

RB4s ; physRo~Bytes 

defmBounds Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion 
0 packType not used 
0 packSize not used 
defmHRes bmHRes 
de fmVRes bmVRes 
ChunkyIndexed bmPixelType 
4 bmPixelSize 
1 bmCmpCount 
4 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

_En dFBVP a rmb-_FBVP a rmb physical block size 

defmBaseOffset 
RB4b physRowBytes 
defmBounds Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion 
o 
o 
de fmHRes 
de fmVRes 
ChunkyIndexed 
4 
1 
4 
defmPlaneBytes 

bmVersion 
packType not used 
packSize not used 
bmHRes 
bmVRes 
bmPixelType 
bmPixelSize 
bmCmpCount 
bmCmpSize 
bmPlaneBytes 

142 Designing Cards and Drivers for the Macintosh Family 



;============================================================================= 
Eight-Bit per pixel parameters 

;============================================================================= 

EBMs 

EBMb 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

EBVParms 

mVidParams,_EBVParms 
mPageCnt,Pages8s 
mDevType,CLUTType 
EndOfList,O 

mVidParams,_EBVParmb 
mPageCnt,Pages8b 
mDevType,CLUTType 
EndOfList,O 

DC.L _EndEBVParms-_EBVParms physical Block Size 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

EndEBVParms 

EBVParmb 
DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndEBVParmb 

defmBaseOffset 
RB8s ; physRowBytes 
defmBounds_Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
de fmVRes 
Chunkylndexed 
8 
1 
8 
defmPlaneBytes 

bmVRes 
bmPixelType 
bmPixelSize 
bmCmpCount 
bmCmpSize 
bmPlaneBytes 

_EndEBVParmb-_EBVParmb physical Block Size 

defmBaseOffset 
RB8b ; physRowBytes 
defmBounds Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion 
0 pack Type not used 
0 packSize not used 
defmHRes bmHRes 
de fmVRes bmVRes 
Chunkylndexed bmPixelType 
8 bmPixelSize 
1 bmCmpCount 
8 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

i============================================================================= 
Direct Mode (32-Bit per pixel) parameters 

i============================================================================= 

OSLstEntry 
DatLstEntry 
DatLstEntry 

mVidParams,_DBVParms 
mPageCnt,Pages32s 
mDevType,DirectType direct device type 

Chapter 8 NuBus Card Firmware 143 



DatLstEntry 

_DBVParms 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndDBVParms 

SizeOf 
EQU 

WITH 
ORG 

* 

EndOfList,O 

_EndDBVParms-_DBVParms physical Block Size 
defmBaseOffset 
RB32s physRowBytes 
defmBounds Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
de fmVRes 
ChunkyDirect 
8 
3 
8 

defmPlaneBytes 

FHeaderRec 
ROMSize-FHeaderRec.fhBlockSize 

bmVRes 
bmPixelType, 
bmPixelSize 
bmCmpCount 
bmCmpSize 
bmPlaneBytes 

i============================================================================= 
Format/Header Block 

i============================================================================= 
DC.L 
DC.L 
DC.L 
DC.B 
DC.L 
DC.B 
DCI.B 

ENDP 

END 

(_sRsrcDir-*)**$OOFFFFFF 
ROMSize 
o 
AppleFormat 
TestPattern 
o 
$E1 

;Offset to sResource directory 
;Length of declaration data 
;CRC {Patched by crcPatch} 
; Format 
;Test pattern 
;Reserved byte 
;ByteLanes: 1111 0001 

144 Designing Cards and Drivers for the Macintosh Family 



i----------------------------------------------------------------------------------------

(c) Apple Computer, Inc. 1986-1989 
All rights reserved. 

i----------------------------------------------------------------------------------------

File: SamplePrimaryInit.a 

This is the primary initialization code for the Sample Video Card 
source. PrimaryInit for video cards serves a number of functions: 

1) Initialize the video frame buffer and video output 
2) Disable VBL interrupts 
3) Display a 50% dithered gray pattern on the screen 
4) Perform any maintainence on Slot Manager structures 

This sample card supports a number of configurations. These include 
640*480 (addressed in 24- and 32-bit modes), 640*870, and, on machines 
that have 32-bit QD in ROM, a 640*480 mode that supports only one-bit 
per pixel to demonstrate video mode families. This fictitious card 
can detect the two different types of displays or the lack of any 
connected monitor via hardware sense lines. 

Of particular interest are the sections where the code determines 
that the configuration has changed, the way it selects new defaults, 
and the relationship with SecondaryInit when running 32-bit addressed 
sResources. 

Sections that are hardware-specific are not included in this listing; 
their place in code is marked with the tag <DEVICE-SPECIFIC>. 

i----------------------------------------------------------------------------------------
Header 

i----------------------------------------------------------------------------------------

DC.B 
DC.B 
DC.W 
DC.L 

sExec 2 
sCPU 68020 
o 
Begin-* 

WITH seBlock,spBlock 

Begin 

Set initial vendor status 

code revision 
CPU type is 68020 
reserved 
offset to code 

MOVE.W #seSuccess,seStatus(AO) assume a good return 

Form 32-bit base address in A1 

MOVE.L #$FOOOOOOO,D1 
MOVE.B seSlot(AO),DO 
BFINS DO,D1{4:4} 
MOVE.L D1,A1 

D1 <- FOOOOOOO 
get slot number 
D1 <- FsOOOOOO 
copy to address reg 

Chapter 8 NuBus Card Firmware 145 



<DEVICE-SPECIFIC> 
Disable VEL interrupts here. They will be reactivated at _Open time. 

<DEVICE-SPECIFIC> 
Read the connected display type. This may be from sense lines that identify 
the connected monitor, dip switches on the card or setup information in the 
slot pRAM (note that the System file is not open yet). Often video 
generated at the wrong timing is not viewable, so dynamically reading the 
connected monitor is always preferred. Also it is desireable to identify 
the absence of a connected monitor, since it will allow CQD to remove this 
display from the desktop. 

In this example, we assume that the display type will return the type in Dl. 
If the display is 640*480, Dl=$80, if 640*870, Dl=$88. These are the 24-bit 
flavored spIO's for small and large display sRsrc lists. If no display is 
connected, this routine returns Dl=$FF which is not a applicable spIO. Later 
we will set the spID to disable in 07, so set it to $FF for now. 

<DEVICE-SPECIFIC> 
Initialize the video generation and CLUT here. You mayinit to any video mode, 
but it is preferable to initialize to I-bit mode if the card has that 
capability, or to the default screen depth as called out in your video 
sResource. Also, gray the screen with a 50% dithered gray pattern. 

Set up a slot parameter block for sRsrc pruning. At startup, all sResources 
in the sResource directory are loaded. After PrimaryInit, only one active 
video sResource must be present, so all others must be removed. 

SUBA #spBlockSize,SP 
MOVE.L SP,AO 
MOVE.B DO,spSlot(AO) 
CLR.B spExtDev(AO) 

make an spBlock 
get pointer to parms 
put slot in pBlock 
external device = 0 

Read the slot pRAM to determine what the currently saved mode is. The first 
word is the board ID, followed by the default pixdepth. This code keeps the 
spID of the video sResource in VendorUse2. This is an important part of 
the implementation of video mode families. Later in PrimaryInit, this mode 
is tested for compatibility with the current display; and, if it is, it is 
made the enabled mode. 

Since we always have a 24-bit addressed video sRsrc, we simply match the monitor 
type if 32-bit QuickDraw isn't present. If this frame buffer can only work in 
32-bit addressing, then we return a magic value ($8001) in seResult which 
disables this card until Secondarylnit if the new Slot Mariager is loaded as a 
patch. 

The boot screen (the happy mac screen) is set to the depth in VendorUsel before 
the System file is open. The other screens are set up per the scrn resource. 

SUBA #SizesPRAMRec,SP 
MOVE.L SP, spResult (AO) 
_sReadPRAMRec 

block for pRAM record 
point to it 
read it 

146 Designing Cards and Drivers for the Macintosh Family 



MOVE.B VendorUse2(SP),04 get default spIO 

BTST #=3,04 was this a big screen? 
BNE.S @isBig yes 
CMP.B #=$80,01 compare to actual display 
BEQ.S SetUp monitor hasn't changed 
BRA.S Changed 

@isBig 
CMP.B #$88,01 compare to actual display 
BEQ.S SetUp monitor hasn't changed 

If we got here, then the monitor isn't the same type that we had last time. 
We need to re-setup pRAM and perform other invalidations. 

Changed 
MOVE.B 01,04 
MOVE.B 01,VendorUse2(SP) 
MOVE.B #=$80,VendorUse1(SP) 

CLR.B scrnInval 

MOVE.L spResult(AO),spsPointer(AO) 
SPutPRAMRec 

copy the default to 04 
make it the default 
select default depth 

flag CQO that the scrn 
resource is bad 

set up parameter block 
write the new record out 

Let's go for it. We've invalidated as necessary. The 24-bit spIO for the 
desired configuration is in 04. We will test for the presence of 32-Bit 
QuickOraw and the new Slot Manager. If 32-Bit QO is not in ROM (remember, 
the System file is not yet open), then we will convert to using the 24-bit 
addressed spIO and fix it in SecondaryInit. If the new Slot Manager is 
present in ROM, then we will also add the 1-bit only sRsrc as an alternate, 
disabled mode. 

SetUp 
ADDA #=SizesPRAMRec,SP 

Here is the 32-Bit QuickDraw ID sequence 

MOVE.L #=$A89F,DO 
_GetTrapAddress ,NewTool 
MOVE.L AO,D1 
MOVE.L #$AB03,DO 
_GetTrapAddress ,NewTool 
CMPA.L 01,AO 
BNE.S Make32 
BCLR 
BRA.S 

#0,D4 
SlotTst 

eliminate pram block 

~Unimplemented trap 

save result 
now test for new QD 
get it too 
are they the same? 
if :1:, then QD32 
if no QD32, then clear bit 

; If the 32-bit stuff is present, then pick the enhanced mode 

Make32 

@1 

CMP.B #=sRsrc_VidS32A,D4 
BEQ.S @1 
MOVE.B #sRsrc_VidS32,D4 
MOVE.B #=sRsrc_VidS32A,D7 
BRA.S SlotTst 

MOVE.B #sRsrc_VidS32,D7 

is it the special mode? 
yes 
set 32-bit mode as active 
make one-bit the alternate 

set full mode the alternate 

Chapter 8 NuBus Card Firmware 147 



Here is the Slot Manager version IO. If the original Mac II Slot Manager is 
present, then this routine returns an error code in 00. If we don't have the new 

then set 07 back to $FF, since we can't disable. 

SlotTst 
_SVersion 
BEQ.S Prune 

MOVE.B #$FF,07 

what Slot Manager do we have? 
new, so continue 

make disable invalid 

Time to massage the sRsrc directory. The spIOs for all modes are concatenated into 
a long word of possible modes. Each byte is compared to 04, and if not the valid 
mode, its sRsrc is deleted. In addition, each nybble is tested to see if it 
should be disabled. 

Prune 

@O 

@2 

@5 
@10 

MOVE.L #$808l88Cl,06 
MOVEQ #3,01 
MOVE.B 06,00 
LSR.L #8,06 
CMP.B 07,00 
BNE.S @2 
MOVE.B OO,spIO(AO) 
MOVE.L #l,spParamOata(AO) 
_SetsRsrcState 
CLR.L spParamOata(AO) 
BRA.S @10 
CMP.B 04,00 
BEQ.S @10 
MOVE.B OO,spIO(AO) 
_sOeleteSRTRec 
OBRA 01,@0 

clean up spBlock on stack 

CleanUp AOOA #spBlockSize,SP 

return to your regularly scheduled start code 

RTS ENOWITH 

the mode list (four modes) 
counter in 01 (zero based) 
get lowest byte 
rotate list 
should this mode be disabled? 
if not, then continue 
mark this IO for disabling 
set to one to disable 
disable it 
no longer needed 
and continue 
is this the valid mode? 
yup, so skip deletion 
set the mode 
remove the invalid entry 

flush the block 

148 Designing Cards and Drivers for the Macintosh Family 

Slot Mgr 



i----------------------------------------------------------------------------------------

(c) Apple Computer, Inc. 1986-1989 
All rights reserved. 

i----------------------------------------------------------------------------------------

File SampleSecondaryInit.a 

This is the secondary initialization code for the Sample Video Card 
source. SecondaryInits are one-time initialization code that run 
immediately after the system patches have been loaded. Video cards 
may want to perform certain reconfigurations now that the new 
Slot Manager and 32-bit QuickDraw have had an opportunity to load. 

At this point in the boot process, the boot screen has been opened 
and has a gDevice, but the other displays have only had PrimaryInit. 
For many cards, this code only performs housekeeping tasks with 
declaration structures. Hardware setup was generally complete at 
PrimaryInit. 

Video Mode families depend upon inactivated video sResource lists 
to be present. Since this is a new Slot Manager feature, 
many machines will depend upon the addition of inactive modes 
at SecondaryInit after the Slot Manager patch is loaded. 

Remember that interrupts are enabled for the boot device, but not 
for other devices which have not yet been opened. 

i----------------------------------------------------------------------------------------
Header 

i----------------------------------------------------------------------------------------

DC.B 
DC.B 
DC.W 
DC.L 

sExec_2 
sCPU_68020 
o 
Begin2ndInit-* 

WITH seBlock,spBlock 

Begin2ndInit 

Always a successful return 

code revision 
CPU type is 68020 
reserved 
offset to Secondary Init code 

MOVE.W #seSuccess,seStatus(AO) VendorStatus <- 1 

Calculate the 32-bit base address now, while we have the slot number 

MOVE.L #$FOOOOOOO,D1 
MOVE.B seSlot(AO),DO 
BFINS DO,D1{4:4} 
MOVE.L D1,A1 

Set up a slot parameter block 

D1 <- FOOOOOOO 
get slot number 
D1 <- FsOOOOOO 
copy to address reg 

Chapter 8 NuBus Card Firmware 149 



SUBA #spBlockSize,SP 
MOVE.L SP,AO 
MOVE.B DO,spSlot(AO) 
CLR.B spExtDev(AO) 
CLR.L spsPointer(AO) 

make an slot parameter block 
get pointer to parm block now 
put slot in pBlock 
external device = 0 
we are adding resources that 

were in the sRsrc directory 

If the new Slot Manager was present in ROM, then activations and deactivation have 
already been performed. We also re-verify that 32-bit QuickDraw is around. 

_sVersion 
CMP.L #2, spResult (AO) 

BEQ.S SecInitDone 
MOVE.L #$A89F,DO 
_GetTrapAddress ,NewTool 
MOVE.L AO,D1 
MOVE.L #$AB03,DO 
_GetTrapAddress ,NewTool 
CMPA.L D1,AO 
BEQ.S SecInitDone 

find the Slot Manager version 
get the result (1= RAM patch, 

2=in ROM) 
done 
get the address of this trap 

save result 
now test for new QD 
get it too 
are they the same? 
if so, then no QD32 

Find the currently active video sResource. This is the one that was active upon 
completion of PrimaryInit. It may be either 24- or 32-bit addressed. 

MOVE.L SP,AO 
CLR. B spID (AO ) 
CLR.B spTBMask(AO) 
MOVE.W #CatDisplay,spCategory(AO) 
MOVE.W #TypVideo,spCType(AO) 
MOVE.W #DrSwApple,spDrvrSW(AO) 
MOVE.W #DrHwSample,spDrvrHW(AO) 
_sNextTypesRsrc 
MOVE.W spRefNum(AO),D5 

point at spBlock again 
start search at id=O 
we're going for an exact match 
look for this card 

look for our hardware 
get the spsPointer 
save the refnum 

If the big screen sResource is installed, then we are done since it doesn't have 
a 32-bit addressed counterpart. 

CMP.B 
BEQ.S 

#sRsrc_VidB24,spID(AO) 
SecInitDone 

is it the big screen? 
yes, so done 

Read the slot pRAM rec to find out the current desired mode. The VendorUse2 byte of 
slot pRAM contains the spID of the target video sRsrc list which will either be 
the full-function sResource, or the 1-bit only one. We will delete the 24-bit 
sRsrc list and add the other lists enabled or disabled appropriately. We know 
that it will not already be set to a 32-bit sRsrc since we would have done that in 
PrimaryInit if the new Slot Manager were present. 

SUBA #SizesPRAMRec,SP 
MOVE.L SP, spResult (AO) 

150 Designing Cards and Drivers for the Macintosh Family 

allocate block for pRAM record 
point to it 



_sReadPRAMRec 
MOVE.B VendorUse2(SP),D4 
ADDA.W #SizesPRAMRec,SP 

read it 
get the current spID 
free pram record buffer 

Delete the 24-bit version (its spID is still in the spBlock) 

_sDeleteSRTRec 

Insert the desired mode (its spID is in D4) as an active sResource 

MOVE.B D4,spID(AO) 
CLR.W spRefNum(AO) 
CLR.L spParamData(AO) 
CLR.L spsPointer(AO) 
_sInsertSRTRec 

add this sRsrc in 
just to be sure 
clear for activation 
add back a sRsrc in directory 
add it back in 

We can determine the spID of the alternate mode by flipping bit 6. We know we need 
to add this mode in deactivated. 

BCHG #6,D4 
MOVE.L #l,spParamData(AO) 

MOVE.B D4,spID(AO) 
_sInsertSRTRec 

get the alternate mode 
assume that we are going to 
disable this mode 
put in block 
insert and disable 

Test if we were the boot screen. If we were, we need to update the gDevice. The 
dCtlDevBase is fixed by the Slot Manager. 

SUBQ #4,SP 
GetDeviceList 

MOVE.L (SP)+,AO 
MOVE.L (AO),AO 
CMP.W 
BNE.S 

gdRefNum(AO),DS 
SecInitDone 

MOVE.L gdPMap(AO),AO 
MOVE.L (AO),AO 
MOVE.L Al,pmBaseAddr(AO) 

Return to your regularly scheduled start code 

SecInitDone ADDA 
RTS 

#spBlockSize,SP 
ENDWITH 

make room for function return 
get the boot gDevice 
get the gdHandle 
get pointer to gDevice 
was this the boot device 
no, so quit 

get pixMap handle 
get pixMap ptr 
save new base address 

flush the block 

Chapter 8 NuBus Card Firmware 151 





Chapter 9 NuBus Card Driver Design 

General guidelines for writing drivers are given with the Device Manager 
information in Inside Macintosh. This chapter supplements that 
information with some specific notes about NuBus card drivers and 
gives you an example. 

153 



Storing the driver code for a NuBus card 

You have three choices for storing the driver code for a NuBus card: 

• It may be stored as an sDriver record in the card firmware. In this case, the driver code 
is loaded onto the Macintosh system heap immediately before 'INIT' resources are 
executed unless specifically inhibited by the fOpenAtStart bit in the sRsrcFlags field 
being set to O. The sDriver record is described later in this chapter. 

• It can be (etched by an sLoadDriver record, in which case the driver code may be 
stored virtually anywhere. The sLoadDriver record is discussed under "sRsrcLoadRec" in 
Chapter 8. 

• It may be stored in an 'INIT' 31 resource in the System Folder on a disk that 
accompanies the NuBus card. In this case, it is installed during system startup as 
described in the chapter on the Device Manager in Inside Macintosh. 

Regardless of where it is stored, a NuBus card driver may be written either for a specific 
card or for a class of cards. These two approaches are discussed in the following section. 

Specific and generic drivers 

A NuBus card driver may be written in either of two ways: 

• It may be hard-coded to refer to a specific card. 

• It may be writteri to refer generically to cards of a certain class. 

These two approaches are discussed in this section. 

Card-specific drivers 

A card-specific driver contains in its code all the critical information required for it to drive a 
specific card. For example, if the driver is associated with a video card, it might contain bits­
per-pixel information and control register addresses. It could then be used to drive only cards 
of a specific configuration, as specified by the sRsrcType field of the sResource. 

154 Designing Cards and Drivers for the Macintosh Family 



The way such a driver would work with the card hardware and firmware is diagrammed in 
Figure 9-1. 

• Figure 9-1 Card-specific driver 

sResources 

Hardware 

Card-generic drivers 

A card-generic driver interrogates the appropriate sResource in the card firmware to 
determine the hardware configuration with which it must work. sResources are discussed in 
Chapter 8. For example, a driver associated with a class of video cards might obtain bits­
per-pixel information and control register addresses from an sResource in the card's 
declaration ROM, using Slot Manager calls. The Slot Manager is described in Chapter 8 anq in 
Inside Macintosh. . :" 

Chapter 9 NuBus Card Driver Design 155 



The way such a driver would work with the card hardware and firmware is diagrammed in 
Figure 9-2. 

• Figure 9-2 Card-generic driver 

sResources 

Hardware 

• Note: You can easily design a video-card declaration ROM that supports multiple 
video devices-for example, devices that work with different types of video 
monitors. At startup time, all sResources from the sResource directory are loaded into 
the slot device table. During PrimaryInit (and before any screen display), the code can 
determine the type of monitor connected, delete all other sResources, and run 
initialization code for the proper display. 

156 Designing Cards and Drivers for the Macintosh Family 



The sDriver record 

When a driver is stored in the firmware of its associated card, it is placed in an sDriver 
record. An sDriver record is a record of type sBlock, as defined under "Data Types" in 
Chapter 8. Its general form is shown in Figure 9-3. The specific structure of the driver 
header and driver routine sections depends on the operating system with which the driver 
works. For the Macintosh Operating System, this structure is described under "The 
Structure of a Device Driver" in the Device Manager chapter of Inside Macintosh. 

• Figure 9-3 sDriver record 

31 24 23 o 
0 I Physical block size 

Driver header 

Driver routines 

Installing a driver at startup 

During its startup process, the Macintosh Operating System searches the NuBus slots 
looking for device drivers to install. As described in Chapter 8, the declaration ROM area 
of each card contains an sResource directory that points to all the sResources in that 
card's firmware. Each sResource that refers to a device may contain either actual device 
driver code or code that allows a driver to be loaded from an external source. 

• Note: The System file may contain drivers for current Apple-designed NuBus cards. 
Card vendors who supply drivers should use the 'INIT' 31 resource to install them 
during startup. The 'INIT' 31 resource is described in the Start Manager chapter of 
Inside Macintosh. 

Chapter 9 NuBus Card Driver Design 157 



For each sResource, the search for drivers during startup takes place as follows: 

1. The operating system looks for an sRsrcFlags field in the sResource. 

2. If no sRsrcFlags field exists, or if an sRsrcFlags field exists and the field's fOpenAtStart 
bit is set to 1, the operating system searches for a driver, as described in steps 3-4. If 
the value of fOpenAtStart is 0, the operating system does not search for a driver; it goes 
on to the next sResource. 

3. The system searches the sResource for a driver load record (sRsrcLoadRec)-a routine 
designed to copy a driver into the Macintosh system heap. If such a routine exists, the 
system copies it from the card's ROM to the heap and executes it. The system passes 
this routine a pointer in AO to an seBlock; on exit, the routine must return a handle in 
the seResult field of the same seBlock to the driver it has loaded. If the value of the 
seStatus field is 0, the system then installs the new driver. 

4. If there is no driver load record, the system searches the sResource for a driver 
directory entry (sRsrcDrvrDir). If there is such an entry and the directory contains a 
driver of the type sMacOS68000, sMacOS68020, or sMacOS68030, the system reads the 
driver from the card's ROM and installs it in the Macintosh system heap. These driver 
types are downward compatible; a 68030 CPU can execute sMacOS68020 and 
sMacOS68000 drivers as well as the sMacOS68030 driver. 

This method lets you design a card with its driver in ROM on the card. The user can then 
plug the card in the machine and use the device without running an installation program. 
Should the driver in ROM later require updating, you can supply an 'INIT' file to be added 
to the user's System Folder. The 'INIT' file can test the existing driver version and override 
it with a version contained in its own code, thereby substituting a new driver for the old 
one. 

• Note: For this method to work correctly, you must follow all the rules for expansion 
card drivers. In particular, you must include the version number (word-aligned) 
immediately after the driver's name in the driver header structure. 

The video driver used at the beginning of system startup (the one that makes the "happy 
Macintosh" appear) must be taken from a video card's declaration ROM because the 
System file is not yet accessible. If a system contains multiple video cards, the startup 
screen is determined by parameter RAM, or, if the card specified in PRAM is not present, 
by selecting a different valid sResource. Note that connecting to a different monitor or 
changing the amount of frame buffer RAM on a card may cause PRAM to become invalid. 

• Note: As a consequence of the foregoing, any video card that contains the only video 
device in a system, or supplies the startup device, must have at least a minimal video 
driver in its declaration ROM. 

158 Designing Cards and Drivers for the Macintosh Family 



To install a driver, the ROM first loads it into the system heap and locks it if the 
dNeedsLock bit in the driver flags (drvrFlags) word is set. It then installs the driver with a 
DrvrInstall system call and initializes it with an Open call. If the driver returns an error from 
the Open call, it is marked closed, the retNum field is cleared in the ioParameter block, 
and the driver is unlocked. Note that this procedure guarantees that driver initialization 
code will be executed before the system starts executing applications. 

Calling a driver 

In Macintosh II-family computers, the low-level PBOpen routine has been extended to let 
you open devices in NuBus slots. If the slot serves a single device (not, for example, a 
chain of disk drives), set the value of ioFlags to 0 and use the following parameter block: 

~ 12 ioCompletion Pointer 
~ 16 ioResult Word 
~ 18 ioNamePtr Pointer 
~ 24 ioRefNum Word 
~ 27 ioPermssn Byte 
~ 28 ioMix Pointer 
~ 32 ioFlags Word 
~ 34 ioSlot Byte 
~ 35 ioId Byte 

In the extension fields, ioMix is a longint reserved for use by the driver Open routine. The 
ioSlot parameter contains the slot number of the device being opened, in the range $O-$F 
(where slot $0 is reserved for built-in Video). The ioId parameter contains the sResource 
spID. 

If the slot serves more than one device, set the value of ioFlags to !Multi and use the 
following parameter block: 

~ 12 ioCompletion Pointer 
~ 16 ioResult Word 
~ 18 ioNamePtr Pointer 
~ 24 ioRefNum Word 
~ 27 ioPermssn Byte 
~ 28 ioMix Pointer 
~ 32 ioFlags Word 
~ 34 ioSEBlkPtr Pointer 

Chapter 9 NuBus Card Driver Design 159 



Here the new parameter ioSEBlkPtr is a pointer to an external parameter seBlock that is 
customized for the devices installed in the slot. The pointer value is passed to the driver. 
The seBlock structure is described in the chapter on the Slot Manager in Inside Macintosh. 

When a driver serves a device that is plugged into a NuBus slot, it needs to know the slot 
number, the sResource ID number, and the external device ID number within the slot. The 
Slot Manager provides values for several new entries on the end of the Device Control 
Entry (DCE) data structure for each sResource. These new entries are 

• a byte containing the slot number (dCtlSlot) 

• a byte containing the sResource ID number for the sResource (dCtlSlotID) 

• a pointer to the device base address (dCtlDevBase) for the driver to use 

• a reserved pointer field for future use (dCtlReserved) 

• a byte containing the external device ID (dCtlExtDev) 

On a card with multiple instances of the same device, the driver can use dCtlDevBase to 
distinguish among devices. Because the DCE address is passed to the driver on every call 
from the Device Manager, the presence of this pointer in the DCE simplifies location of 
the correct device. This pointer contains the sum of the dynamically determined base 
address and the MinorBaseOS or MajorBaseOS. (MinorBaseOS and MajorBaseOS are 
described under "Apple-Defined sResource Entries" in Chapter 8.) This field is set up 
before the first call to the driver. The address is always valid in 32-bit mode. The Slot 
Manager constructs 24-bit or 32-bit compatible addresses based on the f32BitMode flag 
described in Chapter 8. This frees the driver writer from the necessity of locating the 
hardware for simple slot devices. 

Following is the data structure of the DCE. 

; Device Control Entry Definition 

DevCtlRecord 

dCtlDriver 

dCtlFlags 

dCtlQueue 

dCtlQHead 

dCtlQTail 

dCtlPosition 

dCtlStorage 

dCtlRefNum 

dCtlCurTicks 

dCtlWindow 

dCtlDelay 

RECORD 

DS.L 

DS.W 

DS.W 

DS.L 

DS.L 

DS.L 

DS.L 

DS.W 

DS.L 

DS.L 

DS.W 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

driver [handle] 

flags [word] 

queue header 

queue first-element [pointer] 

queue last-element [pointer] 

position [long] 

driver's private storage [handle] 

refNum of this driver [word] 

counter for timing systemTask calls 

[long] 

driver's window (if any) [pointer] 

number of ticks between systemTask calls 

160 Designing Cards and Drivers for the Macintosh Family 



[word] 

dCtlMask DS.W 1 desk accessory event mask [word] 

dCtlMenu DS.W 1 memu Id associated with driver 

[word] 

dCtlSlot DS.B 1 device slot number [byte] 

dCtlSlotIdq DS.B 1 device Id within slot [byte] 

dCtlDevBase DS.L 1 driver scratch ptr/offset from base 

to device [long] 

dCtlOwner DS.L 1 ptr to task control block 

(ownership) [Ptr] 

dCtlExtDev DS.B 1 Id of external device [byte] 

ALIGN 2 

DevCtlRecEnd EQU *-DevCtlRecord size 

ENDR 

Slot device interrupts 

Slot interrupts from NuBus cards usually enter a hardware register on the computer's main 
logic board. One interrupt line is dedicated to each NuBus slot connector. The CPU can 
quickly detect which card requested interrupt service, but not which device on a 
multifunction card caused the interrupt. To allow proper handling of the interrupt, the Slot 
Manager provides a slot polling procedure. 

The Device Manager maintains an interrupt queue for each slot. Upon receipt of a slot 
interrupt, the Device Manager goes through the slot's interrupt queue until it gets an 
indication that the interrupt has been satisfied. If no such indication occurs, an error 
dialog box, similar to that for system errors, is displayed. 

The format for a slot queue element is the following: 

SQLink EQU 0 iLink to next element (pointer) 
SQType EQU 4 iqueue type ID for validity (word) 
SQPrio EQU 6 ipriority (low byte of word) 
SQAddr EQU 8 iinterrupt service routine (pointer) 
SQParm EQU 12 ioptional A1 parameter (long) 
SQSize EQU 16 ilength of slot queue element 

The SQPrio field is an unsigned byte that determines the order in which interrupt routines 
for a specific card's slot are called. Higher value routines are called sooner. Priority values 
200-255 are reserved for Apple devices. 

Chapter 9 NuBus Card Driver Design 161 



The SQParm field is a value that is loaded into register Al before calling an interrupt 
service routine. This value is set when the driver's interrupt handler is installed as a 
parameter to SIntInstall. Often, it's useful to pass a handle to the DCE or the hardware 
base address (from dCtlDevBase) in this field. 

The Device Manager in the Macintosp II family of computers provides two new routines 
to implement the interrupt queue process just described: SIntInstall and SIntRemove. 

sIntInstall 

FUNCTION SIntInstall(sIntQElemPtr: SQElemPtri theSlot: INTEGER): OsErri 

Trap macro _SIntInstall 

SIntInstall adds a new element (pointed to by sIntQElemPtr) to the interrupt queue for 
the slot whose number is given in theSlot. Slots are numbered from $9 to $E. SIn tIns tall 
returns an error if it is unsuccessful. 

From assembly language, this routine has the following calling sequence: 

LEA MySQEI,AO iGet slot queue element 
LEA PollRoutine,Al iGet routine address 
MOVE.L AI, SQAddr (AO ) iSet address 
MOVE.W #Prio,SQPrio(AO) iSet priority 
MOVE.L AIParm, SQParm(AO) iSave Al parameter 
MOVE.W Slot,DO iSet slot number 
SIntInstall iDo installation -

This code causes the routine at label PolIRoutine to be called as a result of an interrupt 
from the specified slot ($9-$E). If two or more slots request an interrupt simultaneously, 
they are handled in ascending order; that is, within each slot, the interrupt handler with the 
highest priority field is handled first. 

sIntRemove 

FUNCTION SIntRemove(sIntQElemPtr: SQElemPtri theSlot: INTEGER): OsErri 

Trap macro _SIntRemove 

SIntRemove removes an element (pointed to by sIntQElemPtr) from the interrupt queue 
for the slot whose number is given in theSlot. SIntRemove returns an error if it is 
unsuccessful. 

162 Designing Cards and Drivers for the Macintosh Family 



From assembly language, this routine has the following calling sequence: 

LEA 
SIntRemove 

MySQE1,AO ;Pointer to queue element 
;Remove it 

This routine lets you remove an installed driver containing an interrupt handler from the 
system without causing a crash. 

PollRoutine 

Your driver polling routine is called with the following assembly-language code: 

MOVE.L 
MOVE.L 
JSR 

SQAddr(A2),AO 
SQParm(A2),Al 
(AO) 

;get poll routine address 
;Stuff optional Al Parameter 
;Call polling routine 

Your polling routine should preserve the contents of all registers except Al and DO. It 
shoul4 return to the Device Manager with an RTS instruction. DO should be set to zero to 
indicate that the polling routine did not service the interrupt, or nonzero to indicate the 
interrupt has been servi~ed. The polling routine should not set the processor priority 
below 2, and should return with the processor priority equ(il to 2. The Device Manager 
resets the VIA2 interrupt flag and executes an RTE to the interrupted task when a polling 
routine indica~es that the interrupt is sa~isfied. 

Video drivers 

If a NuBus card controls a video display device, there are additional requirements its 
driver must satisfy. The operatiIlg system recognizes that a NuBus card has a video 
capability by examini~g the sRsrcType fields of its sResources. 

To be recognized by the Macintosh system, every video sResource must have an 
associated driver in ~he system heap. This driver may either be loaded from the card's 
ROM by the Slot ~anager, or supplied ~eparately on disk. 

Chapter 9 NuBus Card Driver Design 163 



Besides using its driver, there are two other ways the system communicates with a video 
card: 

• Its driver must provide a pointer to the card's video RAM, which QuickDraw then 
accesses directly. Writing pixel information directly into RAM is faster than using 
driver calls. 

• The Slot Manager retrieves information directly from a card's declaration ROM. Such 
information may include definitions of its potential display modes, as well as data of 
any kind placed there by the card designer. The declaration ROM data required in 
video cards is defined in the next section. 

Video card firmware normally contains an initialization routine, as described in 
Chapter 11. The initialization routine should set the video card to a startup mode of one 
bit per pixel, using page O. It should also clear the video RAM to either the color gray or a 
50% gray stipple pattern, and disable vertical retrace interrupts. The Start Manager 
searches for video sResources, opens the device driver of each card it finds, performs an 
InitGDevice call that sets up the RAM description of the card, and then issues driver calls 
to set up appropriate screen depth, color table, and other properties. 

Each NuBus slot has eight bytes of dedicated parameter RAM (PRAM). The first two bytes 
cannot be modified and always contain the card's Board ID. Normally, the other six bytes 
are reserved for the use of the device, but with video devices, the VendorUsel field (byte 
2) of the slot's PRAM is reserved by the system to hold the spID of the slot resource 
describing the last screen pixel depth that this card was set to. The InitGDevice call passes 
this value to the driver's SetMode routine to set the proper hardware pixel depth and uses 
this value to determine the default color table for this depth. The Monitors Control Panel 
device sets byte 2. 

• Note: An expansion card's PrimaryInit routine should be able to determine whether or 
not a display is connected at startup time. If no display is connected, the PrimaryInit 
routine removes all video sResources and returns a successful seResult code. 

Video declaration ROM information 

The data structures required in the declaration ROM of any NuBus card are described in 
Chapter 8. Among them is the sResource, which contains the sResource type, name, and 
other information about a device. A video sResource should contain a mode list that has a 
reference for each pixel depth it supports. Such references must begin at ID 128 and 
continue in ascending order. ID 128 identifies the default mode if a mode is not specified 
in the sPRAM record. The parameter IDs for mode list entries are shown in Table 9-1. 

164 Designing Cards and Drivers for the Macintosh Family 



• Table 9-1 Video declaration ROM spIDs 

N~ IDnwMu 

m VidParams 1 
mTable 2 
mPageCnt 3 
asa 
mDevType 4 

Description 

Video device record ID 
Offset to the device color table for fixed CLUT devices 
Number of video display pages for this mode (expressed 
counting number) 
Device type (0 = indexed CLUT device, 1 = indexed fixed 

device, and 2 = direct device) 

The declaration ROM for aX video card defines any alternate operating modes for that 
card. Each mode is completely identified by the following four parameters: 

• the number of the slot in which it is installed 

• the sResource identification number of the video device it drives 

• the identification number of the mode 

• the values in its video parameter record 

Each distinct mode must have its own video parameter record, with the structure shown in 
Table 9-2. This structure is the same as the PixMap structure described in the Color 
QuickDraw information in Inside Macintosh, except that it describes the physical 
configuration of a device, not a pixel image. 

• Table 9-2 Video parameter record 

Name Size Description 

vp BaseO ffset Long Offset from base of frame buffer to start of page 0 
vpRowBytes Word Width of each row of video memory (high bit clear) 
vpBounds 4 words BoundsRect for the video display (gives dimensions) 
vpVersion Word PixelMap version number (always 1) 
vpPackType Word Reserved 
vpPackSize Word Reserved 
vpHRes Fixed Horizontal resolution of the display device (pixels per inch) 
vpVRes Fixed Vertical resolution of the display device (pixels per inch) 
vpPixelType Word Defines pixel type ($0 = chunky indexed; $10 = chunky direct) 
vpPixelSize Word Number of bits in pixel (rounded upward to the next power 

of 2 for chunky indexed and chunky direct pixels) 
vpCmpCount Word Number of components in pixel 
vpCmpSize Word Number of bits per component 
vpPlaneBytes Long Reserved 

Chapter 9 NuBus Card Driver Design 165 



For general information about video card sResource entries, see the section "Apple­
Defined sResource Entries" in Chapter 8. 

Video driver routines 

General instructions for writing device drivers are given in the chapter on the Device 
Manager in Inside Macintosh. This section discusses only requirements specific to video 
drivers. 

Normally, a driver associated with a Macintosh II-family expansion card may reside either 
in the card's declaration ROM or on disk. But video drivers differ from other drivers in 
that they should be able to support screen displays soon after the system is started up, 
before any code is read from disk. Hence, for video cards, at least a rudimentary driver 
should reside in the declaration ROM. Such a driver would be loaded during initialization 
and should display at least one bit per pixel. This would let the computer display messages 
during the startup process. 

At a minimum, any video driver must support Open, Close, control calls, and status calls 
from the Macintosh Operating System. Your driver's Open routine must accomplish the 
following: 

• allocate any private data storage required by the driver 

• store a handle to its private data space in the dCtlStorage field of the driver'S device 
control entry 

• initialize any local variables that the driver uses 

• install an interrupt handler for the driver 

• enable VBL interrupts on the video card 

• determine the configuration of the machine it is running on 

The operating system does not expect your driver's Open routine to set or change the 
video mode. The Start Manager explicitly sets the appropriate video mode during startup 
as determined by parameter RAM or by an 'scrn' resource (described in the information on 
Color QuickDraw in Inside Macintosh). 

• Note: All data and flags used by the driver should be stored in the dCtlStorage handle 
rather than in the driver code segment. 

166 Designing Cards and Drivers for the Macintosh Family 



Your video driver's Close routine must accomplish the following: 

• disable VBL interrupts on the video card 

• remove the interrupt handler used by the driver, replacing any changed interrupt 
vectors 

• release any private data storage held by the driver 

• turn off the video to avoid the persistence of the desktop image during reboots 

Video driver data structures 

The Macintosh Operating System communicates with each video driver by means of 
control and status calls that use the following data structures: 
TYPE 

VDEntRecPtr = AVDEntryRecordi 
VDEntryRecord = RECORD 

cSTable: Ptr; 
csStart: INTEGER; 
csCount: INTEGERi 

END; 
VDGamRecPtr = AVDGammaRecordi 
VDGammaRecord = RECORD 

csGTable: ptri 

END; 
VDPgInfoPtr = AVDPgInfo; 
VDPgInfo = RECORD 

csMode: INTEGER; 
csData: LONGINT; 
csPage: INTEGER; 
csBaseAddr: Ptr 

END; 
VDFlagPtr = AVDFlagRec; 
VDFlagRec = RECORD 

flag: signedBytei 
pad: signedByte; 

END; 
VDDefModePtr = AVDDefModeRec; 
VDDefModeRec = RECORD 

spID: signedByte; 
pad: signedByte; 

END; 

{pointer to color look-up table} 
{start entry number} 
{count number} 

{pointer to gamma table (see graphics devices 
chapter in Inside Macintosh) } 

{mode within device} 
{data supplied by driver} 
{page to switch in} 
{base address of page} 

• Note: Video drivers follow the newest convention for returning status call information. 
This convention may not be compatible with the glue code used in previous 
development systems. For example, using the old convention, results from a driver 
status call were returned directly in the I/O parameter block. Using the new 
convention, results from the driver status call are returned directly to cslnfoBlock. 

Chapter 9 NuBus Card Driver Design 167 



Slot information applicable to the card associated with your video driver is contained in 
the device control entry, as described in the Device Manager chapter of Inside Macintosh. 

Control routines 

The Macintosh Operating System uses control calls to your video driver to set the video 
card to different configurations. Configuration changes might include choosing a 
different number of bits per pixel or changing the color table. 

Video driver routines that respond to these control calls are described in this section. The calls 
that all drivers must support are so identified; others are optional and may return a NoErr code. 

Throughout this section, you will see references to video devices that operate in indexed pixel 
mode (commonly called indexed deVices) and devices that operate in direct pixel mode 
(commonly called direct deVices). The section "Additional Firmware Requirements of Video Cards" 
in Chapter 8 describes indexed and direct devices and explains the differences ~etween them. 

• Note: If a specific driver has other hardware capabilities and you want to provide a driver 
interface to them, you should give these control routines csCode selectors greater than 128. 

csCode = 0 
~ 

~ 

~ 

csParam 
csMode 
csPage 
csBaseAddr 

= VDPgInfoPtr 
mode selected 
page after reset 
base address of video RAM 

[Init] 
[word] 
[word] 
[long] 

This required control routine must reset the video card to its startup state. The startup 
state of a video card should be its default pixel depth (preferably one bit per pixel), with 
the default colors (if colors are supported) set. If the card supports multiple video pages 
in the default' mode, page 0 should be switched in. 

Your driver should also initialize its private storage areas, including areas for returned parameters. 

csCode = 1 [KllUO] 

This required control routine stops any I/O requests currently being processed and 
removes any pending I/O requests. For most video cards, no change on the card is 
required. If the card does not support asynchronous calls, this routine may return a NoErr 
code. 

csCode = 2 
-7 
-7 
~ 

csParam 
csMode 
csPage 
csBaseAddr 

= VDPgInfoPtr 
mode within device 
desired display page 
base address of video RAM 

168 Designing Cards and Drivers for the Macintosh Family 

[SetMode] 
[word] 
[word] 
[long] 



This required control routine sets the pixel depth of the screen. To improve the screen 
appearance during mode changes, devices with settable color tables should set all entries 
of the CLUT to 50% gray. If the video card supports 16-bit or 32-bit pixel depths, this 
routine should set an internal flag to indicate direct mode operations. 

• Note: QuickDraw requires that all screen depths have the same frame buffer base address. 

The Monitor cdev stores the current video mode in the card's slot parameter RAM. 

csCode = 3 csParam = VDEntRecPtr [SetEntries] 
~ csTable pointer to color specification [long] 

array 
~ csStart first entry in table [word] 
~ csCount number of entries to set [word] 

If the video card is an indexed device, this optional control routine should change the 
contents of the card's CLUT. If the card does not have a look-up table, it will never receive 
this call. If the value of csStart isO or positive, the routine must install csCount entries starting 
at that position. If it is -1, the routine must access the contents of the Value field in the 
csTable to determine which entries are to be changed. Both csStart and csCount are zero­
based; their values are one less than the desired amount. For a description of the structure of 
a color look-up table, refer to the information on Color QuickDraw in Inside Macintosh. 

• Note: The csStart value refers to logical position, not physical position. In four-bits­
per-pixel mode, for example, csStart values will still run 0,1,2, ... , even though physical 
card registers may not have this numbering sequence. 

If the video card is a direct device, the system should never issue this call, but if it does, 
SetEntries should return an error indication. If a direct device contains CLUT hardware, the 
GrayScreen and SetGamma routines are responsible for setting the hardware up properly. 

In the 16- and 32-bit video modes associated with direct devices, the display color is 
implied directly by the pixel value, and there is no color table or color matching in effect. 
Logically, the three DAC channels in the hardware are completely independent and assumed 
to be ascending linear ramps in all channels. Since the effect of the SetEntries routine (in 
the Color Manager) is to modify the QuickDraw drawing environment, the SetEntries call 
has no meaning to a direct device. 

csCode = 4 
~ 

csParam 
csGTable 

= VDGamRecPtr 
pointer to gamma table 

[SetGamma] 
[long] 

Chapter 9 NuBus Card Driver Design 169 



This optional control routine sets a gamma table in the driver that corrects RGB (red, green, 
blue) color values. The gamma table compensates for nonlinearities in a display's color 
response by providing either a function or a look-up value that associates each displayed 
~olor with an absolute RGB value. The gamma table is described in the Graphics Devices 
chapter of Inside Macintosh. Gamma correction is defined and explained later in this chapter 
in the section "Gamma Correction in the Macintosh II Family." 

To reduce visible nashes due to color table changes, the SetGamma call works in conjunction 
with a SetEntries call on indexed devices. The SetGamma call first loads new gamma correction 
data into the driver's private storage, and then the next SetEntries call applies the gamma 
correction as it changes the CLUT. If the hardware performs gamma correction externally to the 
CLUT hardware, then the SetGamma call should take effect immediately. SetGamma calls are 
always followed by SetEntries calls. 

For direct devices, SetGamma first sets up the gamma correction data table. Next, it 
synthesizes a black-to-white linear ramp in RGB. Finally, it applies the new gamma correction 
to the ramp and sets the data directly in the hardware. Proper gamm~ correction is particularly 
important to image-processing applications running on direct devices. 

Displays that do not use gamma-table correction tend to look over-saturated and dark. 
Although determining the correct values for a gamma table can be difficult without special 
tools, the table's contribution to image quality can be striking. 

If NIL is p(lssed for the csGTable, the driver should build a linear ramp in the gamma table 
to allow for an uncorrected display. 

csCode = 5 
~ 

csParam 
csPage 

= VDPgInfoPtr 
page number 

[GrayScreen] 
[word] 

This optional control routine should fill the specified video page with a dithered gray 
pattern in the current video mode. The page number is zero-based. 

The purpose of this routine is to eliminate visual artifacts on the screen during mode changes. 
When an applicatio~ changes the screen depth, the contents of the frame buffer immediately 
acquire a new color mea~ing. To avoid annoying color flashes, the SetMode control call (first 
in the depth change sequence) sets the entire contents of the CLUT to 50% gray, so that all 
possible indexes in either the old or new depth appears the same. This routine is called to fill 
the frame buffer with the new 50% dither pattern. In the last step of the mode change 
sequence, the color table is filled, making the 50% dither pattern visible. 

170 Designing Cards and Drivers for the Macintosh Family 



For direct video devices, GrayScreen also builds a three-channel linear gray color table, and 
after the table has beeri gamma corrected, loads it into the color table hardware. The base 
address is determined by the system software configuration. For example, if 32-bit 
QuickDraw is present, the base address may be a 32-bit address. If your card is used in an 
earlier system that does not, include 32-bit QuickDraw, the base address is a 24-bit 
address. To simplify the code, you should always write GrayScreen to the screen in 32-bit 
addressing mode. 

csCode = 6 
~ 

csParam 
csMode 

= VDFlagPtr 
mode value 

[SetGray] 
[byte] 

This optional control routine is used with indexed devices to determine whether the 
control routine with csCode = 3 (SetEntries) fills a card's color look-up table with actual 
colors or with the luminance-equivalent gray tones. For actual colors (the default case), 
the control routine is passed a csMode value of 0; for gray tones it is passed a csMode 
value of 1. 

Luminance-equivalence should be determined by converting each RGB value into the hue­
saturation-brightness system and then selecting a gray value of equal brightness. Mapping 
colors to luminance-equivalent gray tones lets a color monitor emulate a monochrome 
monitor exactly. 

If the SetGray call is issued to a direct device, it sets the internal ,mapping state flag and 
returns a CtlGood result but does not cause the color table to be luminance mapped. Short 
of using the control routine DirectSetEntries, there is no way to preview luminance­
mapped color images on the color display of a direct device. 

csCode = 7 
~ 

csParam 
csMode 

= VDFlagPtr 
enable/ disable flag 

[SetInterrupt] 
[byte] 

This optional routine controls the generation of the VBL interrupts. To enable interrupts, 
pass a csMode value of OJ to disable interrupts, pass a csMode value of 1. 

csCode = 8 
-7 
-7 
-7 

csParam 
csTable 
csStart 
csCount 

= VDEntRecPtr 
pointer to color table 
first entry in table 
number of entries to set 

[DirectSetEntries] 
[long] 
[word] 
[word] 

Normally, color table animation is not used on a direct device, but there are some special 
circumstances under which an application may want to change the color table hardware. 
This routine provides the direct device with indexed mode functionality identical to the 
regular SetEntries call. The DirectSetEntries routine has exactly the same functions and 
parameters as the regular SetEntries routine but it works only on a direct device. If this call 
is issued to an indexed device, it should return a CtlBad error indication. 

Chapter 9 NuBus Card Driver Design 171 



D Important The application that calls the DirectSetEntries routine is responsible 
for restoring the triple linear ramp direct color environment when it 
completes the color table animation. b. 

The DirectSetEntries routine is implemented separately from the regular SetEntries routine 
to prevent applications that get direct access to the driver from indiscriminately changing 
the hardware and rendering the system unusable. 

csCode = 9 
---7 

csParam 
csID 

= VDDefModePtr 
spID of video sResource 

[SetDefaultMode] 
[byte] 

A video card may support different configurations for a single display device. For 
example, a card may support large or small screen sizes on a single monitor. When a card 
supports different configurations for a single display device, it is said to have a video 
mode family. Having a video mode family is different from supporting two different 
monitors, since all members of the family can be displayed on a single display device. The 
Slot Manager (version 1 and later) supports both video mode families and multiple display 
devices. 

The SetDefaultMode routine is used by both indexed and direct devices to specify the 
selected member of a video mode family for the next restart. It does this by storing the 
spID of the new choice's sResource in the card's slot parameter RAM. The Monitors cdev 
makes the SetDefaultMode call when selecting a new video mode. Monitors searches for 
all video sResources associated with the card, both active and inactive, to create a list of 
selections. (Note that all video sResources associated with other displays are deleted at 
this time, but not inactivated.) After selecting a new video mode, Monitors calls 
SetDefaultMode with the new selection's spID as the parameter. The routine stores this 
value somewhere in its slot PRAM, making this the new default configuration. Monitors 
also collects the appropriate information from the sResource to construct a valid 'scrn' 
resource and takes care of all additional validation that is necessary to make the new 
mode take effect at the next restart. 

At PrimaryInit time, the code should determine whether the spID saved in slot PRAM is 
compatible with the current environment, and if so, it should make the mode the' active 
gDevice. 

• Note: On machines that do not have 32-bit QuickDraw in ROM, cards that can be 
addressed in both 24-bit and 32-bit addressing modes may have to store additional 
information in PRAM in order to remember the default correctly. 

This routine records the default mode information in the slot's private PRAM. Remember 
that the VendorUsel byte is reserved for system use, but the other five bytes are available 
for the private use of the card software. 

172 Designing Cards and Drivers for the Macintosh Family 



Status routines 

The Macintosh Operating System sends status calls to your video driver to determine the 
current configuration of the video card. 

Video driver routines that respond to these calls are described in this section. The driver 
need process only pertinent status calls; others it can return with a status error. 

• Note: If your driver supports other devices and you want to provide a driver interface 
to them, you should give these status routines csCode selectors greater than 128. 

csCodes 0 and 1 are not implemented in video drivers and should return a StatBad result code. 

csCode = 2 
f­
f­
f-

csParam 
csMode 
csPage 
csBaseAddr 

= VDPgInfoPtr 
mode within device 
display page 
base address of video RAM 

[GetMode] 
[word] 
[word] 
[long] 

This required status routine must return the current video mode, page, and base address. 

csCode = 3 
H 
--7 
--7 

csParam 
csTable 
csStart 
csCount 

= VDEntRecPtr 
color table data 
first entry in table 
number of entries to set 

[GetEntries] 
[long] 
[word] 
[word] 

This required status routine must return the specified number of consecutive color look­
up table entries, starting with the specified first entry. If gamma-table correction is used, 
the values returned may not be the same as the values originally passed by SetEntries. If 
the value of csStart is 0 or positive, the routine must return csCount entries starting at that 
position. If it is -1, the routine must access the contents of the Value fields in the csTable 
to determine which entries are to be returned. Both csStart and csCount are zero-based; 
their values are one less than the desired amount. 

Although direct video modes do not have logical color tables, the GetEntries status routine should 
continue to return the current contents of the CLUT, just as it would in an indexed video mode. 

csCode = 4 
f­
--7 

csParam 
csPage 
csMode 

= VDPgInfoPtr 
number of pages 
mode within device 

[GetPages] 
[word] 
[word] 

This required status routine must return the total number of video pages available in the current 
video card mode (not the current page number). This is a counting number (not zero-based). 

csCode = 5 
--7 
f-

csParam 
csPage 
csBaseAddr 

= VDPgInfoPtr 
desired page 
base address of that page 

[ GetBaseAddr] 
[word] 
[long] 

Chapter 9 NuBus Card Driver Design 173 



This required status routine must return the base address of a specified page in the current 
mode. This allows video pages to be written to even when not displayed. 
csCode = 6 csParam = VDFlagPtr [GetGray] 

~ csMode mode within device [byte] 

This required status routine must return a value indicating whether the SetEntries routine 
has been conditioned to fill a card's color look-up table with actual colors or with the 
luminance-equivalent gray tones. For actual colors (the default case), the value returned by 
csMode is 0; for gray tones it is 1. The value returned can be set by a control call with 
csCode = 6. 

csCode = 7 
~ 

csParam 
csMode 

= VDFlagPtr 
enable/disable flag 

[ GetInterrupt] 
[byte] 

This optional status routine returns a value of 0 if VBL interrupts are enabled and a value of 
1 if VBL interrupts are disabled. 

csCode = 8 
~ 

csParam 
csGTable 

= VDGamRecPtr 
pointer to gamma table 

[GetGamma] 
[long] 

This status routine returns a pointer to the current gamma table. The calling application 
cannot pre-allocate memory because of the unknown size requirement of the gamma data 
structure. 

csCode = 9 
~ 

csParam 
csID 

= VDDetModePtr 
spID of video sResource 

[GetDefaultMode] 
[byte] 

This status routine returns the current default value of a video sResource's spID entry. If 
you have selected a new mode family, but have not yet rebooted the system, the default 
returned will be different from that of the current video sResource. The parameter block is 
the same as for the SetDefaultMode control call. 

Gamma €orrection in the Macintosh II family 

Color QuickDraw considers all colors specified by application programs as absolute 
specifications; that is, from the application's point of view, a single color specification 
appears as a uniform color across multiple display devices that have different color 
responses. The Macintosh II family of computers operate with many different display 
screens. Since the application cannot recognize the different screens and does not have the 
opportunity to perform screen-by-screen corrections, the video driver for each display 
device configured in the system must linearize the differences in color (or gray-scale) 
response. This is called gamma correction. 

174 Designing Cards and Drivers for the Macintosh Family 



How gamma correction works 

As the beam from a video display's electron gun sweeps the scan lines, it strikes phosphors 
on the face of the monitor tube and causes them to luminesce. If you increase the 
intensity of the beam, the phosphor dots luminesce more brightly, and if you reduce the 
intensity of the beam, the phosphor dots glow less brightly. Unfortunately, the 
luminescence output of the phosphor dots is not directly proportional to the impinging 
beam strength but more closely resembles the diagram in Figure 9-4. 

• Figure 9-4 Color response without gamma correction 

Electron beam strength 

In this drawing, the dotted line shows the ideal linear response, and the solid line 
approximates the observed response of a typical phosphor. This curved response 
characteristic is due to physical phenomena and without gamma correction would cause 
the colors on the screen to appear darker than expected. Based on this behavior, you can 
apply an inverse gamma correction function that compensates for the non-linear response. 
Figure 9-5 illustrates color response with gamma correction. 

Chapter 9 NuBus Card Driver Design 175 



• Figure 9-5 Color response with gamma correction 

Electron beam strength 

In Figure 9-5, the solid line is again the observed response of the phosphor, the heavy 
dotted line is the inverse gamma function, and the light dotted line is the linear color 
response that results from the gamma correction. 

Gamma correction can be performed by dedicated hardware. As an alternative, it can be 
performed in the CLUT hardware by substitution in the SetEntries call. A number of high­
order bits are extracted from the red, green, and blue channels of the required colors and 
used as an index into a table of corrected values. These values are then placed into the 
hardware to yield· the corrected output. The Macintosh II Video Card uses the high eight 
bits of each channel to reference the gamma table. 

176 Designing Cards and Drivers for the Macintosh Family 



The gammaTbI data structure 

Following is the structure of the data table that supports gamma correction. 

record GammaTbl of 

end; 

gVersion 

gType 

gFormulaSize 

gChanCnt 

gDataCnt 

gDataWidth 

gFormulaData 

gData 

integer; 

integer; 

integer; 

integer; 

integer; 

integer; 

array 

[0 .. gFormula size] 

of byte; 

array [O .. gData Cnt] 

of byte; 

{gtab version, 

currently O} 

{drHWld value} 

{size of formula data, 

below} 

{i of component channels} 

{i of values per channel} 

{size of data in tables} 

{data for gamma calculation 

formula} 

{gamma correction look-up 

tables} 

In this data structure, the gVersion field represents the gamma table format version, which 
is 0 for all current video cards. The gType field holds the drHwId value for this video card 
to identify the card that this table was measured for. This means that even if two 
different cards have the same CLUT response curve, they cannot share the same gamma 
table. When the value in the gType field is 0, the card should respond by examining the 
other fields in the table. The gFormulaSize field defines the number of bytes occupied by 
the gFormulaData field. 

The Apple video cards currently used in the Macintosh II-family computers perform 
gamma correction by modifying the value loaded into the CLUT by the SetEntries control 
call to approximate a linear response on the video display. The gamma correction acts as a 
final look-up data table that translates the requested color into the closest available 
linearized level. These gamma table values are determined empirically by measuring the 
output of a calibrated display. The frame buffer of the Macintosh II Video Card uses a 
single correction table for all three channels, and performs no calculations on the incoming 
color other than a simple look-up. The card remembers the specific monitor configuration 
at the beginning of the gFormulaData field, allowing it to identify and use only the gamma 
tables developed for the attached monitor. 

The gChanCnt field is the number of look-up tables in the gData field. The R, G, and B 
tables follow each other respectively at the end of the structure if there is more than one 
channel of gamma correction data. The gDataCnt field gives the number of discrete look­
up values included in each of the channel's correction tables. 

Chapter 9 NuBus Card Driver Design 177 



The gDataWidth field describes the number of significant bits of information available in 
each entry in a channel's correction table. Since it is rare to have devices with more than 8 
bits of CLUT resolution, virtually all devices pack their correction data into bytes. 

The last field in the gamma table data structure, gData, represents the actual correction 
data. If more than one channel's information is present, a block of information for each 
channel appears in red, green, and finally, blue channel order. Apple's video driver includes 
only one table that is applied to all three output channels. 

In addition to the gamma table data structure, there is a standard resource format. 
(resource type = 'gama') for gamma table resources. Like many other resource templates, 
the gamma structure is an image of the RAM form stored in resource format. 

Using gamma correction 

The video driver is responsibie for applying gamma correction. First, the Open routine 
sets the default gamma tableJrom the card's gamma directory. Ari ~InitGraf call then 
causes the 'scrn' screen configuration resource to be read from the system file. This 
resource is described in the chapter on the Resource Manager in Inside Macintosh. The 
resource includes information about the size and orientation of the different monitors 
configured into the system, including their last video mode (pixel size), color table, and 
gamma table. If no 'gama' resource ID is specified, or if the specified ID is not present, a 
default gamma table, 'gama'=O, is loaded from the System file and used as the table for 
the Macintosh II Video Card. If the specified resource is found, the system loads the 
resource and issues a control call to the driver to make this the current gamma table. 

The standard video driver includes two routines, the SetGamma control routine, which 
sets the gamma table, and the GetGamma status routine, which returns the pointer to the 
current gamma table. The SetGamma routine CcsCode=4) and the GetGamma routine 
CcsCode=8) were defined eariier in this chapter in the sections "Control Routines" and 
"Status Routines," respectively. 

Video driver example 

Here is an example of a possible video card driver, written in Macintosh Programmer's 
Workshop assembly language. 

178 Designing Cards and Drivers for the Macintosh Family 



i-----------------------------------------------------------------------------

(c) Apple Computer, Inc. 1989 
All rights reserved. 

i-----------------------------------------------------------------------------

File : SampleDrvr.a 

This file contains a sample video driver for use by the Macintosh 
OS in MPW 3.0 format. It is structured as a normal Mac slot device driver. 
It is assembled as part of the declaration ROM image, so this file does 
not need its own INCLUDE statements. 

Hardware specific sections of the driver are not included here; their place 
in code is marked with the tag <DEVICE-SPECIFIC>. 

The theoretical video card supports 1-,4-,8-, and 32-bit/pixel depths 
on 640*480 and 1-,4- and 8-bit on 640*870 displays. Also, in systems that 
have the version 2.0 Slot Manager and 32-bit QuickDraw, there is a 1-bit 
only version of the 640*480 display, implemented as a video mode family. 
The system configuration and capabilities were determined at PrimaryInit 
and SecondaryInit, so the driver performs only minimal identification. 

BLANKS ON 
STRING ASIS 
MACHINE MC68020 

i-----------------------------------------------------------------------------
Local data storage declarations and flag word equates 

i-----------------------------------------------------------------------------

; This is device storage which is stored in the dCtlStorage field of the DCE 

vidLocals 
saveMode 
savePage 
saveBaseAddr 
saveSQElPtr 
saveGammaptr 
saveVidParms 
GFlags 
VidLocalSize 

; Flags within 

GrayFlag 
IntDisFlag 
DirectFlag 

DS.L 
DS.L 
DS.L 
DS.L 
DS.W 
EQU 
ENDR 

GFlags 

RECORD ° DS.W 1 
DS.W 1 

1 
1 
1 
1 
1 

*-VidLocals 

word 

EQU 
EQU 
EQU 

15 
14 
13 

the current mode setting 
the current video page setting 
the current screen base address 
ptr to slot interrupt queue element 
pointer to the current gamma table 
pointer to video con fig data 
flags word 
size of this record structure 

luminance mapped if set 
interrupts disabled if set 
direct type pixel mode if set 

i-----------------------------------------------------------------------------
Video Driver Header 

i-----------------------------------------------------------------------------

VidDrvr DC.W 
DC.W 

; Entry point offset table 

$4COO 
0,0,0 

ctl,status,needsLock 
not·an ornament 

Chapter 9 NuBus Card Driver Design 179 



DC.W VideoOpen-VidDrvr open routine 
DC.W VidDrvr-VidDrvr no prime 
DC.W VideoCtl-VidDrvr control 
DC.W VideoStatus-VidDrvr status 
DC.W VideoClose-VidDrvr close 

It is important to include the driver version number here. The card driver is opened 
using the VideoName string in the declaration ROM structures. The _Open call looks in the 
current resource chain, and if it finds an appropriately named driver (resource type 
'DRVR', resID does not matter) with a higher version number, then it substitutes that 
driver's code for the driver included in the video ROM. Third-party developers cannot 
generally utilize this mechanism for overrides, since their driver would have to be in the 
System File, but should support this driver version number mechanism in their own patch 
inits. Note also that the driver's name is a Pascal string in the driver, but is a C-string 
with the leading period omitted in the configuration data. 

STRING Pascal 
VideoTitle DC.B '.Display_Video_Apple_SampleCard 

STRING ASIS 
ALIGN 2 
DC.W DrvrROMVersion 

video driver name 

make sure we're word aligned 
driver version number 

;-----------------------------------------------------------------------------

VideoOpen allocates and initializes private storage for the device. It identifies the 
configuration set up at Primary/SecondaryInit. It installs the default gamma table. 
Finally, it installs the interrupt handler and enables the interrupts. 

Remember that all state information should be kept in private storage to allow the driver 
to be shared between multiple identical cards in a machine. 

Entry: AO 
Al 

csParam block pointer 
DeE pointer 

;-----------------------------------------------------------------------------

WITH 
VideoOpen 

VidLocals,SlotIntQElement,spBlock 

Allocate private storage (since block is CLEAR, GFlags are zeroed) and get a pointer to it 
in A3 

MOVEQ 
_ResrvMem 
MOVEQ 
_NewHandle 

BNE 
MOVE.L 
_HLock 
MOVE.L 

#VidLocaISize,DO 
,SYS 

#VidLocaISize,DO 
,SYS,CLEAR 

OpError 
AO,dCtIStorage(Al) 

(AO) ,A3 

get size of parameters 
make room as low as possible 
get size of parameters 
get some memory for private 

storage 
=> return an error in open 
save returned handle in DCE 
and lock it down 
get a pointer to it 

180 Designing Cards and Drivers for the Macintosh Family 



Find the current video spID by using the Slot Manager to search for this device, which was 
set up at boot by PrimaryInit. This will identify the exact hardware and software 
configuration that we are running with at this time. 

SUBA 
MOVE.L 
MOVE.B 
CLR.B 
CLR.B 
CLR.B 
CLR.B 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 

#SpBlockSize,SP 
SP,AO 
dCtlSlot(A1),spSlot(AO) 
spID (AO) 
spExtDev (AO ) 
spHWDev (AO ) 
spTBMask (AO) 
#CatDisplay,spCategory(AO) 
#TypVideo,spCType(AO) 
#DrSwApple,spDrvrSW(AO) 
#DrHwSample,spDrvrHW(AO) 

_sNextTypesRsrc 
BNE OpError1 

get a slot parameter block pointer 
get pointer to block in AO 
copy the slot number from the DCE 
start looking at spID=O 
no external devices 
only one hardware 'device here 
we're going for an exact match 
look for this card 

look for our hardware 
get the spsPointer 
if ~, then there has been a 

serious error 

Point to the appropriate set of video parameters for this mode. We 'contrived the spIDs so 
that if 32-Bit QD is available bit 0 is set, if the 640*870 display is connected then bit 
3 is set, and if we are in the special one-bit only 640*480 mode, then bit 6 is set. 

@RealSmall 

@Medium 

@ThinkBig 

@cont1 

MOVE.B 
BTST 
BNE.S 
BTST 
BNE.S 
BTST 
BNE.S 
LEA 

BRA.S 

LEA 

BRA.S 

LEA 

BRA.S 
LEA 

MOVE.L 

spID(AO) ,DO 
#6, DO 
@RealSmall 
#3,DO 
@ThinkBig 
#O,DO 
@Medium 
Small24Parms,A2 

@cont1 

OneParms,A2 

@cont1 ; 

Small32Parms,A2 

@cont1 ; 
BigParms,A2 

A2,saveVidParms(A3) 

get the spID 
test the special bit 
if set, then special mode 
test the big screen bit 
if ~, then we have a big screen 
is it the 32-bit or 24-bit flavor? 

general parameters for 640*480 
displays 

general parameters for 1-bit only 
mode 

general parameters for direct mode 
display 

general parameters for 640*870 
displays 

save these in private storage 

Load the default gamma table from the slot resource list. Each video sRsrc list includes a 
directory of gamma tables that are appropriate for this mode. We will set the default gamma 
table from this directory, which always has an spID of 128. AO still contains the current 
video sResource information. If no gamma directory is present, the software should just 
make an uncorrected, linear gamma table. 

MOVE.B #sGammaDir, spID (AO) 
_sFindStruct 
MOVE.B #128,spID(AO) 

sGetBlock 

look for the gamma directory 
get gamma directory's spsPointer 
get default gamma table (always 128) 
we want a ptr in sysheap 

Chapter 9 NuBus Card Driver Design 181 



skip over gamma table header 
MOVE.L spResult(AO),AO point to head of the block 
ADDA #2,AO skip resID 

@Name TST.B (AO) + skip over gamma name 
BNE.S @Name 
ADDA #l,AO word align pointer 
MOVE.L AO,DO get in d-reg 
AND.L #$FFFFFFFE,DO round it 
MOVE.L DO,saveGammaPtr(A3) put it in private storage 
ADDA #spBlockSize,SP release the Slot Manager block 

Get and install the interrupt handler. Call the Set Interrupt utility code to do this. 
This utility also starts the interrupts going. If there is an error condition, EnableVGuts 
returns with Z-bit set. 

all done! 

EndOpen 

OpError2 

OpErrorl 

OpError 

ENDWITH 

MOVEQ 
NewPtr 

BNE.S 
MOVE.L 

BSR 
BNE.S 

MOVEQ 
RTS 

MOVE.L 
_DisposPtr 
MOVE.L 
_DisposHandle 

#sqHDSize,DO 
,SYS,CLEAR 
OpErrorl 
AO,saveSQEIPtr(A3) 

EnableVGuts 
OpError2 

#O,DO 

saveSQEIPtr(A3),AO 

dCtIStorage(Al),AO 

MOVE.L #OpenErr,DO 
BRA. S EndOpen 

allocate a slot queue element 
get it from system heap cleared 

save the queue element 

do it 

no error 
return 

get slot interrupt queue element 
release it 
dispose the private storage 
release it 
say can't open driver 

;-----------------------------------------------------------------------------

Video Driver Control Call Handler 

(0) Reset 
(1) KillIO 
(2) SetMode 
(3) SetEntries 
(4) SetGamma 
(5) GrayPage 
(6) SetGray 
(7) SetInterrupt 
(8) DirectSetEntries 
(9) SetDefaultMode 

Entry: AO 
Al 

IO Parameter block pointer 
DCE pointer 

182 Designing Cards and Drivers for the Macintosh Family 



Uses: 

Exit: 

A2 
A3 
A4 
DO-D3 

DO 

cs parameters (ie. A2 <- csParam(AO» 
pointer to private storage 
scratch (must be preserved) 
scratch (don't need to be preserved) 

error code 

i-----------------------------------------------------------------------------

VideoCtl 

CtlJumpTbl 

CtlBad 

CtlGood 

CtlDone 

VidReset 

MOVE.L 

MOVE.W 
MOVE.L 
MOVE.L 
MOVE.L 
CMP.W 
BHI.S 
MOVE.W 

JMP 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

MOVEQ 
BRA.S 

MOVEQ 

MOVE.L 
BRA 

AO,-(SP) 

csCode(AO),DO 
csParam(AO),A2 
dCtlStorage(A1),A3 
(A3) ,A3 
#9,DO 
CtlBad 
CtlJumpTbl(PC,DO.W*2),DO 

routine 
CtlJumpTbl(PC,DO.W) 

VidReset-CtlJumpTbl 
VidKillIO-CtlJumpTbl 
SetVidMode-CtlJumpTbl 
SetEntries-CtlJumpTbl 
SetGamma-CtlJumpTbl 
GrayPage-CtlJumpTbl 
SetGray-CtlJumpTbl 
SetInterrupt-CtlJumpTbl 
CtlBad-CtlJumpTbl 
SetDefaultMode-CtlJumpTbl 

#controlErr,DO 
CtlDone 

#noErr,DO 

(SP)+,AO 
ExitDrvr 

save work registers (AO is saved 
because it is used by ExitDrvr) 

get the opCode 
A2 <- Ptr to control parameters 
get pointer to private storage 

IF csCode NOT IN [0 .• 9] THEN 
Error, csCGde out of bounds 

Get the relative offset to the 

go to the proper routine 

=> VidReset 
=> VidKillIO 

$00 
$01 
$02 
$03 
$04 
$05 => 
$06 => 
$07 => 
$08 => 
$09 

=> SetVidMode 
=> SetEntries 
=> Set Gamma 

=> 

GrayPage 
SetGray 
SetInterrupt 
DirectSetEntries 
SetDefault mode 

else say we don't do this one 
and return 

return no error 

restore registers 

i----------------------------------------------------------------------------

Reset the card to its default. For the sample card, reset video to the default depth, 
page zero, and gray the screen. 

i----------------------------------------------------------------------------

WITH VidLocals,VDPageInfo 

MOVE.W 
MOVE.W 
MOVE.W 

MOVEQ 
MOVE.W 
MOVE.W 

#FirstVidMode,D1 
D1, csMode (A2) 
D1, saveMode (A3) 

#O,DO 
DO, savePage (A3) 
DO, csPage (A2) 

get the default mode identifier 
return default mode 
remember FirstVidMode as requested 

mode 
get the default page value 
save page zero as current page 
return the page 

Chapter 9 NuBus Card Driver Design 183 



ENDWITH 

VidKillIO 

BSR 

BSR 
MOVE.L 

MOVE.L 
MOVE.W 
BSR 
BRA.S 

HWSetDepth 

HWSetPage 
DO,saveBaseAddr(A3) 

DO, csBaseAddr (A2) 
csPage(A2),DO 
GrayScreen 
CtlGood 

set the depth from D1 (clearing 
DirectFlag) 

set the page from DO 
save the new base address in 

private storage 
return the base address 
setup DO for GrayScreen 
paint the screen gray 
=> no error 

;----------------------------------------------------------------------------

This routine is not normally required by video cards, but if you support "asynchronous" 
writes to the CLUT as part of your slot interrupt handler, then this call should be 
implemented to immediately flush the pending changes to the CLUT hardware and clear any 
state flags 

;----------------------------------------------------------------------------

BRA.S CtlGood 

SetVidMode 
;----------------------------------------------------------------------------

Set the card to the specified mode and page. 
If either is invalid, returns badMode error. 

If the card is already set to the specified mode, then do nothing. 

i----------------------------------------------------------------------------

WITH VidLocals,VDPageInfo 
MOVE.W csMode(A2),D1 
BSR ChkMode 
BNE.S CtlBad 

MOVE.W 
BSR 
BNE.S 

csPage(A2),DO 
ChkPage 
CtlBad 

; Only set the mode if it has changed 

SetDepth 
MOVE.W 
CMP 
BEQ.S 

csMode(A2),D2 
saveMode(A3),D2 
ModeOK1 

remember the newly requested mode 

MOVE.W 
CMP.W 
BEQ.S 
BCLR 
BRA.S 

csMode(A2),saveMode(A3) 
#FourthVidMode,csMode(A2) 
@direct 
#DirectFlag,GFlags(A3) 
GoOn 

184 Designing Cards and Drivers for the Macintosh Family 

D1 = mode 
check mode 
=> not a valid mode 

DO = page 
check page 
=> not a valid page 

D2 = mode 
has the mode changed? 
=> no, check the page 

remember requested mode 
is this 32-bit/pixel mode? 
if not, then indexed mode 
clear the flag bit 



@direct 
BSET #DirectFlag,GFlags(A3) set the flag bit 

GoOn 

In most cards, the actual CLUT position occupied by black and white changes with depth 
changes. This causes a number of unpleasant screen anomalies (pixels appear magnified when 
going to lower pixel depths, or colors appear when going into higher depths). To solve this 
problem, the entire CLUT is set to 50% gray while the mode is changed, which masks these 
problems. The SetMode call is followed by calls which fill the frame buffer with a 50% 
dithered gray pattern, then set valid CLUT contents. 

BSR GrayCLUT 
BSR HWSetDepth 

ModeOK1 MOVE.W DO,savePage(A3) 
BSR HWSetPage 

MOVE.L DO,saveBaseAddr(A3) 

set the entire CLUT to 50% gray 
set the depth (modeID in D1) 
save the new page number 
set the video page (pageID in 

; DO) 

NoChange MOVE.L saveBaseAddr(A3),csBaseAddr(A2) 
save the new base address 
return the base address 

BRA CtlGood 

ENDWITH 

SetEntries 
;----------------------------------------------------------------------------

Input : (A2) = csTable -> table of colorSpecs (NOT colortable!) 
csStart -> where to start setting, or -1 
csCount -> # of entries to change 

This call has two modes. In SEQUENCE mode, csCount entries are changed in the CLUT, 
starting at csStart. In INDEX mode, csCount entries are installed into the CLUT at the 
positions specified by their value fields. This mode is selected by passing csStart = -1. 

If the current screen depth is a direct pixel mode (32-bits/pixel), then this routine 
returns an error. 

This code is shared with DirectSetEntries, below. Since luminance mapping should not occur 
in direct modes, the code which sets the hardware should honor the setting of this flag in 
the device-specific code. 

If gamma correction is implemented by table look-up, then SetEntries will pick up the 
respective red, green, and blue values, and, using the GDataWidth field from the gamma 
table, perform a look-up on each of these channel values in the gamma table data. 

This routine can optionally be implemented to execute asynchronously by posting the CLUT 
change request in a table that is loaded as part of the slot interrupt handler. The 
Macintosh will NOT call this Control call with the async variant of the trap, rather, the 
SetEntries call executes as a normal Control call, and delays its hardware activity until 
VBL. In doing this, a few extra rules must be followed: 

1) The driver should implement KillIO (see above) 
2) If SetEntries is entered while the interrupt level is 

non-zero, it should write immediately to the CLUT hardware. 

WITH VidLocals 
MOVE.L csTable(A2) ,DO Check for a nil pointer 

Chapter 9 NuBus Card Driver Design 185 



; get the 

BEQ 
BTST 
BNE 

gamma correction 

CtlBad 
*DirectFlag,GFlags(A3) 
CtlBad 

tables in registers 

is this a direct video ,mode? 
if so, then exit with error 

SECore 
MOVEM.L 
MOVE.W 
MOVE.L 

MOVE.W 
LEA 
ADD 
MOVE.L 
MOVE.L 
MOVE 
CMF 
BEQ.S 

MOVE 
MOVE 
ADD 
LSR 
MULU 

ADDA 
ADDA 
ADDA 

WriteCLUT 

<DEVICE-SPECIFIC> 

A4-A6/D4-D7,-(SP) 
GFlags(A3),DS 
saveGammaPtr(A3),AO 

GFormulaSize(AO),DO 
GFormulaData(AO),A4 
DO,A4 
A4,AS 
A4,A6 
GDataWidth(AO),D7 
* 1, GChanCnt (AO) 
WriteCLUT 

GDataCnt(AO),DO 
D7,D1 
#7,D1 
#3,D1 
D1,DO 

DO,AS 
DO,A6 
DO,A6 

save registers for gamma 
get GFlags word in D5 
get pointer to gamma data 
structure 
get the size of formula data 
point to formula data 
red correction table starts here 
get default pointer to green data 
get default pointer to blue data 
get width of each ~ntry in bits 
if only one table, we're set 
only one table, so continue 

get # entries in table 
copy it to calculate offsets 
round to nearest byte 
get bytes per entry 
get size of table in bytes 

calc base of green 
calc base of blue 
calc base of blue 

Hardware implementations vary greatly here. Usually, based on the csStart parameter, the 
code will separately implement sequential and indexed CLUT writes. If these routines use 
substantial stack space, they should be careful to check that this amount of space is 
available. 

When the driver has been set to luminance map (convert from color to gray-scale 
equivalents), it should calculate the values based on a .30R/.S9G/.11B ratio. If all output 
channels are being set, the gamma correction factors should still be applied. 

If you share this code with DirectSetEntries, then this section of code should NOT apply 
luminance mapping if the DirectFlag is set. 

ENDWITH 
Set Gamma 

MOVEM.L 
BRA.S 

(SP)+,A4-A6/D4-D7 
CtlGood 

restore saved registers 
exit with a good result 

i----------------------------------------------------------------------------

Set the gamma table. This call copies the supplied gTable so the 
caller does not have to put the source on the system heap. 

GType in the incoming table should match the unique drHwId for this 
card to guarantee that the table is actually intended for this device. 

186 Designing Cards and Drivers for the Macintosh Family 



Optionally, a card may accept gamma tables with a GType of 0, if the 
standard format is supported on this device. 

If the gamma table ptr is NIL, then set the gamma table to be a linear ramp. 

A1 Ptr to DCE 
A2 Ptr to cs parameter record 
A3 Ptr to private storage 

i----------------------------------------------------------------------------

WITH VidLocals 
get new gamma table and check that we know how to handle it 

MOVE.L csGTable(A2),DO test for a NIL pointer 
BEQ LinearTab if so, then set this table linear 
MOVE.L DO,A2 get pointer to new gamma table 
TST.W GVersion(A2) version = O? 
BNE CtlBad => no, return error 
TST • W GType (A2) test the hardware ID 
BEQ.S ChangeTable if 0, then accept a generic gamma table 
CMP.W #drHwSample,GType(A2) type = sample card? 
BNE CtlBad => no, return error 

; if new table is different size, reallocate memory 

ChangeTable 

@NewSize 

MOVE.L 
MOVE 
CMP 
BNE.S 
MOVE 
CMP 
BEQ.S 
BGT.S 
_DisposPtr 
CLR.L 
@GetNew 
MULU 
ADD 
ADD 
_NewPtr ,Sys 
BNE 
MOVE.L 
MOVE.L 
TST.L 
BEQ.S 
MOVE.L 
_Disposptr 
MOVE.L 

saveGammaPtr(A3),AO 
GFormulaSize(A2),DO 
GFormulaSize(AO),DO 
@GetNew 
GChanCnt(A2),DO 
GChanCnt(AO),DO 
@SizeOK 
@GetNew 

saveGammaPtr(A3) 
MOVE GDataCnt(A2),DO 
GChanCnt(A2),DO 
GFormulaSize(A2),DO 
#GFormulaData,DO 

CtlBad 
saveGammaPtr(A3),DO 
AO,saveGammaPtr(A3) 
DO 
@SizeOK 
DO,AO 

saveGammaPtr(A3),AO 
copy the gamma table 

@SizeOK 
MOVE 
MOVE 
MOVE.L 
MOVE.L 
MOVE.L 

header 

copy the data 
MULU 
ADD 
SUBQ 

@NxtByte MOVE.B 

MOVE GChanCnt(A2),DO 
GFormulaSize(A2),Dl 
gDataCnt(A2),D2 
(A2) +, (AO) + 
(A2) +, (AO) + 
(A2) +, (AO) + 

DO,D2 
D1,D2 
#1,D2 
(A2)+,DO 

get current gamma in AO 
get size of formula in new 
same as current gamma table 
=>no, resize pointer 
get number of tables in new 
same as current gamma table? 
=> yes, data size ok 
=> new one is bigger, save old one 
if new one smaller, dispose old one 
flag it's been disposed 
get number of entries 
multiply by number of tables 
add size of formula data 
add gamma table header size 
and allocate a new pointer 
=> unable to allocate storage 
get o~d gamma table 
save new gamma table 
was th~re an old one? 
=> no, already disposed 
else get old table 
and dispose of old gamma table 
get new gamma table back 

get number of tables 
get size of formula data 
get number of entries 
copy gamma header 
which is 
12 bytes long 

multiply py number of tables 
add in size of formula data 
get count - 1 
get a byte 

Chapter 9 NuBus Card Driver Design 187 



MOVE.B DO, (AO) + move a byte 
DBRA D2,@NxtByte => repeat for all bytes 

SGExit 
BTST #DirectFlag,GFlags(A3) is it in direct pixel mode? 
BEQ.S OutOHere 
BSR DirectCLUTRamps set the RGB channels up in direct mode 

OutOHere 
BRA CtlGood => return no error 

Set up a linear gamma table. To prevent memory thrash, build this new one the same size as 
the existing one (one or three channel) 

LinearTab 

@ChanLoop 

ENDWITH 

GrayPage 

MOVE.L 
MOVE.W 
MOVE.W 
SUBQ 
ADDA 
ADDA 
MOVE.W 
NOT.B 
DBRA 
DBRA 
BRA 

saveGammaPtr(A3),AO 
GFormulaSize(AO),DO 
GChanCnt(AO),D2 
#1,D2 
#GFormulaData,AO 
DO,AO 
#255,DO 
(AO)+ 
DO,@entryLoop 
D2,@ChanLoop 
SGExit 

get current gamma in AO 
get size of formula in new 
get the number of tables 
zero based, of course 
point to tables 
skip over formula data 
loop count within each channel 
invert it to make table ramp properly 
for each entry in channel 
and each channel 
all done 

;-----------------------------------------------------------------------------

Fill the specified page in the current mode to 50% dithered gray 

A1 Ptr to DeE 
A2 Ptr to cs parameter record 
A3 Ptr to private storage 

;-----------------------------------------------------------------------------

188 Designing Cards and Drivers for the Macintosh Family 



WITH VidLocals,VDPageInfo 

MOVE saveMode(A3),D1 
MOVE D1,csMode(A2) 
BSR ChkMode 
BNE CtlBad 
MOVE csPage(A2) ,DO 
BSR ChkPage 
BNE CtlBad 

BSR GrayScreen 

BTST #DirectFlag,GFlags(A3) 
BEQ.S Leave 
BSR DirectCLUTRamps 

Leave 
BRA CtlGood 

ENDWITH 
SetGray 

D1 = mode 
force current mode, just in case for ChkPage 
convert mode to depth in D1 
=> not a valid depth 
DO = page 
check page 
=> not a valid page 

paint the screen-gray 

is it in direct pixel mode? 

set the RGB channels up in direct mode 

=> return no error 

i-----------------------------------------------------------------------------

Set luminance mapping on (csMode = 1) or off (csMode = 0) 

When luminance mapping is on, RGB values passed to setEntries are mapped to 
grayscale equivalents before they are written to the CLUT. 

A1 Ptr to DCE 
A2 Ptr to cs parameter record 

i-----------------------------------------------------------------------------
WITH VidLocals 

ENDWITH 

Set Interrupt 

MOVE.B 
BFINS 
BRA 

csMode(A2) ,DO 
DO,GFlags(A3) {0:1} 
CtlGood 

get flag value 
set flag bit 
all done 

;-----------------------------------------------------------------------------

Enable (csMode = 0) or disable (csMode = 1) VBL interrupts 

This routine enables and disables the interrupt source on the card, and 
installs or removes the slot queue interrupt element. It doesn't 
allocate or dispose memory. 

A1 Ptr to DCE 
A2 Ptr to cs parameter record 
A3 Ptr to private storage 

i-----------------------------------------------------------------------------

WITH VidLocals,VDPageInfo,SlotIntQElement 
MOVE.B csMode(A2) ,DO 
BFINS DO,GFlags(A3) {1:1} 
BNE.S DisableThem 

get flag value 
set flag bit 
if zero, then enable 

Chapter 9 NuBus Card Driver Design 189 



This code enables interrupts and installs the interrupt handler 

BSR.S 
BNE 
BRA 

EnableVGuts 
CtlBad 
CtlGood 

call common code 
error, flag problem 
and go home 

This code disables VBL interrupts, then removes the interrupt handler 

DisableThem BSR.S 
BRA 

DisableVGuts 
CtlGood 

jump to the disabling utility 
all done 

The following two routines are common code shared between the Open call and the 
SetInterrupt control call 

DisableVGuts 
CLR 
MOVE.B 

DO 
dctlSlot(A1),DO 

clear DO.W 
setup slot # for _SIntRemove 

<DEVICE-SPECIFIC> disable the NMRQ interrupt source here 

EnableVGuts 

MOVE.L saveSQElPtr(A3),AO 
_SIntRemove 

RTS 

MOVE.L 
MOVE.W 
LEA 
MOVE.L 

MOVE.L 

MOVE.B 
_SIntInstall 

saveSQElPtr(A3),AO 
#SIQType,SQType(AO) 
BeginIH,A2 
A2, SQAddr (AO ) 

A1,SQParm(AO) 

dctlSlot(A1),DO 

BNE.S IntBad 

get the SQ element pointer 
remove the interrupt handler 

get the queue element pointer 
setup queue ID 
get pointer to interrupt handler 
setup int routine address 

this field is passed to the interrupt 
handler, and can be any convenient 
value (in this case the DCE handle) 

and do install 

<DEVICE-SPECIFIC> enable the NMRQ interrupt source here 

RTS i return home 

in the event there is a problem, return Z-flag off 

IntBad 

ENDWITH 

MOVEQ 
RTS 

DirectSetEntries 

#l,DO clear Z bit 

;-----------------------------------------------------------------------------

190 Designing Cards and Drivers for the Macintosh Family 



This card allows specialized applications to change the color table hardware 
(if present) while in direct pixel modes. It has exactly the same 
interface as SetEntries, but does not return an error when called in 
direct mode. If the current mode is an indexed mode, then this routine 
returns CtlBad. 

Al Ptr to DCE 
A2 Ptr to cs parameter record 
A3 Ptr to private storage 

;-----------------------------------------------------------------------------

WITH VidLocals 

ENDWITH 

SetDefaultMode 

BTST 
BEQ.S 
BRA 

#DirectFlag,GFlags(A3) 
CtlBad 
SECore 

test if the mode is a direct one 
if not, then return an error 
call the SetEntries routine 

;----------------------------------------------------------------------------

Write the spID of the card's new default mode into slot PRAM. This routine 
is used to support video mode families. Via its monitor type sensing 
capabilities, Primarylnit can decide which of the video sResource lists 
should be selected at startup. When the new Slot Manager is present, it is 
possible to designate inactive alternate video sRsrc lists as well as the 
primary list. These alternate sRsrcs appear in the Options dialog of the 
Monitors cdev, and allow the alternate mode to be selected as the primary 
display mode upon reboot. The selection of the default sRsrc list is set in 
slot PRAM by a call to this routine. Note that alternate sRsrcs should 
always generate video timing that is compatible with the connected monitor. 
Non-compatible timings should only be selected via monitor sense line 
detection. 

Al Ptr to DCE 
A2 = Ptr to cs parameter record 
A3 Ptr to private storage 

;----------------------------------------------------------------------------

WITH VidLocals,spBlock,VDFlaglnfo 

Set up a slot parameter block on the stack 

SUBA 

MOVE.L 
MOVE.B 
CLR.B 

#spBlockSize,SP 

SP,AO 
dCtlSlot(Al),spSlot(AO) 
spExtDev (AO) 

make a slot parameter block on 
stack 

get pointer to parm block now 
put slot in pBlock 
external device = 0 

Read the slot PRAM to determine what the currently saved mode is. The first byte is the 
board ID, followed by the default screen depth. This sample keeps the default spID in 

Chapter 9 NuBus Card Driver Design 191 



VendorUse2. Remember that, for video cards only, VendorUsel is reserved for the system to 
identify the spID of the structure that contains the current screen depth. 

SUBA 
MOVE.L 
_sReadPRAMRec 

#SizesPRAMRec,SP 
SP, spResul t (AO) 

allocate block for PRAM record 
point to it 
read it 

The parameter list id (identifying the screen depth) in 2(SP) is still valid. 

It is very important that Monitors (or someone) invalidate and setup the screen resource if 
this call is exercised. The information on how to set up the scrn resource for the next 
boot is all available with judicious use of the new Slot Manager routines. Monitors is also 
responsible for setting up the new default screen depth in PRAM. 

ENDWITH 

MOVE.B csMode(A2),3(SP) 
MOVE.L SP,spsPointer(AO) 
_SPutPRAMRec 
ADDA #SizesPRAMRec+spBlockSize,SP 
BRA CtlGood 

write the mode into PRAM buffer 
set up parameter block 
write the new record out 
deallocate buffer 

i-----------------------------------------------------------------------------

VideoClose releases the device's private storage and removes the interrupt handler. 

Entry: AO 
Al 

param block pointer 
DCE pointer 

i----------------------------------------------------------------------------

VideoClose WITH VidLocals 

MOVE.L 
MOVE.L 
MOVE.L 

BSR 

MOVE.L 
_DisposPtr 
MOVE.L 
_DisposPtr 
MOVE.L 
_DisposHandle 

MOVEQ 
MOVE.L 
RTS 

ENDWITH 

A3,-(SP) 
dCtIStorage(Al),A3 
(A3) ,A3 

DisableVGuts 

saveSQEIPtr(A3),AO 

saveGammaPtr(A3),AO 

dCtIStorage(Al),AO 

#O,DO 
(SP) +,A3 

save A3 

get pointer to private storage 

call utility to deactivate interrupts 

get interrupt handler queue element 
dispose it 

get pointer to gamma table 
and dispose it 

Dispose of the private storage 

no error 
restore A3 
and return 

i----------------------------------------------------------------------------

; Video Driver Status Call Handler 

192 Designing Cards and Drivers for the Macintosh Family 



(0) Error 
(1) Error 
(2) GetMode 
(3) GetEntries 
(4) GetPage 
(5) GetPageBase 
(6) GetGray 
(7) GetInterrupt 
(8) GetGarnrna 
(9) GetDefaultMode 

Entry: AO = param block 
Al DCE pointer 

Exit: DO error code 

i----------------------------------------------------------------------------

VideoStatus 

StatJumpTbl 

StatBad 

StatGood 
StatDone 

GetMode 

MOVEM.L 
MOVE.W 
MOVE.L 
MOVE.L 
MOVE.L 
CMP.w 
BHI.S 
LSL.W 

MOVE.W 

JMP 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

MOVEQ 
BRA.S 

MOVEQ 
MOVEM.L 
BRA 

AO/Dl/D2,-(SP) 
csCode(AO),DO 
csParam(AO),A2 
dCtlStorage(Al),A3 
(A3) ,A3 
#9,00 
StatBad 
:fI:l,OO 

StatJumpTbl(PC,DO.W),DO 
routine. 

StatJumpTbl(PC,OO.W) 

StatBad-StatJumpTbl 
StatBad-StatJumpTbl 
GetMode-StatJumpTbl 
GetEntries-StatJumpTbl 
GetPage-StatJumpTbl 
GetPageBase-StatJumpTbl 
GetGray-StatJumpTbl 
GetInterrupt-StatJumpTbl 
GetGamma-StatJumpTbl 
GetOefaultMode-StatJumpTbl 

:fI:statusErr,OO 
StatOone 

:fI:noErr,DO 
(SP)+,AO/Ol/02 
ExitDrvr 

save some registers 
get the selector 
A2 <- Ptr to control parameters 

get pointer to private storage 
if csCode not in [0 .. 9] then 
Error, csCode out of bounds. 
Adjust csCode to be an index into 

the table. 
Get the relative offset to the 

go to the proper routine. 

;$00 => Error 
;$01 => Error 
;$02 => GetMode 
;$03 => GetEntries 
;$04 => GetPage 
;$05 => GetPageBase 
;$06 => GetGray 
;$07 => GetInterrupt 
;$08 => GetGarnrna 
;$09 => GetOefaultMode 

else say we don't do this one 
and return 

return no error 
restore registers. 

i----------------------------------------------------------------------------

Return the current mode 

Inputs : A2 = pointer to csParams 
A3 = pointer to private storage 

Chapter 9 NuBus Card Driver Design 193 



;----------------------------------------------------------------------------

WITH VidLocals,VDPageInfo 

ENDWITH 

GetEntries 

MOVE.W 
MOVE.W 
MOVE.L 
BRA.S 

saveMode(A3),csMode(A2) 
savePage(A3),csPage(A2) 
saveBaseAddr(A3),csBaseAddr(A2) 
StatGood 

return the mode 
return the page number 
and the base address 

i----------------------------------------------------------------------------

Read the current contents of the CLUT. This routine, unlike SetEntries, 
doesn't return an error if the device is in direct mode. No attempt 
is made to reverse the effects of gamma table adjustment. 

Inputs : A2 = pointer to csParams 

i----------------------------------------------------------------------------

194 Designing Cards and Drivers for the Macintosh Family 



WITH VidLocals 

MOVE.L 
BEQ.S 

csTable(A2),DO 
StatBad 

Check for a nil pointer 

<DEVICE-SPECIFIC> 
Hardware implementations vary greatly here. Usually, based on the csStart parameter, 
the code should support both sequential and indexed CLUT writes. If these routines use 
substantial stack space, they should be careful to check that this amount of space is 
available. 

BRA StatGood => return no error 

ENDWITH 

GetPage 
i------------------------------------------------------------------------~----

Return the number of pages in the specified screen depth. The number of 
pages is always a counting number, not zero-based. Page counts are 
only visible for the various depths in this video sResource. 

i-----------------------------------------------------------------------------

WITH VidLocals,VDPageInfo 

ENDWITH 

GetPageBase 

MOVE 
MOVE 
BSR 
BG~ 

SUB 
MOVE.L 
MOVE.W 
MOVE.W 

ADD.W 
BRA 

csMode(A2),D1 
D1,D~ 

ChkMode 
StatBad 
#FirstVidMode,D2 
saveVidParms(A3),AO 
D_pages"(AO,D2*4) ,D1 
D1~csP~ge(A2) 

#1, csPage (A2) 
StatGood 

get the mode 
keep a copy 
is this mode OK? 
=> not a valid mode 
mode, zero-based 
get pointer to vid parameters 
get the number of video pages 
return page count (high byte zero 

from ChkMode) 
turn into a counting number 
=> return no error 

i-----------------------------------------------------------------------------

Return the base address for the specified page in the current mode. 

i----------------------------------------------------- ------------------------
WITH VidLocals,VDPageInfo 

MOVE 
MOVE 

BSR 
MOVE.W 
BSR 

saveMode(A3),D1 
D1, csMode (A2) 

ChkMode 
csPage(A2),DO 
ChkPage 

get the current mode 
force current mode, just in case 

for ChkPage 
convert to depth in D1 
get the requested page 
is the page valid? 

Chapter 9 NuBus Card Driver Design 195 



@2 

Get Gray 

ENDWITH 

BNE 
MOVE 
SUB 
MOVE.L 
MULU 
MULU 
ADD.L 

ADD.L 
MOVE.L 
BRA 

StatBad 
saveMode(A3),Dl 
:fI:OneBitMode,Dl 
saveVidParms(A3),AO 
(D_RowBytes,AO,Dl*2),DO 
D_Height(AO),DO 
:fI:defmBaseOffset,DO 

dCtlDevBase(Al),DO 
DO, csBaseAddr (A2) 
StatGood 

=> no, just return 
get the current screen depth ID 
make it 0 based 
point to data table 
calc page * rowBytes 
calc page * rowBytes * height 
here's the QuickDraw offset value 

to be added 
add base address for card 
return the base address 
=> return no error 

i-----------------------------------------------------------------------------

Return a boolean, set true if luminance mapping is on 

i-----------------------------------------------------------------------------

WITH VidLocals,VDFlagInfo 

ENDWITH 

GetInterrupt 

BFEXTU 
MOVE.B 
BRA 

GFlags(A3) {O:l},DO 
DO,csMode(A2) 
StatGood 

get the state of flag 
return value 
=> and return 

i-----------------------------------------------------------------------------

Return a boolean in csMode, set true if VBL interrupts are disabled 

i-----------------------------------------------------------------------------

WITH VidLocals,VDFlaglnfo 

BFEXTU 
MOVE.B 
BRA 

GFlags(A3) {l:l},DO 
DO,csMode(A2) 
StatGood 

get the state of flag 
return value 
=> and return 

ENDWITH 

Get Gamma 
i-----------------------------------------------------------------------------

Return the pointer to the current gamma table 

i-----------------------------------------------------------------------------
WITH VidLocals 

ENDWITH 

MOVE.L 
BRA 

saveGammaPtr(A3),csGTable(A2) 
StatGood 

196 Designing Cards and Drivers for the Macintosh Family 

return the pointer 
and return a good result 



GetDefaultMode 
i-----------------------------------------------------------------------------

Read the card default mode from slot PRAM. 

Al Ptr to DCE 
A2 Ptr to cs parameter record 
A3 Ptr to private storage 

;-----------------------------------------------------------------------------

WITH spBlock,VDFlaglnfo 

Set up a slot parameter block on the stack 
SUBA #spBlockSize,SP 
MOVE.L SP,AO 
MOVE.B dCtlSlot(Al),spSlot(AO) 
CLR.B spExtDev(AO) 

make an spBlock on stack 
get pointer to parm block now 
put slot in pBlock 
external device = 0 

Read the slot PRAM to determine what the currently saved mode is. The first byte is the 
board ID, followed by the default mode. This sample keeps the new default video mode in 
VendorUse2, which is what is returned as the result of this routine. 

SUBA #SizesPRAMRec,SP 

MOVE.L SP,spResult(AO) 
_sReadPRAMRec 

MOVE.B 3{SP),csMode{A2) 
ADDA #SizesPRAMRec+spBlockSize,SP 
BRA StatGood 

ENDWITH 

allocate block for PRAM 
record 

point to it 
read it 

return the result 
release buffer 

;-----------------------------------------------------------------------------

Exit from control or Status. 

;-----------------------------------------------------------------------------

ExitDrvr 

GoIODone 

BTST 
BEQ.S 
RTS 

MOVE.L 
JMP 

#NoQueueBit,ioTrap{AO) 
GoIODone 

JIODone,AO 
(AO) 

no queue bit set? 
=> no, not immediate 
otherwise, it was an immediate 

call 

get the IODone address 
invoke it 

i-----------------------------------------------------------------------------

Utilities 

Chapter 9 NuBus Card Driver Design 197 



i-----------------------------------------------------------------------------

ChkMode 
;-----------------------------------------------------------------------------

Verifies that the screen depth is available in this video sResource 

-> 01: Mode 
-> A3: Pointer to driver privates 

Returns EQ if mode is valid. All registers preserved 

;-----------------------------------------------------------------------------

ModeOK 
ModeBad 

ChkPage 

WITH VidLocals 

ENOWITH 

MOVE.L 
CMP.W 
BMI.S 
MOVE.L 
CMP.W 

BGT.S 
CMP.W 
MOVE.L 

RTS 

AO,-(SP) 
#FirstVidMode,Ol 
ModeBad 
saveVidParms(A3),AO 
0_MaxOepthIO(A3),01 

ModeBad 
01,01 
(SP)+,AO 

save a register 
compare to lowest mode ($80) 
exit with bad mode 
point to parameters for this mode 
compare to depth range for this 

config 
exit if out of range 
get EQ 
restore saved register (doesn't 

affect flags) 
EQ if valid depth 

i-----------------------------------------------------------------------------

Checks to see if the page number in DO is valid for the depth in 01 

-> DO: Page 
-> 01: Depth 
-> A3: Pointer to driver privates 

Returns EQ if page is valid. All registers preserved 

;-----------------------------------------------------------------------------

WITH VidLocals 

ENOWITH 

MOVEM.L 
MOVE.W 
SUB.W 
MOVE.L 
CMP.W 
SGT 
TST.B 
MOVEM.L 
RTS 

02/A1,-(SP) 
saveMode(A3),02 
#OneBitMode,02 
saveVidParms(A3),A1 
0_Pages(A1,02*4),00 
02 
02 
(SP)+,02/A1 

save work registers 
get offset to page data 
zero-based offset in 02 
get pointer to data tables 
compare to zero-based page count 
set flag if too big 
and test condition 
restore work registers 

198 Designing Cards and Drivers for the Macintosh Family 



HWSetDepth 
;-----------------------------------------------------------------------------

This utility sets the screen depth hardware 

-> D1: new screen depth ID (already verified) 
-> A1: DCE pointer 
-> A2: parameter block pointer 
-> A3: private storage pointer 

Preserves all registers 

;-----------------------------------------------------------------------------

<DEVICE-SPECIFIC> 
Simply convert the screen depth ID to information appropriate to performing a screen 
depth change here 

RTS 

HWSetPage 
;-----------------------------------------------------------------------------

The base of a page is at dCtlDevBase + defmBaseOffset + (page * RowBytes * height) 

-> DO: new page number (already verified) 
-> D1: new screen depth ID (already verified) 
-> A1: DCE pointer 
-> A2: parameter block pointer 
-> A3: private storage pointer 

<- DO: return th~ base address 

;-----------------------------------------------------------------------------

WITH VidLocals 

MOVEM.L 
MOVE 
SUB 
MOVE.L 
MULU 
MULU 
ADD.L 

<DEVICE-SPECIFIC> 

AO/D1,-(SP) 
saveMode(A3),D1 
#OneBitMode,D1 
saveVidParms(A3),AO 
D_RowBytes(AO,D1*4),DO 
D_Height(AO),DO 
#defmBaseOffset,DO 

save some registers 
get the current 
make it 0 based 
point to data table 
calc page * rowBytes 
calc page * rowBytes * height 
add QD offset 

Set the screen page based on this offset information here 

ADD.L 

MOVEM.L 
RTS 

dCtlDevBase(Al),DO 

(SP)+,AO/Dl 

add the card base address 

restore all registers 
and return 

Chapter 9 NuBus Card Driver Design 199 



ENOWITH 

GrayScreen 
i-----------------------------------------------------------------------------

-> 00: Page to gray 
-> A3: private storage pointer 

All registers are preserved. 

i-----------------------------------------------------------------------------

WITH VidLocals 

@Continue32 

NxtRow1 
NxtLong1 

MOVEM.L 
MOVE 
CMP.W 
BEQ.S 
SUB 
MOVE.W 

LEA 
MOVE.L 
MOVE.L 
MOVE.W 
MOVE.W 

MULU 
MULU 
MOVE.L 
ADOA 

SUBQ 

MOVE.L 
LSR 
SUBQ 

LEA 
MOVE.L 
_StripAddress 
JMP 

MOVEQ 
_SwapMMUMode 
MOVE.L 
MOVE.L 04,02 
MOVE.L 
OBF 
NOT.L 
OBF 
MOVE.L 
_SwapMMUMode 
MOVEM.L 
RTS 

00-07/AO-A1,-(SP) 
saveMode(A3),01 
#FourthVidMode,Ol 
Fil132 
#OneBitMode,Ol 
01,03 

Pats,A1 
(A1,03*4),OS 
saveVidParms(A3),A1 
0_RowBytes(A1,01*4),04 
0_Height(A1),03 

04,00 
03,00 
00,A1 
#defmBaseOffset,A1 

#1,03 

A1,AO 
#2,04 
#1,04 

@Continue32,AO 
AO,OO 

(ZAO,OO) 

#true32b,00 

OO,-(SP) 

os, (AO) + 
02, NxtLong1 
05 
03, NxtRow1 
(SP)+,OO 

(SP)+,00-07/AO-A1 

save all registers 
get the mode 
is it the direct video mode? 
different code for big pixels 
make it 0 based 
make a copy of it 

get a pointer to the pattern table 
05 = the proper pattern 
point to data table 
04 rowbytes for the screen 
03 = screen height 

rowbytes*page 
rowbytes*page*height 
get base address in A-reg 
add offset 

make height zero-based 

p~int to the start 
get longs per row 
make count zero based 

make the PC 32-bit clean 
get in 00 

OK with the 68020 

switch to 32-bit addressing mode 
flip to 32 
save previous MMUMode 
load it into count index 
write long word pattern to screen 
for the entire line 
invert pattern 
do it for all screen lines 
restore MMU mode 
flip back to previous addressing 
restore all registers 
and return 

Pats OC.L OneBitGray, TwoBitGray, FourBitGray, EightBitGray 

200 Designing Cards and Drivers for the Macintosh Family 



GrayCLUT 
i-----------------------------------------------------------------------------

This utility fills the entire CLUT with 50% gamma corrected gray in support of video mode 
changes. 

All registers are preserved. 

i-----------------------------------------------------------------------------

<DEVICE-SPECIFIC> 
Find the appropriate 50% gray level and load the CLUT such that all pixel values produce 
this color on the screen 

RTS 

DirectCLUTRamps 
i-----------------------------------------------------------------------------

This utility is called in direct pixel modes to fill the CLUT hardware with linear ramps in 
the R, G, and B channels. Note that these ramps run from 0 to all ones ASCENDING rather 
than descending as is normal in indexed modes (Black = (0,0,0) in direct modes). 

All registers are preserved. 

i-----------------------------------------------------------------------------

<DEVICE-SPECIFIC> 
Generate a linear ramp from 0 to all ones and set this ramp in each channel of the CLUT. 
These values should be gamma corrected, if possible. 

RTS 

i-----------------------------------------------------------------------------

The Slot Interrupt handler 

i-----------------------------------------------------------------------------

On entry, Al contains the SQParm value passed to sIntInstall above (in this case the DCE 
handle) 

BeginIH MOVE.L (Al) ,AO 

<DEVICE-SPECIFIC> 
Clear the NMRQ interrupt here 

MOVEQ 
MOVE.B 

#O,DO 
dCtlSlot(AO) ,DO 

deref the handle 

clear DO 
setup the slot number 

Chapter 9 NuBus Card Driver Design 201 



MOVE.L 
JSR 

MOVEQ 
RTS 

JVBLTask,AO 
(AO) 

#1,DO 

call the VBL task manager 
with slot # in rio 

signal that int was serviced 
and return to caller 

;-----------------------------------------------------------------------------

Data tables 

These tables contain information for the driver about available modes and screen 
size information 

MaxDepthID = spID of maximum screen depth supported where: 
I-bit $80 
4-bit $81 
8-bit. $82 

32-bit $83 

;-----------------------------------------------------------------------------

Smal124Parms 
MaxDepth DC.W 
Height DC.W 
Pages DC.W 
RowBites DC.W 

DC.W 
DC.W 

Smal132Parms 
DC.W 
DC.W 
DC.W 
DC.vi 
DC.W 
DC.W 

BigParms 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

OneParms 
DC.W 
DC.W 
DC.W 

D_MaxDepthID EQU 
D_Height EQU 
D_Pages EQU 
D_RowBytes EQU 

$82 
defmBounds_Bs 
Pagesls 
RBIs 
Pages4s,RB4s 
Pages8s,RB8s 

$83 
defmBounds_Bs 
Pagesls,RBls 
Pages4s,RB4s 
Pages8s,RB8s 
Pages32s,RB32s 

$82 
defmBounds_Bb 
Pageslb,RBlb 
Pages4b,RB4b 
Pages8b,RB8b 

$80 
defmBounds_Bs 
Pagesls,RBl~ 

MaxDepth-Smal124Parms 
Height~Smal124Parms 

Pages-Smal124Parms 
RowBites-Smal124Parms 

maximum screen depth ID 
screen height 
number of screen pages 
rowbytes for this mode 
pages, rowbytes 
pages, rowbytes 

maximum screen depth ID 
screen height 
page and rowbyte info 

maximum screen depth ID 
screen height 
page and rowbyte info 

maximum screen depth ID 
screen height 
page ~nd rowbyte info 

202 Designing Cards and Drivers for the Macintosh Family 



Summary 

This section su~marizes the video driver data structures, the slot interrupt queue 
routines, and the advanced control and status routines. It also gives guidelines for using 
assembly-language data structures, and installing and removing interrupt queue routines. 

Data types 

TYPE 

VDEntRecPtr = AVDEritryRecord; 

VDEntryRecord = RECORD 

csTable: Ptr; 

csStart: INTEGER; 

csCount: INTEGER; 

END; 

VDGamRecPtr = AVDGammaRecord 

VDGammaRecord = RECORD 

csGTable: ptr; 

{pointer to color look-up table} 

{start entry number} 

{count number} 

{pointer to gamma table (see graphics devices 
chapter in Inside Macintosh} 

END; 

VDPgInfoPtr = AVDPgInfo; 

VDPgInfo = RECORD 

csMode: INTEGER; 

csData: LONGINT; 

csPage: INTEGER; 

csBaseAddr: Ptr 

END; 

Interrupt queue routines 

{mode within device} 

{data supplied by driver} 

{page to switch in} 

{base address of page} 

FUNCTION SIntInstall(sIntQElemPtr: SQElemPtri theSlot: INTEGER): OsErri 

FUNCTION SIntRemove(sIntQElemPtr: SQElemPtri theSlot: INTEGER): OsErri 

Chapter 9 NuBus Card Driver Design 203 



Advanced control routines 

csCode 
o 
1 
2 
3 
4 
5 
6 

7 
8 
9 

csParam 
VDPglnfoPtr 
VDPglnfoPtr 
VDPglnfoPtr 
VDEntRecPtr 
VDGamRecPtr 
VDPglnfoPtr 
VDPglnfoPtr 

VDFlagPtr 
VDEntRecPtr 
VDDefModePtr 

Effect 
Resets card to startup. state 
Stops and purges I/O requests 
Changes card's video mode 
Changes card's color table (if any) 
Creates a gamma table 
Fills video page with gray 
Selects actual colors or luminance-equivalent gray 
tones 
Controls VBL interrupts 
Changes color table (direct device only) 
Sets default configuration in PRAM 

Advanced status routines 

csCode csParam 
o and 1 
2 VDPglnfoPtr 

3 VDEntRecPtr 
4 VDPglnfoPtr 
5 VDPglnfoPtr 
6 VDFlagPtr 

7 VDFlagPtr 
8 VDGamRecPtr 
9 VDDefModePtr 

Effect 
Not implemented in video drivers 
Returns card's current video mode, page, and base 
address 
Returns color table entries 
Returns number of video pages available 
Returns base address of specified page 
Returns selection status of actual colors or luminance­
equivalent gray tones 
Indicates status of VBL interrupts 
Returns a pointer to current gamma table 
Returns default value of video sResource's spID entry 

204 Designing Cards and Drivers for the Macintosh Family 



Assembly-language information 

Data structures 

;Use with control and status calls where csCode = 3 

csFirst EQU 0 ; [word] first color table entry 
csCount 
csTable 

EQU 
EQU 

csFirst+2 
csCount+2 

; [word] number of entries to set 
; [long] pointer to color table 
;entry = value, r, g, b : INTEGER 

;Use with control calls where csCode = 0, 2, 5, or 6 
;and with status calls where csCode = 2, 4, 5, or 6 
'csMode EQU 0 ; [word] mode within device 
csData EQU csMode+2 ; [long] data supplied by driver 
csPage EQU csData+4 ; [word] page to switch in 
csBaseAddr EQU csPage+2 ; [long] base address of page 

Interrupt queue routines 

;To install a new queue element 

LEA PollRoutine,Al 
MOVE.L Al,SQAddr(AO) 
MOVE.W 
MOVE.L 
MOVE.W 
_SIntInstall 

Prio, SQPrio (AO) 
A1Parm, SQParm(AO) 
Slot,DO 

;To remove a queue element 
LEA MySQE1,AO 
_SIntRemove 

;Get routine address 
;Set address 
;Set priority 
;Save Al parameter 
;Set slot number 
;Do installation 

;Pointer to queue element 
;Remove it 

Chapter 9 NuBus Card Driver Design 205 





Chapter 10 NuBus Design Examples 

This chapter contains performance-proven examples of design 
for the Apple implementation of the NuBus interface in the 
Macintosh II family. 

207 



NuBus Test Card 

The NuBus Test Card (NTC) is an example of a complete master/slave NuBus slot card. In 
use, this card allows the Macintosh II-family computer's central processor (or other NuBus 
master card) to test the functionality of the NuBus slave and master response logic. It 
provides an example of the type of logic necessary to implement a NuBus master card. 

This description is to assist a hardware engineer who wants to see how a typical NuBus 
card is designed. No motivation for the design choices is given; it is intended as a 
description of an existing design. You should already be familiar with NuBus, PALs, 
and so forth. 

Overview of operation 

The NTC in slave mode is addressed by the microprocessor on the main logic board (or 
any bus master) and properly written to, so that the three NTC registers are set up with 
valid information. The microprocessor next addresses one of the registers to seek bus 
mastershipj the NTC waits a programmed number of clock cycles and then arbitrates to 
become bus master. When it becomes bus master, the NTC accomplishes the read or write 
to an address that was stored in the NTC Address register. 

Programming model 

This section describes how the NTC looks to a programmer. 

The NTC provides three registers: Address, Data, and Master. The three registers can be 
accessed by addressing the NTC as a slave. The first two registers, Address and Data, can 
be read from and written tOj they support only NuBus word (32-bit) operations. Both of 
these registers can be used to test the basic data paths of the bus. However, these 
registers are primarily intended to supply the address and data that will be used during the 
NTC's master transaction when the NTC becomes bus master. 

The 12-bit Master register is write only. When the Master register is written to, the NTC, 
after a programmed delay, initiates a transaction in which it becomes the bus master. The 
bits of the value written to the Master register are interpreted as shown in Table 10-1. 

208 Designing Cards and Drivers for the Macintosh Family 



Bits 11 and 10 contain the ITM1 and ITMO values that (along with address bits I AD1 
and I ADO) define the transfer mode of the master transaction (see Table 3-1, 
"Transfer Mode Coding"). Bits 7 through 0 contain the programmed time delay (in 
one's-complement form). 

• Table 10·1 Master register interpretation 

Bit 

D11 

D10 

D9 
D8 

D7-DO 

Assigned meaning 

ITM1 value (1 means ITM1 is asserted [low]), the ReadlWrite indicator 

ITMO value (1 means ITMO is asserted [low]), the data item length 
indicator 

Lock bit (1 means execute a locked transaction) 

o (zero) 

A one's-complement Delay value 

After the execution of the write to the Master register, the master cycle is delayed by the 
number of clock periods specified by Delay. Delay is the value in the least significant 
eight bits of the Master register; that value is incremented to $FF before the NTC becomes 
bus master and initiates a transaction. 

The register addresses are given in Table 10-2; s is the number of the slot into which the 
card is inserted. 

• Table 10·2 Register addresses 

Address 

$Fss80000 
$FssO 0000 
$Fss40000 

Name 

Master (write-only) register 
Address register 
Data register 

Chapter 10 NuBus Design Examples 209 



Byte swapping and the NTC 

Byte swapping is necessary when interacting with the NTC because of the design of the 
NTC, the reordering of bytes when the computer transfers data across the NuBus, and the 
byte ordering of the NuBus. 

As noted in Chapter 7, the NuBus interface performs a byte swapping of data values (see 
Figure 7-2 and the bus interface logic in Figures 1-1 through 1-4 and Figure 1-7). For 
example, the byte containing bits D31-D24 of the microprocessor (referred to as byte 0) 
is swapped so that the byte is transferred to NuBus byte lane 0 (! AD7-/ ADO). This 
preserves byte address cons~stericy between cards on the NuBus. Every NuBus interface 
must be designed so that its byte 0 is placed on NuBus byte lane 0, byte 1 on byte lane 1, 
and so forth. If you transfer a microprocessor word of $0011 2233 to the NuBus, then, on 
the NuBus, it would appear as $3322 1100 (the bytes are displayed as most significant 
byte (msb) to least significant byte (lsb) in left-to-right order). 

As can be seen on the schematic for the NTC (Foldout 5 in the back of the book), the 
Address and Data registers are connected so that a byte written to a given NuBus byte 
lane will be placed back on the same byte lane when these registers are read from as a 
slave or when driven to as a master. That is, there is no byte swapping performed by the 
NTC itself. 

This design of the NTC has ramifications ori how the values are written to its registers. For 
example, an Address register value must be byte swapped when written from the 
microprocessor. For example, if we want the NTC to make a transaction to $1122 3344 (in 
NuBus format), we must write the data so that the msb of the Address. register contains 
the $11 byte; this means that NuBus byte lane 3 must contain the $11. However, because 
NuBus byte lane 3 is driven by byte 3 from the microprocessor, the value we write must 
have the $11 in the lsb of the microprocessor value (where byte 3 belongs). Followihg this 
logic for the rest of the bytes, it should be apparent that the appropriate value to be 
written by the microprocessor to the NTC Address register is $4433 2211. 

The same byte swapping must be done to values that are written to the Data register in 
preparation for a NuBus write by the NTC. Remember, however, that data values that are 
written to or read from the main logic board (for example, RAM) are byte swapped by the 
bus interface logic as the transaction is made. Thus, data values that a.re destined for (or 
read from) RAM will not look byte swapped. For example, suppose that we set up the NTC 
to read a RAM location that contains $1234 5678 (microprocessor form). When we read 
the Data register after the transaction is completed, we read $1234 5678. The reason is 
that when the NTC did the read, the bus interface circuits placed the data onto NuBus as 
$78563412 (due to the byte swapping of the bus interface). Then, when we read the Data 
register, the value is byte swapped by the bus interface circuits (again) so that the 
microprocessor sees the value as $1234 5678. If we wanted a NuBus value of $1234 5678, 
then the appropriate microprocessor value would be $7856 3412. 

210 Designing Cards and Drivers for the Macintosh Family 



6. Important In terms of the Macintosh II family, it is important to make a clear 
distinction of whether a value is specified as viewed from the 
perspective of the computer's microprocessor or the NuBus interface. 
Values viewed from the NuBus interface need to be byte swapped; 
values viewed from the microprocessor do not. D. 

Programming the NTC 

In the following discussions, values for various NuBus fields are specified. In all cases, the 
values are the logical values; remember that these are the complement of the NuBus 
signals. For example, if /TMI is a 1, then that implies that /TMI (the NuBus signal) will be 
low. Also, all references to data width will be in NuBus terms; that is, NuBus word (32-bit), 
halfword, and byte. 

The following two steps are necessary for the NTC to perform a master cycle: 

1. The Address register is set up with the desired master transaction's address; a byte­
swapped value must be written to the Address register. The lower two bits of the 
Address register become part of the NuBus transfer mode; the values of these two bits 
must be modified to correspond to the desired transfer mode encoding, not what the 
microprocessor program would use for the eqUivalent access. 

If the master transaction is to be a write, then you must write data to the Data register 
that will be transmitted when the NTC becomes bus master. 

2. The proper /TMI-/TMO, Lock, and Delay values are written to the Master register. The 
NTC waits for the number of clock periods specified by the Delay value, and then 
makes the master transaction. 

Examples 

This section describes two examples of setting up the NTC to execute master 
transactions. In these examples, references to the NuBus transfer mode will be given in the 
4-bit form </TMl,/TMO,l ADl,/ ADO>, where the bit values represent the corresponding 
NuBus signallevel-H for high and L for low. Values of the Master register bits for /ADl-
/ ADO and /TMI-/TMO are the logical values (O/l). Remember that a 0 written to a register 
will be placed on the NuBus as an H (and a 1 as an L). 

Chapter 10 NuBus Design Examples 211 



Word read of $0000 1234 (Macintosh n-famlly computer RAM): Suppose that you 
wish to cause the NTC to perform a word read transaction to location $1234; this causes a 
read of the computer's RAM. The proper NuBus transfer mode for reading a NuBus word is 
<HHHH>, as shown in Table 3-1. Thus the values written to /TM1-/TMO and /AD1-/ADO 
are adjoined to form the 4-bit transfer mode code <0000>. Hence, the microprocessor 
writes the following values into the registers: 

$34120000 into Address 
$0000 OOFF into Master 

This causes the NTC to execute a word read (because /TM1-/TMO and / AD 1-/ ADO are all 
0), from location 0 immediately (FF is the one's complement of 00, for a Delay value of 
zero clock periods). 

Halfword 0 write (of $5678) to $F900 1234 (slot 9) after $40 clock cycles: The 
proper transfer mode value is <LHHL>, from Table 3-1. Therefore, the value for 
</TM1,!TMO,! AD1,! ADO> is <1001> and the registers are programmed to be loaded 
as follows: 

$351200F9 into Address 
$7856 xxxx into Data 
$0000 08BF into Master (Dll-D8 in Table 10-1, binary 1000 is 8 in hex; $BF is the 
one's complement of $40) 

• Note: In the last nibble of $1234, $4 = 0100 in binary, so / AD1 = 0 and / ADO = O. But 
/ AD1 and / ADO must be changed to encode the least significant two bits of the 
transfer mode, so /ADO is changed to a 1 and now 0101 = $5. Then $F900 1235 becomes 
$3512 00F9 when byte swapped. The address $F900 1234 on the NuBus is obtained by 
writing $3512 00F9 into the Address register. 

Data is written to the Data register so that when the master transaction is performed, 'the 
data will be in the proper byte lanes. Halfword 0 data is contained in byte lanes 1 (msb) 
and 0 (lsb). Hence, you need to write the data from the microprocessor such that the $56 
(msb) is in byte 1 and $78 (msb) is in byte O. The microprocessor must write the value 
$7856 xxxx. 

212 Designing Cards and Drivers for the Macintosh Family 



Hardware organization 

This section describes the hardware used to mechanize the NuBus Test Card. The 
schematic is shown in Foldout S at the end of the book. PAL equations are displayed 
in Appendix B. 

The NTC consists of 

• four NuBus address/data buffers C74ALS6S1s), UI-U4 (also called transceivers) 

• eight octal latches (74ALS374s), US-UI2, which implement the Address and 
Data registers 

• one ROM socket, U13, for the declaration ROM 

• two 4-bit counters C74ALSI61s), U23-U24, which implement the Delay counter 

• one 74FS6, U14, and one 74F30, UIS, which form an address comparator 

• five PALs, UI6-U20, which implement the control logic 

• one 74F04 inverter, U21 

• one 74F02 NOR, U22 

NuBus address/data buffers 

The NuBus address or data buffers, UI-U4, are grouped into two parts. Ul can be 
independently driven onto the NuBus, while U2-U4 are latched into the NTC. This allows 
the addresses for the ROM to be held during a ROM read cycle without additional parts. 
For all other operations, all of the buffers are set for transferring data from or to the 
bus in unison. 

Address and Data registers 

The two sets of latches (US-US, U9-UI2) form the Address and Data registers. They are 
latched during a write to the corresponding register and are enabled upon either a slave 
read to the register or during a master transaction. 

Address comparison 

U14 and UIS are wired so that the output of UIS is low when an address of $Fsxx xxxx is 
present on the / AD lines. This signal is used by the slave PAL to detect the start cycle to 
the card. 

Chapter 10 NuBus Design Examples 213 



SlAVE PAL 

The slave PAL (SLAVE PAL) is the state machine for slave accesses to the NTC. It also 
latches the state of / ADl9-/ AD18, which are used by other PALs. 

ARB PAL 

The arbitration PAL (ARB PAL) is responsible for performing the NuBus arbitration 
process. When / ARBCY is asserted, the /ID3-/IDO value drives the / ARB3-/ ARBO lines. 
However, when / ARB detects that a higher priority value is present on the / ARB3-/ ARB 0 
lines, it removes drive from its lower priority lines, following the NuB us rules. The GRANT 
signal is asserted when / ARB recognizes that its / ARB3-/ ARBO value is valid; GRANT is 
used by the master PAL to detect that the NTC has won ownership of the bus. 

MASTER PAL 

The master PAL (MASTER PAL) is responsible for controlling a master transaction on the 
bus. It idles until it detects that both the MASTER and MASTERD (delayed MASTER) 
input signals are true. It will then go through a state sequence to perform the transaction. 
The master PAL can execute two types of transactions: normal and locked. The state 
sequence is slightly different for each case. See the timing diagram, Figure 10-1, for the 
sequences of each. Note that the diagram shows the shortest slave response. In actual use, 
most accesses hold in the wait state UDTACY asserted) while awaiting an / ACK for more 
than one cycle. 

MIse PAL 

The miscellaneous PAL (MISC PAL) is used to decode the state machine signals and drive 
on-card devices. The outputs control the gating of the 651's, 374's, and so forth. 

NBDRVR PAL 

The NuBus driver PAL (NBDRVR PAL) is responsible for driving all NuBus signals. As in the 
miscellaneous PAL, NBDRVR decodes the state machine signals to determine the timing 
for these signals. 

214 Designing Cards and Drivers for the Macintosh Family 



• Figure 10-1 Master transaction timing, normal and locked 

Arbitration Start Waites) Ack 
I I I I 

( I Y Y Y 1 
I I I 

/CLK -t U W Lt Lt W L 
I I I I I I 
I I I I I I -n I I q /ARBCY I I I 

I I 
I I I I I 
I I I I I 

I I 

!I 
I I /ADRCY I 
II I I I 

I I I I I 

Outputs of I I I I I 
I I I :1 iI /DTACY I I 

MASTER PAL I I 
I I 1 1 
1 1 I 1 

/OWNER 
I 

:1 
1 a 1 1 

1 
1 I 

/LOCKED 
I I 
1 1 
1 1 
1 1 
1 I --n 1 

1 1 
I 

Outputs of 1 1 
1 I 

{/RQSf 
NBDRVR PAL /START I I 

1 I 
1 1 
1 1 

Input to - / ACK 
1 I 

: I :j 
MASTER PAL 

Outputs of 
MASTER PAL 

/CLK 

{

/RQST 
Outputs of 
NBDRVR PAL /START 

Input to -/ ACK 
MASTER PAL 

! 
Master transaction (unlocked) 

Attention-lock Attention-null 
/TMl-/TMO - HL Start Waites) /TMI-/TMO - LL , , I I 

( I Y Y Y Y Y 
i LJ w LJ tJ u U 

Arbitration 
I 

Ack 
I 

1 I I 
1 I: 

-n~ ______ +-______ ~ ____ ~ ______ ~: ______ -+ ______ ~! ______ ~ 
I : 
1 1 I 1 ...... ____ -+ ______ -+-______ -;-____ _ 
I a ! ~----~: 
1 I 

: I 

1 
1 

I 
1 
I 
1 

I : 
1 I 
1 1 
1 I 

-r~ ____ --+ ______ -+ ______ -+-______ _+_------_+_------+I..;..r-·w.-.. "'-w.-....... -....... -........ ,....1 .. 1 
1 1 1 
1 1 I : ~-------------:~I : ~I -----
: 1 1 

I ! ! I ! I I 
I 1 I 

Master transaction Clocked) 

Chapter 10 NuBus Design Examples 215 



Slave operation 

During a slave access by another master, the operation of the NTC is determined by the 
slave, miscellaneous, and NuBus driver PALs. The slave PAL determines that an access to 
the NTC is being made (by looking at the slot decode, 1ST ART, and lACK) and performs 
timing. The miscellaneous PAL determines whether to clock (/ ACLK or IDCLK) or output 
enable (/ AOE or IDOE) the 374's, enable the· appropriate 651 direction, and so forth, 
based upon the inputs from the slave PAL. 

When the slave PAL detects that the Master register is being written to, it will finish the 
slave access and set its MASTER output signal. During the data cycle of the Master register 
write, the slave PAL latches the values of D11-D10, and causes the values of D7-DO to be 
latched into the 161 counters. During the subsequent master transaction, the slave PAL will 
not respond until the /MSTDN signal is asserted. 

Master operation 

A master transaction is begun when the slave PAL sets the MASTER signal. After the 161's 
have counted up to $FF, the master PAL begins the master state sequence. 

After arbitration, it does its start cycle and waits for the acknowledge cycle. When lACK is 
detected, IMSTDN is signaled; this causes the slave PAL to start looking for new slave 
transactions to the NTC. 

6 Important This design violates the letter of the law of NuBus in one regard; 
however, this violation causes no problem in a real system. The 
violation occurs at the end of a locked transaction. IRQST is held 
asserted during the final attention-null cycle; it should be released 
during that cycle. No problem exists because either the NTC is the last 
request (/RQST) or it is not. If it is the last, then the only effect is that 
new requestors must wait an additional clock cycle. If it is not the 
last, then /RQST would stay asserted anyway. In either case, the 
proper operation of the bus ensues. 6. 

216 Designing Cards and Drivers for the Macintosh Family 



SCSI-NuBus Test Card 

This card is an example of how a simple, 8-bit I/O chip may be supported over NuBus. 

The SCSI-NuBus Test Card allows the test of declaration ROM images, in particular, the 
Slot Manager. The card allows an image of a bootstrap program (contained in the card's 
declaration ROM) to boot the Macintosh Operating System from an attached SCSI drive. 
In addition, the card provides a small RAM which is accessible in super slot space for the 
testing of 32-bit address mode switching. 

The ROM is really a RAM that you can write to at the assigned ROM address space. The 
RAM chip may be replaced with a real ROM when desired. 

Software overview 

The software model of this card is essentially the same as that of the SCSI chip on the 
main logic board, except that it is accessed via NuBus. The address offsets of the 
registers and pseudo-DMA are the same as on a Macintosh SE or Macintosh Plus. 

The SCSI chip can generate NuBus interrupts (via /NMRQ) from both IRQ and DRQj this 
interrupt can be disabled. 

The declaration ROM is accessed at the top of the 1 MB address space. The SCSI chip is 
accessed at the bottom of the space. The 8 KB of RAM is accessible only as a super slot. 
Note that all of the devices are connected to byte lane 3 (bits /AD31-AD24) of NuBus. 
They are thus addressed from the microprocessor as bytes at addresses with the least 
significant two bits equal to 3 (lADl=/ADO=l, low). See Table 3-1, Figure 7-1, and the 
NuBus Test Card examples earlier in this chapter. 

Hardware overview 

This section describes the hardware components and how they function. Figure 10-2 is an 
electrical schematic of the SCSI-NuBus Test Cardj Figure 10-3 is the timing diagram. The 
PAL equations are in Appendix C. 

Chapter 10 NuBus Design Examples 217 



• Figure 10-2 Schematic of SCSI-NuB us Test Card 

/AD31- 4 
/AD30- 5 
/AD29- 6 
/AD28- 7 
/AD27- 8 
/AD26- 9 
/AD25- 10 
/AD24- 11 

GND -1 
GND - 2 

/lOR T l 

A7 
A6 
AS 
A4 
A3 
A2 
Al 
AO 

B7 
B6 
B5 
B4 
B3 
B2 
BI 
BO 

20 
19 
18 

17 _ _ YL~~+t++t---+'~'I\"', 
16 
15 
14 
13 

CAB CBA 23 - OCLK 
SAB SBA 22 - PU 

GAB GBA r 21l 

ALS651. _ +5 

3K 

~03---------------~-----+~~~~ 

~02-----------------------~-r--~.~--+4~~ 

I 

~D1-----------------------~~--~ 
~OO--------------------------~~--~--~~~ ______________ 1 

iTM1- 4 
/AD19- 5 
/AD18- 6 
/AD14- 7 
/AD13- 8 
/AD12- 9 
/ADll- 10 
/AD10- 11 

ACLK - 1 

PUt: ; 

/AD9- 4 
/AD8- 5 
/AD7- 6 
/AD6- 7 
/AD5- 8 
/AD4- 9 
/AD3- 10 
/AD2- 11 

ACLK - 1 

PUt: ~ 

20 
19 
18 
17 
16 
15 
14 
13 

23 
22 
21 

+5 --AVV\r- PU 
1K 

-TM1L A19 

A18 
A14 
A13 
A12 
All 
A10 

-GND 
-GND 
- PU 

A9 
A8 
A7 
A6 
AS 
A4 
A3 
A2 

-GND 
-GND 
- PU 

Ai4 
A13 
A12 
All 
A10 
A9 
A8 
A7 
A6 
AS 
A4 
A3 
A2 

2 
23 
21 
24 
25 
3 
4 
5 
6 
7 
8 
9 

10 

A14 
A13 
A12 
All 
A10 
A9 
A8 
A7 
A6 
A5 
A4 
A3 
A2 

2 
23 
21 
24 
25 
3 
4 
5 
6 
7 
8 
9 

10 

74F86 
28 

A12 Vee 07 
All D6 
A10 05 
A9 04 
A8 03 
A7 6264 02 
A6 8Kx8 D1 
AS RAM 00 
A4 
A3 WE 
A2 OE 
Al RAM CS1 
AO CS2 

Gild 

14 
28 

A12 Vee 07 
All D6 
A10 05 
A9 04 
A8 03 
A7 6264 D2 
A6 8Kx8 D1 
A5 RAM 00 
A4 
A3 WE 
A2 OE 
Al "ROM" CS1 
AO CS2 

Gnd 

14 

218 Designing Cards and Drivers for the Macintosh Family 

19 
18 
17 
16 
15 
13 
12 
11 

8 

-/IOW 
-~OR 

07 
D6 
05 
04 
153 
02 
D1 
00 

27 
22 
20 
26 

-/RAMCS 

19 
18 
17 
16 
15 
13 
12 
11 

-PU 

27 -/IOW 
22 -~OR 

D7 
D6 
05 
04 
03 
02 
D1 
00 

20 -/ROMCS 
26 -PU 

07 
06 
05 
04 
D3 
02 
D1 
00 

(Continued) 



• Figure 10-2 Schematic of SCSI-NuBus Test Card (Continued) 

ICLK - ......... 1 - 1 
ISTART 2 

lACK mySLOT 3 
mySUPER ~ 

/TMI 6 
-7 
-8 

!RESET --- 9 

------34 
------35 
------36 
------37 
------38 
------ 39 
------40 

1 

~
6 33 

A 32 
A4 30 

GND - 27 
10ACK - 26 

ISCSI - 21 
/lOR - 24 

IIOW - 29 

ORQ - 22 
IRQ - 23 

07 
06 
05 
04 
03 
02 
D1 
DO 
A2 
Al 
AO 

lEop 
/DACK 
ICS 
lIaR 
/lOW 

ORQ 
IRQ 

st 
N 
U 
B 
U 
S 
1 

lIaR 1 
19 ISLOT 2 
18 ~~----- 3 
17 ISUPER 4 
16 lSI 5 
15 IS2 6 
14 - - 7 
13 - ORQ - 8 
12 - IRQ - 9 
11 - GND /lNTEND - 11 

ISLOT - 1 
ISUPER - 2 

lSI - 3 
IS2 - 4 

5 
6 
7 

TMIL - 8 
- 9 

!RESET-11 

+5 IN4001 

31 

SCSI 
CTRLR 

Gnd 

11 

10 ---i---I 
2 
3 
4 
5 
6 
7 
8 
9 

12 ----I 
13----1 
14----1 
15 ----I 
16----1 
17----1 
18----1 
19----1 
20 ----I 

28 -!RESET 

18 
16 
14 
12 
10 
8 
6 
4 
2 
26 
44 
36 
38 
32 
40 
50 
46 
42 
48 

P2 

NOTE: All IC tenrunals and lines labeled Gnd 
or GND are connected to power ground. 

st 
N 
U 
B 
U 
S 
2 

st 
M 
I 
S 
C 

19 - ACLK 
18 - OCLK 
17 - lACK 
16 - /TM1 
15 - /TMO 
14 -
13 -
12 -INMRQ 

19 - ISCSI 
18 -/DACK 
17 - IROMCS 
16 - fRAMCS 
15 - /lNTEND 
14 -
13-
12 - /lOW 

Chapter 10 NuBus Design Examples 219 



NuBus transceivers (ALS651's) 

Three 74ALS651's are used to implement the NuBus transceiver function. 

One of them is the data transceiver; it connects to byte lane 3 (bits I AD31-1 AD24) and 
serves to transmit and receive the byte-wide data over NuBus. During idle states, the data 
transceiver is also monitoring the bus to feed data into the slot decode logic. 

Two 74ALS651's are used to latch addresses (lADl4-/AD2,/AD18,/AD19) and the 
writelread signal (lTMl) for the SCSI, ROM, and RAM accesses. These chips are clocked 
by a signal from stNUBUS2 every falling edge of ICLK until stNUBUS1 detects an access to 
the card. They then hold onto the low-order address bits that were present during the 
transaction's start cycle. 

Slot Decode (F86/F30) 

This card uses a combination of a 74F86 and a 74F30 to perform slot decoding. Two sets 
are used, one for the standard slot space decode ($Fsxx xxxx) and the second for the 
super slot access decode ($sxxx xxxx). 

NuBus state machine (stNUBUSl PAL) 

This PAL (16R8B) performs the basic NuBus timing for the card. When either mySLOT or 
mySUPER is detected during a start cycle, the PAL generates ISLOT or ISUPER and starts a 
2-bit counter (lS2, IS1), which is used by s/TMISC. The value of ITM1 during the start 
cycle is latched to form the lIaR signal, the assertion of which indicates a read. 

NuBus signal generator (stNUBUS2 PAL) 

This PAL (16L8B) decodes the state of IS LOT, ISUPER, and IS2 to generate the 
acknowledge cycle and control the latching of the 651 'so 

stNUBUS2 is also used to generate the open-collector INMRQ signal for presentation of 
interrupts to the main logic board. 

220 Designing Cards and Drivers for the Macintosh Family 



• Figure 10-3 SCSI-NuBus timing diagram 

ICLK-.J U U U U u-
1 1 1 
1 1 1 
1 1 1 

ISTART il ! 'Z'Z,J?sj 
1 '-----I...... 1 
1 1 I 
1 1 1 

ACLK -TI rTI~ ______ ~ ______ ~ ______ ~ _____ ~ 
1 
I 
1 
I 

ISLOT, ISUPER 

lSI 

/S2 

ACK 

/SCSI,/DACK, ---;---------i---, 
fROMCS, fRAMCS L--__ ~---------__!_-.I 

/lOR 

IIOW 

DCLK 

Decode and timing (stMISC PAL) 

This PAL (16L8B) generates the basic I/O strobes to the SCSI, ROM, and RAM. It uses the 
/SLOT and /SUPER signals in addition to the latched address bits to perform the decode. 

The INTENB signal is a latch that controls the generation of /NMRQ. It is set by 
addressing $Fsx 820x; it may be cleared by addressing $Fsx 800x. 

Chapter 10 NuBus Design Examples 221 



SCSI chip (NCR5380) 

This chip is identical to that used in the Macintosh Plus. It connects to a SCSI bus via the 
connector P2, which also supplies the TRMPWR signal for SCSI termination. 

Pseudo-ROM 

The ROM of this card was designed to allow software designers quick update capability. 
It is really an 8 KB x 8 RAM which can be written using the ROM address space. However, a 
real 8 KB x 8 ROM may be inserted instead. 

RAM 

The RAM chip is an 8 KB x 8 RAM which is accessible only by addressing super slot space. 

PAL descriptions 

The source code of the three PALs is in Appendix C. Refer to these listings, along with the 
timing diagram and schematic, for a more detailed understanding of how the card works. 

A simple disk controller 

This section describes the electrical and interface characteristics of a slave-only disk 
controller card that allows a Macintosh II-family computer to communicate with a generic 
disk drive through the NuBus. 

The disk controller card plugs into any NuBus slot on the main logic board and connects to 
a floppy disk drive located outside the computer. The disk controller card consists of a 
disk controller IC and a disk interface IC, a sector buffer RAM, a declaration ROM, various 
address and data buffers, and three 24-pin PALs. All controlling firmware exists in the 
computer. The controller is memory mapped into a single NuBus slot space. 

222 Designing Cards and Drivers for the Macintosh Family 



System configuration 

The controller package consists of a disk controller card, a cable running from controller 
to disk drive, and a floppy disk drive. The disk controller card connects the disk drive to 
the computer's central processor through one of the slots on the main logic board. One 
end of the cable connects to the controller card and the two connectors on the other end 
of the cable connect to the disk drive .. 

Controller card block diagram 

The controller card is made up of the following parts, shown in Figure 10-4: 

Address/data bus transceivers: These 74LS640-1's buffer the internal address/data bus 
of the controller from the NuBus address/data bus. 

Address counters: These 74LS169 counters latch the RAMlROM address from the NuBus 
during RAMlROM reads or writes and count down the RAM address during DMA transfers 
to or from the disk. 

RAM: This is the 2048 x 8 sector buffer RAM. Data to be transferred to or from the disk is 
placed here by the processor before disk transfers are initiated. 

ROM: This is the NuBus declaration ROM. The NuBus Slot Manager accesses this ROM on 
power-up to determine the controller's type and modes of access. 

Slot address decoder PAL: This PAL20L10 determines if the controller's slot address is 
selected. It uses the signal/START and address decoding to compare if the upper nibble 
of the address is an $F and if the address lines A27-A24 and D3-DO compare with the hard­
wired slot ID address. 

State machine PAL: This PAL20X10 generates the timing for programmed I/O and 
internal DMA transfers on the controller. 

State decoder PAL: The state number is decoded by this PAL to produce control signals 
needed by the various parts of the controller. 

Control/status driver: The control driver places the signals / ACK, /TMO, and /TM1 on the 
NuBus at the end of a NuBus access of the controller. The status driver allows the 
following signals to be read by the processor: disk controller interrupt, internal operation 
pending, and disk in place. 

Chapter 10 NuBus Design Examples 223 



• Figure 10-4 Floppy disk controller block diagram 

NuBus 
Address/Data 

Control 

Four 
..... -I-~;..:;:.;;.-..;.;A;;;;:D..::.O_ .. transceivers 

7415640-1 

Slot 
ID3-IDO L..---t~ address 
ISTART decoder 

PAL 

ISLOT L....-_ ..... 

AD19-AD09 

State 
machine 

PAL 

AD7-ADO 

Three 
counters 
7415169 

AD7-ADO 

A11L-AOL 
Latched address 

I-+-I---ia-----.J 2048X8 
Static 
RAM 

1...-__ -.1 2048X8 
ROM 

!ROMOE 

16 MHz 
cIYstal 

oscillator 

CLKIN 
IfM1 
!RESET 
ICLK 
ISTART Disk 

~-------l~ controller 
IC 

Disk 
interface 

IC 

IfM1 
!RESET 
ICLK 
1ST ART 

IACKCY 
IQ2, IINTRNOP 
IQ1, DMAREAD 
IQO 

State 
decoder 

PAL ~---~~-~ 

IMWE 
t----.. IMRD 

IDECAD 

Disk 

lACK 
IfMO 

DREQ 

IfM1 Control 
1+0----1---1 and 

status I ACKCY 
driver 

AD19-AD 
74LS240 ..... -- Jct~~race 

Disk 
I...---~ interface 

driver 
74LS240 

IDrive select 3 
IDrive select 2 
IDrive select 1 
IDrive select 0 
IIndex 
!Read data 
!Write data 

INT 

enable 
/Side 1 
!Index 
IDirection 
IStep 

1..-__ -' !Write protect 

... ~--!ROMOE Ifrack 00 
+ 12V,+5V,+ 12V retum,+5V return 

224 Designing Cards and Drivers for the Macintosh Family 



Floppy disk controller IC: This LSI chip contains the circuitry necessary to 
communicate with the generic disk drive. Coupled with the companion disk interface IC 
chip, it handles all operations with the drive including reading and writing data, 
formatting, seeking, sensing drive status, and recalibrating. 

Floppy disk interface IC: This chip provides drive and timing support to the disk 
controller IC. It contains write precompensation and phase-locked loop circuitry. 

Disk interface driver: The disk interface driver buffers and provides current drive for 
several signals coming from and going to the disk drive. It also is used as a multiplexer for 
four signals: FLT/TRO, WP/TS, FR/STP, and LCT/DIR. 

16 MHz crystal clock oscillator: This oscillator provides a 16 MHz clock to the disk 
interface IC for use in the drive interface. 

Floppy disk controller logic 

The disk interface is provided by the disk controller IC, the disk interface IC, and two 
74LS240 drivers. The disk controller IC is the controlling chip and communicates with the 
disk interface IC. Details of this logic are not directly relevant to design of NuBus 
interfaces and so they are not given here. 

NuBus interface logic 

The controller connects to NuBus via several drivers and PALs. The address/data bus is 
tied to four 74LS640-1 transceivers which invert each bit. Control signals such as /START, 
the slot identification bits /ID3-/IDO, and the mode bits /TM1-/TMO are used to time 
data transfers to and from the NuBus. Status information is passed to the NuBus along 
with the control signal / ACK by the status driver (74LS240). DMA operations are controlled 
by the state machine and state machine decoder PALs. 

Key signals are described in Table 10-3. 

Chapter 10 NuBus Design Examples 225 



• Table 10-3 RAM access signals 

Signal name 

ISLOT 

IALD 

IFWR 

IFRD 

AO 

SR 

IDREQ 

IDACK 

IACKCY 

IMWE 

IMRD 

IINTRNOP 

IDMAREAD 

IDECAD 

Signal description 

Signals that a NuBus cycle to the controller is active 

Used to load the RAMlROM address into the address counters; 
gates the clock signal into the synchronous counters 

Enables disk controller IC write enable 

Enables disk controller IC read enable 

Disk controller IC register select: 0 selects main status register, 
1 selects data register 

Direction signal to bidirectional driver on the addressl data bus: 
o means write to NuBus, 1 means read from NuBus 

Requests DMA cycle from disk controller IC or disk interface IC 

Acknowledges the DMA cycle requested 

Gates lACK and ITMI-/TMO 

Enables RAM memory write 

Enables RAM memory read output 

When asserted, indicates internal DMA operation in process 

Indicates a DMA read operation when asserted 

Enables the DMA address counters to decrement by one 
memory location 

Programmed I/O (PIO) operations 

Control and status information is passed to and from the controller using programmed 1/0 
operations. PIO transfers include RAM and disk controller IC reads and writes, and ROM 
reads. The Motor On and RESET signals are asserted and deasserted using PIO operations. 
Refer to Figure 10-4. 

A typical PIO transfer begins with the assertion of the signal ISTART. The slot address is 
valid during the time 1ST ART is asserted and is recognized by the slot' decoder PAL. It 
asserts the signals ISLOT and I ALD. ISLOT indicates that the NuBus cycle is currently 
active. I ALD is used as a clock enable signal for loading the RAM or ROM address into the 
counters. IALD is also used as a clock enable to latch ITMI and address bits A19/Dll, 
A18/DlO, and A17/D9. These are later used to assert the signals IFRD, IFWR, IMWE, IMRD, 

226 Designing Cards and Drivers for the Macintosh Family 



SR, /ROMOE, and AO. The state machine, recognizing /SLOT, begins sequencing through a 
NuBus cycle, going to states 1, 3, and then 2. In state 2 it asserts / ACKCY, which in turn 
enables the status driver to assert /TM1-/TMO and /ACK. The signals /FRD, /FWR, /MWE, 
/MRD, SR, /ROMOE, and AO are asserted or deasserted according to the address on the 
address/data bus during /START and the state number. 

The signals /FRD, /FWR, and AO transfer data to and from ~he disk controller ~c. 

RAM accesses are controlled by /MWE and /MRD. The ROM is read when /ROMOE is 
active. The signal SR is used to control the direction of the 74LS640 transceivers. 

On-card DMA operations 

Transfers to and from the sector buffer RAM are done by on-card DMA. DMA is not done 
through the NuBus because this card is a slave only. 

The state machine is placed in ~nternal DMA mode by writing to an address in the range 
$FssC 0000 through $FssF FFFF. See the next section, "Memory Map and the Declaration 
ROM," for the rationale behind the ss in ~hese addresses. DMA operations from the disk to 
RAM require t~at the last command word to the disk controller Ie be written to a location 
in the range from $FssC 0000 through $FssD FFFF. 

DMA operations from RAM to the disk require that the last command word to the disk 
controller IC be written to a location in the range from $FssE 0000 through $FssF FFFF. 

After a DMA operation has been requested, transfers to or from t~e disk are then initiated and 
controlled internally. After an operation is complete, the controller interrupts the processor. 
The address bits Al3-A2 are the beginning RAM memory location that the DMA operation 
uses. This address is decremented until it reaches zero and terminates the DMA operation. 

An attempt to read or write to any address in the control~er's address range during a DMA 
operation is ignored, although the NuBus cycle is terminated with normal status. 

When a DMA operation is requested, the signal /INTRNOP is asserted along with /DMAREAD if 
tpe operation is a DMA read. A /SLOT or a /DACK signal causes the state machine to begin 
sequencing. Because ~he /DACK signal holds off /SLOT, if both happen simultaneously, the 
DMA oper~tion is ~rst completed, and then the NuBus cycle is acknowledged. 

The signai /DACK occurs on the first rising edge of /CLK after the signal DREQ is asserted, 
and is held until the DMA cycle is complete. The disk controller IC/ disk interface IC pair 
initiates the DMA cycle by asserting DREQ. 

Chapter 10 NuBus Design Examples 227 



Memory map and the declaration ROM 

The controller's device select space ranges from $FssO 0000 to $FssF FFFF and is divided up 
into eight blocks. The designator ss is used to indicate the slot space where s is the slot 
number and ranges from $9 through $E in the Macintosh II family. 

Table 10-4 summarizes the address decodes. 

• Table 10-4 Device select decode addresses 

Address range 

$FssO OOOO-$Fssl FFFF 
$Fss2 0000-$Fss3 FFFF 

$Fss4 0000-$Fss5 FFFF 
$Fss6 0000-$Fss7 FFFF 
$Fss8 0000-$Fss9 FFFF 
$FssA OOOO-$FssB FFFF 
$FssC OOOO-$FssD FFFF 

$FssE OOOO-$FssF FFFF 

Device selected and action resulting 

Read status information from disk controller 
Read or write control information to the disk 
controller 
Begin internal DMA cycle reading data from disk 
Begin internal DMA cycle writing data from disk 
Enable RAM for reading or writing 
Reserved 
Tum drive motor on by writing; turn motor and 
controller's reset signal off by reading (interrupts are 
enabled when the motor is on!) 

Access ROM by reading; turn controller's reset signal 
on by writing 

It is through the data register that commands, data, and values in status registers 0-3 are 
passed. Any disk operation is initiated by passing the several commands required to the 
disk controller IC via this register. If a format, read data, read deleted data, write data, or 
write deleted data command is requested, the data or parameters required by the disk 
controller IC during its execution phase must have been previously loaded into the sector 
buffer RAM. 

The final command code written to the disk controller IC is written via the DMA execute 
addressing space. The read track operation is not supported because the quantity of data 
transferred exceeds the sector buffer size. After the execute portion of an operation is 
completed, the disk controller IC may give back status information in status registers 0-3. 

In order to read the status of the disk controller, an additional status register is provided. 
This register is accessed by a MOVE.W to the address space from $FssE 0000 through 
$FssF FFFF (ROM). 

228 Designing Cards and Drivers for the Macintosh Family 



Chapter 11 The Macintosh II Video Card 

This chapter describes the video card designed by Apple for use in the 
Macintosh II family of computers. This purpose of this information is to 
provide you with an overview of good video card design, but not step­
by-step instructions for actually implementing the design. It is assumed 
that you have already read the NuBus design guidelines in Chapters 2 
through 10. Although the material presented in those chapters is pertinent 
to all types of NuBus expansion cards, it is particularly appropriate to 
the design of a video card. 

229 



Video card overview 

The original Macintosh II Video Card and the new Macintosh II High-Resolution Video Card 
are high-performance color video cards for use with the computers in the Macintosh II family. 
These cards provide variable-depth color graphics at up to 8 bits per pixel. The cards contain 
a color look-up table (CLUT) with a 16.8 million color palette and an 8-bit digital-to-analog 
converter (DAC) for each of three channels (red, green, and blue). 

The original video card has several important features, including 

• display resolution of 640 x 480 pixels 

• refresh rate of 67 hertz for reduced flicker 

• up to 256 colors out of 16 million possible 

• support for 1-, 2-, 4-, and 8-bit pixel modes 

• frame buffer sizes of 256 KB and 512 KB, user upgradable 

• plug-in-and-go operation-requires no special configuration of hardware or software 

In addition to the above features, the newer high-resolution video card provides some 
features not found on the original card. The new features are 

• full support for RS-170 video monitors 

• support for multiple screen sizes 

• ability to recognize different monitors at startup time and automatically configure 
itself appropriately 

• full support for A!UX in the card's ROM 

Unless specified, the information in the following sections pertains to both versions of 
the video card. Firmware support is provided by the card's declaration ROM. The 
declaration ROM contains a low-level card driver that performs all of the interface and 
hardware management functions for the video card. The declaration ROM is described 
later in this chapter. The firmware structure of the declaration ROM is described in more 
detail in Chapter 8. 

Operating system support, as provided by Color QuickDraw, the Color Manager, and the 
Slot Manager, is detailed in Inside Macintosh. 

230 Designing Cards and Drivers for the Macintosh Family 



6 Important In addition to the 256 KB to 512 KB of video memory that 
QuickDraw manages, most of the video card features are 
subject to software control through several control addresses. 
These addresses are alliocated.in the 16 MB slot space described 
in Chapter 7, "NuBus Card Memory Access." Since there is a 
difference between NuBus address allocation and the mapping 
of address space in the Macintosh II family, you must be aware 
of the byte swapping that takes place on the main logic board 
of the computer. For more information on byte swapping, refer 
to the section "NuBus Bit and Byte Structure" in Chapter 7 and 
the section "Byte Swapping and the NTC" in Chapter 10. b. 

Functional operation 

The video card controls the output of data to a video device through the use of the Frame 
Buffer Controller (FBC) and the color look-up table (CLUT). The declaration ROM provides 
the interface between the card hardware and application software running on the CPU. 

Figure 11-1 is a block diagram of the video card. The following paragraphs briefly describe 
the function of each of the blocks shown in Figure 11-1. 

• Figure 11-1 Video card block diagram 

.A. DATA ..... 

Processor-video 
) 

Video ... ..... 
card interface ADDR ..... .A. RDATA 

RAM 
) 

Frame 'l"" ... 
~ 

Buffer 

it .. 
Controller CLK CLK ..... CONT 

~ (FBC) 

I 
..,... 

- -
1 r 

I I 
VClK 

~ Timing 
generation \i' .... 

Color 
look-up vour 

~ table .... 
(Clm) 

Chapter 11 The Macintosh II Video Card 231 



Processor-to-video card interface 

The processor-to-video card interface is implemented by a combination of hardware and 
firmware. The hardware is the standard NuBus electrical interface, described in Chapters 1 
through 7. The firmware is implemented in the declaration ROM, described later in this 
chapter and in Chapter 8, "NuBus Card Firmware." 

Timing generation 

The timing generation circuitry includes pixel clock oscillators that define the time for a 
single pixel. The latest version of the video card has two pixel clock oscillators, one for 
the Macintosh II-family monitor (30.667 MHz) and another for the Apple IIGS (RS-170) 
monitor (12.24 MHz). Only one of these clocks is active, as selected by firmware. 

6 Important If the clock selected is not the right one for the type of monitor 
connected to the card, the display will not be readable. The card's 
firmware (Primary Init) stores information about the monitor so that 
software can't switch to the wrong clock. 6. 

The timing generation circuitry generates timing signals for other devices on the video 
card, including 

• the Frame Buffer Controller (FBC) interface signals 

• the NuBus handshake and control signals 

• other video card control signals 

Frame Buffer Controller (FBC) 

The Frame Buffer Controller (FBC) is the most important single part of the card. It 
manages the video RAM, generates the video sync signals, and contains the NuBus interface 
circuitry. The FBC controls the transfer of data out of the serial port of the video RAM and 
into the CLUT/DAC where the pixel values are converted into video display signals. 

232 Designing Cards and Drivers for the Macintosh Family 



The FBC is a register-controlled CMOS gate array. The video card firmware controls the 
FBC by loading its set of control registers with the parameters stored in the declaration 
ROM. These registers are loaded during video card primary initialization and on certain 
viqeo driver control requests. These operations are described later in this chapter under 
"Firmware Interfaces." 

The FBC uses the parameters stored in the control registers to generate and control video 
data and timing signal output. Register contents determine video characteristics such as 
bit depth and timing. The registers are also used for other control functions such as 
selecting the appropriate pixel clock and reading the monitor sense line. 

The various gated inputs on the FBC are used to execute RAM read/write and refresh 
operations. RAM operations are more fully explained in the next section, "Video RAM." 

The control registers used by the FBC are mapped into the computer's main memory in the 
slot space assigned to the video card. The control address space is independent of the 
frame buffer data space. 

L Important Your applications should never access the hardware directly because 
the locations and functions of the registers may change (and also 
because the control registers won't be compatible with other 
manufacturers' cards). For this reason, the parameters stored in the 
FBC control registers are not documented in this book. To maintain 
product compatibility across a possible variety of Macintosh video 
cards, and to allow for any future changes to the hardware, you are 
strongly advised to always use software interfaces (driver routines) to 
control the operation of the video card. t::. 

Video RAM 

The video RAM makes up the frame buffer: the memory dedicated to storage of the pixel 
data for display. The frame buffer consists of two 256 KB banks of video RAM, Bank A 
and Bank B. Each bank of video RAM consists of eight ICs, each of which is a 64 KB x 4 
device with 150 nanosecond access time. On a card with 256 KB of video RAM, only 
Bank A is populated; on 512 KB cards, video RAM chips are installed in both banks. The 
video card's firmware performs a test at startup time to determine the amount of video 
RAM installed. 

Chapter 11 The Macintosh II Video Card 233 



The video RAM ICs are dual ported: in addition to the normal parallel port for reading anci 
writing, each video RAM IC has a built-in shift register and separate serial port for video 
data. QuickDraw writes into the video RAM tprough the parallel port and the FBC extracts 
the display data through the serial port. This separation of f~nctions allows more than 95 
percent of the video RAM's bandwidth to be available to the processor. 

Of primary interest to you as a developer of a card or driver are NuBus operations to ~nd 
from video RAM. Bus operations to RAM (transactions) are of two types: 

• video RAM space writes and reads 

• control space writes and reads 

Figure 11-2 shows a timing diagram for a processor access to video RAM space, for writing 
and then reading. The typical sequence of functions is shown on the figure; also shown are 
the start and acknowledge cycles that characterize a transaction as descriped in 
Chapter 2, "NuBus Overview," and Chapter 3, "NuBus Data Transfer." 

Key elements of the sequence are as follows: 

1. The current bus master drives /START to asserted (low), places desired video RAM 
space address on the/AD31-/AD2 bus, and drives </TMl-/TMO,/ADl-/ADO> with the 
transfer mode. /TMI is low when the first transaction in Figure 11-2 starts, indicating 
that a write transaction is under way. " 

2. Write output enable (/WROE) is asserted (low). 

3. The viqeo card decodes /ID3-/IDO to determine wpether it is in the slot currently 
being accessed by the current bus master; if so, then the card's /SLOTSEL is asserted. 

4. On the next ~ising (sampling) edge of the video clock (20M) RAM select (/RAMSEL) is 
asserted; this indicates that a RAM access is to be initiated on ~he next driving edge of 
the NuBus clock. 

• Note: ~e video card clock (20M) is twice the frequency of the NuBus clock (/CLK). 

5. The RAM timing chain is commenced, driven by ~ state machine going sequentially 
through states 3, 2, 0, 1, and repeating; this machine controls a wait for the data from 
the bus master/processor to become ready, initiates row and column address strobes, 
anq g~nerates the RAM accesses to do the writ~ng. 

6. The bus master drives the /AD31-/ADO lines with the data to be written and releases the 
/TMI-/TMO lines and the /ACK line. 

7. The video card drives the transaction response status onto the /TMI-/TMO lines and asserts 
acknowleqge (/ ACK) , notifying the bus master that the write transaction is completed. 

234 Designing Cards and Drivers for the Macintosh Family 



8. The bus master releases the IAD31-IADO Hnes and drives the lACK line to a 
determinate state. 

9. The video card releases the ITMI-/TMO lines and also releases I ACK, completing the 
write transaction. 

• Figure 11-2 Access to video RAM space 

/CLK 

NU70 

MIDDLE 

20M 

/TMI 

/START 

/SLOTSEL 

STATE 

/RAMSEL 

/PAS 

IWROE 

/ACK 

lOOns / Ram access starts 
I 

I ( " I I I I I I 

~~--~U U U U~--~U~--~U~~U~--~U~---Lr 
I I I 
I I I 

I I 
I I 

--~------------~----~!------+---~~------~----~----~~------I I 

! IT:::] ci:::J ,~!----~~i----~------+------+-------
I I I I 
I I I I 
I I I I 

! '~~~::l~-~ ~~~---r------~----~-------
I I I 
I I I 
I I I 11 I -'-_AI~-_Al.~-_ 

--:.-i----' vi I : 
I I I 

I ~ &1 ~~-r~~----------~-------
I I I : I 

I\..!I~ I II ~II I 

~ ~~I------------~------~~ '~'-~i------~' _______ ~----~&V 
I I ~I~------____ ~ __ ~~ 
! I A ~'"ll>-------
I : I I 
! I I I 

I: ~~ ~~~~~r---~I------~-----~~I~~~ ~~~~?----

! 1 iii i .....---i~ 
l) l. A __ .......-J l""--r-~J 

I I I I 
Start Acknowledge Start Acknowledge 

l cycle cycle A __ CY_cl_e ___ --r-____ cy_c1_e _J 
I I 

Write Read 

t Start of RAM timing chain. 

Chapter 11 The Macintosh II Video Card 235 



Color look-up table (CLUT) 

The color look-up table (CLUT) is a device that converts the pixel data from the frame 
buffer into the red, green, and blue video signals. It is actually a combination of a color 
look-up table and three 8-bit digital-to-analog converters (DACs) integrated into one Ie. 
The CLUT supports up to 256 simultaneous colors from a possible 16.8 million colors. 

Color QuickDraw initializes the color-table RAM in the CLUT with default color values 
using the video driver loaded from the declaration ROM. Color QuickDraw also provides 
utilities (again by way of the video driver) to read and modify the information in the 
color table. 

The CLUT is the electrical interface between the FBC and the analog video output device. 
In operation, the FBC controls the transfer of digital pixel data from the video RAM to the 
CLUT. Inside the CLUT is a table of RGB triples, one for each currently available color. 
Each pixel's worth 0, 2,4, or 8 bits) of data from the frame buffer, acting as an index to 
this table, selects an RGB triple to be sent through the DACs to the video outputs. The 
table has storage for 256 RGB triples, enough to support up to eight bits per pixel. 

Each RGB triple from the table consists of three 8-bit values, one each for red, green, and 
blue. Those values are sent to three 8-bit DACs to generate red, green, and blue analog 
color signals. The outputs from the DACs provide RS-343-A or RS-170-compatible RGB 
video signals to the video connector at the rear of the video card. 

Horizontal and vertical scan timing 

Figures 11-3 and 11-4 show timing infonnation for the two types of video monitors 
supported by the video card: Macintosh II-family (high-resolution) RGB and Apple IIGS 
(RS-170) RGB. These figures define the blanking, synchronizing, and active video regions 
of the video scan wavefonns in terms of dot or pixel times. A dot is the time required to 
draw a single pixel. H is the time for one horizontal line, including retrace; likewise, V is 
the time for a vertical scan. 

236 Designing Cards and Drivers for the Macintosh Family 



• Figure 11·3 Horizontal and vertical scan timing for high-resolution RGB monitor 

Horizontal timing 

0.714V t;;;J:~;;;;;';;:!J-:------, ~ ~:: 
0.054 V J----------. -'j j /Hsync kr----l 

0.286 v ~ U 

.,i:,' ' 832 dots • 

Sync pulse on 640 dots 
green channel only • • 

0.714 v 

ICsync 

... 

Vertical timing 

EL Back porch· 96 dots 

Sync pulse width = 64 dots 

Front porch = 64 dots 

t ::::::::::::::~ 11 ~ 
---H i I Nsync i 

... -

! ~ ! ! U 
iii i i 
! ... 1 1 1 525 dots • ! 
iii i : 
! !!! 480 dots ! 'Ill'· Backporch=39H .' 

- -

Sync pulse width = 3 H 

Front porch = 3 H 

- -

Ildot = 30.24 MHz ±.1% 
All the timings are, derived 
from the dot clock and 
have the same tolerance. 

1 dot = 33.069 ns 

White 

~Black 

-

-

1 H = 28.5714 11s 
1/H = 35.00 KHz 
1 V = 15.00 ms 
IN = 66.67 Hz 

- ... ~ 

Chapter 11 The Macintosh II Video Card 237 



• Figure 11-4 Horizontal and vertical scan timing for the RS-170 monitor 

Horizontal timing 

0.714 V t ~;J:~;;;;;;;;~ i i 

0.054 V ',: I" /Hsync 
~~~------~--------~LJ 

"' , ::: Sync pulse on
green channel only

Vertical timing

" ..

EL Back porch = 56 dots

Sync pulse width = 60 dots

Front porch = 24 dots

l/dot = 12.27 MHz ±.1%
All the timings are derived
from the dot clock and
have the same tolerance.

1 dot = 81.5 ns

0.714V t -------------~ White

O.054V::~::::=::~ ~ ur----~--Black

, , , , , , , , .
: .. : : 262.5 dots

iii
i i ! , , , 240 dots

! 1'1' L Back porch = 16.5H
Sync pulse width = 3 H

Front porch = 3 H

238 Designing Cards and Drivers for the Macintosh Family

1 H = 63.57 ps
1/H = 15.7 KHz
1 V = 16.687 ms
IN = 60Hz

Declaration ROM operation

The video card includes a declaration ROM that contains all the information the system
requires to identify and use the card. The declaration ROM identifies the card as a video
device manufactured by Apple and identifies the particular model.

The declaration ROM incorporates three main elements:

• the configuration data

• the drivers

• the primary initialization code

These three elements allow the video card to be installed into a system, recognized, and
used without having to run any special configuration programs, and without adding any
code to the System file of the host system.

Configuration data

The declaration ROM provides a set of predefined video modes, each element of which
specifies all the parameters of the display unique to that mode, including horizontal and
vertical size, pixel size, rowbytes of a scan line, and the number of video pages available
at this screen resolution.

The video card is highly programmable, and as a result, the number of possible video
modes is enormous. A subset of these video modes, optimized for various Apple display
devices, is included in the declaration ROM. The declaration ROM of the Macintosh II
Video Card has some unique features. Because the card is available in two
configurations-256 KB and 512 KB RAM-a number of mode conflicts arise. Most
notably, the 256 KB version of the card does not support 8-bit mode, and each common
mode has a different number of video pages available on the two cards. To resolve this
problem, the card includes two complete slot resources (sResources)j one for the 256 KB
card and another for the fully stocked card. For a detailed description of sResources, see
Chapter 8, "NuBus Card Firmware."

Chapter 11 The Macintosh II Video Card 239

At startup time, both slot resources are installed in the system's slot resource table. When
the primary initialization code of the video card is executed, in addition to initializing
the FBC, it performs a size test on the amount of available video RAM, and removes the
slot resource that does not apply. The 256 KB version of the slot resource list includes
configuration information only for 1-, 2-, and 4-bit video modes as well as the appropriate
number of video pages available. Normally the video mode of a card in a Macintosh II­
family computer is set using a Control Panel module called Monitors. (See the chapter on
the Control Panel in Inside Macintosh for more information on Control Panel modules.)
Monitors finds the available video modes of a video card by examining the declaration
ROM's information. By implementing the declaration ROM in the manner described here,
a single declaration ROM serves both configurations of the video card without Monitors
having to verify device-dependent information (such as memory size).

The driver

The parameter defining each video mode also specifies a software driver, specific to the
card hardware and located in the ROM, that is loaded into main memory by the Slot
Manager at startup time. This driver is equivalent to the firmware on traditional peripheral
cards. Chapter 9, "NuBus Card Driver Design," contains a code listing for a possible video
card driver.

• Note: Because the ROM may not appear on all four byte lanes, the driver is loaded into
the main memory for execution; object code is not normally executed over the bus.

The Macintosh II High-Resolution Video Card also contains a separate driver specifically
designed for video support under the A/UX operating system.

240 Designing Cards and Drivers for the Macintosh Family

The primary initialization code

The declaration ROM includes a special code, called the primary initialization code, that
performs key, one-time initialization to the card when executed.

The monitor connected to the high-resolution video card identifies itself by asserting a
predetermined combination of signals on the sense lines (SENSEO and SENSE1 on the
video connector). The primary initialization code, executed at system startup, reads the
monitor sense lines and selects the appropriate pixel clock rate. Next, after sizing the
amount of installed video RAM, the code selects the appropriate sResource and installs it
in the Slot Manager's Slot Device Table. This information informs Color QuickDraw about
the size and shape of the display, as well as the various pixel depths and number of video
pages available on this configuration of card and monitor.

By making this determination at startup time, the primary initialization code permits the
system code to be greatly simplified because only information pertinent to the
connected monitor is reported by the Slot Manager, and no information about the other
type of display is present in the Slot Device Table. This feature greatly simplifies the use
of the video card because the display is always correct for the connected monitor, and
the monitor cannot be switched into modes where the screen is not readable.

FirEnvvare Unterfaces

Usually, it is not necessary to access the slot information or the driver directly from the
application; instead, Color QuickDraw and the Color Manager in the Macintosh ROM
manage all transactions to the card and its driver. Figure 11-5 shows the way those ROM
routines mediate between the application and the hardware. For example, the
InitGDevice routine in Color QuickDraw (documented in the graphics devices chapter of
Inside Macintosh) issues all the appropriate calls to change the video mode, load the
CLUT, and perform other hardware maintenance tasks, as well as updating system
variables pertinent to the affected video device.

Selection of a video mode by the user is made possible by system software such as
Monitors and a Control Panel module that graphically presents all possible modes for a
video device (as enumerated in the declaration ROM) and allows interactive selection. By
always using system code such as QuickDraw and the Control Panel, you will find that
applications are simpler to write and present a more uniform interface to the user.

Chapter 11 The Macintosh II Video Card 241

• Figure 11-5 Firmware levels

Applications

Applications

Application-level interface
Control Panel
Paint programs; and so forth

System-level interface
Color QuickDraw
Color Manager
Palette Manager

Primary initialization
System configuration
Video driver

242 Designing Cards and Drivers for the Macintosh· Family

Card connectors

The latest version of the Macintosh II Video Card contains three connectors, one for
NuBus, one for video output, and one for external video signals. The connection to the
NuBus is through the 96-pin Euro-DIN connector shown in Figure 6-1. The pinout of this
connector is given in Table 5-3.

Video connector

The small DB-15 connector at the rear of the card is the video output connector. In
addition to the red, blue, and green video output signals and the synch signals, this
connector provides the sense lines that enable the card to determine the type of monitor
it is connected to. The pinout of the video output connector is shown in Table 11-1.

• Table 11-1 Pin assignments for the video output connector

PIn

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Signal

GND
RED
/CSYNCH
SENSEO
GREEN
GND
SENSE1
n.c.
BLUE
SENSE2
GND
/VSYNC
GND
GND
/HSYNC

Definition

Red ground
Red video
Color synchronization
Monitor sense line
Green video
Green ground
Monitor sense line
Not connected
Blue video
Monitor sense line
Ground
Vertical sync signal
Blue ground
Ground
Horizontal sync signal

Chapter 11 The Macintosh II Video Card 243

External-signal connector

The external-signal connector is a 14-pin connector that enables the card to accept external
sync signals from genlock and overlay cards. Table 11-2 shows the pinout of this connector.

• Table 11-2 Pin assignments for the external-signal connector

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Signal

GND
GND
GND
EXTCLK
GND
CLOCKSELECTt
GND
/CBLANK
GND
/VSYNC
GND
/HSYNC
VCC
/CLOCKSELECrt

Definition

Ground
Ground
Ground
External clock
Ground
Positive clock select
Ground
Blanking
Ground
Vertical synchronization
Ground
Horizontal synchronization
Power supply voltage
Negative clock select

t Note that both polarities of the Clock Select signal are present.

244 Designing Cards and Drivers for the Macintosh Family

Part II The Processor-Direct Slot
Expansion Interface

About Part n

The processor-direct slot (PDS) expansion interface is the subject of Part II of this book.
The five chapters give you the information you need to design expansion cards for
Macintosh PDS computers.

Chapter 12 provides block diagrams of each of the Macintosh PDS computers, compares their
major features, and gives a general overview of their operation. The chapter then introduces and
describes the capabilities of the processor-direct slot expansion interface.

Chapter 13 contains the electrical information you need to design cards for the 68000
Direct Slot. The following topics are discussed in this chapter:

• electrical design guidelines for the Macintosh SE 68000 Direct Slot expansion interface
including connector pinouts and signal descriptions, expansion card load limits and
drive requirements, instructions for accessing the computer electronics, a map of
available address space, and a power budget for each supply voltage.

• electrical design guidelines for the Macintosh Portable 68000 Direct Slot expansion
interface including connector pinouts and signal descriptions, a functional description
of the connector signals, and power allocation

Chapter 14 provides electrical guidelines for designing cards for the 68030 Direct Slot in
the Macintosh SE/30 and the Macintosh IIfx. Topics include the 68030 Direct Slot
expansion connector pinouts and signal descriptions; expansion connector load limits
and drive requirements; information on accessing the computer main logic board, I/O,
and memory devices from an expansion card; a discussion of pseudo-slot design; specific
hints for developers; and power consumption guidelines.

Chapter 15 details the physical information you need to design Macintosh PDS expansion
cards for each of the current Macintosh PDS computers.

Chapter 16 describes a proven design of a simple disk controller card that uses the
Macintosh SE 68000 Direct Slot very successfully.

Appendix A, following Part II, provides information on electromagnetic interference
(EMI) , heat dissipation, and product safety standards.

246 Designing Cards and Drivers for the Macintosh Family

Chapter 12 Overview of Macintosh
PDS Computers

This chapter provides an overview of the structure and organization of
the Macintosh family of computers that use a single processor-direct slot
(PDS) for their expansion interface. Included in this category are the
Macintosh SE, the Macintosh SE/30, and the Macintosh Portable. The
PDS expansion interface relates directly to the microprocessor it
supports. The Macintosh SE and the Macintosh Portable are configured
with 96-pin 68000 Direct Slots and the Macintosh SE/30 with a 120-pin
68030 Direct Slot. Although the Macintosh IIfx also has a 120-pin 68030
Direct Slot, it is a member of the Macintosh II family of modular
computers that use the NuBus as their primary expansion interface. The
hardware overview of the Macintosh Hfx is provided in Chapter 1,
"Hardware Overview of the Macintosh H Family."

This chapter places the internal microprocessor expansion bus and PDS
connector in context within the total computing machine. Subsequent
chapters provide the information needed to design expansion cards
compatible with the PDS configuration. This chapter assumes you're
familiar with the basic operation of microprocessor-based devices.

247

Major features

Table 12-1 compares the major features of all Macintosh computers that use the
processor-direct slot as their primary expansion interface.

• Table 12-1 Major features of Macintosh computers with processor-direct slots

Feature Macintosh SE Macintosh Portable Macintosh SE/3.0

Processor Mc68000; MC68HCOOO; Mc68030;
24-bit address bus, 24-bit address bus, 32-bit address bus,
16-bit data bus 16-bit data bus 32-bit data bus

Auxiliary processor Not applicable Power Manager IC Not applicable
Keyboard processor

Processor clock 7.8336 MHz 15.6672 MHz 15.6672 MHz

Coprocessor Not applicable Not applicable Mc68882 tloating-
point unit

Memory management Not applicable Not applicable Mc68030 includes a
built-in PMMU that allows
true 32-bit address
translation with hard-
ware page replacement

RAM 1 MB, expandable to 1 MB, expandable to 5 MB 1 MB or 4 MB, expandable
4 MB using SRAM card to 8 MB (expandable to

128 MB when higher
density DRAM chips
are available)

ROM 256 KB 256 KB 256 KB

Expansion slot 68000 Direct Slot, 96-pin 68000 Direct Slot, 96-pin 68030 Direct Slot, 120-pifl

Input device interface Two Apple Desktop Bus Built-in alphanumeric Two Apple Desktop Bus
(ADB) ports for keyboard and trackball; (ADB) ports for keyboard,
keyboard, mouse, or ADB for optional input mouse, or optional input
optional input device devices device

248 Designing Cards and Drivers for the Macintosh Family

(Continued)

• Table 12-1 Major features of Macintosh computers with processor-direct slots
(Continued)

Feature Macintosh SE Macintosh Portable Macintosh SE/30

Serial ports Two mini 8-pin Two mini 8-pin Two mini 8-pin connectors
connectors supporting connectors supporting supporting RS-422
RS-422 RS-422

Floppy disk support Integrated Woz Machine Super Woz Integrated Super Woz Integrated
(IWM)j controls two Machine (SWIM)j controls Machine (SWIM)j controls
internal 3.5", 800 KB two internal FDHD (1.4 MB, internal FDHD (1.4 MB, 3.5")
floppy disk drives (one 3.5") drives (one standard, drivej external FDHD drive
standard, one optional) one optional)j external port

FDHD drive port

Hard disk Optional internal 20 MB Optional internal 40 MB Internal 40 or 80 MB
SCSI hard diskj optional SCSI hard diskj optional SCSI hard disk, optional
external SCSI hard disk external SCSI hard disk external SCSI hard disk

SCSI port One internal 50-pinj One internal 34-pinj One internal 50-pinj
one external DB-25 one external DB-25 one external DB-25

Sound Standard Macintosh Custom Apple Sound Custom Apple Sound
sound chip Chip (ASC) Chip (ASC)

Video display Built-in 9" monochrome Built-in LCD, 9.8" flat Built-in 9" monochrome
monitor, 512 x 342 pixels panel, 640 x 400 pixels monitor, 512 x 342 pixels

Battery Long-life lithium battery Rechargeable, 8-hour, Long-life lithium battery
backup lead-acid batteryj retains backup

RAM contents during sleep
state

Hardware architecture

The following discussion is brief and intended primarily to show the place of the
processor-direct slot (PDS) expansion connector in the machine architecture. For a
complete description of hardware operation, see the Guide to the Macintosh Family
Hardware. Or if you are interested in a higher level overview, see the Technical
Introduction to the Macintosh Family.

Chapter 12 Overview of Macintosh PDS Computers 249

The Macintosh SE and .the Macintosh SE/30 are similar in appearance to the original
Macintosh computer. The Macintosh SE contains a Motorola Mc6sooo microprocessor
operating at 7.S336 MHz and a Euro-DIN 96-pin connector for hardware expansion. The
Macintosh Portable also has a Euro-DIN 96-pin expansion connector, but it is electrically
different from the expansion connector used on the Macintosh SE. The Macintosh
Portable differs from the Macintosh SE in that it has special low-power components
throughout, including an Mc6SHCOOO microprocessor operating at 15.6672 MHz, and
incorporates a built-in liquid crystal display (LCD) flat panel for a display device.

The Macintosh SE/30 is similar in external appearance to the Macintosh SE, and although
the interior is also very similar in appearance, the components on the main circuit board
of the Macintosh SE/30 are more closely related to those of a Macintosh Ilx. The
Macintosh SE/30 has a Motorola MC6S030 inicroprocessor that operates at 15.6672 MHz,
and a Euro-DIN 120-pin connector for hardware expansion. Block diagrams of the
Macintosh SE, Macintosh Portable, and the Macintosh SE/30 are shown in Figures 12-1
through 12-3.

These processor-direct slot computers contain several common circuits including random
access memory (RAM), read-only memory (ROM), and some I/O chips that enable the
microprocessor to communicate with external devices. Following is a brief description of
these I/O chips:

• Each Macintosh computer has one or two Apple custom Versatile Interface Adapter
(VIA) chips. The Macintosh SE and the Macintosh Portable each have one VIA chip.
The VIA in the Macintosh SE supports the Apple Desktop Bus™ (ADB) and the real­
time clock (RTC). The VIA in the Macintosh Portable provides the communication
interface between the processor and the Power Manager IC as well as interrupts for a
number of internal functions. The Macintosh SE/30 has two VIA chips, VIAl and VIA2.
VIAl supports the same functions as the Macintosh SE VIA, while VIA2 supports
features such as expansion card interrupts, Apple Sound Chip interrupts, and others.

• An NCR 53S0 SCSI (Small Computer System Interface) chip provides high-speed parallel
communication with internal or external devices such as hard disks.

• A 2ilog 2S530 Serial Communications Controller (SCC) provides for high-speed,
asynchronous serial communication (also synchronous modem support).

• An Apple custom chip controls both internal and external floppy disk drives. The
Macintosh SE uses an IWM (Integrated Woz Machine) chip to control 3.5-inch, SOO KB
floppy disk drives; the Macintosh SE/30 and the Macintosh Portable use the SWIM
(Super Woz Integrated Machine) chip to control 3.5-inch, 1.4 MB FDHD drives.

250 Designing Cards and Drivers for the Macintosh Family

• Figure 12-1 Block diagram of the Macintosh SE

96-pin
processor­
direct slot
~
iii
iii
i:i
iii
iii
ill

015-0

A23-1

(All the Mc6so00
lines plus power

and clocks)

Address
bus

CPU A23-1

Mc6sooo Data
bus

D15-0

, ~ Interrupt I /IPLl
sWitch

/IPLO

EBU

Y SCSI interrupt I
mask I I

A23-19,
17,9

A18,16-
10,8--1

015-0

015-0

A17-1

/VIAIRQ

015-8

A12-9

SCSIIRQ

015-8

A6-4

D7-O

A12-9

/SCCIRQ

D15-8

A2,1

Buil~-in
monitor

VidW~'O I board

~Intemal External speaker
sound jack

Sony I 0 sound IC I
t--

BBU DiskPWM (To external
~ ~ floppy disk port)
':':~':'ljl :

~. Address
MUXs RAM

1MBto4MB
RAM 5 data

Data-bus R9Q15-O
buffers

ROM
256 KB Apple Deskto p

Bus ports
ADB

L© VIA

0 -

Internal hard disk
External SCSI connector

I::::::::::::::::::::::::: 1 SCSI port
.::: .. :::::::: I

External Internal floppy Internal floppy
disk connector disk connector floppy

IWM I :::::::::: I I :::::::::: I disk port
\.: ::::/

Serial
ports

Channel A PortA
Drivers (modem) .. sec and

ChannelB receivers PortE
(printer) ..

Chapter 12 Overview of Macintosh PDS Computers 251

• Figure 12-2 Block diagram of the Macintosh Portable

96-pin
processor­
direct slot

Flat-panel
Display

~ III Diiioj1
-.5-0------.. r--1

Video
board

'---------'
o

Video port
iii
!!! A23-1

Jll
(All the 68000

lines plus clocks)

1-----\ ,....-__ ---.. I Interrupt
AI9-I6 H switch VD7-O r--d

~;.:;......-+o-~ Misc, GLU DO-I5 Vi eo
VDI ,-~»> RAM

f"":A"::':I4-"I;""""-L--...----1 VAI4-I 32 KB

D15-0 II RAM I-i---------I,'! expansion
A21-2 II connector

RAM
data
bus

buffers

'--

Al 5-1
RAM
data

RDl5-0

-

RAM

1MB

Apple Desktop
Bus port

~ CPU GLU I~i--_-I-/VIAI __ RQ~-----,~ Power H Keyboard I
Manager processor

Battery charger
and power

supply

I
I Battery I

Al 2-9

A6-4

Al 2-9

A2,1

A12-1

D15-8

L­
SCSIIRQ

D15-8

D7-O

/SCCIRQ

D15-8

Dl5-8

/ASCIRQ

VIA

SCSI

SWIM

SCC

ASC

1 J-'I II Keyboard

I
I i and trackball

I i I connectors
Internal hard disk - '--

connector
:::::::::::: ::::::::::: ::1

External
SCSI port

":::::::::::: I

Internal floppy
disk connector

I :::::::::: I

Internal floppy
disk connector

I :::::::::: I

External
floppy

disk port
"::::::::: I

Serial
ports

GLU Drivers (modem)· " ~
h.A Misc. PortA

and
Ch. B receivers I-----,,-Po=rt.:...;B:::..--t ."

(printer)

'--___ ~II Modem
i I connector

f-~ ~~ ~I----------{O External
f-~ sound jack

L--__ -l ~ I rI1
~ Internal speaker

252 Designing Cards and Drivers for the Macintosh Family

• Figure 12-3 Block diagram of the Macintosh SE/30

12O-pin ~~I (All the 8030
processor- .. lines plus power ..
direct slot and clocks) Video

6

A31-24,16 logic

~;~o VID0-7
Video RAM Video

AIM) I Video RAM I address bus data bus
Video

FPU A4-1 I address MQ::7..~ I board

MUXs RAM
Mc68882

D31-O D31-24 Video
ROM

A25-3 Address
Address bus MUXs

CPU A31-O RAM
: D31-O

1 to 8 MI3
Mc68030

Data bus
D31-O I D31-O Apple Deskto AI8-2 ROM

~ 256 KI3 Bus ports
'<t'

p

5: ADB -rn
Q /VIAlIRQ ~ -~ VIAl o-l IInte?UPt~ A12-9 1 sec Int RTC ~

.t::::. sWitch

A31-24,22,
/VIA2IRQ

From PDS VBLInt - GLUE 20,16-13,1,0 A12-9 and video
VIA2 IRQ6,3-1 I

11-' <J--1

I ::J SLOTS Int GLUE

DRQ SCSIIRQ Internal hard disk
External

SCSI connector

A6-4
I ::::::::::::::::::::::::: I SCSI port

-::::::::::::7

Internal floppy Internal floppy External
disk connector disk connector floppy

SWIM I :::::::::: I I :::::::::: I disk port
, A12-9 -:::::::::7

Serial

/SCCIRQ Channel A PortA
ports

I Drivers I (modem) .-
and SCC Channel 13 receivers PortB

(printer) ..
A2,1

~IntemaI External
Amp. speaker so<¥aCk /SND H Sony I

ASC sound IC I
Al1-O H Sat I soun ICJ

Chapter 12 Overview of Macintosh PDS Computers 253

• The Macintosh SE includes an Apple custom chip, called the BBU(Bob Bailey Unit), for
video and sound control and for generating device-select signals. The Macintosh SE/30
and the Macintosh Portable use the custom Apple Sound Chip (ASC) to control stereo
sound and other enhancements not available on the Macintosh SE.

• The Macintosh Portable includes a custom integrated circuit called the Power Manager
Ie that controls the distribution of power to all I/O devices. Not all devices can be
addressed directly, and those that can require Power Manager IC cooperation to assure
that power will be applied during the access time.

All Macintosh computers use memory-mapped I/O, which means that you can gain access
to each device in the system by reading or writing to specific locations in the address
space of the computer.

The Mc68000 and the MC68HCOOO processors used in the Macintosh SE and the Macintosh
Portable can directly access 16 megabytes of address space. This address space is divided
into several areas allocated to RAM, ROM, and various I/O devices. The Mc68030
processor used in the Macintosh SE/30 can directly access 4 GB of address space, which is
divided into several areas allocated to RAM, ROM, pseudo-slot expansion, and various
I/O devices.

RAM

RAM is the working memory of the system. In the Macintosh SE computer, address space
from $00 0000 through $3F FFFF is reserved for RAM. In the Macintosh Portable computer,
address space from $00 0000 through $SF FFFF is reserved for RAM. Address space
$0000 0000 through $3FFF FFFF is reserved for RAM in the MC68030-based Macintosh
computers. The actual amount of address space used depends upon the amount of RAM
available in the system.

The MC68000 processor uses the first 1024 bytes of RAM (addresses $000000 through
$00 03FF) as exception vectors; these are the addresses of the routines that gain control
whenever an exception such as an interrupt or a trap occurs. The first 256 bytes are
reserved for use by the operating system and the remainder are allocated for use by
applications. RAM also contains the system and application heaps, the stack, and other
information used by applications. For complete maps of the address ranges used in the
Macintosh SE and the Macintosh Portable computers, see Figures 13-4 and 17-1,
respectively. In addition, the following hardware devices share the use of RAM with the
Mc68000 on the Macintosh SE:

254 Designing Cards and Drivers for the Macintosh Family

• the video display, which reads the information for the display from one of two
screen buffers

• the sound generator, which reads its information from a sound buffer

• the disk-speed controller (used only with an external, single-sided floppy disk drive),
which shares its data space with the sound buffer

The Macintosh Portable has separate RAM buffers for sound and video, and does not have
a disk-speed controller; therefore, it does not share its system RAM with other devices.

The MC68030 processor in the Macintosh SE/30 stores exception vectors in a 1024-byte­
long table starting at the address of the vector base register. The first 256 bytes of the
exception vector table are reserved for use by the operating system and the remainder are
available for use by applications. The Macintosh SE/30 RAM contains the system heap, a
copy of parameter RAM, various global variables and trap handlers, application heaps, the
stack, and other information used by applications.

In the Macintosh SE, the processor's accesses to RAM are interleaved with the video
display's accesses. The average access rate to RAM of the Macintosh SE processor is about
3.22 MB per second. In the Macintosh SE/30 and Macintosh Portable, the processor's
accesses to RAM are not interleaved with the video display's accesses because the video
circuitry includes memory that's used exclusively by the video display. The average access
rate for the Macintosh SE/30 is about 15.6672 MB per second. The Macintosh Portable
average access rate is about 6.45 MB per second.

ROM

ROM is the system's permanent read-only memory. When the Macintosh is first turned on,
a second image of ROM appears at $00 0000, so that ROM can supply the processor with
the exception vectors. Following the first access to the normal address ranges of ROM or
the SCSI controller, the image of ROM at $00 0000 is replaced by RAM.

The base address is available as the constant romStart and is also stored in the global
variable ROMBase. ROM contains the routines for the User Interface Toolbox and the
Macintosh Operating System, and the various system traps.

Chapter 12 Overview of Macintosh PDS Computers 255

Device I/O

The address space reserved for the device I/O contains blocks devoted to each of the
devices within the computer. Each device contains logic that recognizes when it's being
accessed, and the device responds in the appropriate manner.

Processor-direct slot interface

The processor-direct slot expansion interface has been designed to help hardware developers
add reliable and elegant custom hardware to the Macintosh family of computers.

Following the design guidelines in Chapters 13 through 16, you may choose to offer cards
such as the following:

• custom video card

• network communication interface card

• modem card

• coprocessor or accelerator card

The foregoing list is not intended to limit or authorize, in any way, the types of expansion
cards that you may want to develop.

The Macintosh SE was the first Macintosh computer to offer PDS expansion. A Euro-DIN
96-pin connector on the main circuit board provides unbuffered access to the Mc68000
processor bus including all address, data, and control lines.

• Note: Earlier editions of this book referred to the expansion interface in the
Macintosh SE computer as the SE Bus. In this edition, the expansion interface is called
the 68000 Direct Slot.

The Macintosh Portable has the same Euro-DIN 96-pin connector as the Macintosh SE, but
connector pinouts are different and there is no provision for accessing internal hardware
signals from outside of the Macintosh Portable case.

256 Designing Cards and Drivers for the Macintosh Family

The PDS expansion interface on the Macintosh SE/30 consists of a Euro-DIN 120-pin
connector that provides unbuffered access to the Mc68030 processor bus. The larger pin
count of the Macintosh SE/30 expansion connector allows you to take advantage of the
more powerful features of the MC68030 processor used in that machine.

The 68000 Direct Slot

The 68000 Direct Slot expansion connector in the Macintosh SE provides unbuffered
access to all of the signals from the microprocessor, including all address, data, and
control signals. In addition, extensive power and grounding are provided, as well as
critical high-speed timing signals. The 68000 Direct Slot supports high-speed direct
memory access into the RAM, allows coprocessors to share the address and data bus, and
allocates generous portions of the address space for new peripherals. An expansion card in
the 68000 Direct Slot can access system RAM and ROM at the same rates as the MC68000
microprocessor. RAM accesses occur at 3.22 MB per second and ROM accesses are at 3.92
MB per second.

The physical design of a Macintosh SE permits you to mount an expansion card of
approximately four inches by eight inches in area in a position horizontal to the main
board. The 96-pin expansion connector provides one mounting point for the expansion
card, and there are holes at the opposite side of the main logic board for two mounting
posts. Both the Macintosh SE logic board and chassis have been designed to allow
mounting and removal of the logic board while it is joined to an expansion card.

Chapter 15 describes the physical provisions for mounting an expansion card in a
Macintosh SE 68000 Direct Slot. See Figures 15-2 and 15-5 for drawings of these mounting
provisions.

The expansion interface connector on the Macintosh Portable is also referred to as a
68000 Direct Slot even though this machine uses the Mc68HCOOO processor, a high-speed,
low-power, CMOS version of the Mc68000 processor. Although this connector is available
for expansion purposes, there are certain limitations that may restrict you in designing
expansion cards. These limitations are described in Chapter 13 in the section "The
Macintosh Portable 68000 Direct Slot."

Chapter 12 Overview of Macintosh PDS Computers 257

The 68030 Direct Slot

The 68030 Direct Slot expansion connector supports the 32-bit address and data bus
features of the Mc68030 microprocessor. The expansion hardware consists of a 120-pin
Euro-DIN expansion connector that provides access to the Mc68030 processor's address
and data bus signals, DMA and other processor control signals, interrupt signals, status
signals, and power and grounding for the expansion card.

The Macintosh SE/30 is the first Macintosh computer with the 68030 Direct Slot expansion
capability. Its microprocessor accesses both ROM and RAM at 15.6672 MB per second.

The design of the Macintosh SE/30 chassis simplifies card installation by allowing you to
install the card vertically, rather than horizontally, as was the case in the Macintosh SE.
This mounting configuration also provides more room, allowing you to design larger cards.
You can install and remove your expansion card without removing the main logic board;
you must, however, re1llove your expansion card before you can remove the main logic
board. For more information on 68030 Direct Slot mounting provisions, see Chapter 15.

Additional support for expansion

The Macintosh SE and the Macintosh SE/30 have power supplies and fans that are
designed to provide additional power and cooling for the electronics on expansion cards.

Both the Macintosh SE and the Macintosh SE/30 include a feature that allows cables to be
routed from an expansion card to a bracket and access opening at the rear of the case.
The bracket can hold custom connectors on a small connector board that may also
contain filter electronics. Chapter 15 contains drawings showing how to connect an
expansion card to external devices through the external device access opening.

Third-party products that adhere to the expansion guidelines in Chapters 13 through 15
and Appendix A, use the Apple-supplied expansion features, and do not require physical
alteration of the computer will not void the Apple Limited Warranty.

Motorola, Inc. has extensively documented its Mc68000 family of microprocessors. For a
more detailed understanding of the interface between your expansion card and the
microprocessor bus, please refer to the following documents:

• MC68000 16/32-Bit Microprocessor User's Manual, Motorola, Inc. document
AD1814R5, March 1985

• MC68030 Enhanced 32-Bit Microprocessor User's Manual, Motorola, Inc.
document Mc68030UM/ AD

258 Designing Cards and Drivers for the Macintosh Family

In summary, PDS expansion is supported by these features:

• Euro-DIN type expansion connector (96-pin on the Macintosh SE and Macintosh
Portable, 120-pin on the Macintosh SE/30) that provides power, timing, and direct
access to the computer's microprocess0r bus

• stand-off mounting for card physical support

• high-capacity power supply and cooling fan (Macintosh SE and Macintosh SE/30)

• main logic board layout and installation features improved from earlier
Macintosh models

• external device access opening (Macintosh SE and Macintosh SE/30) provided at rear
of case for installation of custom external connector

Chapter 12 Overview of Macintosh PDS Computers 259

Chapter 13 Electrical Design Guide for 68000
Direct Slot Expansion Cards

This chapter provides the electrical information you need to design
expansion cards for Macintosh computers with the 68000 Direct Slot
expansion interface. The chapter covers the following topics:

• electrical description of the 68000 Direct Slot expansion connectors
for the Macintosh SE and the Macintosh Portable

• signal mnemonics and descriptions

• accessing the Macintosh SE electronics from an expansion card

• available address space

• power budgets

261

The Macintosh SE 68000 Direct Slot

This section gives the pinouts and describes the signal characteristics of the 68000 Direct
Slot expansion connector used on the Macintosh SE. This section also provides
information and timing diagrams explaining how to access the computer's electronics
from the expansion card, discusses available address space, and describes the additional
power required to operate an expansion card in a Macintosh SE computer. Physical
guidelines for designing a Macintosh SE Direct Slot expansion card are provided in
Chapter 15.

Electrical description of the Macintosh SE expansion connector

Figure 13-1 gives the pinout for the 96-pin expansion connector (socket) on the
Macintosh SE main logic board, as viewed from above.

Table 13-1 gives signal descriptions and the load presented, or drive available, to each pin
on an expansion card inserted into the 96-pin expansion connector.

The last column in Table 13-1, labeled Loading or driving limits, gives several
specifications. An example may be helpful in interpreting this column. The /RESET line is
shown as presenting a load of 300 JlA/6 rnA, 50 pF. This is the maximum expected load that
an expansion card must drive when sending a /RESET signal to the main logic board. The
DC load is given in the format signal high/signal low. This means that the expansion card
driver must drive a load of up to 300 JlA when it drives /RESET high (logic 1), and a load of
up to 6 rnA when it drives /RESET low (logic 0). The AC load is given as 50 pF, the
maximum capacitance to ground presented by the main logic board to AC signals (or
signal transitions) from the expansion card. The notation "Open collector; 1 kQ pull up" in
the table means that the /RESET line is normally driven open collector: it is only driven
low, and a 1 kilohm pullup resistor on the main logic board returns the line to a logic 1.

Correspondingly, /RESET presents a drive of 40 J.LAi.4 rnA, 30 pF. This is the maximum
(tUlVUUl VI urive from [ile" mam iOglC board that is available to receiving integrated
circuits on an expansion card. The /RESET line can drive an expansion card DC load of up
to 40 J.LA in the high (logic 1) state, or up to .4 rnA in the low (logic 0) state. The AC drive is
given as 30 pF, the maximum capacitance to ground that an expansion card may present
to AC signals (or signal transitions) from the /RESET line.

The C8M and C16M clock outputs are specified to drive one 74LS input (a standard 74LS
input load is 20 J.LA high, .2 rnA low) and 20 pF. All other outputs have been specified to
drive two 74LS inputs, and 30 pF.

262 Designing Cards and Drivers for the Macintosh Family

In most cases, these drive limitations are imposed to protect the noise and timing
margins of the main logic board. Expansion cards requiring more drive, or more than
about two inches of trace length, should buffer these signals before distributing them to
the effective loads on the card or to external devices connected through the external
device access opening.

Where "Load:" is in parentheses, the pin carries a signal that is usually an output driven by
the MC68000 but that is tri-stated by the MC68000 after responding to a bus request.
When tri-stated by the MC68000, this pin may be driven by an expansion card.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 263

• Figure 13-1 Macintosh SE 68000 Direct Slot connector pinout

J13

0
I

-I2V 1-5V +I2V 32

Sl2are I +I2V +I2V 31

GND I +I2V GNO 30

DIS IGND CI6M 29

i
014 /EXT.OTK CSM

DI~ Reserved E

DI2 Reserved A23

011 Reserved A22

28

27

26

25

To 1/0 ports DIO Reserved A21 24
at rear of machine 09 Reserved A20 23

08 Sl2are AI9 22

D7 /BERR AlB 21

06 /IPL2 AI7 20

05 IIPLl Alb 19

04 IIPLO AI5 18

O~ +5V AI4 17 Card
D2 +5V AI~ 16 edge
DI +5V AI2 15

DO +5V All 14

+5V +5V AIO 13
/RESET lHALT A9 12

/PMCYC Reserved AB 11

lAS Reserved A7 10

IUDS GNO A6 9

ILDS GNO AS 8

IR/W GNO A4 7

10TACK GNO A3 6

IBG GNO A2

IBGACK GNO Al 4

IBR GNO FCO 3

NMA GNO FCI

/VPA GNO FC2

o
c B A

SIMMs

264 Designing Cards and Drivers for the Macintosh Family

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits

Connector Signal Signal Input or Loading or driving
Row Pin name description output limits (high/low)

A 1 FC2 Function code 2 Output Drive: 40 ~.4 rnA, 30 pF
(Input) (Load: 100 JlA/100 JlA, 50 pF)

A 2 FC1 Function code 1 Output Drive: 40 JlAl.4 rnA, 30 pF
(Input) (Load: 100 JlA/100 JlA, 50 pF)

A 3 FCO Function code 0 Output Drive: 40 ~.4 rnA, 30 pF
(Input) (Load: 100 ~100 JlA, 50 pF)

A 4-26 Al-23 Address 1-23 In/Out Load: 250 ~1 rnA, 100 pF
Drive: 40 JlAl.4 rnA, 30 pF

A 27 E E (enable) clock Output Drive: 40 ~.4 rnA, 30 pF
A 28 C8M 7.8336 MHz Output Drive: 20 JlAl.2 rnA, 20 pF

MC68000 clock
A 29 C16M 15.6672 MHz Output Drive: 20 JlAl.2 rnA, 20 pF

gate array and
IWM clock

A 30 GND Logic ground
A 31 +12V + 12 volts Output Drive: 150 rnA total, from all

+12 V pins
A 32 +12V +12 volts Output (see the section "Macintosh SE

Power Budget")
B 1-9 GND Logic ground
B 10 Reserved For future Apple

use; do not
connect

B 11 Reserved For future Apple
use; do not
connect

B 12 /HALT MC68000 Halt In/Out Load: 300 JlAl6 rnA, 50 pF
Drive: 0 JlA/0 JlA
(Connected to /RESET, pin C-12)

B 13-17 +5V +5 volts Output Drive: 1.5 A total, from all +5 V
pins (see the section
"Macintosh SE Power Budget")

(Continued)

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 265

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits
(Continued)

Connector Signal Si~ Input or Loading or driving
Row Pin name description output limits (high/low)

B 18 /IPLO Interrupt level 0 In/Ou~ Load: 100 JlA/2 rnA, 50 pF
(VIA, SCSLIRQ) Drive: 40 J.LA,I.4 rnA, 30 pF

(Open collector; 3.3 kQ
pullup)

B 19 /IPL1 Interrupt level 1 In/Out Load: 100 JlA/2 rnA, 50 pF
(SCC) Drive: 40 JlA/.4 rnA, 30 pF

(Open collector; 3.3 kQ
pullup)

B 20 /IPL2 Interrupt level 2 In/Out Load: 100 JlA/2 rnA, 50 pF
(NMI switch) Drive: 40 JlA/.4 rnA, 30 pF

(Open collector; 3.3 kQ
pullup)

B 21 /BERR Bus error In/Out Load: 100 JlA/2 rnA, 50 pF
Drive: 40~.4 rnA, 30 pF
(Open collector; 3.3 kQ
puHup)

B 22 Spare Not connected
B 23-27 Reserved For future Apple use;

do not connect
B 28 /EXT.DTK External/DTACK Input Load: 100 JlA/2 rnA, 50 pF

(tri-states main (3.3 kQ pullup)
board's /DTACK)

B 29 GND Logic ground
B 30 +12V +12 volts Output Drive: 150 rnA total, from all

+12 V pins
B 31 +12V +12 volts Output (see the section "Macintosh SE

Power Budget")
B 32 -5V -5 volts Output Drive: 100 rnA
C 1 /VPA Valid peripheral Output Drive: 40 JiAl.4 rnA, 30 pF

address
C 2 /VMA Valid memory Output Drive: 40 JlA/.4 rnA, 30 pF

address (Input) (Load: 100 J.LAII00 JlA, 50 pF)
C 3 /BR Bus request Input Load: 100· JlA/2 m4, 50 pF

(3.3 kQ pull up)
(Continued)

266 Designing Cards and Drivers for the Macintosh Family

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits
(Continued)

Connector Sign~ Signal Input or Loading or driving
Row PIn name description output limits (high/low)

C 4 /BGACK Bus grant Ihput Load: 100 /lA/2 rnA, 50 pF
acknowledge (3.3 kQ pullup)

C 5 /BG Bus grant Output Drive: 40 /lA/.4 rnA, 30 pF
C 6 /DTACK Data transfer In/Out Load: 100 /lA/2 rnA, 50 pF

acknowledge Drive: 40 /lAI.4 rnA, 30 pF
(3.3 kQ pullup, /EXT.DTK low,
tri-states m~in board's /DTACK)

C 7 R/W Read/write OUtput Drive: 40 /lAI.4 rnA, 30 pF
(Input) (Load: 200 /lA/2 rnA, 50 pF)

C 8 /LDS Lower data Output Drive: 40 /lA/.4 rnA, 30 p~
strobe (Input) (Load: 100 /lA/I rnA, 50 pF)

C 9 /UDS Upper data Output Drive: 40 /lAI.4 rnA, 30 pF
strobe (Input) (Load: 100 /lA/l rnA, 50 pF)

C 10 /AS Address strobe Output Drive.: 40 /lA/.4 rnA, 30 pF
(Input) (Load: 200~ /lA/3.2 rnA, 50 pF;

3.3 kQ pullup)
C 11 /PMCYC Processor Output Drive: 40 /lA/.4 rnA, 30 pF

memory cycle (High during video access to
RAM)

C 12 /RESET System reset In/Out Load: 300 /lA/6 rnA, 50 pF
Drive: 40 /lA/.4 rnA, 30 pF
(Open collector;. 1 kQ pullup)
(Connected to /HALT, pin B-12)

C 13 +5V +5 volts Output Drive: 1.5 A total, from all +5 V
pins (s~e the section
"Macintosh SE Power Budget")

C 14-29 DO-15 Data bus, In/Out Load: 250 /lAi1 rnA, 100 pF
bits 0-15 Drive: 40 /lA/.4 rnA, 30 pF

C 30 GND Logic ground
C 31 Spare Not connected
C 32 -12V -12 volts Output Drive: 100 rnA

Chapter i3 Electrical Design Guide for 68000 Direct Slot Expansion Cards 267

Functional description of the Mc6sooo signals in the Macintosh SE

Table 13-2 lists the Mc68000 processor signals available at the Macintosh SE 68000 Direct
Slot expansion connector and describes their functions.

• Table 13-2 MC68000 signal descriptions

Signal name

FCO-FC2
A1-A23
E
C8M
C16M
IHALT
IIPLO-/IPL2
IBERR

IEXT.DTK

IVPA

IVMA
IBR
IBGACK
IBG

Description

Function code lines.
Address lines.
E (enable) clock.
Microprocessor clock = 7.8336 MHz = C16M divided by 2.
Gate array clock = 15.6672 MHz.
Halt. Wired directly to IRESET.
Interrupt priority level lines.
Bus error. Generated by gate array due to SCSI access timeout.
(Actually, IBERR is generated whenever I AS remains low for more than
about 250 ms.)
Pulled low to put the gate array's IDTACK output into a high-impedance
state. The expansion card is then responsible for generating the IDTACK
signal (as an output to the microprocessor, through the IDTACK signal
line).
Valid peripheral address. Supplied by the gate array, coincident with lAS,
for any access to VPA space ($EO 0000 to $FF FFFF).
Valid memory address.
Bus request.
Bus grant acknowledge.
Bus grant.

268 Designing Cards and Drivers for the Macintosh Family

(Continued)

• Table 13-2 Mc68000 signal descriptions (Continued)

Signal name

/DTACK

R/W
/LDS
IUDS
/AS
/PMCYC

/RESET
DO-DIS

Description

Data transfer acknowledge. In normal operation, / AS falls in S2 and the
gate array supplies /DTACK in S4 of accesses to any address in the range
$00 0000 to $DF FFFF. If / AS falls after S3, /DTACK is supplied in SO of the
next access cycle (except for RAM accesses, which wait until S4 of the
next cycle). /DTACK may be held off to wait for DRQ (DMA request from
SCSI) in pseudo-DMA-mode SCSI accesses, to separate two successive
accesses to the SCC, or to wait for a RAM access by video. /DTACK is not
supplied for accesses to /VPA address space ($EO 0000 to $FF FFFF).
Gate array generation of /DTACK can be suppressed (put into a high­
impedance state) by pulling the /EXT.DTK line low; this allows /DTACK
to be externally generated by an expansion card.
Read/write.
Lower data strobe.
Upper data strobe.
Address strobe.
Processor memory cycle. Used to synchronize with the gate array for RAM
accesses. /PMCYC is low when RAM is available for microprocessor
accesses and is high during video accesses. /PMCYC is always high during
SO. See timing diagram, Figure 13-2.
Reset. Wired directly to /HAL T.
Data bus.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 269

Accessing the Macintosh SE electronics from an expansion card

An expansion card slave or peripheral I/O device simply occupies an available spot in the
computer's address space, and the computer can then access the card just as it accesses
any of its own I/O devices. See Figure 13-4, later in this chapter, for the Macintosh SE
address space. The microprocessor on an expansion card (a coprocessor) has a more
complex task than the microprocessor on the main logic board. Of course, the
coprocessor can do its own work inde~nitely, while the Mc68000 continues to function
normally, provided the expansion card's electronics are sufficiently isolated from the
computer electronics. For meaningful results, however, most expansion card coprocessors
will eventually need to access the I/O devices and RAM on the main logic board. To do
this, the coprocessor requests the bus from the MC68000 (using /BR), the MC68000 grants
the request (using /BG) and tri-states itself off the bus at the end of that bus cycle; the
coprocessor then takes over as bus master (using /BGACK). At this point, the expansion
card's coprocessor has complete access to all of the computer electronics.

Accessing I/O devices from an expansion card

For most of the Macintosh I/O devices, the timing of an access is managed entirely by the
coprocessor. The coprocessor puts the device's address on the address bus and issues
address strobe UAS). For devices in the address range $000000 through $DF FFFF, the
custom gate array (BBU, see Figure 12-1) responds by selecting the correct device and
issuing /DTACK. If you, the card designer, need to supply a different /DTACK on that line,
the gate array's /DTACK output can be put in tri-state by pulling the /EXT.DTK line low.

When a device is accessed in the range $EO 0000 through $FF FFFF (the VIA, for example),
the BBU supplies /VPA instead of /DTACK. In normal operation, the MC68000 on the
Macintosh SE logic board then responds to /VP A by providing the VIA chip select NMA,
timed correctly to the E clock. After removing itself from the bus by tri-state control,
however, the MC68000 continues to generate its E clock but no longer provides /VMA.
This means an expansion card coprocessor must correctly synchronize its VIA selection
(using /VMA) and VIA accesses to the timing of the MG68000 E clock. The coprocessor
can accept /VP A as its /DTACK, or provide its own.

270 Designing Cards and Drivers for the Macintosh Family

Accessing RAM from an expansion card

When an expansion card coprocessor accesses the RAM on the Macintosh SE logic board,
the timing of these accesses is much more tightly constrained compared to accessing
Macintosh I/O devices. Even if an expansion card coprocessor has its own on-card RAM,
it will usually need to access the Macintosh SE RAM at least to update the information on
the screen. This activity is always necessary because the information displayed on the
Macintosh screen is always taken from the Macintosh RAM, regardless of any other RAM in
the system.

As the designer of an expansion card, you may wish to synchronize the card's Macintosh
RAM accesses (using /PMCYC) to avoid contention with the RAM accesses by Macintosh
video circuitry. During the active portion of a screen scan line, the video uses one out of
every four possible RAM accesses. These video accesses come at certain fixed times,
regardless of any other activity in the system such as an expansion card coprocessor
taking over the bus, or accesses to any I/O device or to the RAM itself. See Figure 13-2 for
the timing of video versus processor accesses. If a coprocessor begins an access to
Macintosh RAM during a video access, the coprocessor access is simply held off (/DTACK
is not provided) until the follOWing RAM-access time.

Furthermore, a coprocessor must synchronize its accesses to the state machine in the
BBU. This gate array is designed to generate all of the RAM control signals at the correct
times. The following information will help you synchronize an expansion card coprocessor
to the RAM electronics on the Macintosh SE logic board.

The BBU operates with an internal state machine that generates 16 states (SO to SF,
numbered in hex), clocked by c16M. This state machine comes up randomly, and then
counts through the 16 states continuously. The state counter is not affected by anything
else in the system.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 271

• Figure 13-2 Timing of video and MC68000 accesses to RAM in the Macintosh SE

c16M

C8M

/AS

/LDS,IUDS

RAMRIW

!RAM data bus
buffer enable

/RAS

lCAS's

/PMCYC

/DTACK

Video cycle
(Always a
RMlread)

('I
SO S1 S2 S3 S4 S5 S6 S7 SO: S1 , , , , ,

..r-H"-+--+-~--+--! , ,
I
I , ,

CPU cycle CPU cycle CPU cycle
(Example shows (Example shows (Example shows

RAM read) RAM write) RAM read)

! 'I ! 'I ' I
S2 S3 S4 S5 s6 S7 SO: S1 S2 S3 S4 S5 s6 S7 SO: S1 S2 S3 S4 S5 S6 S7 SO: , , , , , , , , ,

I !. , ,

t This signal is available at the 96-pin expansion card connector.

There are two types of basic RAM-access cycles: video/sound cycles and processor (CPU)
cycles. Either type of RAM-access cycle occupies eight state-machine states. When
video/sound cycles occur, they are always in states S8 to SF, whereas processor cycles can
be either in states SO to S7 or in states S8 to SF. To simplify discussion, however, the eight
states of any RAM-access cycle are numbered SO to S7. See Figure 13-2.

Z72 Designing Cards and Drivers for the Macintosh Family

t

t

t

t

t

A video/sound cycle occurs as a result of specific counts of the video counter. A
video cycle reads two words of data from the video buffer in RAM into the gate
array's Video Shift register. A sound cycle is similar to a video cycle, except that a
single word from the sound/disk-speed buffer in RAM is loaded into the gate array's
sound and disk-speed counters.

A processor on the main logic board or on an expansion card may access RAM during a
processor cycle. A processor cycle can take place whenever a video/sqund cycle is not
occurring. If a processor initiates a RAM access during a video/sound cycle, the
processor's RAM access is held off (lDTACK is not generated) until the video/sound cycle
is complete. A processor can access devices other than RAM at any time, even during
video/sound cycles.

The BBU requires that a processor must not begin RAM accesses at random times. In
normal operation, it expects any processor to behave more or less like an MC6S000, which
asserts I AS in S2 (see Figure 13-3 for details). The Mc6sooo in the Macintosh SE is
automatically synchronized to the state machine in the BBU by the processor's receipt of
IDTACK, which the gate array always asserts in S4. An expansion card can synchronize
itself to the state machine in the BBU by monitoring the signal /PMCYC. See Figure 13-2
for the operation of IPMCYC. IPMCYC always falls in Sl of an eight-state processor cycle.
A falling-edge detector triggered by c16M can be used to find the falling edge of IPMCYC,
and therefore S1.

Pertinent timing requirements from Figure 13-3 are as follows:

• Minimum address setup time before I AS (address strobe) falls is 15 ns.

• Minimum address setup time to start of S3 is 45 ns unless I AS falls after start of S3, in
which case the minimum address setup time to I AS is 45 ns.

• Address must remain valid through the first 5 ns of S7.

• I AS falling must occur not later than 20 ns into S3. If I AS has not fallen by that time,
I AS must not fall until after the first 20 ns of S4 (data will be read or written in the
next RAM access).

• IDTACK rises 25 ns, maximum, following start of an odd S state after I AS rises.

• Write data to the RAM must be valid from the start of s6 through the first 30 ns of S7
(when ICAS falls).

• Read data from the RAM will be valid from 15 ns into S7 until ICAS rises at the end of
SO, or until I AS rises, whichever occurs first.

• Note: Clock CSM is shown only for its relation to the Mc68000 state sequence.
Actually, CBM is delayed relative to c16M by up to 30 ns.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 273

• Figure 13-3 Timing for reading and writing RAM from a Macintosh SF: expansion card

C16M
I

! so
I
I

C8M ~

S1 S2
I
I

S3 : S4
I
I

I

I I AS mUst not fall I

S5 s6

! Tng~i\ !
I I I '

-i-----.;...--"~~~-~-~-'~ ! I'\.~-~~~~»~~~~--;----T--
H ' I

~ :
I I I

lAS

: 20 ns : 20 ns :
I I I
I I I
I I I
I I I

S7

Address ! ! X! 1 !
----------~ ~

! X __ _
45 ns

! H5ns
I I
I I
I I
I I
I I
I I

Data

! "~ --+----X ,valid write ,data X_-r-__
I I I
I" I I ----«XxgxxjX Valid rea~ data

: H 15ns :
I I
• I I

I I

Deviating from the normal RAM access method

The coprocessor on an expansion card should operate very much like the MC68000 of the
Macintosh SE when accessing the Macintosh SE RAM. In normal operation, therefore, an
expansion card presents its addresses in Sl, asserts / AS in S2, and receives /DTACK in S4.
The following information is presented only for those designers who want to know, for
some reason, exactly how far they may deviate from this normal method of operation.

To speed up RAM access, the Macintosh SE gate array internally generates /RAS if it
decodes a RAM-space address anytime during S2 without waiting for / AS to indicate that
the address is valid. Then, if / AS falls before the end of S3 and a RAM-space address is still
present, /RAS is generated.

274 Designing Cards and Drivers for the Macintosh Family

However, the RAM-address multiplexers switch from row addresses t6 column addresses
at the beginning of S4, regardless of when /RAS occurs. If / AS falls later than the first 20 ns
of S3, the RAM addresses will change too soon after /RAS, causing RAM errors.

Furthermore, if / AS has not fallen by the end of S3, /RAS is negated, a process that takes
the first 20 ns of S4. If / AS falls during that 20 ns, a /RAS spike is generated that can cause
RAM errors.

These restrictions mean that to avoid problems when addressing the Macintosh SE RAM,
expansion card logic must never let / AS fall during the period from 20 ns into S3 through 20
ns into S4. See Figure 13-3. There is one exception to this: If the gate array did not decode
a RAM-space address (even on a floating address bus) during S2 or the first 20 ns of S3,
then /RAS is not generated, and a RAM-space address decode and / AS anytime after the
first 20 ns of S3 will not cause a /RAS until the usual point in the next RAM-access cycle.

The state machine in the gate array is synchronized to the 15.6672 MHz clock, C16M,
from which C8M is derived with a time delay of up to 30 ns. The MC68000 only issues
/ AS during even-numbered states and is synchronized to the 7.8336 MHz clock, C8M.
This difference in timing sources assures that / AS in the Macintosh SE will not occur in
the prohibited time interval.

Available Macintosh SE address space

The Macintosh SE address map in Figure 13-4 labels which portions of the total address
space are currently used by the Macintosh SE hardware (shaded regions). Any address
space not used by the Macintosh SE hardware is available for use by an expansion card.
There are, of course, some limitations to this:

• For any access to the address space $000000 through $DF FFFF, the Macintosh SE gate
array returns /DTACK in S4, following an address strobe C/ AS) in S2. If / AS falls after S3,
/DTACK is supplied in SO of the next access cycle (except for RAM accesses, which
wait- until S4 of the next cycle). This space is best for fast, asynchronous exchanges.

• For an access to the space $EO 0000 through $FF FFFF, the gate array returns /VP A
immediately following / AS, and the Mc68000 then provides NMA timed by the E clock.
This space is designed for accessing slower 6800-style synchronous peripherals.

• The Macintosh SE RAM, or multiple images of that RAM, always occupy the entire
address space $00 0000 through $ 3F FFFF.

• The Macintosh SE does not support the connection of more than one expansion card
or device, so no means is provided for arbitrating among multiple external processors,
or among cards that use the same address space.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 275

• When a Macintosh SE main logic board is sent to an Apple service center for repair,
Apple's board testing equipment runs test software in address ranges $50 0000 through
$51 FFFF and $F8 0000 through $F9 FFFF. Normally, those spaces may be used by an
expansion card, as any such card would be removed prior to testing at an Apple service
center. However, if a developer expects that customers will leave an expansion card
connected to the Macintosh SE logic board when that board is sent to Apple service,
such an expansion card should not use the Apple test software spaces.

• When servicing an interrupt, the Mc68000 reads an address in the range $FF FFFO
through $FF FFFF. The Macintosh SE gate array returns !VP A, causing the processor to
ignore any data read and to jump to the appropriate auto-vector location in low
memory. The processor does an auto-vector jump only if it reads the address in
servicing an interrupt, so this space may be used by an expansion card device if that
device will not be confused by auto-vector reads.

T/6 Designing Cards and Drivers for the Macintosh Family

• Figure 13-4 Macintosh SE address space

Macintosh SE address space ..----------r'-- $1000000

$FOooOO

$E8oo00

$EOOOoo

$DOooOO

$COOooO

$BOOOoo

$AOOOoo

-- $90 0000

__ $60 0000

__ $580000

_ $50 0000

__ $400000

$00 0000

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 277

Macintosh SE power budget

The Macintosh SE power supply supports the addition of optional Apple Desktop Bus
devices, an internal hard disk, and an expansion card. Table 13-3 gives the power budget
for these additions.

• Table 13-3 Power budget

Amps

Macintosh SE device At +S V At-5 V At +12 V At-12 V

All Apple Desktop Bus devices
Internal SCSI hard disk
Expansion cardt

0.5
1.5
1.5 0.1

0.9
0.15 0.1

t This is the allotted current for the expansion card, but, for thermal considerations, the total power of the
expansion card should not exceed 7 watts.

The power budget specification for the 96-pin connector allows 1.5 A to be used from all
+5 V pins combined. This limit is to control the heat dissipated in the restricted space
over the Macintosh SE logic board, where an expansion card would be located. An
additional 750 rnA can be used for powering a peripheral device that is located outside of
the Macintosh SE case.

The power budget specification for the 96-pin connector allows .15 A to be used from all
+ 12 V pins combined. Peak surge current up to 1.5 A can be tolerated briefly (up to ten
seconds)-when starting up a disk drive, for example.

The Macintosh Portable 68000 Direct Slot

This section describes the electrical characteristics of the 96-pin 68000 Direct Slot
expansion connector used on the Macintosh Portable. Physical guidelines for designing a
Macintosh Portable 68000 Direct Slot expansion card are provided in Chapter 15. In
addition to its processor-direct slot, the Macintosh Portable contains connectors for
ROM expansion cards and RAM expansion cards. The ROM and RAM expansion capability
is described in Chapter 17.

278 Designing Cards and Drivers for the Macintosh Family

6. Important Before designing an expansion card for the Macintosh Portable 68000
Direct Slot, there are certain limitations that you should be aware of.
First, although DC voltage and ground are available at the connector,
the Macintosh Portable power budget allots only a small amount of
current for an expansion card. Second, in order to comply with FCC
regulations on radio-frequency emissions, no connector or cable
attached to an expansion card can penetrate the case of the
Macintosh Portable. Finally, the small size of the card limits the size
and number of components, thus severely restricting the number of
features and capabilities that you can have in your design. ~

If you are determined to design an expansion card for the Macintosh Portable Direct Slot
and can live within the aforementioned design limitations, you can contact Apple
Macintosh Developer Technical Support (MacDTS) for additional guidance.

Remember, an expansion card designed for the Macintosh SE will not physically fit in the
Macintosh Portable and vice versa.

Electrical description of the Macintosh Portable expansion connector

The Macintosh Portable expansion connector provides access to the same
microprocessor signals as the Macintosh SE, but the pinout of the expansion connector is
different. Figure 13-5 gives the pinout of the 96-pin expansion connector (socket) on the
Macintosh Portable main logic board.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 279

• Figure 13-5 Macintosh Portable 68000 Direct Slot connector pinout

0
I

GNO IGNO

+5V 1+2V

+5V 1+5V

+2V 1+2V

IDELAY,CS I/SYS,PWR

NMA I/BR

IBG I/OTACK

/LOS I IUDS

GNO 1+5/0V

A2 IA~
A5 IA6

Front of machine A8 IA2

All IA12

j
A14 IA15

A17 IA18

Reserved I Reserved

Reserved I Reserved

Reserved I Reserved

Reserved 1+12V

01 102

04 105

D7 108

010 1011

01~ 1014

+5/PV 1+5V

A12 IA20

A22 IA2~
FCO IFC1

/IPLO I/IPLI

IBERR I/EXT,OTACK

GNO 116M

GND IGNO

I

0
A B

GNO

+5V

+5V

+2V

IVPA

IBGACK

RIW

lAS

Al

A4

A7

AlO

A1~

A16

Reserved

Reserved

Reserved

Reserved

DO

O~

06

02

012

015

GND

A21

E

FC2

IIPL2

ISYS,RST

GNO

GNO

c

I
I

8

9
10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

280 Designing Cards and Drivers for the Macintosh Family

Functional description of the Mc68HCOOO signals in the Macintosh Portable

Table 13-4 lists the MC68HCOOO processor signals available at the Macintosh Portable
68000 Direct Slot expansion connector and describes their functions. Notice that most of
the ~ignals are the same as the Macintosh SE processor signals.

• Table 13-4 MC68HCOOO signal descriptions

Signal name

GND

DO-D15
A1-A23

Description

Logic ground.
Unbuffered data bus, bits 0 through 15.
Unbuffered address bus, bits 1 through 23.
16 MHz clock. 16M

IEXT.DTACK External data transfer acknowledge. This signal is an input to the processor
logic glue that allows for external generation of the IDTACK signal.

E

IBERR

IIPLO-/IPL2
ISYS.RST
ISYS.PWR

lAS
IUDS
ILDS
R/W
IDTACK
IDELAY.CS

IBG
IBGACK
IBR
IVMA
IVPA

E (enable) clock.
Bus error signal generated whenever I AS remains low for more than about
250 ms.
Input priority level lines 0 through 2.
Initiates a system reset.
A signal from the Power Manager IC that causes associated circuits to tri­
state their outputs and go into the idle state; ISYS.PWR is pulled high
(deasserted) during sleep state.
Address strobe.
Upper data strobe.
Lower data strobe.
Defines bus transfer as read or write signal.
Data transfer acknowledge.
Input indicating that system is inserting wait states; can be used to gate
chip selects.
Bus grant.
Bus grant acknowledge.
Bus request.
Valid memory access.
Valid peripheral address.

(Continued)

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 281

• Table 13-4 MC6sHCOOO signal descriptians (Continued)

Signal name

FCO-FC2
+5/0V
+5/3.7V
Reserved

DescrIption.

Function cade lines 0 thraugh 2.
+5 valts when system is active; 0 valts when system is in sleep made.
+5 valts.when system is active; +3.7 volts when system is in sleep made.
Far use by Apple.

Macintosh Portable power budget

The pawer budget far the Macintosh Partable allocates a very limited amaunt of pawer to.
an expansian card in the pracessor-direct slot. The current available is given in Table 13-5.
This current allacatian is part of a warst -case current budget that is estimated to. reduce
the system aperating time per battery charge by fifty percent.

• Table 13-5 Macintash Partable 68000 Direct Slat pawer budget

Power supply Operating state Sleep state

+5 v, always an 50 rnA maximum 1 mAmaximum
+5 V, switched • OmAmaximum
+12V 25 rnA maximum OmAmaximum

• The 50 rnA maximum applies to the loads of the switched and unswitched +5 V supplies.

282 Designing Cards arid Drivers far the Macintash Family

Chapter 14 Electrical Design Gu~de for 68030
Direct Slot Expansion Cards

This chapter provides electrical guidelines for designing processor direct
expansion cards for the Macintosh SE/30 and the Macintosh Hfx. This
section includes information on the following topics:

• electr~cal implementation of the 68030 Direct Slot

• functional description of expansion connector signals

• accessing the main logic board electronics from al1 expansion card

• accessing I/O and memory devices from an expansion card

• pseudo-slot expansion card design guidelines

• power consumption guidelines

283

About the 68030 Direct Slot

The 68030 Direct Slot expansion connector, first used on the Macintosh SE/30, takes
advantage of the more powerful MC68030 microprocessor. In order to support the 32-bit
address and data buses of the MC68030 microprocessor, the pin count of this connector
was increased to 120 pins, as opposed to the 96-pin connector used on Macintosh
MC68000-based machines to access the 16-bit address and data buses.

The 68030 Direct Slot is used primarily on compact, non-NuBus computers such as the
Macintosh SE/30, but is also used on modular machines such as the Macintosh IIfx that
have both NuBus and processor-direct slot interfaces.

The pinouts of the expansion connectors used on the Macintosh SE/30 and the Macintosh
IIfx are nearly identical except for certain signals that are machine-specific (unique) to
each computer. Although Apple has made every attempt to make any differences between
the two connectors transparent to developers, expansion cards designed for the
Macintosh SE/30 and the Macintosh IIfx computers are not interchangeable.

The following sections describe the pin assignments, define the signals, and provide signal
load and drive information for the implementation of the 68030 Direct Slot on the
Macintosh SE/30 and Macintosh IIfx computers. This information is followed by two
more sections that give specific design guidelines for the Macintosh SE/30 expansion
cards and the Macintosh IIfx expansion cards, respectively.

284 Designing Cards and Drivers for the Macintosh Family

Electrical description of the Macintosh SE/30 68030 Direct Slot

Figure 14-1 gives the pinout for the 120-pin expansion connector on the Macintosh SE/30
main logic board, as viewed from above.

Table 14-1 lists the pin assignments, gives the signal names, and briefly describes each
signal. Table 14-2 provides the load presented or drive available to each pin of an
expansion card and indicates whether the signals are inputs or outputs.

In the column labeled Input/output in Table 14-2, input refers to a signal from the
expansion card to the processor and corresponds directly to the load shown in the column
labeled Load or drive limits. Output refers to a signal from the processor to the expansion
card and corresponds directly to the drive shown in that column. An example may be
helpful in interpreting the Load or drive limits column. The /RESET line is shown as
presenting a load of 300 IlAl8 rnA, 50 pF. This is the maximum expected load that an
expansion card must drive when sending a /RESET signal to the main logic board. The DC
load is given in the format signal high/signal low. This means that the expansion card must
drive a load of up to 300 uA when it drives /RESET high (logic 1) and a load of up to 8 rnA
when it drives /RESET low (logic 0). The AC load is given as 50 pF, the maximum
capacitance to ground presented by the main logic board to AC signals from an expansion
card. The notation "Open collector; 1 kQ pullup" in the table means that the /RESET line
is normally in the open collector state; it is only driven low, and a 1 kilohm pullup resistor
on the main logic board returns the line to a logic 1.

Additionally, /RESET presents a drive of 40 uAl.4 rnA, 30 pF. This is the maximum amount
of drive from the main logic board that is available to integrated circuits on the expansion
card. The /RESET line can drive an expansion card DC load of up to 40 IlA in the high state
or up to .4 rnA in the low state. The AC drive is given as 30 pF, the maximum capacitance
to ground that an expansion card may present to AC signals from the /RESET line.

Some of the expansion connector signals are specified to drive one 74LS input (a standard
74LS input load is 20 flA high, .2 rnA low); other signals can drive two 74L5 inputs. This
differs from the Macintosh SE expansion connector guidelines described in Chapter 13.
These strict limitations are imposed to protect the noise and timing margins of the main
logic board. All signals needed by an expansion card should be buffered at the expansion
connector. The use of newer logic families with very low input loading allows you more
margin and flexibility in your expansion card designs.

Where "Load:" is in parentheses, the pin carries a signal that is usually an output driven by
the Mc68030 but that is tri-stated by the MC68030 after granting the bus to a DMA
requester. When tri-stated by the Mc68030, this signal may be driven by an expansion card.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 285

• Figure 14·1 Macintosh SE/30 68030 Direct Slot connector pinout

0
I

+12V I -sv I -12V

GND I GND I GND

CI6M I ECLK I CPUCLK

+5V I +5V I +5V

AO I Al I A2

A2 I A4 I A5

A6 GND A7

A8 A2 AlO

All A12 Al~

A14 +5V A15

A16 A17 A18

A12 A20 A2l

A22 GND A2~

A24 A25 A26

A27 A28 A22

A20 +5V A~l

D2l D20 D29

D28 D27 D26

D25 GND D24

Front of machine D22 I D22 D2l

D20 DI2 018

DI7 +5V D16

DI5 D14 01~

DI2 Dll D10

D2 GND D8

D7 06 D5

j
D4 o~ D2

D1 +5V DO

IHALT IBERR IRESET

FCO FC1 FC2

IBR IBG 113GACK

lAS SIZO SIZ1

IR/W IDSACKO IDSACK1

IC13REQ IC13ACK ISTERM

IRMC IDS ICIOUT

IIPLO IIPLl IIPL2

IlRQ1 IlRQ2 IlRQ2

ITMOA ITM1A IBUSLOCK

lNunus GND Reserved

PWROFF Reserved Reserved

I

0
c B A

286 Designing Cards and Drivers for the Macintosh Family

40

39
38

37

36

35
34

33
32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

8

7

6

• Table 14-1 Macintosh SE/30 68030 Direct Slot connector signals

Connector Signal Signal
Row Pin name description

A 1 Reserved For use by Apple
A 2 Reserved For use by Apple
A 3 /BUSLOCK NuBus bus lock
A 4 /IRQ3 Interrupt input 3
A 5 /IPL2 Interrupt priority 2
A 6 /CIOUT Cache inhibit out
A 7 /STERM Synchronous termination
A 8 /DSACK1 Data acknowledge 1
A 9 SIZ1 Transfer size bit 1
A 10 /BGACK Bus grant acknowledge
A 11 FC2 Function code 2
A 12 /RESET System reset
A 13 DO Data bit 0
A 14 D2 Data bit 2
A 15 D5 Data bit 5
A 16 D8 Data bit 8
A 17 D10 Data bit 10
A 18 D13 Data bit 13
A 19 D16 Data bit 16
A 20 D18 Data bit 18
A 21 D21 Data bit 21
A 22 D24 Data bit 24
A 23 D26 Data bit 26
A 24 D29 Data bit 29
A 25 A31 Address bit 31
A 26 A29 Address bit 29
A 27 A26 Address bit 26
A 28 A23 Address bit 23
A 29 A21 Address bit 21
A 30 A18 Address bit 18
A 31 A15 Address bit 15
A 32 A13 Address bit 13
A 33 A10 Address bit 10
A 34 A7 Address bit 7
A 35 A5 Address bit 5
A 36 A2 Address bit 2
A 37 +5V 5 volts

(Continued)

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 287

• Table 14-1 Macintosh SE/30 68030 Direct Slot connector signals (Continued)

Connector Signal Signal
Row Pin name description

A 38 CPUCLK 15.6672 MHz CPU clock
A 39 GND Ground
A 40 -12V -12 volts
B 1 Reserved For use by Apple
B 2 GND Ground
B 3 ITM1A NuB us transfer mode bit 1
B 4 IIRQ2 Interrupt input 2
B 5 IIPL1 Interrupt priority 1
B 6 IDS Data strobe
B 7 ICBACK Cache burst acknowledge
B 8 IDSACKO Data acknowledge 0
B 9 SIZO Transfer size bit 0
B 10 IBG Bus grant
B 11 FC1 Function code 1
B 12 IBERR Bus error
B 13 +5V 5 volts
B 14 D3 Data bit 3
B 15 D6 Data bit 6
B 16 GND Ground
B 17 D11 Data bit 11
B 18 D14 Data bit 14
B 19 +5V 5 volts
B 20 D19 Data bit 19
B 21 D22 Data bit 22
B 22 GND Ground
B 23 D27 Data bit 27
B 24 D30 Data bit 30
B 25 +5V 5 volts
B 26 A28 Address bit 28
B 27 A25 Address bit 25
B 28 GND Ground
B 29 A20 Address bit 20
B 30 A17 Address bit 17
B 31 +5V 5 volts
B 32 A12 Address bit 12
B 33 A9 Address bit 9
B 34 GND Ground
B 35 A4 Address bit 4

(Continued)

288 Designing Cards and Drivers for the Macintosh Family

• Table 14-1 Macintosh SE/30 68030 Direct Slot connector signals (Continued)

Connector Signal Signal
Row PIn name description

B 36 A1 Address bit 1
B 37 +5V 5 volts
B 38 ECLK E clock
B 39 GND Ground
B 40 -5V -5 volt
C 1 PWROFF Shutdown bit
C 2 /NUBUS NuBus space access
C 3 /TMOA NuBus transfer mode bit 0
C 4 /IRQ1 Interrupt input 1
C 5 /IPLO Interrupt priority 0
C 6 /RMC Read modify cycle
C 7 /CBREQ Cache burst request
C 8 /R/W Read/write
C 9 /AS Address strobe
C 10 /BR Bus request
C 11 FCO Function code 0
C 12 /HALT Halt
C 13 D1 Data bit 1
C 14 D4 Data bi~ 4
C 15 D7 Data bit 7
C 16 D9 Data bit 9
C 17 D12 Data bit 12
C 18 D15 Data bit 15
C 19 D17 Data bit 17
C 20 D20 Data bit 20
C 21 D23 Data bit 23
C 22 D25 Data bit 25
C 23 D28 Data bit 28
C 24 D31 Data bit 31
C 25 A30 Address bit 30
C 26 A27 Address bit 27
C 27 A24 Address bit 24
C 28 A22 Address bit 22
C 29 A19 Address bit 19
C 30 A16 Address bit 16
C 31 A14 Address bit 14
C 32 All Address bit 11

(Continued)

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 289

• Table 14-1 Macintosh SE/30 68030 Direct Slot connector signals (Continued)

Connector Signal Signal
Row Pin name description

C 33 A8 Address bit 8
C 34 A6 Address bit 6
C 35 A3 Address bit 3
C 36 AO Address bit 0
C 37 +5V 5 volts
C 38 C16M 15.6672 MHz gen clock
C 39 GND Ground
C 40 +12V +12 volts

• Table 14-2 Macintosh SE/30 68030 Direct Slot signals, loading or driving limits

Signal name Input/output Load or drive limits

AO-A31 In/Out Load: 300 J.lA/3 mA, 100 pF
Drive: 40 J.lA/.4 mA, 30 pF

DO-D23 In/Out Load: 150 J.lA/150 J.lA, 100 pF
Drive: 40 J.lA/.4 mA, 30 pF

D24-D31 In/Out Load: 300 J.lA/300 J.lA, 100 pF
Drive: 20 J.lA/.2 mA, 30 pF

/RESET In/Out Load: 300 J.lA/8 mA, 50 pF
Drive: 40 J.lA/.4 mA, 30 pF
Open collector, 1 kn pullup

/BERR In/Out Load: 100 J.lA/8 mA, 50 pF
Drive: 40 J.lA/.4 mA, 30 pF
Open collector, 1 kn pullup

/HALT In/Out Load: 100 J.lA/8 mA, 50 pF
Drive: 40 J.lA/.4 mA, 30 pF
Open collector, 1 kQ pullup

FCO-FC2 Output Drive: 20 J.lA/.2 mA, 30 pF
(Input) (Load: 100 J.lA/8 mA, 50 pF)

Open collector, 1 kQ pull up
/BR Input Load: 100 J.lA/8 mA, 50 pF

1 kn pullup
/BG Output Drive: 40 J.lA/. 4 mA, 30 pF

(Continued)

290 Designing Cards and Drivers for the Macintosh Family

• Table 14-2 Macintosh SE/30 68030 Direct Slot signals, loading or driving limits
(Continued)

Signal name

/BGACK

SIZO-SIZ1

/AS

/DSACKO-/DSACK1

R/W

/STERM
/CBACK
/CBREQ
/CIOUT
/DS

/RMC
/IPLO-/IPL2

/IRQO-/IRQ3
/TMOA
/TM1A
/BUSLOCK
/NUBUS
PWROFF
CPUCLK
c16M
ECLK

Input/output

Input

Output
(Input)

Output
(Input)

In/Out

Output
(Input)

Input
Input
Output
Output
Output
(Input)

Output

In/Out

Input
Input

Input
Input
Output
Output
Output
Output

Output

Load or drive limits

Load: 100 J.lAl8 rnA, 50 pF
1 kQ pullup ,

Drive: 40 J.lAl.4 rnA, 30 pF
(Load: 100 J.lAl100 J.lA, 50 pF)

Drive: 40 J.lAl.2 rnA, 30 pF
(Load: 100 J.lAl8 rnA, 50 pF)
Open collector, 1 kQ pullup

Load: 100 J.lA/8 rnA, 50 pF
Drive: 40 J.lAl.2 rnA, 30 pF
Open collector, 1 kQ pullup

Drive: 40 J.lAl.4 rnA, 30 pF
(Load: 100 J.lAl8 rnA, 50 pF)
Open collector, 1 kQ pullup

Load: 100 J.lAl100 J.lA, 50 pF
Load: 100 J.lAl100 J.lA, 50 pF
Drive: 40 J.lAl.4 rnA, 30 pF
Drive: 40 J.lAl.4 rnA, 30 pF
Drive: 40 J.lAl.4 rnA, 30 pF
Load: 100 J.lA/8 rnA, 50 pF
Open collector, 1 kQ pullup

Drive: 40 J.lAl.4 rnA, 30 pF
Load: 100 J.lAl100 J.lA, 50 pF
Drive: 40 J.lAl.4 rnA, 30 pF
Load: 400 J.lA/ 4 rnA, 50 pF
Load: 400 J.lA/2 rnA, 50 pF
Load: 400 J.lA/2 rnA, 50 pF
Load: 400 f.lA/2 rnA, 50 pF
Drive: 40 J.lAl.4 rnA, 30 pF

Drive: 40 J.lAl.4 rrtA, 30 pF
Drive: 40 J.lAl.4 rnA, 30 pF
Drive: 40 ~AI.4 mA, ~O pF
Drive: 40 J.lAl.4 rnA, 30 pF

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 291

Electrical description of the Macintosh llfx 68030 Direct Slot

Figure 14-2 gives the pinout for the 120-pin expansion connector on the Macintosh Hfx
main logic board, as viewed from above.

Table 14-3 lists the pin assignments, gives the signal names, and briefly describes each
signal. Table 14-4 provides the load presented or drive available to each pin of an
expansion card and indicates whether the signals are inputs or outputs.

The last column in Table 14-4, labeled Load or drive limits, gives several specifications. An
example may be helpful in interpreting this column. The /CBREQ line is shown as
presenting a load of 100 JlAl5 rnA, 50 pF. This is the maximum expected load that an
expansion card must drive when sending a /CBREQ signal to the main logic board. The DC
load is given in the format signal high/signal low. This means that the expansion card must
drive a load of up to 100 flA when it drives /CBREQ high (logic 1) and a load of up to 5 rnA
when it drives /CBREQ low (logic 0). The AC load is given as 50 pF, the maximum
capacitance to ground presented by the main logic board to AC signals from an expansion
card. The parentheses around "In" and "Load" indicate that the signal is usually driven by
the MC68030 processor, but after granting the bus to a DMA requester, the processor tri­
states the signal and an expansion card may drive it. The notation "Tri-state, 1 kQ pullup"
gives the value of the required pullup resistor.

Additionally, /CBREQ presents a drive of 40 uAl1.2 rnA, 50 pF. This is the maximum amount
of drive from the main logic board that is available to integrated circuits on the expansion
card. The /CBREQ line can drive an expansion card DC load of up to 40 JlA in the high state
or up to 1.2 rnA in the low state. The AC drive is given as 50 pF, the maximum capacitance to
ground that an expansion card may present to AC signals from the /CBREQ line.

Next, look at /BERR and you see that only the signal low value is given, which means the
expansion card must drive a load of up to 48 rnA when it drives /BERR low (logic 0). The
signal high value is not required because the notation "Open collector; 220.Q pullup" in
the table means that the /BERR line is normally in the open collector state; it is only driven
low, and a 220 ohm pullup resistor on the main logic board returns the line to a logic 1. This
is true for all open collector signals in Table 14-4.

Some of the expansion connector signals are specified to drive one 74LS input (a standard
74LS input load is 20 JlA high, .4 rnA low); other signals can drive two 74LS inputs. This
differs from the Macintosh SE expansion connector guidelines described in Chapter 13.
These strict limitations are imposed to protect the noise and timing margins of the main
logic board. All signals needed by an expansion card should be buffered at the expansion
connector. The use of newer logic families with very low input loading allows you more
margin and flexibility in your expansion card designs.

292 Designing Cards and Drivers for the Macintosh Family

• Figure 14-2 Macintosh IIfx 68030 Direct Slot expansion connector pinout

Front of machine

j

+12V

GND

CPUCLK

+2,V

AO

A~

A6

A8

All

A14

A16

A12

A22

A24

A27

A3Q

0~1

028

022,

02~

020

DI7

DI2

DI2

122
07

D4

DI

/HALT

FCO

IBR

lAS
/RIW

ICBREQ

/RMC

/lPLO

/lRQ6

IPOS.BR

Reserved

IpFW

c

0
I

-2,V

ISLOT.E

Reserved

+2,V

Al

A4

GNO

A2

A12

+2V

A17

A20

GNO

A25

A28

+2,V

O~O

027

GND

022

DI2

+2,V

DI4

DII

GNO

06

O~

+2V

IBERR

FCI

IBG

SIZO

10SACKO

ICBACK

IDS
/lPLI

/lRQI5

IPOS.BG

GND

IECS

I

0
B

-12V

GNO

Reserved

+2,V

A2

A5

A7

AlO

Al~

A15

A18

A21

A2~

A26

A~

A~1

022
026

024

021

DI8

DI6

DI~

DIO

08

02

02

DO

/RESET

FC2

IBGACK

SIZI

IDSACKI

ISTERM

ICIOUT

/lPL2

Reserved

Reserved

IPOS.MASTER

GND

A

40

39

38

37

36
35
34

33

32

31
30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13
12

11

10

9

8

7

6

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 293

• Table 14-3 Macintosh IIfx 68030 Direct Slot connector signals

Connector Signal Signal
Row Pin name description

A 1 GND Ground
A 2 /PDS.MASTER PDS replaces 68030 processor in bus arbitration scheme
A 3 Reserved For use by Apple
A 4 Reserved For use by Apple
A 5 /IPL2 Interrupt priority 2
A 6 /CIOUT Cache inhibit out
A 7 /STERM Synchronous termination
A 8 /DSACK1 Data acknowledge 1
A 9 SIZ1 Transfer size bit 1
A 10 /BGACK Bus grant acknowledge
A 11 FC2 Function code 2
A 12 /RESET System reset
A 13 DO Data bit 0
A 14 D2 Data bit 2
A 15 D5 Data bit 5
A 16 D8 Data bit 8
A 17 D10 Data bit 10
A 18 D13 Data bit 13
A 19 D16 Data bit 16
A 20 D18 Data bit 18
A 21 D21 Data bit 21
A 22 D24 Data bit 24
A 23 D26 Data bit 26
A 24 D29 Data bit 29
A 25 A31 Address bit 31
A 26 A29 Address bit 29
A 27 A26 Address bit 26
A 28 A23 Address bit 23
A 29 A21 Address bit 21
A 30 A18 Address bit 18
A 31 A15 Address bit 15
A 32 A13 Address bit 13
A 33 A10 Address bit 10
A 34 A7 Address bit 7
A 35 AS Address bit 5
A 36 A2 Address bit 2
A 37 +5V 5 volts

(Continued)

294 Designing Cards and Drivers for the Macintosh Family

• Table 14-3 Macintosh IIfx 68030 Direct Slot connector signals (Continued)

Connector Signal Signal
Row Pin name description

A 38 Reserved For use by Apple
A 39 GND Ground
A 40 -12V -12 volts
B 1 IECS Early cycle start
B 2 GND Ground
B 3 IPDS.BG Bus grant used if IPDS.MASTER is active (low)
B 4 IIRQ15 Interrupt line if pseudo-slot design is not used
B 5 IIPL1 Interrupt priority 1
B 6 IDS Data strobe
B 7 ICBACK Cache burst acknowledge
B 8 IDSACKO Data acknowledge 0
B 9 SIZO Transfer size bit 0
B 10 IBG Bus grant to external device
B 11 FC1 Function code 1
B 12 IBERR Bus error
B 13 +5V 5 volts
B 14 D3 Data bit 3
B 15 D6 Data bit 6
B 16 GND Ground
B 17 D11 Data bit 11
B 18 D14 Data bit 14
B 19 +5V 5 volts
B 20 D19 Data bit 19
B 21 D22 Data bit 22
B 22 GND Ground
B 23 D27 Data bit 27
B 24 D30 Data bit 30
B 25 +5V 5 volts
B 26 A28 Address bit 28
B 27 A25 Address bit 25
B 28 GND Ground
B 29 A20 Address bit 20
B 30 A17 Address bit 17
B 31 +5V 5 volts
B 32 A12 Address bit 12
B 33 A9 Address bit 9
B 34 GND Ground
B 35 A4 Address bit 4

(Continued)

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 295

• Table 14-3 Macintosh Hfx 68030 Direct Slot connector signals (Continued)

Connector Signal Signal
Row Pin name description

B 36 Al Address bit 1
B 37 +5V 5 volts
B 38 Reserved For use by Apple
B 39 /SLOT.E When active (low), the 68030 Direct Slot replaces slot $E

in the address map
B 40 -5V -5 volts
C 1 /PFW Shutdown bit
C 2 Reserved For use by Apple
C 3 /PDS.BR Bus request used if /PDS.MASTER is active (low)
C 4 /IRQ6 PDS interrupt line for pseudo-slot $E
C 5 /IPLO Interrupt priority 0
C 6 /RMC Read modify cycle
C 7 /CBREQ Cache burst request
C 8 /R/W Read/write
C 9 /AS Address strobe
C 10 /BR Bus request
C 11 FCO Function code 0
C 12 /HALT Halt
C 13 D1 Data bit 1
C 14 D4 Data bit 4
C 15 D7 Data bit 7
C 16 D9 Data bit 9
C 17 D12 Data bit 12
C 18 D15 Data bit 15
C 19 D17 Data bit 17
C 20 D20 Data bit 20
C 21 D23 Data bit 23
C 22 D25 Data bit 25
C 23 D28 Data bit 28
C 24 D31 Data bit 31
C 25 A30 Address bit 30
C 26 A27 Address bit 27
C 27 A24 Address bit 24
C 28 A22 Address bit 22
C 29 A19 Address bit 19
C 30 A16 Address bit 16
C 31 A14 Address bit 14
C 32 All Address bit 11

(Continued)

296 Designing Cards and Drivers for the Macintosh Family

• Table 14-3 Macintosh IIfx 68030 Direct Slot connector signals (Continued)

Connector Signal Signal

Row Pin name description

C 33 A8 Address bit 8
C 34 A6 Address bit 6
C 35 A3 Address bit 3
C 36 AO Address bit 0
C 37 +5V 5 volts
C 38 CPUCLK 20 MHz CPU clock
C 39 GND Ground
C 40 +12V +12 volts

• Table 14-4 Macintosh IIfx 68030 Direct Slot Signals, loading or driving limits

Signal name Input/output Load or drive limits

AO-A31 In/out Load: 100 f.lA/8 mA, 150 pF
Drive: 40 f.lA/1.2 mA, 30 pF

DO-D23 In/out Load: 100 f.lA/8 mA, 130 pF
Drive: 40 f.lA/1.2 mA, 30 pF

D24-D31 In/out Load: 100 f.lA/8 mA, 150 pF
Drive: 40 f.lA/1.2 mA, 30 pF

/RESET In/out Load: 18 f.lA, 260 pF
Drive: 10 mA, 50 pF
Open collector, 470 Q pullup

/BERR In/out Load: 48 mA, 120 pF
Drive: 6 mA, 15 pF (critical)
Open collector, 220 Q pullup

/HALT In/out Load: 48 mA, 100 pF
Drive: 6 mA, 15 pF (critical)
Open collector, 220 Q pullup

FCO-FC2 (In)/out (Load: 400 f.lA/ 4 mA, 80 pF)
Drive: 80 f.lA/2.4 mA, 30 pF
Tri-state, 3.3 kQ pullup

/BR In Load: 100 f.lA/8 mA, 50 pF
3.3 kQ pullup

/BG Out Drive: 40 f.lA/.6 mA, 30 pF
(Continued)

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 297

• Table 14-4 Macintosh IIfx 68030 Direct Slot signals, loading or driving limits
(Continued)

Signal name Input/output

/BGACK In/out

SIZO-SIZ1 (In)/ out

/AS (In)/out

/DSACKO-/DSACK1 In/ out

R/W (In)/out

/STERM In/out

/CBACK In/out

/C~REQ (In)/out

/CIOUT (In)/ out

/DS (In)/ out

/RMC (In)/ out

/IPLO-/IPL2 Ou t
/PFW Out

Load or drive limits

Load: lOrnA, 100 pF
Drive: 2 rnA, 30 pF
Open collector, 470 Q pull up
(Load: 100 flAl100 flA, 100 pF)
Drive: 40 flA/1.2 rnA, 30 pF
(Load: 100 flA/5 rnA, 130 pF)
Drive: 80 JiAl2.4 rnA, 50 pF
Tri-state, 1 kQ p~llup
Load: 5 rnA, 30 pF
Drive: lOrnA; 50 pf
Open collector, 1 kQ pullup
(Load: 100 flA/5 rnA, 150 pF)
Drive: 80 flAl2.4 rnA, 30 pF
Tri-state, 1 kQ pullup
Load: 16 rnA, 100 pF
Drive: .6 rnA, 15 pF (critical)
Open collector, 330 ~ pull up
Load: lOrnA, 50 pF
Drive: .6 rnA, 30 pF
Open collector, 470 Q pull up
(Load: 100 flAl5 rnA, 50 pF)
Drive: 40 flA/1.2 rnA, 50 pF
Tri-state, ~ kp pUllup
(Load: 40 flAl1.6 rnA, 50 pF)
Drive: 20 ~AI.6 rnA, 50 pF
Tri-state, 3.3 kQ pullup
(Load: 100 flA/5 rnA, 100 pF)
Drive: 80 flA/2.4 rnA, 50 pF
Tri-state, 1 kQ pullup
(Load: 40 flAl1.6 rnA, 50 pF)
Drive: 20 1lN.6 rnA, 50 pF
Tri-state, 303 kQ pullup
Drive: 40 flAl.4 rnA, 30 pF
Refer to the section "/PFW Interaction With
the Power Supply" in Chapter 5 for details.

298 Designing Cards and Drivers for the Macintosh Family

(Continued)

• Table 14-4 Macintosh Hfx 6S030 Direct Slot signals, loading or driving limits
(Continued)

Signal name

CPUCLK

/PDS.MASTER
/PDS.BG

/PDS.BR
/ECS

/SLOT.E

Input/output

Out

In
In

Out
(In)/out

In

Load or drive limits

Drive: SOrnA; this signal is driven by an
emitter follower.
Load: 25 JlN250 JlA, 50 pF
Load: 25 J.LN250 JlA~ 50 pF
3.3 kQ pullup
Drive: 100 JlN8 rnA, 50 pF
(Load: 100 J.LN5 mA, 50 pF
Drive: 20 JlN.6 rnA, 15 pf (critical)
Tri-state, 1 kQ pullup
Load: 25 J.LN250 JlA, 50 pF
3.3 kQ pullup

Functional description of the MC6S030 signals

The Macintosh SE/30 and futUre MC68030-based PDS machines without NuBus will share a
common set of address, data, control, power, and ground signals. This means that the
Direct Slot pin assignments for these machines will be identical to the Macintosh SE/30.

The Macintosh SE/30 and the Macintosh Hfx computers share a common set of address
and data signals, and most of the same control, power, and ground signals. Table 14-5 lists
those signals that are common to the two machines as well as future MC6S030-based PDS
machines without NuBus. Two of the clock signals (ECLK and C16M) shown in Table 4-5
are not used on the Macintosh Hfx. Features and exceptions that pertain to the
Macintosh IIfx only are explained in footnotes.

• Note: Your Macintosh Hfx expansion card design should include an oscillator for
general-purpose timing requirements. Due to loading constraints of the Macintosh Hfx
and other high-speed computers, it is impossible to route clock lines over the main
logic board, especially to the expansion connector.

Chapter 14 Electrical Design Guide for 6S030 Direct Slot Expansion Cards 299

In addition to their common signals, each computer includes a group of machine-specific
(unique) signals. The Macintosh SE/30 and future Macintosh PDS computers without
NuBus will share a common set of these machine-specific signals. Macintosh computers
such as the Macintosh Hfx that have both NuBus and the 68030 Direct Slot will probably
each have a unique set of machine-specific signals. Pins that are currently defined as
reserved (see Figures 14-1 and 14-2) may be added to the lists of machine-specific signals
on future machines.

• Table 14-5 MC68030 common signals on the 68030 Direct Slot

Signal name

AO-A31
DO-D31
/IPLO-/IPL2
/CIOUT

/CBACK

/STERM

/DSACKO-/DSACK1

SIZO-SIZ1

/BGACK

FCO-FC2

/RESET
/BG

/BERR

ECLK

Description

Address lines.
Data lines.
Interrupt priority level lines. *
A tri-state output signal that inhibits the operation of an
external cache. t
An input signal indicating that the accessed device can
operate in burst mode.
A bus response signal indicating that the addressed port size is
32 bits and that data may be latched on the next falling clock
edge for a read cycle. *
Data transfer acknowledge signals that indicate the completion
of a data transfer operation.
Tri-state output signals indicating the number of bytes
remaining to be transferred during the current bus cycle.
An input signal indicating that an external device has become
bus master.
Three-bit function code used to identify the address space of
current bus cycle.
A bi-directional signal that initiates a system reset.
An output signal indicating that an external device may become
bus master following completion of the current processor bus
cycle.
A bus error signal indicating that an invalid bus operation is
being attempted}
Main logic board VIA chip clock signal (not used on the
Macintosh Hfx).

300 Designing Cards and Drivers for the Macintosh Family

(Continued)

• Table 14-5 MC68030 common signals on the 68030 Direct Slot (Continued)

Signal name

IRMC

ICBREQ

R/W

lAS

IBR

IHALT

IDS

IDS
c16M

Description

A tri-state output signal that identifies the current bus cycle
as part of an indivisible read-modify-write operation.
A tri-state output signal indicating a burst request for the
instruction or data cache.
A tri-state output signal that defines the bus transfer as a read
or write cycle.
A tri-state output signal indicating that a valid address is on
the bus.
An input signal indicating that an external device wishes to
become bus master.
A signal indicating that the processor should suspend bus
activity'*
Data strobe signal. During a read, IDS indicates that an external
device should place valid data on the data bus; during a write,
indicates MC68030 has placed valid data on the data bus.
A general purpose 15.6672 MHz clock (not used on the
Macintosh lIfx).

• Although these signals are available at the Macintosh IIfx expansion connector, you should not use them
in your design. Instead use the PDS interrupt line, /IRQ6, which is tied into the Macintosh IIfx interrupt
scheme and can be prioritized, masked, and so on.

t On the Macintosh IIfx, /CIOUT must not be used in conjunction with /CBREQ because the cache should
not be inhibited during burst mode cycles.

* The maximum capacitive load allowed on these signal lines is 15 pF due to the high-speed nature of the
Macintosh.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 301

Macintosh SE/30 68030 Direct Slot machine-specific signals

Table 14-6 lists the 68030 Direct Slot signals that are specific to the Macintosh SE/30
computer. All of the machine-specific signals listed in Table 14-6 (except the CPUCLK
signal) emulate equivalent signals on the NuBus expansion interface. Because of the
limited amount of space available in the memory map of the Macintosh SE/30 computer,
you should design your 68030 Direct Slot expansion card to occupy the same 32-bit
physical address ranges occupied by NuBus cards in Macintosh II-family computers. This
method of emulating NuBus expansion slot address space is called pseudo-slot design.
The pseudo-slot interrupt support lines allow the use of the Macintosh Slot Manager driver
routines and thus provide an easy software port for NuBus designs. Pseudo-slot design is
the preferred expansion design strategy for Macintosh computers with processor-direct
slots but without NuBus. See the section "Pseudo-Slot Design Guidelines for
Macintosh SE/30 PDS Expansion Cards," later in this chapter, for more information on
pseudo-slot design.

Cards that take advantage of these pseudo-slot features won't work in a Macintosh NuBus
slot because of bus conflicts with physical NuBus. These pseudo-slot signal lines will be
available on future 68030-based Macintosh PDS computers without physical NuBus. A
slightly different pseudo-slot signal configuration is used on machines that include both
the NuBus expansion interface and a processor-direct slot.

By porting the NuBus design to the 68030 Direct Slot via pseudo-:-slot, you need to supply
only one driver for both 68030 Direct Slot and NuBus cards, and can design cards that will
be usable in future Macintosh computers without NuBus support.

• Table 14-6 Macintosh SE/30 machine-specific signals on the 68030 Direct Slot

Signal name

PWROFF

/BUSLOCK

Description

Status signal to inform an expansion card that power will soon be
removed. (Shutdown has been selected from the Special menu.)
This signal is common across Macintosh machines without
physical NuBus.
NuBus status bit that goes low to signal that an alternate bus
master has acquired the bus. Currently not used. This signal is
common across Macintosh machines without physical NuBus.

302 Designing Cards and Drivers for the Macintosh Family

(Continued)

• Table 14-6 Macintosh SE/30 machine-specific signals on the 68030 Direct Slot
(Continued)

Signal name

/IRQ1-/IRQ3

/TMOA-/TM1A
/NUBUS

CPUCLK

Description

General purpose interrupts that correspond to the three pseudo­
slot addresses. These signals are common across Macintosh
machines without physical NuBus.
Status input signals to VIA2 that are currently not used.
Address decode of the memory range $60000000 to $FFFF FFFF.
Note that this signal is active when the CPU accesses the
on-board video display. Expansion cards must further decode
the slot address ranges to avoid conflict with the video logic.
This signal is common across Macintosh machines without
physical NuBus.
Provides signal timing and synchronization to ensure
compatibility with future versions of the Macintosh. On the
Macintosh SE/30 this is a 15.6672 MHz clock and may change
with each new Macintosh.

Macintosh Dfx 68030 Direct Slot machine-specific signals
/

Table 14-7 lists the 68030 Direct Slot signals that are specific to the Macintosh IIfx
computer. If you design your PDS expansion card so that the /SLOT.E signal is grounded
(low) when it is plugged into the slot, the card automatically looks like a NuBus card
occupying slot $E in the Macintosh IIfx address map. This is similar to the pseudo-slot
design used with Macintosh SE/30 expansion cards, except your card occupies only the
32-bit address space of a NuBus card in slot $E. The Macintosh nfx uses only one
dedicated interrupt line, /IRQ6, to support NuBus pseudo-slot $E, while the Macintosh
SE/30 uses three interrupt lines to support its NuBus pseudo-slot addresses. The
Macintosh IIfx also includes another interrupt line, /IRQ15, that y<?u should use if your
design does not support the NuBus pseudo-slot and you are providing a stand-alone, card­
specific software driver.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 303

• Table 14-7 Macintosh Hfx machine-specific signals on the 68030 Direct Slot

Signal name

/PFW

/SLOT.E

/PDS.MASTER

/PDS.BG

PDS.BR

/ECS
/IRQ6

/IRQ15

Description

A status signal informing the expansion card that power will
be removed. See the section "/PFW Interaction With
the Power Supply" in Chapter 5 for details.
When active, this signal indicates that the PDS expansion card
is replacing NuBus slot $E in the Macintosh Hfx address map.
When this signal is active, the PDS expansion card replaces the
Mc68030 in the bus arbitration scheme.
Bus grant signal from PDS expansion card functioning as bus
master; it issues this signal to grant the bus to another requester.
Bus request signal received by PDS expansion card functioning
as bus master.
A signal from the MC68030 indicating early cycle start.
A dedicated interrupt line, from the processor to the 68030
Direct Slot, that supports NuBus pseudo-slot $E. To prevent
incompatibility on the Macintosh Hfx, use /IRQ6
instead of input priority level lines /IPLO through /IPL2.
An interrupt line that is used if the expansion card does not
support the NuBus pseudo-slot.

304 Designing Cards and Drivers for the Macintosh Family

Design considerations for Macintosh SE/30 expansion cards

The following paragraphs provide information that you should become familiar with
before starting your expansion card design. Included are a description of how an
expansion card gains access to memory and I/O devices, information on pseudo-slot
design, a description of how the interrupt handling mechanism works, a summary of
design hints, and a discussion of a Macintosh SE/30 expansion card's power requirements.

Memory and I/O access from a Macintosh SE/30 expansion card

An expansion card can occupy one of the available unused address locations in the
Macintosh SE/30 memory map. See Table 14-S for a listing of the Macintosh SE/30
memory map's 32-bit physical address space assignments. The Macintosh SE/30 processor
can gain access to the expansion card in the same way that it gains access to any of the
computer's I/O devices.

In comparison to accessing the expansion electronics from the Macintosh SE/30
processor, the task of accessing resources on the main logic board from an expansion card
coprocessor is a bit more complex. When an expansion coprocessor needs to access
Macintosh SE/30 resources, it requests the bus from the Mc6s030 using the bus request
signal (lBR). The MC6S030 grants the bus (lBG) and tri-states itself off the bus at the end
of that bus cycle. The coprocessor then takes over as bus master (lBGACK). At this point,
the coprocessor has complete access to all Macintosh SE/30 electronics.

For all devices on the Macintosh SE/30 main logic board, the timing of an access is
controlled by the GLUE gate array. Once the coprocessor has been given the bus, it asserts
a valid address and address strobe to the main logic board. The gate array detects the
address and generates the necessary chip selects for the devices. The gate array also
generates the /DSACKx signals to inform the coprocessor of cycle completion.

The Macintosh SE/30 design uses the Apple Sound Chip and the SWIM floppy disk
controller instead of the discrete sound circuits and the IWM in the Macintosh SE.
Because of this, no extra cycles are required for loading the sound registers or floppy disk
speed parameters. Therefore, no special synchronization logic is required in the design of
an expansion card.

When accessing RAM and ROM resources on the Macintosh SE/30 logic board, the timing
and access requirements are the same as for I/O accesses. This differs from the
Macintosh SE because the video RAM is not shared with the system RAM but instead is a
separate device residing in a separate address space.

Chapter 14 Electrical Design Guide for 6S030 Direct Slot Expansion Cards 305

• Table 14-8 Macintosh SE/30 32-bit physiCal address spaces

Address

$0000 OOOO-$OOOF FFFF
$0010 OOOO-$OOCF FFFF
$OODO 0000-$3FFF FFFF
$4000 0000-$4007 FFFF
$4008 0000-$4FFF FFFF
$5000 0000-$5000 1FFF
$5000 2000-$5000 3FFF
$5000 4000-$5000 5FFF
$5000 6000-$5000 7FFF
$5001 0000-$5001 1FFF
$5001 2000-$5001 3FFF
$5001 4000-$5001 5FFF
$5001 6000-$5001 7FFF
$5001 8000-$57FF FFFF
$5800 0000-$5FFF FFFF

$6000 0000-$F8FF FFFF
$F900 OOOO-$FBFF FFFF
$FCOO OOOO-$FDFF FFFF
$FEOO OOOO-$FEOO FFFF
$FEFF OOOO-$FEFF FFFF
$FFOO OOOO-$FFFF FFFF

Description

RAM (minimum configuration)
RAM (expansion area)
RAM (undefined)
ROM bank 0 (minimum configuration)
ROM (undefined)
VIAl (x0200)
VIA2 (x0200)
SCC (x0002)
SCSI (handshake)
SCSI (x0010)
SCSI (pseudo-DMA)
Sound
SWIM
Undefined
68030 Direct Slot expansion Of pseudo-slot is not
used)
Expansion (undefined)
Expansion pseudo-slot space (emulate NuBus)
Expansion (undefined)
Video RAM space
Video ROM space
Expansion (undefined)

• Note: When the Overlay signal is true at boot time, the RAM is not accessible by the
processor and the ROM resides at address 0 and its normal location. When Overlay is
false, the mapping in Table 14-8 is valid.

306 Designing Cards and Drivers for the Macintosh Family

Pseudo-slot design guidelines for Macintosh SE/30 expansion cards

If you are familiar with designing devices for the Mc68000 family of microprocessors, you
should find it relatively easy to use the pseudo-slot method to design an expansion card
for the Macintosh SE/30. The only added constraints are the need for a declaration ROM
and adherence to some address decoding rules.

Many of the address locations correspond to address ranges used by NuBus expansion
cards resident in Macintosh II-family products. The advantage of designing an expansion
card to occupy one of these unused addresses is that existing ROM firmware with the
ability to manage the NuBus slots is also present in your computer's system ROM.
Therefore, if an expansion card is designed along the lines of a NuBus card (for example,
with a declaration ROM and interrupt capability), the existing Slot Manager ROM
firmware controls this card as if it were a NuBus card, but the electrical interface is via the
MC68030 bus. As a side benefit of this design, one software driver works on machines with
two different methods of expansion.

If you do not use pseudo-slot design, the area from $5S00 0000 to $5FFF FFFF in the
Macintosh SE/30 is reserved as the preferred location for 68030 Direct Slot expansion. If
you use this area, your expansion card will work in future Macintosh PDS machines that do
not have NuBus. Note that to access this address space, the Macintosh must be in 32-bit
mode. It is the responsibility of the card driver to switch between the 24-bit and 32-bit
modes using the trap macros _SwapMMUMode and _GetMMUMode as defined in the
operating system utilities chapter of Inside Macintosh. You will not be able to use the Slot
Manager and must provide card-specific drivers to use this memory area for card
expansion. The conversion addresses for the 24-to-32-bit logical address translation are
listed in Table 14-9.

• Table 14-9 24-to-32-bit logical address translation map

24-bit address range

$00 0000-$7F FFFF
$80 OOOO-$SF FFFF
$90 0000-$9F FFFF
$AO OOOO-$AP FFFF
$BO OOOO-$BF FFFF
$CO OOOO-$CF FFFF
$DO OOOO-$DF FFFF
$EO OOOO-$EF FFFF
$FO OOOO-$FF FFFF

32-bit address range

$0000 0000-$007F FFFF
$4000 0000-$400F FFFF
$F900 0000-$F90F FFFF
$FAOO OOOO-$F AOF FFFF
$FBOO OOOO-$FBOF FFFF
$FCOO OOOO-$FCOF FFFF
$FDOO OOOO-$FDOF FFFF
$FEOO OOOO-$FEOF FFFF
$5000 0000-$500F FFFF

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 307

In many ways, designing an expansion card for the 68030 Direct Slot is simpler than
designing one for the NuBus. The 32-bit data bus of the Macintosh SE/30 supports
dynamic bus sizing, so I/O ports of 8, 16, or 32 bits can be designed. Proper control of the
/DSACKx signals informs the processor of the bus width, so additional memory cycles can
be executed to complete the transfer if necessary. There is no byte swapping between the
Mc68030 and the expansion connector, and separate address and data buses eliminate the
need for address latches.

The Macintosh SE/30 expansion slot provides three general-purpose interrupt inputs to
the main logic. These interrupts correspond to the first three NuBus slots of a
Macintosh II. In order to have your expansion card reside in address spaces that emulate
the NuBus slots, design your card's hardware to use only the physical 32-bit space address
ranges shown in Table 14-10 and the software to operate only in the 32-bit mode.

6. Important If you are designing a video card, remember that the ROM in the
Macintosh SE/30 includes only the 24-bit version of Color QuickDraw.
To allow your video card to operate in 32-bit mode, you must bundle
the RAM-based version of 32-bit QuickDraw with your card. ,6.

In order to ensure compatibility with future hardware and software, you should decode all
the address bits to minimize the chance for address conflicts.

The declaration ROM must reside at the upper address limit of the 16 MB address space in
order for the Slot Manager code to recognize the card. Chapter 8, "NuBus Card Firmware,"
provides information to help you develop the necessary card firmware.

You are not required to follow the pseudo-slot method for designing an I/O expansion
card. This method is provided as a means to simplify the design task and to minimize the
need for revisions of support software.

• Table 14-10 Pseudo-slot address ranges for Macintosh SE/30 expansion cards

Interrupt

1

2

3

32-bit space address

$F900 0000-$F9FF FFFF
$FAOO OOOO-$F AFF FFFF
$FBOO OOOO-$FBFF FFFF

308 Designing Cards and Drivers for the Macintosh Family

Interrupt handling for the Macintosh SE/30 68030 Direct Slot

The interrupt handling mechanism for the 68030 Direct Slot on the Macintosh SE/30 is similar
to the mechanism used in the Macintosh II family. Here is how the mechanism works. First,
the three general-purpose interrupt signals on the 68030 Direct Slot and the on-board video
interrupt signal are routed through an OR gate to generate a signal called /SLOTIRQ. This
signal is connected to the CAl input of VIA2, the second VIA chip on the logic board. This
VIA generates a level 2 interrupt to the Mc68030. This VIA can also generate an interrupt in
response to SCSI requests, sound chip requests, or VIA timer requests.

All interrupts to the MC68030 are auto-vectored using addresses that contain the interrupt
vectors. When the MC68030 is executing a level x interrupt, it first sets the interrupt mask
to level x, so further interrupts at level x and below will be ignored. Once the interrupt
handler is executed and an RTE instruction is processed, the interrupt mask is restored to
the value it had before the interrupt.

The first-level interrupt dispatcher determines which hardware device-SCSI, sound chip,
real-time clock, or expansion slot-is requesting the interrupt and dispatches code to the
appropriate interrupt handler. If the interrupt generated by the VIA is a slot interrupt, the
software polls the second VIA, bits PAO through PAS, to determine which slot generated
the interrupt. PAO is equal to IRQ1, PAl is equal to IRQ2, and PA2 is equal to IRQ3. PAS is
equal to the video interrupt.

Once the software determines which pseudo-slot generated the interrupt, the Slot
Manager software executes the interrupt handler for that slot device. The handler for that
device was installed at boot time when the initialization software polled the possible
slots and identified the existence of a card in the slot by its ROM signature.

Since all interrupts to the MC68030 are auto-vectored, care must be exercised in the
detection of the processor's interrupt acknowledge. The MC68030 starts an interrupt
acknowledge cycle before it checks the level of the AVEC (auto-vector) pin. Once the
processor determines the AVEC pin is signaling an auto-vector, it aborts the bus cycle
without the assertion of /DSACK or /STERM. Hardware designers must be aware of this
abort cycle.

There is a delay between the assertion of a slot interrupt and the actual execution of the
interrupt handler. During this time, the software polls the actual slot /IRQ signal. The
recommended design practice is to latch the slot /IRQ signal so that once it is asserted,
the interrupt handler software for the card has the responsibility of clearing the interrupt.
This ensures that the slot /IRQ signal is asserted when polled and the Slot Manager is
dispatched correctly.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 309

Design hints for Macintosh SE/30 expansion cards

When designing a card for the Macintosh SE/30, you must generate timing to match the
requirements of the MC68030 microprocessor. For further information on the timing
requirements of the microprocessor, refer to the Motorola MC68030 Enhanced 32-Bit
Microprocessor User's Manual.

There is an overriding watchdog timer on the Macintosh SE/30 main logic board that
generates a IBERR signal anytime the address strobe is asserted for longer than 44
microseconds. You must guarantee that your design generates a IDSACKx, IBERR, or other
termination signal within this period.

Notice that there are two clock signals present on the expansion connector. The CPUCLK
signal should be used for signal timing and synchronization to ensure compatibility with
future versions of the Macintosh that may use a faster CPU clock. The C16M signal is a
general-purpose 15.6672 MHz clock that will be present in future machines. In the
Macintosh SE/30, these two clocks have the same frequency and phase relationship, but
this may not be true for future machines.

The data strobe signal is provided for developers of expansion cards that function as
DMA-masters. The data strobe must be asserted when the DMA master is accessing
devices on the Macintosh SE/30 main logic board. The timing of the data strobe should
match the MC68030 data strobe signal.

Notice that the INUBUS signal (Table 14-6) is an address decode of the memory range $6000
0000 to $FFFF FFFF. The lAS (address strobe) signal qualifies the assertion of the INUBUS
signal. The INUBUS signal is asserted a maximum of 26 nanoseconds after the lAS signal is
asserted, and is removed a maximum of 22 nanoseconds after the lAS signal is removed.

Remember that INUBUS is valid when the processor is accessing the on-board video logic;
therefore, to avoid possible data bus conflicts, you must decode one of the pseudo-slot
address ranges when using the INUBUS signal as a qualifier.

The pseudo-slot interrupt signals C/IRQ1 through IIRQ3) are active-low TTL-compatible
inputs to the main logic board. You do not have to use an open-collector style driver, but
if you do, you should provide a pull-up resistor on the expansion card.

If you are designing a bus master card and are accessing on-board devices such as RAM,
you must ensure that a DMA cycle is completed when the normal MC68030 processor cycle
is completed.

310 Designing Cards and Drivers for the Macintosh Family

Because of the dynamic bus sizing feature of the MC68030, you can convert existing
Macintosh SE expansion cards to fit the Macintosh SE/30 32-bit slot with relative ease.
The mechanical changes are probably more extensive than the electrical changes. The
Macintosh SE/30 expansion card is mounted vertically rather than horizontally. You can
design an adapter card to convert the 120-pin expansion slot to a Macintosh SE­
compatible 96-pin expansion slot. The Macintosh SE card could then be piggyback
connected to the adapter card. The logic to convert most simple Macintosh SE cards to
the 32-bit Macintosh SE/30 design is relatively straightforward and could prove a quick
and easy way to convert existing designs to Macintosh SE/30.

Power consumption guidelines for Macintosh SE/30 expansion cards

The Macintosh SE/30 uses the same power supply as the Macintosh SE. Therefore, the
same power consumption guidelines should be followed. The Macintosh SE power budget
is described in Chapter 13 in the section "Macintosh SE Power Budget." The Macintosh
SE/30 main logic board consumes more power than the Macintosh SE main logic board,
but if you adhere to the following guidelines, there is still enough power supply margin to
ensure reliability. Table 14-11 shows the allotted current for an expansion card.

• Note: For thermal considerations, the total power of the expansion card should not
exceed 7 watts.

• Table 14-11 Power budget for a Macintosh SE/30 expansion card

Device +5V -5V +12V -12 V

Expansion card 1.5 amps 0.1 amps 0.15 amps 0.1 amps

6 Important You should seriously consider whether routing power outside the case
is necessary. If power is required outside the case, all pins carrying
power must be protected by a fuse against an overcurrent load. You
should use 1-ampere fast-acting fuses to retain the product safety
compliance designed into the Macintosh SE/30. ~

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 311

Design considerations for Macintosh IIfx PDS expansion cards

This section provides technical information that you need to design a PDS expansion
card for the Macintosh Hfx computer. Topics covered include pseudo-slot design,
termination of memory cycles, interrupt handling mechanism, bus priority scheme, the
effect of clock speeds on expansion card design, the use of the cache memory, and
power consumption guidelines.

Pseudo-slot design guidelines for Macintosh IIfx PDS expansion cards

It is relatively easy to use the pseudo-slot design method to design an expansion card for
the Macintosh Hfx 68030 Direct Slot. In addition to making sure that the /SLOT.E signal is
held low (grounded), the only constraints are the need for a declaration ROM and
adherence to address decoding rules. If you design your card along the lines of a NuBus
card (for example, so that it occupies slot $E and has a declaration ROM and interrupt
capability), the existing Slot Manager firmware in the system ROM controls the card as if
it were a NuBus card, but the electrical interface is via the 68030 processor-direct slot.
This means that you do not have to develop another software driver; the driver for the
NuBus expansion interface will also work with your PDS expansion card.

If you do not use pseudo-slot design, your expansion card can occupy either the slow slot
space area ($6000 0000 to $6FFF FFFF) or the fast slot space area ($7000 0000 to
$7FFF FFFF) in the address map. However, your card cannot communicate with the Slot
Manager. You must provide a card-specific driver, and you should use /IRQ15 as your
interrupt line.

Memory cycle termination in the Macintosh IIfx

The 32-bit data bus of the Macintosh Hfx supports dynamic bus sizing, so I/O ports of 8,
16, or 32 bits can be designed. Proper control of the /DSACKx signals informs the
processor of the bus width, so additional memory cycles can be executed to complete the
transfer if necessary. There is no byte swapping between the Mc68030 and the expansion
connector, and separate address and data buses eliminate the need for address latches.

312 Designing Cards and Drivers for the Macintosh Family

Outgoing memory cycles from the Macintosh IIfx processor support dynamic bus sizing
and are terminated by the /DSACKO, /DSACK1, and /STERM signals on the PDS connector.
The reverse, however, is not true. Cycles incoming to the Macintosh IIfx memory are
32-bit synchronous and are terminated only by /STERM. Cycles from the PDS expansion
card to I/O devices are terminated by /DSACK1 and /DSACKO, except to NuBus, where all
reads and aligned longword writes are terminated by /STERM.

An overriding timer on the main logic board generates a /BERR signal anytime the
address strobe (! AS) is asserted for longer than 16 microseconds. Your expansion card
design must include a provision for generating /DSACK, /BERR, or other terminating
signals within this period.

Interrupt handling for the Macintosh ITfx 68030 Direct Slot

The interrupt handling mechanism for the Macintosh IIfx 68030 Direct Slot differs from
previous Macintosh computers with processor-direct slots. The major difference is that
the VIA2 in the earlier machines has been eliminated from the high-end Macintosh IIfx
computer architecture. It is replaced by the Operating System Support (OSS) chip, an
Apple custom IC with a two dedicated interrupt lines, /IRQ6 and /IRQ15, to the 68030
Direct Slot. Your expansion card should no longer use interrupt priority lines /IPL2 through
/IPLO or it will be incompatible with the Macintosh IIfx firmware.

The levels of the /IRQ6 and /IRQ15 interrupt lines are fully programmable to provide
maximum design flexibility. If you used the pseudo-slot method to design your card
and it is properly configured so that it can be recognized by the Slot Manager, then
the Slot Manager fields all interrupts on the /IRQ6 line as slot $E interrupts. If you do
not use the pseudo-slot design method, all interrupts on the /IRQ15 line are fielded as
nonslot $E interrupts.

Bus master priority scheme for Macintosh IIfx

You should be aware of the fact that it is possible to have multiple bus masters on the
Macintosh IIfx processor bus. The possible bus masters and their position in the priority
scheme are shown in Table 14-12. Note that the NuBus and SCSI interfaces allow DMA
access to the 68030 Direct Slot.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 313

• Table 14-12 Macintosh IIfx bus master priority scheme

Priority level Bus master

First (highest) 6S030 Direct Slot
Second NuBus
Third SCSI
Fourth (lowest) Mc6S030 processor

Effect of Macintosh IIfx clock speeds on PDS expansion card design

The Macintosh IIfx computer consists of two subsystems, the memory (fast) subsystem
and the I/O (slow) subsystem. These subsystems are separated by fast/slow buffers. See
the block diagram in Figure 1-4.

Timing is provided by an SO MHz osciIJator whose output is divided by 2, resulting in a 40
MHz CPU clock for the memory subsystem. The output of the SO MHz oscillator is
divided by 4 to provide a 20 MHz clock for the I/O subsystem.

Although the 6S030 Direct Slot is in the I/O subsystem, it is still classified as a processor­
direct slot because when an expansion card addresses the memory subsystem, that
subsystem responds in the saine amount of time as if the MC6s030 processor had
addressed it. This same access speed is always maintained because the memOlY controller
speed is constant. Even though the clock supplied to the 6S030 Direct Slot is only 20 MHz,
a PDS expansion card benefits from the high-speed design of the Macintosh nfx.

The CPUCLK signal is provided to a PDS expansion card to allow the card to synchronize
to the computer. The timing interface looks exactly like the MC6S030 processor running at
20 MHz. Since the processor and memory subsystem CPU clock is actually running at 40
MHz, the processor slows down and synchronizes to the 20 MHz clock provided to the
6S030 Direct Slot whenever an attempt is made to gain access to the expansion card.
This speed shift is transparent to the expansion card but it can be controlled by the
address space that you choose when designing your card. The processor shifts speed
if your design uses pseudo-slot address space $Exxx xxxx or $FExx xxxx. It also shifts
speed if you do not use pseudo-slot address space but write your own driver and use
slow address space, $6xxx xxxx.

314 Designing Cards and Drivers for the Macintosh Family

As an option, you may choose to write your own driver and use fast space, $7xxx xxxx. In
this case, the CPUCLK signal runs at 20 MHz, but the processor continues to run at 40 MHz
and does not slow down to synchronize with the expansion card's 20 MHz clock. You can
gain access to the expansion card faster, but design of the card will be more difficult since
the processor runs at 40 MHz and you have only a 20 MHz clock to work with. In this
configuration the processor-direct slot is phase synchronous with frequencies of 80 MHz
and 40 MHz.

As another option, you could include an oscillator on your card that runs at the desired
speed, and then double-rank synchronize all signals running between the processor and the
68030 Direct Slot. You can implement double-rank synchronization by running
asynchronous signals through two ranks of D type flip-flops that are being clocked at the
same frequency that the incoming signals are being synchronized to. The disadvantage of
this option is the loss of time created by the double-rank synchronization process. '

Yet another design option you may want to consider is phase locking to the 40 MHz clock
of the memory subsystem.

Using the Macintosh ITfx cache memory

The addition of the high-speed cache memory makes possible the high performance
characteristics of the Macintosh IIfx computer. The cache is designed so that it is always
logically related to the main memory. The cache is fairly large, consisting of 32 KB in a
direct-mapped arrangement with 2000 lines of four longwords each. Writes are usually no­
wait state cycles and always update the cache at the same time main memory is being
updated. Only burst reads are cached.

The memory subsystem in the Macintosh Hfx supports the 68030 cache burst protocol.
That is, a PDS expansion card in the 68030 Direct Slot can use /CBREQ to request the
main memory to supply four longwords in succession. See the Motorola MC68030
Enhanced 32-Bit Microprocessor User's Manual for detailed information and timing.
The cache cannot be inhibited during burst cycles because /CBREQ and /CIOUT are
mutually exclusive.

An area of possible concern in some systems is the possibility of thrashing that could
occur as the cache switches back and forth between the 68030 Direct Slot and the
processor data, but this is not a problem in the Macintosh Hfx because of the large
size of the cache.

Chapter 14 Electrical Design Guide for 68030 Direct Slot Expansion Cards 315

The greatest data transfer speeds are obtained if you write all code in aligned longwords.
The processor still supports byte, word, misaligned words, and longwords, but the
processor must execute multiple cycles to gain access to code written in this manner. Also,
it is important that, if possible, you keep back-to-back writes on the same memory page.
Since the fast-memory controller in the Macintosh nfx has a same-page detector, it does
page mode writes if it detects back-to-back writes on the same page, resulting in faster
write operations.

Additional design hints

If you are designing a PDS card to operate as bus master and are accessing on-board
devices such as RAM, you must ensure that a DMA cycle is completed when the normal
MC68030 processor cycle is completed.

The data strobe signal is provided for expansion cards that function as DMA masters. IDS
must be asserted when the DMA master is addressing devices on the main logic board. The
timing of the data strobe should match the Mc68030 data strobe signal.

Power consumption guidelines for Macintosh nfx PDS expansion cards

The power budget for a PDS expansion card in the Macintosh nfx is identical to the
power budget for the NuBus card that it replaces. Refer to the section "NuBus Power
Budget" in Chapter 5 for details.

316 Designing Cards and Drivers for the Macintosh Family

Chapter 15 Physical Design Guide for
Macintosh PDS Expansion Cards

This chapter contains physical design guidelines for developing
expansion cards for Macintosh computers with processor-direct slots.
Included in this category are the Macintosh SE (68000 Direct Slot), the
Macintosh Portable (68000 Direct Slot), the Macintosh SE/30 (68030
Direct Slot), and the Macintosh IIfx (68030 Direct Slot) computers.

The information includes

• mechanical drawings showing expansion card dimensions and
mounting provisions

• descriptions of the mating 96-pin and 120-pin connectors on the
expansion cards and logic boards

• mechanical drawings detailing electrical and physical requirements
for connecting expansion cards to external equipment

... Warning The drawings in this chapter are from mechanical
design guides used within Apple Computer. They were
correct at the time of publication but are subject to
change in the future. ...

317

Physical guidelines for Macintosh SE expansion cards

Figures 15-1 through 15-3 show the'spatial relationship between an expansion card and the
Macintosh SE main logic board.

• Warning Figure 15-1 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to
change in the future . .A.

318 Designing Cards and Drivers for the Macintosh Family

• Figure 15-1 Macintosh SE expansion card design guide

¢ 3.86
[.152J

2 PL

120.42

[4.74IJ

110.11

[4. 335J

25.09

[.988J

~---------------213.25------------------~

[8.395J

~----------------200.66--------------~

3.43

[.135J

[7.900J
FOR STANOOFfS USE.
t.A I CRO PLASTI CS INC
P/N 27t.AP00625 OR EQUAL

t.AICRO PLASTIC. INC.
HIGHWAY 178 NORTH
FLI PP IN. ARK ANSAS
72634

~----------------195.29--------------~

[7. 689J

COMPONENT (TOP) VIEW
COMPLIANT PINS ON DIN 95

16.00

[.630J
NO COMPONENTS,
TRACES ONLY

1. 6011
[.063J I

EXPANSION
CARD

14.61

[.575J

MAIN LOGIC BD
REF

16.80

Chapter 15 Physical.Design Guide for Macintosh PDS Expansion Cards 319

• Figure 15-2

15.58
(.614) max.

An expansion card in the Macintosh SE assembly

~~------------------------
(if cn=-~-, i~~--------l r.~

I, ;-1",\ J_-_-_: L ____ ~ t -r-:
: 'i +~--)- /;----_ 4.61 I ~4
I, 'V / h ----- (J81)max. I 91r,

I
, ,~, I Cassis - - _ I I

1 / -- -f LJ-= ~ I ,--' I \ ;....... -"-lu Expansion card I -f- '-1. Ir)
--=---.... I ,,"1 I I r

~~:::~==~~J---~ __ ~J
Dimensions are
in millimeters with
inches in parentheses.

Main logic board

Suggested position of
connector for cable
to external port

Side view height restrictions

320 Designing Cards and Drivers for the Macintosh Family

• Figure 15-3 An expansion card and the Macintosh SE main logic board

Rear

Main logic board

Front

The 68000 Direct Slot 96-pin connector for the Macintosh SE

Figure 15-4 shows a plug connector that mates with the Euro-DIN 96-pin socket connector
on the main logic board. The plug connector should have compliant pins (force fit
insertion) rather than solder-type pins for connection to the expansion card if
components are to be mounted on the top side of the card.

Figure 15-5 shows the 96-pin socket connector and mounting supports on the
Macintosh SE main logic board assembly. Figure 15-6 is a detail of the socket connector
used on the main logic board.

You can order Euro-DIN 96-pin connectors meeting Apple specifications from

AMP Incorporated
Harrisburg, PA 17105

Because of high volume production requirements, Apple purchases specially modified
versions of the Euro-DIN 96-pin connector from this vendor. However, you may purchase
a mating connector of standard configuration from this or other vendors.

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 321

• Figure 15-4 96-pin plug connector for a Macintosh SE expansion card

I

" 95.0 (3.74) max

~I 1------- 90.0 (3.543)
-r-----..---

2 holes @
2.85 (.112)

00000000000000000000000000000000
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD\~~~
00000000000000000000000000000000

..------- 85.29 (3.385) '-------+-/

I -l 1--2.54 (.100)
! . I I - 5.20 11.50

~~~I ~~~~~~~~~~~~~~~C4152) 
(.1lO)min.IL-------------------..J.~------I- -

Three-row pin connector 
96 contact positions 
2.54 mm (.100 inch) spacing pins 
Gold plated, 20 microinches, over nickel plate 

322 Designing Cards and Drivers for the Macintosh Family 

Dimensions are 
in millimeters 
with inches in 
parentheses. 

-1 r 5.08 (.200) 

-I H- 2.54 (.100) 

~Jc'114) 



• Figure 15-5 Macintosh SE connector and mounting supports for an expansion card 

Reset 
Switch 

Mounting -r---.. d 

holes for 
expansion 
card 
supports 

50.17 
(1.975) 

expansion 
connector 

i 
73.06 
(2.876) 

Pin lA 1 
o __ ---'---I-ltfH .. ________ :ul: .. _______ : ........ 11 ffi' H--_~_~~_i_g_....:... 

o 3.86 
(.152) 
2 PL 

rt 
I 5.72 

-.. ~ (.225) 

o 
211.45 
(8.325) 

Dimensions are in millimeters 
with inches in parentheses. 

206.38 
(8.125) 

Tooling holes 
(2 of 6 shown) 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 323 



• Figure 15-6 Detail of 96-pin socket connector used on Macintosh SE main logic 
board 

Dimensions are in millimeters with 
inches in parentheses. 

max. 
2.75 
(.l08) 

(~~J2ID D D D~ 
UU ___________________________ UU ~ 

2.54 -.J I.- 2.79 min 

5.08 
(.200) 

(.l00) (.110) 

95.0 (3.74) max. --------rt.1 
90.0 (354) -------.1-I 

85.0 (3.34) max. -----~.I 

00++++++++++++++++++++++++++++ 
00+ + + + + + +' + + + + + + + + + + + + + + + + + + + + +0 

++++++++++++++++++++++++++++0 

31 x 254 (.100) = 78.74 (3.10) 
254 2 holes @ 
(.l00) 2.85 (.112) 

Three-row socket connector 
96 contact positions 
254 mm (.l00 inch) spacing sockets 
Gold plated, 20 micro inches , over nickel plate 

al 
bl 
c1 

2.54 
(.l00) 

3.95 (.155) 
85 (.334) max. 
10.6 (.417) 

Physical guidelines for Macintosh Portable expansion cards 

Figure 15-7 shows the location of the 96-pin expansion connector on the Macintosh 
Portable main logic board. Figure 15-8 is a design guide showing the size of the card, the 
location of the 96-pin connector, and the maximum allowable component mounting 
height. The Macintosh Portable uses the same Euro-DIN 96-pin expansion connector 
described earlier in this chapter in the section "The 68000 Direct Slot 96-Pin Connector for 
the Macintosh SE." The connectors for the expansion card and the main logic board are 
the same as those shown for the Macintosh SE in Figures 15-4 and 15-6. 

• Note: Before designing an expansion card for the Macintosh Portable, make sure you 
are aware of the limitations described in the section "The Macintosh Portable 68000 
Direct Slot" in Chapter 13. 

324 Designing Cards and Drivers for the Macintosh Family 



• Figure 15-7 Expansion connector location on Macintosh Portable main logic board 

0 

Direct slot 

Ii Ii 
expansion connector 

II II 

MOdemrn II :: :: a a II 

II :: 
II 

II II 

U :: 
:: II CPUGLU CPU 
:: :: ... 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 325 



• Figure 15·8 The Macintosh Portable 68000 Direct Slot expansion card 

10.00 (.394) max. ~ r­
component height 

140--------- 107.00(4.213) ------~~ I 

~L~~~~~~~~~r 

- ....... ,...- 6.00 (.236) ESD grounding strip 

57.00 
(2.244) 

No components this area 
both sides of card 

Dimensions are in millimeters 
with inches in parentheses. 

96-pin vertical Euro-DIN, 
three-row connector 

-Pin1 

7.00 
(.276) 

326 Designing Cards and Drivers for the Macintosh Family 

1.70 
(.067) 

71.00 
(2.795) 

I_~~ 
5.00 (.197) max. 

component height 
(solder side) 



Physical guidelines for Macintosh SE/30 expansion cards 

This section provides mechanical drawings that show the spatial relationship between an 
expansion card and the Macintosh 5E/30 main logic board. 

Figures 15-9 through 15-11 show design considerations for expansion cards that can be 
used in the Macintosh SE/30 and possibly in future 68030-based machines. Notice that 
you can design your card in either of two different sizes. Figure 15-9 shows the. minimum 
allowable card size and Figure 15-10 shows the maximum allowable card size. Figure 15-11 
shows the maximum component heights allowed on the two different card sizes. 

Figure 15-12 is a design guide for the Macintosh SE/30 main logic board. You should 
pay particular attention to the design of the main logic board and the Macintosh SE/30 
chassis to make sure that components on your expansion card do not interfere with 
mounting hardware. 

• Warning Figures 15-9 through 15-12 are from design guides used within Apple 
Computer. These drawings were correct at the time of publication but 
are subject to change in the future. ... 

Figure 15-13 shows how an expansion card mounts in the Macintosh SE/30 chassis. Figure 
15-14 shows how the expansion card mounting clips should be oriented for two different 
revision levels of the main chassis. 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 327 



• Figure 15-9 Smallest allowable Macintosh SE/30 expansion card 

146.85 ,2PL 

145.85 <0.10 

142.35 

5.00 DIA PLATED THRU 
2 PL 

1--------118.00------.., 
REF 

NO COMPONENTS OR TRACES, 
BUT SOLDER PAD ON BOTH SIDES. 
2 PL 

142.35 

D I A PLATED THRU HOLE 

~~--~----94.50 

84.57--~--~~~ 

74.50 ---'---t-
2 Pl 

COMPONENT S I DE 

1.12 ± 0.08 
DIA THRU 
120 PL 

2.69 ± 0.08 
DIA THRU 
2 PL 

2 PL 

.59 

SEE DETAIL F 

-~·~~-r-~--2.54 

NO THRU HOLE COMPONE~TS' VIAS. 

" I 
I 

-~ 

8.00 olA 
SOLDER PAD FOR GNo. 

TOP I COMPONENT S I DE I. 

DETAIL E 

f----- 39 EQl SP 8 

BOTTOM. 

2.54 : 99.06 
TOL NON-ACCUM 

PIN ONE 

328 Designing Cards and Drivers for the Macintosh Family 

N 
N 

()l 
o 

4.98 ± 0.25 

TOP I COMPONENT S IDE I. 

~ 
NO THRU HOLE COMPONENTS. 
VIAS. 

, 
I 
I 
~ 

8.00 olA 
SOLDER PAD FOR GNo. 

BOTTOM. 



• Figure 15-10 Largest allowable Macintosh SE/30 expansion card 

COMPONENT SIDE 

i-------160.00---------i 
REF 

r--, 
L&I ___ _ 
I ¥' I 
L __ .J 

55.55 ----!!---___ 

15.15 -----If-----!----. 

-2.85 
REF 

(Tl 
:t 

.lJ... 
:tw 
-Il: 

ti=:== == -====n - - -

o 
lJ... 
W 
Il: 

1 .59 
REF 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 329 



• Figure 15-11 Maximum allowable component heights for a Macintosh SE/30 
expansion card 

~-----160.00---------i 
REF 

22.00 MAX COMPONENT HE I GHT 

12.0 MAX COMPONENT HE I GHT 

12.5 MAX COMPONENT HE I GHT 

rn 
:1" 
'IL 

:1" W 
, II: 

o 

330 Designing Cards and Drivers for the Macintosh Family 

~~+--===--r- 107.50 
REFERENCE LINE 

1 00 
R 

6'\ 25.20 --===r-- REFERENCE LINE 

8.5 MAX COMPONENT HE 1 GHT 



• Figure 15-12 Expansion connector on the Macintosh SE/30 main logic board 

oL­
f 

5.71 
(.225) 

201.73 (7.94) 
pin 1 . 

8.23 (.324) -1 

o 

120-pin connector 

Speaker 
jack 

Component 
side 

Dimensions are in millimeters 
with inches in parentheses . 

.&. Indicated area represents space available for 31.50 (1.24) high (including socket) SIMMs module 

~ Indicated area represents space available for 24.00 (.94) high (including socket) SIMMs module 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 331 



• Figure 15-13 An expansion card in the Macintosh SE/30 assembly 

, , 
I , , 
I , , 
I , , 
I , , 
I , , 
I , , 
I , , 
I , , 
I , 
i , , 
I , , 

Expansion card 

332 Designing Cards and Drivers for the Macintosh Family 



• Figure 15-14 Orientation of Macintosh SE/30 mounting hardware 

Snap rivet--..... 
RICHCO part no. SR-3570 " 

(2 required) 

Version 1 
Hardware orientation 
chassis at revision D 

Chassis~ 
Apple part no. 805-0938 

~~~~4=====~~ 

Nylon flat washer
Seastrom part no. 5610-33-31

(2 required)

Snap rivet ~
RICHCO part no. SR-5045 "-

(2 required)

Version 2
Hardware orientation
chassis at revision E

Chassis ~
Apple part no. 805-0938

~~~~====~~ 

Expansion card 

I 

Expansion card 

I 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 333 



The 68030 Direct Slot 120-pin connector for the Macintosh SE/30 

Figure 15-15 shows the plug connector that mates with the Euro-DIN 120-pin socket 
connector on the main logic board. Figure 15-12 shows the location of the 120-pin socket 
connector on the main logic board assembly. Figure 15-16 gives the prominent details of 
the socket connector. 

• Figure 15-15 120-pin plug connector for a Macintosh SE/30 expansion card 

mf ~( ~ 
u , , - Q , , 

:.: CQ 05 :': 
'I' - r{ ~ I I 

14----- 109.2 (4.30) -I 

Three-row pin connector 
120 contact positions 
2.54 mm (.100 inch) spacing pins 
Gold plated, 20 microinches, over nickel plate 

Dimensions are in 
millimeters with 
inches in parentheses. 

Rowe 
RowB 
Row A 

- 3.55 
(.140) max 

1 ('~5~) 
t.~fo~ T r II 

5.08---+-1~J 1.37 
(.200) (.054) 

11.10 
(.437) max. 

334 Designing Cards and Drivers for the Macintosh Family 



• Figure 15-16 Detail of 120-pin socket connector used on Macintosh SE/30 main 
logic board 

Dimensions are in millimeters with 
inches in parentheses. 

T~r--~~~ __ ~ ____ ~ __ ~ ____ ~~ 
(.454) LL:: CI CI CI CI 

5.08 
(.200) 

UU __________________________ _ 
2.54 I I 

(.100) ~ I+-

115.0 (4.53) max. 
110.31 (4.343) 

105.20 (4.142) max. 

00++++++++++++++++++++++++++++++++++++ 
0++++++++++++++++++++++++++++++++++++0 

++++++++++++++++++++++++++++++++++++0 

39 x 2.54 (.100) = 99.06 (3.90) 
2.54 2 holes @ 
(.100) 2.79 (.110) 

Three-row socket connector 
120 contact positions 
2.54 mm (.100 inch) spacing sockets 
Gold plated, 20 microinches, over nickel plate 

max. 
2.84 
(.112) 

2.54 
(.100) 

3.96 (.156) 
8.53 (.335) max. 
10.49 (.413) 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 335 



Physical guidelines for Macintosh IIfx PDS expansion cards 

The expansion card for the 68030 Direct Slot of a Macintosh IIfx computer is similar in 
size to a NuBus card but uses a 120-pin plug connector instead of the 96-pin plug 
connector used on a NuBus card. When installed in the computer, the PDS expansion card 
takes the place of a NuBus card in slot $E and prevents it from using that address space. 
The Macintosh nfx can accommodate a maximum of either six NuBus cards or five NuBus 
cards and one PDS card. 

Foldout 6 at the back of the book shows the pertinent physical details you need to design 
a PDS expansion card for the Macintosh IIfx computer. This drawing shows the overall 
dimensions and the connector placement as well as providing clearance dimensions for 
installing the card in the Macintosh nfx computer. 

A Warning Foldout 6 is from a design guide used within Apple Computer. This 
drawing was correct at the time of publication but is subject to 
future change. A 

The 120-pin plug connector used on a Macintosh Hfx PDS expansion card is physically 
identical to the connector shown for the Macintosh SE/30 PDS expansion card in Figure 
15-15. The 120-pin socket connector used on the main logic board of the Macintosh nfx 
computer is physically identical to the connector shown for the main logic board of the 
Macintosh SE/30 computer in Figure 15-16. 

336 Designing Cards and Drivers for the Macintosh Family 



External connection drawings 

This section discusses both electrical and physical considerations required in making 
connections to external equipment. 

The Macintosh SE and Macintosh SE/30 computers have an external device access opening 
through which another piece of equipment can be connected. Typically, a cable would be 
routed from the expansion card upward through a cutout in the back of the chassis, and 
then to a connector on a connector card you provide. 

Mechanical drawings in this section show the provision Apple has made for connecting 
your expansion card to devices external to the Macintosh SE or the Macintosh SE/30. 

• Note: FCC regulations on radio-frequency emissions prohibit the installation of an 
external device access opening in the Macintosh Portable computer. 

Figure 15-17 shows the Macintosh SE sheet metal and the structure for mounting your 
connector and connector card. With the exception of the horizontally mounted 
expansion card, this figure also applies to the Macintosh SE/30. Figures 15-18 and 15-19 
show the recommended internal cable routing paths for the Macintosh SE and the 
Macintosh SE/30, respectively. Notice that the minimum allowable length for the internal 
cable on a Macintosh SE/30 is 220 millimeters (8.6 inches). 

Foldout 7 at the end of the book is a design gUide for the connector card. All areas of 
significant importance are noted on the drawing. If you design a connector card that 
adheres to the dimensions in Foldout 7, it can be used on the Macintosh SE, the Macintosh 
SE/30, and future versions of the compact Macintosh. 

£. Warning Foldout 7 is from a design guide used within Apple Computer. This 
drawing was correct at the time of publication but is subject to 
change in the future. ... 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 337 



• Figure 15-17 Connector card mounting on Macintosh SE chassis 

o a a 

Chassis opening ---il-t-
for connection between '--___ ---J 

connector card and 
expansion card 

M3.0xBmm 
2PL 

Use a nut and washer 
if PEM is not used 

r-_____ ~I~llu~str~ative connector card --

I 
Main logic board 

Suggested position of 
connector on expansion card 

o 

Except for the horizontally mounted expansion connector, the drawings in Figure 15-17 
also apply to the Macintosh SE/30. 

338 Designing Cards and Drivers for the Macintosh Family 

DODD 
DODD 
DODD 
DODD 

Connector area 
fot exit from 
rear housing 



• Figure 15·18 Internal expansion cable routing for Macintosh SE 

Alternate 
ribbon cable 
roUting~ 

, ~ Connector card 
, / (connector location to 

be determined by card 
manufacturer) 

- - mn:t)- M3.0 x 8 mm 
2 PL 
Use a nut and washer 
if PEM is not used 

'---- Preferred ribbon 

~d=:h';:==~~~h_ ... _-_-____ -=--... (shortest possible) ~ 
cable routing 

96-pin connector on 
main logic board 

I Cutout in chassis 

Main logic board 

Suggested position of 
connector for cable 
to external port 

Mating 96-pin connector 
on expansion card 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 339 



• Figure 15-19 Internal expansion cable routing for Macintosh SE/30 

Macintosh SE/30 
main logic board 

Expansion card 

Ribbon cable 
connector 

Mating 12O-pin connector 
on expansion card 

12O-pin connector on 
main logic board 

Alternate ribbon 
cable routing 

/ 

Connector card 
(connector location to 
be detennined by card 
manufacturer) 

nm:O - M3.0 x 8 mm 
2PL 

Ribbon cable routing 

Use a nut and washer 
if PEM is not used 

Note: The length of the ribbon cable must be 220 millimeters (8.6 inches) or longer between connectors. 

340 Designing Cards and Drivers for the Macintosh Family 



Third-party design aids 

A number of products are available from third parties that will make it easier and faster for 
you to design your expansion cards. 

You can purchase blank Macintosh SE expansion cards for prototyping from 

Diversified I/O, Inc. 
1008 Stewart Drive 
Sunnyvale, CA 94086 
(408) 730-2171 
AppleLink: D0242 

Diversified I/O also has two other products that may be helpful in your expansion card 
design. One is the FreeBus Prototyping Kit, #451104, consisting of a board with a 96-pin 
connector that supports the Macintosh SE' expansion slot. The other is a Two Bus Extender 
Kit, #450102, that extends the prototyping activities beyond the confines of the 
computer case and supports both Macintosh II and Macintosh SE extension. 

You can obtain blank Macintosh SE/30 expansion cards for proto typing from Creative 
Solutions, Inc. Creative Solutions also provides a right angle extender that allows you to 
install your expansion card horizontally (component side facing up) outside of the chassis 
for debugging and testing. You can obtain more information or purchase these products 
by contacting 

Creative Solutions, Inc. 
4701 Randolph Rd., Suite 12 
Rockville, MD 20852 
(301) 984-0262 

Chapter 15 Physical Design Guide for Macintosh PDS Expansion Cards 341 





Chapter 16 Processor-Direct Slot Design Example 

This chapter contains a performance-proven example of processor-direct 
slot expansion card design. It describes the electrical and interface 
characteristics of a simple disk controller card that allows the 
Macintosh SE processor to communicate with a generic disk drive 
through the 68000 Direct Slot. 



Disk controller overview 

The disk controller card allows for one drive to be connected to the Macintosh SE through 
the cable supplied. The disk controller is inexpensive, but is capable of two software 
selectable recording formats: frequency modulation (FM) or modified frequency 
modulation (MFM). FM is an IBM 374O-compatible, single-density format. MFM is an IBM 
System 34-compatible, double-density format. 

The disk controller card plugs into the 96-pin expansion connector on the main logic 
board of the Macintosh SE and connects to a floppy disk drive located outside the 
Macintosh SE. The installation of this card and its associated cables is intended to be 
done by dealers and not by end users. The disk controller card consists of a disk controller 
IC and a disk interface IC, a DMA controller IC, some buffers, and three PALs. All 
controlling firmware and sector-buffering RAM exist in the Macintosh SE. 

The control registers are mapped into the address space of the Macintosh SE from 
$80 0000 through $8F FFFF. No other address space is memory mapped to the controller. 

System configuration 

The controller package inside the Macintosh SE consists of a disk controller expansion 
card, a 26-wire flat ribbon cable, and a connector card. 

The disk controller card connects to the Macintosh SE processor through the 96-pin 
expansion connector on the main logic board assembly. A six-inch-Iong ribbon cable ties 
the disk controller card to the connector card. 

The connector card, which mounts to the bracket behind the external device access 
opening, has two connectors. One connector is a 26-pin connector, which terminates the 
six-inch ribbon cable from the internal controller card. The other connector is a DB-37 into 
which the external disk drive can be plugged via the cable supplied with that drive. See 
Figure 15-15, Figure 15-16, and Foldout 7 for drawings depicting the configuration. 

344 Designing Cards and Drivers for the Macintosh Family 



Interface card block diagrann 

Figure 16-1 is a block diagram of the floppy disk controller. The controller card is made up 
of the following parts: 

Control PALs: These PALs provide the address decoding and timing control for the disk 
controller. They memory map the various control and status registers of the disk controller 
into the Macintosh SE address space $80000 through $8F FFFF. 

Data bus transceivers: These 74LS245 buffers provide multiplexing control and 
sufficient current drive to and from the controller onto the data bus. During high-byte 
transfers, data is placed on DB-DIS, while during low-byte transfers, the data goes 
on DO-D7. 

Status driver: The status driver allows three signals to be read by the Macintosh SE: disk 
drive selected, disk controller interrupt (INT), and disk change. 

Disk controller IC: This LSI chip contains the circuitry necessary to connect to the 
generic disk drive. Coupled with the companion disk interface Ie chip, it handles all 
operations with the drive including read and write data, formatting, seeking, sensing drive 
status, and recalibrating. 

Disk interface IC: This chip provides drive and timing support to the disk controller Ie. 
It contains write precompensation and phase-locked loop circuitry. 

Disk interface driver: The disk interface driver buffers and provides current drive for 
several signals coming from and going to the disk drive. It also is used as a multiplexer for 
four of these signals. 

16 MHz crystal clock oscillator: This oscillator provides a 16 MHz clock to the disk 
interface IC for use in the drive interface. 

Dual-channel DMA controller and DMA control PAL: The DMA controller handles all DMA 
data transfer operations between the disk controller IC and the Macintosh SE memory. 

DMA address and data multiplexing logic: The dual-channel DMA controller has a 
multiplexed address and data bus. The multiplexing logic is used to demultiplex this bus. 
The logic consists of two 74LS373's and two 74LS245's. 

Chapter 16 Processor-Direct Slot Design Example 345 



• Figure 16-1 Floppy disk controller block diagram 

Status 
7415240 

D3-DO 

Dl5-DO 
Data 

transceiver 
7415245 

A23-A19 Address 
decoder 

lAS PAL 
R/W 
/Reset 
CSM 
/DTACK PAL 16R4 

FC2-FCO 
/BG DMA 
/lNTACK controller 

AlB PAL 

A4-A2 
R/W PAL20I.8 

IDTACK Internal 

R/W control 
PAL 

IUDS 
/LDS 
lAS PAL20LlO 

INT, Disk drive selected 

DB7-DBO 

IRsT 

INT 
IBREQ 
/DACK 

C4M 
AO 

/BACK 
/DS 
ALE 

15-ADO 

A23-A16 

DMA 

Disk 

Disk 
controller 

Ie 

/DACK 

DMA 
controller 

346 Designing Cards and Drivers for the Macintosh Family 

/Disk change 

16 MHz 
crystal 

oscillator 

eLKIN 

/Drive select 3 
/Drive select 2 

Disk /Drive select 1 
interface /Drive select 0 

Ie /Index 
/Readdata 
/Write data 

/Motoron 

Disk 
interface 
driver /Write enable 

741S240 /Side 1 
!Index 
/Direction 
/Step 
/Write protect 
Ifrack 00 

+5V,+ 12V Return,+5V Return 



Floppy disk controller logic 

The disk drive control is provided by the disk controller IC, disk interface IC, and some 
74LS240 drivers. The disk controller IC is the controlling chip and communicates with the 
disk interface IC. Details of this logic are not directly relevant to the 68000 Direct Slot 
interface and so are not given here. 

Macintosh SE interface logic 

The controller communicates with the 68000 Direct Slot via several drivers and PALs. The 
controller follows the timing of the Mc68000 processor whether in PIO (programmed 
input/output) or DMA (direct memory access) transfers. Certain key signals are described 
in Table 16-1. 

• Table 16-1 Bus control signals 

Signal name 

lAS 
IUDS 
ILDS 
R/W 
IDTACK 
IBR 

IBG 

FCO-FC2 

ALE 

IDS 

IDMACS 

Signal description 

Indicates a valid address is on the address bus. 
Indicates that valid data is on the data bus DB-D15. 
Indicates that valid data is on the data bus DO-D7. 
Defines a cycle to be a read or a write cycle. 
Signals that the data transfer cycle is completed. 
Signals that the controller card would like to own the 
processor bus in order to perform a DMA transfer. 
Signals to the controller that it owns the processor bus after 
completion of the current bus cycle. 
These are the MC68000 processor status code and serve to signal an 
interrupt acknowledge cycle when they are all asserted hig~. 
Signals that the DMA controller is gating a valid address onto the 
multiplexed addressldata lines ADO-AD15. 
Signals that data may be moved into or out of the DMA 
controller on the multiplexed ADO-AD15. 
Selects the DMA controller during PIO transfers to or from it. 

( Continued) 

Chapter 16 Processor-Direct Slot Design Example 347 



• Table 16-1 Bus control signals (Continued) 

Signal name 

BREQ 

BACK 
IDREQ 
IDACK 
IEOP 

Signal description 

Indicates that the DMA controller would like to take the 
processor bus. 
Indicates that the DMA controller has the processor bus. 
The disk interface IC makes a DMA request to the DMA controller. 
The DMA controller acknowledges the disk interface IC's DMA request. 
Signals that a disk read or write command has been terminated because 
the data requested has been transferred. 

Programmed I/O (PIO) operations 

All control information is passed to the disk controller and all status information is transferred 
to the Mc68000 using programmed 1/0 (PIO) transfers (DMA is used for data transfer). The 
Mc68000 host initiates the transfer by asserting lAS, R/W, IUDS, and ILDS. Data is then 
transferred and IDTACK is asserted by the BBU gate array of the Macintosh SE. The PALs 
decode the address from address lines Al8-A23 and thus select either the disk interface IC or 
the DMA controller to read or write data. Control of the R/W signal determines whether the 
cycle is a read or a write cycle. See Figure 16-2 for signal timing. 

34S Designing Cards and Drivers for the Macintosh Family 



• Figure 16-2 Controller PIO timing 

125ns PIO read cycle PIO write cycle n I 
(SO SI S2 s6 S71 (SO SI S2 

I 

CBM 
I 
I 
I 
I 
I 

250ns 
I 
I 
I 
I 

C4M 
I Tl 

I 

T2 
I 

T3 
I 

Tl 
I 

T2 
I 

T3 
I 

I I I I I I 
I I I I I I I 
I I I I I I I 
I 

t t t t t i r 
A23-AO Valid Valid 

lAS 

015-00 Valid 

/UOSor !LOS 

RW 

10MACS 

!WR 

!RD 

SRO, SRI 

10TACK 

Chapter 16 Processor-Direct Slot Design Example 349 



DMA operations 

All data information is transferred to or from the host (MC68000 or a coprocessor) using 
DMA transfers. After all control information is written to set up both the disk interface IC 
and the DMA controller, the DMA operation begins. 

The disk controller IC requests each DMA transfer, via the signal IDREQ, and that request 
is funneled through the DMA controller and through the PAL control logic. A bus request is 
then made, and after the current bus operation has been completed, the MC68000 asserts 
the signal IBG (bus grant). The PAL logic recognizes IBG and waits for any current bus 
operation to be completed before it signals the disk controller IC to begin a DMA. 

As soon as it has taken over the bus, the DMA controller gates the target DMA address 
onto the lines AD15-ADO and the lines A23-A16. See Figure 16-1. Using the signal ALE as a 
reference, the PAL interface logic latches the address from AD15-ADO with the signal 
I ADDR. Because all DMA data transfer operations must be synchronized to the signal 
IPMCYC (processor memory cycle), the PALs wait for IPMCYC to go low, inserting wait 
states in the transfer cycle of the DMA controller. 

• Note: IPMCYC is the signal used to synchronize all processor-bus activity. The disk 
controller waits for IPMCYC to go low before beginning a bus cycle. The signals lAS, 
IUDS, ILDS, and R/W are not asserted until IPMCYC goes low. The memory timing of 
the Macintosh SE is synchronized to IPMCYC. See Figure 13-2 in Chapter 13. The disk 
controller is designed to present timing as similar to the MC68000 as possible during a 
bus cycle (lPMCYC low). IPMCYC goes high during state zero (SO) of the Mc68000 
timing and during video memory accesses. 

The PALs then assert I AS, IUDS, ILDS, and R!W after gating the address onto the address 
bus. If a processor read operation (processor reading from the disk interface card) is 
requested, the PALs gate the data to the correct byte of the data bus from the disk 
interface IC and generate the proper disk controller read signal. If a processor write 
operation (processor writing to the disk interface card) is requested, the PALs turn on the 
correct transceiver to write the data and assert the proper write signal to the disk 
controller IC. 

350 Designing Cards and Drivers for the Macintosh Family 



Address allocation 

The disk controller card's device select space ranges from $80 0000 through $8F FFFF and is 
divided into four blocks. From $80 0000 through $83 FFFF the main status register within 
the disk controller can be read. A write to this address turns on the signal RST (resets the 
disk controller). From $840000 through $87 FFFF, control, status, and data information 
may be read from or written to the disk controller data register. Writing in the area 
$88 0000 through $8B FFFF turns on the drive motor; reading in this area turns both the 
motor and RST off. The DMA controller is read to or written from via the addressing range 
$8C 0000 through $8F FFFF. See Table 16-2. 

• Table 16-2 Device select decode addresses 

Decode address range 

$80 0000-$83 FFFF 

$84 0000-$87 FFFF 

$88 0000-$8B FFFF 

$8C 0000-$8F FFFF 

Device selected and action resulting 

Read from main status register of disk controller IC. A 
write to this address turns RST on (resets the disk 
controller IC). Also, read additional status register. The 
main status register is on the least significant byte and 
the additional status register is on the most significant. 

Read or write control, status, and data information to 
the data register in the disk controller IC. 

Write turns drive motor to on, read turns motor and 
controller's reset signal off. (Interrupts are enabled when 
the motor is onO 

Read from or write to DMA controller. 

Data is normally read from and written to the disk controller card with Mc68000 MOVE.B 
instructions. Additional status information may be obtained by reading anywhere in the 
addressing range $80 0000 through $83 FFFF using MOVE.W instructions. 

The status register within the disk controller IC may be read with a MOVE.B instruction in 
the address range $80 0000 through $83 FFFF. 

The data register within the disk controller IC may be read or written with a MOVE.B 
instruction in the address range $840000 through $87 FFFF. It is through the data register 
that commands, data, and the contents of status registers 0 through 3 are passed. Any 
disk operation is initiated by passing the several commands required to the disk 
controller IC via this register. 

Chapter 16 Processor-Direct Slot Design Example 351 



The read track operation allowed by the disk controller IC is supported on this disk 
controller. After the execute portion of any operation is completed, the disk controller IC 
may give back status information in status registers 0 through 3. 

Additional status information may be read with a MOVE.W instruction in the address 
space $80 0000 through $83 FFFF. 

The DMA controller is given commands via the chain control table that exists in 
Macintosh SE RAM. The address of this table is loaded into the chain address register 
before a chain load command is given to the DMA controller. The chain control table 
consists of values needed by the DMA controller to transfer data. 

Upon receiving a chain load command, the DMA controller loads its registers from the 
chain control table. After the registers are loaded, the DMA controller is ready to transfer 
data. Data transfers are then initiated, byte by byte, by the disk controller IC. 

352 Designing Cards and Drivers for the Macintosh Family 



Part III Application-Specific 
Expansion Interfaces 



AboutPartm . . 

Application-specific expansion interfaces are the subject of Part III of this book. These 
are expansion interfaces that do not fall into the NuBus or processor-direct slot expansion 
categories, but are designed with a singular, specific purpose in mind. The information in 
Part III will" help you. design unique expansion cards that satisfy the requirements of these 
application-specific interfaces.' 

Part III contains two chapters. Chapter 17 provides the electrical and mechanical 
information you need to design ROM, RAM, and tnodem expansion cards for the 
Macintosh Portable computer. Included are expansion connector pinouts and signal 
descriptions,. address space \allocations, physical design guides, and hardware and 
software design suggestions. 

Chapter 18 describes the cache memory expansion capability of the Macintosh IIci 
computer. It includes ~ description of how the cache works, information on using the 
cache and accessing memory, cache connector pinouts, signal descriptions, load/drive 
capabilities, and electrical and mechanical guidelines for designing a cache memory card. 

354 Designing Cards and Drivers for the Macintosh Family 



Chapter 17 Macintosh Portable RAM, ROM, 
and Modem Expansion 

In addition to the processor-direct slot expansion interface described in 
Chapters 13 through 15, the Macintosh Portable main logic board 
includes three expansion connectors, two for add-on memory expansion 
cards and one for a modem card. One memory connector is for ROM 
expansion and the other is for RAM expansion. This chapter provides the 
electrical and mechanical details you need to design ROM expansion, 
RAM expansion, and modem cards for the Macintosh Portable. 

355 



Macintosh Portable ROM expansion 

The Macintosh Portable computer is equipped with 256 KB of permanent ROM. The 
design of the machine allows you to develop an expansion card that will provide up to 
4 MB of additional ROM for the system. 

This section describes the ROM expansion address space, defines the design criteria, and 
provides the electrical and mechanical information you need to design a ROM expansion 
card. It also explains the driver software requirements and provides details for 
implementing electronic disks (EDisks). 

ROM expansion address space 

The 256 KB of processor ROM in the Macintosh Portable is fundamentally similar to the 
ROM in the Macintosh SE. This ROM is located at the low end of the 1 MB ROM space 
shown in the memory map of Figure 17-1. 

The 1 MB ROM space at locations $90 0000 through $9F FFFF is reserved by Apple primarily 
as an upgrade path for future ROM code. The 4 MB ROM space at locations $AO 0000 
through $DF FFFF is available for your ROM expansion cards . 

.6. Important Although you could design a ROM expansion card to override the 
existing 1 MB ROM space, it is strongly recommended that you do not 
because the machine using that card would be incompatible with 
many software products. 6. 

356 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-1 Macintosh Portable memory map 

r--------_r--- $1000000 

-- $FOOooO 

- $EOOOoo 

- $DOooOO 

-- $COOOoo 

-- $BOOOoo 

. -- $AO 0000 

-- $90 0000 

-- $800000 

-- $700000 

-- $60 0000 

-- $500000 

-- $400000 

-- $300000 

-- $200000 

-- $10 0000 

L....-_______ ---1.. __ $000000 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 357 



ROM expansion cards 

Your ROM expansion card connects to the Macintosh Portable through a single 50-pin 
connector (slot) on the Macintosh Portable main logic board. Refer to Figure 15-7 for the 
location of the connector on the main logic board. Figure 17-2 shows the pinout for the 
ROM expansion connector. 

• Figure 17-2 Macintosh Portable ROM expansion connector pinout 

358 Designing Cards and Drivers for the Macintosh Family 



All necessary address bus, data bus, and control signals from the Macintosh Portable are 
provided to the card through this ROM expansion connector. Table 17-1 provides names 
and descriptions of each signal. When the expansion card receives these signals, they are 
decoded into address selects and routed to address and data buffers. Buffering is 
important to reduce capacitive coupling. 

When you design your ROM expansion card, you must remember to include circuitry for 
decoding, control, and buffering of the signals available at the expansion connector. You 
should also use CMOS devices since the maximum current allotted to the ROM expansion 
connector is only 25 rnA. Also, remember that the IDTACK (data transfer acknowledge) 
signal generated by your card controls the number of wait states. 

• Table 17-1 Macintosh Portable ROM expansion connector signals 

Pinnwnber 

1 
2-24 
25-26 
27 
28 
29 

30 
31 

32 

33-48 
49-50 

Signal name 

+5V 
AI-A23 
GND 
IDTACK 
lAS 
IROM.CS 

c16M 
/EXT.DTACK 

/DELAY.CS 

DO-D15 
+5V 

Signal description 

+5 volt power supply 
Unbuffered 68HCOOO address signals AI-A23 
Logic ground 
Data transfer acknowledge input to 68HCOOO 
68HCOOO address strobe signal 
Permanent ROM chip select signals. Select 
range from $90 0000 through $9F FFFF 
16 MHz system clock 
External data transfer acknowledge signal that 
disables main system /DTACK signal 
The CPU GLU chip generates this signal to put 
the ROM expansion card into the idle mode by 
inserting multiple wait states 
Unbuffered 68HCOOO data signals DO-D15 
+5-volt power supply 

Figure 17-3 is a design guide providing the physical specifications you need to design a 
ROM expansion card for the Macintosh Portable. 

• Warning Figure 17-3 is from a design guide used within Apple Computer. This 
drawing was correct at the time of publication but is subject to 
change in the future. ... 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 359 



• Figure 17-3 ROM expansion card design guide 

(.337) (3x) 3.38 (.133) 
Tooling holes ~

8.56 

~f""-- 45.75 (1.801) .-l--""'"ll---.l.-----r-

(3x)3.00 (.118) ....,. .... r~ 
ESD grounding 
strip both sides 

of PCB 

68.66 
(2.703) 

Dimensions are in millimeters 
with inches in parentheses. 

50-pin connector 

95.46 (3.758) ------I~ 

360 Designing Cards and Drivers for the Macintosh Family 

78.69 
(3.098) 

5.37 
(.211) 

t 



Design considerations and suggestions 

In the future, Apple may upgrade the ROM in the Macintosh Portable. Apple will probably 
do this by producing a ROM expansion card that can override the hard-wired ROM code. 
The Apple ROM expansion card will have the following characteristics. One side will 
contain four 32-pin ROM sockets that are compatible with 128K x 8 bit or 512K x 8 bit 
ROMs, a DIP (dual in-line package) switch for selecting 128 KB or 512 KB addressing sizes 
for the ROM sockets, and appropriate decoupling capacitors. The other side will have 
Apple expansion ROMs and any additional circuitry that is necessary. 

If, in the meantime, you have already designed your own expansion card with hard-wired 
ROM code, it would not be compatible with the Apple upgrade and the user would have to 
choose between the Apple upgrade and your expansion card. 

You can avoid this problem by including standard 32-pin DIP socketed ROMs in your 
expansion card design. Then if Apple produces a ROM upgrade expansion card, the user 
can simply transfer the ROMs from your card to the empty sockets on the Apple ROM 
expansion card. The empty ROM sockets on the Apple ROM expansion card will allow you 
to use either 512 KB or 2 MB of the 4 MB ROM space that is available. 

By today's standards, the amount of address space provided for ROM in the Macintosh 
Portable is large however, the amount of space and the number of ROM chips on a ROM 
expansion card are limited. When designing your ROM expansion card, use only the space 
you really need and, if possible, leave room (address space and empty chip sockets) to 
add other ROMs. This gives your customers more flexibility by allowing them to insert 
other developers' ROMs in your expansion card rather than forgoing your card for another 
design that offers them this flexibility. 

Finally, you should make sure your ROM is relocatable. Just because your code is in ROM 
does not mean it will always reside at a specific address. If your ROM has to be moved to 
another card (an Apple upgrade or another third-party expansion card), there should be no 
worry about which socket to place the ROM in or if your address range will conflict with 
that of another product. Also, ROM expansion may be implemented in some future 
product with expanded or different address space. Keeping your ROM relocatable could 
be the difference between additional sales or having an incompatible card requiring an 
expensive upgrade. 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 361 



EDisks (electronic disks) 

You may wish to design your expansion card to function as one or more EDisks 
(electronic disks) that appear to the user to be very fast, silent disk drives. EDisks use 
RAM or ROM as their storage media, unlike floppy or hard disk drives that record data on 
rotating magnetically coated disks. 

• Note: Third-party developers are currently limited to developing ROM EDisks only, 
not RAM EDisks. 

The 4 MB address space allocated for ROM expansion can support a number of ROM 
EDisks. They must start on a 64 KB boundary but their size can exceed 64 KB. The ROM 
EDisks behave just like an internal RAM EDisk except that they are read only and cannot 
be resized. 

The EDisk driver 

The EDisk driver provides a system interface to EDisks similar to the Sony and SCSI disk 
drivers. It supports 512-byte block I/O operations and creates a drive queue element for 
each EDisk drive but does not support file system tags. It is a ROM 'DRVR' resource with 
an ID of 48, a RefNum of --49, and a driver name of .EDisk. For information on the driver 
calls, refer to the the Disk Driver chapter of Inside Macintosh. 

The rest of this section describes some of the implementation details, data formats, and 
algorithms used by the EDisk driver that may be helpful to you if you are designing a ROM 
expansion card for EDisks. 

362 Designing Cards and Drivers for the Macintosh Family 



Data checksumming 

To provide better data integrity, the EDisk driver supports checksumming of each data 
block. The checksum is computed during every write operation to the data block and 
checked during every read operation. For example, a 32-bit checksum is computed for 
each 512-byte block by adding each longword in the block to a running longword 
checksum that is initially zero, but is rotated left by one bit before each longword is 
added in. The following assembly code example demonstrates the algorithm. 

Lea The Block,AO AO is a pointer to the block to 

checksum 

Moveq.L #0,00 00 is the checksum, initially zero 

Moveq.L #(512/4)-1,01 loop counter for 1 block (4 bytes per 

iteration) 

@Loop Rol.L #1,00 rotate the checksum 

Add.L (AO)+,OO add data to the running checksum 

Obra 01,@Loop loop through each longword in the 

block 

EDisk driver operation 

When the EDisk driver is opened, it searches the address range from the base of the 
system ROM to $OOFO 0000 for ROM EDisks. A ROM EDisk must begin with a valid EDisk 
header block. (The header block must start on a 64 KB boundary but may be any size.) If a 
valid header block is found, it is compared to all other headers that have been found, and 
if it is identical to anyone of them, it will be ignored, thus eliminating duplicates caused 
by address wraparound. If the valid header block is unique, a drive queue entry is created 
for it, and the EDisk driver will now support it. The number of ROM EDisks that can be 
supported by the driver is limited only by the address space allocated for ROM. 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 363 



EDisk header format 

Associated with each ROM EDisk is a 512-byte header block that describes the layout of 
the EDisk and uniquely identifies it. The EDisk header marks the beginning of an EDisk. 
The header should occur at the beginning of the ROM space that is used for EDisk storage 
(for example, starting at the first byte of a 64 KB ROM block). 

The following assembly-language code example gives the general format of the header 
block. The fields used in the header block are defined following the code example. 

EDiskHeader Record O,increment 

HdrScratch DS.B 128 

HdrBlockSize DS.W 1 

HdrVersion DS.W 1 

HdrSignature DS.B 12 

HdrDeviceSize DS.L 1 

HdrFormatTime DS.L 1 

HdrFormatTicks DS.L 1 

HdrCheckSumOff DS.L 1 

HdrDataStartOff DS.L 1 

HdrDataEndOff DS.L 1 

HdrMedialconOff DS.L 1 

HdrDrivelconOff DS.L 1 

HdrWhereStrOff DS.L 1 

layout of EDisk signature block 

scratch space for R/W testing and 

vendor info 

size of header block (512 bytes for 

version 1) 

header version number (this is 

version 1) 

45 44 69 73 6B 20 47 61 72 79 20 44 

size of device, in bytes 

time when last formatted (pseudo 

unique ID) 

ticks when last formatted (pseudo 

unique ID) 

offset to CheckSum table, if present 

offset to the first byte of data 

storage 

offset to the last byte 1 of data 

storage 

offset to the media Icon and Mask, if 

present 

offset to the drive Icon and Mask, if 

present 

offset to the Get Info Where: string, 

if present 

364 Designing Cards and Drivers for the Macintosh Family 



HdrDriveInfo DS.L 1 

DS.B 512-* 

EDiskHeaderSize EQU * 

ENDR 

HdrScratch 

longword for Return Drive Info Call, 
if present 

rest of block is reserved 

size of EDisk header block 

This is a 128-byte field that is used for read/write testing on RAM EDisks to determine if 
the memory is ROM or RAM. On ROM EDisks, the vendor should fill in a unique string to 
identify the version of the ROM EDisk. For example, you might use something like 
"Copyright 1988, Apple Computer, Inc. System Tools 6.0.3, 12/19/88." 

HdrBlockSize "­ \ 

This 2-byte field indicates the size of the EDisk header block. The size is currently 
512 bytes. 

HdrVersion 

This 2-byte field indicates the version of the EDisk. The version number is currently $0001. 

HdrSignature 

This 12-byte field indicates a valid EDisk header block. You must set the signature to 
these hexadecimal numbers: 45 44 69 73 6B 20 47 61 72 79 20 44. 

HdrDeviceSize 

This 4-byte field indicates the size of the device in bytes, which may be greater than the 
actual usable storage space. You might also think of the device size as the offset (from 
the beginning of the header block) of the last byte of the storage device. 

HdrFormatTime 

This 4-byte field indicates the time of day when the EDisk was last formatted. The EDisk 
driver updates this field for RAM-based EDisks when the Format control call is made. This 
information may be useful in uniquely identifying a RAM-based EDisk. 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 365 



HdrFormatTicks 

This 4-byte field indicates the value of the system global ticks when the EDisk was last 
formatted. The EDisk driver updates this field for RAM-based EDisks when the Format 
control call is made. This information may also be useful in uniquely identifying a RAM­
based EDisk. 

HdrCheckSumOf! 

This 4-byte field is the offset (from the beginning of the header block) of the checksum 
table, or zero if checksumming should not be performed on the EDisk. 

HdrDataStartOf! 

This 4-byte field is the offset (from the beginning of the header block) of the first block 
of EDisk data. 

HdrDataEndOf! 

This 4-byte field is the offset (from the beginning of the header block) of the byte after 
the end of the last block of EDisk data. 

HdrMedialconOf! 

This 4-byte field is the offset (from the beginning of the header block) of the 128-byte 
icon and the 128-byte icon mask that represents the disk media. An offset of zero 
indicates that the EDisk driver should use the default media icon for this EDisk. 

HdrDrivelconOf! 

This 4-byte field is the offset (from the beginning of the header block) of the 
128-byte icon and the 128-byte icon mask that represents the disk drive physical 
location. An offset of zero indicates that the EDisk driver should use the default 
drive icon for this EDisk. 

HdrWhereStrOf! 

This 4-byte field is the offset (from the beginning of the header block) of the Pascal string 
that describes the disk location for the Finder Get Info command. An offset of zero 
indicates that the EDisk driver should use the default string for this EDisk. 

366 Designing Cards and Drivers for the Macintosh Family 



HdrDrive Info 

This 4-byte field should be returned by the Drive Info control call. A value of zero 
indicates that the EDisk driver should use the default drive info for this EDisk. 

Macintosh Portable RAM expansion 

The RAM interface in the Macintosh Portable computer is designed to support up to 
5 MB of CMOS static RAM. The Macintosh Portable comes equipped with a main 
memory consisting of 1 MB of permanent RAM soldered to the main logic board. 
Because of the increasing size of application programs, the Macintosh Portable is 
designed to accommodate an expansion card that will provide up to 4 MB of 
additional RAM for the system. 

This section describes the RAM expansion address space, and gives the electrical and 
mechanical information you need to design a RAM expansion card. 

RAM expansion address space 

The 1 MB permanent RAM memory is arranged as a 512K x 16 bit array. This RAM array is 
located between addresses $00 0000 and $OF FFFF in the Macintosh Portable memory map 
(Figure 17-1), and is overlaid by the system ROM after a system reset and before the first 
ROM access. 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 367 



The 8 MB space between addresses $10 0000 and $8F FFFF is reserved for RAM expansion. 
Theoretically you could design an 8 MB RAM expansion card, but the RAM expansion 
connector provides addressing for only 4 MB. You can design your expansion card for any 
of a number of possible configurations of additional RAM. For example, Apple has 
designed a 1 MB RAM expansion card. The 1 MB expansion card is arranged as a 512K x 16 
bit array and is located between addresses $10 0000 and $lF FFFF in the memory map. You 
could design a 3 MB expansion card with memory arranged as a 15M x 16 bit array. This 
configuration would be located between addresses $10 0000 and $3F FFFF in the memory 
map. The access time and cycle time for each of these configurations are 100 ns. The size 
of the RAM array is determined by the type of RAM chips you use. When your card is 
installed in the Macintosh Portable, the memory array is always available and, unlike 
permanent main memory, is unaffected by the state of the overlay bit. 

RAM expansion cards 

Your RAM expansion card connects to the Macintosh Portable through a single 50-pin 
connector (sloO on the Macintosh Portable main logic board. Refer to Figure 15-7 for the 
location of the connector on the main logic board. Figure 17-4 shows the pinout of the 
RAM expansion connector. 

All necessary address bus, data bus, and control signals from the Macintosh Portable are 
provided to the expansion card through the RAM expansion connector. Table 17-2 
provides the names and descriptions of each signal. Apple uses a custom IC to decode, 
control, and buffer the signals going to the expansion card. You must remember to include 
similar circuitry in your expansion card design. Buffering of the address bus and data bus 
is important to reduce capacitive loading. You should also use CMOS devices because the 
maximum current allotted to the RAM expansion connector is only 25 mAo 

368 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-4 Macintosh Portable RAM expansion connector pinout 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 369 



• Table 17-2 Macintosh Portable RAM expansion connector signals 

Pin number Signal name Signal description 

1 +5V +5 volt power supply 
2-24 AI-A23 Unbuffered 68HCOOO address signals AI-A23 
25-26 GND Logic ground 
27 ISYS.PWR Controls whether the Macintosh Portable is in 

the operating state or sleep state 
28 lAS 68HCOOO address strobe signal 
29 R/W Permanent ROM ICS signal 
30 IUDS 16 MHz system clock 
31 ILDS External IDTACK signal that is an input to the 

CPU GLU chip 
32 IDELAY.CS The CPU GLU chip generates this signal to put 

the RAM array into the idle mode 
33-48 DO-D15 Unbuffered 68HCOOO data signals DO-D15 
49-50 +5V +5 volt power supply 

There is one 68HCOOO processor wait state when accessing memory locations in the 
expansion RAM. This access requires a bus cycle of nominally 320 ns. Like permanent RAM, 
there is no device contention for bandwidth other than the 68HCOOO processor, and 
because the memory array is static RAM, it does not have to be refreshed, as would be the 
case for dynamic RAM. 

Also, like permanent RAM, the expansion RAM is backed up by the battery when the 
Macintosh Portable is in the sleep state. This means that the conterits of the expansion 
RAM are retained when the computer is not in use, as long as the battery is charged. 

Figure 17-5 is a design guide providing the physical specifications you need to design a 
RAM expansion card for the Macintosh Portable. 

.. Warning Figure 17-5 is from a design guide used within Apple Computer. This 
drawing was correct at the time of publication but is subject to 
change in the future. ... 

370 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-5 RAM expansion card design guide 

68.66 
(2.703) 

This area used for grounding 
to rear cover. Typical both sides, 
6x6 pads 

50-pin connector 

(3x) 3.38 (.133) 
Tooling holes 

~-------- 122.00 (4.803) ------~ 

Dimensions are in millimeters 
with inches in parentheses. 

81.20 
(3.197) 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 371 



Macintosh Portable modem card 

The main logic board of the Macintosh Portable includes an IS-pin, internal modem 
connector. The connector accommodates an Apple modem card or a compatible third­
party modem card. 

This section provides information you need if you are developing your own modem card 
and software. 

Modem card hardware interface 

Figure 17-6 shows the hardware interface between a card installed in the modem connector 
and the Macintosh Portable. Notice that when a compatible modem card is inserted in the 
modem connector, the card is automatically connected to channel A, the modem port. 
Although the Macintosh Portable hardware is designed to support operation of the 
internal modem through either of the two external RS-422 serial ports (printer or modem), 
the firmware supports operation only through the modem port. 

372 Designing Cards and Drivers for the Macintosh Family 



• Figure 17·6 Macintosh Portable modem interface 

SCC Misc. GLU 
(Z85C30) gate array 

r "' 
Modem port 

.--:... 
TxDAo 

Drivers o 'ffi ~~ TxDA 
and 

~ 
TxD.MODEM 

~ .. m rn IJJ receivers - ~ 

(channel mm 
~ 

RxDAo 
A) RxDA --=-

RxD.MODEM 

crSA ~ 
CTS.MODEM 

RTSA ~ 
IRTS.MODEM 

DTRA ~ 
/DTR.MODEM 

DCDA ~ 
/DCD.MODEM 

" .) Internal modem 
connector 

/MODEM.PWR IMODEM.PWR CD-1 

1 /DCD.MODEM 
/RI IRTS.MODEM -cD crS.MODEM 

4 
Power -5VDC RxD.MODEM 

Manager 5 6 
/MODEM.INS TxD.MODEM 

circuitry MODEM.SOUND 7 8 
_ /MODEM.BUSY -5VDC 

/RI 9 10 
/DTRMODEM 
+5V 11 12 
V3 
VI MODEM. SOUND 13 14 
/MODEM.INS 

~ MS.ENABLE V2 15 1 
MS.ENABLE I 

Sound VI /MODEM.BUSY 17 18 
circuitry 

V2 

V3 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 373 



Modem connector electrical interface 

The modem card connects to the Macintosh Portable through an 18-pin dual inline socket 
connector (slot). The data is at CMOS levels (that is, VIL = 0 to O.8V; VIH = 3.5 to V+; 
10L = 1.6mA; IOH = - 25JlA). Refer to Figure 15-7 for the location of the connector on the 
main logic board. Figure 17-7 shows the pinout of the modem connector. Table 17-3 
provides the name and description of each signal available at the modem connector. 

• Figure 17-7 Pinout of modem connector on Macintosh Portable 

IMODEM.PWR GND 

/Rrs lOCO 

RxD crs 
MODEM. SOUND : TxD 

/RI.EXT -5VDC 

+5VDC IDTR 

VI V3 
V2 IMODEM.INS 

IMODEM.BUSY MS.ENABLE 

374 Designing Cards and Drivers for the Macintosh Family 



• Table 17-3 Modem connector signal descriptions 

Pin Signal 

number name 

1 /MODEM.PWR 

2 GND 

3 /RTS 
4 /DCD 

5 RxD 
6 CTS 

Signal 

direction Signal description 

Output 

Output 
Input 

Input 
Input 

Active low signal from the power manager; see the section 
"Modem Power-Control Interface," later in this chapter. 
Ground. 
Request to Send signal from the computer to the modem. 
Data Carrier Detect; the behavior of the Data Carrier Detect 
signal depends on the state of the &C command. 
Data Received; connected to the RxD pin on the SCC. 

7 MODEM.SOUND Input 
Clear to Send; asserted by the modem whenever it has power. 
Analog sound; output from the modem. 

8 TxD 

9 /RI.EXT 

10 -5 VDC· 

11 +5VDC 

12 /DTR 
13 V1 

14 V3 

15 V2 

16 /MODEM.lNS 

17 /MODEM.BUSY 

18 MS.ENABLE 

Output 
Input 

Output 
Output 

Output 

Output 

Input 

Input 

Input 

Transmit Data; data and commands from the TxD pin on the SCc. 
Ring Detect Interrupt; the signal to the computer that a ring is 
present. If the computer is in the sleep state, assertion of this 
signal causes the computer to return to the operating state and 
power up the modem. 
-5V power; the -5V supply is guaranteed to be present whenever 
the /MODEM.PWR signal is asserted. This signal may float or go 
to ground any time following the negation of /MODEM.PWR. 
VCC power; whenever the host has power available, this pin 
supplies +5.2 VDC ± 5%. 
Data Terminal Ready. 
Least significant volume-control bit. This signal may remain high 
following the negation of /MODEM.PWR. 
Most significant volume-control bit. This signal may remain high 
following the negation of /MODEM.PWR. 
Second volume-control bit. This signal may remain high following 
the negation of /MODEM.PWR. 
Modem Installed; always asserted by the modem while the 
modem is installed in the computer. 
Modem Busy; asserted by the modem whenever the modem 
is busy. 
Modem Sound Enable; asserted by the modem to enable the 
computer's speaker. 

• Power on pin 10 is controlled by the Power Manager Ie. 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 375 



Physical design guide for a modem card 

Figure 17-8 provides the mechanical information you will need to design a modem card 
for the Macintosh Portable, including the maximum dimensions and the location of the 
18-pin connector. 

• Figure 17-8 Modem card design guide 

70.67 
(2.782) 

This area used for grounding 
to rear cover. Typical both sides, 
6x6 pads 

Component side of modem card 

~ __ 52.24 -----I~ 
(2.056) 

~-------- 123.33 (4.855) ------~ 

Dimensions are in millimeters 
with inches in parentheses. 

376 Designing Cards and Drivers for the Macintosh Family 

83.20 
(3.275) 



Modem power-control interface 

Two signal lines, /MODEM.PWR and /MODEM.BUSY, control power to the modem 
connector. A modem card can use the /MODEM.BUSY signal to indicate to the CPU that 
any of the following is true: 

• the modem is executing its power-up sequence 

• the modem is off~hook (for any reason) 

• the modem is executing a command Of Hayes compatible) 

If the modem is executing any self-tests, it is considered to be executing a command and 
therefore busy. 

The Macintosh Portable includes a Power Manager IC that controls the /MODEM.PWR 
signal. See Figures 17-9 and 17-10 for timing diagrams of the cold-start and warm-start 
power sequences. If /MODEM.PWR is negated (high), the modem must immediately 
initiate its power-off sequence regardless of what it is doing. The modem must enter the 
sleep state within 500 ms following the negation of /MODEM.PWRj by that time the 
modem must reduce its power consumption to meet the maximum power limitation for 
sleep state. (For more information, see the section "Modem Card Power Requirements" 
later in this chapter.) The modem can also use that 500 ms to set its outputs to a default 
state and store its operating parameters and register values so that it can restore them 
when operation resumes. Two of the lines to the modem, /DTR and TxD, go to ground 
potential within 50 ns of the negation of /MODEM.PWR. While the computer is in the 
sleep state, the volume-control bits VI, V2, and V3 are floating. 

• Note: On the Apple, the CTS line is always asserted (high) because flow control is 
not provided. The /RI.EXT signal always reflects the status of the incoming ring 
signal. The /RTS signal, which is meaningless in full-duplex operation, is not connected. 
When /MODEM.PWR is negated and the modem card prepares itself for the sleep 
state, the card forces two of its outputs high UDCD and RxD) and one of its outputs 
low (MS.ENABLE). 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 377 



Usually, the power manager does not negate /MODEM.PWR if the modem has 
/MODEM.BUSY asserted. However, there are times when t~e Power Manager IC must turn 
the modem off even though it is busy; for example, when the battery reserve is too low. If 
this occui's, the modem must stop its activity (for example, go on-hook) and perform the 
necessary activities to prepare for switching to its sleep state. If the modem is executing 
a command when /MODEM.PWR is negated, the modem can do one of two things before 
switching to its sleep state: either finish executing the command, or abort execution and 
restore the state prior to the command, whichever takes the least amount of time. 

• Figure 17-9 Cold-start (ihitial power-up) timing diagram 

+5V 

ov 

ov 

+5V 

u· 
I I 
I I 

Vi +5V 

~----------------~S 5 

I I 
I I 

-5V 
~--------------------------~S 5 
~------------------------~S 5 /MODEM.PWR 

• After tl, maximum overshoot is within 50 mV peak to peak. 

378 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-10 Warm-start (wake-up) timing diagram 

+5V 
----------------------------~s ~S-------------------Sleep, 1 Wake-up sequence., : (Sleep 

-5 V t : t2 ..: t6 

OV --------...:....----i.N i rv 
-S V 1 liS S 1 1 

1 I 1 1 1 1 

/Modem.Pwr 

/Modem.Busy 

/DTR, TxD 

/DCD,RxD 

MS.Enable 

VI, V2, V3 

: t3 • :: : : 
1 I: tst ;,-1 --i-: ____ _ 

'" : c: ~/!: '+--t--S J . 1 1 

: t4: : 1 1 

:NJ~! VI 1 1 1 

I : : 
: 1 
1 

) s: i~ 
-----------~S ~--~I- ~:-----

""- :: !~ 
1 1 

~ :: j~,!---j -
• 1 

1 

~-
Minimum 
Typical 
Maximum 

t1 t2 

2ms 35ms 
30ms 70ms 

t3 t4 
lOOms 

30ms 

t6 
500ms 

• After t2, maximum overshoot is within SO m V peak to peak. 
t The Macintosh Portable may not obey this minimum ti~e. 

t7 t8 

50 ns 500 ms 

Chapter 17 Macintosh· Portable RAM, ROM, and Modem Expansion 379 



Ring detection 

The Ring Detect Interrupt signal (lRI.EXT) is asserted during most of the AC cycle of a ring 
and is used to signal the computer that a ring is taking place. Both ringing and pulsing can 
trigger the ring detector. The microprocessor in your modem should be capable of 
distinguishing between ring and pulse dialing by detecting the frequency of the incoming 
signal. If the modem is turned off, the Macintosh Portable can power it up and determine 
whether the IRI.EXT signal corresponds to a ring or a pulse by reading the appropriate 
register or looking for the appropriate result code. 

Modem card power requirements 

A modem card must be able to operate on +5.2 VDC ±5% and -5.0 VDC ± 5%. This voltage 
is supplied through the modem connector by either the Macintosh Portable battery or a 
combination of battery and charger. Maximum power consumption by the modem card 
when fully operational is 750 m W, however a modem card typically consumes 525 m W of 
power when in the operating state. In the sleep state, power consumption is only 3 m W. 

During normal operation, both +5 VDC and -5 VDC are provided to the modem card. 
During the sleep state only +5 VDC is supplied. 

Telephone network interface 

Your modem design may require a balanced, two-wire telephone interface meeting FCC 
Part 68 and Part 15 Class B and DOC rules. 

It should include one eight-wire RJ-ll type jack wired as follows: 

• pin 3 for TIP signal 

• pin 4 for RING signal 

Pins 1, 2, 5, and 6 are not used. 

Installing the RJ-l1 type jack on the rear of the modem card allows a common RJ-ll plug, 
used on single-line telephone equipment, to be be inserted, completing the connection of 
a phone to the modem. 

380 Designing Cards and Drivers for the Macintosh Family 



Standards information for reference 

The following compilations of signal characteristics are provided for reference only. 

Compatibility and modulation 

Standard Speed (bps) Modulation Baud 

CCITI V.22 bis 2400 QAM 600 
CCITI V.22 1200 DPSK 600 
CCITI V.21 300/110 FSK 300/110 

Be1l212A 1200 DPSK 600 
Bell 103 300/110 FSK 300/110 

Transmit carrier frequencies 

V:22 bislV.2212l2A Transmit Carner 

Originate 1200 Hz 
Answer 2400 Hz 

BeU103 Mark Space 

Originate 1270 1070 
Answer 2225 2025 

V.2l Mark Space 

Originate 980 1180 
Answer 1650 1850 

Guard tone frequencies and transmit levels (CCIIT only) 

1800 Hz ± 20 Hz @ 6 ±1 dB below the transmit carrier level 
550 Hz ± 20 Hz @ 3 ±1 dB below the transmit carrier level 

Answer tone frequency 

V.22 bis/V.22/V.21 
Bell103/212A 

2100 Hz 
2225 Hz 

Received signal frequency tolerance 

Offset frequency ± 7 Hz 

Chapter 17 Macintosh Portable RAM, ROM, and Modem Expansion 381 





Chapter 18 Macintosh IIci Cache 
Memory Expansion 

This chapter provides the electrical and mechanical information 
you need to design a cache memory expansion card for the 
Macintosh IIci computer. 

383 



Overview 

The Macintosh IIci is equipped with a special-purpose 120-pin Euro DIN connector 
designed specifically as a processor-direct interface for a cache memory expansion card. 
The connector used on the cache card and the mating connector on the main logic board 
of the Macintosh IIci are physically the same as those used for the Macintosh SE/30 and 
shown in Figures 15-15 and 15-16, respectively. The pinout, however, is different. The 
signals provided in the cache connector are optimized for cache design, not as a general­
purpose interface as is the case with the 68030 Direct Slot connector used on the 
Macintosh SE/30 and Macintosh IIfx computers. 

... Warning Cards designed for the Macintosh IIci cache connector are not 
compatible with cards designed for the 68030 Direct Slot on the 
Macintosh SE/30 or the Macintosh IIfx computers. Their pinouts, 
form factors, clock speeds, and power budgets are different. Any 
attempts to interchange the cards may severely damage both the 
computer and the card. ... 

If you are determined to design an expansion card other than a cache memory card, you 
should be aware of the following limitations. 

• The cache connector has less power allotted to it than the 68030 Direct Slot; 5 watts of 
power is allocated at +5 volts, and +12 volts is not available. 

• The Macintosh IIci case does not have sufficient space for an external device access 
opening. This prevents you from installing a connector and cable that would allow your 
card to have access to external hardware. 

• The absence of some machine-specific signals imposes severe restrictions on your design. 

6. Important Apple strongly recommends that the cache connector be used only for 
cache memory cards. /::;. 

384 Designing Cards and Drivers for the Macintosh Family 



How the cache works 

A memory cache is a relatively inexpensive hardware addition that improves CPU 
performance. It contains a very fast memory, usually SRAM (static random access 
memory), that stores data likely to be used on a regular basis. You can think of the cache 
as a duplicate of a small portion of main memory in that it holds an image of what is in 
main memory. When the processor searches for a piece of information in main memory, 
the cache checks to see if it has the information in its data memory, and if it does, 
immediately provides the information to the processor so that the processor does not 
have to wait for the slower main memory to provide it. 

Both the processor and the cache acquire new data when the main memory places it on 
the data bus. The entire memory access cycle takes slightly longer, since there is not only 
time for a regular memory access but also the time it takes the cache to determine 
whether or not it has the requested data. Despite this increase in time, the cache design 
results in a noticeable increase in performance because the data that the processor 
frequently needs is more often than not in the cache. 

Typically, the cache determines if the data it is storing is the same data that the processor 
requested by comparing the physical addresses that the processor places on the address 
bus with the addresses stored in the cache tag memory. (The tag memory contains the 
addresses of the information stored in the cache data memory.) If there is a valid 
comparison, the information in the cache data memory is sent to the processor. 

Using the cache 

Your cache expansion card should operate transparently to user programs. The cache is based 
on physical addresses; it has no access to the logical addresses inside the Mc68030 processor, 
so cache coherency should not be a problem. Also, there is no reason to have to flush the cache 
unless it is being enabled or if a /RESET signal is issued. The 68030 on-chip memory . 
management unit marks the NuBus slot space and all 110 space of the Macintosh IIci as 
noncacheable, and if the processor addresses them, data in these spaces is not cached. 

Your card should not attempt to cache data from accesses made by bus masters other 
than the MC68030 processor because other bus masters may not know how to retry. Apple 
strongly suggests that you use synchronous logic (clocked by the CPUCLK signal) in your 
cache card design. 

Chapter 18 Macintosh IIci Cache Memory Expansion 385 



Gaining access to the cache card 

The 16 MB address space from $5200 0000 to $52FF FFFF in the Macintosh lIci memory 
map is reserved for cache memory. Table 18-1 shows the 8 MB address spaces that are 
reserved for the cache data and tag memories. 

• Table 18-1 Cache memory address space 

Cache memory type 

Data 
Tag 

From 

$52000000 
$5280 0000 

To 

$527F FFFF 
$52FF FFFF 

Since no select signal is provjded on the cache expansion connector, your card design 
must include appropriate circuitry for decoding the address ranges. The card's address 
space is not accessible through the 24-bit memory map. Test software running in 24-bit 
mode must use the SwapMMUMode trap to enter the 32-bit mode befor~ it can gain 
access to the cache card memory. 

ROM traps control the enabling, disabling, and flushing of the cache card. These functions 
are called using a selector from the HWPriv (A098) trap. See Table 18-2. 

• Table 18-2 Cache control trap 

Function 

EnableExtCache 
DisableExtCache 
FlushExtCache 

Selector 

4 
5 
6 

The organization of a particular cache card's data and tag memory is determined by the 
card. System software does not make any assumptions about the card's organization, and 
only the card's t~st software should directly address cache card RAM. 

386 Designing Cards and Drivers for the Macintosh Family 



Electrical description of the cache connector 

The cache connector is a unique processor-direct slot whose pinout is specifically tailored 
for cache implementation. Figure 18-1 gives the pinout for the cache connector on the 
Macintosh lIci main logic board, as viewed from above. In addition to the functional 
signals required for operation of the cache, the connector provides some special signals 
for diagnostic testing. 

The diagnostic signals UROMOE, /DSACKO-/DSACK1, /IPLO-/IPL2, /BR, and CPUDIS) are 
n~eded for Apple's internal use in debugging and for emulator support. They are 
documented so that third-party developers can easily make use of emulators or other 
hardware debugging tools. The diagnostic signals are not required for cache memory 
operations and may not be supported in future implementations of the cache connector. 

Table 18-3 lists the cache connector signal names and gives a brief description of each signal. 
Table 18-4 indicates whether the signals are inputs or outputs, and provides the load presented 
or the drive available to each pin of a cache card inserted in the expansion connector. The 
special-purpose diagnostic signals are shown in boldface type in both tables. 

In the column labeled Input/output in Table 18-4, In refers to a signal from the cache card 
to the processor and corresponds directly to the load presented. Out refers to a signal 
from the processor to the cache card and corresponds directly to the drive available. The 
last column in Table 18-4, labeled Load or drive limits, gives several specifications. An 
example may be helpful in interpreting this column. The /BERR signal is shown as 
presenting a load of 100 IlAl8 mA, 50 pF. This is the maximum expected load that the 
cache card must drive when sending a /BERR signal to the main logic board. The DC load is 
given in the format signal high/signal low. This means that the cache card must drive a 
load of up to 100 IlA when it drives /BERR high (logic 1), and a load of up to 8 mA when it 
drives /BERR low (logic 0). The AC load is given as 50 pF, the maximum capacitance to 
ground presented by the main logic board to AC signals (or signal transitions) from the 
cache card. The notation "1 kQ pullup" in the table means that the signal is driven low, 
and a 1 kilohm pullup resistor on the main logic board returns the line to a logic 1. 

Correspondingly, /BERR presents a drive of 40 IlAl.4mA, 30 pF. This is the maximum 
amount of drive from the main logic board that is available to circuits on a cache memory 
expansion card. The /BERR signal can drive a cache card DC load of up to 40 flA in the high 
(logic 1) state, or up to .4 mA in the low (logic 0) state. The AC drive is given as 30 pF, the 
maximum capacitance to ground that a cache expansion card may present to AC signals 
(or signal transitions) from the /BERR line. 

Chapter 18 Macintosh IIci Cache Memory Expansion 387 



• Figure 18-1 Macintosh IIci cache connector pinout 

0 
I 

A~O I /RESET 

/HALT I A29 

A~l I A25 

A26 I A27 

IRMC I A24 

0~1 GNO 

O~O 022 
028 027 

026 025 

024 023 

022 021 

020 012 
018 017 

016 +5V 

A22 A21 

A20 A12 

A18 A17 

A16 A15 

A14 Al~ 

A12 All 

AI0 GNO 

FCI A2 

A8 n.c. 

FC2 FCO 

015 014 

01~ 012 

011 010 

02 08 

06 IBGACK 

04 O~ 

01 DO 

IROMOE A7 

A5 A4 

A2 Al 

IBG +5V 

A2~ CPUOIS 

IDSACKO lAS 

CPUCLK IDSACKI 

GNO +~V 

GND CACHE 

I 

0 
A B 

/R/W 

/STERM 

A28 

Vcc 

ICFLUSH 

+~v 

n.c. 

GNO 

Vcc 

GNO 

GNO 

IIPL2 

I ICENABLE 

+5V 

+2V 

GNO 

n.c. 

GND 

+5V 

n.c. 

I GNO 

+2V 

GNO 

ICIOUT 

IIPLl 

IIPLO 

ICBREQ 

D7 

05 

02 

+5V 

A6 

A2 

AO 

ICBACK 

IBR 

IDS 

IBERR 

SI21 

SI20 

c 

5 

6 
7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

388 Designing Cards and Drivers for the Macintosh Family 



• Table 18-3 Macintosh IIci cache connector signal descriptions 

Signal name 

AO-A31 
DO-D31 
/RESET 
/BERR 
/HALT 
FCO-FC2 
/BR 
/BG 
/BGACK 
SIZO-SIZ1 
/AS 
/DSACKO -/DSACK1 
R/W 
/STERM 
/CBACK 
/CBREQ 
/CIOUT 
/DS 
/RMC 
/IPLO -/IPL2 
CPUCLK 
/ROMOE 
CPUDIS 
CACHE 
CFLUSH 
CENABLE 
n.c. 
+5V 
GND 

Signal description 

Address bus, bits 0 through 31 
Data bus, bits 0 through 31 
System reset 
Bus error 
Halt 
Function codes, bits 0 through 2 
Bus request 
Bus grant 
Bus grant acknowledge 
Transfer size, bits 0 and 1 
Address strobe 
Data transfer and size acknowledge, bits 0 and 1 
Read/write 
Synchronous termination 
Cache burst acknowledge 
Cache burst request 
Cache inhibit out 
Data strobe 
Read-modify-write cycle 
Interrupt priority lines, bits 0 through 2 
25 MHz CPU clock 
ROM output enable 
CPU disable 
Memory controller for cache access 
Cache flush 
Cache enable 
No connection 
+5 volts 
Ground 

Chapter 18 Macintosh IIci Cache Memory Expansion 389 



In Table 18-4, where a signal is shown in parentheses, it is usually an output that is driven 
by the MC6B030 but is tri-stated by the processor after responding to a bus request. When 
tri-stated by the MC6B030, this signal may be driven by the cache expansion card. 

In addition to the special diagnostic signals, some of the functions shown in Table 1B-4 
are used only during diagnostic testing. An asterisk following an input or output 
designation or a load or drive parameter indicates that particular function is active during 
diagnostic operations only. For example, under the Input/output column for the /CBACK 
signal, the word In is followed by an asterisk. This means that for diagnostic test purposes 
only, the card can drive a load of up to 100 JlA when it drives /CBACK high (logic 1), or a 
load of up to B rnA in the low (logic 0) state. Under normal cache operations, the /CBACK 
input signal is inactive. 

• Table 18-4 Macintosh IIci cache connector signals, loading or driving limits 

Signal name Input/output Load or drive limits 

AO-A29 (In) */Out (Load: 300 JlA/1 rnA, 100 pF) * 
Drive: 40 JlA/.4 rnA, 30 pF 

A30-A31 (In) */Out (Load: 300 JlAlB rnA, 100 pF) * 
Drive: 40 JlAl.4 rnA, 30 pF 
1 kQ pullup 

DO-D23 In/Out Load: 150 JlAl1 rnA, 100 pF 
Drive: 40 JlAl.4 rnA, 30 pF 

D24-D31 In/Out Load: 300 JlAl1 rnA, 100 pF 
Drive: 20 JlAl.2 rnA, 30 pF 

/RESET In */Out Load: na/15 rnA, 50 pF * 
Drive: 20 JlAl.2 rnA, 15 pF 
Open collector, 470 Q pullup 

/BERR In/Out Load: 100 JlA/B rnA, 50 pF 
Drive: 40 JlAl.4 rnA, 30 pF 
1 kQ pullup 

/HALT In/Out Load: 100 JlAlB rnA, 50 pF 
Drive: 40 JlAl.4 rnA, 30 pF 
1 kQ pullup 

FCO-FC2 (In)*/Out (Load: 100 JlAlB rnA, 50 pF) * 
Drive: 20 JlA/.2 rnA, 15 pF 
1 kQ pullup 

390 Designing Cards and Drivers for the Macintosh Family 

(Continued) 



• Table 18-4 Macintosh IIci cache connector signals, loading or driving limits 
(Continued) 

Signal name Input/output 

/BR In * 

/BG In */Out 

/BGACK Out 
SIZO-SIZ1 (In ) */Out 

/ AS (In) */Out 

/DSACKO-/DSACK1 In */Out * 

R/W (In) */Out 

/STERM In/Out * 

/CBACK In */Out 

/CBREQ In */Out 

/CIOUT CIn)*/Out 

/DS (In) */Out 

/RMC (In) */Out * 

Load or drive limits 

Drive: 40 JlAl.4 rnA, 30 pF * 
1 kQ pullup * 
(Load: 100 JlAlS rnA, 50 pF) * 
Drive: 40 JlAl.4 rnA, 30pF 
1 kQ pullup 

Drive: 40 JlAl.4 rnA, 30 pF 
(Load: 40 JlAl.4 rnA, 30 pF) * 
Drive: 40 JlAl.4 rnA, 30 pF 
(Load: 300 JlAlS rnA, 100 pF) * 
Drive: 40 JlAl.4 A, 30 pF 
1 kQ pullup 

Load: 100 JlAlS rnA, 50 pF * 
Drive: 40 JlAl.4 rnA, 30 pF * 
1 kQ pullup * 

(Load: 300 JlA/S rnA, 100 pF) * 
Drive: 40 JlAl.4 A, 30 pF 
1 kQ pullup 

Load: 100 JlAlS rnA, 50 pF 
Drive: 40 JlAl.4 rnA, 30 pF * 
1 kQ pullup 
Load: 100 JlAlS rnA, 50 pF * 
Drive: 40 JlAl.4 A, 30 pF 
1 kQ pullup 
Load: 100 JlAlS rnA, 50 pF * 
Drive: 40 JlAl.4 rnA, 30 pF 
1 kQ pullup 

Load: (lOOJlAlSrnA, 50 pF)* 

Drive: 40 JlAl.4 A, 30 pF 
1 kQ pullup 
(Load: 100 JlAlS rnA, 50 pF) * 
Drive: 40 JlAl.4 rnA, 30pF 
1 kQ pullup * 
(Load: 100 JlAlS rnA, 50 pF) * 
Drive: 40 JlAl.4 rnA, 30pF 
1 kQ pullup * 

(Continued) 

Chapter IS Macintosh IIci Cache Memory Expansion 391 



• Table 18-4 Macintosh IIci cache connector signals, loading or driving limits 
(Continued) 

Signal name Input/output Load or drive limits 

/IPLO -IPL2 Out * Drive: 40 JlA/.4 rnA, 30pF * 
1 kQ pullup * 

CPUCLK Out Drive: 10 JlA/10~, 15 pF 
/ROMOE Out* Drive: 40 JlA/.4 rnA, 30pF * 
CPUDIS In * Load: 8 mAIl rnA, 30 pF * 

1 kQ pulldown * 
CACHE In Drive: 8 mAIl rnA, 30 pF 

1 kQ pulldown 
/CFLUSH Out Drive: 40 JlAl.4 A, 30 pF 
/CENABLE Out Drive: 40 JlA/.4 A, 30 pF 
• These signals are used for debugging and emulation only. 

Electrical design guidelines for the cache card 

Most of the cache connector signals are specified to drive two 74LS inputs. (A standard 
74LS input load is 20 ~ high, .2 rnA low.) Some other signals such as lRESET, the high­
order data (D24-D31), and the function codes (FCO-FC2) drive only one 74LS input. The 
CPUCLK signal drives only a CMOS input (a standard CMOS load is 10 JlA high, 10 JlA low). 

CACHE and CPUDIS are the only unusual signals on the cache connector. CACHE, an 
active-high signal, disables the memory controller (MDU) so that it cannot start a memory 
cycle and allows the cache card to supply the data instead. The active-high transition of 
the CACHE signal must occur at the same time as the active-low transition of the lAS 
signal, or earlier. Asserting CACHE prevents the memory controller from beginning a RAM, 
ROM, or NuBus cycle. If CACHE is asserted after the memory controller has started a 
cycle, that cycle is not affected. Also, CACHE does not affect memory controller cycles 
for 1/0 devices. 

Since CACHE must be asserted at I AS, the cache controller leaves CACHE unasserted 
except when the cache is not active (that is, ICIOUT is asserted and ICENABLE is 
deasserted, or an alternate bus master owns the bus as indicated by an asserted 
/BGACK signal). 

392 Designing Cards and Drivers for the Macintosh Family 



The CPUDIS signal is used during diagnostic testing to disable the MC68030 on the main 
logic board and tri-state its outputs. An emulator in the cache card can assert CPUDIS and, 
after waiting for the end of the current bus cycle, drive all signals. 

• Note: NuBus cards can access each other without that transaction appearing on the 
CPU bus. This can lead to inconsistency between memory on the NuBus card, for 
example, and the cached version of that memory. For this reason, the Macintosh 
Operating System always marks the NuBus address space noncacheable, as controlled 
by the MC68030 processor's on-chip PMMU. 

The /BGACK signal is not driven high quickly enough by the main logic board to satisfy 
cache memory operations. Your card design should include a 2.2 kilohm resistor to pull 
/BGACK up to +5 volts, and a circuit to double-rank synchronize /BGACK before using it. 
You can double-rank synchronize /BGACK by putting it through two DQ flip-flops that are 
clocked by the CPUCLK signal, and using the output from the second flip-flop. 

L,. Important Although the cache expansion connector is capable of other 
functions, Apple plans to support its use for RAM cache cards only. 6 

Mechanical design guidelines for the cache card 

Figure 18-2 shows two views of the cache card. The larger drawing is a component-side 
view showing the maximum dimensions and the location of the 120-pin connector. 
Note that the location of the connector is given with reference to the edge of the 
connector, not to pin AI. The size limitation is required for proper cooling of the card. 
If you fail to adhere to these guidelines, your design could create a potential reliability 
problem for the customer. 

To the right is an end view (from the front of the computer) showing the card thickness and 
component placement. Notice that the maximum card thickness is 0.062 ± 0.0075 inches. 

Chapter 18 Macintosh IIci Cache Memory Expansion 393 



76.20 
(3.00) 

• Figure 18-2 Cache card design guide 

Component side 
(facing power supply) 

000 

000----

I 
120-pin connector 

1- 25.40 --.t4------- 114.30(4.50) _____ ~ 1= (1.00) 154.94 (6.10) ----------I~ 

Dimensions are in millimeters 
with inches in parentheses. 

1.57 ± .016:1 ~ 
(.062 ± .006) 

Back side 
of card 

(No active 
components) .. 

Here are some guidelines you should follow when designing your cache card hardware in 
order to ensure proper thermal dissipation and eliminate the possibility of electrical 
interference with the ROM SIMM. 

• Card warpage must be controlled to within a 0.10 inch deviation from the ideal. 

• You should place no components or traces in the top 0.150 inch of the card, on either 
the front (component) side or the back side. 

• Component height must not extend beyond the edge of the card in any direction. 

• Component height cannot exceed 0.40 inches on the front side of the board (toward 
the power supply). 

• No component or wire lead on the back side of the card (toward the ROM SIMM) may 
extend more than 0.10 inches from the surface of the card. 

• You should place all active components on the front (component) side of the card; 
you may place resistors and capacitors that do not exceed the height limitation on the 
back side of the card. 

394 Designing Cards and Drivers for the Macintosh Family 

(.40) max. r 
10.16 

Front 
(component) 
side of card 



Power consumption guidelines 

Table 18-5 gives current allocation for a cache card in the Macintosh IIci and compares it 
with the current allotted to each NuBus card. Exceeding these guidelines could create a 
potential reliability problem in the host system. 

• Table 18-5 Power budget for a Macintosh IIci cache card 

Device 

Cache card 
NuBus card 

+5V 

1.0 amps 
2.0 amps 

+12V 

not available 
0.175 amps 

-12 V 

not available 
0.150 amps 

Most of the information in Appendix A on EMI, heat dissipation, and product safety also 
applies to a cache memory expansion card. One noticeable difference is that the 
maximum power dissipation for a Macintosh IIci cache card is 5 watts versus the 7.5 watts 
specified for an expansion card in a conventional processor-direct slot. 

Chapter 18 Macintosh IIci Cache Memory Expansion 395 





Appendix A EMI, Heat Dissipation, and Product 
Safety Guidelines 

This appendix provides general information that you should become 
familiar with before you start your expansion card design. Guidelines are 
given for electromagnetic interference (EMI) , heat dissipation, and 
product safety standards. These guidelines apply to both NuBus and 
processor-direct slot expansion cards. 

397 



EMI guidelines for expansion cards 

Every Macintosh-family computer meets FCC radio and television electromagnetic 
interference (EM!) requirements as a stand-alone device, or when connected to a 
peripheral device such as a printer or modem. However, you should follow certain 
guidelines when designing your expansion card to avoid exceeding the mandatory FCC 
limits when the card is installed in the computer. This section provides EMI design 
guidelines for the following configurations: 

• an expansion card is mounted internally with no external I/O connections 

• an expansion card is mounted internally and external I/O connections are provided 

These guidelines apply equally to expansion cards designed for NuBus slots and 
processor-direct slots. 

Without external 110 connections 

The following guidelines should enable you to build an add-on that does not degrade the 
computer to the extent that the combination product will not meet FCC regulations for 
Class B equipment. However, you are responsible for the FCC authorization of the 
combination product. Development testing should be undertaken as soon as you have 
completed a realistic expansion card in order to alert you, the developer, to any serious 
EMI problems. You can resolve these problems by rerouting signal conductors, filtering 
and bypassing, and terminating buses properly to eliminate excessive transient ringing 
(undershoot) on clocks and other signals. You must use appropriate emission control 
techniques on the card and on wiring to any connectors for external I/O. 

• Use cards with four layers (power and ground on two of the layers), or with extremely 
low impedance busing of power and ground lines, to reduce EMI pick-up and 
emanations. 

• Buffer high-speed signals and separate them from lower-speed circuitry. 

• Buffer signals from the expansion connector as close to the connector as possible and 
limit the drive to one LS load with a maximum of 18 pF capacitance. 

• Make internal interconnecting cables as short as possible. Position cables such that 
inductive and capacitive coupling with the computer's subassemblies is minimized. 
You should not bundle conductors carrying high-speed signals with conductors carrying 
low-speed signals. In certain cases, you may have to use internal shielding or twisted 
pairs within cables. 

• Do not locate high-speed components such as clock oscillators and their signal lines 
near the expansion port connector and shield. 

398 Designing Cards and Drivers for the Macintosh Family 



• Provide good high-frequency decoupling in addition to adequate power supply 
filtering at the low-voltage power connectors of the card. These precautions 
avoid degrading the low emission levels conducted from the computer's 120 VAC 
power connector. 

With external I/O connections 

Macintosh computers with NuBus have external I/O connections for each NuBus slot. 
Macintosh computers that use a processor-direct slot for expansion have only one external 
I/O connection called the external device access opening. In general, these guidelines apply 
equally to both configurations. When there are differences they are noted. 

Connecting a cable to an external I/O connector can seriously compromise the emissions 
integrity of the computer. You are likely to exceed allowable limits on conducted or 
radiated emissions unless you take care during construction and test the total system as it 
will be operated. The total system includes 

• the unmodified computer 

• the expansion card and all internal cables used to modify the computer (and, for a 
Macintosh SE or Macintosh SE/30, a connector card) 

• the external cable and peripherals to be connected 

It is very important for you to do the following: 

• Follow all the guidelines given for internal expansion cards as described previously. 

• Include EMI filtering in each I/O line and power line going to or beyond (outside) the 
I/O connector. This is best achieved by using deglitch packs (RC or LC networks) or 
common mode chokes located directly at the connector. 

• Shape the spectrum of signals, especially video, in the frequency domain so that 
unrequired bandwidth and harmonics are not needlessly propagated. 
(Note: Computer designers tend to prefer very fast edges so that timing errors are 
never a problem, but it is these very fast edges that cause high amplitude harmonics in 
the frequency domain and lead to emission problems.) 

• Use a good quality connector, one that has high conductivity (electrical) plating and 
accepts a shielded plug. The tin-plated steel DB series of connectors is one obvious 
example. The connector on a NuBus card should be mechanically and electrically 
bonded to the metal I/O fence on the rear of the expansion card. The connector on a 
processor-direct slot card should be mechanically and electrically bonded to the metal 
chassis behind the external device access opening at the rear of the computer. An 
unsecured, unbonded connector protruding through the opening is almost sure to 
cause a major EMI problem. 

Appendix A EMI, Heat Dissipation, and Product Safety Guidelines 399 



• External metal conductor cables must be shielded, without exception. Solder bond the 
entire circumference of the braided shield to provide a low impedance path to the 
entire perimeter of the connector. 

• Interconnecting cables should be as short as possible. Do not bundle conductors 
carrying high-speed signals with conductors carrying low-speed signals. In certain 
cases, you may have to use internal shielding or twisted pairs within cables. 

Heat dissipation guidelines 

Macintosh expansion cards, by their own heat dissipation, produce increased 
temperatures within the computer. Because excessive heat can have a detrimental 
effect on performance and reliability, Apple has developed a general set of heat 
dissipation guidelines for each of the two categories of expansion cards, NuBus and 
processor-direct slot. 

Heat dissipation guidelines for NuBus cards 

You should follow these guidelines when designing NuBus cards for the Macintosh II 
family of computers: 

• Dissipation by a NuBus expansion card of up to 13.3 watts of power provides a 
comfortable margin for the major components. This total is arrived at as follows: 

+5V @ 

+12V @ 

-12V @ 

Total power 

2.0A 
0.175 A = 
0.1 A 

10.0W 
2.1 W 
1.2W 

13.3W 

Dissipation of more than 13.3 watts of power by a card may cause excessive 
temperature rise on certain critical components. Apple studies indicate that at an 
ambient temperature of about 24°C, 13.3 watts of dissipated power from the 
expansion card will cause an acceptable rise in average component case temperature 
to about 53°C. (Studies were conducted with an internal hard disk drive installed.) 

• You can achieve optimum cooling for both the logic board and expansion cards by 
keeping the expansion card as short as possible; the minimum possible is 7.0 inches 
(see the section "Card Description," in Chapter 6). In addition, placing larger 
components near the bottom side of the expansion card is desirable. 

400 Designing Cards and Drivers for the Macintosh Family 



• Place hot components on the expansion card directly against the card; they should 
have the widest possible printed wiring traces. This provides for better cooling as the 
air flow from the fan moves from the rear of the computer to the front. 

• Installation of an expansion card should not cause the case temperature of an internal 
hard disk to rise more than 20°C over external ambient air temperature. 

Heat dissipation guidelines for processor-direct slot cards 

You should follow these guidelines when designing an expansion card for a Macintosh 
computer with the processor-direct slot expansion interface: 

• Dissipation by the expansion card of up to 7.5 watts of power provides a comfortable 
margin for the major computer components. Dissipation of more than 7.5 watts of 
power may cause excessive temperature rise on certain critical components. Apple 
studies indicate that at an ambient temperature of about 24°C, 7.5 watts of 
dissipated power from the expansion card will cause an acceptable rise in average 
component case temperature to about 53°C for the main logic board components 
located directly under the expansion card (studies conducted with an internal hard 
disk drive installed). Note that the cache card in the Macintosh IIci is an exception: 
maximum heat dissipation for this card is only 5 watts. 

• The most heat-sensitive logic board components include the microprocessor and the 
DRAM SIMM modules. The maximum recommended temperature for the center of the 
microprocessor case is 65°C. The maximum recommended temperature for the case of 
each component on the DRAM SIMM modules is 60°C. 

• You can achieve optimum cooling for both the logic board and expansion card in a 
Macintosh SE by positioning the expansion card as far above the logic board as 
possible (while still avoiding mechanical interference with the chassis); the suggested 
distance is 16.8 mm. In addition, you will get a more uniform temperature distribution 
in the Macintosh SE if you place the components on the top (away from the main logic 
board) rather than the bottom side of the card. 

• Put hot components toward the rear of the expansion card, away from the front bezel, 
to get better cooling by the air flow from the fan. 

• An expansion card should not cause the case temperature of an internal hard disk to 
rise more than 15°C over external ambient air temperature. 

Appendix A EMI, Heat Dissipation, and Product Safety Guidelines 401 



Product safety 

Every Macintosh computer meets national and international product safety requirements. 
Therefore, any additional cards and components need careful safety consideration to 
maintain the same degree of electrical and mechanical safety. When you design an 
expansion card to fit inside a Macintosh computer, you must consider several product 
safety issues. 

American (Underwriters Laboratories-UL), Canadian (Canadian Standards Association­
CSA) , and European (Institute for Industrial Research and Standards-IIRS) regulatory 
organizations give product safety approval to a Macintosh computer with a NuBus 
interface with dummy expansion cards in each NuBus slot. The same agencies give 
approval to a Macintosh computer with a processor-direct slot interface without any 
expansion card (including a dummy card) installed in the slot. When you change the design 
of either product by adding a functional expansion card, and resell the unit, the product 
becomes delisted. Technically, you should resubmit the computer with your card (or 
cards) installed and have the new (combination) product evaluated. The new product 
should have a new model number and the computer essentially becomes a component of 
your system. 

You can maintain product safety if you follow these guidelines: 

• Stay within the maximum power specification of the expansion connector. 

• Use components that have been certified by the safety agencies. Components such as 
lithium batteries, power relays, tape drives, disk drives, fans, wires and cables, and 
other parts should have at least UL and CSA approvals. 

• Properly secure (mount) the components. Avoid mountings that depend on adhesive 
only or mountings that allow movement of components or cards. 

• Avoid using materials that could contribute to a fire. This includes PCB material, card 
guides, and other parts. In general, PCB material should be flame rated 94V-l or better, 
wire should be UL Listed/CSA Certified, flame rated VW-l, and plastic parts within the 
enclosure should be flame rated 94V-2 or better. 

• Place PCBs and other components so that they do not block vent openings or 
fan circulation. 

• Secure all wiring and provide chafing protection to prevent degradation of the 
insulation on moving parts or sharp edges. 

• Do not configure connectors such that a hazard is created if they are plugged in 
backwards or into the wrong connector. 

402 Designing Cards and Drivers for the Macintosh Family 



• Verify that the installation or conversion kits are complete. Provide any special tools 
required for installation or conversion (for example, a special nut driver). Provide any 
special hardware rather than expect the installer to modify (bend or drill, for example) 
existing hardware. 

• Make sure installation or conversion instructions are complete. Provide a review by a 
person who is unfamiliar with the product to ensure that instructions are complete and 
accurate enough for that person to understand. 

• Avoid splicing of wires. Your conversion kit should provide new harnesses if they 
are required. 

• Avoid soldering. If soldering is necessary, the connection should be made mechanically 
secure before soldering (no tack soldering). 

The following guidelines apply particularly to expansion cards that use high voltages. 

• Do not allow maintenance work to be performed by persons not knowledgeable of the 
hazards involved. If the Macintosh has a built-in CRT, repair personnel must be aware 
of the dangers of shock from the primary, the charge stored on the CRT, and the 
implosion potential of the CRT. 

• Be careful to maintain proper through-air and over-surface spacings between the high­
voltage components (power supply, relays, a built-in CRT, and so forth) and the logic 
circuitry. Remember that spacings are measured under worst-case conditions and that 
if a card can be moved, spacings will be measured with the card in the worst position. 
Spacing tables can be found in the following safety standards: UL478, CSA 22.2 No. 
154-M1983, CSA 22.2 No. 220-M1986, IEC 380, IEC 435, and lEC 950. 

• Maintain proper insulation thickness or layers between the high-voltage components 
and the logic circuitry. (Proper insulation is defined in the standards listed in the 
preceding item.) If a low-voltage circuit can contact a high-voltage wire, the low­
voltage wire must also be insulated for the higher voltage. 

• Don't place components next to high-voltage parts. 

Appendix A EMI, Heat Dissipation, and Product Safety Guidelines 403 





Appendix B PAL Listing for the NuBus Test Card 

This is a listing of the P AL-implemepted logic equations for the NuBus 
Test Card described in Chapter 10, "NuBus Design Examples." 

405 



.ident PAL16R8,B SLAVE, NuBus slave controller 

Version: 1.1 

.names 

/CLK 
/START /ACK /MYSLOT /RESET /MSTDN /TM1 A19D11 A18D10 

Gnd JOE 
A18D10L A19D11L TM1L MASTER /romoe1 /ROMOE /ACKCY SLAVE 

Vcc 

.equations 

/SLAVE 

/MASTER 

ROMOE 

romoel 

:= RESET 
{initialization} 

+ /SLAVE * /START 
+ /SLAVE * ACK 
+ /SLAVE * /MYSLOT 

{holding; DeMorgan of START * /ACK * MYSLOT} 

+ SLAVE * ACKCY 
{clearing term} 

:= RESET 
{initialization} 

+ /MASTER * /SLAVE 

+ /MASTER * /TM1L 

+ /MASTER * /A19D11L 

+ /MASTER * A18D10L 
{holding term; DeMorgan of: 

SLAVE * TM1L * A19011L * /A18D10L } 

+ MASTER * MSTON 
{clearing term, at end of MASTER cycle} 

:= START * /ACK * MYSLOT * /TMl * Al90ll * Al80l0 

* /RESET 
{ latching term, when decoding a READ to us 

+ ROMOE * /ACKCY 
* /RESET 

{ holding term thru access } 

:= ROMOE 
{ simply a delayed. ROMOE for cycle timing } 

406 Designing Cards and Drivers for the Macintosh Family 



ACKCY 

/TMIL 

/A19DIIL 

/A18DIOL 

.notes 

:= START * /ACK * MYSLOT * TMl 
{fast cycle for WRITES} 

+ /ACKCY * SLAVE * /ROMOE 
{slow cycle for non-ROM READS} 

+ /ACKCY * ROMOE * romoel * /A19DIIL 
{slower cycle for ROM} 

.= RESET 
+ /TMl * START * /ACK * MYSLOT 

{setting term, during address cycle} 
+ /TMIL * /START 
+ 
+ 

/TMIL * 
/TMIL * 

ACK 

{holding terms} 
/MYSLOT 

.= /A19Dll * START * /ACK * MYSLOT * /MASTER 
{setting term, during SLAVE address cycle} 

+ /A19DIIL * SLAVE * /TMIL 
+ /A19DIIL * SLAVE * TMIL * /A19DIIL 
+ /A19DIIL * SLAVE * TMIL * A18DIOL 

{holding terms for SLAVE accesses} 
+ ROMOE * romoel 

{ timing term for ROM reads } 
+ /A19Dll * SLAVE * TMIL * A19DIIL * /A18DIOL 

{setting term for MASTER start} 
+ /A19DIIL * MASTER 

{holding term for MASTER} 

:= /A18DIO * START * /ACK * MYSLOT 
{setting term, during address cycle} 

+ /A18DIOL * SLAVE * /TMIL 
+ /A18DIOL * SLAVE * TMIL * /A19DIIL 
+ /A18DIOL * SLAVE * TMIL * A18DIOL 

{holding terms for SLAVE accesses} 
+ /A18DIO * SLAVE * TMIL * A19DIIL * /A18DIOL 

{setting term for MASTER start} 
+ /A18DIOL * MASTER 

{holding term for MASTER} 

This version corresponds to the new pin-out for the "official" 
test card. It also supports the ROM, with the ROMOE signal . 

. end 

Appendix B PAL Listing for the NuBus Test Card 407 



.ident PAL16L8,B (ARB2), Nubus Arbitration logic 

Version: 1.1 

.names 

nc1 IARB nc3 nc4 nc5 1103 1102 1101 lIDO 
gnd 

IARBOi IARBOo IARB1 IARB2 IARB3 arbOoe arb10e arb20e GRANT 

vcc 

.equations 

.if[ ARB * 103 1 
ARB3 vee; 

larb20e 1103 * ARB3 

.if[ ARB * arb20e * 102 1 
ARB2 vee; 

larb10e 1103 * ARB3 
+ 1102 * ARB2 

.if [ ARB * arb10e * 101 1 
ARB1 vee; 

larbOoe 1103 * ARB3 
+ 1102 * ARB2 
+ 1101 * ARB1 

.if[ ARB * arbOoe * 100 1 
ARBOo vee; 

IGRANT 1103 * ARB3 
+ 1102 * ARB2 
+ 1101 * ARB1 
+ lIDO * ARBOi 

.notes 

ARB is responsible for doing the NuBus arbitration logic. Upon 
detecting any higher priority ARB<3:0> value, it will defer its 
generation of lower ARB<3:0> bits. 

The GRANT signal must be timed externally to determine proper 

NuBus constraints. 
This version uses a new technique to minimize skews . 

. end 

408 Designing Cards. and Drivers for the Macintosh Family 



.ident PAL16R8,B MASTER2, NuBus master controller for test card. 

Version: 1. 3 

.names 

/CLK 
MASTER GRANT /RQST /START /ACK MASTERD /RESET A17D9 

gnd 
A17D9L 

vcc 

.equations 

ARBCY 

ADRCY 

DTACY 

OWNER 

foe 
/LOCKED /arbdn /busy /OWNER /DTACY /ADRCY /ARBCY 

:= MASTER * MASTERD * /OWNER * /ARBCY * /ADRCY * /DTACY * 

/RQST 

+ MASTER * 
* /RESET 

+ MASTER * 

* /RESET 

.= /A17D9L 

+ /A17D9L 

+ 
* MASTER * 

:= ADRCY 

{wait for RQST* unsserted, while idle} 
ARBCY * /OWNER 

{non-locking, hold for START*} 
ARBCY * LOCKED 

{holding for locked access} 

* /OWNER * ARBCY * arbdn * GRANT * 
* /OWNER * ARBCY * arbdn * GRANT * 

{START* if not locking} 
OWNER * LOCKED * /ADRCY * /DTACY 

/RESET 

/busy * 
busy * 

{START* for locking case, after LOCK-ATTN} 

{assert after START*} 
+ DTACY * /ACK 

* MASTER * /RESET 

{hold until ACK*} 

:= ARBCY * arbdn * GRANT * /busy * /START 

+ ARBCY * arbdn * GRANT * busy * ACK 
{when bus is free, we own it next} 

+ OWNER * ADRCY 
* MASTER * /RESET 

{hold before DTACY} 

+ OWNER * DTACY * /ACK 
* MASTER * /RESET 

{non-locking, wait until ACK*} 

+ OWNER * LOCKED 

* MASTER * /RESET 
{for LOCKing case, hold for NULL-ATTN} 

/START 
ACK 

Appendix B PAL Listing for the NuBus Test Card 409 



busy 

arbdn 

LOCKED 

:= /busy * START * /ACK 

+ busy * 
* /RESET 

{beginning of transaction} 
/ACK 

{hold during cycle} 

'= ARBCY */START 
{when arbitrating, force delay} 

'= A17D9L * ARBCY * arbdn * GRANT * /busy * /START 
+ A17D9L * ARBCY * arbdn * GRANT * busy * ACK 

{set for LOCK-ATN} 

+ LOCKED * /DTACY 
* MASTER * /RESET 

+ LOCKED * DTACY * /ACK 
* MASTER * /RESET 

{clear on NULL-ATN} 

/A17D9L '= /A17D9 * /MASTER 
{latching term} 

+ /A17D9L * MASTER 
{holding term} 

+ LOCKED 
{clearing term, prevent another ADRCY} 

.notes 

This version is for new pin-out of the "official" test card. 

MasterA handles the delayed feature of the card. Version 1.1 also 
fixes the timing for arbitration. 

This version is designed to work with the new ARB2 arbitration 
PAL, which has a different sense for GRANT. It also fixes a minor 
timing overhang on DTACY for 2-cycle transactions. 

. end 

Version 1.3 fixes 2-cycle write by only allowing ADRCY for 
1 clock; we originally had overlap to try to eliminate decoding 
glitches . 

410 Designing Cards and Drivers for the Macintosh Family 



.ident PAL16L8,B MISC2, local bus/transceiver controls. 

.names 

Version: 1. 2 

CLK SLAVE TM1L A19DllL A18D10L /ARBCY /ADRCY /DTACY /ROMOE 
gnd 

MASTER GAB210 /GBA CAB /DOE /AOE /DCLK /ACLK GAB3 
vcc 

.equations 

GBA SLAVE * /TM1L 

/CAB 

{SLAVE read of card} 

+ MASTER * ADRCY 
{MASTER address cycle} 

+ MASTER * DTACY * A19DllL{TM1} 
{MASTER data cycle, when writing} 

SLAVE + /CLK 
{ DeMorgan of: /SLAVE * CLK } 

/GAB3 SLAVE * /TM1L 
{any SLAVE read} 

+ MASTER * /ADRCY * /DTACY 
{MASTER loading address} 

+ MASTER * A19DllL{TM1} 
{MASTER write} 

/GAB210 SLAVE * /TM1L * /ROMOE 

ACLK 

AOE 

{SLAVE, non-ROM, read} 
+ MASTER * /ADRCY * /DTACY 

{MASTER loading address} 
+ MASTER * A19DllL{TM1} 

{MASTER write} 

SLAVE * CLK * TM1L * /A19DllL * /A18D10L 
* /ROMOE 

{SLAVE write to address reg} 

SLAVE * /TM1L * /A19DllL * /A18D10L 
* /ROMOE 

{SLAVE read of address reg} 
+ MASTER * /AORCY * /OTACY 

{MASTER address cycle} 

Appendix B PAL Listing for the NuBus Test Card 411 



DCLK 

DOE 

.notes 

SLAVE * CLK * TM1L * /A19D11L * A18D10L 
* /ROMOE 

{SLAVE write to data reg} 

+ MASTER * DTACY * /A19D11L{/TM1} * CLK 
{MASTER read} 

SLAVE * /TM1L * /A19D11L * A18D10L 
* /ROMOE 

{SLAVE read of data reg} 
+ MASTER * DTACY * A19D11L{TM1} 

{MASTER write data} 

This version of PAL corresponds to the "official" NuBus 
test card. Version 1.2 reflects non-overlap of ADRCY with 
DTACY, which fixes problem with 2-cycle writes; 

.end 

412 Designing Cards and Drivers for the Macintosh Family 



. ident PAL16L8,B NBDRVR2, NuBus bus driver . 

Version: 1.3 

.names 
/ACKCY /ARBCY /ADRCY /DTACY /OWNER /LOCKED nc7 A19D11L A18D10L 

Gnd 
nc11 /TMO /TM1 /tmoe /MSTDN /rqstoe /ACK /START /RQST 

Vcc 

.equations 

rqstoe ARBCY * /ADRCY 

.if[ rqstoe 
RQST 

.if[ OWNER 
START 

tmoe 

.if[ tmoe 
ACK 

.if[ tmoe 
TM1 

.if[ tmoe 
TMO 

{hold until START* for normal case} 
+ ARBCY * LOCKED 

{hold until NULL-ATTN for locked case} 

Vcc; 

/DTACY 
{START* for all non-DTA cycles} 

ACKCY 
{SLAVE response} 

+ OWNER * ARBCY * /DTACY 
{we own bus, while not waiting for ACK} 

ACKCY 
{SLAVE response} 

+ OWNER * /ADRCY 
{for NULL-ATTN, LOCK-ATTN} 

ACKCY 
{SLAVE response} 

+ OWNER * ADRCY * A19D11L 
{START* at address cycle} 

+ OWNER * /ADRCY * /LOCKED 
{set for NULL-ATTN} 

ACKCY 
{SLAVE response} 

+ OWNER * ADRCY * A18D10L 
{START* at address cycle} 

+ OWNER * /ADRCY 
{always set for xxxx-ATTN cycles} 

Appendix B PAL Listing for the NuBus Test Card 413 



.if[ tmoe 
TMO ACKCY 

{SLAVE response} 

+ OWNER * ADRCY * A18D10L 
{START* at address cycle} 

+ OWNER * /ADRCY 
{always set for xxxx-ATTN cycles} 

MSTDN OWNER * /LOCKED * DTACY * ACK 
{done at tail end of normal cycle} 

+ OWNER * /LOCKED * ARBCY * /ADRCY * /DTACY 
{done for locked cases} 

.notes 

This version corresponds to the "offical" test card. 
NOTE: due to overlap of states, RQST* is held one state too 

long at end of a LOCKED transaction. However, this causes no "real" 
problem. If we are the last winner of a RQST set, then the only 
result is that new RQST-ers are held off by one CLK. If there is 
another RQST-er left in our set, then it will still be driving RQST. 
It will properly arbitrate due to the NULL-ATTENTION and become the 
next winner. Thus, in either case, nothing "bad" happens. 

. end 

Version 1.3 reflects change to ADRCY which is now held low only 
during the address cycle of a transaction . 

414 Designing Cards and Drivers for the Macintosh Family 



Appendix C PAL Listings for the SCSI-NuBus 
Test Card 

This is a listing of the PAL-implemented logic equations for the SCSI 
NuBus Test Card described in Chapter 10, "Nubus Design Examples." 

415 



. ident PAL16RB,B stNUBUSl, control for NuBus SCSI test card . 

Version: 1.1 

.names 

clk 
/START /ACK /mySLOT /mySUPER /TMI nc7 ncB /RESET 

gnd foe 
nc12 nc13 nc14 /S2 /Sl /SUPER /SLOT /IOR 

vcc 

.equations 

lOR 

SLOT 

SUPER 

Sl 

S2 

.notes 

:= START * /ACK * mySLOT * /TMI * /RESET 

+ START * /ACK * mySUPER * /TMI * /RESET 
{ set on READ to our SLOT } 

+ lOR * /S2 * /RESET 
{ hold until end of transaction 

.= START * /ACK * mySLOT 
{ select when access 

+ SLOT * /S2 
{ hold thruout cycle 

:= START * /ACK * mySUPER 
{ select when access 

+ SUPER * /S2 
{ hold thruout cycle 

.= SLOT * /Sl 

+ 
+ 

SUPER * /Sl 
Sl * /S2 

.= Sl * /S2 

to 

to 

* /RESET 
us } 

* /RESET 

* /RESET 
us } 

* /RESET 

* /RESET 
* /RESET 
* /RESET 

* /RESET 

} 

stNUBUSl is the main control circuit of the NuBus SCSI card. 
This version will decode both a SuperSlot and a normal Slot access. 
Notice that all bus transactions take the same time to simplify 
the logic . 

. end 

416 Designing Cards and Drivers for the Macintosh Family 



.ident PAL16L8,B stNUBUS2, control for NuBus SCSI test card. 

Version: 1.0 

.names 

/CLK nc2 /SLOT /SUPER /Sl /S2 nc7 DRQ IRQ 
gnd 

/INTENB /NMRQ nc13 /ackoe /TMO /TM1 /ACK DCLK ACLK 
vcc 

.equations 

/ACLK SLOT 

+ SUPER 

+ /CLK 
{ DeMorgan of CLK * /(SLOT + SUPER) } 

/DCLK /S2 
clock in data on edge of ACK* } 

ackoe SLOT 
+ SUPER 

{ try to pull ACK* up before undriving } 

.if[ ackoe 
ACK S2 

.if[ ackoe 
TM1 S2 

.if[ ackoe 
TMO S2 

{ assert ACK*, TM1*, TMO* during last state of cycle} 
.if[ INTENB 

NMRQ IRQ 
+ DRQ 

{ drive NMRQ if either is ready } 

.notes 

. end 

This PAL is driven by stNUBUS1 (which provides decoding and timing); 
it generates the control signals used by the NuBus interface . 

Appendix C PAL Listings for the SCSI-NuBus Test Card 417 



.ident PAL16LB,B stMISC, control for NuBus SCSI test card. 

.names 

Version: 1.0 

/SLOT /SUPER /Sl /S2 A19 AlB A9 TM1L nc9 
gnd 

/RESET /IOW nc13 nc14 /INTENB /RAMCS /ROMCS /OACK /SCSI 
vcc 

.equations 

SCSI SLOT * /A19 * /A1B * /A9 * /RESET 

OACK SLOT * /A19 * /A1B * A9 * /RESET 

ROMCS SLOT * A19 * AlB * /RESET 

RAMCS SUPER * /RESET 

INTENB SLOT * A19 * /A1B * A9 * /RESET 

+ INTENB * /SLOT * /RESET 

+ INTENB * /A19 * /RESET 

+ INTENB * AlB * /RESET 
+ INTENB * A9 * /RESET 

lOW SLOT * TM1L * /S2 

+ SUPER * TM1L * /S2 

.notes 

This PAL actually generates the selects and R/W strobes to the 
chips on the SCSI test card. stNUBUS1 does the basic slot decoding 
and cycle timing. We simply drive the signals based upon its 
information. 

Note that we create our own latch for INTENB. S2 behaves like 
the strobe signal; the addresses will stay around after S2 goes away • 

. end 

418 Designing Cards and Drivers for the Macintosh Family 



Glossary 

acknowledge cycle: Last cycle of a NuBus 
transaction during which / ACK is asserted by a 
slave responding to a master. Often shortened to 
ack cycle. 

active: See asserted. 

address: A number used to identify a location in 
the computer's address space. Some locations 
are allocated to memory, others to I/O devices. 

address bus: The path along which the 
addresses of specific memory locations are 
transmitted. The width of the path determines 
how many addresses can be accessed 
(addressed) directly by the computer. For an n­
bit-wide address bus, the computer can make 
use of 2n locations in memory where information 
can be stored. In the Macintosh II, for example, 
the 32-bit address bus permits the processor to 
access 232 (4.3 billion) addresses. This is more 
than 250 times as many addresses as computers 
with a 24-bit bus (or the Macintosh II in 24-bit 
mode) can access (224 = 16 million). 

address mapping: The assignment of portions . 
of the address space of the computer to specific 
devices. 

address space: A range of accessible memory. 
See also address mapping. 

aliasing: The act of gaining access to a memory 
location from several different addresses. This 
usually occurs in computing systems when an 
incomplete address decoding mechanism is 
used. For example, on the map of physical 
addresses for the Macintosh II, there are 1024 
(210) different addresses (aliases) that access the 
same ROM location. 

AMU (Address Management Unit): The Apple 
custom integrated circuit in the Macintosh II 
that performs 24-to-32-bit address mapping. It 
can be replaced by the optional Paged Memory 
Management Unit (PMMU). 

arbitration contest: The mechanism used to 
choose which of two or more cards requesting 
control of the bus will become the next bus 
master. For the Macintosh II family, the 
arbitration contest requires two bus periods (at 
100 Jls each). 

asserted: Indicat~s that a signal is active or true, 
independent of whether that logical condition is 
represented by a high or low voltage. 

assertion edge: The clock edge on which 
assertion of synchronous signals takes place. 

attention cycle: The name given to a particular 
kind of start cycle, one in which both /START 
and / ACK are asserted. There are two types: 
attention-resource-Iock and attention-null 
cycles. 

attention null: An attention cycle that indicates 
the new owner of the bus does not wish to 
transfer data and reinstate the bus for 
arbitration. It also indicates the end of a data 
transfer using a locked resource. 

attention-resource-lock: An attention cycle 
that initiates a sequence of locked transactions 
that constitute a locked tenure of the current bus 
master. During this tenure, cards with lockable 
multiport resources lock them against access by 
local processors other than the NuBus master. 

419 



block transfer: A transaction that consists of a 
start cycle, multiple data cycles from or to 
sequential address locations, and an 
acknowledge cycle. The number of data cycles is 
controlled by the bus master and is 
communicated during the start cycle. 

board: A printed circuit board that is a built-in 
(permanent) part of the computer. Compare 
expansion card. 

Board sResource: A unique sResource in an 
expansion card's declaration ROM that describes 
the card so that the Slot Manager can identify it. 
An expansion card can have only one Board 
sResource. The Board sResource entries include 
the card's identification number, vendor 
information, board flags, initialization code, 
and so on. 

bus: A path along which information is 
transmitted electronically within a computer. 
Buses connect short-distance networks of 
computer devices, such as processors, expansion 
cards, and physical RAM; information that travels 
along the bus is transmitted according to a set of 
rules known as a protocol. 

bus driver: The power output transistor and 
circuitry used to drive the input impedance of 
the bus, including the parallel loads of cards 
connected to the bus. 

bus interface logic: The electronics connecting 
the microprocessor bus to the NuBus in the 
Macintosh II family. 

bus locking: A mechanism for providing 
continuing tenure (bus ownership) by a single 
card. The extended tenure may include multiple 
transactions or attention cycles. One type of 
attention cycle is called a resource lock, therefore 
a bus lock mayor may not include a resource 
lock. 

bus specification: Describes the physical 
characteristics of the bus and the protocol that 
governs the use of the bus. For example, the 
NuBus specification defines the clock rate of 
the bus, the width of the bus (in bits), the 
maximum rate of information transfer, and so 
on. It also defines the protocol, or the set of 
commands used to transfer information among 
the devices using the bus. 

busy: The bus is busy between start and 
acknowledge cycles. 

byte lane: Any of four bytes that make up the 
NuBus data width. NuBus expansion cards may 
use any or all of the byte lanes to communicate 
with each other or with the Macintosh II-family 
computer. 

byte swapping: The process. by which the order 
of bytes in each 4-byte NuBus word is changed 
to conform to the byte order of certain 
processors. 

card: See expansion card. 

card-generic driver: A driver that is designed to 
work with a variety of plug-in cards. 

card-specific driver: A driver that is designed to 
work with a single model of plug-in card. 

color look-up table (CLUT): A device that 
converts pixel data from a video frame buffer 
into red, green, and blue video signals. The CLUT 
in the Macintosh II Video Card supports up to 
256 simultaneous colors from a possible 16.8 
million colors. 

configuration ROM: See declaration ROM. 

420 Designing Cards and Drivers for the Macintosh Family 



coprocessor: An auxiliary processor that is 
designed to relieve the demand on the main 
processor by performing a few specific tasks. 

Generally, closely coupled coprocessors such as 
the MC68881 in the Macintosh II or the MC68882 
in the Macintosh IIx and the Macintosh Hcx 
handle tasks that could be performed by the 
main processor running appropriate software, 
but which would be performed much more slowly 
that way. Coprocessor architectures usually favor 
a certain set of operations, like floating point 
calculations for graphics instruction looping, and 
therefore they can optimize the speed at which 
such operations are processed. 

A microprocessor on an expansion card can also 
function as a coprocessor to perform tasks such 
as running alternative operating systems. 

CPU (central processing unit): See 
processor. 

cycle: For a Macintosh computer with the NuBus 
interface: one period of the NuBus clock, 
nominally 100 ns in duration and beginning at the 
rising edge. For a Macintosh computer with the 
processor-direct slot interface: one period of the 
processor-bus clock. 

data bus: The path along which general 
information is transmitted within the computer. 
The wider the data bus, the more information 
can be transmitted at once. The Macintosh 
computers that use the Mc68000 processor have 
16-bit data buses. The Macintosh computers that 
use the Mc68020 and MC68030 processors have 
32-bit data buses. Thus, 32 bits of information 
can be transferred at a time, so that information 
is transferred twice as fast as in 16-bit computers 
(assuming equal system clock rates). 

data caching: A feature of the MC68030 
microprocessor that allows frequently used data 
to be stored in a special buffer area (cache) and 
accessed by logical addresses. Data caching . 
improves overall performance by increasing the 
availability of the bus to external devices (in 
systems with more than one bus master, such as a 
processor and a DMA device) without degrading 
the performance of the microprocessor. 

data cycle: Any cycle in which data is known to 
be valid and acknowledged. It includes 
acknowledge cycles as well as intermediate data 
cycles within a block transfer. 

declaration ROM: A ROM on a NuBus expansion 
card that contains information that identifies 
the card and its functions, and may also contain 
code or other data. Proper configuration of the 
declaration ROM firmware will allow the card to 
communicate with the computer through the Slot 
Manager routines. 

DIP switches: Multiple single or double-throw 
switches in a dual in-line package. 

direct device: A video card whose pixel value, 
when placed in the frame buffer controller, 
directly implies the color on the display screen 
without indexing a color look-up table (CLUT). It 
will support screen depths of 16 and 32 bits per 
pixel. Compare indexed device. 

DMA: Direct memory access. A technique for 
transferring large amounts of data into or out of 
memory without using the CPU. 

drive: The action of a card when it causes a bus 
signal line to be in a known, determinate state. 

driver-supported cards: Cards that are 
accessed indirectly via a software driver. 

driving edge: The rising edge (low to high) of 
the central system clock (/CLK). 

EDisks: Electronic disks that appear to the user 
to be very fast, silent disk drives but use ROM or 
RAM for their storage media rather than floppy or 
hard disks. The ROM expansion card in a 
Macintosh Portable can function as one or more 
EDisks. 

Glossary 421 



expansion card: A removable printed circuit 
card that plugs into a connector (slot) in the 
computer's expansion interface and allows 
access to the computer's microprocessor bus. 
For example, the NuBus expansion interface of a 
Macintosh II accommodates up to six NuBus 
expansion cards. The processor-direct slot 
expansion interface of a Macintosh SE/30 or a 
Macintosh SE accommodates only one PDS 
expansion card. Expansion cards are also referred 
to as slot cards or simply as cards. Compare 
board. 

firmware: Programs permanently stored in ROM. 

format block: An element in a declaration ROM's 
firmware structure that provides a standard entry 
point for other elements in the structures. The 
format block allows the Slot Manager to find· the 
declaration ROM and validate it. 

FPU: Abbreviation for floating point unit. 

frame buffer: A buffer memory that stores all the 
picture elements (pixels) of a frame of video 
information. 

Frame Buffer Controller (FBC): A register­
controlled CMOS gate array used to generate and 
control video data and timing signals. 

functional sResource: An sResource in an 
expansion card's declaration ROM that desribes 
a specific function of the card, for example, a 
video sResource. 

gamma correction: A function performed by 
the video driver of each display device 
configured in the system that linearizes the 
differences in color (or gray-scale) response. This 
is required because applications cannot 
recognize different display screens, and cannot 
perform screen-by-screen corrections. 

gamma table: A table that compensates for 
nonlinearities in a monitor's color response. 

geographical addressing: A method of 
identifying the physical location of a card on the 
NuBus by having four pins of each connector 
electrically wired to provide a one-of-sixteen 
code to each slot connector ($9 through $E for 
the Macintosh II, Macintosh Hx, and Macintosh 
Hfx; $9 through $B for the Macintosh Hcx; and 
$C through $E for the Macintosh IIci). A card 
inserted into a slot connector then has the code 
for that slot applied to its IID3-/IDO lines, 
without any manual setting of configuration 
switches as required in some bus systems. 

GLU: Acronym for general logic unit, a class of 
custom integrated circuits used as interfaces 
between different parts of the computer. 

halfword: An element of information half the 
length of a 32-bit NuBus or microprocessor word, 
therefore, 16 bits long. A halfword for a 16-bit 
microprocessor word (from an Mc68000 
microprocessor, for example) is 8 bits long. 

heap: The area of memory in which space is 
dynamically allocated and released on demand 
using the Memory Manager. 

high: For an active-low signal, synonymous with 
inactive, deasserted, unasserted, false, and 
released. 

inactive: For an active-low signal, synonymous 
with high, deasserted, unasserted, false, and 
released. 

indexed device: A video card whose frame 
buffer controller output indexes a color look-up 
table (CLUT) to define a potential color. 
Indexed video devices support screen depths of 
1, 2, 4, and 8 bits per pixel. Compare direct 
device. 
intelligent card: A card containing one or more 
processors that can work independently from the 
main processor of the computer. Intelligent 
cards can serve as a medium for introducing new 
processor technologies into a system, but most 
personal computer bus architectures require too 
much support from the main processor for this to 
happen. NuBus, however, is a notable exception, 
because it was designed specifically to support 
multiple processors, and hence, intelligent cards. 

422 Designing Cards and Drivers for the Macintosh Family 



longword: As used in Part II of this book, a 
longword consists of 32 bits (two 16-bit words). 

low: For an active-low signal, synonymous with 
asserted. 

main logic board: The primary circuit board in a 
computer that holds the CPU, RAM, ROM, and 
other integrated circuits that perform the built-in 
logic functions of the computer. Compare 
expansion card. 

master: A card that initiates the addressing of 
another card or the processor on the main logic 
board. The card addressed is at that time acting 
as a slave. 

modulo: The integer N measured modulo 4 will 
be the remainder (0, 1, 2, or 3) from division of N 
by 4. 

multiplex: To encode information so that fewer 
wires are needed to transmit it, and the same 
cable wires and connector pins can transmit 
different kinds of information. The NuBus 
multiplexes information so that 32-bit address 
and data communication can be performed using 
a single 96-pin connector and still have adequate 
pins available for other necessary functions. 
Specifically, 32 pins are used to transmit a 
memory address and the same 32 pins (at a 
different time) to transmit data. 

NuBus: A 32-bit-wide synchronous, multislot 
expansion bus used for interfacing expansion 
cards to the Macintosh II family of computers. 
See also NuBus expansion slot and bus 
interface logic. 

NuBus expansion slot: A connector on the 
NuBus in a Macintosh II-family computer, into 
which an expansion card can be installed. The 
Macintosh II, Macintosh IIx, and Macintosh IIfx 
have six NuBus expansion slots; the Macintosh 
IIcx and the Macintosh IIci have three. 

null cycle: A type of attention cycle that 
reinitiates bus arbitration. 

open collector: A bus driver that drives a line 
low or doesn't drive it at all. 

Paged Memory Management Unit (PMMU): 
The Motorola Mc68851 chip, used in the 
Macintosh II computer to perform logical-to­
physical address translation and paged memory 
management for virtual-memory operating 
systems such as AlUX. The PMMU can be installed 
as an option, replacing the AMU. 

PAL: An integrated circuit implementing 
programmable array logic. 

parked: A NuBus master that has released /RQST 
is said to be parked on the bus until another card 
asserts /RQST. 

PDS: See processor-direct slot. 

peer cards: Cards that are designed to execute 
code that is not specialized to the card; for 
example, two cards that are executing 
cooperating processes to solve a problem. 

period: The 100 ns duration of the NuBus /CLK 
signal consisting of a 75 ns high state and a 25 ns 
low state. 

PIO (programmed input/output): An 
interfacing technique where the processor 
directly accesses registers assigned to I/O 
devices by executing processor instructions. 
Memory mapped I/O port registers are 
addressed as memory locations. 

primary initialization: A special code in an 
expansion card's declaration ROM that when 
executed performs key, one-time initialization 
of the card. 

processor: Same as CPU, where the term central 
processing unit may not be literally applicable. 
The processor contains an arithmetic and logic 
unit (ALU) and system control hardware. In 
Macintosh systems containing expansion cards, 
there may be two or more processors (or CPUs), 
with none being more central in function than the 
others; these are multiprocessor systems. 

processor-direct slot (PDS): The expansion 
interface architecture used on compact, or small­
footprint, Macintosh computers such as the 
Macintosh SE and the Macintosh SE/30. It has a 
single connector that allows an expansion card 
direct access to all of the microprocessor Signals. 

Glossary 423 



pseudo-slot design: The recommended 
method of designing a 68030 Direct Slot 
expansion card to occupy an address location 
that corresponds to the 32-bit physical address 
ranges used by NuBus expansion cards in 
Macintosh II-family computers. 

QuickDraw: The part of the Macintosh Toolbox 
that performs all graphic operations on the 
screen. 

release: To do the opposite of drive to a signal 
line. 

released: For an active-low signal, synonymous 
with high, inactive, deasserted, unasserted, and 
false. 

resource locking: The action of a local 
processor operating in a multiprocessor 
environment to lock the bus from NuBus 
intrusion while using a resource that is accessible 
by both the local processor and the NuBus. 

sampling edge: The falling edge (high to low) of 
the central system clock. 

scaled pixel clock period: A normalizing 
parameter used in the description of video card 
operation. One scaled pixel clock period equals 
16 times the ratio of pixel clock period to the 
pixel depth (in bits per pixel). 

SCSI (SmaIl Computer System Interface): An 
industry standard parallel bus that provides a 
consistent method of connecting computers and 
peripherals. 

SCSI devices: Devices, such as hard disks and 
tape backup units, that use the Small Computer 
Systems Interface. 

68000 Direct Slot: The 96-pin expansion 
interface connector used on Macintosh SE and 
Macintosh Portable computers to allow an 
expansion card direct access to the Mc68000 
microprocessor. The connectors are physically 
identical but are electrically different. See also 
processor-direct slot (PDS). 

68030 Direct Slot: The 120-pin expansion 
interface connector used on Macintosh SE/30 
and Macintosh IIfx computers to allow an 
expansion card direct access to the MC68030 
microprocessor. The connectors are physically 
identical but electrically different. See also 
processor-direct slot (PDS). 

slave: A card that responds to being addressed 
by another card acting as a master. The 
Macintosh II-family main logic board may be 
either master or slave. Some cards may be slave­
only in function because they lack the circuitry 
to arbitrate in a bus ownership contest. 

sleep state: A period of time during which the 
Macintosh Portable is not in use and most of the 
circuits are powered down, the screen is blank, 
and the hard disk stops spinning. This state 
extends battery life by reducing power 
consumption to almost nothing. 

slot: (1) A connector attached to the processor 
bus or the NuBus. A card may be inserted into 
any of the physical slots when more than one is 
provided (the Macintosh II family provides from 
three to six slots). (2) A region in address space 
(standard slot space) allocated to a physical 
slot. 

slot card: See expansion card. 

slot ID: The hex number corresponding to each 
card slot. For the Macintosh II family, each slot 
ID is established by the main logic board of the 
computer and communicated to the card 
through the /IDx lines. 

Slot Manager: A set of Macintosh II-family 
ROM routines that communicate with an 
expansion card's declaration ROM and allow an 
application to gain access to declaration ROM. 

slot space: The address space assigned to 
NuBus cards in Macintosh II-family computers 
and to PDS expansion cards that emulate NuBus 
cards in Macintosh SE/30 and Macintosh nfx 
computers. See also standard slot space, super 
slot space. 

424 Designing Cards and Drivers for the Macintosh Family 



sResource: An element in the firmware structure 
of an expansion card's declaration ROM that 
defines a function or capability of the card. The 
small s indicates a slot resource as opposed to a 
standard Macintosh resource. There is one 
functional sResource for each function a card can 
perform, but only one Board sResource that 
identifies the card. 

sResource directory: An element in a 
declaration ROM's firmware structure that lists all 
the sResources and provides an offset to each 
one. 

sRsrcType: A required entry in every sResource, 
whose fields are used by the Slot Manager to 
identify the expansion card and the function it 
performs. An sRsrcType entry contains four 
major fields (category, type, driver hardware, 
and driver software) that are structured in 
hierarchical order. 

stack: The area of memory in which space is 
allocated and released in LIFO Oast-in-first-ouO 
order. 

standard slot space: The upper one sixteenth 
of the total address space. These addresses are in 
the form $Fsxx xxxx where F, s, and x are hex 
digits of 4 bits each. This address space is 
geographically divided among the NuBus slots 
according to slot ID number. Compare super 
slot space. 

start cycle: The first period of a transaction 
during which /START is asserted. The start cycle 
is one bus clock period long; the address and 
transfer type are valid during this cycle. 

state machine: A block of logic, implemented 
in hardware or software, that can assume a finite 
number of values or states, and that makes a 
translation from one state to another in a set 
sequence in response to specific inputs. For each 
state, a state machine generates a specific 
output, or asserts or deasserts a specific signal. 

super slot space: The large portion of memory 
in the range $9000 0000 through $EFFF FFFF. 
NuBus addresses of the form $sxxx xxxx (that is, 
$sOOO 0000 through $sFFF FFFF) address the super 
slot space that belongs to the card in slot s, 
where s is an ID digit in the range $9 through $E. 
Compare standard slot space. 

tenure: A time period of unbroken bus 
ownership by a single master. A master may lock 
the bus and, during one tenure, perform several 
transactions. 

32-bit QuickDraw: An extension of the previous 
8-bit color model that supports up to 32 bits per 
pixel on certain Macintosh models and allows 
these models to process and display full-color 
documents, images, and visual effects with 
startling color clarity. 

three-state: A bus driver that drives a line low or 
high or doesn't drive it at all. 

timeout period: The time period that a bus 
master waits for a non-responding slave to 
respond before generating a bus timeout error 
code. 

transaction: A complete NuBus operation such 
as read or write. In the Macintosh II family, a 
transaction is made up of an address cycle, wait 
cycles as required by the responding card, and a 
data cycle. Address cycles are one clock period 
long and convey address and command 
information. Data cycles are also one clock 
period long and convey data and 
acknowledgement information. 

transfer mode: One of the 16 modes or 
encodings that specify which part of the 
addressed 32-bit word is to be transferred. 

unasserted: For an active-low signal, 
synonymous with high, deasserted, false, 
inactive, and released. 

wired-OR: The physical connection of two or 
more input signal wires to provide a logical OR 
operation. If one or more of the input signals are 
true, the output is true. The output is false only 
when all of the input signals are false. 

Glossary 425 



word: As used in Part I df this book, a NuB us 
word is 32 bits long, a NuBus halfword, 16 bits. 
As used in Part II of this book, an Mc68000 word 
is 16 bits long, a halfword, 8 bits. An MC68030 
word is 32 bits long, a halfword, 16 bits. 

426 Designing Cards and Drivers for the Macintosh Family 



Index 

32-bit QUickDraw 130 
68000 Direct Slot 4,257. See also 

Macintosh Portable 68000 
Direct Slot; Macintosh SE 
68000 Direct Slot 

96-pin connector 321 
68030 Direct Slot 5, 258. See also 

Macintosh IIfx 68030 Direct 
Slot; Macintosh SE/30 
68030 Direct Slot 

A 

120-pin connector 334 
electrical description for 

Macintosh SE/30 
285-291 

electrical description for 
Macintosh IIfx 292-299 

electrical design guide 
283-316 

AO-A31 300 
AI-A23 268 
accessing I/O devices from an 

expansion card 270 
accessing Macintosh SE 

electrqnics from an 
expansion card 270 

accessing RAM from an 
expansion card 271 

/ACK 35 
acknowledge cycles 26,51 

bus timeout 51 
bus transfer complete 51 
defmed 37 
Error 51 
try again later 51 

active-low' signal 37 
/AD31-/ADO 35 
address allocations, Macintosh II 

family 90 

address/data bus, Macintosh II 
family 24 

address/data signals 35 
addressing design philosophy, 

NuBus 11 
address mapping, NuBus to 

Macintosh II family 90 
address space 

Macintosh SE 275-277 
NuBus 88-89 

address translations, 24-bit to 
32-bit 90 

aliasing 28 
Apple-defmed sResource entries 

118 
application-specific expansion 

strategy 6 
/ ARB3-/ ARBO 35, 62 
arbitration, NuBus 61-69 

contests 37,65 
logic mechanism 63 
overview 62 
signals 62 
timing 65,66 

/AS 269,301 
asserted, defmed 37 
attention cycles . 

attention n~ll 52 
attention resource lock 52 
coding 51 
defmed 37,51 
implementation rules 52 

attention-resource-Iock cycle 68 

B 

/BERR 27,268,300 
/BG 268,300 
/BGACK 268, 300 
block data transfers, NuBus 53 
block read, NuBus 54 

timing 55 

block transfer errors, NuBus 57 
block write, Nu~us 56 
Board sResour~e 98, 125 
Board sResource ID numbers 

125 
Boardld 126 
/BR 268,301 
bus arbitration timing, 

NuBus 78-79 
Bus Error C/BERR) 27,268,300 
/BUSLOCK '302 
bus locking 37~67 
bus parking, NuBus 69 
~us Request (/RQST) 35, 62 
byte lanes, NuBus 93-94, 113 
byte swapping, NuBus 93 

C 

C8M 268 
c16M 268,301 
cache card, Macintosh IIci 

electrical design guidelines 
392 

mechanical design 
guidelines 393-394 

power budget 395 
cache connector, Macintosh lId 

~lectrical description 387 
pinout 388 
signal descriptions 389 
signal loading and driving 390 

cach~ memory' expansion, 
Macmtosh IIci 383 

address space ~86 
cache connector 387 
control trap 386 
how the cache works 385 
overview 384 

427 



cards, NuBus 
component placement 82 
defmed 37 
description 82 
slot ID signals 43 
spacing 82 
thickness 82 

card-specific driver, NuBus 155 
ICBACK 300 
ICIOUT 300 
ICLK 35,42 
Close routine 167 
color look-up table (CLUn 130, 

236 
compliance categories, NuBus 59 

driver supported cards 60 
peer cards 60 

connectors 
68000 Direct Slot 321-325 
68030 Direct Slot 334-335 
NuBus 83 

connector pin assignments 
Macintosh Portable 68000 

Direct Slot 280 
Macintosh SE 68000 Direct Slot 

264 
Macintosh SE/30 68030 Direct 

Slot 286 
Macintosh IIfx 68030 Direct 

Slot 293 
NuBus 74-75 

control routines 168-172 
control signals, NuBus 35, 45 
conversion addresses, 24-to-32-

bit logical address 
translation 307 

CPUCLK 303 
CRC basic algorithm 114 
CRCfield 114 
cycle (NuBus), defmed 38 

D 

DO-D15 269 
DO-D31 300 
data caching, Macintosh II-family 

computers 59 
data cycle, defmed 38 

data transfer, NuBus 41-60 
signals 45 
specifications 46 

deasserted, defmed 38 
declaration ROM 95-108, 156 

data types 106 
design objectives 104, 105 
firmware structure 108 

defmitions of NuBus interface 
37-40 

design considerations 
Macintosh IIfx expansion 

cards 312 
Macintosh Portable ROM card 

361 
Macintosh SEl30 expansion 

cards 310 
design guides, electrical 

NuBus cards 71-75 
68000 Direct Slot expansion 

cards 261-282 
68030 Direct Slot expansion 

cards 283-316 
design guides, physical 

Macintosh PDS expansion 
cards 317-341 

Macintosh Portable modem 
card 376 

Macintosh Portable RAM card 
371 

Macintosh Portable ROM 
card 359,360 

NuBus cards 81-85 
device VO 

Macintosh PDS computers 
256 

Macintosh II family 22 
direct mode 130 
DirectoryOffset value 115 
direct pixel mode 168 
direct video devices 130, 168 
disk controller, Macintosh SE 

block diagram 345 
controller logic 347 
interface logic 347 
overview 344 
system configuration 344 

428 Designing Cards and Drivers for the Macintosh Family 

disk controller, NuBus 
block diagram 223 
interface logic 225 
memory map and 

declaration 
ROM 228 

on-card DMA operations 227 
programmed liD operations 

226 
RAM access signals 226 
system configuration 223 

drive, defmed 38 
drivers, NuBus card 

calling a driver 159-160 
generic 155 
installing a driver at startup 

159 
specific 154 

driving edge, defined 38 
IDS 301 
IDSACKO-/DSACK1 300 

E 

E 268 
ECLK 300 
EDisk driver 362 

checksumming 363 
header format 364 

EDisks (electronic disks) 362-367 
electrical design guides 

NuBus cards 71-79 
68000 Direct Slot expansion 

cards 261-282 
68030 Direct Slot expansion 

cards 283-316 
electrical specifications 

Macintosh Portable 68000 
Direct Slot 279-280 

Macintosh SE 68000 Direct 
Slot 262-267 

Macintosh SE/30 68030 Direct 
Slot 285-291 

Macintosh IIfx 68030 Direct 
Slot 292-299 

NuBus signals 72 
EMI guidelines 398-400 
expansion connectors. See 

connectors 



expansion strategy 1-7 
application-specific 6 
NuBus 3 
processor-direct slot 3-6 

/EXT.DTK 268 
external connections, Macintosh 

PDS computers 337 

F 

false, defmed 38 
FCO-FC2 268, 300 
feature summary 

Macintosh II-family 
computers 14 

Macintosh PDS computers 
248-249,259 

firmware structure 108-110 
Macintosh EtherTalk Interface 

Card 110 
Macintosh II Video Card 

108-109 
format block 97, 111, 112 
Format field 114 
functional signal description 

Mc68000 signals 268-269 
Mc68030 signals 299-304 
Mc68HCOOO signals 281 

G 

gamma correction 174-178 
gamffia table 170, 177 
gammaTbl data structure 177 

H 

halfword, NuBus 60 
/HALT 268,301 
hardware architecture 

Macintosh PDS computers 
250-256 

Macintosh II family 16-25 
hardware overview 

Macintosh PDS computers 
247-259 

Macintosh II family 13-29 
heat dissipation 

guidelines 85, 400-401 
NuBus cards 85, 400 
processor-direct slot cards 401 

high, defmed 38 

I 

icons 131, 132 
black and white 132 
color 132 

/ID3-/IDO 35 
identifying direct devices 130 
identifying 32-bit addressable 

configurations 131 
inactive, defined 38 
indexed pixel mode 168 
indexed video devices 130, 168 
interrupt handling 

Macintosh SE 68000 Direct 
Slot 276 

Macintosh SE/30 68030 Direct 
Slot 309 

Macintosh IIfx 68030 Direct 
Slot 313 

interrupt operations, NuBus 53 
interrupt queue routines 

sIntInstall 162 
sIntRemove 163 

/IPLO-/IPL2 268, 300 
/IRQ1-/IRQ3 303 

L 

/LDS 269 
Length field 114 
locking, NuBus 65 
low, defmed 38 

M 

Macintosh Portable 
major features 248-249 
modem card 372-381 
modem slot 378 
power control 377-378 
RAM expansion 367-371 
ROM expansion 356-367 

Macintosh Portable 68000 Direct 
Slot 257, 278 

expansion connector 279 
expansion connector 

pinout 280 
power budget 282 

Macintosh SE 
address space 275, 277 
disk controller design 

example 343-352 
major features 248-249 

Macintosh SE 68000 Direct 
Slot 257 

connector pinout 264 
power budget 278 
signals, loading or driving 

capability 265 
Macintosh SE/30 

32-bit physical address 
spaces 306 

major features 248-249 
PDS expansion card design 

hints 310 
pseudo-slot expansion card 

design guidelines 307 
Macintosh SE/30 68030 Direct 

Slot 258 
connector pinout 286 
connector signals 287 
electrical description 285-291 
interrupt handling 309 
machine-specific signals 302 
power consumption 

guidelines 311 
Signals, loading and driving 

capabilities 290-291 
Macintosh IIei, cache memory 

expansion 383 
Macintosh IIfx 68030 Direct Slot 

bus master priority 
scheme 313 

cache memory use 315 
card design hints 312 
connector pinout 293 
connector signals 294 
effect of clock speeds 314 
electrical description 292-299 
interrupt handling 313 
memory cycle 

termination 312 
power consumption 

guidelines 316 
pseudo-slot design 

guidelines 312 
signals, loading and driving 

capability 297 

Index 429 



Macintosh II-family computers. 
See also NuBus 

address allocations 90 
address/data bus 

architecture 24 
Macintosh II Video Card 229-244 

access to video RAM 
space 235 

color look-up table 
(CLUT) 236 

declaration ROM 239-241 
external signal connector 244 
ftrmware interfaces 241 
frame buffer controller 232 
functional operation 231 
horizontal and vertical scan 

timing 236 
overview 230 
processor-to-video card 

interface 232 
timing generation 232 
video connector 243 
video RAM 233 

major features 
Macintosh computers with 

PDS 248 
Macintosh II-family 

computers 14 
MajorBaseOS 124 
MajorLength 124 
master, defmed 38 
Mc68000 signals, functional 

description 268 
Mc68020 microprocessor 16 
Mc68030 microprocessor 16 
MC68030 signals, functional 

description 299-304 
Mc68HCOO signals, functional 

description 281 
memory expansion, Macintosh 

Portable 355-371 
MinorBaseOS 123 
MinorLength 124 
modem card, Macintosh 

Portable 372-381 
/MODEM.PWR signal 377 

N 

/NMRQ 35,43 
nonaligned NuBus reads and 

writes 58 
NuBus 

address space 88-89 
address translations, 24-bit to 

32-bit 90 
Address/Data signals 45 
advantages and 

disadvantages 3 
arbitration 61-69 
bit and byte 

structure 92-93, 94 
block data transfer 53-55 
bus parity signals 35,46 
byte lanes 93, 113 
byte swapping 93 
card slot ID signals 43 
compliance categories 59 
connector 83 
connector pin assignments 75 
control signals 35, 45 
data transfer signals 45 
data transfer specifications 46 
defmitions 37-40 
design examples 207-228 
design objectives 32 
electrical requirements 72 
elements 33 
expansion strategy 3 
features 32 
interface architecture 26 
licenSing 11 
line drive requirements and 

load allowances 73 
power budget 76 
power supply 

speciftcations 75 
read transactions timing 48 
signal line dependency 44 
signals 35, 72 
single data cycle 

transactions 47 
slot allocations 92 
timing 36, 77-79 
transfer status coding 51 
utility signals 42-43 
write transactions timing 49 

Designing Cards and Drivers for the Macintosh Family 

NuBus cards 
component placement 82 
driver design 153-178 
electrical design guide 72-79 
ftrmware 95-133 
heat dissipation guidelines 85 
memory access 87-94 
physical design guide 81-86 
spacing 82 
thickness 82 

NuBus halfword 60 
NuBus Test Card (NTC) 

byte swapping 210 
hardware organization 213 
master operation 216 
overview of operation 208 
programming model 208 
programming the NTC 211 
slave operation 216 

NuBus to processor-bus state 
machine 27 

/NUBUS 303 

o 
obtaining blank cards 

Macintosh SE 341 
Macintosh SE/30 341 
NuBus 86 

obtaining card ID and sRsrcType 
values from MacDTS 105 

open collector, deftned 38 
Open routine 167 
overview 

p 

Macintosh II-family 
computers 13-29 

Macintosh PDS 
computers 247-259 

parity signals, NuBus 35, 46 
parked, defmed 38 



PDS. See also Macintosh Portable 
68000 Direct Slot; 
Macintosh SE 68000 Direct 
Slot; Macintosh SE/30 
68030 Direct Slot; 
Macintosh IIfx 68030 
Direct Slot 

advantages and 
disadvantages 3-4 

expansion strategy 3-4 
interface 256-259 

PDS signals. See also 68000 Direct 
Slot; 68030 Direct Slot 

Macintosh Portable 68000 
Direct Slot 281 

Macintosh SE 68000 Direct 
Slot 268-269 

Macintosh SE/30 machine­
specific 302 

Macintosh IIfx machine­
specific 303, 304 

68030 Direct Slot 
common 300 

period, defined 38 
/PFW 35,43 

interaction with power supply 
74 

physical guidelines 
Macintosh IIfx expansion 

cards 336 
Macintosh Portable expansion 

cards 324 
Macintosh SE expansion 

cards 318-321 
Macintosh SE/30 expansion 

cards 327-333 
NuBus cards 81-86 

/PMCYC 269 
PollRoutine 163 
power budget 

Macintosh Portable 68000 
Direct Slot 282 

Macintosh SE 68000 Direct 
Slot 278 

Macintosh SE/30 Direct 
Slot 311 

Macintosh II-family NuBus 
cards 76 

Macintosh IIfx 68030 Direct 
Slot 316 

power supply specifications, 
NuBus 75 

power/ground signals 35 
PRAMInitData 127 
PrimaryInit 127 
processor-bus to NuBus state 

machine 27 
processor-direct slot. See PDS 
processor-direct slot interface 

256-259 
product safety 402-403 
prototyping, obtaining blank 

cards for 
Macintosh SE 341 
Macintosh SE/30 341 
NuBus 86 

pseudo-slot design 5,302, 
307-308,312 

PWROFF 302 

Q 
QuickDraw 164 

R 

32-bit 130 
interaction with the 

declaration ROM 103 
interaction with the Slot 

Manager 103 

R/W 269 
RAM 

Macintosh PDS 
computers 254 

Macintosh II family 22 
RAM expansion, Macintosh 

Portable 367-371 
address space 367 
card design guide 371 
connector pinout 369 
connector signals 370 
expansion card 368 

read transactions, NuBus 48 
released, defined 39 
Reserved field 113 
/RESET 35,42,269,300 
Resolution 133 
resource locking, NuBus 65,68 
RevisionLevel field 114 
/RMC 301 

ROM 
Macintosh PDS 

computers 255 
Macintosh II family 22 

ROM expansion, Macintosh 
Portable 356-367 

address space 356 
card design guide 359 
connector pinout 358 
connector signals 359 
design considerations 361 
expansion card 358 

/RQST 35,62 
RsrcDrvrDir 120 

s 
sample code, typical NuBus 

video card 133 
sampling edge, defined 39 
SCSI-NuBus Test Card 217-222 

hardware overview 217 
PAL descriptions 222 
software overview 217 

sDriver record 157 
SecondaryInit 129 
sGammaDir 125 
simple disk controller, 

NuBus 222-228 
sIntInstall 162 
sIntRemove 162 
68000 Direct Slot 4, 257. See also 

Macintosh Portable 68000 
Direct Slot; Macintosh SE 
68000 Direct Slot 

96-pin connector 321 
68030 Direct Slot 5, 258. See also 

Macintosh IIfx 68030 Direct 
Slot; Macintosh SE/30 
68030 Direct Slot 

120-pin connector 334 
electrical description for 

Macintosh SE/30 
285-291 

electrical description for 
Macintosh IIfx 292-299 

electrical design guide 
283-316 

SIZO-SIZ1 300 
slave, defined 39 

Index 431 



slot allocations, NuBus 92 
slot device interrupts 161-163 
slot ID 

defmed 39 
signals 35 

Slot Manager 
interaction with declaration 

ROM 96-99 
interaction with 

QuickDraw 103-104 
and video drivers 164 
in startup procedure 111-112 

slots, NuBus 
as address space 44 
defmed 39 

ISP 35 
ISPV 35 
sResource directory 97, 115 
sResources 97-105, 116-129, 155 

Board sResource 98 
defmed 97 
entries 118-125 
functional sResource 98 
implementation 99 
use at startup 157 

sRsrcBootRec 122 
sRsrcCicn 124 
sRsrcFlags 123 
sRsrcHWDevId 123 
sRsrcIcl4 124 
sRsrcIcl8 124 
sRsrcIcon 120, 131 
sRsrcLoadRec 121 
sRsrcName 120 
sRsrcType 99,119 

equate values 102 
fields 100, 102 
format 99 

sRsrcVidNames 129 
standard slot space, NuBus 88 

as address space 44 
defmed 39 

ISTART 26, 35, 62 
start cycle, defmed 39 
status routines 172-174 
ISTERM 300 
STimeOut 128 
super slot space, NuBus 88 

as address space 44 
defmed 39 

T 
tenure, defmed 40 
TestPattern field 113 
third-party design aides 

Macintosh PDS 
computers 341 

NuBus 86 
32-bit QuickDraw 130 
three-state, defmed 40 
timing 

Macintosh Portable modem 
card 377 

Macintosh SE accesses to 
RAM 271-275 

Macintosh II Video 
Card 236-238 

NuBus arbitration 78-79 
NuBus block read 54 
NuBus block write 56 
NuBus utility and data 

transfer 77 
ITMO 35 
ITMOA-/TM1A -503 
ITM1 35 
transaction, defined 40 
transfer mode encoding, 

NuBus 47 
true, defmed 40 

U 

IUDS 269 
unasserted, defmed 40 
utility signals, NuBus 35, 42-43 

v 
VendorInfo 128 
video card name 133 
video cards. See also Macintosh II 

Video Card 
additional firmware 

requirements 130-133 
sample code 133-151 

video devices 
direct 130 
indexed 130 

432 Designing Cards and Drivers for the Macintosh Family 

video driver routines 
Close 166 
control 166 
Open 166 
status 166 

video drivers 163-178 
data structures 167 
declaration ROM 

information 164 
device record 165 
example code 178 
parameter IDs 164 
routines 166-174 

video mode name directory 133 
video sResource 163 
IVMA 268 
!VPA 268 

w 
word, defmed 40 
write transactions, NuBus 49 



Foldouts 

433 



0 

PIN A-IlLOGIC BOARD 
INTERFACE CONNECTOR I 

~ 
r-
~ 
~ 
:t 
:t 

lJ1 
1O 

X 
~ 

'(n' 
(jJ 

~ 
~ 
r-
r-
lJ1 
r-

STANDARD (APPLEI DB-IS 
LOCATION 

';--i--98.32 [3.871] 

Il!>-~--- 55.30 [2. 177] 

--11-+------ 38. 66 [I .522 J cr. C06N~JtTI05R 

1~·!i::r----22.00 [.866] 

o 
12X) ¢ 3.17 [.125J 

~---------------322.30----------------------------------------~ 

[12.689J 
REF 

ILONG VERSION) 

~--------------------296.75--------------------------------~ 

'(n' 'ai' 
~ ~ 

[11.683J 
REF 

ISTANDARD VERSIONI 

~--------------197.84----------------~ 

[7. 789J 
REF 

ISHORT VERSION) 

• Foldout 1 

DETAIL A CROSS HATCHING INDICATES 
NO COMPONENTS THIS AREA 

~ 
~ 
~ 
~ 

(jJ :t 
(Jl (jJ 

SHORT VERSION 
ONLY 

(4XI 45· 

~'O~'~~~=~~=~~=====~**==========~====~~~~~::~~::~~b ~~---+----+I .. =,1&<0l----- ----- - "==..i(--t-87. 17 t3. 432j REF 

86.5 [3.4) J 82.25 [3.238JMAX 

Design guide for Macintosh II-family 
NuBus cards 

22.86 [.goon 
TYP 

OF BOARD TOPSIOE-m 

I 
101. 6 

[4.00J 15XI ¢ 
REF 

~ 

1r:7iE6;-:-.~20or:[33:.~0~oooJnl----+----tL+l---~/ I 87 25 ·0.30 87.25 ±0.13 

I n
~~F25 . 0 [3.435 ± .005J 

3. 38 ·00.05 I [ .. 0 12~ 
I 3.435 - :OOOJ 

[ 133 ... 002] I 
. - .000 1 \ I 

CONNECTOR AND FENCE DETAIL 
ON SIDE VIEW IS OMITTED 

FOR CLARITY 

TO PIN A-I 0 : I 
-5.08 ~'20~~~~~~~-~~~-~~-~~~~~~~~~~ 

EUROCARD TYPE C PIN A-I STANOARD AND I 
CONNECTOR ILOGIC BOARD SHOAT VEA5I] 96-POSTION INTERFACE ONLY 

'aY 'crY 'cD' o 0 [Tl 
o 0 IJl 

CD [Tl ! 
<D <D 

<D r- I"-
~ ()l ! ~ ~ 

0 0 r;t 
N N 

~ ~ 
~ I"-

~ 
ai N 
:t N 
r;t r;t 

AMP PIN 532505-1 

78.74 [3. 100J 

REF 

o 

PIN A-IlLOGIC 60ARO-/ 
INTERFACE CONNECTOR) 

riD' Ii. 'ai' 
0 CONNECTOR) w 0 c: II: c: 

'0' 
(J'1 

IJl 12X) 61.80 IJl N <D [2. 433J w 0 
()l 

:t ...'..J 
~ ...'..J I"-

0 
[Tl .( 0 

N ~ ~ 
r:' z 0 

~ u. 
... 
0 

I"- 0 ~ <D I-

m :t 

It. r-
~ 

(LOGIC BOARD 
INTERFACE CONNENTOR) 

75.79 [2.984J-J 

(2X) ¢ 3.50 

[.138J 

SEE DETAIL 

CAD GENERATED 

A 

12X) 1.0 +~.4 

[.04 : :~~J 
CPU LOGIC BOARD/PERIPHERAL BOARD SPACING 

13 BOARDS SHOWN FOR CLARITY) 

435 



NOTE: UNLESS OTHERWISE SPECIFIED 

NUBUS BOARDS WHICH CONFORM TO THE ANSI/IEEE STD 1196 SPECIFICATION. (AS SHOWN IN THE PARTIAL 
REAR VIEW) FOR "MAXIMUM CONNECTOR CUTOUT- WILL PROPERLY FIT INTO THE MAC II AND MAC Ilx, 
AS LONG AS THE DESIGN ALSO ALLOWS CLEARANCE FOR SURROUNDING PLASTIC ANu I/O SHIELD. 
REFERENCE SECTION A-A AND DETAIL B. 

PLASTl C HOUS I NG CLEARANCE D I MENS IONS FOR THE MAC I I AND MAC I I CX . THESE SHOULD BE USED AS 
DESIGN LIMITS FOR MATING CABLES OR COMPONENTS THAT REQUIRE REAR ACCESS. 

I/O SHIELD CLEARANCE DIMENSIONS FOR THE MAC II AND MAC IIX. THESE SHOULD BE USED AS DESIGN 
LIMITS FOR BOARD MOUNTED CONNECTOR OR COMPONENTS THAT REQUIRE REAR ACCESS. 

APPLE COMPUTER NUBUS BOARD CONNECTOR CLEARANCE DIMENSIONS FOR MAC II AND MAC IIX. 
THESE SHOULD BE USED AS DESIGN LIMITS FOR APPLE SPECIFICATION 062-0484. NUBUS 
BOARDS WITH NOTCHES, REFERENCE DETAIL B. 

16X) 

l~E~O I 

! J-
~ 16X) 
~ 0.72 

REF 

CENTER LINE FOR 
MOUNTING HOLE AT 
NUBUS CARD & 

14.00 

& 
J2.51 

COMPONENT SIDE OF 
NUBUS BOARD 

16XI 
17_00 

16X) 
2.23 

PARTIAL REAR VIEW 

~ 
81.00 

COMPONENT SIDE 
OF NUBUS BOARD 

17'42--l~-------+------------74'17--------------~ 

15.84 
COMPONENT SIDE 

14.38--+----~ OF NUBUS BOARD 

R~E~F----------~~===ijl--1H~~--------~ 

&12.70 

o~j j 
BOTTOM COVER 

4.00 
COVER 

L II~o.81 II" EXP ANS I ON 

-if.- 0 • 8 I 
I/O SHIELD 

SECTION A~A 
SCALE: 2/1 

FENCE 

(6X) 
22.86 

lfA 

11 
I 
I 

(6X) 
8 0.00 

(6X) 
9.67 

DETAIL 

TOP COVER 

o 

PIN A-I 
SEE APPLE NUBUS 
DES I GN GU IDE 

& I -9.92 
REF W 

[ 
L 

[ 
DB-25~ 
REF " J 

) 

& 
I 66.81 ) 

T 
I 

L 
[ 

= 

• Foldout 2 

BOTTOM COVER 

LOGIC PCB 

(6X) 
83.40 

Iff ~ -I 

~ ---, & 
II--NOTCHES 

J 

0 

DETAIL B 
SCALE: 2/1 

< 

92.17 

L 
SEE APPLE NUBUS 
DES I GN GU IDE 

I 

NuBus card clearance requirements, 
Macintosh II, Macintosh IIx, and 
Macintosh Hfx 

437 



NOTE: UNLESS OTHERWISE SPECIFIED 

.L 

.70 
EF 

! 

NUBUS BOARDS WHICH CONFORM TO THE ANSI/IEEE STD 1196 SPECIFICATION 
(AS SHOWN IN THE PARTIAL REAR), FOR "MAXIMUM CONNECTOR 
CUTOUT" WILL FIT PROPERLY INTO THE MAC Ilcx, AS LONG AS THE 
DESIGN ALSO ALLOWS CLEARANCE FOR SURROUNDING PLASTIC. 
REFERENCE SECT10N A-A AND DETAIL B. 

PLASTIC HOUSING CLEARANCE DIMENSIONS FOR THE MAC Ilcx. 
THESE SHOULD BE USED AS DESIGN LIMITS FOR BOARD MOUNTED 
CONNECTORS OR COMPONENTS AND MATING CABLES. 

APPLE COMPUTER NUBUS BOARD CONNECTOR CLEARANCE DIMENSIONS 
FOR MAC Ilcx. THESE SHOULD BE USED AS DESIGN LIMITS FOR 
APPLE SPECIFICATION 062-0484. NUBUS BOARDS WITH NOTCHES, 
REFERENCE DETAIL B. 

14.42 

12.01 

2.00 

a I ~ 

& 13XI 
14.00 

f 
~ 

&0.80 ! 
REF j i 

f ~ 
I
t
3XI 

17 j38 

~ 

9.75 

& 
0.72 ffi ffi 

[

CENTER LINE FOR MOUNTING 
HOLE AT NUB US CARD 

_ [4.95 
-- ~I 

II 
II 
II 
II 
II 
II 
II 
II 
II 

ffi ffi 

-14.00 

12. 70 --l----o~I__-O. 80 

PART I AL REAR V I EW 

74.20 

l- I COMPONENT S I DE 
OF NUBUS BOARD 

tn 

/ 13L 
21. 50 

> I 
P" 
-~ANSI/IEEE STD 119 

"MAX I MUM CONNECT 
I CUTOUT" REF 

5 
OR 

~ 
s~ ! p::, 

13XI 
24.13 

n~' ~n ·S,§!j ,,~~ 
i=' 

I3XI ] 
~ 4.51 

0.20 

0.81 
4.00-

JL:SHIELD 

f-- EXPANS I ON FENCE 
COVER 

SECTION A-A 
SCAL.E: 2/1 

,,_~SEE DETAIL 

( , 

A I I A 

f I I ~ 
I I I 

L - - -I--Il-l-I----l----1 

I I 
I I 

I I 

I 

l , 
'-

REF 

9.92 

13XI 
75.51 

56.81 
REF 

--~ 

06-25 
REF 

I 

I 
I 
I 

-L...-..,.Ltt---'1=It!I---~ 

DETAIL B 
SCALE: 2/1 

CAD GENERATED 

• Foldout 3 

TOP COVER 

PIN A-I 
SEE APPLE NUBUS 
DES I GN GUI DE 

NuBus card clearance requirements, 
Macintosh Hcx and Macintosh IIci 

92.17 

PIN A-I 
SEE APPLE NU6US 
DESIGN GUIDE 

439 



18.97 

-A-

-B-

SYM ON 

7.82 

REf'. ~ 

11.57 

7.21 
REF 

1--~1---19.22 .0.10 

18.57 ----

-B-

20.50 

94.60 

2.0 R 

7.82 

--~ 

4.0 

TOP OETA.IL 
OMITTED roo 
CLAR) TV 

4.92 
+0.20 
·0.00 

. 
7.50 
to.IO 

-A-

6.00 

.0.10 

[ 

10.35 _ r 5.35 

_._, --rT~ 
.1 ;7.25 

87.25 1 +0.00 
·0.10 

M 3.0 /\ 
2PL ~ 

• Foldout 4 Connector shield for 
Macintosh II-family computer 

-B-

,--i.S() 
.to.l0 

I REF 

LG.:.:..A-...L-_-.---==I:!,:±Z:~=F;z::#::. =-~ ____ ~A-l 

1 
18.97 
REf' 

I 

-B-

SECTION 

SCALE: 2.5 

2.57 
REF 

441 



Address NuBus 
or Data AD lines 
from/to 
MC68020 Byte lane 

Byte 3 
3 

Bits 07-00 

Byte 2 

Bits 015-D8 
2 

Byte 1 

Bits 023-D 16 

Byte 0 
Bits 031-024 

o 

CBA 
SBA 

/GBA 

GAB3 
/AD31 
/AD30 
/AD29 
/AD28 
/AD27 
/AD26 
/AD25 
/AD24 

CAB 
SAB 

GAB210 
/AD23 
/AD22 
/AD21 
/AD20 
/AD19 
/AD18 
/AD1? 
/AD16 

IAD15 
/ADI4 
IAD13 
/ADI2 
IAD11 
lAD 10 
IAD9 
IAD8 

1 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 

IAD7- ~ 
IAD6- 6 
IAD5- 7 

~~B~== 8 
IAD2- 9 
IAD1- 10 
IADO- 1~ 

CAB Vee - 24 
SAB CBA - 23 
GAB SBA - 22 
A7 GBA 21 
A6 B7 - 20 
AS B6 - 19 
A4 B5 - 18 

- 17 A3 ~ 
A2 B2 -16 

~6 B1 
- 15 
-14 

Gnd BO -13 

Ul 

CAB Vee - 24 
SAB CBA - 23 
GAB SBA - 22 
A7 GBA 21 
A6 B7 - 20 
A5 B6 - 19 
A4 B5 - 18 
A3 ~ - 17 

-16 A2 B2 - 15 ~6 B1 -14 
Gnd BO -13 

U2 

CAB Vee - 24 
SAB CBA - 23 
GAB SBA - 22 
A7 GBA 21 
A6 B7 - 20 --r-
AS B6 - 19--r-
A4 B5 -18--, 
A3 B4 - 17 
A2 B3 -16--r-
A1 B2 -15-~-
AO B1 - 14 
Gnd 80 -13--

U4 

Address and data 
buffers (U 1-U4) 

• Foldout 5 NuBus Test Card (NTC) schematic 

+5 ..... 
3K ,~{~ 

/CLK 
< <; 

---, 

ACLK DCLK /DOE 
/ID3 - 1 
/ID2 - / START 

I {)o- 2 .-- ClK 

11 
18 
17 
14 
13 
8 
7 
4 
3 

10 

11 
18 
17 
14 
13 
8 
7 
4 
3 

10 

11 
18 
17 
14 
13 
8 
7 
4 
3 

10 

US 

U7 

U8 
Address 

20 
19 
16 
15 
12 
9 
6 
5 
2 
1 

20 
19 
16 
15 
12 
9 
6 
5 
2 
1 

20 
19 
16 
15 
12 
9 
6 
5 
2 
1 

\ V 

/IDl -, /ACK 

11 20 
A31D 7 19 
A30D 6 

18 
16 

A29D 5 
17 

15 14 

-+-, 
1 

/IDO 

2 
3 U16 20 

A28D 4 12 
A27D 3 

13 
9 

A26 D2 
8 

6 7 

- 4 ..., 1 ClK Vee 
19- SLAVE 2 I R 

A2S D1 4 5 
A24 DO 3 2 

10 1 5 8 I I 
/RESET .-2 III 

18 -/ACKCY I S R 3 
17 - /ROMOE I L R 4 
16-5 I A R 

45 6 
~ 'I' -- 6 /MSTDN 6 I V R 15 - MASTER 

-11 
18 
17 
14 
13 
8 
7 
4 
3 

10 

11 
18 

20 
19 
16 
15 
12 
9 A19Dl1 
6 A18DlO 
5 A17D9 
2 
1 

MASTERD 

/CLK 

-

+5 

1-1----' 16 J 
r- ~1 L 15 --l------ttllittt==+t-- S 14 -~++--TT 3- 13 _ 

~_l+t_-TI-4 1 12 _ 
~+H+_--II-_~~ 6 r 11 -
++~+---rlr-_-~:7J 1 rl0-, 

,- 8 Gnd r 9 ---rl 

U23 
+5 

• r--l16 J 
lJ L 15-/MSTDN -+--------tttmm-Il~--=--_ ~~ s 14 _ 

- -4- 1 13-

20 U22 
IH----r-~.,... 12 _ 
~I---r-- -: 6 11-

17 
14 ;1-+;--- IM~ ,L 

5 4 
-I--l-+--r---~ 1 10 -

8 Gnd ,9-
13 
8 
7 

'.---trmITI . 

~ 
4 
3 

10 
2 
1 

A13L--21---fAl1 Vee 
A12L--1~-jAlO 
Al1L--2~, A9 
AlOL--23- A8 
A9L -- 1.- A7 2 
A8L -- ?- A6 7 11 20 A7L __ 3- A5 

18 19 _+; _____ A6L -- 4- A4 3 
17 16 A5L __ 5 
14 15 A4L -- 6 2 

D7,1?-
D6,16 
D5i 15 
D4r14 
D3~13 
D2,11 

j 

Dlr 10---. J 
DOl-9 -

U24 

--II I ~21 1~ --12 r-- 13 

U14 U1S 

U17 120 

1 -, I Vee 
19 - GRANT 2 - I 0 /ARBCY 
18 - /arb2oe I/O 3 - I 

A I/O 17 - /arbloe 4 - I 
5 - I R I/O 16 - /arbOoe 

6 - I B I/O 15-- IARB3 
'----- 7 - I I/O 14-- /ARB2 
L-8-1 I/O 13-- /ARBI 

0 12T /ARBO - 9 - I -

I 11 
Gnd 

101 

U19 l~ 
ClK - 1 '1 I V~ 1_ 

19- GAB3 
SLAVE - 2 - I I/O r-

18- /AClK ™ I L - 3 - I M I/O r-
17 - /DCLK 

AI9D11L - 4 -: I 1/0--
16- /AOE 

A 18D lOl - 5 - S 1/0-
15- /DOE /ARBCY - 6 I 

/ADRCY- 7 - I C I/O r- 14- CAB 
13- /GBA /DTACY - 8 - : I/g ~ 
12- GAB210 /ROMOE- 9 -

MASTER - 11- I 
Gnd 

- Tio 

/TMI 7 I E R 14 -TMIL 
A19Dl1 8 I R 13 - AI9Dlll 
A18Dl0 9 I 12 - AI8Dl0l 

11 

MASTER- 2 19- /ARBCY 

GRANT- 3 M 18-/ADRCY 

/RQST - 4 A R 17-/DTACY 

/START - 5 S R 16-/0WNER 

/ACK - 6 T 15-/busy 

MASTERD- 7 E 14-/arbdn 
13-/LOCKED /RESET - 8 R 
12-A17D9L A17D9 - 9 

2 20 

/ACKCY- 1 I Vee 
19- /RQST /ARBCY - 2 I 0 
18- /START I N I/O /ADRCY- 3 

I B I/O 17-/ACK /DTACY - 4 
/OWNER - 5 I D I/O 16- /rqstoe 

/LOCKED - 6 I R I/O 15-/MSTDN 

I V I/O 14-/tmoe - 7 
13- /TMI AI9D11l - 8 I R I/O 
12- ITMO I 0 AI8Dl0l - 9 

11 I 
Gnd 

10 
13 12 A3l __ 7 
8 9 A2L __ 8 
7 ~ _ r 2 
j 2 IROMOE---+- 18 '-'_-,-::-; ... 

Note: All Ie terminals 
labeled Gnd are 
connected to power 
ground. 

~ 12-SAB /GBA-13 -v"" 
10-.... ____ 1 

Data 
/ 

~4-CBA / ARBCY-3 -v"" 

~6-SBA /ADRCY-5 -v"" 

9 ~8-ACLK /AClK- -v"" 

11 ~ lQ--DClK /DCLK- -v"" 

Address and 
data registers 

U21 



o 

I 

n£ LONG VERSION 011ENS10N 1"322."30 I 12.1'>8911 IS n£ -'f'PLE 
PREFERRED IlAX I t.I.f.l.loj BOARD LENGTH "THAT W. TO£S HE: ST AI>oOARO 
P»£L SIZE. 

nilS DIIENSION .weI ....... LENGTH PERUISSIBLE FOR NON INTERFERENCE 
WITH'CPU INTERNAL COt.f"ClIIENTS. THIS SIZE IS A NON STAI>oOARO 
PAI'.EL SIZE. 

~_.-_.----- 98."32 [3.871] 

STAI\()AR!) I APPI.-E I 00-15 
LOCATION 

1iii=::::J::+=----55."30 [2.177] 

't. rK06 - IS 
CCNlECTOR 

18t--I:::::j----Z2.00 [.866J 

PIN A-IlLOGIC BOARD 
INTERFACE CONNECTOR 1 

DETAIL A 

12XI \IS 3.17 [.125] 

CROSS HATCHING I~ICATES 
IIKJ COMPOIIENTS TH IS />REA 

I 
101.6 

[If. 00] 
15XI \IS 3.38 .~.OS 

[.m ::~] 

~---------------------------------3"30.20 IlAX ----------------------------------~ 

&[I~OOOJ 

~--------------------~-322.30----------------------------------------------~ 

&[I~689J 
(LONG VERS I ON 1 

~-------------------------~.75------------------------------------~ 

'i' r-1 

~ 
; 

...:... i 
II' 

§ Il'I 

~ 

I I 

[11.683] 
REF 

1 ST "NCAR!) VERS I ON 1 

.:c 
z 
c:: 
o ... 
o LONG VEFlS I ON 

ON...Y 
14XI '+5. 

L!4-+""'-";"'- 15 ..... [.60BJ WIN 

4.92 [. I94J -----

• Foldout 6 

B7.25 +~.30 

[3.435 ::~b~] 

·1 

87.25 .0.13 

[3.435 •• 005J 

COI'.NECTOR "NO FENCE OET"IL 
ON SIDE VIEW IS c..IlTTEO 

FOR CLARITY 

-S.OB [_.200J-( 

ELAOCARD 
CON£CTOR 

120-POSITION 
A1IP P/N 53'5022-1 

PIN A-I 
1 LOG I C BOARD 

INTERFACE 
COf'f'ECTOR I 

STANDARD 
VERSION 

ON..Y 12XI 0 3.50 
[.138] 

12XI 1.0 .~.4 

[.04 ::~] 

l l .. .. 
~ ~ 
.0 ul 

a..!.J W 

~ ~ 
~ ~ 

o 
r-
a. :: It. 

I LOG I C BOARD 
I NTERF ACE COf'f'ENTOR I 

PIN "-IlLOGIC BOARD 
INTERF"CE CCNIIECTORI 

>-------------- 12XI 160.20 ----------------1 
[6.307] 

o 

o 

SEE DET"IL A 

Design guide for Macintosh IIfx PDS 
expansion card 

CPU LOGIC BOARD/PERIPI£RAL BOARD SPACING 
13 BOARDS SHOWN FOR CLAA I TY 1 

445 



4 

4.00 

NOTE: UNLESS OTHER WISE SPECIFIED 

INDICATED DIMENSIONS SPECIFY MAXIMUM BOARD OUTLINE. NO COMPONENTS. 
INCLUDING MATING CONNECTOR FROM EXPANSION BOARD. TO PROTRUDE 
BEYOND THE BOARD EDGES. 
INDICATED AREA WILL CONTACT THE METAL CHASSIS WHEN BOARD IS INSTALLED. 
NO TRACES OR FEEDTHROUGHS ARE PERMITTED. 

INDICATED AREA IS RESERVED FOR I/O CONNECTORS. WHICH ARE TO BE MOUNTED 
ON THE CIRCUIT SIDE AS SHOWN. NO OTHER COMPONENTS PERMITTED ON CIRCUIT SIDE. 

5. 

MAXIMUM LEAD LENGTH AFTER SOLDERING TO BE 2.5 MM. 

WARP AND TWIST OF FINISHED BOARD NOT OT EXCEED 0.25 MM (.010 IN.) PER 
INCH WHEN MEASURED IN ACCORDANCE WITH IPC-A-600. 

! 
11.86 

! 

2 

~--------------------96.00--------------------~ 

CIRCUIT SIDE 

± 0.16 

! I I I f 

56.00 ffi 

L __________________________________ ~ __________ ~ 

L.a.o MAX 

• Foldout 7 Connector card design guide for 
Macintosh PDS computers 

~------------------------111.00------------------------~ 

ffi 

~3.50 0" 
2 HOLES 

3.50_ ~----------------------104.00----------------------~ 

COMPONENT SIDE 

COMPONENT HEIGHT 

447 



THE APPLE PUBUSHING SYSTEM 

This Apple manual was written, edited, and 
composed on a desktop publishing system using 
Apple Macintosh® computers and 
Microsoft® Word software. proof pages were 
created on Apple LaserWriter® printers. Final pages 
were created on the Varityper VT6oow® printer. 
Line art was created using Adobe Illustrator 1M. 

PostScriptQl), the page-description language for the 
Laser Writer, was developed by Adobe Systems 
Incorporated. 

Text type and display type are Apple's corporate 
font, a condensed version of Garamond. Bullets are 
Ire Zapf Dingbats®. Some elements, such as 
program listings, are set in Apple Courier. 

Writer: Rolly Reed 
Developmental Editor: Laurel Rezeau 
Art Direction: Deb Dennis 
Illustration: Mil Madamba 
Production: J. Renee Ekleberry, Janet M. Anders 

Special thanks to Mark Baumwell, Rich Collyer, Jon Fitch, 
David Fung, Denis Hescox, Ron Hochsprung, 
Brian Howard, Jon Krakower, Ann Nunziata, Noah Price, 
and Jim Stockdale for their technical assistance. 

Also, a very special thanks to Roy Smith, writer of the first 
edition, Designing Cards and Drivers for Macintosh II 
and Macintosh SE. 



The Official 
Publication from 

Apple Computer, Inc. 

® 

Designing Cards and Drivers 
for the Macintosh®Family 
Second Edition 

Written and produced by the people at Apple Computer, Inc. , this is the official guide for devel­
opers of expansion cards and peripheral devices for the open-a~chitecture Apple® Macintosh 
computers. A companion book, Guide to the Macintosh Family Hardware, second edition, 
provides detailed information on the hardware design of the Macintosh family of computers. 

Designing Cards and Drivers for the Macintosh Family, second edition, provides comprehensive 
expansion card design and driver design guidelines for eight Macintosh models: Macintosh SE, 
Macintosh SE/30, Macintosh II , Macintosh IIx, Macintosh Portable, Macintosh IIcx, Macintosh IIci, 
and Macintosh IIfx. 

The book consists of an introduction, describing Apple's expansion strategy for current. and future 
Macintosh products, and three main parts. 

Part I describes the implementation of the NuBuS™ interface in the Macintosh II family of com­
puters. It provides hardware designers with electrical and mechanical guidelines for designing 
NuBus expansion cards, and supplies programmers with information that is essential to the 
design of declaration ROM and driver software. 

Part II describes the processor-direct slot (PDS) expansion interface and explains its relationship 
to the microprocessor. It provides hardware designers with electrical and mechanical guidelines 
for designing expansion cards for the 68000 Direct Slot and 68030 Direct Slot expansion interfaces 
used in current Macintosh computers. 

Pa11 III discusses application-specific expansion interfaces and describes how they are imple­
mented in the Macintosh family of computers to satisfy a unique purpose. 

An appendix provides guidelines for reducing electromagnetic interference and for complying 
with heat dissipation and product safety standards in your expansion card designs. The book also 
contains a glossary of technical terms and an index. 

Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, California 95014 
408-996-1010 
TLX 171-576 

Addison-Wesley Publishing Company, Inc. 

Printed in U.S.A. 

9 780201 524048 

ISBN 0-201-52404-X 
52 404 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	435
	437
	439
	441
	443
	445
	447
	448
	xBack

